WO2023108340A1 - 天线装置、雷达,探测装置及终端 - Google Patents

天线装置、雷达,探测装置及终端 Download PDF

Info

Publication number
WO2023108340A1
WO2023108340A1 PCT/CN2021/137451 CN2021137451W WO2023108340A1 WO 2023108340 A1 WO2023108340 A1 WO 2023108340A1 CN 2021137451 W CN2021137451 W CN 2021137451W WO 2023108340 A1 WO2023108340 A1 WO 2023108340A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
antenna
antenna unit
length
frequency band
Prior art date
Application number
PCT/CN2021/137451
Other languages
English (en)
French (fr)
Inventor
杨小盼
唐中善
高翔
刘一廷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180004263.8A priority Critical patent/CN114391201A/zh
Priority to PCT/CN2021/137451 priority patent/WO2023108340A1/zh
Publication of WO2023108340A1 publication Critical patent/WO2023108340A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/002Antennas or antenna systems providing at least two radiating patterns providing at least two patterns of different beamwidth; Variable beamwidth antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/068Apparatus for etching printed circuits

Definitions

  • the present application relates to the field of sensor technology, and more specifically, to an antenna device, a radar, a detection device and a terminal in the field of sensor technology.
  • smart terminals such as smart transportation equipment, smart home equipment, and robots are gradually entering people's daily lives.
  • Sensors play a very important role in smart terminals.
  • Various sensors installed on the smart terminal such as millimeter-wave radar, lidar, camera, ultrasonic radar, etc., sense the surrounding environment during the movement of the smart terminal, collect data, and identify and track moving objects. And the recognition of static scenes such as lane lines and signs, and combined with navigator and map data for path planning. Sensors can detect possible dangers in advance and assist or even take necessary avoidance measures autonomously, effectively increasing the safety and comfort of smart terminals.
  • millimeter-wave radar has become the main sensor for unmanned driving systems and assisted driving systems due to its low cost and relatively mature technology.
  • advanced driver assistance systems include more than ten functions, including lane change assist (LCA), blind spot detection (BSD), door open warning (DOW ), rear cross traffic alert (RCTA), parking assist (parking assist, PA) are all inseparable from millimeter wave radar.
  • LCA lane change assist
  • BSD blind spot detection
  • DOW door open warning
  • RCTA rear cross traffic alert
  • parking assist parking assist
  • PA parking assist
  • Embodiments of the present application provide an antenna device, a radar, a detection device, and a terminal, which can be applied to different functional applications.
  • an antenna device a first antenna array; the first antenna array includes at least one antenna unit, the at least one antenna unit includes a first antenna unit, and the first antenna unit includes a first sticker A sheet unit and a first feeder subunit; the first patch subunit sequentially includes at least two branches in the first direction, and the at least two branches include a first branch and a second branch, and the first branch Partially overlapping with the second branch, the length of the first branch in the second direction is smaller than the length of the second branch in the second direction.
  • the length of the first branch in the second direction is different from the length of the second branch in the second direction, so that the first antenna unit can generate different resonant modes, and the different resonant modes can make
  • the different radiation beams generated by the first antenna unit may be suitable for different functional requirements.
  • the first antenna unit feeds the first patch subunit through the first feeder subunit, which has a simple structure and is easy to implement.
  • the direction in which the first antenna unit radiates signals in the first frequency band is the third direction, and the third direction is the normal direction of the first antenna unit ;
  • the first antenna unit radiates signals in the second frequency band as the fourth direction and the fifth direction, and the fourth direction and the fifth direction are respectively located on both sides of the third direction; the first frequency band It is different from the second frequency band.
  • the first antenna unit radiates a horizontal single-peak beam in a first frequency band; the first antenna unit radiates a horizontal double-peak beam in a second frequency band; the The first frequency band is different from the second frequency band.
  • the first antenna unit has one radiation signal direction in the first frequency band, which can generate a horizontal single peak beam, and the first antenna unit can have two radiation signal directions in the second frequency band, which can generate horizontal double peaks beam.
  • the direction of the radiation signal of the first antenna unit is the normal direction.
  • it can be used to detect the detection target in the direction of 45° from the left rear of the vehicle body. , can be applied to functional scenarios such as PA.
  • the directions of the two radiation signals of the first antenna unit are located on both sides of the normal direction, which can be used to detect the detection target on the left side of the vehicle body and the detection target behind the vehicle body respectively, and can be applied to BSD, LCA or DOW Functional scenarios and RCTA functional scenarios.
  • the distance between the detection target and the vehicle can be prompted to the user according to the detection distance.
  • the current on the first branch flows along a first direction.
  • the current flowing on the first branch along the first direction can generate a normal horizontal single-peak beam.
  • the component of the current on the second branch in the second direction is symmetrical along the first direction.
  • the components of the current on the second branch in the second direction are symmetrical along the first direction to generate horizontal double-peak beams located on both sides of the normal direction.
  • the at least two branches include a first branch, a second branch and a third branch, and the third branch is in the second direction
  • the length of is greater than the length of the first branch in the second direction and smaller than the length of the second branch in the second direction.
  • the third branch can be used to adjust the impedance of the first patch sub-unit when it radiates, thereby adjusting the radiation characteristics of the first antenna unit (for example, the frequency of the resonance point of the first antenna unit, the frequency of the first antenna unit The detected angular field width).
  • the length of the first branch in the second direction is L1, 0.35 ⁇ L1 ⁇ 0.65 ⁇ , where ⁇ is the length of the antenna device working wavelength.
  • the length of the second branch in the second direction is L2, 0.7 ⁇ L2 ⁇ 1.3 ⁇ , where ⁇ is the length of the antenna device working wavelength.
  • the length of the third branch in the second direction is L3, and 0.525 ⁇ L3 ⁇ 1.125 ⁇ .
  • the length of the first patch subunit in the first direction is L4, and 0.5 ⁇ L4 ⁇ 1.5 ⁇ .
  • the length in the first direction can adjust the radiation characteristics of the first antenna unit.
  • the above parameters can be adjusted according to actual production or design needs to meet the detection needs.
  • the first branch is used to generate a horizontal single-peak beam
  • the second branch is used to generate a horizontal double-peak beam
  • the horizontal single-peak radiation branch mainly composed of the first branch and part of the second branch generates a radiation beam
  • the current on the first branch is along the first direction Flow, for TM10 mode.
  • the radiation beam is mainly generated by the second branch as a horizontal bimodal radiation branch, and the component of the current on the second branch in the second direction is symmetrical along the first direction, which is TM20 mode.
  • it corresponds to the horizontal polarization and has two directions of radiation signals, and the directions of the two radiation signals are respectively located on both sides of the normal direction, and a horizontal double-peak beam can be generated.
  • the shape of the first branch, the second branch or the third branch is a rectangle, an ellipse, a circle, a rhombus, a square or trapezoidal.
  • the edge shape of the first branch, the second branch or the third branch is such that the included angle with the first direction is A
  • the line segment, arc, irregular jagged or irregular arc, the A is 0°-180°.
  • the multiple branches included in the patch sub-units are not necessarily rectangular, but may also be other regular shapes, for example, circular, elliptical, rhombus, etc., or may also be irregular shapes.
  • the at least one antenna unit further includes a second antenna unit, and the second antenna unit has the same structure as the first antenna unit; the first antenna unit element and said second antenna element are connected in a first direction.
  • multiple antenna units may be sequentially connected in a first direction to form a first antenna array.
  • the plurality of antenna units in the first antenna array are fed in a serial feeding manner, the feeding form is simple, and the space occupied by the array is small, which is beneficial to the miniaturization of the antenna array.
  • the distance between the first antenna unit and the second antenna unit in the first direction is 0.5 ⁇ N first wavelengths, where N is positive integer.
  • the distance between the first antenna unit and the second antenna unit in the first direction can be adjusted according to actual production or design needs, so as to avoid grating lobes in the radiation generated by the antenna array composed of multiple antenna units, resulting in The position of the antenna unit measuring the target is ambiguous.
  • the central axis of the first branch in the first direction, the central axis of the second branch in the first direction and/or the third branch The central axis of the segment in the first direction is parallel to the second direction.
  • the extending direction of the first branch (for example, the length direction or the width direction), the extending direction of the second branch and/or the extending direction of the third branch may be parallel to the second direction.
  • the antenna device further includes a second antenna array, where the second antenna array has the same structure as the first antenna array.
  • the number of antenna arrays in the antenna device may be adjusted according to design or actual needs to meet detection requirements, which is not limited in the present application.
  • a method for preparing an antenna device including: etching a first antenna array on a first metal layer; the first antenna array includes at least one antenna unit, and the at least one antenna unit includes a first An antenna unit, the first antenna unit includes a first patch subunit and a first feeder subunit; the first patch subunit sequentially includes at least two branches in a first direction, and the at least two branches include a first A branch and a second branch, the length of the first branch in the second direction is smaller than the length of the second branch in the second direction; combining the first antenna array with the first dielectric layer The first surfaces are bonded together; the second surface of the first dielectric layer and the first surface of the first floor layer are bonded together, and the antenna device is grounded through the first floor layer.
  • the direction in which the first antenna unit radiates signals in the first frequency band is the third direction, and the third direction is the normal direction of the first antenna unit ;
  • the first antenna unit radiates signals in the second frequency band as the fourth direction and the fifth direction, and the fourth direction and the fifth direction are respectively located on both sides of the third direction; the first frequency band It is different from the second frequency band.
  • the first antenna unit radiates a horizontal single-peak beam in a first frequency band; the first antenna unit radiates a horizontal double-peak beam in a second frequency band; the The first frequency band is different from the second frequency band.
  • the current on the first branch flows along the first direction.
  • the component of the current on the second branch in the second direction is symmetrical along the first direction.
  • the at least two branches include a first branch, a second branch and a third branch, and the third branch is in the second direction
  • the length of is greater than the length of the first branch in the second direction and smaller than the length of the second branch in the second direction.
  • the length of the first branch in the second direction is L1, 0.35 ⁇ L1 ⁇ 0.65 ⁇ , where ⁇ is the length of the antenna device working wavelength.
  • the length of the second branch in the second direction is L2, 0.7 ⁇ L2 ⁇ 1.3 ⁇ , where ⁇ is the length of the antenna device working wavelength.
  • the length of the third branch in the second direction is L3, and 0.525 ⁇ L3 ⁇ 1.125 ⁇ .
  • the length of the first patch subunit in the first direction is L4, and 0.5 ⁇ L4 ⁇ 1.5 ⁇ .
  • the first branch is used to generate a horizontal single-peak beam
  • the second branch is used to generate a horizontal double-peak beam
  • the shape of the first branch, the second branch or the third branch is a rectangle, an ellipse, a circle, a rhombus, a square or trapezoidal.
  • the edge shape of the first branch, the second branch or the third branch is such that the included angle with the first direction is A
  • the line segment, arc, irregular jagged or irregular arc, the A is 0°-180°.
  • the at least one antenna unit further includes a second antenna unit, and the second antenna unit has the same structure as the first antenna unit; the first antenna unit element and said second antenna element are connected in a first direction.
  • the distance between the first antenna unit and the second antenna unit in the first direction is 0.5 ⁇ N first wavelengths, where N is positive integer.
  • the central axis of the first branch in the first direction, the central axis of the second branch in the first direction and/or the third branch The central axis of the segment in the first direction is parallel to the second direction.
  • the antenna device further includes a second antenna array, and the second antenna array has the same structure as the first antenna array.
  • a radar in a third aspect, includes the antenna device according to any one of the first aspect.
  • the radar further includes a control chip connected to the antenna device, and the control chip is used to control the antenna device to transmit or receive signals .
  • a detecting device in a fourth aspect, includes the antenna device according to any one of the first aspect.
  • a terminal in a fifth aspect, includes the radar according to any one of the second aspect.
  • the terminal may be a vehicle, for example, a smart transportation device (vehicle or drone), smart home device, smart manufacturing device, surveying and mapping device, or robot.
  • the intelligent transport device may be, for example, an automated guided vehicle (AGV) or an unmanned transport vehicle.
  • the terminal can also be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control) Terminals in self driving, terminals in remote medical, terminals in smart grid, terminals in transportation safety, smart city ), a terminal in a smart home (smart home), and the like.
  • Fig. 1 is a functional block diagram of a vehicle 100 provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of directions of radiation signals of a normal millimeter wave radar and an angular millimeter wave radar provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a serial-fed patch antenna provided by an embodiment of the present application.
  • FIG. 5 is a directional diagram of the patch antenna shown in FIG. 4 .
  • FIG. 6 is a schematic structural diagram of an antenna device 200 provided in the present application.
  • FIG. 7 is a schematic structural diagram of the first antenna unit 210 provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of pattern synthesis provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of the first antenna unit 210 provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of an equivalent magnetic current distribution of a patch antenna provided in the present application.
  • Fig. 11 is a schematic diagram of the current distribution of the patch antenna in the TM10 mode provided by the embodiment of the present application.
  • FIG. 12 is a directional diagram corresponding to the TM10 mode shown in FIG. 11 .
  • Fig. 13 is a schematic diagram of the current distribution of the patch antenna in the TM10 mode provided by the embodiment of the present application.
  • FIG. 14 is a directional diagram corresponding to the TM20 mode shown in FIG. 13 .
  • Fig. 15 is a corresponding direction diagram in different modes provided by the embodiment of the present application.
  • FIG. 16 is a simulation diagram of S parameters of the first antenna unit shown in FIG. 9 .
  • FIG. 17 is a schematic diagram of current distribution when the first antenna unit shown in FIG. 9 generates a horizontal single-peak beam.
  • FIG. 18 is a schematic diagram of current distribution when the first antenna unit shown in FIG. 9 generates a horizontal double-peak beam.
  • FIG. 19 is a directivity diagram of the first antenna unit shown in FIG. 9 on a horizontal plane.
  • Fig. 20 is a directivity diagram of the horizontal planes of the antenna elements in the first frequency band and the second frequency band in the first antenna array shown in Fig. 6 .
  • Fig. 21 is a directivity diagram of the vertical plane of the antenna elements in the first frequency band in the first antenna array shown in Fig. 6 .
  • Fig. 22 is a directivity diagram of the vertical plane of the antenna elements in the second frequency band in the first antenna array shown in Fig. 6 .
  • Fig. 23 is a schematic diagram of another patch subunit provided by the embodiment of the present application.
  • Fig. 24 is a schematic diagram of another patch subunit provided by the embodiment of the present application.
  • Fig. 25 is a schematic diagram of an antenna device provided by an embodiment of the present application.
  • Fig. 26 is a method for preparing an antenna device provided by an embodiment of the present application.
  • connection in this application can be understood as the physical contact and electrical conduction of components; it can also be understood as the connection between different components in the circuit structure through printed circuit board (printed circuit board, PCB) copper foil or wires It can also be understood as the form of electrical connection through indirect coupling.
  • connection can refer to a mechanical or physical connection relationship.
  • the connection between A and B or the connection between A and B can mean that there are fastening components (such as screws, bolts, etc.) between A and B. rivets, etc.), or A and B are in contact with each other and A and B are difficult to separate.
  • SMD unit A module with wireless receiving and transmitting functions in the antenna, for example, copper clad on the PCB.
  • Feeder It can also be called a cable, which has the function of transmitting electrical signals.
  • Short-range radar, medium-range radar and long-range radar can be distinguished by the detection distance of millimeter-wave radar.
  • the detection distance of short-range radar is within 100m
  • the detection distance of medium-range radar is between 100m and 200m
  • the detection distance of long-range radar is between 100m and 200m.
  • the detection range is more than 300m.
  • the detection distance of the millimeter-wave radar is positively correlated with the gain of the antenna in the millimeter-wave radar. The higher the gain, the farther the detection distance.
  • Antenna pattern also called radiation pattern, used to describe the radiation effect of the antenna. It refers to the graph of the relative field strength (normalized modulus) of the antenna radiation field changing with the direction at a certain distance from the antenna, usually using the direction of the radiation signal passing through the antenna (the direction in which the maximum value of the radiation beam points) It is represented by two mutually perpendicular plane direction diagrams.
  • Antenna patterns usually have multiple radiation beams.
  • the radiation beam with the largest radiation intensity is called the main lobe, and the small radiation beam next to the main lobe is called the side lobe or side lobe.
  • the side lobe in the opposite direction to the main lobe is also called the back lobe.
  • a radiation lobe whose strength (gain) is similar to the main lobe will be formed due to the in-phase superposition of field strength in other directions except the main lobe, which is called a grating lobe.
  • the electric field strength E is a one-variable function of time t.
  • the vector endpoints periodically draw a trajectory in space. If the trajectory is straight and vertical to the ground (the plane where the floor is located), it is called vertical polarization, and if it is horizontal to the ground, it is called horizontal polarization.
  • the vibration directions of the horizontally polarized and vertically polarized electromagnetic waves are perpendicular to each other, the coupling between the horizontally polarized and the vertically polarized is relatively low, and the isolation is relatively good.
  • the main polarization and cross polarization of the antenna refers to the trajectory of the electric field vector end point movement in the direction of the radiation signal. Due to the physical structure of the antenna itself, the electric field vector of the far field radiated by the antenna has a required direction In addition to movement, there is also a component in its orthogonal direction, which refers to the cross-polarization of the antenna. For example, if the main polarization of the antenna is horizontal polarization, then the cross-polarization is vertical polarization. In general, the greater the difference between the main polarization and the cross polarization, the better.
  • Antenna return loss It can be understood as the ratio of the signal power reflected back to the antenna port through the antenna circuit and the transmit power of the antenna port. The smaller the reflected signal, the larger the signal radiated to the space through the antenna, and the greater the radiation efficiency of the antenna. The larger the reflected signal, the smaller the signal radiated to the space through the antenna, and the smaller the radiation efficiency of the antenna.
  • the return loss of the antenna can be expressed by the S11 parameter, and the S11 is one of the S parameters.
  • S11 represents the reflection coefficient, which can characterize the quality of the antenna's emission efficiency.
  • the S11 parameter is usually a negative number. The smaller the S11 parameter, the smaller the return loss of the antenna, and the smaller the energy reflected back by the antenna itself, which means that the more energy actually enters the antenna, and the higher the system efficiency of the antenna; the S11 parameter The larger is, the greater the return loss of the antenna is, and the lower the system efficiency of the antenna is.
  • the S11 value of -6dB is generally used as a standard.
  • the S11 value of the antenna is less than -6dB, it can be considered that the antenna can work normally, or it can be considered that the transmission efficiency of the antenna is relatively good.
  • Antenna isolation refers to the ratio of the signal transmitted by one antenna and the signal received by another antenna to the signal of the transmitting antenna. Isolation is a physical quantity used to measure the degree of mutual coupling of antennas. Assuming that two antennas form a dual-port network, then the isolation between the two antennas is S21, S12 between the antennas. Antenna isolation can be expressed by S21 and S12 parameters. S21, S12 parameters are usually negative. The smaller the parameters of S21 and S12, the greater the isolation between antennas and the smaller the degree of antenna mutual coupling; the larger the parameters of S21 and S12, the smaller the isolation between antennas and the greater the degree of mutual coupling between antennas. The isolation of the antenna depends on the radiation pattern of the antenna, the spatial distance of the antenna, and the gain of the antenna.
  • Ground can generally refer to at least a part of any ground layer, or ground plate, or ground metal layer, etc. in the antenna device, or at least a part of any combination of any of the above ground layers, or ground plates, or ground components, etc., “ “Ground” can be used to ground the components in the antenna device.
  • the "ground” may be the ground plane of the circuit board of the antenna device, or the ground plane formed by the housing of the antenna device.
  • the circuit board may be a printed circuit board (PCB), such as an 8-layer, 10-layer or 12-14 layer board with 8, 10, 12, 13 or 14 layers of conductive material, or a printed circuit board such as A dielectric or insulating layer, such as fiberglass, polymer, etc., that separates and electrically insulates components.
  • the circuit board includes a dielectric substrate, a ground layer and a wiring layer, and the wiring layer and the ground layer are electrically connected through via holes.
  • components such as displays, touch screens, input buttons, transmitters, processors, memory, batteries, charging circuits, system on chip (SoC) structures, etc. may be mounted on or connected to a circuit board; or electrically connected to trace and/or ground planes in the circuit board.
  • the radio frequency source is set on the wiring layer.
  • the conductive material can be any one of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, Silver-plated copper, silver-plated copper foil on insulating substrate, silver foil and tin-plated copper on insulating substrate, cloth impregnated with graphite powder, graphite-coated substrate, copper-plated substrate, brass-plated substrate sheets and aluminum-coated substrates.
  • the ground layer/ground plate/ground metal layer can also be made of other conductive materials.
  • FIG. 1 is a schematic diagram of a detection range of a vehicle 100 provided by an embodiment of the present application.
  • Millimeter wave radar can be divided into long range radar (LRR), medium range radar (MRR) and short range radar (short range radar, SRR) according to its detection distance.
  • LRR long range radar
  • MRR medium range radar
  • SRR short range radar
  • LRR has higher requirements on the detection distance, but relatively lower requirements on the detection angle domain width.
  • SRR has relatively low requirements for detection distance, but high requirements for detection angular domain width.
  • the requirements of MRR on detection distance and angular domain width can be understood as being between LRR and SRR.
  • the detection distance of LRR can reach more than 200 meters, and the angular domain width can be ⁇ 15°; the detection distance of MRR can be within 100 meters, and the angular domain width can be ⁇ 45°; the detection distance of SRR can be within 60 meters,
  • the angular domain width may be ⁇ 80°.
  • different types of millimeter-wave radars can be installed at different positions of the body according to the functional requirements of autonomous driving and the use of other sensors.
  • LRR can be installed in front of the vehicle body as a forward radar
  • MRR can be installed in front and rear of the vehicle body as a forward radar and a rearward radar
  • Radar Corner Radar
  • MRR can also be installed on the side of the vehicle body or the four corners of the vehicle body
  • SRR can also be installed on the front or rear of the vehicle body.
  • Fig. 1 shows several possible radar installation positions, which are only examples, and more or less radars can be selected in actual use, and the types can also be adjusted.
  • the above-mentioned vehicle 100 can be a car, truck, motorcycle, bus, boat, plane, helicopter, lawn mower, recreational vehicle, playground vehicle, construction equipment, tram, golf cart, train, or trolley, etc.
  • the application examples are not particularly limited.
  • Scenario 1 When the detection angle of the corner radar includes direction 1, the corner radar is used to detect the detection target behind the vehicle body. For example, it can be applied to BSD, LCA or DOW scenarios, and can be used to remind the user whether they are in the blind spot behind the vehicle. Pedestrians or vehicles exist to remind users whether they can perform operations such as changing lanes or opening doors;
  • Scenario 2 When the detection angle of the corner radar includes direction 2, the corner radar is used to detect the detection target on the left side of the vehicle body. For example, it can be applied to the RCTA scene. 2 There is a vehicle on it;
  • Scenario 3 When the detection angle of the corner radar includes direction 3, the corner radar is used to detect the detection target in the direction of 45° to the left rear of the vehicle body. For example, it can be applied to the PA scene. When the user is performing a parking operation, it can be used for Alerts the user of the distance to obstacles in direction 3.
  • the millimeter-wave radar can provide users with more accurate detection results, so as to improve the driving safety of the users.
  • the millimeter-wave radar since the millimeter-wave radar is installed at the four corners of the vehicle body, the millimeter-wave radar is generally at 45° to the rear of the vehicle body.
  • the millimeter-wave radar detects the direction of 45° to the left rear of the vehicle body, which is the normal direction of the millimeter-wave radar (the direction perpendicular to the plane where the radiator of the antenna in the radar is located).
  • millimeter-wave radars For the different scenarios mentioned above, the ranging requirements for millimeter-wave radars are different, and millimeter-wave radars are required to cover multiple different directions at the same time. This undoubtedly increases the design complexity of millimeter-wave radar antennas. The demand for different functions has always been a hot issue.
  • normal millimeter-wave radar the direction of the radiation signal is the normal direction
  • angular millimeter-wave radar the direction of the radiation signal is on both sides of the normal direction
  • the angle with the normal direction is ⁇ 45°), as shown in Figure 3.
  • a common series-fed patch antenna is used, as shown in (a) in Figure 4, the direction of the maximum value of the radiated beam is the normal direction (perpendicular to the plane where the patch antenna is located) .
  • the most common method is to use multi-column fed patch antennas and power dividers, as shown in (b) in Figure 4. From the direction diagram shown in Figure 5, it can be seen that the angular The millimeter-wave radar has two maximum beams of radiation (directions of two radiation signals), pointing to -35° and +35° on both sides of the normal direction respectively.
  • the above-mentioned millimeter-wave radar adopts the joint application of normal millimeter-wave radar and angular millimeter-wave radar to achieve coverage of multiple scenarios, there will be at least two different antenna forms, and the design is more complicated.
  • the angular millimeter-wave radar realizes the double-peak beam through multi-row series-fed patch antennas, which has a large size in the horizontal direction, is not easy to form an array in the horizontal direction, and is prone to grating lobes, which will cause angular ambiguity.
  • the embodiment of the present application provides an antenna device, a radar, a detection device and a terminal, which can be applied to intelligent driving, assisted driving or automatic driving.
  • the antenna device includes at least one patch subunit, using at least two branches with different lengths in the patch subunit, the horizontal single-peak beam with the radiation direction as the normal direction and the horizontal double-peak beam with the radiation direction on both sides of the normal direction can be realized in different frequency bands , suitable for multi-scenario applications of automotive millimeter-wave radar, simple and easy to implement.
  • FIG. 6 is a schematic structural diagram of an antenna device 200 provided in the present application.
  • the antenna device provided in the embodiment of the present application may be applied in the 77 GHz millimeter wave field, and may also be applied in the 24 GHz millimeter wave field.
  • this application only uses the application of the antenna device at 77 GHz as an example for illustration, which can be adjusted in actual application, and this application does not limit this.
  • the present application does not limit the application scenarios of the antenna device provided in the embodiments, and can be adjusted according to actual requirements (for example, vehicle-mounted millimeter-wave radar or roadside millimeter-wave radar).
  • the antenna device 200 may include a first antenna array 201 , the first antenna array 201 may include at least one antenna unit 202 , and the at least one antenna unit 202 may include a first antenna unit 210 .
  • the working principle of the antenna array can be regarded as the superposition of electromagnetic waves radiated by each antenna element in the array.
  • the electromagnetic waves will produce vector superposition. Therefore, the number of antenna units 202 included in the first antenna array 201 can be adjusted according to requirements, so as to adjust the radiation characteristics (eg, detection angle, detection distance, etc.) of the first antenna array 201 .
  • the first antenna unit 210 may include a first patch subunit 220 and a first feeder subunit 230 .
  • the first feeder subunit 230 is connected to the first patch subunit 220 , and the first feeder subunit 230 is used to feed the first patch subunit 220 with electrical signals, so that the first patch subunit 220 generates radiation beams.
  • the first patch subunit 220 sequentially includes at least two branches in the first direction, the at least two branches include a first branch 221 and a second branch 222, and the length L1 of the first branch 221 in the second direction is smaller than the second The length L2 of the branch 222 in the second direction, the first branch 221 and the second branch 222 may partially overlap.
  • the first direction may be the extension direction of the first feeder subunit 230, the length direction of the first feeder subunit 230, or may be the width direction of the first branch 221 or the second branch 222, and the second direction may be the same as
  • the first direction is vertical, for example, may be the width direction of the first feeder subunit 230 , or may be the length direction of the first branch 221 or the second branch 222 .
  • the multiple branches in the first patch subunit 220 may be integrally formed, or may be formed by combining multiple patch units.
  • the length of the first branch 221 in the second direction can be understood as the distance between the two furthest points in the first branch 221 in the second direction, and the length of the second branch 222 in the second direction It can also be understood accordingly.
  • the first central axis of the first branch 221 in the second direction is aligned (overlapped) with the second central axis of the second branch 222 in the second direction, or the first central axis and the second
  • the central axes may not be aligned (non-overlapped), and may be adjusted according to actual design or production requirements, which is not limited in this application.
  • the lengths of the first branches 221 on both sides of the first central axis are the same, and the lengths of the second branches 221 on both sides of the second central axis are the same.
  • the first feeder subunit 230 feeds electrical signals to the first patch subunit 220, because the length of the first branch 221 in the first patch subunit 220 in the second direction Different from the length of the second branch 222 in the second direction, the first antenna unit 210 can generate different resonant modes, and because of the different resonant modes, the first antenna unit 210 can radiate different radiation beams, which can meet the requirement of millimeter wave
  • the technology provided by the embodiments of the present application may also be applied to other devices according to the requirements of different functions of the radar.
  • the antenna device may be applied to electronic equipment, which is not limited in the present application.
  • the first antenna unit 210 When the first antenna unit 210 radiates signals in the first frequency band, it has a direction of radiating signals (the direction in which the maximum value of the radiation beam points), and can radiate a horizontal single-peak beam. When the first antenna unit 210 radiates signals in the second frequency band, it has two directions for radiating signals, and can radiate a horizontal double-peak beam, wherein the first frequency band and the second frequency band are different.
  • the first antenna unit 210 radiates signals in the first frequency band as the third direction, and the third direction is perpendicular to the plane where the first patch sub-unit 220 is located and is the normal direction of the first antenna unit 210 .
  • its detection angle includes the direction 3 shown in Figure 2, which can be used to detect the detection target in the direction of 45° from the left rear of the vehicle body, and can be applied to the above Scenario 3 described in this article is, for example, applied to functional scenarios such as PA.
  • the first antenna unit 210 is located on both sides of the third direction in the direction of the radiation signal in the second frequency band (the fourth direction and the fifth direction), and its detection angle can include direction 1 and direction 2 shown in FIG. 2 , which can be used respectively
  • the detection targets on the left side of the vehicle body and the detection targets behind the vehicle body can be applied to scenarios 1 and 2 described above, for example, to BSD, LCA or DOW function scenarios and RCTA function scenarios.
  • the third direction, the fourth direction and the fifth direction can be located in the same plane, and the plane can be defined as a horizontal plane (for example, the horizontal plane can be a plane composed of the second direction and the third direction), so as to realize the same plane. , detection at different angles.
  • the antenna device provided in the embodiment of the present application can realize the coverage of multiple scenarios shown in FIG. Figure 8 shows.
  • the horizontal single-peak beam can be understood as the direction in which the first antenna unit 210 has a single radiation signal in the plane formed by the second direction and the third direction
  • the horizontal double-peak beam can be understood as the direction in which the first antenna unit 210 has a single radiation signal in the second direction and the third direction.
  • the first patch subunit 220 may include two first branches 221, which may be respectively located on both sides of the second branch 222, which may increase the symmetry of the first patch subunit 220 in the second direction, As shown in (b) in Figure 7. It should be understood that as the symmetry of the first patch sub-unit 220 increases, the radiation characteristics of the first antenna unit 210 are also better.
  • the first patch subunit 220 may further include a third branch 223, the length L3 of the third branch 223 in the second direction is greater than the length L1 of the first branch 221 in the second direction and less than The length L2 of the second branch 222 in the second direction is shown in FIG. 9 .
  • the third branch 223 can be used to adjust the impedance of the first patch subunit 220 when radiating, thereby adjusting the radiation characteristics of the first antenna unit 210 (for example, the frequency of the resonance point of the first antenna unit 210, the frequency of the first antenna unit 210 Angular field width of detection).
  • the central axis of the first branch 221 in the first direction, the central axis of the second branch 222 in the first direction and/or the central axis of the third branch 223 in the first direction may be different from the central axis in the second direction. parallel.
  • the extending direction of the first branch 221 (such as the length direction or the width direction), the extending direction of the second branch 222 and/or the extending direction of the third branch 223 may be parallel to the second direction.
  • FIG. 10 is a schematic diagram of an equivalent magnetic current distribution of a patch antenna provided in the present application.
  • Fig. 11 is a schematic diagram of the current distribution of the patch antenna in the TM10 mode provided by the embodiment of the present application.
  • FIG. 12 is a directional diagram corresponding to the TM10 mode shown in FIG. 11 .
  • Fig. 13 is a schematic diagram of the current distribution of the patch antenna in the TM10 mode provided by the embodiment of the present application.
  • Fig. 14 is a directional diagram corresponding to the TM20 mode shown in Fig. 13 .
  • Transverse magnetic mode Transverse magnetic mode
  • the pattern of the patch antenna can be estimated according to the schematic diagram of the equivalent magnetic current distribution
  • the TM mode can be understood as the radiation generated by the patch antenna has an electric field component but no magnetic field component in the direction of propagation.
  • the equivalent magnetic current distribution has the following rules:
  • the equivalent magnetic current has m zero points along the x-axis direction (because the distribution of the equivalent magnetic current is similar to a sinusoidal distribution, the equivalent magnetic current on both sides of the zero point is reversed, so the equivalent magnetic current The reverse point of is the zero point), and there are n zero points along the y-axis direction.
  • the distance between adjacent zero points along the same direction is ⁇ /2, when there is only one zero point in this direction, the length of the patch in this direction is ⁇ /2, where ⁇ is the resonance of the patch antenna
  • the wavelength may be understood as the wavelength corresponding to the resonance point generated by the patch antenna, or the wavelength corresponding to the center frequency of the working frequency band of the patch antenna.
  • FIG. 10 it is a schematic diagram of the equivalent magnetic current distribution in the TM01 mode of the patch antenna.
  • the patch antenna has a null point in the y-axis direction, therefore, the electrical length of the patch antenna in the y-axis direction is ⁇ /2.
  • (b) of FIG. 10 it is a schematic diagram of the equivalent magnetic current distribution in the TM10 mode of the patch antenna.
  • the patch antenna has a null point in the x-axis direction, therefore, the electrical length of the patch antenna in the x-axis direction is ⁇ /2.
  • (c) of FIG. 10 it is a schematic diagram of the equivalent magnetic current distribution in the TM11 mode of the patch antenna.
  • the patch antenna has a null point in the x-axis direction and the y-axis direction respectively, therefore, the electrical length of the patch antenna in the x-axis direction and the y-axis direction is ⁇ /2.
  • FIG. 10 it is a schematic diagram of the equivalent magnetic current distribution in the TM02 mode of the patch antenna.
  • the patch antenna has two null points in the y-axis direction, therefore, the electrical length of the patch antenna in the y-axis direction is ⁇ .
  • Electrical length can refer to the physical length (i.e. mechanical length or geometric length) multiplied by the transmission time of an electrical or electromagnetic signal in a medium and the time required for this signal to travel the same distance as the physical length of the medium in free space Ratio means that the electrical length can satisfy the following formula:
  • L is the physical length
  • a is the transmission time of the electric or electromagnetic signal in the medium
  • b is the medium transmission time in free space.
  • the electrical length can also refer to the ratio of the physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave, and the electrical length can satisfy the following formula:
  • L is the physical length
  • ⁇ 1 is the wavelength of the electromagnetic wave.
  • the current of the patch antenna flows in the y direction.
  • the patch antenna has only one radiation signal direction, the direction of its main polarization is the normal direction (the direction perpendicular to the plane where the patch antenna is located), and it can radiate a horizontal single signal. peak beam, as shown in Figure 12.
  • the currents on both sides of the patch antenna in the extension direction (length direction) of the feeder line are symmetrical along the y direction.
  • the direction of its main polarization is located on both sides of the normal direction (perpendicular to the plane where the patch antenna is located), and can radiate horizontal Bimodal beam, ⁇ 45° from normal, as shown in Figure 14.
  • the length L1 of the first branch 221 in the second direction may be between 0.35 and 0.65 first wavelengths (0.35 ⁇ L1 ⁇ 0.65 ⁇ ), and the first wavelength ⁇ is the length of the antenna device 200 working wavelength.
  • the first wavelength can be understood as the wavelength corresponding to the resonance point generated by the first antenna unit 210 in the antenna device 200 , or the wavelength corresponding to the center frequency of the working frequency band of the first antenna unit 210 .
  • the first branch 221 can be used to make the first antenna unit 210 work in the TM10 mode at the first frequency, so as to generate a radiation beam whose radiation direction is in the normal direction.
  • the length L2 of the second branch 222 in the second direction may be between 0.7 and 1.3 first wavelengths (0.7 ⁇ L2 ⁇ 1.3 ⁇ ).
  • the second branch 222 can be used to make the first antenna unit 210 work in the TM20 mode at the second frequency, so as to generate two radiation beams with radiation directions on both sides of the normal direction.
  • the length L3 of the third branch 223 in the second direction may be between 0.525 and 1.125 first wavelengths (0.525 ⁇ L3 ⁇ 1.125 ⁇ ).
  • the length L4 of the first antenna unit 220 in the first direction may be between 0.5 and 1.5 first wavelengths (0.5 ⁇ L4 ⁇ 1.5 ⁇ ).
  • the length L4 of the patch sub-unit 220 in the first direction can adjust the radiation characteristic of the first antenna unit 210 .
  • the above parameters can be adjusted according to actual production or design needs to meet the detection needs.
  • the radiation characteristics of the first antenna unit 210 can also be changed by adjusting the length and width of the first feeder subunit 230, for example, the length of the first feeder subunit 230 can be changed to feed the first patch subunit.
  • the phase of the electrical signal of the unit 220 can change the impedance of the first feeder subunit 230 by changing the width of the first feeder subunit 230 . It should be understood that, in the case where the first antenna array 201 includes a plurality of antenna units 202, by adjusting the length of the feeder subunit in each antenna unit 202, the electrical power fed into the patch subunit of each antenna unit 202 can be adjusted.
  • the phase of the signal is such that the radiation beams generated by the multiple antenna units 202 in the first antenna array 201 are superimposed to prevent the radiation beams generated by the multiple antenna units 202 from canceling each other and weaken the radiation characteristics of the antenna device 200 .
  • the detection angle or detection distance of the first antenna array 201 can be controlled.
  • the antenna device 200 can also include at least one matching module 270, and the matching module can be arranged on the feeder subunit in the antenna unit 202, and is used to adjust the electric current fed into the patch subunit in the antenna unit 202.
  • the signal phase is used to superimpose the radiation beams generated by the multiple antenna units 202 in the first antenna array 201 , avoiding the radiation beams generated by the multiple antenna units 202 from canceling each other, and weakening the radiation characteristics of the antenna device 200 .
  • the matching module 270 may be a capacitor or an inductor, or may also be a circuit network composed of a capacitor or an inductor, which is not limited in the present application.
  • the matching module 270 provided on each feeder subunit may be different.
  • the first patch subunit 220 may further include a fourth branch, the length of the fourth branch in the second direction is greater than the length L2 of the second branch 222 in the second direction.
  • the length of the fourth branch in the second direction may be between 1.2 and 1.8 first wavelengths.
  • the fourth branch can be used to make the first antenna unit 210 work in the TM30 mode when radiating at the third frequency, so as to generate three radiation signal directions, and its pattern is shown in FIG. 15 , which can be applied to different detection scenarios.
  • the antenna device 200 may further include a PCB 240 .
  • the first antenna unit 220 may be disposed on the surface of the PCB 240 to form a PCB antenna.
  • the PCB 240 may use a Rogers (Rogers) dielectric board, or a mixed media board of Rogers and FR-4, and so on.
  • Common PCB antennas have the advantages of low cost, easy processing, and easy integration.
  • the first antenna array 201 may include a plurality of antenna units 202, and each antenna unit in the plurality of antenna units 202 has the same structure, as shown in FIG. 6 .
  • a plurality of antenna units 202 are sequentially connected in a first direction to form a first antenna array 201 .
  • the antennas included in the first antenna array 201 can be adjusted according to design or actual needs. The number of units is to meet the needs of detection, which is not limited in this application.
  • the distance L5 between the patch subunits of any two adjacent antenna units in the plurality of antenna units 202 is 0.5 ⁇ N first wavelengths, where N is a positive integer, that is, in the antenna unit 202
  • the length of the feeder subunit is 0.5 ⁇ N first wavelengths.
  • the distance L5 between the patch subunits of any two adjacent two antenna units in the plurality of antenna units 202 is used as the first wavelength for illustration, which can be based on actual production or The design needs to be adjusted to avoid grating lobes in the radiation generated by the antenna array composed of multiple antenna units 202 , which will cause the position of the measurement target of the antenna device to be blurred.
  • the antenna device 200 may further include a feed unit 250 , and the feed unit 250 may be electrically connected to a feeder subunit of the antenna unit 202 close to the feed unit 250 to feed the first antenna array 201 .
  • the feed form is simple, and the space occupied by the array is small, which is beneficial to the miniaturization of the antenna array.
  • the feeding unit 250 may be different radio frequency channels in a radio frequency chip provided inside the antenna device 200 .
  • FIG. 16 to 19 are diagrams of simulation results of the first antenna unit shown in FIG. 12 .
  • FIG. 16 is a simulation diagram of S parameters of the first antenna unit shown in FIG. 12 .
  • FIG. 17 is a schematic diagram of current distribution when the first antenna unit shown in FIG. 9 generates a horizontal single-peak beam.
  • FIG. 18 is a schematic diagram of current distribution when the first antenna unit shown in FIG. 9 generates a horizontal double-peak beam.
  • FIG. 19 is a directivity diagram of the first antenna unit shown in FIG. 9 on a horizontal plane.
  • the pattern of the horizontal plane can be understood as the pattern of the first antenna unit in a plane formed by the second direction and the third direction perpendicular to the plane where the first antenna unit is located.
  • the first antenna unit can generate two resonance points in the frequency range from 60 GHz to 100 GHz, respectively 76 GHz and 81 GHz, which can correspond to the first frequency band and the second frequency band mentioned above.
  • the horizontal single-peak radiation branch mainly composed of the first branch and part of the second branch generates a radiation beam.
  • the current on the first branch and part of the second branch flows along the first direction, which is the TM10 mode.
  • the electromagnetic wave radiated by the first antenna unit is vertically polarized, and the generated radiation beam has only one radiation direction, which is the normal direction, and the generated radiation beam is a horizontal single-peak beam, as shown in Figure 19 .
  • the radiation beam is mainly generated by the second branch as a horizontal double-peak radiation branch.
  • the component of the current on the second branch in the second direction is symmetrical along the first direction, which is the TM20 mode.
  • the electromagnetic wave radiated by the first antenna unit is horizontally polarized, and the generated radiation beam has two radiation directions, and the two radiation directions are located on both sides of the normal direction, and the generated radiation beam is a horizontal double-peak beam , which is ⁇ 45° from the normal direction, as shown in Figure 19.
  • FIG. 20 to 22 are diagrams of simulation results of the first antenna array shown in FIG. 6 .
  • FIG. 20 is a direction diagram of the horizontal planes of the antenna units in the first frequency band and the second frequency band in the first antenna array shown in FIG. 6 .
  • Fig. 20 is a directivity diagram of the vertical plane of the antenna elements in the first frequency band in the first antenna array shown in Fig. 6 .
  • Fig. 22 is a directivity diagram of the vertical plane of the antenna elements in the second frequency band in the first antenna array shown in Fig. 6 .
  • the pattern of the horizontal plane can be understood as the pattern of the antenna elements in the first antenna array in a plane composed of the second direction and the third direction perpendicular to the plane where the antenna elements are located.
  • the direction pattern on the horizontal plane may be understood as the direction pattern of the antenna elements in the first antenna array in a plane formed by a first direction and a third direction perpendicular to the plane where the antenna elements are located.
  • the antenna units in the first antenna array can radiate horizontal single-peak beams and horizontal double-peak beams in the first frequency band and the second frequency band, which can cover scene 1, scene 2 and scene 3 mentioned above.
  • FIG. 23 and FIG. 24 are schematic diagrams of another patch subunit provided by the embodiment of the present application.
  • the multiple branches included in the patch subunit may not necessarily be rectangular, and may also be other rules, for example, circular, oval, rhombus, etc., or may also be irregular in shape, which is not the subject of this application. limit.
  • patch sub-units can be regarded as superimposed by multiple shapes, as shown in Figure 23 and Figure 24, each of the multiple branches can be in the shape of a circle, and the edges of the branches can be composed of straight line segments and arcs composition.
  • each branch among the plurality of branches is a line segment, arc, irregular zigzag or irregular arc with an included angle A with the first direction, wherein A is 0°-180° , as shown in Figure 24.
  • A is 0°-180° , as shown in Figure 24.
  • This embodiment only gives some examples, and does not limit the specific branch shape.
  • Fig. 25 is a schematic diagram of an antenna device provided by an embodiment of the present application.
  • the antenna device includes four antenna arrays with the same structure. It should be understood that, in practical applications, the number of antenna arrays in the antenna device may be adjusted according to design or actual needs to meet detection requirements, which is not limited in the present application.
  • Fig. 26 is a method for preparing an antenna device provided by an embodiment of the present application.
  • the method may include: S310, etching a first antenna array on the first metal layer.
  • the first antenna array includes at least one antenna unit, the at least one antenna unit includes a first antenna unit, and the first antenna unit includes a first patch subunit and a first feeder subunit.
  • the first patch subunit sequentially includes at least two branches in the first direction, the at least two branches include a first branch and a second branch, and the length of the first branch in the second direction is smaller than that of the second branch in the second direction on the length.
  • the first patch subunit sequentially includes at least two branches in the first direction, which may be an integrated structure produced by etching the first metal layer, or may be produced by etching the first metal layer multiple times.
  • the combined structure of multiple metal patches may be an integrated structure produced by etching the first metal layer, or may be produced by etching the first metal layer multiple times.
  • the first antenna unit takes the direction of the radiation signal of the first frequency band as the third direction, and the third direction is the normal direction of the first antenna unit; the first antenna unit takes the direction of the radiation signal of the second frequency band as The fourth direction and the fifth direction are respectively located on both sides of the third direction; the first frequency band is different from the second frequency band.
  • the first antenna unit radiates a horizontal single-peak beam in a first frequency band; the first antenna unit radiates a horizontal double-peak beam in a second frequency band; the first frequency band and the second frequency band are different.
  • the current on the first stub flows along a first direction.
  • the component of the current on the second branch in the second direction is symmetrical along the first direction, for example, the component of the current on the second branch in the second direction is along the central axis of the second branch in the first direction symmetry.
  • the at least two branches include a first branch, a second branch and a third branch, and the length of the third branch in the second direction is greater than the length of the first branch in the second direction and less than The length of the second branch in the second direction.
  • the length of the first branch in the second direction is between 0.35 and 0.65 first wavelengths (0.35 ⁇ L1 ⁇ 0.65 ⁇ ), and the first wavelength is the working wavelength of the antenna device.
  • the length of the second branch in the second direction is between 0.7 and 1.3 first wavelengths (0.7 ⁇ L2 ⁇ 1.3 ⁇ ), and the first wavelength is the working wavelength of the antenna device.
  • the length of the third branch in the second direction is between 0.525 and 1.125 first wavelengths (0.525 ⁇ L3 ⁇ 1.125 ⁇ ).
  • the length of the first patch subunit in the first direction is between 0.5 and 1.5 first wavelengths (0.5 ⁇ L4 ⁇ 1.5 ⁇ ).
  • the first branch is used to generate a horizontal single-peak beam
  • the second branch is used to generate a horizontal double-peak beam
  • the shape of the first branch, the second branch or the third branch is a rectangle, an ellipse, a circle, a rhombus, a square or a trapezoid.
  • the edge shape of the first branch, the second branch or the third branch is a line segment, an arc, an irregular zigzag or an irregular arc with an angle A with the first direction, and A is 0°-180°.
  • At least one antenna unit further includes a second antenna unit, and the second antenna unit has the same structure as the first antenna unit; the first antenna unit and the second antenna unit are connected in the first direction.
  • the distance between the first antenna unit and the second antenna unit in the first direction is 0.5 ⁇ N first wavelengths, where N is a positive integer.
  • the central axis of the first branch in the first direction, the central axis of the second branch in the first direction and/or the central axis of the third branch in the first direction are parallel to the second direction.
  • the antenna device further includes a second antenna array, and the second antenna array has the same structure as the first antenna array.
  • An embodiment of the present application further provides a detection device, the detection device includes the aforementioned antenna device.
  • An embodiment of the present application further provides a radar, where the radar includes the aforementioned antenna device. Further, the radar further includes a control chip, and the control chip is connected with the antenna device. The control chip is used to control the antenna device to transmit or receive signals.
  • An embodiment of the present application also provides a terminal, where the terminal includes the aforementioned radar.
  • the terminal may be a vehicle, for example, a smart transportation device (vehicle or drone), a smart home device, a smart manufacturing device, a surveying and mapping device, or a robot.
  • the intelligent transport device may be, for example, an automated guided vehicle (AGV) or an unmanned transport vehicle.
  • AGV automated guided vehicle
  • the terminal can also be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control) Terminals in self driving, terminals in remote medical, terminals in smart grid, terminals in transportation safety, smart city ), a terminal in a smart home (smart home), and the like.
  • a virtual reality (virtual reality, VR) terminal an augmented reality (augmented reality, AR) terminal
  • industrial control industrial control Terminals in self driving, terminals in remote medical, terminals in smart grid, terminals in transportation safety, smart city ), a terminal in a smart home (smart home), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种天线装置、雷达、探测装置及终端,可以应用于智能驾驶、辅助驾驶或者自动驾驶。天线装置包括第一天线阵列,第一天线阵列包括至少一个天线单元,至少一个天线单元包括第一天线单元,第一天线单元包括第一贴片子单元和第一馈线子单元,第一贴片子单元在第一方向上依次包括至少两个枝节,至少两个枝节包括第一枝节和第二枝节,第一枝节在第二方向上的长度小于第二枝节在第二方向上的长度。天线装置利用贴片子单元中长度不同的至少两个枝节,在不同频段能够实现辐射信号的方向为法向的水平单峰波束和辐射信号的方向位于法向两侧的水平双峰波束,适用于车载毫米波雷达的多场景应用,简单易实现。

Description

天线装置、雷达,探测装置及终端 技术领域
本申请涉及传感器技术领域,并且更具体地,涉及传感器技术领域中的天线装置、雷达,探测装置和终端。
背景技术
随着社会的发展,智能运输设备、智能家居设备、机器人等智能终端正在逐步进入人们的日常生活中。传感器在智能终端上发挥着十分重要的作用。安装在智能终端上的各式各样的传感器,比如毫米波雷达,激光雷达,摄像头,超声波雷达等,在智能终端的运动过程中感知周围的环境,收集数据,进行移动物体的辨识与追踪,以及静止场景如车道线、标示牌的识别,并结合导航仪及地图数据进行路径规划。传感器可以预先察觉到可能发生的危险并辅助甚至自主采取必要的规避手段,有效增加了智能终端的安全性和舒适性。
以智能终端为智能运输设备为例,毫米波雷达由于成本较低、技术比较成熟率先成为无人驾驶系统和辅助驾驶系统的主力传感器。目前高级辅助驾驶系统(advanced driver assistance systems,ADAS)中包括十多项功能,其中变道辅助(lance change assist,LCA)、盲点监测(blind spot detection,BSD)、开门预警(door open warning,DOW)、倒车横向来车警示(rear cross traffic alert,RCTA)、泊车辅助(parking assist,PA)都离不开毫米波雷达。上述不同的功能,对于毫米波雷达的测距需求不同,这无疑增加了毫米波雷达的天线的设计复杂度,毫米波雷达的天线设计如何满足不同功能的需求是一直以来的热点问题。
发明内容
本申请实施例提供一种天线装置,雷达,探测装置及终端,能够适用于不同的功能应用。
第一方面,提供了一种天线装置,第一天线阵列;所述第一天线阵列包括至少一个天线单元,所述至少一个天线单元包括第一天线单元,所述第一天线单元包括第一贴片子单元和第一馈线子单元;所述第一贴片子单元在第一方向上依次包括至少两个枝节,所述至少两个枝节包括第一枝节和第二枝节,所述第一枝节和所述第二枝节部分重叠,所述第一枝节在第二方向上的长度小于所述第二枝节在所述第二方向上的长度。
根据本申请实施例,第一枝节在第二方向上的长度与第二枝节在第二方向上的长度不同,可以使第一天线单元产生不同的谐振模式,并且由于不同的谐振模式可以使第一天线单元产生的不同的辐射波束,可以适用于不同功能的需求。并且,第一天线单元通过第一馈线子单元为第一贴片子单元进行馈电,其结构简单,易实现。
结合第一方面,在第一方面的某些实现方式中,所述第一天线单元以第一频段辐射信号的方向为第三方向,所述第三方向为所述第一天线单元的法向;所述第一天线单元以第 二频段辐射信号的方向为第四方向和第五方向,所述第四方向和所述第五方向分别位于所述第三方向两侧;所述第一频段和所述第二频段不同。
结合第一方面,在第一方面的某些实现方式中,所述第一天线单元以第一频段辐射水平单峰波束;所述第一天线单元以第二频段辐射水平双峰波束;所述第一频段和所述第二频段不同。
根据本申请实施例,第一天线单元在第一频段具有一个辐射信号的方向,可以产生水平单峰波束,第一天线单元在第二频段可以具有两个辐射信号的方向,可以产生水平双峰波束。当天线装置设置于车辆的车身四个角,在第一频段,第一天线单元的辐射信号的方向为法向,作为角雷达使用时,可以用于探测车身左后向45°方向的探测目标,可以应用于PA等功能场景。在第二频段,第一天线单元的两个辐射信号的方向分别位于法向两侧,可以分别用于探测车身左侧的探测目标和车身后方的探测目标,可以应用于的BSD、LCA或DOW功能场景以及RCTA功能场景。并且,可以根据探测距离向用户提示探测目标距离车辆的距离。
结合第一方面,在第一方面的某些实现方式中,所述第一枝节上的电流沿第一方向流动。
根据本申请实施例,第一枝节上的电流沿第一方向流动可以产生法向的水平单峰波束。
结合第一方面,在第一方面的某些实现方式中,所述第二枝节上的电流在第二方向的分量沿第一方向对称。
根据本申请实施例,第二枝节上的电流在第二方向的分量沿第一方向对称可以产生位于法向两侧的水平双峰波束。
结合第一方面,在第一方面的某些实现方式中,所述至少两个枝节包括第一枝节、第二枝节和第三枝节,所述第三枝节在所述第二方向上的长度大于所述第一枝节在所述第二方向上的长度并且小于所述第二枝节在所述第二方向上的长度。
根据本申请实施例,第三枝节可以用于调整第一贴片子单元辐射时的阻抗,从而调整第一天线单元的辐射特性(例如,第一天线单元的谐振点的频率,第一天线单元的探测的角域宽度)。
结合第一方面,在第一方面的某些实现方式中,所述第一枝节在所述第二方向上的长度为L1,0.35λ≤L1≤0.65λ,所述λ为所述天线装置的工作波长。
结合第一方面,在第一方面的某些实现方式中,所述第二枝节在所述第二方向上的长度为L2,0.7λ≤L2≤1.3λ,所述λ为所述天线装置的工作波长。
结合第一方面,在第一方面的某些实现方式中,所述第三枝节在所述第二方向上的长度为L3,0.525λ≤L3≤1.125λ。
结合第一方面,在第一方面的某些实现方式中,所述第一贴片子单元在第一方向上的长度为L4,0.5λ≤L4≤1.5λ。
根据本申请实施例,通过调整第一枝节在第二方向上的长度,第二枝节在第二方向上的长度,第三枝节在第二方向上的长度和/或第一贴片子单元在第一方向上的长度可以调整第一天线单元的辐射特性。可以根据实际的生产或设计需要,对上述参数进行调整,以满足探测的需要。
结合第一方面,在第一方面的某些实现方式中,所述第一枝节用于产生水平单峰波束, 和/或,所述第二枝节用于产生水平双峰波束。
根据本申请实施例,第一天线单元以第一频段辐射时,主要由第一枝节和部分第二枝节组成的水平单峰辐射枝节产生辐射波束,第一枝节上的电流沿第一方向流动,为TM10模式。在这种模式下,对应于垂直极化,仅具有一个辐射信号的方向,其主极化的方向为法向,可以产生水平单峰波束。第一天线单元以第二频段辐射时,主要由第二枝节作为水平双峰辐射枝节产生辐射波束,第二枝节上的电流在第二方向的分量沿第一方向对称,为TM20模式。在这种模式下,对应于水平极化,并且具有两个辐射信号的方向,两个辐射信号的方向的分别位于法向两侧,可以产生水平双峰波束。
结合第一方面,在第一方面的某些实现方式中,所述第一枝节、所述第二枝节或所述第三枝节的形状为长方形、椭圆形、圆形、菱形、正方形或梯形。
结合第一方面,在第一方面的某些实现方式中,所述第一枝节、所述第二枝节或所述第三枝节的边缘形状为与所述第一方向的夹角为A的线段、弧线、不规则锯齿状或不规则弧线,所述A为0°-180°。
根据本申请实施例,贴片子单元中包括的多个枝节不一定为矩形,也可以为其他规则,例如,圆形,椭圆形,菱形等,或者也可以为不规则形状。
结合第一方面,在第一方面的某些实现方式中,所述至少一个天线单元还包括第二天线单元,所述第二天线单元与所述第一天线单元结构相同;所述第一天线单元和所述第二天线单元在第一方向上相连。
根据本申请实施例,多个天线单元可以在第一方向上依次相连,形成第一天线阵列。第一天线阵列中的多个天线单元采用串馈的方式进行馈电,其馈电形式简单,组成阵列所占据的空间较小,有利于天线阵列的小型化。
结合第一方面,在第一方面的某些实现方式中,所述第一天线单元和所述第二天线单元在所述第一方向上的距离为0.5×N个第一波长,N为正整数。
根据本申请实施例,可以根据实际的生产或设计需要调整第一天线单元和第二天线单元在第一方向上的距离,以避免多个天线单元组成的天线阵列产生的辐射出现栅瓣,导致天线装置测量目标的位置模糊。
结合第一方面,在第一方面的某些实现方式中,所述第一枝节在第一方向的中轴、所述第二枝节在第一方向的中轴和/或所述第三枝节在第一方向的中轴与所述第二方向平行。
根据本申请实施例,第一枝节的延伸方向(例如长度方向或宽度方向)、第二枝节的延伸方向和/或第三枝节的延伸方向可以与第二方向平行。
结合第一方面,在第一方面的某些实现方式中,所述天线装置还包括第二天线阵列,所述第二天线阵列与第一天线阵列结构相同。
根据本申请实施例,在实际的应用中,可以根据设计或实际需要进行调整天线装置中天线阵列的数量,以满足探测的需要,本申请对此并不做限制。
第二方面,提供了一种天线装置的制备方法,包括:在第一金属层上刻蚀出第一天线阵列;所述第一天线阵列包括至少一个天线单元,所述至少一个天线单元包括第一天线单元,所述第一天线单元包括第一贴片子单元和第一馈线子单元;所述第一贴片子单元在第一方向上依次包括至少两个枝节,所述至少两个枝节包括第一枝节和第二枝节,所述第一枝节在第二方向上的长度小于所述第二枝节在所述第二方向上的长度;将所述第一天线阵 列与第一介质层的第一表面粘结在一起;将所述第一介质层的第二表面与第一地板层的第一表面粘结在一起,所述天线装置通过所述第一地板层接地。
结合第二方面,在第二方面的某些实现方式中,所述第一天线单元以第一频段辐射信号的方向为第三方向,所述第三方向为所述第一天线单元的法向;所述第一天线单元以第二频段辐射信号的方向为第四方向和第五方向,所述第四方向和所述第五方向分别位于所述第三方向两侧;所述第一频段和所述第二频段不同。
结合第二方面,在第二方面的某些实现方式中,所述第一天线单元以第一频段辐射水平单峰波束;所述第一天线单元以第二频段辐射水平双峰波束;所述第一频段和所述第二频段不同。
结合第二方面,在第二方面的某些实现方式中,所述第一枝节上的电流沿第一方向流动。
结合第二方面,在第二方面的某些实现方式中,所述第二枝节上的电流在第二方向的分量沿第一方向对称。
结合第二方面,在第二方面的某些实现方式中,所述至少两个枝节包括第一枝节、第二枝节和第三枝节,所述第三枝节在所述第二方向上的长度大于所述第一枝节在所述第二方向上的长度并且小于所述第二枝节在所述第二方向上的长度。
结合第二方面,在第二方面的某些实现方式中,所述第一枝节在所述第二方向上的长度为L1,0.35λ≤L1≤0.65λ,所述λ为所述天线装置的工作波长。
结合第二方面,在第二方面的某些实现方式中,所述第二枝节在所述第二方向上的长度为L2,0.7λ≤L2≤1.3λ,所述λ为所述天线装置的工作波长。
结合第二方面,在第二方面的某些实现方式中,所述第三枝节在所述第二方向上的长度为L3,0.525λ≤L3≤1.125λ。
结合第二方面,在第二方面的某些实现方式中,所述第一贴片子单元在第一方向上的长度为L4,0.5λ≤L4≤1.5λ。
结合第二方面,在第二方面的某些实现方式中,所述第一枝节用于产生水平单峰波束,和/或,所述第二枝节用于产生水平双峰波束。
结合第二方面,在第二方面的某些实现方式中,所述第一枝节、所述第二枝节或所述第三枝节的形状为长方形、椭圆形、圆形、菱形、正方形或梯形。
结合第二方面,在第二方面的某些实现方式中,所述第一枝节、所述第二枝节或所述第三枝节的边缘形状为与所述第一方向的夹角为A的线段、弧线、不规则锯齿状或不规则弧线,所述A为0°-180°。
结合第二方面,在第二方面的某些实现方式中,所述至少一个天线单元还包括第二天线单元,所述第二天线单元与所述第一天线单元结构相同;所述第一天线单元和所述第二天线单元在第一方向上相连。
结合第二方面,在第二方面的某些实现方式中,所述第一天线单元和所述第二天线单元在所述第一方向上的距离为0.5×N个第一波长,N为正整数。
结合第二方面,在第二方面的某些实现方式中,所述第一枝节在第一方向的中轴、所述第二枝节在第一方向的中轴和/或所述第三枝节在第一方向的中轴与所述第二方向平行。
结合第二方面,在第二方面的某些实现方式中,所述天线装置还包括第二天线阵列, 所述第二天线阵列与所述第一天线阵列结构相同。
第三方面,提供了一种雷达,所述雷达包括如第一方面中任一项所述的天线装置。
结合第三方面,在第三方面的某些实现方式中,所述雷达还包括控制芯片,所述控制芯片与所述天线装置连接,所述控制芯片用于控制所述天线装置发射或接收信号。
第四方面,提供了一种探测装置,所述探测装置包括如第一方面中任一项所述的天线装置。
第五方面,提供了一种终端,所述终端包括如第二方面中任一项所述的雷达。
结合第五方面,在第五方面的某些实现方式中,该终端可以为车辆,例如,智能运输设备(车辆或者无人机)、智能家居设备、智能制造设备、测绘设备或者机器人等。该智能运输设备例如可以是自动导引运输车(automated guided vehicle,AGV)、或无人运输车。该终端还可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的终端、无人驾驶(self driving)中的终端、远程医疗(remote medical)中的终端、智能电网(smart grid)中的终端、运输安全(transportation safety)中的终端、智慧城市(smart city)中的终端、智慧家庭(smart home)中的终端等等。
附图说明
图1是本申请实施例提供的车辆100的功能框图。
图2是本申请实施例提供的应用场景的示意图。
图3是本申请实施例提供的法向毫米波雷达和角毫米波雷达辐射信号的方向示意图。
图4是本申请实施例提供的串馈的贴片天线的结构示意图。
图5是图4所示的贴片天线的方向图。
图6是本申请提供的一种天线装置200的结构示意图。
图7是本申请实施例提供的第一天线单元210的结构示意图。
图8是本申请实施例提供的方向图合成的示意图。
图9是本申请实施例提供的第一天线单元210的结构示意图。
图10是本申请提供的一种贴片天线的等效磁流分布示意图。
图11是本申请实施例提供的TM10模式下贴片天线的电流分布示意图。
图12是图11所示的TM10模式对应的方向图。
图13是本申请实施例提供的TM10模式下贴片天线的电流分布示意图。
图14是图13所示的TM20模式对应的方向图。
图15是本申请实施例提供的不同模式下对应的方向图。
图16是图9所示的第一天线单元的S参数仿真图。
图17是图9所示的第一天线单元产生水平单峰波束时的电流分布示意图。
图18是图9所示的第一天线单元产生水平双峰波束时的电流分布示意图。
图19是图9所示的第一天线单元在水平面的方向图。
图20是图6所示的第一天线阵列中天线单元在第一频段和第二频段的水平面的方向图。
图21是图6所示的第一天线阵列中天线单元在第一频段的垂直面的方向图。
图22是图6所示的第一天线阵列中天线单元在第二频段的垂直面的方向图。
图23是本申请实施例提供的另一种贴片子单元的示意图。
图24是本申请实施例提供的另一种贴片子单元的示意图。
图25是本申请实施例提供的天线装置的示意图。
图26是本申请实施例提供的一种天线装置的制备方法。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,在本申请中“电连接”可理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式;也可理解为通过间接耦合的方式,隔空电导通。“连接”、“相连”均可以指一种机械连接关系或物理连接关系,例如,A与B连接或A与B相连可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
贴片单元:天线中具有无线接收、发射功能的模块,例如,PCB上设置的覆铜。
馈线:又可以称为电缆线,具有传输电信号的作用。
短距雷达、中距雷达和长距雷达:可以由毫米波雷达的探测距离区分,其中,短距雷达的探测距离在100m以内,中距雷达的探测距离在100m至200m之间,长距雷达的探测距离在300m以上。一般来说,毫米波雷达的探测距离与毫米波雷达中的天线的增益正相关,增益越高,探测距离越远。
天线方向图:也称辐射方向图,用于描述天线的辐射效果。是指在离天线一定距离处,天线辐射场的相对场强(归一化模值)随方向变化的图形,通常采用通过天线的辐射信号的方向(辐射波束的最大值指向的方向)上的两个相互垂直的平面方向图来表示。
天线方向图通常都有多个辐射波束。其中辐射强度最大的辐射波束称为主瓣,主瓣旁边的小辐射波束称为副瓣或旁瓣。在副瓣中,与主瓣相反方向上的副瓣也叫后瓣。在一些天线结构中,除主瓣以外在其他方向会因场强同相叠加形成强度(增益)与主瓣相仿的辐射瓣,称之为栅瓣。在雷达中,由于栅瓣与主瓣增益相仿,因此,难以判断测量目标在主瓣的辐射方向还是栅瓣的辐射方向,使测量目标易于混淆,导致测量目标的位置模糊。
天线的水平极化和垂直极化:在空间给定点上,电场强度E(矢量)是时间t的一元函数,随着时间的推移,矢量端点在空间周期性地描绘出轨迹。该轨迹直线垂直地面(地板所在平面),称垂直极化,如果水平于地面,称水平极化。同时,由于水平极化和垂直极化的电磁波的震动方向相互垂直,因此,水平极化和垂直极化之间的耦合较低,隔离度较好。
天线的主极化和交叉极化:天线的主极化是指辐射信号的方向上电场矢量端点运动的轨迹,由于天线本身物理结构等原因,天线辐射远场的电场矢量除了有所需要方向的运动外,还在其正交方向上存在分量,这就指的天线的交叉极化,例如,天线的主极化为水平极化,那么交叉极化就是垂直极化。一般来说,主极化与交叉极化相差越大越好。
天线回波损耗(S参数):可以理解为经过天线电路反射回天线端口的信号功率与天 线端口发射功率的比值。反射回来的信号越小,说明通过天线向空间辐射出去的信号越大,天线的辐射效率越大。反射回来的信号越大,说明通过天线向空间辐射出去的信号越小,天线的辐射效率越小。
天线回波损耗可以用S11参数来表示,S11属于S参数中的一种。S11表示反射系数,此参数能够表征天线发射效率的优劣。S11参数通常为负数,S11参数越小,表示天线回波损耗越小,天线本身反射回来的能量越小,也就是代表实际上进入天线的能量就越多,天线的系统效率越高;S11参数越大,表示天线回波损耗越大,天线的系统效率越低。
需要说明的是,工程上一般以S11值为-6dB作为标准,当天线的S11值小于-6dB时,可以认为该天线可正常工作,或可认为该天线的发射效率较好。
天线隔离度:是指一个天线发射信号,通过另一个天线接收的信号与该发射天线信号的比值。隔离度是用来衡量天线互耦程度大小的物理量。假定两个天线构成一个双端口网络,那么两个天线之间的隔离度就是天线之间的S21、S12。天线隔离度可以用S21、S12参数表示。S21、S12参数通常为负数。S21、S12参数越小,表示天线之间的隔离度越大,天线互耦程度越小;S21、S12参数越大,表示天线之间的隔离度越小,天线互耦程度越大。天线的隔离度取决于天线辐射方向图、天线的空间距离、天线增益等。
地(地板):可泛指天线装置内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地”可用于天线装置内元器件的接地。一个实施例中,“地”可以是天线装置的电路板的接地层,也可以是天线装置的外壳形成的接地板。一个实施例中,电路板可以是印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。一个实施例中,电路板包括介质基板、接地层和走线层,走线层和接地层通过过孔进行电连接。一个实施例中,诸如显示器、触摸屏、输入按钮、发射器、处理器、存储器、电池、充电电路、片上系统(system on chip,SoC)结构等部件可以安装在电路板上或连接到电路板;或者电连接到电路板中的走线层和/或接地层。例如,射频源设置于走线层。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。图1是本申请实施例提供的车辆100的探测范围示意图。
毫米波雷达设备中,基于PCB的微带天线由于其在低剖面、低成本、易加工、易集成等方面的优势,成为毫米波雷达的首选方案。毫米波雷达根据其探测距离的远近可以分为长距雷达(long range radar,LRR)、中距雷达(mid/medium range radar,MRR)以及短距雷达(short range radar,SRR)。
其中,LRR对探测距离要求较高,但对探测的角域宽度要求相对较低。SRR对探测距离要求相对较低,但对探测的角域宽度要求较高。MRR对探测距离和角域宽度的要求可以理解为介于LRR和SRR之间。例如,LRR的探测距离可以达到200米以上,角域宽度可以为±15°;MRR的探测距离可以为100米以内,角域宽度可以为±45°;SRR的探测 距离可以为60米以内,角域宽度可以为±80°。在使用中,可以根据自动驾驶的功能需求以及其它传感器的使用情况,在车身的不同位置安装不同类型的毫米波雷达,毫米波雷达的数量和类型可以根据需要进行选择。例如,LRR可以安装于车身前方,作为前向雷达;MRR可以安装于对车身前方、后方,作为前向雷达、后向雷达;SRR可以安装在车身侧方、车身的四个角,作为侧向雷达、角雷达。此外,MRR也可以安装于车身侧方或车身的四个角,SRR也可以安装于车身的前方或后方。
应理解,图1给出了几种可能的雷达的安装位置,其仅为示例,实际使用中可以选择更多或更少数量的雷达,类型也可以调整。
上述车辆100可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、或手推车等,本申请实施例不做特别的限定。
对于安装在车辆的车身四个角的角雷达(以设置于车身左后侧的角毫米波雷达进行说明)来说,在其探测范围内,可以根据探测角度不同,应用于不同的探测场景,如图2所示:
场景一:当角雷达的探测角度包括方向1时,角雷达用于探测车身后方的探测目标,例如,可以应用于BSD、LCA或DOW场景,可以用于提醒用户在车辆后方的盲区内,是否存在行人或车辆,以提醒用户是否可以进行车辆变道或开启车门等操作;
场景二:当角雷达的探测角度包括方向2时,角雷达用于探测车身左侧的探测目标,例如,可以应用于RCTA场景,当用户在进行泊车操作时,可以用于提醒用户在方向2上存在车辆;
场景三:当角雷达的探测角度包括方向3时,角雷达用于探测车身左后向45°方向的探测目标,例如,可以应用于PA场景,当用户在进行泊车操作时,可以用于提醒用户与在方向3上的障碍物之间的距离。
应理解,随着毫米波雷达性能(例如,探测角度的精准度)的提升,毫米波雷达可以为用户提供更为精准的探测结果,以提升用户开车的安全性。同时,对于由于毫米波雷达设置在车身的四个角,因此,毫米波雷达一般与车身后方呈45°。对于场景三来说,毫米波雷达探测车身左后向45°方向,为毫米波雷达的法向(与雷达中天线的辐射体所在平面垂直的方向)。
针对上述不同的场景,对于毫米波雷达的测距需求不同,需要毫米波雷达同时覆盖多个不同的方向,这无疑增加了毫米波雷达的天线的设计复杂度,毫米波雷达的天线设计如何满足不同功能的需求是一直以来的热点问题。
对于毫米波雷达来说,为实现上述多场景的覆盖,通常会采用法向毫米波雷达(辐射信号的方向为法向)和角毫米波雷达(辐射信号的方向在法向两侧,例如,与法向所呈角度为±45°)组合的方式,如图3所示。
对于法向毫米波雷达,采用常见的串馈的贴片天线,如图4中的(a)所示,其辐射的波束的最大值指向的方向为法向(垂直于贴片天线所在平面)。对于角毫米波雷达,最常见的是利用多列串馈的贴片天线与功分器组合实现,如图4中的(b)所示,从图5所示的方向图中可看出角毫米波雷达存在两个辐射的波束的最大值(两个辐射信号的方向),分别指向法向两侧的-35°、+35°。
由于上述毫米波雷达采用法向毫米波雷达和角毫米波雷达联合应用来实现多种场景覆盖,所以会存在至少两种不同的天线形式,设计较复杂。并且其中的角毫米波雷达通过多列串馈的贴片天线来实现双峰波束,在水平方向尺寸较大,不易水平向组阵,且易出现栅瓣,会导致角度模糊。
本申请实施例提供了一种天线装置,雷达,探测装置及终端,可以应用与智能驾驶、辅助驾驶或者自动驾驶。天线装置包括至少一个贴片子单元,利用贴片子单元中长度不同的至少两个枝节,在不同频段能够实现辐射方向为法向的水平单峰波束和辐射方向位于法向两侧的水平双峰波束,适用于车载毫米波雷达的多场景应用,简单易实现。
图6是本申请提供的一种天线装置200的结构示意图。
应理解,本申请实施例提供的天线装置可以应用于77GHz的毫米波领域,也可以应用于24GHz毫米波领域。为了论述的简洁,本申请仅以天线装置应用于77GHz为例进行说明,在实际的应用可以进行调整,本申请对此并不做限制。本申请对实施例所提供的天线装置的应用场景并不限制,可以根据实际的需求(例如,车载毫米波雷达或路边毫米波雷达)进行调整。
如图6所示,天线装置200可以包括第一天线阵列201,第一天线阵列201可以包括至少一个天线单元202,至少一个天线单元202可以包括第一天线单元210。
应理解,天线阵列的工作原理可以看成是阵列内每个天线单元辐射产生的电磁波的叠加。对于多个电磁波来讲,当它们传到同一区域时,按照叠加原理,电磁波将产生矢量叠加。因此,可以根据需求调整第一天线阵列201包括的天线单元202的数量,以便对于第一天线阵列201的辐射特性(例如,探测角度,探测距离等)进行调整。
如图7中的(a)所示,第一天线单元210可以包括第一贴片子单元220和第一馈线子单元230。第一馈线子单元230与第一贴片子单元220相连,第一馈线子单元230用于为第一贴片子单元220馈入电信号,以使第一贴片子单元220产生辐射波束。第一贴片子单元220在第一方向上依次包括至少两个枝节,至少两个枝节包括第一枝节221和第二枝节222,第一枝节221在第二方向上的长度L1小于第二枝节222在第二方向上的长度L2,第一枝节221和第二枝节222可以部分重叠。其中,第一方向可以是第一馈线子单元230的延伸方向,第一馈线子单元230的长度方向,或者,可以是第一枝节221或第二枝节222的宽度方向,第二方向可以与第一方向垂直,例如,可以是第一馈线子单元230的宽度方向,或者,可以是第一枝节221或第二枝节222的长度方向。
应理解,在制备过程中,第一贴片子单元220中的多个枝节可以一体成型的,也可以是由多个贴片单元组合形成的。同时,第一枝节221在第二方向上的长度可以理解为第一枝节221内在第二方向上距离最远的两个点之间的距离,第二枝节222在第二方向上的长度也可以相应的理解。
在一个实施例中,第一枝节221在第二方向上的第一中轴和第二枝节222在第二方向上的第二中轴对齐(重叠),或者,第一中轴和第二中轴可以不对齐(不重叠),可以根据实际的设计或者生产需求进行调整,本申请对此并不做限制。其中,第一中轴两侧的第一枝节221的长度相同,第二中轴两侧的第二枝节的长度相同。
在本申请实施例提供的技术方案中,第一馈线子单元230为第一贴片子单元220馈入电信号,由于第一贴片子单元220中的第一枝节221在第二方向上的长度与第二枝节222 在第二方向上的长度不同,可以使第一天线单元210产生不同的谐振模式,并且由于不同的谐振模式可以使第一天线单元210辐射不同的辐射波束,可以满足毫米波雷达的不同功能的需求,本申请实施例提供的技术也可以应用于其他装置中,例如,天线装置可以应用于电子设备中,本申请对此并不做限制。
第一天线单元210以第一频段辐射信号时,具有一个辐射信号的方向(辐射波束的最大值指向的方向),可以辐射水平单峰波束。第一天线单元210以第二频段辐射信号时,具有两个辐射信号的方向,可以辐射水平双峰波束,其中,第一频段和第二频段不同。
第一天线单元210以第一频段辐射信号的方向为第三方向,第三方向垂直于第一贴片子单元220所在的平面的方向,为第一天线单元210的法向。当天线装置设置于车辆的车身四个角,作为角雷达使用时,其探测角度包括图2中所示的方向3,可以用于探测车身左后向45°方向的探测目标,可以应用于上文所述的场景3,例如,应用于PA等功能场景。第一天线单元210以第二频段辐射信号的方向(第四方向和第五方向)分别位于第三方向两侧,其探测角度可以包括图2中所示的方向1和方向2,可以分别用于探测车身左侧的探测目标和车身后方的探测目标,可以应用于上文所述的场景1和场景2,例如,应用于BSD、LCA或DOW功能场景以及RCTA功能场景。其中,第三方向,第四方向和第五方向可以位于相同的平面内,可以定义该平面为水平面(例如,水平面可以为第二方向和第三方向组成的平面),以实现同一个平面内,不同角度的探测。因此,本申请实施例提供的天线装置,可以通过以第一频段辐射的水平单峰法向波束和以第二频段辐射的水平双峰波束实现图2中所示的多个场景的覆盖,如图8所示。其中,水平单峰波束可以理解为第一天线单元210在第二方向和第三方向形成的平面内具有单个辐射信号的方向,水平双峰波束可以理解为第一天线单元210在第二方向和第三方向形成的平面内具有两个辐射信号的方向。
在一个实施例中,第一贴片子单元220可以包括两个第一枝节221,可以分别位于第二枝节222的两侧,可以增加第一贴片子单元220在第二方向上的对称性,如图7中的(b)所示。应理解,随着第一贴片子单元220的对称性的增加,第一天线单元210的辐射特性也随之更优。
在一个实施例中,第一贴片子单元220还可以包括第三枝节223,第三枝节223在第二方向上的长度L3大于第一枝节221在第二方向上的长度L1并且小于第二枝节222在第二方向上的长度L2,如图9所示。第三枝节223可以用于调整第一贴片子单元220辐射时的阻抗,从而调整第一天线单元210的辐射特性(例如,第一天线单元210的谐振点的频率,第一天线单元210的探测的角域宽度)。
在一个实施例中,第一枝节221在第一方向的中轴、第二枝节222在第一方向的中轴和/或第三枝节223在第一方向的中轴可以与第二方向平行。或者,也可以为第一枝节221的延伸方向(例如长度方向或宽度方向)、第二枝节222的延伸方向和/或第三枝节223的延伸方向可以与第二方向平行。
首先,由图10至图14来介绍本申请将涉及的天线模式。其中,图10是本申请提供的一种贴片天线的等效磁流分布示意图。图11是本申请实施例提供的TM10模式下贴片天线的电流分布示意图。图12是图11所示的TM10模式对应的方向图。图13是本申请实施例提供的TM10模式下贴片天线的电流分布示意图。图14是图13所示的TM20模式 对应的方向图。
如图10所示,为贴片天线的几种不同的横磁模(Transverse magnetic mode,TM)模式下的等效磁流分布示意图,可以根据等效磁流分布示意图预计贴片天线的方向图以及极化方式,TM模式可以理解为贴片天线产生的辐射在传播方向上有电场分量而无磁场分量。
对于不同的TM模式来说,其等效磁流分布具有以下规律:
(1)TMmn模式下,等效磁流沿x轴方向具有m个零点(由于等效磁流的分布类似于正弦分布,在零点两侧的等效磁流反向,因此,等效磁流的反向点为零点),沿y轴方向具有n个零点。
(2)沿同一方向的相邻零点之间的距离为λ/2,当该方向仅存在一个零点时,该方向上的贴片的长度为λ/2,其中,λ为贴片天线的谐振波长,可以理解为贴片天线产生的谐振点对应的波长,或者,贴片天线的工作频段的中心频率对应的波长。
例如,如图10中的(a)所示,为贴片天线的TM01模式下的等效磁流分布示意图。贴片天线在y轴方向具有一个零点,因此,贴片天线在y轴方向的电长度为λ/2。如图10中的(b)所示,为贴片天线的TM10模式下的等效磁流分布示意图。贴片天线在x轴方向具有一个零点,因此,贴片天线在x轴方向的电长度为λ/2。如图10中的(c)所示,为贴片天线的TM11模式下的等效磁流分布示意图。贴片天线在x轴方向和y轴方向分别具有一个零点,因此,贴片天线在x轴方向和y轴方向的电长度为λ/2。如图10中的(d)所示,为贴片天线的TM02模式下的等效磁流分布示意图。贴片天线在y轴方向具有两个零点,因此,贴片天线在y轴方向的电长度为λ。
电长度可以是指,物理长度(即机械长度或几何长度)乘以电或电磁信号在媒介中的传输时间与这一信号在自由空间中通过跟媒介物理长度一样的距离时所需的时间的比来表示,电长度可以满足以下公式:
Figure PCTCN2021137451-appb-000001
其中,L为物理长度,a为电或电磁信号在媒介中的传输时间,b为在自由空间中的中传输时间。
或者,电长度也可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
Figure PCTCN2021137451-appb-000002
其中,L为物理长度,λ 1为电磁波的波长。
如图11所示,在TM10模式下,贴片天线的电流沿y方向流动。在这种情况下,对应于垂直极化,贴片天线仅具有一个辐射信号的方向,其主极化的方向为法向(垂直于所述贴片天线所在平面的方向),可以辐射水平单峰波束,如图12所示。
如图13所示,在TM20模式下,贴片天线在馈线的延伸方向(长度方向)两侧的电流沿y方向对称。在这种情况下,对应于水平极化,并且贴片天线具有两个辐射信号的方向,其主极化的方向位于法向(垂直于所述贴片天线所在平面)两侧,可以辐射水平双峰波束,与法向呈±45°,如图14所示。
在一个实施例中,第一枝节221在第二方向上的长度L1可以介于0.35至0.65个第一 波长之间(0.35λ≤L1≤0.65λ),第一波长λ为天线装置200的工作波长。其中,第一波长可以理解为天线装置200中第一天线单元210产生的谐振点对应的波长,或者,第一天线单元210的工作频段的中心频率对应的波长。第一枝节221可以用于使第一天线单元210在第一频率时工作在TM10模式,从而产生辐射方向在法向的辐射波束。
在一个实施例中,第二枝节222在第二方向上的长度L2可以介于0.7至1.3个第一波长之间(0.7λ≤L2≤1.3λ)。第二枝节222可以用于使第一天线单元210在第二频率时工作在TM20模式,从而产生两个辐射方向在法向两侧的辐射波束。
在一个实施例中,第三枝节223在第二方向上的长度L3可以介于0.525至1.125个第一波长之间(0.525λ≤L3≤1.125λ)。
在一个实施例中,第一天线单元220在第一方向上的长度L4可以介于0.5至1.5个第一波长之间(0.5λ≤L4≤1.5λ)。
应理解,通过调整第一枝节221在第二方向上的长度L1,第二枝节222在第二方向上的长度L2,第三枝节223在第二方向上的长度L3和/或第一贴片子单元220在第一方向上的长度L4可以调整第一天线单元210的辐射特性。可以根据实际的生产或设计需要,对上述参数进行调整,以满足探测的需要。
在一个实施例中,也可以通过调整第一馈线子单元230的长度和宽度改变第一天线单元210的辐射特性,例如,通过改变第一馈线子单元230的长度可以改变馈入第一贴片子单元220的电信号的相位,通过改变第一馈线子单元230的宽度可以改变第一馈线子单元230的阻抗。应理解,在第一天线阵列201包括多个天线单元202的情况下,可以通过调整每个天线单元202内的馈线子单元的长度,从而调整馈入每个天线单元202的贴片子单元的电信号的相位,以使第一天线阵列201中的多个天线单元202产生的辐射波束进行叠加,避免多个天线单元202产生的辐射波束相互抵消,减弱天线装置200的辐射特性。并且,可以控制第一天线阵列201的探测角度或探测距离。
或者,在一个实施例中,天线装置200还可以包括至少一个匹配模块270,匹配模块可以设置在天线单元202中的馈线子单元上,用于调整馈入天线单元202中的贴片子单元的电信号相位,以使第一天线阵列201中的多个天线单元202产生的辐射波束进行叠加,避免多个天线单元202产生的辐射波束相互抵消,减弱天线装置200的辐射特性。在一个实施例中,匹配模块270可以是电容或电感,或者,也可以是由电容或电感组成的电路网络,本申请对此并不做限制。并且,当天线装置200包括多个馈线子单元时,每个馈线子单元上上设置的匹配模块270可以不同。
在一个实施例中,第一贴片子单元220还可以包括第四枝节,第四枝节在第二方向上的长度大于第二枝节222在第二方向上的长度L2。第四枝节在第二方向上的长度可以介于1.2至1.8个第一波长之间。第四枝节可以用于使第一天线单元210以第三频率辐射时,工作在TM30模式,从而产生三个辐射信号的方向,其方向图如图15所示,可以适用于不同的探测场景。
在一个实施例中,天线装置200还可以包括PCB240。第一天线单元220可以设置在PCB240表面,形成PCB天线。应理解,PCB240可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。通常的PCB天线具有低成本、易加工、易集成等方面的优势。
在一个实施例中,第一天线阵列201可以包括多个天线单元202,多个天线单元202中每个天线单元的结构相同,如图6所示。多个天线单元202在第一方向上依次相连,形成第一天线阵列201。应理解,在本申请实施例中仅以第一天线阵列201中包括三个天线单元202为例进行说明,在实际的应用中,可以根据设计或实际需要进行调整第一天线阵列201包括的天线单元的数量,以满足探测的需要,本申请对此并不做限制。
在一个实施例中,多个天线单元202中任意两个相邻的两个天线单元的贴片子单元之间的距离L5为0.5×N个第一波长,N为正整数,即天线单元202中的馈线子单元的长度为0.5×N个第一波长。为论述的简洁,在本申请实施例中以多个天线单元202中任意两个相邻的两个天线单元的贴片子单元之间的距离L5为第一波长进行说明,可以根据实际的生产或设计需要进行调整,以避免多个天线单元202组成的天线阵列产生的辐射出现栅瓣,导致天线装置测量目标的位置模糊。
在一个实施例中,天线装置200还可以包括馈电单元250,馈电单元250可以与靠近馈电单元250的天线单元202的馈线子单元电连接,为第一天线阵列201馈电。并且,由于第一天线阵列201中的多个天线单元202采用串馈的方式进行馈电,其馈电形式简单,组成阵列所占据的空间较小,有利于天线阵列的小型化。
在一个实施例中,馈电单元250可以是天线装置200内部设置的射频芯片中的不同的射频通道。
图16至图19是图12所示的第一天线单元的仿真结果图。其中,图16是图12所示的第一天线单元的S参数仿真图。图17是图9所示的第一天线单元产生水平单峰波束时的电流分布示意图。图18是图9所示的第一天线单元产生水平双峰波束时的电流分布示意图。图19是图9所示的第一天线单元在水平面的方向图。其中,水平面的方向图可以理解为,第一天线单元在第二方向和垂直于第一天线单元所在平面的第三方向组成的平面内的方向图。
如图16所示,第一天线单元在60GHz至100GHz的频段可以产生两个谐振点,分别为76GHz和81GHz,可以对应于上文中所述的第一频段和第二频段。
如图17所示,第一天线单元以76GHz(第一频段)辐射时,主要由第一枝节和部分第二枝节组成的水平单峰辐射枝节产生辐射波束。在这种情况下,第一枝节和部分第二枝节上的电流沿第一方向流动,为TM10模式。在这种模式下,第一天线单元辐射的电磁波呈垂直极化,产生的辐射波束仅具有一个辐射方向,其辐射方向为法向,产生的辐射波束为水平单峰波束,如图19所示。
如图18所示,第一天线单元以81GHz(第二频段)辐射时,主要由第二枝节产生作为水平双峰辐射枝节产生辐射波束。在这种情况下,第二枝节上的电流在第二方向的分量沿第一方向对称,为TM20模式。在这种模式下,第一天线单元辐射的电磁波呈水平极化,并且产生的辐射波束具有两个辐射方向,两个辐射方向的分别位于法向两侧,产生的辐射波束为水平双峰波束,与法向呈±45°,如图19所示。
图20至图22是图6所示的第一天线阵列的仿真结果图。其中,图20是图6所示的第一天线阵列中天线单元在第一频段和第二频段的水平面的方向图。图20是图6所示的第一天线阵列中天线单元在第一频段的垂直面的方向图。图22是图6所示的第一天线阵列中天线单元在第二频段的垂直面的方向图。
其中,水平面的方向图可以理解为,第一天线阵列中天线单元在第二方向和垂直于天线单元所在平面的第三方向组成的平面内的方向图。水平面的方向图可以理解为,第一天线阵列中天线单元在第一方向和垂直于天线单元所在平面的第三方向组成的平面内的方向图。
如图20所示,第一天线阵列中天线单元以第一频段和第二频段可以辐射水平单峰波束和水平双峰波束,可以覆盖上文所述的场景1,场景2及场景3。
如图21和图22所示,第一天线阵列中天线单元以第一频段和第二频段辐射时,在垂直面内,其副瓣≥14dBc,在辐射信号的方向上具有良好的辐射性能,可以实现精确的目标探测。
图23和图24是本申请实施例提供的另一种贴片子单元的示意图。
应理解,贴片子单元中包括的多个枝节可以不一定为矩形,也可以为其他规则,例如,圆形,椭圆形,菱形等,或者也可以为不规则形状,本申请对此并不做限制。例如,贴片子单元可以看成是由多种形状叠加而成,如图23和图24所示,多个枝节中每个枝节可以呈类圆形,枝节的边缘可以是由直线段以及弧线组成。
或者,可以理解为多个枝节中每个枝节的边缘形状为与第一方向的夹角为A的线段、弧线、不规则锯齿状或不规则弧线,其中,A为0°-180°,如图24所示。本实施例只是给出了一些示例,对具体枝节形状不做限定。
图25是本申请实施例提供的天线装置的示意图。
如图25所示,天线装置包括四个结构相同的天线阵列。应理解,在实际的应用中,可以根据设计或实际需要进行调整天线装置中天线阵列的数量,以满足探测的需要,本申请对此并不做限制。
图26是本申请实施例提供的一种天线装置的制备方法。
如图26所示,方法可以包括:S310,在第一金属层上刻蚀出第一天线阵列。
其中,第一天线阵列包括至少一个天线单元,至少一个天线单元包括第一天线单元,第一天线单元包括第一贴片子单元和第一馈线子单元。第一贴片子单元在第一方向上依次包括至少两个枝节,至少两个枝节包括第一枝节和第二枝节,第一枝节在第二方向上的长度小于第二枝节在第二方向上的长度。
在一个实施例中,第一贴片子单元在第一方向上依次包括至少两个枝节可以是由第一金属层刻蚀产生的一体成型结构,可以是由第一金属层多次刻蚀分别产生的多个金属贴片的组合结构。
S320,将第一天线阵列与第一介质层的第一表面粘结在一起。
S330,将第一介质层的第二表面与第一地板层的第一表面粘结在一起,天线装置通过第一地板层接地。
在一个实施例中,第一天线单元以第一频段的辐射信号的方向为第三方向,第三方向为第一天线单元的法向;第一天线单元以第二频段的辐射信号的方向为第四方向和第五方向,第四方向和第五方向分别位于第三方向两侧;第一频段和第二频段不同。
在一个实施例中,第一天线单元以第一频段辐射水平单峰波束;第一天线单元以第二频段辐射水平双峰波束;第一频段和第二频段不同。
在一个实施例中,第一枝节上的电流沿第一方向流动。
在一个实施例中,第二枝节上的电流在第二方向的分量沿第一方向对称,例如,第二枝节上的电流在第二方向的分量沿第二枝节在第一方向上的中轴对称。
在一个实施例中,至少两个枝节包括第一枝节、第二枝节和第三枝节,第三枝节在第二方向上的长度大于第一枝节在第二方向上的长度并且小于第二枝节在第二方向上的长度。
在一个实施例中,第一枝节在第二方向上的长度介于0.35至0.65个第一波长之间(0.35λ≤L1≤0.65λ),第一波长为天线装置的工作波长。
在一个实施例中,第二枝节在第二方向上的长度介于0.7至1.3个第一波长之间(0.7λ≤L2≤1.3λ),第一波长为天线装置的工作波长。
在一个实施例中,第三枝节在第二方向上的长度介于0.525至1.125个第一波长之间(0.525λ≤L3≤1.125λ)。
在一个实施例中,第一贴片子单元在第一方向上的长度介于0.5至1.5个第一波长之间(0.5λ≤L4≤1.5λ)。
在一个实施例中,第一枝节用于产生水平单峰波束,和/或,第二枝节用于产生水平双峰波束。
在一个实施例中,第一枝节、第二枝节或第三枝节的形状为长方形、椭圆形、圆形、菱形、正方形或梯形。
在一个实施例中,第一枝节、第二枝节或第三枝节的边缘形状为与第一方向的夹角为A的线段、弧线、不规则锯齿状或不规则弧线,A为0°-180°。
在一个实施例中,至少一个天线单元还包括第二天线单元,第二天线单元与第一天线单元结构相同;第一天线单元和第二天线单元在第一方向上相连。
在一个实施例中,第一天线单元和第二天线单元在第一方向上的距离为0.5×N个第一波长,N为正整数。
在一个实施例中,第一枝节在第一方向的中轴、第二枝节在第一方向的中轴和/或第三枝节在第一方向的中轴与第二方向平行。
在一个实施例中,天线装置还包括第二天线阵列,第二天线阵列与第一天线阵列结构相同。
本申请实施例还提供了一种探测装置,所述探测装置包括前文所述的天线装置。
本申请实施例还提供了一种雷达,所述雷达包括前文所述的天线装置。进一步地,雷达还包括控制芯片,所述控制芯片与天线装置连接。控制芯片用于控制所述天线装置发射或接收信号。
本申请实施例还提供了一种终端,所述终端包括前文所述的雷达。进一步地,该终端可以为车辆,例如,智能运输设备(车辆或者无人机)、智能家居设备、智能制造设备、测绘设备或者机器人等。该智能运输设备例如可以是自动导引运输车(automated guided vehicle,AGV)、或无人运输车。该终端还可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的终端、无人驾驶(self driving)中的终端、远程医疗(remote medical)中的终端、智能电网(smart grid)中的终端、运输安全(transportation safety)中的终端、智慧城市(smart city)中的终端、智慧家庭(smart home) 中的终端等等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种天线装置,其特征在于,包括:
    第一天线阵列;
    所述第一天线阵列包括至少一个天线单元,所述至少一个天线单元包括第一天线单元,所述第一天线单元包括第一贴片子单元和第一馈线子单元;
    所述第一贴片子单元在第一方向上依次包括至少两个枝节,所述至少两个枝节包括第一枝节和第二枝节,所述第一枝节在第二方向上的长度小于所述第二枝节在所述第二方向上的长度。
  2. 根据权利要求1所述的装置,其特征在于,
    所述第一天线单元以第一频段辐射信号的方向为第三方向,所述第三方向为所述第一天线单元的法向;
    所述第一天线单元以第二频段辐射信号的方向为第四方向和第五方向,所述第四方向和所述第五方向分别位于所述第三方向两侧;
    所述第一频段和所述第二频段不同。
  3. 根据权利要求1或2所述的装置,其特征在于,
    所述第一天线单元以第一频段辐射水平单峰波束;
    所述第一天线单元以第二频段辐射水平双峰波束;
    所述第一频段和所述第二频段不同。
  4. 根据权利要求2或3所述的装置,其特征在于,所述第一枝节上的电流沿第一方向流动。
  5. 根据权利要求2或3所述的装置,其特征在于,所述第二枝节上的电流在第二方向的分量沿第一方向对称。
  6. 根据权利要求1至5中任一项所述的装置,其特征在于,
    所述至少两个枝节包括所述第一枝节、所述第二枝节和第三枝节,所述第三枝节在所述第二方向上的长度大于所述第一枝节在所述第二方向上的长度并且小于所述第二枝节在所述第二方向上的长度。
  7. 根据权利要求1至6中任一项所述的装置,其特征在于,
    所述第一枝节在所述第二方向上的长度为L1,0.35λ≤L1≤0.65λ,所述λ为所述天线装置的工作波长。
  8. 根据权利要求1至7中任一项所述的装置,其特征在于,所述第二枝节在所述第二方向上的长度为L2,0.7λ≤L2≤1.3λ,所述λ为所述天线装置的工作波长。
  9. 根据权利要求6-8任一项所述的装置,其特征在于,
    所述第三枝节在所述第二方向上的长度为L3,0.525λ≤L3≤1.125λ。
  10. 根据权利要求1至9中任一项所述的装置,其特征在于,
    所述第一贴片子单元在第一方向上的长度为L4,0.5λ≤L4≤1.5λ。
  11. 根据权利要求1至10中任一项所述的装置,其特征在于,
    所述第一枝节用于产生水平单峰波束,和/或,
    所述第二枝节用于产生水平双峰波束。
  12. 根据权利要求1至11中任一项所述的装置,其特征在于,所述第一枝节、所述第二枝节或所述第三枝节的形状为长方形、椭圆形、圆形、菱形、正方形或梯形。
  13. 根据权利要求1至12中任一项所述的装置,其特征在于,所述第一枝节、所述第二枝节或所述第三枝节的边缘形状为与所述第一方向的夹角为A的线段、弧线、不规则锯齿状或不规则弧线,所述A为0°-180°。
  14. 根据权利要求1至13中任一项所述的装置,其特征在于,
    所述至少一个天线单元还包括第二天线单元,所述第二天线单元与所述第一天线单元结构相同;
    所述第一天线单元和所述第二天线单元在第一方向上相连。
  15. 根据权利要求1至14中任一项所述的装置,其特征在于,所述第一天线单元和所述第二天线单元在所述第一方向上的距离为0.5×N个第一波长,N为正整数。
  16. 根据权利要求6或7所述的装置,其特征在于,
    所述第一枝节在第一方向的中轴、所述第二枝节在第一方向的中轴和/或所述第三枝节在第一方向的中轴与所述第二方向平行。
  17. 根据权利要求1至16中任一项所述的装置,其特征在于,
    所述天线装置还包括第二天线阵列,所述第二天线阵列与所述第一天线阵列结构相同。
  18. 一种天线装置的制备方法,其特征在于,包括:
    在第一金属层上刻蚀出第一天线阵列;
    所述第一天线阵列包括至少一个天线单元,所述至少一个天线单元包括第一天线单元,所述第一天线单元包括第一贴片子单元和第一馈线子单元;
    所述第一贴片子单元在第一方向上依次包括至少两个枝节,所述至少两个枝节包括第一枝节和第二枝节,所述第一枝节在第二方向上的长度小于所述第二枝节在所述第二方向上的长度;
    将所述第一天线阵列与第一介质层的第一表面粘结在一起;
    将所述第一介质层的第二表面与第一地板层的第一表面粘结在一起,所述天线装置通过所述第一地板层接地。
  19. 根据权利要求18所述的方法,其特征在于,
    所述第一天线单元以第一频段辐射信号的方向为第三方向,所述第三方向为所述第一天线单元的法向;
    所述第一天线单元以第二频段辐射信号的方向为第四方向和第五方向,所述第四方向和所述第五方向分别位于所述第三方向两侧;
    所述第一频段和所述第二频段不同。
  20. 根据权利要求18或19所述的方法,其特征在于,
    所述第一天线单元以第一频段辐射水平单峰波束;
    所述第一天线单元以第二频段辐射水平双峰波束;
    所述第一频段和所述第二频段不同。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一枝节上的电流沿第一方向流动。
  22. 根据权利要求19或20所述的方法,其特征在于,所述第二枝节上的电流在第二方向的分量沿第一方向对称。
  23. 根据权利要求19至22中任一项所述的方法,其特征在于,
    所述至少两个枝节包括第一枝节、第二枝节和第三枝节,所述第三枝节在所述第二方向上的长度大于所述第一枝节在所述第二方向上的长度并且小于所述第二枝节在所述第二方向上的长度。
  24. 根据权利要求18至23中任一项所述的方法,其特征在于,
    所述第一枝节在所述第二方向上的长度为L1,0.35λ≤L1≤0.65λ,所述λ为所述天线装置的工作波长。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述第二枝节在所述第二方向上的长度为L2,0.7λ≤L2≤1.3λ,所述λ为所述天线装置的工作波长。
  26. 根据权利要求23-25中任一项所述的方法,其特征在于,
    所述第三枝节在所述第二方向上的长度为L3,0.525λ≤L3≤1.125λ。
  27. 根据权利要求18至26中任一项所述的方法,其特征在于,
    所述第一贴片子单元在第一方向上的长度为L4,0.5λ≤L4≤1.5λ。
  28. 根据权利要求18至27中任一项所述的方法,其特征在于,
    所述第一枝节用于产生水平单峰波束,和/或,
    所述第二枝节用于产生水平双峰波束。
  29. 根据权利要求18至28中任一项所述的方法,其特征在于,所述第一枝节、所述第二枝节或所述第三枝节的形状为长方形、椭圆形、圆形、菱形、正方形或梯形。
  30. 根据权利要求18至29中任一项所述的方法,其特征在于,所述第一枝节、所述第二枝节或所述第三枝节的边缘形状为与所述第一方向的夹角为A的线段、弧线、不规则锯齿状或不规则弧线,所述A为0°-180°。
  31. 根据权利要求18至30中任一项所述的方法,其特征在于,
    所述至少一个天线单元还包括第二天线单元,所述第二天线单元与所述第一天线单元结构相同;
    所述第一天线单元和所述第二天线单元在第一方向上相连。
  32. 根据权利要求18至31中任一项所述的方法,其特征在于,所述第一天线单元和所述第二天线单元在所述第一方向上的距离为0.5×N个第一波长,N为正整数。
  33. 根据权利要求23或24所述的方法,其特征在于,
    所述第一枝节在第一方向的中轴、所述第二枝节在第一方向的中轴和/或所述第三枝节在第一方向的中轴与所述第二方向平行。
  34. 根据权利要求18至33中任一项所述的方法,其特征在于,
    所述天线装置还包括第二天线阵列,所述第二天线阵列与所述第一天线阵列结构相同。
  35. 一种雷达,其特征在于,所述雷达包括如权利要求1至17中任一项所述的天线装置。
  36. 根据权利要求35所述的雷达,其特征在于,
    所述雷达还包括控制芯片,所述控制芯片与所述天线装置连接,所述控制芯片用于控制所述天线装置发射或接收信号。
  37. 一种探测装置,其特征在于,所述探测装置包括如权利要求1至17中任一项所述的天线装置。
  38. 一种终端,其特征在于,所述终端包括如权利要求35或36所述的雷达。
  39. 根据权利要求38所述的终端,其特征在于,所述终端为车辆。
PCT/CN2021/137451 2021-12-13 2021-12-13 天线装置、雷达,探测装置及终端 WO2023108340A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004263.8A CN114391201A (zh) 2021-12-13 2021-12-13 天线装置、雷达,探测装置及终端
PCT/CN2021/137451 WO2023108340A1 (zh) 2021-12-13 2021-12-13 天线装置、雷达,探测装置及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137451 WO2023108340A1 (zh) 2021-12-13 2021-12-13 天线装置、雷达,探测装置及终端

Publications (1)

Publication Number Publication Date
WO2023108340A1 true WO2023108340A1 (zh) 2023-06-22

Family

ID=81200387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137451 WO2023108340A1 (zh) 2021-12-13 2021-12-13 天线装置、雷达,探测装置及终端

Country Status (2)

Country Link
CN (1) CN114391201A (zh)
WO (1) WO2023108340A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244520A (ja) * 2007-03-23 2008-10-09 Toyota Central R&D Labs Inc 平面アレーアンテナ
CN108832289A (zh) * 2018-06-22 2018-11-16 湖南纳雷科技有限公司 微带串馈阵列天线、天线面阵及雷达传感器的射频前端
CN210379423U (zh) * 2019-10-11 2020-04-21 深圳市豪恩汽车电子装备股份有限公司 微带阵列天线
CN113169448A (zh) * 2020-06-30 2021-07-23 深圳市大疆创新科技有限公司 天线阵列、雷达和可移动平台
CN214754187U (zh) * 2021-04-28 2021-11-16 惠州市德赛西威智能交通技术研究院有限公司 一种车载79GHz毫米波六边形串馈贴片天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244520A (ja) * 2007-03-23 2008-10-09 Toyota Central R&D Labs Inc 平面アレーアンテナ
CN108832289A (zh) * 2018-06-22 2018-11-16 湖南纳雷科技有限公司 微带串馈阵列天线、天线面阵及雷达传感器的射频前端
CN210379423U (zh) * 2019-10-11 2020-04-21 深圳市豪恩汽车电子装备股份有限公司 微带阵列天线
CN113169448A (zh) * 2020-06-30 2021-07-23 深圳市大疆创新科技有限公司 天线阵列、雷达和可移动平台
CN214754187U (zh) * 2021-04-28 2021-11-16 惠州市德赛西威智能交通技术研究院有限公司 一种车载79GHz毫米波六边形串馈贴片天线

Also Published As

Publication number Publication date
CN114391201A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
CN106972244B (zh) 一种车载雷达阵列天线
US9553362B2 (en) Array antenna device
US9124006B2 (en) Antenna array for ultra wide band radar applications
US11223112B2 (en) Inverted microstrip travelling wave patch array antenna system
JP2009265007A (ja) 移動体用レーダ及び平面アンテナ
US11515624B2 (en) Integrated cavity backed slot array antenna system
US11515611B2 (en) Transition in a multi-layer substrate between a substrate integrated waveguide portion and a coplanar waveguide portion
CN106953157B (zh) 一种用于雷达传感器的天线装置
CN112213720A (zh) 一种雷达探测装置和雷达探测系统
WO2021169926A1 (zh) 一种天线以及雷达系统
US20230238705A1 (en) Antenna and preparation method thereof, millimeter-wave sensor, and terminal
Foysal et al. A novel high gain array antenna design for autonomous vehicles of 6g wireless systems
CN114784499A (zh) 一种波束偏转天线、天线阵列、雷达传感器和车辆
CN212848783U (zh) 天线单元、收发天线、传感器及设有传感器的设备
TWI674703B (zh) 寬波束高增益陣列天線
US20230238712A1 (en) Antenna Apparatus, Method for Producing Antenna Apparatus, Radar, and Terminal
WO2023108340A1 (zh) 天线装置、雷达,探测装置及终端
WO2021072630A1 (zh) 天线阵列、雷达和可移动平台
WO2023138110A1 (zh) 天线、雷达及天线调整方法
CN213903788U (zh) 一种雷达探测装置和雷达探测系统
Arumugam et al. A Comprehensive Review on Automotive Antennas for Short Range Radar Communications
CN217306728U (zh) 功分器、天线装置、无线电器件以及设备
CN218334344U (zh) 阵列天线、无线电器件和电子设备
CN216563514U (zh) 天线阵列和毫米波雷达
US11502420B2 (en) Twin line fed dipole array antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967483

Country of ref document: EP

Kind code of ref document: A1