WO2023004549A1 - 一种吸波结构、天线装置、探测装置及终端设备 - Google Patents

一种吸波结构、天线装置、探测装置及终端设备 Download PDF

Info

Publication number
WO2023004549A1
WO2023004549A1 PCT/CN2021/108479 CN2021108479W WO2023004549A1 WO 2023004549 A1 WO2023004549 A1 WO 2023004549A1 CN 2021108479 W CN2021108479 W CN 2021108479W WO 2023004549 A1 WO2023004549 A1 WO 2023004549A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing structure
antenna
wave
area
teeth
Prior art date
Application number
PCT/CN2021/108479
Other languages
English (en)
French (fr)
Inventor
杨小盼
陶骏
高翔
钱瑞
王浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/108479 priority Critical patent/WO2023004549A1/zh
Priority to CN202180100655.4A priority patent/CN117642930A/zh
Publication of WO2023004549A1 publication Critical patent/WO2023004549A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Definitions

  • the present application relates to the field of wireless communication, and in particular to a wave-absorbing structure, an antenna device, a detection device and terminal equipment.
  • the performance requirements of the millimeter-wave antenna included in it are getting higher and higher, including the consistency of the pattern of the millimeter-wave antenna.
  • the better the consistency of the pattern of the millimeter wave antenna the more accurate the detection of the vehicle radar.
  • the improvement of the pattern consistency of the millimeter-wave antenna is critical. Consistency improvement is usually considered from two directions. On the one hand, it is to improve the smoothness of the pattern of a single antenna unit in the millimeter-wave antenna and reduce the jitter of the pattern; Variations in orientation patterns.
  • PCB printed circuit board
  • the present application provides a wave-absorbing structure, an antenna device, a detection device and a terminal device, wherein the wave-absorbing structure is provided with a hollow area, and the hollow area is used for correspondingly setting an antenna radiator in the antenna device.
  • the wave-absorbing structure can achieve the dual effects of wave-absorbing and isolation, effectively suppress the impact of surface waves and space energy on the pattern consistency of the antenna array in the antenna device, and effectively improve the pattern consistency of the antenna array.
  • a wave absorbing structure is provided, which is applied in an antenna device, and the wave absorbing structure is provided with a hollow area, and the hollow area is used for correspondingly arranging an antenna radiator in the antenna device.
  • the influence of the surface wave and space energy in the antenna device on the pattern consistency of the antenna array can be weakened at the same time through the absorbing structure, and the pattern consistency of the antenna array can be greatly improved.
  • the absorbing structure includes a plurality of teeth and at least one connector; the plurality of teeth is connected to at least one of the connectors; the plurality of adjacent teeth A first area is formed between the two teeth of the , and the first area is the hollow area.
  • a plurality of different components in the wave absorbing structure may form a hollow area for disposing the antenna radiator.
  • the multiple teeth are connected to the same side of the connecting piece, or the multiple teeth are connected to different sides of the connecting piece.
  • multiple teeth can also be connected to the same side of the connecting piece, or multiple teeth can be connected to different sides of the connecting piece. Teeth are provided at all edges, or teeth may be provided at any three or four edges of the connecting piece.
  • the first area is a semi-enclosed area.
  • the absorbing structure is a comb structure.
  • the first area is a semi-enclosed area.
  • the absorbing structure is a fence-like structure.
  • the at least one connecting member is provided with a second area, and the second area is the hollow area.
  • the second area is a closed area.
  • the connecting member has a fence-like structure.
  • the wave-absorbing structure may include a hollow area formed by a semi-closed first area and a hollow area formed by a closed second area.
  • the wave-absorbing structure may only include the air-permeable area formed by the semi-closed or closed first area.
  • the wave-absorbing structure may only include the air-permeable area formed by the closed second area. Adjustments can be made according to actual design or production needs, which is not limited in this application.
  • the distances between two adjacent teeth among the plurality of teeth are the same or different.
  • the distance between adjacent teeth in the wave-absorbing structure may be different, and may be determined according to the antenna radiator provided in the hollow area formed between adjacent teeth.
  • different teeth have the same or different shapes.
  • the teeth in the wave-absorbing structure can be in any shape, not necessarily the rectangle in the above-mentioned embodiment, but also other shapes, such as waves, diamonds, trapezoids or other shapes, or in the same shape Teeth of different shapes are arranged in one wave-absorbing structure.
  • different teeth have the same or different shapes, including: different teeth have the same or different widths, lengths or thicknesses.
  • the width, length or thickness of the teeth in the wave-absorbing structure may be different, and may be determined according to the antenna radiators provided in the air-through regions formed between adjacent teeth.
  • the thicker teeth can be used as protrusions to support the radome and improve the stability of the entire antenna device.
  • a second aspect provides an antenna device, comprising: the absorbing structure according to any one of the first aspect and the antenna radiator.
  • the generated surface waves can be absorbed to prevent them from radiating outwards, so the influence of the surface waves on the consistency of the pattern of the antenna array formed by multiple antenna radiators can be effectively reduced.
  • the antenna radiator since the antenna radiator is arranged in the corresponding air-through area, the antenna radiator arranged in the corresponding air-through area can avoid coupling to the space energy generated by other antenna radiators when radiating, and can reduce the The spatial energy of the clutter generated when the antenna radiator in the corresponding air-through region radiates affects other antenna radiators, which can effectively reduce the influence of the spatial energy on the consistency of the pattern of the antenna array.
  • the wave-absorbing structure has a plurality of hollow areas, and each of the multiple hollow areas is provided with an antenna radiator.
  • the air-permeable area can be in one-to-one correspondence with the antenna radiator, that is, a single antenna radiator is set in each air-permeable area, which can further reduce the influence of space energy on the antenna radiator and improve the direction of the antenna array.
  • the wave-absorbing structure is a comb structure, and a hollow area is formed between adjacent teeth of the comb structure.
  • the teeth of the absorbing structure form a first angle with a plane where the antenna radiator is located, and the first angle is an acute angle.
  • the description of the wave-absorbing structure, the description of the teeth of the wave-absorbing structure, and the description of the hollow area are the same as the first aspect above, and will not be repeated here.
  • the tooth and the plane where the antenna radiator is located form a first angle ⁇ , and ⁇ can be an acute angle, so that the clutter can be continuously reflected in the air-permeable area and absorbed by the wave-absorbing structure, and its influence on other components in the antenna array can be suppressed.
  • the antenna radiator makes the pattern consistency of the antenna array worse.
  • the first angle is less than or equal to a quarter of a field of view FOV of the antenna radiator corresponding to the hollow region.
  • the highest points of the teeth in the wave-absorbing structures on both sides of the antenna radiator can avoid the field of view angle of the antenna radiator, so that the electrical signals generated by the antenna radiator can be within this angle. Radiate out.
  • the average width of the teeth of the absorbing structure is a quarter of a first wavelength
  • the first wavelength is a wavelength corresponding to a working frequency band of the antenna device.
  • the average width of the tooth is a quarter of the first wavelength, which can increase the intensity of the reflected energy of the electrical signal on the surface of the tooth, prevent it from dissipating outside the air-through area, and further weaken the antenna installed in the air-through area
  • the clutter generated by the radiator interferes with the antenna radiator set in the adjacent air-through area.
  • the cross-section of the teeth of the wave-absorbing structure is trapezoidal.
  • the cross section of the teeth may be trapezoidal.
  • the shape of the cross-section of the tooth can also be adjusted according to actual design or production requirements, for example, triangular or other shapes.
  • the wave-absorbing structure has a plurality of hollow regions, and the plurality of hollow regions are linearly arranged.
  • multiple air-through areas or multiple antenna radiators may be arranged in an array, for example, they may be arranged in a linear arrangement (straight line, curve or broken line), or they may be arranged in a 3 ⁇ 3 array.
  • the application does not limit this, and it can be adjusted according to the actual design.
  • the antenna device further includes a dielectric plate; the antenna radiator is disposed on a surface of the dielectric plate.
  • the dielectric board may be used to set the antenna radiator and provide support for it.
  • metal feeders are arranged on the dielectric plate; grooves are arranged on the absorbing structure at positions corresponding to the metal feeders.
  • the shape of the slot can be flexibly designed according to the position of the feeder line, and the present application does not limit the shape of the slot.
  • the slot may correspond to the metal feeder, and is used to shield the radiation generated by the metal feeder, reduce the impact on the antenna radiator, and further improve the consistency of the pattern of the antenna array.
  • the antenna device further includes a radome; and the absorbing structure is disposed in a space enclosed by the dielectric board and the radome.
  • the radome can be used to protect the components arranged inside it, and improve the overall stability of the antenna device.
  • the absorbing structure is provided with a protruding part, and the protruding part is in contact with the radome.
  • the wave absorbing structure may be provided with a protruding part, and the protruding part may abut against the radome for supporting the radome.
  • the raised portion is disposed on an edge of the wave-absorbing structure.
  • the protruding part when the antenna radiator is disposed on the central area of the dielectric plate, the protruding part may be disposed on the edge of the absorbing structure.
  • the absorbing structure is fixed on the dielectric plate by riveting, gluing or screws.
  • the absorbing structure can be fixed on the dielectric board by riveting, gluing or screwing, so as to ensure that the absorbing structure is closely connected with the dielectric board, reduce the external radiation of the surface wave, and effectively reduce the impact of the surface wave on the antenna.
  • the effect of array pattern consistency can be fixed on the dielectric board by riveting, gluing or screwing, so as to ensure that the absorbing structure is closely connected with the dielectric board, reduce the external radiation of the surface wave, and effectively reduce the impact of the surface wave on the antenna.
  • a detection device in a third aspect, includes a detection device such as the antenna device described in any one of the second aspect.
  • a terminal device including the detection device described in the third aspect.
  • the terminal device may be a smart transportation device (vehicle or drone), a smart home device, a smart manufacturing device, a surveying and mapping device, or a robot.
  • the intelligent transport device may be, for example, an automated guided vehicle (AGV) or an unmanned transport vehicle.
  • AGV automated guided vehicle
  • Fig. 1 is a functional block diagram of a vehicle to which the embodiment of the present application is applicable.
  • Fig. 2 is an antenna structure for improving pattern consistency.
  • FIG. 3 is a directional diagram of the antenna structure shown in FIG. 2 .
  • FIG. 4 is a top view of an antenna device 200 provided by an embodiment of the present application.
  • FIG. 5 is a side view of an antenna device 200 provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a wave absorbing structure 220 provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another wave absorbing structure 220 provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of different absorbing structures provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the cross section of the antenna structure shown in FIG. 4 and a schematic diagram of the absorbing structure.
  • FIG. 10 is a schematic diagram of a cross-section of the antenna structure shown in FIG. 4 along the x direction.
  • FIG. 11 is a schematic diagram of reflection of clutter on a surface close to the antenna radiator in the air-through region provided by the embodiment of the present application.
  • Fig. 12 is a schematic diagram of a strong reflection provided by an embodiment of the present application.
  • Fig. 13 is a schematic diagram of a strong transmission provided by an embodiment of the present application.
  • Fig. 14 is a schematic cross-sectional view of a tooth provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of another antenna device 200 provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of another antenna device 200 provided by an embodiment of the present application.
  • Fig. 17 is a schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 18 provided by the embodiment of the present application is a directional diagram of an antenna device.
  • FIG. 19 provided by the embodiment of the present application is the horizontal angle measurement error of the antenna device.
  • FIG. 20 is a schematic structural diagram of another antenna device 300 provided in an embodiment of the present application.
  • Fig. 21 is a schematic diagram of different absorbing structures provided by the embodiments of the present application.
  • Fig. 22 is a schematic structural diagram of a semi-closed hollow area provided by an embodiment of the present application.
  • Fig. 23 is a schematic diagram of the antenna device of the control group.
  • FIG. 24 provided by an embodiment of the present application is a schematic diagram of amplitude consistency of an antenna device.
  • FIG. 25 provided by an embodiment of the present application is a schematic diagram of phase consistency of an antenna device.
  • Fig. 26 is a schematic structural diagram of a closed hollow area provided by an embodiment of the present application.
  • Fig. 27 is a schematic diagram of the antenna device of the control group.
  • FIG. 28 provided by an embodiment of the present application is a schematic diagram of energy distribution of an antenna device.
  • FIG. 29 provided by the embodiment of the present application is a directional diagram of an antenna device.
  • Fig. 1 is a functional block diagram of a vehicle 100 provided by an embodiment of the present application.
  • the vehicle 100 is configured in a fully or partially autonomous driving mode.
  • the vehicle 100 can control itself while in the automatic driving mode, and can determine the current state of the vehicle and its surrounding environment through human operation, determine the likely behavior of at least one other vehicle in the surrounding environment, and determine the behavior of the other vehicle.
  • a confidence level corresponding to the likelihood of performing the possible action is used to control the vehicle 100 based on the determined information.
  • the vehicle 100 While the vehicle 100 is in the autonomous driving mode, the vehicle 100 may be set to operate without human interaction.
  • Vehicle 100 may include various subsystems such as travel system 102 , sensor system 104 , control system 106 , one or more interface devices 108 as well as power supply 110 , computer system 112 and user interface 116 .
  • vehicle 100 may include more or fewer subsystems, and each subsystem may include multiple elements.
  • each subsystem and element of the vehicle 100 may be interconnected by wire or wirelessly.
  • the propulsion system 102 may include components that provide powered motion for the vehicle 100 .
  • propulsion system 102 may include engine 118 , energy source 119 , transmission 120 , and wheels/tyres 121 .
  • the engine 118 may be an internal combustion engine, an electric motor, an air compression engine or other types of engine combinations, such as a hybrid engine composed of a gasoline engine and an electric motor, or a hybrid engine composed of an internal combustion engine and an air compression engine.
  • Engine 118 converts energy source 119 into mechanical energy.
  • the sensor system 104 may include a number of sensors that sense information about the environment surrounding the vehicle 100 .
  • the sensor system 104 may include a positioning system 122 (the positioning system may be a GPS system, or a Beidou system or other positioning systems), an inertial measurement unit (inertial measurement unit, IMU) 124, a radar 126, a laser range finder 128 and camera 130 .
  • the sensor system 104 may also include sensors of the interior systems of the monitored vehicle 100 (eg, interior air quality monitor, fuel gauge, oil temperature gauge, etc.). Sensor data from one or more of these sensors can be used to detect objects and their corresponding properties (position, shape, orientation, velocity, etc.). Such detection and identification are critical functions for safe operation of autonomous vehicle 100 .
  • Control system 106 controls the operation of the vehicle 100 and its components.
  • Control system 106 may include various elements including steering system 132 , accelerator 134 , braking unit 136 , sensor fusion algorithm 138 , computer vision system 140 , routing control system 142 , and obstacle avoidance system 144 .
  • the vehicle 100 interacts with external sensors, other vehicles, other computer systems, or users through the interface device 108 .
  • Interface device 108 may include wireless communication system 146 , on-board computer 148 , microphone 150 and/or speaker 152 .
  • interface device 108 provides a means for a user of vehicle 100 to interact with user interface 116 .
  • on-board computer 148 may provide information to a user of vehicle 100 .
  • the user interface 116 may also operate the on-board computer 148 to receive user input.
  • the on-board computer 148 can be operated through a touch screen.
  • interface device 108 may provide a means for vehicle 100 to communicate with other devices located within the vehicle.
  • microphone 150 may receive audio (eg, voice commands or other audio input) from a user of vehicle 100 .
  • speaker 152 may output audio to a user of vehicle 100 .
  • Wireless communication system 146 may communicate wirelessly with one or more devices, either directly or via a communication network.
  • the wireless communication system 146 realizes wireless communication through a vehicle-mounted antenna, such as 3G cellular communication, or global system for mobile communications (global system for mobile communications, GSM) communication technology, wideband code division multiple access (wideband code division multiple access, WCDMA) communication technology, 4G cellular communication (such as long term evolution (LTE) communication technology), 5G cellular communication, etc.
  • the wireless communication system 146 can communicate with a wireless local area network (wireless local area network, WLAN) by using WiFi through the vehicle antenna.
  • the wireless communication system 146 may communicate directly with the device using an infrared link, Bluetooth, or ZigBee.
  • Other wireless protocols, such as various vehicle communication systems, for example, wireless communication system 146 may include one or more dedicated short range communications (DSRC) devices, which may include public and/or private data communications.
  • DSRC dedicated short range communications
  • Computer system 112 may include at least one processor 113 executing instructions 115 stored in a non-transitory computer-readable medium such as data storage device 114 .
  • the computer system 112 may also be a plurality of computing devices that control individual components or subsystems of the vehicle 100 in a distributed manner.
  • a user interface 116 for providing information to or receiving information from a user of the vehicle 100 .
  • user interface 116 may include one or more input/output devices within set of interface devices 108 , such as wireless communication system 146 , onboard computer 148 , microphone 150 , and speaker 152 .
  • one or more of these components described above may be installed separately from or associated with the vehicle 100 .
  • data storage device 114 may exist partially or completely separate from vehicle 1100 .
  • the components described above may be communicatively coupled together in a wired and/or wireless manner.
  • FIG. 1 should not be construed as a limitation to this embodiment of the present invention.
  • the above-mentioned vehicle 100 can be a car, truck, motorcycle, bus, boat, plane, helicopter, lawn mower, recreational vehicle, playground vehicle, construction equipment, tram, golf cart, train, or trolley, etc.
  • the application examples are not particularly limited.
  • the performance requirements of the millimeter-wave antenna included in it are getting higher and higher, including the consistency of the pattern of the millimeter-wave antenna.
  • the consistency of the pattern can be understood as the difference between the gain/phase of different antenna elements at different angles (the difference between the maximum value and the minimum value) in the pattern generated by the antenna within the first angle range (for example, ⁇ 60°). value), the smaller the deviation, the better the pattern consistency.
  • the improvement of the pattern consistency of the millimeter-wave antenna is critical. Consistency improvement is usually considered from two directions. On the one hand, it is to improve the smoothness of the pattern of a single antenna unit in the millimeter-wave antenna and reduce the jitter of the pattern; Variations in orientation patterns.
  • the poor consistency of the pattern is mainly caused by coupling paths such as surface waves, space energy, and feeder stray radiation, which can effectively suppress or guide surface waves, reduce the impact of space energy coupling and feeder radiation
  • the influence of the surface wave can be understood as the influence of the radiation generated by the surface wave effect on the dielectric layer on the consistency of the antenna.
  • the influence of space energy can be understood as the influence of the electrical signal coupled to the space by each antenna element in the antenna on the consistency of the antenna.
  • the influence of feeder stray radiation can be understood as the influence of the radiation generated by the metal wires in the PCB during the transmission of electrical signals on the consistency of the antenna.
  • Fig. 2 is an antenna structure for improving pattern consistency.
  • a dummy element (dummy element can be understood as a grounded metal wire) is set between two adjacent antenna elements of the antenna array. After adding the dummy element, the radiation environment of each antenna element can be approached, This in turn improves pattern consistency.
  • the pattern consistency of the antenna array is improved to a certain extent. But for the dummy, it is more to guide the surface wave, and the suppression effect on the surface wave and space energy is limited, and a good pattern consistency is not obtained.
  • an artificial magnetic conductor (AMC) or an electromagnetic band gap (EBG) is placed around the antenna unit, or a sawtooth edge is laid on the antenna unit If the metal grounding structure is used, or if the feeder and the chip are set in the electromagnetic wave shielding area, the suppression effect on the surface wave and space energy is limited, and there are also limitations in processing and layout.
  • AMC artificial magnetic conductor
  • ESG electromagnetic band gap
  • Embodiments of the present application provide a wave-absorbing structure, an antenna device, a detection device, and a terminal device, wherein the wave-absorbing structure is provided with a hollow area, and an antenna radiator can be arranged correspondingly in the air-penetrating area, and the wave-absorbing structure can be set in a medium On the board, the antenna radiator may be a metal layer (for example, a copper layer) on the surface of the dielectric board.
  • the absorbing structure can achieve the dual effects of absorbing and isolating, effectively suppressing the influence of surface waves and space energy on the pattern consistency of the antenna, and effectively improving the pattern consistency of the antenna.
  • FIG. 4 and FIG. 5 are schematic structural diagrams of an antenna device 200 provided in an embodiment of the present application.
  • FIG. 4 is a top view of the antenna device 200 .
  • FIG. 5 is a side view of the antenna device 200 .
  • the antenna device 200 may include a plurality of antenna radiators 210 and a wave absorbing structure 220 .
  • the absorbing structure 220 may include a plurality of hollow areas 221 , the hollow areas 221 correspond to the antenna radiator 210 , and the antenna radiator 210 is disposed in the corresponding hollow area 221 .
  • the antenna device 200 may further include a dielectric board 230 on which a plurality of antenna radiators 210 and a wave absorbing structure 220 may be disposed, and the plurality of antenna radiators 210 may form an antenna array.
  • a metal layer 231 is provided on the side of the dielectric plate 230 away from the wave-absorbing structure 220 , as shown in FIG. 5 , the metal layer 231 can serve as a floor of the antenna device 200 .
  • the antenna radiator 210, the dielectric board 230 and the metal layer 231 form a PCB antenna.
  • the PCB antenna may include multiple layers of dielectric boards.
  • the embodiments of the present application only use one layer of dielectric boards as an example for illustration, and this is not limited thereto.
  • the antenna device can absorb the surface wave generated on the dielectric plate by arranging the wave-absorbing structure 220 on the dielectric plate 230, and reduce its outward radiation. Therefore, the surface wave can be effectively reduced. Influence on the consistency of the pattern of the antenna array formed by the plurality of antenna radiators 210 . At the same time, since the antenna radiator 210 is arranged in the corresponding air-through area 221, the antenna radiator 210 arranged in the corresponding air-through area 221 can greatly reduce the space energy generated when coupled to other antenna radiators 210 for radiation.
  • the influence of surface waves and space energy on the pattern consistency of the antenna array can be weakened by the wave-absorbing structure 220 at the same time, and the pattern consistency of the antenna array can be greatly improved.
  • the material of the wave-absorbing structure 220 may be Sabic polycarbonate (SABIC PC+C), which can absorb electromagnetic wave signals incident therein and reduce interference to the antenna radiator 210 .
  • SABIC PC+C Sabic polycarbonate
  • the surface of the absorbing structure 220 may also be provided with a metal layer, for example, aluminum, silver, or other metal materials.
  • a metal layer for example, aluminum, silver, or other metal materials.
  • the surface of the absorbing structure 220 away from the dielectric plate 230 can be provided with a corresponding metal layer according to the shape of the absorbing structure 220, or, except for the surface of the absorbing structure 220 close to the dielectric plate 230, all can be provided with There is a corresponding metal layer, which can further reduce the space energy generated when coupled to other antenna radiators 210 for radiation, and improve the consistency of the pattern of the antenna array.
  • the absorbing structure 220 can be fixed on the dielectric plate 230 by riveting, gluing or screwing, so as to ensure that the absorbing structure 220 is closely connected with the dielectric plate 230 and reduce the outward radiation of surface waves, which can effectively reduce The effect of surface waves on the pattern uniformity of an antenna array.
  • the air-through area 221 can correspond to the antenna radiator 210 one-to-one, that is, each air-through area 221 is provided with an antenna radiator 210, which can further reduce the influence of space energy on the antenna radiator and improve the performance of the antenna radiator. Pattern consistency of antenna arrays.
  • the plurality of hollow areas 221 or the plurality of antenna radiators 210 may be arranged in an array, for example, the plurality of hollow areas 221 or the plurality of antenna radiators 210 may be arranged linearly (for example, a straight line, curved line or broken line), or can be arranged in a 3 ⁇ 3 array, which is not limited in the present application and can be adjusted according to the actual design.
  • the multiple antenna radiators 210 are arranged in a straight line as an example for illustration. As shown in FIG. 4 , the arrangement length L1 of the multiple antenna radiators 210 can be adjusted according to the actual design.
  • the absorbing structure 220 may include multiple teeth 222 and at least one connecting piece 223, and the multiple teeth 222 may be connected to at least one connecting piece 223, as shown in FIG.
  • the wave structure is a fence-like wave-absorbing structure, that is, the air-permeable area is a closed area.
  • a hollow area 221 is formed between two adjacent teeth 222 among the plurality of teeth 222 .
  • two connecting pieces 223 are taken as an example for illustration, the hollow area 221 formed between two adjacent teeth 222 may be a closed area, and the hollow area 221 encloses its corresponding antenna radiator .
  • the wave-absorbing structure 220 can be in the shape of a comb, and the hollow area 221 formed between two adjacent teeth 222 can be a semi-closed area, and the hollow area 221 encloses its corresponding
  • a partial area of the antenna radiator is shown in Figure 7.
  • the teeth in the wave-absorbing structure can be in any shape, not necessarily the rectangle in the above embodiment, but also other shapes, for example, wavy, rhombus, trapezoid or other shapes, or in the same shape
  • a wave-absorbing structure is provided with teeth of different shapes, as shown in (a) in Figure 8, in order to better improve the consistency of the pattern of the antenna array. This application does not limit this, and it can be determined according to the actual design. Adjustment.
  • the distance between adjacent teeth in the wave-absorbing structure can be different, and can be determined according to the antenna radiator set in the air-through area formed between adjacent teeth, as shown in Figure 8 (b ), in order to better improve the consistency of the pattern of the antenna array, the present application does not limit this, and it can be adjusted according to the actual design.
  • the length or width of the teeth in the wave-absorbing structure can be different, and can be determined according to the antenna radiator set in the air-through area formed between adjacent teeth, as shown in (c) in Figure 8 , in order to better improve the pattern consistency of the antenna array, which is not limited in the present application and can be adjusted according to the actual design.
  • a metal feeder 240 may be provided on the dielectric plate 230, and the metal feeder 240 is used to feed the antenna radiator 210, as shown in (a)(b)(c) shown in FIG. 9 , wherein , Figure 9(b) and Figure 9(c) are perspective views of Figure 9(a).
  • the metal feeder 240 and the antenna radiator 210 are disposed on the same side of the dielectric plate 230 as an example for illustration. It should be understood that the metal feeder 240 and the antenna radiator 210 may also be arranged on both sides of the dielectric board 230 respectively.
  • the metal feeder 240 may also be arranged on other dielectric boards. No restrictions.
  • the side of the absorbing structure close to the dielectric plate 230 can be provided with a groove 241, and the groove 241 can be connected to the metal feeder 240.
  • Corresponding settings are used to shield the radiation generated by the metal feeder 240, reduce the impact on the antenna radiator 210, and further improve the consistency of the pattern of the antenna array.
  • the slot 241 can be designed according to the layout of the metal feeder 240 on the dielectric plate 230.
  • the slot 241 can be arranged in the connector 223 of the absorbing structure, electrically connected to the antenna radiator 210, and feeds it, as shown in FIG.
  • FIG. 9( a ) is a schematic cross-sectional view through the groove 214 and parallel to xoz.
  • the specific position of the groove 241 is shown in (b) and (c) in Figure 9
  • ((b) and (c) in Figure 9 are the three-dimensional structural schematic diagrams of the wave-absorbing structure 220 viewed from above and below), or, the groove 242 It can also be arranged in the teeth 222 of the wave-absorbing structure, as shown in FIG. 10 .
  • the space formed by the slotting of the wave-absorbing structure may not be provided with a metal feeder, which can be adjusted according to the actual design, for example, electronic components (capacitors, resistors, inductors or filter devices, etc.) .
  • groove 241 it is a regular cubic structure with a rectangular cross-section, which is only used as an example. In actual production or design, it can be modified according to the layout of the metal feeder. Do limit.
  • the metal feeder 240 and the antenna radiator 210 can also be respectively arranged on both sides of the dielectric plate 230, the side of the absorbing structure close to the dielectric plate 230 may not be provided with a groove, and is a solid structure, which can effectively improve the absorbing structure. strength and stability.
  • the highest points of the teeth 222 in the absorbing structures on both sides of the antenna radiator 210 can avoid the field of view (field of view, FOV) ⁇ of the antenna radiator 210, so that the electric current generated by the antenna radiator 210 Signals can be radiated within this angle, as shown in Figure 10.
  • the electrical signal radiated within the field of view angle of the antenna radiator 210 can be considered as the main radiation, and the electrical signal radiated outside this angle can be considered as clutter, which will affect other antenna radiators in the antenna array, and then affect the antenna array. direction map consistency.
  • the field of view angle can be 120°, then it is understood that the electrical signal radiated within the range of 60° with the z-axis is the main radiation, and the angle with the z-axis is between 60° and 90° Electrical signals radiated within the range are clutter. Therefore, the tooth 222 and the plane where the antenna radiator 210 is located form a first angle ⁇ , and ⁇ can be an acute angle, so that the clutter can be continuously reflected in the air-permeable area and absorbed by the wave-absorbing structure, thereby improving the consistency of the antenna array pattern .
  • the first angle ⁇ between the teeth 222 and the plane where the antenna radiator 210 is located can be understood as the angle formed between the side surface of the tooth 222 and the plane where the antenna radiator 210 is located.
  • the first angle ⁇ may also be a right angle or an obtuse angle, which may also reduce mutual influence between antenna radiators, thereby improving the consistency of the pattern of the antenna array.
  • the electrical signal generated by the antenna radiator 210 can be radiated within the viewing angle, and the clutter outside this angle can be continuously reflected in the air-permeable area and absorbed by the wave-absorbing structure, then at the edge of the viewing angle ⁇
  • the electromagnetic wave signal of the incident wave is reflected by the highest point of the tooth 222 as the incident wave, and the reflected wave must be perpendicular to the plane where the antenna radiator is located, as shown in FIG. 11 .
  • the angle value of the first angle ⁇ is a critical angle.
  • the electrical signal generated by the antenna radiator 210 can be radiated within the field of view.
  • the clutter outside this angle can be continuously reflected in the air-permeable area and absorbed by the wave-absorbing structure. It can be seen from the geometrical relationship that in this case, the angle value of the first angle ⁇ is a quarter of the angle of view ⁇ .
  • FIG. 12 it is a schematic diagram of the principle of strong reflection.
  • the thickness of the medium is 1/4 of the wavelength corresponding to the incident wave
  • the first The phase of the reflected wave is 180°
  • the phase of the second reflected wave generated after part of the incident wave is injected into the medium is 180°.
  • the phases of the first reflected wave and the second reflected wave are the same, and the two are mutually related. Enhanced, with greater reflected energy, and therefore, lower transmitted energy through the medium.
  • Figure 13 it is a schematic diagram of the principle of strong transmission.
  • the phase of the first reflected wave is 180 °
  • part of the incident wave is injected into the medium and the phase of the second reflected wave is 360°
  • the phase of the first reflected wave and the second reflected wave are opposite (the difference is 180°)
  • the two cancel each other the reflected energy is small, so the transmitted energy through the medium is large.
  • the tooth 222 its function is to suppress the clutter generated by the antenna radiator in the air-through area formed by it, and reduce the impact on the antenna radiator in the adjacent air-through area. interfere. Therefore, the average width L2 of the tooth 222 is a quarter of the first wavelength, which can increase the intensity of the reflected energy of the electrical signal on the surface of the tooth 222, restrain it from dissipating outside the air-through area, and then reduce the radiation of the antenna arranged in the air-through area.
  • the clutter generated by the body interferes with the antenna radiator set in the adjacent air-through area, as shown in Figure 11.
  • the first wavelength can be the wavelength corresponding to the working frequency band of the antenna device 200, which can be understood as the wavelength corresponding to the center frequency of the working frequency band, or can also be understood as the wavelength corresponding to the resonance point of the resonance generated by the antenna device 200. It should be understood that, The average width L2 of the teeth 222 can also be adjusted according to specific design or production requirements, which is not limited in this application.
  • the tooth 222 may have a trapezoidal cross-section, as shown in FIG. 11 .
  • the shape of the cross-section of the tooth 222 can also be adjusted according to actual design or production requirements.
  • the cross-section of the tooth 222 can be a triangle, or the cross-section of the tooth 222 can also be as shown in (a) or As shown in (b), the present application does not limit this.
  • the antenna device 200 further includes a radome 250, and the absorbing structure 220 can be arranged in the space enclosed by the dielectric plate 230 and the radome 250, and the radome 250 can be used to protect the components arranged inside it, and to enhance the antenna.
  • the overall stability of the device 200 is shown in FIG. 15 .
  • the absorbing structure 220 may be provided with a raised portion 224 , and the raised portion 224 may abut against the radome 250 for supporting the radome 250 .
  • the protruding portion 224 may be disposed on the edge (side) of the absorbing structure 220, as shown in FIG. 15 .
  • the protruding portion 224 may be a tooth disposed on the edge of the multiple teeth of the wave-absorbing structure 220 (thicknesses of the multiple teeth may be different), or it may also be a part of the connecting piece of the wave-absorbing structure 220, and 224 It can be integrally formed with 200, or exist separately from 220, which is not limited in this application, and can be adjusted according to the actual design.
  • the antenna radiator 210 is disposed on the edge of the dielectric plate 230, the raised portion may not be disposed, as shown in FIG. 16 , the present application does not limit this, and it can be adjusted according to the actual design.
  • Fig. 17 is a schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 17 it adopts the same dielectric plate and the same number and layout of antenna radiators as the antenna device shown in Figure 4, wherein a plurality of antenna radiators are distributed along a straight line to form an antenna array, Figure 17 and Figure 4
  • the difference of the shown antenna device is only that a wave absorbing structure is arranged above the dielectric plate in FIG. 4 .
  • FIG. 18 and FIG. 19 are simulation result diagrams of the antenna device shown in FIG. 4 and FIG. 17 .
  • FIG. 18 is a directional diagram of the antenna device.
  • Fig. 19 is the horizontal angle measurement error of the antenna device.
  • the directional diagram of the antenna array in the antenna device shown in Figure 17 appears to drop pits (gain deviations) near ⁇ 20°, and the antenna device shown in Figure 4 adds a wave-absorbing structure, and the directional diagram of the antenna array There are no pits, and there is no large deviation within the range of ⁇ 60° (the angle with the z-axis is 60°), which effectively improves the phenomenon of antenna array pits, thereby improving the consistency of the pattern.
  • the angle measurement error deviation at this position is relatively large, which greatly reduces the measurement accuracy.
  • the antenna device shown in Figure 4 due to the good consistency of the antenna array pattern, its angle measurement error is basically 0°. Compared with the antenna device shown in Figure 17, the angle measurement accuracy is increased by 0.07°, which is a significant improvement angle measurement accuracy.
  • FIG. 20 is a schematic structural diagram of another antenna device 300 provided in an embodiment of the present application.
  • the antenna device 300 may include a plurality of antenna radiators 310 and a wave absorbing structure 320 .
  • the absorbing structure 320 may include a connecting piece 323 and a plurality of teeth 322 .
  • a first area 3211 is formed between two adjacent teeth in the plurality of teeth 322 , and the first area 3211 is a hollow area in the absorbing structure 320 for setting the antenna radiator 310 .
  • a second area 3212 may be provided in the connecting member 323 , and the second area 3212 may serve as a hollow area in the absorbing structure 320 , and the illustrated area 3212 may be regarded as a window-shaped hollow area for setting the antenna radiator 310 . It should be understood that, for the above embodiment, the number of the first region 3211 and the number of the second region 3212 may be determined according to an actual design, which is not limited in the present application.
  • a plurality of teeth 322 may be respectively disposed on two sides of the connecting member 323 to form a semi-closed first area 3211 .
  • multiple teeth 322 can also be connected to the same side of the connecting member 323, or multiple teeth 322 can be connected to different sides of the connecting member 323, the present application is not limited to this, for example, the connecting member 323 can Teeth 322 are provided at one edge of the connector 323 to form a semi-closed first area 3211, or teeth 322 may be provided at any three or four edges of the connector 323 to form a semi-closed first area 3211.
  • the air-through area can be set according to the layout of the multiple antenna radiators 310 in the antenna device 300 , so as to improve the pattern consistency of the antenna array in the antenna device 300 .
  • the wave-absorbing structure may include a hollow area formed by a semi-closed first area and a hollow area formed by a closed second area, as shown in FIG. 20 .
  • the wave-absorbing structure may only include the air-permeable area formed by the semi-closed first area, as shown in (a) and (b) in FIG. 21 .
  • the wave-absorbing structure may only include a hollow area formed by the closed second area, as shown in (c) of FIG. 21 .
  • the average width of the tooth structure formed between two adjacent second regions 3212 may be a quarter of the second wavelength, and the second wavelength may be a wavelength corresponding to the working frequency band of the antenna device 300 .
  • the connecting piece 323 and the plurality of teeth 322 can be integrally formed as a complete structure, or part of the teeth in the plurality of teeth 322 can be prepared separately (for example, the teeth arranged on the edge), and can be suction
  • the wave block is fixed on the dielectric plate 330 by riveting, gluing or screwing to form a complete wave-absorbing structure.
  • the wave-absorbing structure 320 is provided with 10 air-permeable regions as an example for illustration, and the specific number can be adjusted according to design requirements, which is not limited in the present application.
  • the antenna radiators arranged in a plurality of air-through regions may form at least one antenna array.
  • one antenna radiator may be provided in one air-through area, or multiple antenna radiators may be provided in one air-through area.
  • a plurality of antenna radiators may also be arranged in a single air-through area, and the multiple antenna radiators in a single air-through area independently form an antenna array, that is, an antenna array may be formed in each air-through area.
  • a single antenna radiator is arranged in each of the multiple air-through areas, and the multiple antenna radiators in the multiple air-through areas respectively form different antenna units of the same antenna array, that is, multiple transparent
  • the antenna radiators in the null zone together form an antenna array.
  • a plurality of antenna radiators may be respectively arranged in the air-through area 1 and the air-through area 2, and the antenna radiators in the air-through area 1 and the air-through area 2 may respectively form a first antenna array and a second antenna array.
  • the air-through area 3 to the air-through area 10 can all be provided with a single antenna radiator, the antenna radiator in the air-through area 3 and the antenna radiator in the air-through area 4 can jointly form a third antenna array, and the antenna radiation in the air-through area 5
  • the antenna radiator in the air-through area 6 and the antenna radiator can jointly form the fourth antenna array, the antenna radiator in the air-through area 7 and the antenna radiator in the air-through area 8 can jointly form the fifth antenna array, and the air-through area 9
  • the antenna radiator in and the antenna radiator in the hollow region 10 can jointly form a sixth antenna array. That is, the antenna device 300 may include 6 antenna arrays to improve the measurement accuracy of the antenna device 300 .
  • FIG. 22 to 25 are schematic diagrams and simulation results of another antenna device provided by the embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of the semi-closed through-space area provided by the embodiment of the present application.
  • Fig. 23 is a schematic diagram of the antenna device of the control group.
  • FIG. 24 provided by an embodiment of the present application is a schematic diagram of amplitude consistency of an antenna device.
  • FIG. 25 provided by an embodiment of the present application is a schematic diagram of phase consistency of an antenna device.
  • the wave-absorbing structure is composed of two teeth and a connecting piece, forming a semi-closed air-permeable area, and a plurality of antenna radiators are arranged in the air-permeable area of the air-permeable area.
  • the difference between the antenna device shown in Figure 23 and Figure 22 is that the absorbing structure is set above the dielectric plate in Figure 22, and the antenna radiator is set in the air-permeable area.
  • the antenna array is arranged in the air-permeable area of the wave-absorbing structure, and the wave-absorbing structures on both sides of the array can effectively absorb the stray energy in the space between the radome and the antenna board, thereby improving the amplitude-phase consistency of the pattern.
  • setting a wave-absorbing structure in the antenna device and setting the antenna array in the air-permeable area of the wave-absorbing structure can make the antenna structure within ⁇ 60° (the angle with the z-axis is 60°). , the amplitude consistency is increased by 1.8dB, and the phase consistency is increased by 17°.
  • FIG. 26 to 29 are schematic diagrams and simulation results of another antenna device provided by the embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of the closed hollow area provided by the embodiment of the present application.
  • Fig. 27 is a schematic diagram of the antenna device of the control group.
  • FIG. 28 provided by an embodiment of the present application is a schematic diagram of energy distribution of an antenna device.
  • FIG. 29 provided by the embodiment of the present application is a directional diagram of an antenna device.
  • the wave-absorbing structure is composed of two teeth and two connecting pieces, forming a closed air-permeable area, and a single antenna radiator is set in the air-permeable area, as shown in Figure 27 and Figure 26
  • the difference of the antenna device is only that the absorbing structure is arranged above the dielectric board in Fig. 26, and the antenna radiator is arranged in the air-permeable area.
  • An embodiment of the present application also provides a detection device, including the above-mentioned antenna device, for performing a detection task.
  • the embodiment of the present application also provides a terminal device, including the detection apparatus described above.
  • the terminal may be a smart transportation device (vehicle or drone), smart home device, smart manufacturing device, surveying and mapping device, or robot.
  • the intelligent transport device may be, for example, an automated guided vehicle (AGV) or an unmanned transport vehicle.
  • AGV automated guided vehicle
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical or other forms.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种吸波结构、天线装置、探测装置和终端设备,其中,吸波结构设置有透空区,透空区用于对应设置天线装置中的天线辐射体。吸波结构可以达到吸波和隔离的双重效果,有效抑制表面波和空间能量对天线装置中的天线阵列的方向图一致性的影响,有效提升天线阵列的方向图一致性。

Description

一种吸波结构、天线装置、探测装置及终端设备 技术领域
本申请涉及无线通信领域,尤其涉及一种吸波结构、天线装置、探测装置及终端设备。
背景技术
随着智能驾驶的不断发展,车辆对周边环境的探测需求不断提升。因此,对于车载雷达来说,其包含的毫米波天线的性能要求越来越高,其中就包含毫米波天线的方向图一致性。通常情况下,毫米波天线的方向图的一致性越好,车载雷达的探测越准确。
在毫米波级别的汽车雷达的应用中,毫米波天线的方向图一致性的提升很关键。一致性提升通常从两个方向考虑,一方面是提升毫米波天线中单个天线单元的方向图的平滑性,减小方向图的抖动;另一方面是减小毫米波天线中不同天线单元之间方向图的差异性。
对于传统的印制电路板(printed circuit board,PCB)天线,方向图的一致性差主要是由表面波、空间能量、及馈线杂散辐射等耦合路径共同导致的,有效的抑制或引导表面波、减小空间能量耦合及馈线辐射影响是提升方向图一致性关键的手段。
发明内容
本申请提供一种吸波结构、天线装置、探测装置和终端设备,其中,吸波结构设置有透空区,透空区用于对应设置天线装置中的天线辐射体。吸波结构可以达到吸波和隔离的双重效果,有效抑制表面波和空间能量对天线装置中的天线阵列的方向图一致性的影响,有效提升天线阵列的方向图一致性。
第一方面,提供了一种吸波结构,应用于天线装置中,所述吸波结构设置有透空区,所述透空区用于对应设置所述天线装置中的天线辐射体。
根据本申请实施例,通过吸波结构可以同时减弱天线装置中表面波和空间能量对天线阵列的方向图一致性的影响,大幅提升天线阵列的方向图一致性。
结合第一方面,在一些可能的实现方式中,所述吸波结构包括多个齿和至少一个连接件;所述多个齿与至少一个所述连接件连接;所述多个齿中相邻的两个齿之间形成第一区域,所述第一区域为所述透空区。
根据本申请实施例,可以通过吸波结构中多个不同的部件形成透空区,用于设置天线辐射体。
结合第一方面,在一些可能的实现方式中,所述多个齿与所述连接件的同一侧连接,或者所述多个齿与所述连接件的不同侧连接。
根据本申请实施例,多个齿也可以与连接件的同一侧连接,或者,多个齿可以与连接件的不同侧连接,本申请对此并不做限制,例如,可以在连接件的一条边沿处均设置有齿,或者,也可以在连接件的任意的三条边沿或四条边沿处设置有齿。
结合第一方面,在一些可能的实现方式中,所述第一区域为半封闭区域。
结合第一方面,在一些可能的实现方式中,所述吸波结构呈梳状结构。
结合第一方面,在一些可能的实现方式中,所述第一区域为半封闭区域。
结合第一方面,在一些可能的实现方式中,所述吸波结构呈围栏状结构。结合第一方面,在一些可能的实现方式中,所述至少一个连接件设置有第二区域,所述第二区域为所述透空区。
结合第一方面,在一些可能的实现方式中,所述第二区域为封闭区域。
结合第一方面,在一些可能的实现方式中,所述连接件呈围栏状结构。
根据本申请实施例,吸波结构可以包括半封闭的第一区域形成的透空区和封闭的第二区域形成的透空区。或者,吸波结构可以仅包括半封闭或封闭的第一区域形成的透空区。或者,吸波结构可以仅包括封闭的第二区域形成的透空区。可以根据实际的设计或生产需要进行调整,本申请对此并不做限制。
结合第一方面,在一些可能的实现方式中,所述多个齿中相邻的两个齿之间距离相同或不同。
根据本申请实施例,吸波结构中的相邻的齿之间的距离可以不同,可以根据相邻的齿之间形成的透空区所设置的天线辐射体确定。
结合第一方面,在一些可能的实现方式中,不同齿的形状相同或不同。
根据本申请实施例,吸波结构中的齿可以为任意形状,不一定为上述实施例中的矩形,也可以是其他形状,例如,波浪形,菱形,梯形或其他形状,也可以是在同一个吸波结构内设置不同形状的齿。
结合第一方面,在一些可能的实现方式中,不同齿的形状相同或不同,包括:不同齿的宽度,长度或者厚度相同或者不同。
根据本申请实施例,吸波结构中的齿的宽度,齿的长度或齿的厚度均可以不同,可以根据相邻的齿之间形成的透空区所设置的天线辐射体确定。在吸波结构的齿的厚度不同的情况下,其中厚度较厚的齿可以作为凸起部,以支撑天线罩,提升整个天线装置的稳定性。
第二方面,提供了一种天线装置,包括:如第一方面中任一项所述的吸波结构和所述的天线辐射体。
根据本申请实施例,可以将产生的表面波吸收,避免其向外辐射,因此,可以有效减少表面波对多个天线辐射体形成的天线阵列的方向图一致性的影响。同时,由于天线辐射体设置在与其对应的透空区内,因此,设置在对应的透空区内的天线辐射体可以避免耦合到其他天线辐射体辐射时产生的空间能量,并且,可以减少在对应的透空区内的天线辐射体辐射时产生的杂波的空间能量影响其他天线辐射体,可以有效减少空间能量对天线阵列的方向图一致性的影响。
结合第二方面,在一些可能的实现方式中,所述吸波结构具有多个透空区,所述多个透空区中每个透空区设置有一个天线辐射体。
根据本申请实施例,透空区可以与天线辐射体一一对应,即每个透空区中均设置有单个天线辐射体,可以进一步减少空间能量对天线辐射体的影响,提升天线阵列的方向图一致性。
结合第二方面,在一些可能的实现方式中,所述吸波结构呈梳状结构,所述梳状结构的相邻的齿之间形成透空区。
结合第二方面,在一些可能的实现方式中,所述吸波结构的齿与所述天线辐射体所在平面呈第一角度,所述第一角度为锐角。其中,所述吸波结构的描述,以及吸波结构的齿 的描述,以及透空区的描述同以上第一方面,此处不再赘述。
根据本申请实施例,齿与天线辐射体所在平面呈第一角度α,α可以为锐角,使杂波可以在透空区内不断反射并被吸波结构吸收,抑制其影响天线阵列中的其他天线辐射体,使天线阵列的方向图一致性变差。结合第二方面,在一些可能的实现方式中,所述第一角度小于或等于所述透空区对应的天线辐射体的视场角FOV的四分之一。
根据本申请实施例,在该角度内,天线辐射体两侧吸波结构中的齿的最高点可以避开天线辐射体的视场角,使天线辐射体产生的电信号在该角度内均可以辐射出去。
结合第二方面,在一些可能的实现方式中,所述吸波结构的齿的平均宽度为第一波长的四分之一,所述第一波长为所述天线装置的工作频段对应的波长。
根据本申请实施例,齿的平均宽度为第一波长的四分之一,可以增加电信号在齿表面的反射能量强度,抑制其散逸至透空区以外,进而减弱透空区中设置的天线辐射体产生的杂波对临近透空区中设置的天线辐射体产生干扰。
结合第二方面,在一些可能的实现方式中,所述吸波结构的齿的横截面为梯形。
根据本申请实施例,齿的横截面可以为梯形。或者,也可以根据实际的设计或生产需求进行调整齿的横截面的形状,例如,三角形或其他形状。
结合第二方面,在一些可能的实现方式中,所述吸波结构具有多个透空区,所述多个透空区呈线性排布。
根据本申请实施例,多个透空区或多个天线辐射体可以呈阵列排布,例如,可以呈线性排布(直线,曲线或折线),或者,可以呈3×3阵列排布,本申请对此并不做限制,可以根据实际的设计进行调整。
结合第二方面,在一些可能的实现方式中,所述天线装置还包括介质板;所述天线辐射体设置于所述介质板表面。
根据本申请实施例,介质板可以用于设置天线辐射体,为其提供支撑。
结合第二方面,在一些可能的实现方式中,所述介质板上设置有金属馈线;所述吸波结构对应于所述金属馈线的位置设置有槽。其中,所述槽的形状可以根据馈线的位置灵活设计,本申请对槽的形状不做限定。
根据本申请实施例,槽可以与金属馈线对应,用于屏蔽金属馈线所产生的辐射,减弱对天线辐射体产生影响,进一步提升天线阵列的方向图一致性。
结合第二方面,在一些可能的实现方式中,所述天线装置还包括天线罩;所述吸波结构设置于所述介质板和所述天线罩围成的空间内。
根据本申请实施例,天线罩可以用于保护其内部设置的部件,提升天线装置整体的稳定性。
结合第二方面,在一些可能的实现方式中,所述吸波结构设置有凸起部,所述凸起部与所述天线罩抵接。
根据本申请实施例,吸波结构可以设置有凸起部,凸起部可以与天线罩抵接,用于支撑天线罩。
结合第二方面,在一些可能的实现方式中,所述凸起部设置于所述吸波结构的边沿。
根据本申请实施例,当天线辐射体设置于介质板的中心区域时,凸起部可以设置于吸波结构的边沿。
结合第二方面,在一些可能的实现方式中,所述吸波结构通过铆接,胶粘或螺钉固定 在所述介质板上。
根据本申请实施例,吸波结构可以通过铆接,胶粘或螺钉等方式固定在介质板上,以确保吸波结构与介质板紧密连接,减少表面波向外辐射,可以有效减少表面波对天线阵列的方向图一致性的影响。
第三方面,提供了一种探测装置,所述探测装置包括探测设备如第二方面中任一项所述的天线装置。
第四方面,提供一种终端设备,包括第三方面所述的探测装置。进一步,该终端设备可以为智能运输设备(车辆或者无人机)、智能家居设备、智能制造设备、测绘设备或者机器人等。该智能运输设备例如可以是自动导引运输车(automated guided vehicle,AGV)、或无人运输车。
附图说明
图1是本申请实施例适用的一种车辆的功能框图。
图2是一种提升方向图一致性的天线结构。
图3是图2所示天线结构的方向图。
图4是本申请实施例提供的一种天线装置200的俯视图。
图5是本申请实施例提供的一种天线装置200的侧视图。
图6是本申请实施例提供的一种吸波结构220的示意图。
图7是本申请实施例提供的另一种吸波结构220的示意图。
图8是本申请实施例提供的不同的吸波结构的示意图。
图9是图4所示天线结构的横截面的示意图及吸波结构的示意图。
图10是图4所示天线结构沿x方向的横截面的示意图。
图11是本申请实施例提供的杂波在透空区靠近天线辐射体的表面反射的示意图。
图12是本申请实施例提供的一种强反射的示意图。
图13是本申请实施例提供的一种强透射的示意图。
图14是本申请实施例提供的一种齿的横截面示意图。
图15是本申请实施例提供的另一种天线装置200的示意图。
图16是本申请实施例提供的另一种天线装置200的示意图。
图17是本申请实施例提供的天线装置的示意图。
图18本申请实施例提供的是天线装置的方向图。
图19本申请实施例提供的是天线装置的水平测角误差。
图20是本申请实施例提供的又一种天线装置300的结构示意图。
图21是本申请实施例提供的不同吸波结构的示意图。
图22是本申请实施例提供的半封闭的透空区的结构示意图。
图23是对照组的天线装置的示意图。
图24本申请实施例提供的是天线装置的幅度一致性的示意图。
图25本申请实施例提供的是天线装置的相位一致性的示意图。
图26是本申请实施例提供的封闭的透空区的结构示意图。
图27是对照组的天线装置的示意图。
图28本申请实施例提供的是天线装置的能量分布的示意图。
图29本申请实施例提供的是天线装置的方向图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例提供的车辆100的功能框图。在一个实施例中,将车辆100配置为完全或部分地自动驾驶模式。例如,车辆100可以在处于自动驾驶模式中的同时控制自身,并且可通过人为操作来确定车辆及其周边环境的当前状态,确定周边环境中的至少一个其他车辆的可能行为,并确定该其他车辆执行可能行为的可能性相对应的置信水平,基于所确定的信息来控制车辆100。在车辆100处于自动驾驶模式中时,可以将车辆100置为在没有和人交互的情况下操作。
车辆100可包括各种子系统,例如行进系统102、传感器系统104、控制系统106、一个或多个接口设备108以及电源110、计算机系统112和用户接口116。在一个实施例中,车辆100可包括更多或更少的子系统,并且每个子系统可包括多个元件。另外,车辆100的每个子系统和元件可以通过有线或者无线互连。
行进系统102可包括为车辆100提供动力运动的组件。在一个实施例中,推进系统102可包括引擎118、能量源119、传动装置120和车轮/轮胎121。引擎118可以是内燃引擎、电动机、空气压缩引擎或其他类型的引擎组合,例如汽油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎。引擎118将能量源119转换成机械能量。
传感器系统104可包括感测关于车辆100周边的环境的信息的若干个传感器。例如,传感器系统104可包括定位系统122(定位系统可以是GPS系统,也可以是北斗系统或者其他定位系统)、惯性测量单元(inertial measurement unit,IMU)124、雷达126、激光测距仪128以及相机130。传感器系统104还可包括被监视车辆100的内部系统的传感器(例如,车内空气质量监测器、燃油量表、机油温度表等)。来自这些传感器中的一个或多个的传感器数据可用于检测对象及其相应特性(位置、形状、方向、速度等)。这种检测和识别是自主车辆100的安全操作的关键功能。
控制系统106为控制车辆100及其组件的操作。控制系统106可包括各种元件,其中包括转向系统132、油门134、制动单元136、传感器融合算法138、计算机视觉系统140、路线控制系统142以及障碍物避免系统144。
车辆100通过接口设备108与外部传感器、其他车辆、其他计算机系统或用户之间进行交互。接口设备108可包括无线通信系统146、车载电脑148、麦克风150和/或扬声器152。
在一些实施例中,接口设备108提供车辆100的用户与用户接口116交互的手段。例如,车载电脑148可向车辆100的用户提供信息。用户接口116还可操作车载电脑148来接收用户的输入。车载电脑148可以通过触摸屏进行操作。在其他情况中,接口设备108可提供用于车辆100与位于车内的其它设备通信的手段。例如,麦克风150可从车辆100的用户接收音频(例如,语音命令或其他音频输入)。类似地,扬声器152可向车辆100的用户输出音频。
无线通信系统146可以直接地或者经由通信网络来与一个或多个设备无线通信。例如,无线通信系统146通过车载天线实现无线通信,例如可使用3G蜂窝通信,或者,全球移 动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术,4G蜂窝通信(例如长期演进(long term evolution,LTE)通信技术),5G蜂窝通信等。无线通信系统146可通过车载天线利用WiFi与无线局域网(wireless local area network,WLAN)通信。在一些实施例中,无线通信系统146可利用红外链路、蓝牙或紫蜂(ZigBee)与设备直接通信。其他无线协议,例如各种车辆通信系统,例如,无线通信系统146可包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边台站之间的公共和/或私有数据通信。
车辆100的部分或所有功能受计算机系统112控制。计算机系统112可包括至少一个处理器113,处理器113执行存储在例如数据存储装置114这样的非暂态计算机可读介质中的指令115。计算机系统112还可以是采用分布式方式控制车辆100的个体组件或子系统的多个计算设备。
用户接口116,用于向车辆100的用户提供信息或从其接收信息。在一个实施例中,用户接口116可包括在接口设备108的集合内的一个或多个输入/输出设备,例如无线通信系统146、车载电脑148、麦克风150和扬声器152。
在一个实施例中,上述这些组件中的一个或多个可与车辆100分开安装或关联。例如,数据存储装置114可以部分或完全地与车辆1100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
在一个实施例中,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图1不应理解为对本发明实施例的限制。
上述车辆100可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、或手推车等,本申请实施例不做特别的限定。
随着智能驾驶的不断发展,车辆对周边环境的探测需求不断提升。因此,对于车载雷达来说,其包含的毫米波天线的性能要求越来越高,其中就包含毫米波天线的方向图一致性。通常情况下,毫米波天线的方向图的一致性越好,车载雷达的探测越准确。其中,方向图一致性可以理解为天线产生的方向图中,在第一角度范围内(例如±60°),不同天线单元间在不同角度的增益/相位的偏差(最大值与最小值的差值),偏差越小,方向图一致性越好。
在毫米波级别的汽车雷达的应用中,毫米波天线的方向图一致性的提升很关键。一致性提升通常从两个方向考虑,一方面是提升毫米波天线中单个天线单元的方向图的平滑性,减小方向图的抖动;另一方面是减小毫米波天线中不同天线单元之间方向图的差异性。
对于传统的PCB天线来说,方向图一致性差主要是由表面波、空间能量、及馈线杂散辐射等耦合路径共同导致的,有效的抑制或引导表面波、减小空间能量耦合及馈线辐射影响是提升方向图一致性关键的手段。其中,表面波的影响可以理解为介质层上的表面波效应所产生的辐射对天线一致性的影响。空间能量的影响可以理解为天线中每个天线单元耦合到空间中的电信号对天线一致性的影响。馈线杂散辐射的影响可以理解为PCB中的金属线在传输电信号的过程中产生的辐射对天线一致性的影响。
图2是一种提升方向图一致性的天线结构。
如图2所示,在天线阵列的相邻的两个天线单元之间设置哑元(哑元可以理解为接地 的金属线),增加哑元后,可以使每个天线单元的辐射环境接近,进而改善方向图一致性。
如图3所示,在增加哑元后,天线阵列的方向图一致性得到一定的改善。但对于哑元来说,其更多得是引导表面波,对表面波和空间能量的抑制效果有限,并不获得良好的方向图一致性。
对于其他提升天线方向图一致性的方案来说,例如,在天线单元周围设置人工磁导体(artificial magnetic conductor,AMC)或电磁场带隙(electromagnetic band gap,EBG),或者,在天线单元铺设锯齿边的金属接地结构,或者,在电磁波屏蔽区域设置馈线及芯片,对表面波和空间能量的抑制效果有限,同时,也存在加工和布局的局限性。
本申请实施例提供了一种吸波结构、天线装置、探测装置和终端设备,其中,吸波结构设置有透空区,透空区中对应可设置天线辐射体,吸波结构可以设置于介质板上,天线辐射体可以为该介质板表面的金属层(例如,铜层)。吸波结构可以达到吸波和隔离的双重效果,有效抑制表面波和空间能量对天线的方向图一致性的影响,有效提升天线的方向图一致性。
图4和图5是本申请实施例提供的一种天线装置200的结构示意图。其中,图4是天线装置200的俯视图。图5是天线装置200的侧视图。
如图4所示,天线装置200可以包括多个天线辐射体210和吸波结构220。其中,吸波结构220可以包括多个透空区221,透空区221与天线辐射体210对应,天线辐射体210设置在与其对应的透空区221内。
在一个实施例中,天线装置200还可以包括介质板230,多个天线辐射体210和吸波结构220可以设置于介质板230上,多个天线辐射体210可以形成天线阵列。介质板230远离吸波结构220的一侧设置有金属层231,如图5所示,金属层231可以作为天线装置200的地板。天线辐射体210,介质板230和金属层231形成PCB天线。可选地,PCB天线可以包括多层介质板,本申请实施例为论述的简洁,仅以一层介质板为例进行说明,对此并不做限制。
应理解,本申请实施例提供的天线装置,通过将吸波结构220可以设置于介质板230上,可以将介质板上产生的表面波吸收,减少其向外辐射,因此,可以有效减少表面波对多个天线辐射体210形成的天线阵列的方向图一致性的影响。同时,由于天线辐射体210设置在与其对应的透空区221内,因此,设置在对应的透空区221内的天线辐射体210可以大大减少耦合到其他天线辐射体210辐射时产生的空间能量,并且,可以减少在对应的透空区221内设置的天线辐射体210产生的杂波的空间能量影响其他天线辐射体210,可以有效减少空间能量对天线阵列的方向图一致性的影响。因此,通过吸波结构220可以同时减弱表面波和空间能量对天线阵列的方向图一致性的影响,大幅提升天线阵列的方向图一致性。
在一个实施例中,吸波结构220的材料可以是沙比克聚碳酸酯(SABIC PC+C),可以吸收射入其中的电磁波信号,减少对天线辐射体210产生干扰。
在一个实施例中,吸波结构220的表面还可以设置有金属层,例如,铝,银,或其他金属材质。其中,吸波结构220远离介质板230一侧的表面上可以根据吸波结构220的外形设置有对应的金属层,或者,吸波结构220除靠近介质板230一侧的表面外,均可以设置有对应的金属层,可以进一步减少耦合到其他天线辐射体210辐射时产生的空间能量,提升天线阵列的方向图一致性。
在一个实施例中,吸波结构220可以通过铆接,胶粘或螺钉等方式固定在介质板230上,以确保吸波结构220与介质板230紧密连接,减少表面波向外辐射,可以有效减少表面波对天线阵列的方向图一致性的影响。
在一个实施例中,透空区221可以与天线辐射体210一一对应,即每个透空区221中均设置有一个天线辐射体210,可以进一步减少空间能量对天线辐射体的影响,提升天线阵列的方向图一致性。
在一个实施例中,多个透空区221或多个天线辐射体210可以呈阵列排布,例如,多个透空区221或多个天线辐射体210可以呈线性排布(例如,直线,曲线或折线),或者,可以呈3×3阵列排布,本申请对此并不做限制,可以根据实际的设计进行调整。在该实施例中以多个天线辐射体210呈直线排布为例进行说明,如图4所示,可以根据实际的设计调整多个天线辐射体210的排布长度L1。
在一个实施例中,吸波结构220可以包括多个齿222和至少一个连接件223,多个齿222可以和至少一个连接件223连接,如图6所示,可以认为图6所示的吸波结构为围栏状的吸波结构,也即是透空区均为封闭区域。其中,多个齿222中相邻的两个齿222之间形成透空区221。在本申请实施例中,以两个连接件223为例进行说明,相邻的两个齿222之间形成的透空区221可以是封闭区域,透空区221围合其对应的天线辐射体。当只包括一个连接件223的情况下,吸波结构220可以呈梳状,相邻的两个齿222之间形成的透空区221可以是半封闭区域,透空区221围合其对应的天线辐射体的部分区域,如图7所示。
在一个实施例中,吸波结构中的齿可以为任意形状,不一定为上述实施例中的矩形,也可以是其他形状,例如,波浪形,菱形,梯形或其他形状,也可以是在同一个吸波结构内设置不同形状的齿,如图8中的(a)所示,以便更好的提升天线阵列的方向图一致性,本申请对此并不做限制,可以根据实际的设计进行调整。
在一个实施例中,吸波结构中的相邻的齿之间的距离可以不同,可以根据相邻的齿之间形成的透空区所设置的天线辐射体确定,如图8中的(b)所示,以便更好的提升天线阵列的方向图一致性,本申请对此并不做限制,可以根据实际的设计进行调整。
在一个实施例中,吸波结构中的齿的长度或宽度可以不同,可以根据相邻的齿之间形成的透空区所设置的天线辐射体确定,如图8中的(c)所示,以便更好的提升天线阵列的方向图一致性,本申请对此并不做限制,可以根据实际的设计进行调整。
在一个实施例中,介质板230上可以设置有金属馈线240,金属馈线240用于为天线辐射体210馈电,如图9所示中的(a)(b)(c)所示,其中,图9(b)和图9(c)为图9(a)的立体图。本申请以金属馈线240与天线辐射体210设置在介质板230同一侧为例进行说明。应理解,金属馈线240与天线辐射体210也可以分别设置在介质板230的两侧,当天线装置包括多个介质板时,金属馈线240也可以设置在其他介质板上,本申请对此并不做限制。
在一个实施例中,当金属馈线240与天线辐射体210设置在介质板230同一侧(同一表面),吸波结构靠近介质板230的一侧可以设置有槽241,槽241可以与金属馈线240对应设置,用于屏蔽金属馈线240所产生的辐射,减少对天线辐射体210产生影响,进一步提升天线阵列的方向图一致性。同时,槽241可以根据金属馈线240在介质板230上的布局设计,例如,槽241可以设置在吸波结构的连接件223中,与天线辐射体210电连接,为其馈电,如图9中的(a)所示,图9(a)为穿过槽214且平行于xoz的一横截面示意 图。槽241的具体位置如图9中的(b)和(c)所示(图9中的(b)和(c)为吸波结构220的俯视和仰视的立体结构示意图),或者,槽242也可以设置在吸波结构的齿222中,如图10所示。同时,对于上述结构来说,吸波结构开槽形成的空间内也可以不设置金属馈电,可以根据实际的设计进行调整,例如,可以设置电子元件(电容,电阻,电感或滤波器件等)。
应理解,对于上述槽241来说,为规则的立方体结构,其截面为矩形,仅作为举例使用,在实际的生产或设计中,可以根据金属馈电的布局进行修改,本申请对此并不做限制。
应理解,当金属馈线240与天线辐射体210也可以分别设置在介质板230的两侧,吸波结构靠近介质板230的一侧可以不设置槽,为实心结构,可以有效提升吸波结构的强度和稳定性。
在一个实施例中,天线辐射体210两侧吸波结构中的齿222的最高点可以避开天线辐射体210的视场角(field of view,FOV)θ,使天线辐射体210产生的电信号在该角度内均可以辐射出去,如图10所示。在天线辐射体210的视场角以内的辐射的电信号可以认为是主辐射,在该角度以外辐射的电信号可以认为是杂波,会影响天线阵列中的其他天线辐射体,进而影响天线阵列的方向图一致性。例如,对于本申请来说,视场角可以为120°,则理解为与z轴所呈角度在60°范围内辐射的电信号为主辐射,与z轴所呈角度在60°至90°范围内辐射的电信号为杂波。因此,齿222与天线辐射体210所在平面呈第一角度α,α可以为锐角,使杂波可以在透空区内不断反射并被吸波结构吸收,从而提高该天线阵列的方向图一致性。其中,齿222与天线辐射体210所在平面呈第一角度α可以理解为齿222的侧面与天线辐射体210所在平面所呈角度。在一些情况下,第一角度α也可以是直角或者钝角,也可以减少天线辐射体之间的相互影响,从而提高该天线阵列的方向图一致性。
应理解,天线辐射体210产生的电信号在视场角内均可以辐射出去,在该角度以外的杂波可以在透空区内不断反射并被吸波结构吸收,则在视场角θ边沿的电磁波信号作为入射波经由齿222的最高点反射后的反射波需与天线辐射体所在平面垂直,如图11所示。在这种情况下,第一角度α的角度值为临界角度,当第一角度α小于或等于该角度时,可以使天线辐射体210产生的电信号在视场角内均可以辐射出去,在该角度以外的杂波可以在透空区内不断反射并被吸波结构吸收。由几何关系可知,在这种情况下,第一角度α的角度值为视场角θ的四分之一。
在一个实施例中,如图12所示,为强反射原理的示意图,当介质的厚度为入射波对应的波长的四分之一时,入射波在介质表面第一次反射后,第一次反射波的相位为180°,而部分入射波射入介质中发生反射后产生的第二次反射波的相位为180°,第一次反射波和第二次反射波的相位相同,两者相互增强,具有较大的反射能量,因此,透过介质的透射能量较低。如图13所示,为强透射原理的示意图,当介质的厚度为入射波对应的波长的二分之一时,入射波在介质表面第一次反射后,第一次反射波的相位为180°,而部分入射波射入介质中发生反射后产生的第二次反射波的相位为360°,第一次反射波和第二次反射波的相位相反(相差180°),两者相互抵消,反射能量较小,因此,透过介质的透射能量较大。
根据以上原理,对于齿222来说,其作用是将其形成的透空区中设置的天线辐射体产生的杂波抑制在该透空区中,减少对临近透空区中设置的天线辐射体产生干扰。因此,齿 222的平均宽度L2为第一波长的四分之一,可以增加电信号在齿222表面的反射能量强度,抑制其散逸至透空区以外,进而减少透空区中设置的天线辐射体产生的杂波对临近透空区中设置的天线辐射体产生干扰,如图11所示。其中,第一波长可以为天线装置200的工作频段对应的波长,可以理解为工作频段的中心频率对应的波长,或者,也可以理解为天线装置200产生的谐振的谐振点对应的波长应理解,齿222的平均宽度L2也可以根据具体的设计或生产需要进行调整,本申请对此并不做限制。
在一个实施例中,齿222的横截面可以为梯形,如图11所示。或者,也可以根据实际的设计或生产需求进行调整齿222的横截面的形状,例如,齿222的横截面可以为三角形,或者,齿222的横截面也可以如图14中的(a)或者(b)所示,本申请对此并不做限制。
在一个实施例中,天线装置200还包括天线罩250,吸波结构220可以设置于介质板230和天线罩250围成的空间内,天线罩250可以用于保护其内部设置的部件,提升天线装置200整体的稳定性,如图15所示。
在一个实施例中,吸波结构220可以设置有凸起部224,凸起部224可以与天线罩250抵接,用于支撑天线罩250。当天线辐射体210设置于介质板230的中心区域时,凸起部224可以设置于吸波结构220的边沿(侧边),如图15所示。应理解,凸起部224可以是吸波结构220的多个齿中设置于边沿的齿(多个齿的厚度可以不同),或者,也可以是吸波结构220的连接件的一部分,且224可与200一体成型,亦可与220分别存在,本申请对此并不做限制,可以根据实际的设计进行调整。当天线辐射体210设置于介质板230边沿时,也可以不设置凸起部,如图16所示,本申请对此并不做限制,可以根据实际的设计进行调整。
图17是本申请实施例提供的天线装置的示意图。
如图17所示,其与图4所示的天线装置采用相同的介质板和相同数量和布局的天线辐射体,其中,多个天线辐射体沿直线分布,形成天线阵列,图17与图4所示天线装置的区别仅在于图4的介质板上方设置了吸波结构。
图18和图19是图4和图17所示天线装置的仿真结果图。其中,图18是天线装置的方向图。图19是天线装置的水平测角误差。
如图18所示,图17所示的天线装置中天线阵列的方向图在±20°附近出现掉坑(增益出现偏差),图4所示的天线装置增加吸波结构,天线阵列的方向图并未出现掉坑,且在±60°(与z轴所呈角度为60°)的范围内未出现大幅偏差,有效的改善了天线阵列掉坑现象,进而改善方向图一致性。
如图19所示,由于图17所示的天线装置中天线阵列的方向图在±20°附近出现掉坑,对应的,在该位置的测角误差偏差较大,使其测量精度大大降低。而图4所示的天线装置,由于其天线阵列的方向图一致性较好,其测角误差基本为0°,相较于图17所示的天线装置,测角精度提升0.07°,大幅提升了测角精度。
图20是本申请实施例提供的又一种天线装置300的结构示意图。
如图20所示,天线装置300可以包括多个天线辐射体310和吸波结构320。吸波结构320可以包括连接件323和多个齿322。
其中,多个齿322中相邻的两个齿之间形成第一区域3211,第一区域3211为吸波结构320中的透空区,用于设置天线辐射体310。连接件323中可以设置有第二区域3212, 第二区域3212可以作为吸波结构320中的透空区,图示的3212可以认为是窗型的透空区,用于设置天线辐射体310。应理解,对于上述实施例来说,第一区域3211和第二区域3212的数量可以根据实际的设计确定,本申请对此并不做限制。
在一个实施例中,多个齿322可以分别设置在连接件323的两侧,形成半封闭的第一区域3211。应理解,多个齿322也可以与连接件323的同一侧连接,或者,多个齿322可以与连接件323的不同侧连接,本申请对此并不做限制,例如,可以在连接件323的一条边沿处均设置有齿322,形成半封闭的第一区域3211,或者,也可以在连接件323的任意的三条边沿或四条边沿处设置有齿322,形成半封闭的第一区域3211。
应理解,对于本申请实施例提供的技术方案来说,可以根据天线装置300中多个天线辐射体310的布局设置透空区,以提升天线装置300中天线阵列的方向图一致性。例如,吸波结构可以包括半封闭的第一区域形成的透空区和封闭的第二区域形成的透空区,如图20所示。或者,吸波结构可以仅包括半封闭的第一区域形成的透空区,如图21中的(a)和(b)所示。或者,吸波结构可以仅包括封闭的第二区域形成的透空区,如图21中的(c)所示。应理解,上述实施例仅示出了一些技术方案,可以根据实际的设计或生产需要进行调整,如,可以将本申请的梳状吸波结构、围栏状吸波结构,或窗型吸波结构任意组合设计,本申请对此并不做限制。
在一个实施例中,为了将第二区域3212中设置的天线辐射体产生的杂波抑制在该区域形成的透空区中,减少对临近透空区中设置的天线辐射体产生干扰。因此,多个第二区域3212中相邻的两个之间形成的齿型结构的平均宽度可以为第二波长的四分之一,第二波长可以是天线装置300的工作频段对应的波长。
在一个实施例中,连接件323和多个齿322可以是一体成型的完整结构,或者,多个齿322中的部分齿可以是单独制备的(例如,设置在边沿的齿),可以是吸波块,通过铆接,胶粘或螺钉固定在介质板330上,以形成完整的吸波结构。
在本申请实施例中,以吸波结构320设置有10个透空区为例进行说明,具体数量可以根据设计的需求进行调整,本申请对此并不做限制。其中,多个透空区中设置的天线辐射体可以形成至少一个天线阵列。
应理解,一个透空区可以设置一个天线辐射体,或者一个透空区可以设置多个天线辐射体。示例地,单个透空区中也可以设置多个天线辐射体,单个透空区中的多个天线辐射体独立形成天线阵列,即每个透空区中均可以形成一个天线阵列。或者,多个透空区中每个透空区中分别设置有单个天线辐射体,多个透空区中的多个天线辐射体分别形成同一个天线阵列的不同天线单元,即多个的透空区中的天线辐射体在一起形成一个天线阵列。
例如,透空区1和透空区2中可以分别设置多个天线辐射体,透空区1和透空区2中的天线辐射体可以分别形成第一天线阵列和第二天线阵列。透空区3至透空区10可以均设置有单个天线辐射体,透空区3中的天线辐射体和透空区4中的可以共同形成第三天线阵列,透空区5中的天线辐射体和透空区6中的天线辐射体可以共同形成第四天线阵列,透空区7中的天线辐射体和透空区8中的天线辐射体可以共同形成第五天线阵列,透空区9中的天线辐射体和透空区10中的天线辐射体可以共同形成第六天线阵列。即对于天线装置300来说,可以包括6个天线阵列,以提升天线装置300的测量精度。
图22至图25是本申请实施例提供的又一种天线装置的示意图及仿真结果。其中,图22是本申请实施例提供的半封闭的透空区的结构示意图。图23是对照组的天线装置的示 意图。图24本申请实施例提供的是天线装置的幅度一致性的示意图。图25本申请实施例提供的是天线装置的相位一致性的示意图。
如图22所示,吸波结构由两个齿和一个连接件组成,形成一个半封闭的透空区,在该透空区透空区内设置多个天线辐射体,多个天线辐射体沿直线分布,形成天线阵列,图23与图22所示天线装置的区别仅在于图22的介质板上方设置了吸波结构,天线辐射体设置在透空区内。
如图23和图24所示,在天线阵列设置在吸波结构的透空区的情况下,天线阵列的幅度一致性和相位一致性相较于不设置吸波结构的情况有效提升,如下表1所示(在角度值介于±60°之间)。
表1
  幅度一致性 相位一致性
不加吸波结构 ≤4.3dB ≤33°
加吸波结构 ≤2.5dB ≤16°
应理解,天线阵列设置在吸波结构的透空区,阵列两侧吸波结构可有效吸收天线罩与天线板之间的空间杂散能量,从而提升方向图的幅相一致性。
如上表所示,在天线装置中设置吸波结构,并将天线阵列设置在该吸波结构的透空区中,可以使天线结构在±60°(与z轴所呈角度为60°)内,幅度一致性提升1.8dB,相位一致性提升17°。
图26至图29是本申请实施例提供的又一种天线装置的示意图及仿真结果。其中,图26是本申请实施例提供的封闭的透空区的结构示意图。图27是对照组的天线装置的示意图。图28本申请实施例提供的是天线装置的能量分布的示意图。图29本申请实施例提供的是天线装置的方向图。
如图26所示,吸波结构由两个齿和两个连接件组成,形成一个封闭的透空区,在该透空区透空区内设置单个天线辐射体,图27与图26所示天线装置的区别仅在于图26的介质板上方设置了吸波结构,天线辐射体设置在透空区内。
如图28中的(a)所示,在天线辐射体设置在吸波结构的透空区的情况下,介质板上的表面波能量聚集在封闭的透空区内,而图28中的(b)所示的天线装置中,由于天线辐射体周围并未设置吸波结构,介质板上的表面波能量向外散逸,产生空间辐射,影响方向图一致性。其中,图28中,天线装置的能量分布如图中的网格阴影所示。
如图28所示,在天线辐射体设置在吸波结构的透空区的情况下,相较于未设置吸波结构的情况,其方向图在±60°内明显平滑,有效抑制了方向图的抖动,有效提升方向图一致性。
本申请实施例还提供了一种探测装置,包括前文所述的天线装置,用于对进行探测任务。
本申请实施例还提供了一种终端设备,包括前文所述的探测装置。进一步地,该终端可以为智能运输设备(车辆或者无人机)、智能家居设备、智能制造设备、测绘设备或者机器人等。该智能运输设备例如可以是自动导引运输车(automated guided vehicle,AGV)、或无人运输车。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种吸波结构,应用于天线装置中,其特征在于,所述吸波结构设置有透空区,所述透空区用于对应设置所述天线装置中的天线辐射体。
  2. 根据权利要求1所述的吸波结构,其特征在于,所述吸波结构包括多个齿和至少一个连接件;
    所述多个齿与至少一个所述连接件连接;
    所述多个齿中相邻的两个齿之间形成第一区域,所述第一区域为所述透空区。
  3. 根据权利要求2所述的吸波结构,其特征在于,所述多个齿与所述连接件的同一侧连接,或者所述多个齿与所述连接件的不同侧连接。
  4. 根据权利要求2或3所述的吸波结构,其特征在于,所述第一区域为半封闭区域。
  5. 根据权利要求4所述的吸波结构,其特征在于,所述吸波结构呈梳状结构。
  6. 根据权利要求2或3所述的吸波结构,其特征在于,所述第一区域为封闭区域。
  7. 根据权利要求6所述的吸波结构,其特征在于,所述吸波结构呈围栏状结构。
  8. 根据权利要求1至7中任一项所述的吸波结构,其特征在于,所述至少一个连接件设置有第二区域,所述第二区域为所述透空区。
  9. 根据权利要求8所述的吸波结构,其特征在于,所述第二区域为封闭区域。
  10. 根据权利要求8或9所述的吸波结构,其特征在于,所述连接件呈围栏状结构。
  11. 根据权利要求2至10中任一项所述的吸波结构,其特征在于,所述多个齿中相邻的两个齿之间距离相同或不同。
  12. 根据权利要求2至11中任一项所述的吸波结构,其特征在于,不同齿的形状相同或不同。
  13. 根据权利要求13所述的吸波结构,其特征在于,不同齿的形状相同或不同,包括:
    不同齿的宽度,长度或者厚度相同;或者
    不同齿的宽度,长度或者厚度不同。
  14. 一种天线装置,其特征在于,包括:多个天线辐射体和如权利要求1至8中任一项所述的吸波结构和所述的天线辐射体。
  15. 根据权利要求14所述的天线装置,其特征在于,所述吸波结构具有多个透空区,所述多个透空区中每个透空区设置有天线辐射体。
  16. 根据权利要求14或15所述的天线装置,其特征在于,所述吸波结构的齿与所述天线辐射体所在平面呈第一角度,所述第一角度为锐角。
  17. 根据权利要求16所述的天线装置,其特征在于,所述第一角度小于或等于所述透空区对应的天线辐射体的视场角FOV的四分之一。
  18. 根据权利要求16或17所述的天线装置,其特征在于,所述吸波结构的齿的平均宽度为第一波长的四分之一,所述第一波长为所述天线装置的工作频段对应的波长。
  19. 根据权利要求16至18中任一项所述的天线装置,其特征在于,所述吸波结构的齿的横截面为梯形。
  20. 根据权利要求15至19中任一项所述的天线装置,其特征在于,所述多个透空区 呈线性排布。
  21. 根据权利要求14至20中任一项所述的天线装置,其特征在于,所述天线装置还包括介质板;
    所述天线辐射体设置于所述介质板表面。
  22. 根据权利要求21所述的天线装置,其特征在于,所述介质板上设置有金属馈线;
    所述吸波结构对应于所述金属馈线的位置设置有槽。
  23. 根据权利要求21或22所述的天线装置,其特征在于,所述天线装置还包括天线罩;
    所述吸波结构设置于所述介质板和所述天线罩围成的空间内。
  24. 根据权利要求23所述的天线装置,其特征在于,所述吸波结构设置有凸起部,所述凸起部与所述天线罩抵接。
  25. 根据权利要求24所述的天线装置,其特征在于,所述凸起部设置于所述吸波结构的边沿。
  26. 根据权利要求21至25中任一项所述的天线装置,其特征在于,所述吸波结构通过铆接,胶粘或螺钉固定在所述介质板上。
  27. 一种探测装置,其特征在于,所述探测装置包括探测设备如权利要求14至26中任一项所述的天线装置。
  28. 一种终端设备,其特征在于,所述终端设备包括探测设备如权利要求27所述的探测装置。
  29. 根据权利要求28所述的终端设备,其特征在于,所述终端设备为智能运输设备、智能制造设备、智能家居设备或者测绘设备。
PCT/CN2021/108479 2021-07-26 2021-07-26 一种吸波结构、天线装置、探测装置及终端设备 WO2023004549A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/108479 WO2023004549A1 (zh) 2021-07-26 2021-07-26 一种吸波结构、天线装置、探测装置及终端设备
CN202180100655.4A CN117642930A (zh) 2021-07-26 2021-07-26 一种吸波结构、天线装置、探测装置及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108479 WO2023004549A1 (zh) 2021-07-26 2021-07-26 一种吸波结构、天线装置、探测装置及终端设备

Publications (1)

Publication Number Publication Date
WO2023004549A1 true WO2023004549A1 (zh) 2023-02-02

Family

ID=85086164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108479 WO2023004549A1 (zh) 2021-07-26 2021-07-26 一种吸波结构、天线装置、探测装置及终端设备

Country Status (2)

Country Link
CN (1) CN117642930A (zh)
WO (1) WO2023004549A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050001757A1 (en) * 2003-04-23 2005-01-06 Hiroshi Shinoda Automotive radar
JP2011045036A (ja) * 2009-08-24 2011-03-03 Sony Corp 通信装置及び通信方法
JP2011211420A (ja) * 2010-03-29 2011-10-20 Toshiba Corp スパイラルアンテナ
JP2019041224A (ja) * 2017-08-24 2019-03-14 株式会社デンソーテン アンテナ装置
CN112034267A (zh) * 2020-08-19 2020-12-04 山东大学 一种用于有源天线多探头幅相测试的可调探头阵列装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050001757A1 (en) * 2003-04-23 2005-01-06 Hiroshi Shinoda Automotive radar
JP2011045036A (ja) * 2009-08-24 2011-03-03 Sony Corp 通信装置及び通信方法
JP2011211420A (ja) * 2010-03-29 2011-10-20 Toshiba Corp スパイラルアンテナ
JP2019041224A (ja) * 2017-08-24 2019-03-14 株式会社デンソーテン アンテナ装置
CN112034267A (zh) * 2020-08-19 2020-12-04 山东大学 一种用于有源天线多探头幅相测试的可调探头阵列装置及方法

Also Published As

Publication number Publication date
CN117642930A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US10490905B2 (en) Radar antenna array with parasitic elements excited by surface waves
KR102033311B1 (ko) 스트립라인 급전 슬롯 배열 안테나 및 이의 제조 방법
KR20210091175A (ko) 차량에 탑재되는 안테나 시스템
CN102823062A (zh) 内置型雷达用收发一体天线
JP6481020B2 (ja) モジュール式平面マルチセクタ90度fovレーダアンテナアーキテクチャ
EP3676636B1 (en) Surface penetrating radar and battery systems
WO2023004549A1 (zh) 一种吸波结构、天线装置、探测装置及终端设备
KR102346201B1 (ko) 레이더 모듈 및 이를 포함하는 차량용 레이더 장치
CN110082728B (zh) 一种无人机载合成孔径雷达阵面系统的散热结构
KR20190004120A (ko) 레이더 모듈 및 이를 포함하는 차량용 레이더 장치
EP4016738A1 (en) Waveguide with radiation slots and parasitic elements for asymmetrical coverage
CN115441180A (zh) 用于天线阵列的波形状接地结构
WO2021208901A1 (zh) 一种串馈天线、通信设备以及制作串馈天线的方法
WO2022252028A1 (zh) 一种天线、探测装置和终端
US11901601B2 (en) Waveguide with a zigzag for suppressing grating lobes
KR102586052B1 (ko) 차량용 안테나 장치
CN220963760U (zh) 车载鲨鱼鳍集成天线
WO2023092474A1 (zh) 一种天线、探测装置和终端
JP2024521339A (ja) アンテナ、検出装置、および端末
KR102637612B1 (ko) 이동체를 위한 3차원 도로망 시스템 및 도로망 확보 방법
US20220352638A1 (en) Dielectric Loaded Waveguide for Low Loss Signal Distributions and Small Form Factor Antennas
WO2023108340A1 (zh) 天线装置、雷达,探测装置及终端
US20240063553A1 (en) Antenna, Detection Apparatus, and Terminal
CN116305627A (zh) 一种天线罩设计方法及毫米波雷达
CN114207461A (zh) 倾斜天线罩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951167

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100655.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021951167

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021951167

Country of ref document: EP

Effective date: 20240226