WO2022228113A1 - 天线单元及其制作方法、阵列天线、雷达以及终端 - Google Patents

天线单元及其制作方法、阵列天线、雷达以及终端 Download PDF

Info

Publication number
WO2022228113A1
WO2022228113A1 PCT/CN2022/086372 CN2022086372W WO2022228113A1 WO 2022228113 A1 WO2022228113 A1 WO 2022228113A1 CN 2022086372 W CN2022086372 W CN 2022086372W WO 2022228113 A1 WO2022228113 A1 WO 2022228113A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna unit
radiating
plane
antenna
radiation
Prior art date
Application number
PCT/CN2022/086372
Other languages
English (en)
French (fr)
Inventor
杨小盼
高翔
陶骏
何银
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22794584.7A priority Critical patent/EP4322327A1/en
Publication of WO2022228113A1 publication Critical patent/WO2022228113A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles

Definitions

  • the present application relates to the field of antennas, and in particular, to an antenna unit, a manufacturing method of an antenna unit, an array antenna including the antenna unit, a radar including the antenna unit or the array antenna, and a radar including the antenna unit end product.
  • the existing ultra-short-range radars mostly use ultrasonic technology, which has the defect of incompatibility of sensitivity and detection angle, and is easily affected by weather.
  • the other forms of antenna radar usually have defects such as narrow horizontal or vertical wave width and small coverage.
  • the purpose of the present application is to provide an antenna unit, which has a large coverage in the horizontal and vertical directions, and has both precision and sensitivity. Meanwhile, the present application also relates to a manufacturing method of an antenna unit, an array antenna including the antenna unit, a radar including the antenna unit or the array antenna, and a terminal including the radar.
  • the present application relates to an antenna unit, comprising a power feeding part, a connecting part and two radiating parts, the connecting part is connected between the feeding part and the radiating part, and the feeding part is used to feed the two radiating parts respectively.
  • the radiation part is configured as a metal-filled plate-like structure, and the two radiation parts are spaced apart from each other; the radiation part further includes a first edge part, the first edge part is curved, and the radiation direction of the first edge part faces the radiation
  • the length L1 of the first edge part satisfies the condition: 1/8 ⁇ L1 ⁇ 3/8 ⁇ ; wherein, ⁇ is the wavelength of the electromagnetic wave signal transmitted by the antenna unit in the medium.
  • the medium may be a medium plate where the antenna unit is located, air, or a possible medium related to the antenna unit, depending on the specific scene design.
  • the antenna unit of the present application transmits the signal fed by the feeding part to the two radiating parts respectively through the connecting part, and simultaneously propagates the signal outward from the two radiating parts spaced apart from each other.
  • the radiating portion By arranging the radiating portion as a metal-filled plate-like structure, it is possible to form the first edge portion at the edge of the radiating portion.
  • the first edge portion By setting the length of the first edge portion, the first edge portion can form the main radiating section of the corresponding radiating portion.
  • the two radiation portions can propagate signals in two directions that are axially symmetrical to each other.
  • the first edge portion of the antenna unit of the present application is configured in a curved shape, when the current flows through the first edge portion, its current path is longer than that when the first edge portion is configured in a straight shape, thereby reducing the size of the antenna.
  • the diameter of the radiation unit is reduced to obtain a wider beam width.
  • the antenna aperture of the antenna unit of the present application is further reduced, and the beam width is further increased.
  • the number of the connecting parts is two, the two connecting parts are also spaced apart from each other, and each connecting part is connected between the feeding part and one radiating part.
  • two connecting parts are arranged and spaced apart from each other, so as to be respectively connected between the feeding part and the two radiating parts, so as to ensure that the two radiating parts will not be electrically connected due to the connecting parts. relationship, to avoid the coupling phenomenon that may be caused by the electrical connection of the two radiating parts to each other.
  • the two radiating parts are both located on the same plane and are spaced apart from each other on the plane; or the two radiating parts are respectively located on the first plane and the second plane, and the first plane and the second plane The two planes are spaced apart from each other.
  • the two radiating parts are both located on the same plane, and the difference between the lengths of the extending paths of the two connecting parts is 1/2 ⁇ .
  • the two radiating parts are respectively located on the first plane and the second plane, and the first plane is parallel to the second plane.
  • arranging the two radiating parts on two planes parallel to each other is beneficial to control the interval size between the two radiating parts, so as to better control the coupling phenomenon between the two radiating parts.
  • the two radiating parts are located on the first plane and the second plane respectively
  • the two connecting parts are also located on the first plane and the second plane respectively
  • the connecting part located on the first plane is The projection on the second plane at least partially overlaps the shape of the connecting portion on the second plane.
  • the two connecting parts have the same shape and size, the signal losses fed into the power feeding part are approximately the same, and the signals fed into the two radiating parts also tend to be the same.
  • the positions of the two connecting parts are at least partially overlapped, so that the two radiating parts can feed signals from substantially the same position, and then respectively propagate the signals outward.
  • the shapes and sizes of the two radiation parts are the same, and the radiation directions of the two first edge parts are axially symmetrical.
  • the two radiating parts are set to have the same shape and the same size, so that after the signals are respectively fed into the two radiating parts, they can flow through the two radiating parts with similar current paths respectively.
  • the signals propagating outward from the two radiation portions can be controlled to be mirror images of each other, which is beneficial to control the symmetry of the horizontal pattern of the antenna unit of the present application.
  • the antenna unit further includes two directors, and each director is disposed at intervals corresponding to the first edge portion of one radiating portion.
  • the director includes at least one parasitic segment, and the shape of the parasitic segment matches the shape of the first edge portion.
  • the shape of the parasitic segment is set to match the shape of the first edge portion, so that the parasitic segment can form a better guiding effect on its corresponding radiating portion and improve the working efficiency of the director.
  • the director includes multiple parasitic segments, the multiple parasitic segments are arranged at intervals, and/or the sizes of the multiple parasitic segments are sequentially reduced.
  • a plurality of parasitic segments are arranged in sequence at intervals, which can further improve the guiding effect of the director.
  • the sizes of the multiple parasitic segments are successively reduced, which can relatively reduce the area overhead of the antenna unit of the present application.
  • the antenna unit is constructed on the substrate.
  • the two radiating parts are located on the same plane, the two radiating parts are located on the same outer surface of the substrate; when the two radiating parts are located on the first plane and the second plane respectively, the two outer surfaces of the substrate opposite to each other Constructed as a first plane and a second plane, respectively.
  • the antenna unit of the present application may be formed as an antenna structure carried by a printed circuit board. And use the outer surface of the printed circuit board to make two radiating parts, wherein the two radiating parts can be located on the outer surface of one side of the printed circuit board, or can be respectively located on the outer surface of the two opposite sides of the printed circuit board, All are beneficial to simplify the manufacturing process of the radiation part.
  • the length of the first edge portion is further limited so that the length L1 of the first edge portion is 1/4 ⁇ , which can improve the radiation efficiency of the first edge portion and obtain a larger horizontal coverage.
  • the power feeding part is fed by one of the substrate integrated waveguide, microstrip line feeding or coaxial feeding.
  • the above-mentioned structure for the feeding part can meet the feeding requirements of the radiating part, and it is convenient for the antenna unit of the present application to select a relatively suitable feeding mode based on different usage scenarios, thereby improving the environmental compatibility of the antenna unit.
  • the power feeding part uses a substrate integrated waveguide to feed power, and the channel width L2 of the substrate integrated waveguide satisfies the condition: 3/8 ⁇ L2 ⁇ 5/8 ⁇ .
  • the channel width of the substrate integrated waveguide can be limited to improve the power feeding efficiency of the power feeding structure.
  • the present application relates to a method for fabricating an antenna unit, comprising the following steps:
  • a power feeder is provided on the substrate
  • a connecting part and two radiating parts spaced apart from each other are provided, and the two radiating parts are connected to the feeding part through the connecting part; wherein, the radiating part is a metal-filled plate-like structure, and includes a first edge part with a curved shape, The radiation direction of the first edge part is away from the connecting part, and the length L1 of the first edge part satisfies the condition: 1/8 ⁇ L1 ⁇ 3/8 ⁇ ; where ⁇ is the wavelength of the electromagnetic wave signal transmitted by the antenna unit in the medium.
  • the method for fabricating an antenna unit provided in the second aspect of the present application can be used to fabricate the antenna unit provided in the first aspect of the present application.
  • the feeding part is fabricated on the substrate, and the connecting part and the radiating part can also be fabricated on the substrate, or the connecting part and the radiating part can be directly formed using the structure of a sheet metal antenna. Because of the matching relationship between the connecting part and the radiating part, the two can be fabricated at the same time, or they can be fabricated and assembled separately.
  • the method of the present application has the same structural restrictions on the radiating portion as the antenna unit of the first aspect, so the beneficial effect of the antenna unit obtained by this method is similar to the beneficial effect of the above-mentioned antenna unit, and the development of each embodiment can also be based on the above-mentioned Various implementations of the antenna unit are obtained, which are not described in detail here in this specification.
  • the present application relates to an array antenna, comprising a transmitting component and a receiving component arranged at intervals, and the transmitting component and the receiving component include at least one antenna unit provided in the first aspect of the present application.
  • the transmitting component may include at least one antenna unit provided in the first aspect of the present application, thereby expanding the overall horizontal coverage of the transmitting component; the receiving component may also include at least one of the first aspect of the present application.
  • An antenna unit is provided on the one hand, thereby extending the overall horizontal coverage of the receiving assembly.
  • the array antenna of the present application can achieve a wider area coverage in the process of transmission and/or reception, and has both accuracy and sensitivity to achieve better detection capability.
  • the array antenna further includes a plane lens or a radome to adjust the direction or coverage angle of the radiation beam of the array antenna.
  • the radome is used to adjust the direction or coverage angle of the radiation beam of the array antenna, so that the radiation direction of the array antenna is shifted toward the preset direction, and on the basis of the inherent coverage of the array antenna, the further realization of It guides the detection direction of the array antenna and protects the array antenna at the same time.
  • the present application relates to a radar, including a microwave integrated circuit, an antenna unit as provided in the first aspect of the present application, or an array antenna as provided in the third aspect of the present application, a microwave integrated circuit and an antenna unit or an array The antenna is electrically connected.
  • the radar of the present application can have a larger angle for detecting signals and receiving signals .
  • the detection capability can be realized in a larger angular range, and it has both precision and sensitivity.
  • the present application also relates to a terminal, including the radar provided in the fourth aspect of the present application.
  • the terminal may be an intelligent manufacturing device, a smart home device, a surveying and mapping device, or an intelligent transportation device (eg, a vehicle, a drone, or a robot).
  • the installation position of the radar on the terminal is not limited to inside or outside, depending on specific functional requirements.
  • the terminal of the present application because the radar provided by the fourth aspect of the present application is used, the terminal of the present application can better realize the all-round detection function, avoid the detection dead angle of the terminal product, and thus ensure the reliability of the terminal product. Work.
  • FIG. 1 is a diagram of an antenna action area of a terminal provided by the present application using a vehicle as an example
  • FIG. 2 is a schematic plan view of an antenna unit provided by the present application.
  • Fig. 3 is a partial plan view of a side connecting portion and a radiating portion in the antenna unit provided in Fig. 2;
  • Fig. 4 is the pattern obtained by the simulation calculation of the antenna unit provided in Fig. 2;
  • FIG. 5 is a schematic structural diagram of a vehicle-mounted antenna in the prior art solution
  • 6a, 6b and 6c are schematic plan views of other embodiments of the radiating portion in the antenna unit of the present application, respectively;
  • FIG. 7a and 7b are schematic plan views of other embodiments of the antenna unit of the present application, respectively;
  • FIG. 8 is a schematic plan view of another embodiment provided by the antenna unit of the present application.
  • Fig. 8a is a partial plan view of the antenna unit provided in Fig. 8;
  • FIG. 9 is a schematic cross-sectional view of the antenna unit provided in FIG. 8;
  • Fig. 10 is the direction/elevation diagram obtained by the simulation calculation of the antenna unit provided in Fig. 8;
  • FIG. 11 is a schematic cross-sectional view of another antenna unit provided by the present application.
  • FIG. 12 is a schematic cross-sectional view of another antenna unit provided by the present application.
  • FIG. 13 is a schematic plan view of another antenna unit provided by the present application.
  • Fig. 14 is a partial plan view of the radiating portion and the director in the antenna unit provided in Fig. 13;
  • Figure 15 is a schematic plan view of a director in the antenna unit provided in Figure 14;
  • Figure 16a, Figure 16b and Figure 16c are schematic plan views of the radiating part and the director in the antenna unit corresponding to Figure 6a, Figure 6b and Figure 6c respectively;
  • 17 is a schematic plan view of an array antenna provided by the present application.
  • Fig. 18a, Fig. 18b and Fig. 18c are respectively the directional diagrams of different channels obtained by the simulation calculation of the array antenna provided in Fig. 17;
  • Figure 19 is a direction/elevation diagram at different frequency points obtained by the array antenna simulation calculation provided in Figure 17;
  • FIG. 20 is a schematic diagram of adjusting the radiation angle of the array antenna provided in FIG. 17 by taking a vehicle as an example.
  • the terminal product involved in this application is provided with a radar to detect obstacles or target objects.
  • the function of obstacle detection can be realized through the radar installed on the body; or through the radar installed in the cockpit, when the user enters or leaves the vehicle, the corresponding opening or closing part can be detected.
  • the end product of the present application can also be a smart home device or smart manufacturing device, such as a drone, an electric toy, a robot or a robotic arm.
  • the terminal product needs to identify obstacles or target objects in the surrounding environment, so as to achieve the function of detecting obstacles and avoiding collision, or accurately identifying the target object.
  • the embodiments of the present application take vehicle detection of obstacles as an example to illustrate the application of radar in terminal products.
  • the vehicle may be a gasoline or diesel powered vehicle, an electric vehicle, or a hybrid vehicle, etc.
  • the use of the radar may adopt one or more radars as shown in FIG. 1 . How to use.
  • a plurality of radar detection areas are provided based on the top-view structure of the vehicle.
  • the parking assist system (PAS) and/or the automatic parking assist system (Auto Parking Assist, APA) can be set in the front and rear positions of the vehicle; and in the second area, On both sides of the vehicle obliquely ahead, the Cross Traffic Assist (CTA) can be set; in the third area, the automatic parking assist system (Auto Parking Assist, APA) can be set on the two sides of the vehicle.
  • the corresponding radars are used to realize regional monitoring, that is, the medium and long-range radars, the angle radars, etc. mentioned above.
  • Most of these radars have the characteristics of relatively long detection distance and relatively narrow detection angle.
  • the speed of the vehicle is usually slow, and obstacles need to be detected in a 360-degree area of the entire vehicle. Therefore, the vehicle involved in the present application also needs to be equipped with a radar with a larger detection angle and used for short-range obstacle detection, so as to realize the above-mentioned 360-degree area detection of the whole vehicle.
  • terminal products such as drones, electric toys, robots or mechanical arms, in their respective usage scenarios, there are also relatively dense surrounding obstacles, and the radar involved in this application can also be used to detect obstacles. probe.
  • the antenna unit 100 can be arranged in the radar involved in the present application, and is used to realize the obstacle detection operation in a larger angle range.
  • the antenna unit 100 of the present application includes a feeding part 30 , a connecting part 20 and two radiating parts 10 .
  • the two radiating parts 10 are respectively electrically connected to the power feeding part 30 through the connecting part 20 .
  • the radar of the present application may include a microwave integrated circuit (not shown in the figure), the microwave integrated circuit is electrically connected to the feeding part 30 for feeding the signal into the feeding part 30 and transmitting the signal to the two radiating parts through the connecting part 20 10, the signal is then propagated outward by the radiating part 10; or, the two radiating parts 10 can be used to receive external signals and transmit them to the power feeding part 30 via the connecting part 20, so as to transmit the received external signals back to the microwave integrated circuit.
  • the microwave integrated circuit is electrically connected to the feeding part 30 for feeding the signal into the feeding part 30 and transmitting the signal to the two radiating parts through the connecting part 20 10, the signal is then propagated outward by the radiating part 10; or, the two radiating parts 10 can be used to receive external signals and transmit them to the power feeding part 30 via the connecting part 20, so as to transmit the received external signals back to the microwave integrated circuit.
  • the two radiating parts 10 are located on the same plane, and the two radiating parts 10 are arranged at intervals along the first direction 001 in the plane. There are also two connection parts 20 , and the two connection parts 20 are also arranged at intervals along the first direction 001 . Because the connecting part 20 is connected between the feeding part 30 and the radiating part 10 , the two connecting parts 20 arranged at intervals can respectively transmit the signal fed by the feeding part 30 to the correspondingly connected radiating part 10 .
  • the length difference of the extension paths of the two connecting parts 20 is also set, wherein the total length of one connecting part 20 is longer than the total length of the other connecting part 20 , and the difference between the two total lengths is 1/2 ⁇ ; where ⁇ is the wavelength of the signal fed by the feeder 30, that is, the wavelength corresponding to the operating frequency of the radiator 10, or the wavelength of the electromagnetic wave signal transmitted by the antenna unit 100 of the present application in the medium.
  • the total length of the connection part 20 can be understood as the total distance from the end of the connection part 20 connected to the feeding part 30 along the extension path of the connection part 20 to the end connected to the radiation part 10 .
  • a bending section 21 is provided on one of the connecting parts 20 , and the extension path of the bending section 21 includes a first bending section 21 a and a second bending section 21 b that are parallel to each other, and a first bending section 21 a and a second bending section 21 b connected to the first bending section 21 .
  • the length of the connecting portion 20 with the bending section 21 is longer than the length of the first bending section 21a and the second bending section 21b. Further, the sum of the lengths of the first bending section 21a and the second bending section 21b is set to be L3, and the length of L3 is approximately 1/2 ⁇ , so as to realize the above-mentioned total length difference between the two connecting parts 20. .
  • Such an arrangement can make that after the two connecting parts 20 are connected to the electrical signals fed by the same feeding part 30, there is a phase difference of approximately 180 degrees between the electrical signals respectively transmitted to the two radiating parts 10, and the two radiating parts 10 further propagates outward based on two signals with a phase difference of 180 degrees respectively, and achieves respective horizontal coverage of the two radiating parts 10 .
  • the structure of the bending section 21 can also be implemented in other ways. As long as there is a length difference of approximately 1/2 ⁇ between the two connecting portions 20 , the electrical signals of the two radiating portions 10 can be approximately 180 degrees apart. phase difference.
  • FIG. 3 illustrates a partial plane structure of the one-side connecting portion 20 and the radiating portion 10 in the embodiment of FIG. 2 .
  • the radiation portion 10 of the present application is constructed as a metal-filled structure, and is generally in the shape of a plate.
  • the plate-shaped radiator 10 has an outer edge 11 .
  • an electrical signal is transmitted from the connecting portion 20 to the radiating portion 10
  • a current is formed inside the metal-filled radiating portion 10 .
  • an electromagnetic wave signal radiates toward the outside.
  • the radiation portion 10 is substantially fan-shaped. In other embodiments, the radiation portion 10 may also be in other shapes.
  • the first edge portion 111 is a section of the outer edge 11 of the radiating portion 10 .
  • the first edge portion 111 has a curvilinear shape, and includes an opposite first end 111 a and a second end 111 b on the extending path of the first edge portion 111 .
  • the first end 111a forms an inflection point on the outer edge 11
  • the second end 111b also forms an inflection point on the outer edge 11 .
  • the curved first edge portion 111 is in a continuous curved structure between the first end 111a and the second end 111b. That is, on the extension path of the outer edge 11, the extension path from the first end 111a to the second end 111b is in the form of a continuous curve.
  • the first edge portion 111 When the current on the radiation portion 10 flows through the first edge portion 111 , radiation is also formed outward.
  • the length L1 of the first edge portion 111 satisfies the condition: 1/8 ⁇ L1 ⁇ 3/8 ⁇ .
  • the first edge portion 111 is formed as a continuous radiation segment, and the current on the radiation portion 10 can be radiated and propagated outward from the first edge portion 111 along the same radiation direction.
  • the signal radiation intensity of the radiation segment formed by the first edge portion 111 can be guaranteed.
  • the position of the first edge portion 111 of the radiation portion 10 is also limited.
  • the first edge portion 111 is located at a position where the radiation portion 10 faces away from the connection portion 20 , so that the radiation direction of the first edge portion 111 faces a direction away from the connection portion 20 .
  • the plate-shaped radiating portion 10 has a connecting portion 12 that is conductive with the connecting portion 20 .
  • the radiating portion 10 extends outward in a first direction 001 in a direction away from the connection 12 .
  • the outer edge 11 of the radiation part 10 is connected with the connection part 12, and the first edge part 111 and the connection part 12 are spaced apart from each other.
  • the first end 111a and the second end 111b of the first edge portion 111 are spaced apart from the connecting portion 12, respectively. Because the radiation portion 10 as a whole extends outward in the first direction 001 relative to the connection portion 20 , the first edge portion 111 is also located at the position where the radiation portion 10 faces away from the connection portion 12 , and the radiation direction of the first edge portion 111 also faces away from the connection. part 20 direction.
  • the structure of the radiation portion 10 extending outward along the first direction 001 is simultaneously extending outward relative to the two connecting portions 20 .
  • the two radiating parts 10 are spaced apart from each other along the first direction 001, in order to ensure the directional coverage of the antenna unit 100, the two radiating parts 10 need to extend in opposite directions along the first direction 001, so that the two radiating parts 10
  • the respective first edge portions 111 radiate in opposite directions and achieve greater directional coverage.
  • the two connecting parts 20 are also spaced apart from each other along the first direction 001 and located at relatively close positions, and the two radiating parts 10 are located at relatively far away positions.
  • the connecting portion 20 In the second direction 002 perpendicular to the first direction 001 , when the connecting portion 20 is connected between the feeding portion 30 and the radiating portion 10 , the connecting portion 20 extends along the second direction 002 .
  • the radiation part 10 is also located on one side of the connection part 20 along the second direction 002 .
  • the position of a single radiating portion 10 relative to the connecting portion 20 to which it is connected is not only located on one side of the connecting portion 20 along the first direction 001, but also at the connecting portion along the second direction 002. 20 side.
  • the first edge portion 111 of the radiation portion 10 is located on the side away from the connection portion 20 along the first direction 001 , and is also located at the side away from the connection portion 20 along the second direction 002 .
  • the two radiating parts 10 of the antenna unit 100 are both located on the same side of the connecting part 20 along the second direction 002 , and the connecting part 20 is connected to the other side of the two radiating parts 10 relative to the other side. at the power feeder 30.
  • the two radiating parts 10 each extend in a direction away from the connecting part 20 .
  • the outer edges 11 of the two radiating portions 10 respectively have a first edge portion 111 , and the two first edge portions 111 are respectively disposed in opposite directions along the first direction 001 and along the second direction relative to the connecting portion 20 .
  • 002 is on its same side. At this time, the radiation directions of the two first edge portions 111 are also opposite to each other along the first direction 001 , and simultaneously face the same direction along the second direction 002 .
  • a first axis 103 may be defined between the two radiating parts 10 (the first axis 103 here is provided for the clarity of the solution, that is, the first axis 103 is a virtual reference line, there is no structure of the first axis 103 in the actual product).
  • the first axis 103 is perpendicular to the first direction 001 and parallel to the second direction 002 . That is, the extending direction of the first axis 103 is parallel to the extending direction of the connecting portion 20 .
  • the radiation directions of the two first edge portions 111 are symmetrical with respect to the first axis 103 . Since the radiation direction of the first edge portion 111 is formed as the main radiation direction of the radiation portion 10 , it can also be understood that the main radiation directions of the two radiation portions 10 are symmetrical with respect to the first axis 103 .
  • FIG. 4 illustrates a possible directional diagram of the antenna unit 100 obtained by simulation calculation.
  • the lengths L1 of the first edge portions 111 of the two radiating portions 10 are both 1/4 ⁇ , and the frequency of the signal fed by the feeding portion 30 is 76.5 GHz.
  • the length L1 of the first edge portion 111 1/4 ⁇ , the radiation efficiency of the first edge portion 111 is higher.
  • the first edge portion 111 can be used as the main radiation section of the radiation portion 10, and the two radiation portions
  • the lengths L1 of the first edge portions 111 of 10 are equal, and the sum of the lengths of the two first edge portions 111 is 1/2 ⁇ ; and 76 GHz to 81 GHz are dedicated frequency bands for vehicle-mounted antennas. It can be seen from the simulation in FIG. 4 that the 3dB beam width of the antenna unit 100 of the present application in the direction of the plane where it is located is greater than 160 degrees.
  • FIG. 5 is a schematic structural diagram of the vehicle-mounted antenna 100a in other solutions in the prior art.
  • the vehicle-mounted antenna 100a is constructed as a different-plane dipole antenna, and the radiation segment 10a is linear, and the radiation directions of the two radiation segments 10a are also opposite.
  • symmetrical guides 40a are also provided on both sides of the radiation section 10a of the vehicle-mounted antenna 100a.
  • the 3dB beam width in the horizontal direction of the vehicle-mounted antenna 100a shown in FIG. 5 is about 123 degrees, which is smaller than the horizontal beam width of the antenna unit 100 of the present application.
  • the first edge portion 111 of the radiating portion 10 in the antenna unit 100 of the present application is configured in a curved shape
  • the current path thereof is compared with that when the first edge portion is configured in a straight shape.
  • the path is longer, so that the antenna aperture in the antenna unit 100 is smaller than that of the vehicle-mounted antenna 100a in other solutions; or, on the premise of the same antenna aperture, the first edge portion 111 in the antenna unit 100 of the present application is configured as a curved shape
  • the current flow path thereof is longer than the current flow path in which the first edge portion is configured as a straight line in other solutions. Therefore, the antenna unit 100 of the present application can obtain a larger radiation angle, thereby achieving a larger coverage in the horizontal direction.
  • the shape of the radiation portion 10 is not particularly limited, and correspondingly, the specific shape of the first edge portion 111 is not particularly limited. 6a, 6b and 6c, in addition to the above-mentioned fan-shaped structure, the radiating portion 10 can also have a substantially crescent-shaped, blade-shaped or flag-shaped structure, and the corresponding first edge portion 111 also has a circular arc. shaped or wavy structure.
  • the antenna aperture of the antenna unit 100 of the present application can be relatively reduced, Further, a longer current path is formed, and the directional coverage of the antenna unit 100 is extended.
  • the antenna unit 100 of the present application also does not limit the shapes of the two radiating parts 10 to be the same.
  • the shapes of the two radiating parts 10 may be different, that is, the shape of one radiating part 10 is substantially fan-shaped, and the shape of the other radiating part 10 is substantially blade-shaped.
  • the two first edge portions 111 are asymmetrical structures, and the shapes of the signals propagating outward from the side where they are located are also different.
  • the antenna unit 100 of the present application also does not limit the sizes of the two radiating parts 10 to be the same.
  • the sizes of the two radiating parts 10 are also different.
  • the length values of the respective first edge portions 111 of the two radiating portions 10 are also different.
  • the value 1/4 ⁇ of the length L1 of the first edge portion 111 shown in FIG. 4 is only used as an example. As long as it is ensured that the lengths L1 of the two first edge parts 111 both satisfy the condition: 1/8 ⁇ L1 ⁇ 3/8 ⁇ , and the two first edge parts 111 work in the same frequency band at the same time, and obtain relatively large horizontal coverage scope.
  • the simulation of the antenna unit 100 in FIG. 4 is based on a signal whose center frequency is 76.5 GHz, because this frequency is within the frequency band of the vehicle-mounted antenna.
  • the frequency band of the antenna unit 100 of the present application may also be about 24 GHz, which is used as a roadside radar. It can be understood that, based on the fact that the antenna unit 100 of the present application is assembled on different terminal products, its working frequency band can also be adjusted accordingly.
  • the design solution of the antenna unit 100 provided in the present application can be adapted to the end product.
  • the antenna unit 100 may be constructed on a substrate such that the two radiating parts 10 and the two connecting parts 20 are located on the same outer surface of the substrate.
  • the substrate can be a printed circuit board (Printed Circuit Board, PCB), or other forms of substrate structure;
  • the antenna unit 100 can also be configured as an antenna with a sheet metal structure, and the connecting portion 20 and the radiating portion 10 have a certain rigidity, It can be directly extended from the feeding part 30 and maintain the relative positions of the two radiating parts 10 to meet the working requirements of the antenna unit 100 .
  • FIG. 8 is a schematic plan view of the antenna unit 100 in the implementation manner
  • FIG. 9 is a schematic cross-sectional diagram of the antenna unit 100 in the implementation manner.
  • the antenna unit 100 is constructed on the dielectric board 200 .
  • the dielectric plate 200 includes a first outer surface 201 and a second outer surface 202 opposite to each other, and the two radiating parts 10 of the antenna unit 100 are respectively located on the first outer surface 201 and the second outer surface 202 .
  • the first outer surface 201 and the second outer surface 202 of the dielectric plate 200 are both planes, that is, the first outer surface 201 of the dielectric plate 200 can be configured as a first plane, and a radiation portion 10 is formed on the first outer surface 201
  • the second outer surface 202 may be configured as a second plane, and another radiation portion 10 is formed on the second outer surface 202 .
  • the antenna unit 100 is constructed on the dielectric plate 200, and the two-phase opposite outer surfaces of the dielectric plate 200 are used to make the radiating parts 10 respectively, so that the two radiating parts 10 are parallel to each other, and it is beneficial to control the distance between the two radiating parts 10, At the same time, the manufacturing process of the radiation portion 10 is simplified.
  • the dielectric board 200 is a circuit board. In the thickness direction of the circuit board (defined as the third direction 003 here), that is, in the extending direction from the first outer surface 201 to the second outer surface 202 , the spatial distance D1 between the two radiating parts 10 is controlled to satisfy the condition : D1 ⁇ 1/2 ⁇ . That is, the thickness of the control circuit board is not more than half wavelength, so as to ensure the pitch coverage of the two radiating parts 10 along the third direction 003 .
  • the two radiating parts 10 are provided with the same shape and the same size.
  • the shapes and sizes of the two connecting parts 20 are also the same, and the extending directions of the two connecting parts 20 are also the same.
  • the projection of the connecting portion 20 on the first outer surface 201 on the second outer surface 202 along the third direction 003 at least partially overlaps the shape of the connecting portion 20 on the second outer surface 202 .
  • the projection of the connection portion 20 on the first outer surface 201 also completely coincides with the shape of the connection portion on the second outer surface 202 .
  • the two connecting parts 20 may also be located at different positions, that is, the connecting parts 20 located on the first outer surface 201
  • the projection on the second outer surface 202 may also be spaced apart from the connecting portion 20 on the second outer surface 202 .
  • the connecting portion 20 on the first outer surface 201 has a substantially rectangular structure.
  • the rectangular structure is symmetrically arranged relative to the first axis 103 and is easy to manufacture.
  • the connecting portion 20 may also be generally arranged in a trapezoidal or other axially symmetric structure.
  • the connection point 12 of the radiation part 10 and the connection part 20 is also located on the first axis 103 and at one end of the connection part 20 .
  • the radiation portion 10 extends in a direction away from the first axis 103 along the first direction 001 , and at the same time, the first edge portion 111 is also located at one side of the first axis 103 along the first direction 001 .
  • the radiation portion 10 located on the second outer surface 202 has a projection 10' on the first outer surface 201 along the third direction 003.
  • the projection 10' has the same shape and size as the radiation portion 10 located on the first outer surface 201.
  • the projection 10' also extends toward the other side relative to the first axis 103 along the first direction 001, and at the same time, the projection area of the projection 10' corresponding to the first edge portion 111 is located at the other side of the first axis 103. That is, the contour shape of the radiation part 10 located on the first outer surface 201 is symmetrical with the contour shape of the projection 10 ′ of the radiation part 10 located on the second outer surface 202 , and the two are relative to the first axis 103 mirror images of each other.
  • Such a structure enables the antenna unit 100 to be configured as a heteroplane dipole antenna unit, and the two symmetrically shaped radiating portions 10 can obtain relatively symmetrical horizontal pattern shapes, which is beneficial to adjust the impedance matching of the antenna unit
  • the directional diagrams of the antenna unit 100 in the embodiments of FIGS. 8 and 9 tend to be consistent with the effect of FIG. 4 .
  • the azimuth and pitch 3dB bandwidth of the antenna unit 100 can be seen in FIG. 10 : within the judgment range of 75 GHz to 82 GHz, the pitch 3 dB bandwidth of the antenna unit 100 is maintained at more than 250 degrees.
  • the 220-degree elevation beam width of the antenna 100a also achieves a larger coverage improvement in the elevation direction.
  • the antenna unit 100 may also be in the form of a sheet metal structure, wherein the two radiating portions 10 are respectively disposed on the first plane 101 and on the second plane 102 .
  • the structure of the sheet metal antenna itself has a certain rigidity, it does not need to be attached to the substrate, and the relative position of the two radiating parts 10 can be guaranteed to be stable through its rigidity.
  • the plane where the first plane 101 is located forms an angle ⁇ with the plane where the second plane 102 is located.
  • the first plane 101 and the second plane 102 are spaced apart from each other, so that the radiating portion 10 on the first plane 101 and the radiating portion 10 on the second plane 102 are spaced apart from each other.
  • the distance between the respective connection points 12 of the two radiating parts 10 is smaller than the maximum distance between the two radiating parts 10 . That is, the two connecting parts 20 are relatively close to each other, and the two radiating parts 10 are far away from each other.
  • the two connecting parts 20 extend in parallel with each other; in the schematic diagram of FIG. 12 , the two connecting parts 20 are also located on the first plane 101 and the second plane 102 respectively, and the two connecting parts
  • the relative distance between the two radiating parts 10 is relatively small, and the relative distance between the two radiating parts 10 is relatively large. 11 and 12, because the two radiating parts 10 are arranged at an included angle along the third direction 003, the beam width of the antenna unit 100 in the elevation direction can be further widened, so that the antenna unit 100 can realize the wider coverage.
  • the antenna unit 100 further includes a director 40 .
  • the number of directors 40 is two, and each director 40 is disposed corresponding to one radiating part 10 and is disposed outside its corresponding radiating part 10 at intervals. Further, the director 40 corresponds to the first edge portion 111 of one radiating portion 10 . As shown, the director 40 is disposed on the outside of the first edge portion 111 .
  • the director 40 is used to guide the propagation direction of the radiating part 10 , so that the signal propagating outward from the first edge portion 111 can be guided by the director 40 to expand toward a larger horizontal range.
  • the director 40 needs to be located on the side of the radiating part 10 away from the connecting part 20, and the position corresponds to the position of the first edge part 111, that is, the director 40 It is located on the side of the radiation part 10 away from the connection part 20 along the first direction 001 , and is also located at the side of the radiation part 10 away from the connection part 20 along the second direction 002 .
  • the director 40 includes at least one parasitic segment 41 .
  • the director 40 includes a first parasitic segment 411 , a second parasitic segment 412 and a third parasitic segment 413 .
  • the number of parasitic segments 41 in the director 40 may also be one, two or more than three.
  • the shape of the parasitic segment 41 matches the shape of the first edge portion 111 . Because the first edge portion 111 is a linear structure and the parasitic segment 41 is a planar structure, the matching of the two shapes here can be understood as: the outer contour of the parasitic segment 41 includes the opposite first parallel side 41a and second parallel side 41b ( 15 ), and the shapes of the first parallel side 41 a and the second parallel side 41 b are both the same or similar to the shape of the first edge portion 111 . Both ends of the first parallel side 41 a are connected to both ends of the second parallel side 41 b , respectively, so that the shape of the parasitic segment 41 matches the shape of the first edge portion 111 .
  • the size of the first parallel side 41 a and the second parallel side 41 b is also reduced relative to the size of the first edge portion 111 , so as to prevent the director 40 from occupying too much area overhead and affecting the performance of the antenna unit 100 . Formation. Those skilled in the art will know that "matching shapes" does not strictly define what kind of corresponding relationship must exist between the two shapes, and the two shapes are the same, similar or not too large deviations are covered within the scope of the present application. The direction of the radiation can be guided.
  • the first parasitic segment 411 , the second parasitic segment 412 and the third parasitic segment 413 are sequentially spaced along the first direction 001 . Further, the shapes of these parasitic segments 41 are matched to each other.
  • the first parasitic segment 411 is located on a side close to the first edge portion 111
  • the third parasitic segment 413 is located on a side away from the first edge portion 111 .
  • the first parasitic segment 411 , the second parasitic segment 412 and the third parasitic segment 413 have different sizes.
  • the shape of the first parasitic segment 411 is relatively large, and the shape of the third parasitic segment 413 is relatively small.
  • each parasitic segment 41 in the director 40 may be set larger than the size of the parasitic segment 41 away from the first edge portion 111 .
  • each parasitic segment 41 may also be arranged at intervals along a vector formed by the first direction 001 and the second direction 002 at the same time.
  • Figures 16a, 16b and 16c also illustrate the shape and arrangement of the directors 40 of the radiating part 10 when the radiating part 10 is configured as a crescent-shaped, blade-shaped or flag-shaped structure, respectively corresponding to Figures 6a, 6b and 16c.
  • the feeder 30 is fed by a microstrip line feed or a substrate integrated waveguide (SIW) feed.
  • SIW substrate integrated waveguide
  • the substrate-integrated waveguide is used for power feeding, there is a phase difference of 180 degrees between the two connecting portions 20 on the first outer surface 201 and the second outer surface 202 .
  • the power feeding part 30 is fed by a microstrip line, a one-to-two power divider is also provided to feed signals to the two connecting parts 20 respectively.
  • the power feeding unit 30 may also feed power by means of coaxial power feeding. There are also relatively many ways to achieve a 180-degree phase difference between the feed signals between the two radiating parts 10 , and all of them can be applied to the structure of the antenna unit 100 .
  • the channel width L2 of the substrate-integrated waveguide satisfies the condition: 3/8 ⁇ L2 ⁇ 5/8 ⁇ . Limiting the channel width L2 of the substrate-integrated waveguide can improve the feeding efficiency of the feeding portion 30 .
  • the method for fabricating an antenna unit involved in the present application may specifically include the following steps:
  • the radiating portion 10 is a metal-filled plate-like structure, including The first edge portion 111 of the curved shape, the radiation direction of the first edge portion 111 is away from the connecting portion 20, and the length L1 of the first edge portion 111 satisfies the condition: 1/8 ⁇ L1 ⁇ 3/8 ⁇ ; where ⁇ is the transmission of the antenna unit 100 The wavelength of the electromagnetic wave signal in the medium.
  • the method for fabricating an antenna unit provided in this application can be used to fabricate the above-mentioned antenna unit 100 in this application.
  • the feeding portion 30 is fabricated on the substrate, and the connecting portion 20 and the radiating portion 10 can also be fabricated on the substrate, or the connecting portion 20 and the radiating portion 30 can adopt the structure of a sheet metal antenna. Because of the matching relationship between the connecting portion 20 and the radiating portion 10 , the two can be fabricated at the same time, or they can be fabricated and assembled separately.
  • the radiating part 10 , the connecting part 20 and the feeding part 30 are all formed on the substrate, the radiating part 10 , the connecting part 20 and the feeding part 30 can also be fabricated at the same time.
  • steps S10 and S20 in the above method only indicate that the feeder 30 can be fabricated separately, and the connection portion 20 and the radiation portion 10 can also be fabricated separately, but the feeder 30 and the connection portion 20 and the radiation portion 10 are not limited. the order of production.
  • the connecting portion 20 and the radiation portion 10 may be fabricated first, and then the feeding portion 30 may be fabricated, and finally the structure of the antenna unit 100 may be formed.
  • the structure restriction of the radiating portion 10 by this manufacturing method is the same as the restriction of the above-mentioned antenna unit 100, so the beneficial effect obtained by the antenna unit 100 obtained by this method is also similar to the beneficial effect of the above-mentioned antenna unit 100. It can also be obtained based on various implementation manners of the above-mentioned antenna unit 100, which will not be described in detail in this specification.
  • FIG. 17 illustrates an array antenna 300 involved in the present application.
  • the array antenna 300 provided in FIG. 17 includes a transmitting component 310 and a receiving component 320 arranged at intervals.
  • Three antenna units 100 provided by the present application are arranged in the transmitting component 310 at intervals, and four antenna units 100 provided by the present application are arranged in the receiving component 320 at intervals.
  • each antenna unit 100 is arranged at intervals along the first direction 001 .
  • the antenna units 100 may also be arranged in a ring array or the like.
  • the antenna array 300 can also be applied to the radar involved in the present application, and because the azimuth coverage of the antenna unit 100 is relatively large, the azimuth coverage of the antenna array is also expanded accordingly. Further, in the schematic diagram of FIG. 17 , the antenna unit 100 is the embodiment shown in FIG. 8 , so the antenna array 300 also expands the pitch coverage, which is beneficial for the terminal equipped with the array antenna 300 to better detect surrounding obstacles.
  • the antenna array 300 shown in FIG. 17 when applied to a vehicle radar, it constitutes a mode of a millimeter-wave mTnR array, wherein the value of m is 3 and the value of n is 4.
  • the number of the antenna units 100 in the transmitting component 310 and the receiving component 320 of the antenna array 300 may also be adjusted correspondingly.
  • the antenna array 300 may also configure the antenna unit 100 only in the transmitting component 310 or the receiving component 320, so as to independently expand the coverage of the antenna array to transmit or receive signals.
  • FIG. 18a , 18b and 18c illustrate the directional diagrams of different channels obtained by simulation of the 3T4R antenna array 300 shown in FIG. 17 , where each channel is a different antenna unit 100 in the antenna array 300 .
  • FIG. 19 illustrates the direction/elevation wave widths obtained by simulation at different frequency points of the 3T4R antenna array 300 shown in FIG. 17 . From the above simulation results, it can be known that the 3dB beam width in the direction of the antenna array 300 shown in FIG. 17 is 150 degrees, and the elevation wave width is 250 degrees.
  • the range resolution and angular resolution of the antenna array 300 can also be adjusted.
  • the antenna array 300 of the present application see the following formula:
  • the range resolution d Res of the antenna array 300 is inversely proportional to the bandwidth B, and the wider the bandwidth, the higher the range resolution.
  • the echo bandwidth is 3 GHz
  • the pattern bandwidth is also 3 GHz, so the distance resolution is relatively high.
  • the antenna array 300 with a certain operating wavelength, its angular resolution ⁇ is inversely proportional to the antenna aperture of the array antenna 300 .
  • d is the distance between the antenna units 100
  • L is the number of the antenna units 100 .
  • the antenna aperture is proportional to the spacing and the number of the antenna units 100, respectively.
  • the angular resolution of the array antenna 300 can also be improved, thereby meeting the usage requirements.
  • the array antenna 300 may further include a flat lens (not shown in the figure) or a radome (not shown in the figure) to adjust the direction or coverage angle of the radiation beam of the array antenna 300 .
  • a flat lens not shown in the figure
  • a radome not shown in the figure
  • the array antenna 300 can radiate parallel to the horizontal direction.
  • the array antenna 300 forms an inclination angle with the horizontal direction. That is to say, by adjusting the radiation angle of the array antenna 300 by means such as a radome, the radiation direction of the array antenna 300 can be guided to shift toward a preset direction, and further, on the basis of the inherent coverage of the array antenna 300, it is possible to further realize the radiating angle of the array antenna 300.
  • the 300 guides the detection direction, and at the same time also plays a protective effect on the array antenna 300.
  • the radiation direction of the array antenna 300 can be guided to be inclined toward the ground, so as to achieve better detection effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请涉及一种天线单元,包括馈电部、连接部和两个辐射部。连接部连接于馈电部与辐射部之间,馈电部用于对两个辐射部分别馈入信号。辐射部构造为金属填充的板状结构,且两个辐射部彼此间隔。辐射部包括曲线形状的第一边缘部分,第一边缘部分的辐射方向背离连接部,第一边缘部分的长度L1满足条件:1/8λ≤L1≤3/8λ;其中λ为天线单元传输的电磁波信号在介质中的波长。本申请天线单元通过两个辐射部相背设置,并使其各自为曲线形状的第一边缘部分形成主辐射段,减小了天线的口径,并由此获得了更宽的辐射角度,并同时具备较高的精度和灵敏度。本申请还涉及一种天线单元制作方法、一种天线阵列、一种雷达以及一种终端。

Description

天线单元及其制作方法、阵列天线、雷达以及终端
本申请要求于2021年4月25日提交中国专利局、申请号为202110448433.3、申请名称为“天线单元及其制作方法、阵列天线、雷达以及终端”的中国国家申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线领域,尤其涉及一种天线单元,一种天线单元的制作方法、一种包括该天线单元的阵列天线、一种包括该天线单元或该阵列天线的雷达,以及一种包括该雷达的终端产品。
背景技术
当前的终端产品出于功能需求,多配置有中长距雷达、角雷达等,用于实现自动巡航、盲点监测、目标探测等操作。但中长距雷达和角雷达等存在视角较窄、无法实现全方位探测的局限性。在一些场景相对复杂,如周围障碍物距离较近、或障碍物相对密集的情况下,终端产品还需配置短距或超短距雷达,以实现障碍物的全方位检测功能。
现有的超短距雷达多采用超声波技术,其存在灵敏度和探测角度无法兼容的缺陷,且易受天气影响。而其余形式的天线雷达又通常存在水平或垂直波宽较窄,覆盖范围小等缺陷。
发明内容
本申请的目的在于提供一种天线单元,具有较大的水平和垂直方向的覆盖范围,且兼具精度和灵敏度。同时,本申请还涉及一种天线单元的制作方法、一种包括该天线单元的阵列天线,和一种包括该天线单元或该阵列天线的雷达,以及一种包括该雷达的终端。
第一方面,本申请涉及一种天线单元,包括馈电部、连接部和两个辐射部,连接部连接于馈电部与辐射部之间,馈电部用于对两个辐射部分别馈入信号;辐射部构造为金属填充的板状结构,且两个辐射部彼此间隔设置;辐射部还包括第一边缘部分,第一边缘部分为曲线形状,且第一边缘部分的辐射方向朝向辐射部背离连接部的方向,第一边缘部分的长度L1满足条件:1/8λ≤L1≤3/8λ;其中,λ为天线单元传输的电磁波信号在介质中的波长。本领域技术人员可知,所述介质可以为天线单元所在的介质板、空气或者与所述天线单元相关的可能的介质,取决于具体的场景设计。
本申请天线单元通过连接部将馈电部馈入的信号分别传输至两个辐射部处,并由彼此间隔的两个辐射部同时向外传播信号。通过将辐射部设置为金属填充的板状结构,得以在辐射部的边缘形成有第一边缘部分。通过对第一边缘部分的长度的设置,使得该第一边缘部分能形成其对应辐射部的主辐射段。而通过对第一边缘部分的辐射方向设置,使得两个辐射部能朝向互为轴对称的两个方向传播信号。
本申请天线单元因为将第一边缘部分构造为曲线形状,使得电流在流经第一边缘部分时,其电流路径相较于第一边缘部分构造为直线形状时的流通路径更长,从而缩小了作为主辐射段的第一边缘部分在其辐射方向上的长度尺寸,并缩小了该辐射单元的口径,以获得更宽的 波束宽度。进一步,当两个辐射部间隔且朝向轴对称的方向传播信号时,本申请天线单元的天线口径进一步缩小,波束宽度也进一步增大。采用本申请天线单元组成天线阵列,或组成雷达时,通过对阵列天线口径和带宽的设置,还可以获得较高的距离分辨率和角度分辨率,满足使用场景的需求。
在一种可能的实现方式中,连接部的数量为两个,两个连接部也彼此间隔设置,每一连接部连接于馈电部与一个辐射部之间。
在本实现方式中,设置连接部为两个,且彼此间隔,以分别连接于馈电部与两个辐射部之间,可以保证两个辐射部之间不会因为连接部而形成电连接的关系,避免两个辐射部因为彼此电连接而可能造成的耦合现象。
在一种可能的实现方式中,两个连接部分别传入其连接的辐射部的信号之间,存在180度的相位差。
在一种可能的实现方式中,两个辐射部均位于同一平面上,并于该平面上彼此间隔设置;或两个辐射部分别位于第一平面和第二平面上,且第一平面与第二平面彼此间隔设置。
在本实现方式中,可以基于天线的形式不同,选择将两个辐射部设置于位于同一平面上,或将两个辐射部分别设置于两个不同的平面上,以便于不同形式天线单元中辐射部的制作。
在一种可能的实现方式中,两个辐射部均位于同一平面上,且两个连接部的延伸路径长度差值为1/2λ。
在本实现方式中,通过设置两个连接部的延伸路径长度不同,可以使得馈电部馈入的信号在分别抵达两个辐射部时,其两路信号之间存在180度的相位差。
在一种可能的实现方式中,两个辐射部分别位于第一平面和第二平面上,且第一平面平行于第二平面。
在本实现方式中,设置两个辐射部位于相互平行的两个平面上,利于控制两个辐射部之间的间隔尺寸,进而得以更好的控制两个辐射部之间的耦合现象。
在一种可能的实现方式中,两个辐射部分别位于第一平面和第二平面上,两个连接部也分别位于第一平面和第二平面上,且位于第一平面上的连接部在第二平面上的投影,与位于第二平面上的连接部的形状至少部分重叠。
在本实现方式中,两个连接部的形状相同,且大小相等,对馈电部馈入的信号损耗大致一致,其馈入两个辐射部中的信号也趋于一致。且两个连接部的位置至少部分重合,也使得两个辐射部能从大致相同的位置馈入信号,再各自将该信号向外传播。
在一种可能的实现方式中,两个辐射部的形状、大小相同,且两个第一边缘部分的辐射方向轴对称。
在本实现方式中,设置两个辐射部的状相同,且大小相等,使得信号在分别馈入两个辐射部之后,能以相似的电流路径分别在两个辐射部上流通。而设置两个第一边缘部分的辐射方向相互轴对称,则可以控制到两个辐射部向外传播的信号互为镜像,有利于控制本申请天线单元的水平方向图形状对称。
在一种可能的实现方式中,天线单元还包括两个引向器,每个引向器对应一个辐射部的第一边缘部分间隔设置。
在本实现方式中,通过引向器的设置,可以对其对应的辐射部形成引向作用,进一步拓宽本申请天线单元的水平覆盖范围。
在一种可能的实现方式中,引向器中包括至少一个寄生段,且寄生段的形状与第一边缘部分的形状匹配。
在本实现方式中,设置寄生段的状与第一边缘部分的形状匹配,能够使得寄生段对其对应的辐射部形成更好的引向作用,提升引向器的工作效率。
在一种可能的实现方式中,引向器中包括多个寄生段,多个寄生段间隔排列,和/或多个寄生段的尺寸依次缩小。
在本实现方式中,多个寄生段依次间隔排列,可以进一步提升引向器的引向效果。且多个寄生段的尺寸依次缩小,可以相对缩减本申请天线单元的面积开销。在本申请天线单元组成阵列天线时,避免相邻两个天线单元之间形成交叉并导致耦合。
在一种可能的实现方式中,天线单元构造于基板上。当两个辐射部位于同一平面上时,两个辐射部同位于该基板的同一外表面上;当两个辐射部分别位于第一平面和第二平面上时,基板相背的两个外表面分别构造为第一平面和第二平面。
在本实现方式中,本申请天线单元可以形成为印制电路板承载的天线结构。并利用印制电路板的外表面制作两个辐射部,其中两个辐射部可以同位于印制电路板的一侧外表面上,也可以分别位于印制电路板两相背的外表面上,都利于便于简化辐射部的制作工艺。
在一种可能的实现方式中,第一边缘部分的长度L1满足条件:L1=1/4λ。
在本实现方式中,进一步限定第一边缘部分的长度,使得第一边缘部分的长度L1为1/4λ,可以提升第一边缘部分的辐射效率,并获得更大的水平覆盖范围。
在一种可能的实现方式中,馈电部采用基片集成波导、微带线馈电或同轴馈电中的一种方式馈电。
在本实现方式中,馈电部采用上述结构,都能够满足辐射部的馈电需求,且便于本申请天线单元基于不同的使用场景选择相对适宜的馈电方式,提升天线单元的环境兼容能力。
在一种可能的实现方式中,馈电部采用基片集成波导馈电,且基片集成波导的通道宽度L2满足条件:3/8λ≤L2≤5/8λ。
在本实现方式中,当馈电部采用基片集成波导馈电时,限定基片集成波导的通道宽度可以提升该馈电结构的馈电效率。
第二方面,本申请涉及一种天线单元制作方法,包括如下步骤:
在基板上设置馈电部;
设置连接部和彼此间隔的两个辐射部,且两个辐射部均通过连接部与馈电部导通;其中,辐射部为金属填充的板状结构,包括有曲线形状的第一边缘部分,第一边缘部分的辐射方向背离连接部,第一边缘部分的长度L1满足条件:1/8λ≤L1≤3/8λ;其中λ为天线单元传输的电磁波信号在介质中的波长。
可以理解的,本申请第二方面提供的天线单元制作方法,可以用于制作本申请第一方面提供的天线单元。其中馈电部制作于基板上,连接部和辐射部则同样可以制作于基板上,或连接部与辐射部采用钣金天线的结构直接成形。因为连接部和辐射部的配合关系,二者可以同时制作完成,也可以分别制作并组装成形。本申请方法对辐射部的结构限制与第一方面的天线单元相同,因此通过本方法得到的天线单元所取得的有益效果与上述天线单元的有益效果类似,其各个实施例的展开也可以基于上述天线单元的各实现方式得到,本说明书在此不做一一赘述。
第三方面,本申请涉及一种阵列天线,包括间隔排布的发射组件和接收组件,发射组件和接收组件包括至少一个本申请第一方面所提供的天线单元。
在本申请第三方面提供的阵列天线中,发射组件可以包括至少一个本申请第一方面提供的天线单元,由此扩大发射组件的整体水平覆盖范围;接收组件中也可以包括至少一个本申 请第一方面提供的天线单元,由此扩大接收组件的整体水平覆盖范围。本申请阵列天线可以在发射和/或接收的过程中实现更大范围的面积覆盖,并兼具精度和敏感度,实现更好的探测能力。
在一种可能的实现方式中,阵列天线还包括平面透镜或天线罩,以调整阵列天线的辐射波束的指向或覆盖角度。
在本实现方式中,通过天线罩调整阵列天线的辐射波束的指向或覆盖角度,使得阵列天线的辐射方向朝向预设的方向偏移,进而在阵列天线固有覆盖范围较大的基础上,进一步实现对阵列天线探测方向的引导,同时对阵列天线起到防护的效果。
第四方面,本申请涉及一种雷达,包括微波集成电路,以及如本申请第一方面所提供的天线单元,或如本申请第三方面所提供的阵列天线,微波集成电路与天线单元或阵列天线电连接。
在本申请第四方面的雷达中,包括了本申请第一方面的天线单元,或包括了本申请第三方面的阵列天线,都能够使得本申请雷达具备更大的探测信号和接收信号的角度。通过微波集成电路连接到天线单元或阵列天线之后,能够在更大的角度范围内实现探测能力,并兼具精度和灵敏度。
第五方面,本申请还涉及一种终端,包括如本申请第四方面所提供的雷达。进一步,终端可以为智能制造设备、智能家居设备、测绘设备或者智能运输设备(例如车辆、无人机或者机器人)。进一步,所述雷达在终端上的安装位置不限于内部或者外部,取决于具体的功能需求。
在本申请第五方面提供的终端中,因为使用了本申请第四方面提供的雷达,使得本申请终端能够更好的实现全方位检测功能,避免终端产品出现探测死角,进而保证终端产品的可靠工作。
附图说明
图1是本申请提供的终端以车辆为例示意的天线作用区域图;
图2是本申请提供的一种天线单元的平面结构示意图;
图3是图2提供的天线单元中一侧连接部和辐射部的局部平面示意图;
图4是图2提供的天线单元仿真计算得到的方向图;
图5是现有技术方案中一种车载天线的结构示意图;
图6a、图6b和图6c分别为本申请天线单元中辐射部另一些实施例的平面示意图;
图7a和图7b分别为本申请天线单元另一些实施例的平面示意图;
图8是本申请天线单元提供的另一种实施例的平面示意图;
图8a是图8提供的天线单元的局部平面示意图;
图9是图8提供的天线单元的截面示意图;
图10是图8提供的天线单元仿真计算得到的方向/俯仰图;
图11是本申请提供的另一种天线单元的截面示意图;
图12是本申请提供的另一种天线单元的截面示意图;
图13是本申请提供的另一种天线单元的平面示意图;
图14是图13提供的天线单元中辐射部和引向器的局部平面示意图;
图15是图14提供的天线单元中引向器的平面示意图;
图16a、图16b和图16c分别为图6a、图6b和图6c各自对应的天线单元中辐射部与引向器的平面示意图;
图17是本申请提供的一种阵列天线的平面示意图;
图18a、图18b和图18c分别是图17提供的阵列天线仿真计算得到的不同通道的方向图;
图19是图17提供的阵列天线仿真计算得到的不同频点处方向/俯仰图;
图20是图17提供的阵列天线以车辆为例调整辐射角度的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请涉及的终端产品上设有雷达,用于探测障碍物或目标对象。例如终端产品为智能运输设备如车辆时,可以通过设置于车身上的雷达,实现障碍物探测的功能;或通过设置于座舱内的雷达,检测到用户进入或离开车辆时,对应开启或关闭部分功能。对于障碍物的探测,本申请终端产品还可以为智能家居设备或智能制造设备,如无人机、电动玩具、机器人或机械臂等。终端产品在探测的过程中,需要对周围环境中的障碍物或目标对象进行识别,以达到探测障碍物并避免碰撞、或准确识别目标对象的功能。为了便于描述,本申请实施方式中以车辆探测障碍物为例,阐述终端产品中对于雷达的应用。
请参见图1所示的本申请实施例提供的车辆对雷达使用的示意图。在本实施例中,车辆可以为汽油或柴油动力车辆,也可以为电动车辆,或为混合动力车辆等,其对雷达的使用都可以采用如图1中所示的一种或多种雷达的使用方式。
在图1所示的车辆中,基于车辆的俯视结构,设置了多个雷达的探测区域。其中在第Ⅰ区域中,于车辆的正前方和正后方位置,可以设置停车辅助系统(Parking Assist System,PAS)和/或自动停车辅助系统(Auto Parking Assist,APA);而在第Ⅱ区域中,于车辆的两侧斜前方位置,可以设置两侧来车警示(Cross Traffic Assist,CTA);在第Ⅲ区域中,于车辆的两侧位置,可以设置自动停车辅助系统(Auto Parking Assist,APA)、停车位测量系统(Parking Lot Vulture,PLV)以及侧方探测(Side View)等;在第Ⅳ区域中,于车辆的两斜侧后方位置,可以设置开门警报系统(Door Open Alarm,DOA)、倒车预警系统(Rear Cross Traffic Alert,RCTA)、盲区监测系统(Blind spot vehicle Discern System,BSD)以及变道辅助系统(Lane Change Assist,LCA)等;在第Ⅴ区域中,于车辆的正后方稍远位置,还可以设置后方自动紧急制动(Rear Automatic Emergency Braking,R-AEB)等。
对于上述的第Ⅰ-第Ⅴ区域,都采用对应的雷达来实现区域监测,即前述中提到的中长距雷达、角雷达等。这些雷达多具有探测距离相对较远、探测角度相对较窄的特性。而对于车辆而言,其在道路相对拥堵、或停车场等障碍物相对密集的场景下,通常车速较慢,需要对全车360度范围区域进行障碍物的探测。因此,本申请涉及的车辆还需要设置探测角度更大、用于近距离障碍物探测的雷达,以实现上述的全车360度范围区域探测。可以理解的,对于无人机、电动玩具、机器人或机械臂等终端产品,在其各自的使用场景中,也存在周围障碍物相对密集的情况,也可以采用本申请所涉及的雷达进行障碍物探测。
请参阅图2所示本申请实施例提供的一种天线单元100。该天线单元100可以设置于本申 请涉及的雷达中,用于实现较大角度范围的障碍物探测操作。本申请天线单元100包括馈电部30、连接部20和两个辐射部10。两个辐射部10分别通过连接部20与馈电部30电性连接。本申请雷达可以包括微波集成电路(图中未示),该微波集成电路与馈电部30电性连接,用于向馈电部30馈入信号,并经由连接部20传输至两个辐射部10上,再由辐射部10将该信号向外传播;或,两个辐射部10可以用于接收外部信号,并经由连接部20传输至馈电部30处,以将其接收到的外部信号传回微波集成电路中。
在图2示意的实施例中,两个辐射部10位于同一平面上,且两个辐射部10沿该平面内的第一方向001间隔设置。连接部20也为两个,两个连接部20也沿第一方向001间隔设置。因为连接部20连接于馈电部30和辐射部10之间,因此间隔设置的两个连接部20可以分别将馈电部30馈入的信号传输至其对应连接的辐射部10上。在一种实施例中,还对两个连接部20的延伸路径长度差异设置,其中一个连接部20的总长度较另一个连接部20的总长度更长,且二者总长度的差值为1/2λ;其中λ为馈电部30所馈入信号的波长,也即辐射部10的工作频率所对应的波长,或描述为本申请天线单元100传输的电磁波信号在介质中的波长。具体的,连接部20的总长度,则可以理解为连接部20与馈电部30连接的一端,沿连接部20的延伸路径至其与辐射部10连接的一端的总距离。
在图2的示意中,其中一个连接部20上设置了弯折段21,该弯折段21的延伸路径包括相互平行的第一弯折段21a和第二弯折段21b,以及连接于第一弯折段21a和第二弯折段21b之间的平行段21c。从图2中可以看出,平行段21c沿平行于该连接部20其余长度部分的方向延伸。设置弯折段21的连接部20的长度,相较于未设置弯折段21的连接部20的长度,多出了第一弯折段21a和第二弯折段21b两个部分的长度。进一步的,设置第一弯折段21a和第二弯折段21b的长度之和为L3,且L3的长度大致为1/2λ,用以实现上述的两个连接部20之间的总长度差异。这样的设置可以使得两个连接部20在接同一馈电部30馈入的电信号之后,其分别传输给两个辐射部10的电信号之间存在大致180度的相位差,两个辐射部10再分别基于两路相位差为180度的信号向外传播,并实现两个辐射部10的各自的水平方向覆盖范围。这里需要说明的是,由于产品工艺设计或制造带来的误差,实际的数值可能存在一定的偏差,所以上文采用“大致”的表述,以涵盖所有可能的工艺设计或者制造带来的误差范围。另外,弯折段21的结构也可以采用其它方式实现,只要两个连接部20之间存在大致为1/2λ的长度差异,都可以使得两个辐射部10的电信号之间存在大致180度的相位差。
图3示意了图2实施例中一侧连接部20与辐射部10的局部平面结构。本申请辐射部10构造为金属填充的结构,且大致呈板状。板状的辐射部10具有外边缘11。请参见图3,当电信号从连接部20传入辐射部10上时,金属填充的辐射部10的内部形成电流,电流流经外边缘11时形成电磁波信号朝向外界辐射。在图3的示意中,辐射部10大致呈扇形。而在其余实施例中,辐射部10也可以为其它形状。
对于本申请辐射部10,其具有第一边缘部分111。该第一边缘部分111为辐射部10的外边缘11中的一段。第一边缘部分111为曲线形状,且在第一边缘部分111的延伸路径上,包括相对的第一端111a和第二端111b。第一端111a在外边缘11上形成一个拐点,第二端111b也在外边缘11上形成一个拐点。可以理解的,曲线形状的第一边缘部分111在第一端111a至第二端111b之间,呈连续的曲线结构。也即在外边缘11的延伸路径上,从第一端111a至第二端111b的延伸路径为连续的曲线形式。
辐射部10上的电流在流经第一边缘部分111时,也会向外形成辐射。在本申请天线单元100中,定义第一边缘部分111的长度L1满足条件:1/8λ≤L1≤3/8λ。此时,第一边缘部 分111形成为一个连续的辐射段,辐射部10上的电流可以沿同一辐射方向,从第一边缘部分111向外辐射传播。而通过对第一边缘部分111的长度L1的限制,可以保证由第一边缘部分111形成的辐射段的信号辐射强度。
在本申请天线单元100中,还对辐射部10的第一边缘部分111的位置进行了限定。具体的,第一边缘部分111位于辐射部10背离连接部20的位置,以使得第一边缘部分111的辐射方向朝向背离连接部20的方向。具体的,板状的辐射部10具有与连接部20导通的连接处12。辐射部10沿第一方向001朝向背离连接处12的方向向外延展。此时,辐射部10的外边缘11与连接处12相连,且第一边缘部分111与连接处12彼此间隔。也即第一边缘部分111的第一端111a和第二端111b分别与连接处12相互间隔。因为辐射部10整体相对于连接部20沿第一方向001向外延展,因此第一边缘部分111也位于辐射部10背离连接处12的位置,且第一边缘部分111的辐射方向也朝向背离连接部20的方向。
需要提出的是,在图2的示意中,辐射部10沿第一方向001向外延展的结构,是同时相对于两个连接部20向外延展的。因为两个辐射部10沿第一方向001相互间隔设置,为了保证天线单元100的方向覆盖范围,需要两个辐射部10分别沿第一方向001朝相反的方向延展,以使得两个辐射部10各自的第一边缘部分111朝向相反的方向辐射,并获得更大的方向覆盖范围。此时,两个连接部20也沿第一方向001彼此间隔,并位于相对靠近的位置处,两个辐射部10则位于相对远离的位置处。
而在垂直于第一方向001的第二方向002上,连接部20连接于馈电部30与辐射部10之间时,连接部20沿第二方向002延伸。辐射部10还沿第二方向002位于连接部20的一侧。此时本申请天线单元100中,单个辐射部10相对于其连接的连接部20的位置,在沿第一方向001位于连接部20的一侧的同时,还沿第二方向002也位于连接部20的一侧。且,此时辐射部10中的第一边缘部分111沿第一方向001位于背离连接部20一侧的同时,还沿第二方向002也位于背离连接部20的一侧。
请看回图2的实施例,天线单元100的两个辐射部10,其沿第二方向002均位于连接部20的同一侧,连接部20相对于两个辐射部10的另一侧连接于馈电部30处。而在第一方向001上,两个辐射部10各自朝向背离连接部20的方向延伸。而两个辐射部10各自的外边缘11分别具有一第一边缘部分111,且两个第一边缘部分111分别沿第一方向001朝向相反的方向设置,并相对于连接部20沿第二方向002位于其同一侧。此时,两个第一边缘部分111的辐射方向也沿第一方向001互为反向,并同时沿第二方向002朝向同一方向。
需要提出的是,在图8a的示意中,两个辐射部10之间可以定义第一轴线103(这里的第一轴线103是为了方案阐述清楚而提供的,也即第一轴线103为虚拟参考线,实际产品中并没有第一轴线103的结构)。第一轴线103垂直于第一方向001,并平行于第二方向002。也即,第一轴线103的延伸方向平行于连接部20的延伸方向。两个第一边缘部分111的辐射方向相对于第一轴线103对称。由于第一边缘部分111的辐射方向形成为辐射部10的主要辐射方向,因此也可以理解为两个辐射部10的主要辐射方向相对于第一轴线103对称。
配合两个第一边缘部分111的长度L1的设置,可以使得本申请天线单元100具有较好的水平方位覆盖范围。图4示意了一种可能的天线单元100仿真计算得到的方向图。在该可能的设计中,两个辐射部10的第一边缘部分111的长度L1均为1/4λ,馈电部30馈入的信号频率为76.5GHz。其中,第一边缘部分111的长度L1=1/4λ时,第一边缘部分111的辐射效率更高,此时第一边缘部分111可以作为辐射部10的主辐射段使用,且两个辐射部10的第一边缘部分111的长度L1相等,两个第一边缘部分111的长度之和为1/2λ;而76GHz~81GHz 则为车载天线的专用频段。通过图4的仿真可以看出,本申请天线单元100在其所在平面的方向3dB波束宽度大于160度。
需要提出的是,由于制造工艺误差的存在,天线单元100中第一边缘部分111的实际尺寸,与L1=1/4λ的数值可能存在一定范围的误差。通过限定第一边缘111的长度L1满足条件:1/8λ≤L1≤3/8λ,可以保证天线单元100的方向覆盖范围较大,并实现与L1=1/4λ时类似的有益效果。
图5示意了现有技术其它方案中车载天线100a的结构示意。在图5的示意中,该车载天线100a构造为异面偶极子天线的结构,其辐射段10a为线状,且两个辐射段10a的辐射方向也相反。进一步的,该车载天线100a的辐射段10a两侧还设置了对称的导向器40a。图5所示的车载天线100a的水平方向3dB波束宽度在123度左右,小于本申请天线单元100的水平波束宽度。
因为本申请天线单元100中辐射部10的第一边缘部分111构造为曲线形状,使得电流在流经第一边缘部分111时,其电流路径相较于第一边缘部分构造为直线形状时的流通路径更长,进而使得天线单元100中的天线口径相对于其它方案车载天线100a的口径更小;或,在天线口径相同的前提下,本申请天线单元100中第一边缘部分111构造为曲线形状,其电流流通的路径相较于其它方案中第一边缘部分构造为直线形状的电流流通路径更长。由此,本申请天线单元100得以获得更大的辐射角度,进而在水平方向上实现了更大的覆盖范围。
本申请天线单元100中对辐射部10的形状不做特别限定,相应的对第一边缘部分111的具体形状也不做特别限定。请参见图6a、图6b以及图6c的示意,辐射部10除上述扇形的结构之外,还可以大致呈月牙形、叶片形或旗帜形的结构,对应的第一边缘部分111也呈圆弧形或波浪形的结构。只要第一边缘部分111的形状为连续的曲线形状,且第一边缘部分111的第一端111a和第二端111b处分别形成有拐点,都可以使得本申请天线单元100的天线口径相对缩小,进而形成更长的电流路径,扩展天线单元100的方向覆盖范围。
同时,本申请天线单元100也不限定两个辐射部10的形状必须一致。如图7a的实施例所示,两个辐射部10的形状可以不同,即其中一个辐射部10的形状大致呈扇形,另一个辐射部10的形状大致呈叶片形。此时,两个第一边缘部分111为非对称的结构,其各自所在的一侧向外传播的信号形状也存在差异。
另一方面,本申请天线单元100也不限定两个辐射部10的大小必须相同。如图7b的实施例所示,两个辐射部10的形状均大致呈扇形时,两个辐射部10的大小也不相同。相对应的,两个辐射部10各自的第一边缘部分111的长度值也存在差异。图4示意的第一边缘部分111的长度L1取值1/4λ仅作为一种示例。只要保证两个第一边缘部分111的长度L1均满足条件:1/8λ≤L1≤3/8λ,且两个第一边缘部分111同时工作于同一频段内,并获得相对较大的水平方向覆盖范围。
需要提出的是,图4中对于天线单元100的仿真是基于中心频点为76.5GHz的信号展开的,因为该频点处于车载天线的频段之内。在另一些实施例中,本申请天线单元100的频段也可以为24GHz左右,作为路边雷达使用。可以理解的,基于本申请天线单元100装配于不同的终端产品上,其工作频段也可以相应进行调整,天线单元传输的电磁波信号在介质中的波长λ的数值或者说辐射部工作频率对应的波长也对应调整。基于该装配于相应终端产品上的天线单元100的工作频率设置辐射部10的尺寸,可以将本申请所提供的天线单元100的设计方案适配到该终端产品上。
天线单元100可以构造于基板上,并使得两个辐射部10和两个连接部20均位于该基板 的同一外表面上。其中基板可以为印制电路板(Printed Circuit Board,PCB),或其余形式的基板结构;天线单元100也可以构造为钣金结构的天线,其连接部20和辐射部10均具有一定的刚度,可以直接从馈电部30处伸出,并保持两个辐射部10的相对位置,满足天线单元100的工作需要。
请参见图8和图9示意的天线单元100另一种实现方式的示意。其中图8为本实现方式中天线单元100的平面示意图,图9为本实现方式中天线单元100的截面示意图。在本实现方式中,天线单元100构造于介质板200上。介质板200包括相背的第一外表面201和第二外表面202,天线单元100的两个辐射部10分别位于第一外表面201和第二外表面202上。介质板200的第一外表面201和第二外表面202均为平面,也即介质板200的第一外表面201可以构造为第一平面,其中一个辐射部10形成于该第一外表面201上;第二外表面202可以构造为第二平面,另一个辐射部10则形成于该第二外表面202上。
将天线单元100构造于介质板200上,利用介质板200的两相背外表面分别制作辐射部10,使得两个辐射部10相互平行,并有利于控制两个辐射部10之间的距离,同时简化了辐射部10的制作工艺。在一种实施例中,该介质板200即为电路板。在电路板的厚度方向上(此处定义为第三方向003),也即第一外表面201至第二外表面202的延伸方向上,控制两个辐射部10之间的空间距离D1满足条件:D1≤1/2λ。也即,控制电路板的厚度不超过一半波长,以保证两个辐射部10沿第三方向003的俯仰覆盖范围。
在图8和图9的实施例中,设置两个辐射部10的形状相同,且大小相等。在一些实施例中,还设置两个连接部20的形状也相同、大小相等,且两个连接部20的延伸方向也相同。进一步,位于第一外表面201上的连接部20,沿第三方向003在第二外表面202上的投影,与位于第二外表面202上的连接部20的形状至少部分重叠。在一些实施例中,第一外表面201上的连接部20的投影,还与第二外表面202上的连接部的形状完全重合。在本实施例中,两个连接部20所传输的信号之间,也存在180度的相位差。可以理解的,在另一些实施例中,当两个辐射部10的形状相同且大小相等时,两个连接部20也可以分别位于不同位置处,即位于第一外表面201上的连接部20在第二外表面202上的投影,也可以与位于第二外表面202上的连接部20彼此间隔。
请参见图8a中第一外表面201上的局部示意,位于第一外表面201上的连接部20大致呈矩形的结构,该矩形结构相对于第一轴线103对称设置,且便于制作。在另一些实施例中,连接部20也可以大致呈梯形等其余轴对称的结构设置。辐射部10与连接部20的连接处12也位于第一轴线103上,并位于连接部20的一端位置。辐射部10沿第一方向001朝向背离第一轴线103的方向延伸,并同时使得第一边缘部分111也沿第一方向001位于第一轴线103的一侧位置。
位于第二外表面202上的辐射部10沿第三方向003,在第一外表面201上具有投影10’。该投影10’与位于第一外表面201上的辐射部10的外形相同,且大小相等。投影10’也沿第一方向001相对于第一轴线103朝向另一侧延伸,并同时使得投影10’对应第一边缘部分111的投影区域位于第一轴线103的另一侧位置。也即,位于第一外表面201上的辐射部10的轮廓形状,与位于第二外表面202上的辐射部10的投影10’的轮廓形状互为对称,且二者相对于第一轴线103互为镜像的结构。这样的结构使得天线单元100构成为异面偶极子天线单元,其两个形状对称的辐射部10能够获得相对对称的水平方向图的形状,并利于调节天线单元100的阻抗匹配。
通过仿真分析可以得出,图8和图9实施例中天线单元100的方向图与图4的效果趋于 一致。而本申请中天线单元100的方位和俯仰3dB波宽可以参见图10:在75GHz~82GHz的判断范围内,天线单元100的俯仰3dB波宽维持在250度以上,相较于图5所示车载天线100a的220度的俯仰波束宽度,也实现了较大的俯仰方向覆盖范围提升。
而在另一些实施例中,请参见图11和图12所示的天线单元100的截面示意图,天线单元100还可以采用钣金结构的形式,其中两个辐射部10分别设置于第一平面101和第二平面102上。钣金天线的结构自身具备一定的刚强度,其无需附着于基板上,可以通过自身刚强度保证两个辐射部10的相对位置稳定。在本实施例中,第一平面101所在平面与第二平面102所在平面形成夹角α。在图11所示天线单元100所在位置处,第一平面101与第二平面102彼此间隔,以使得位于第一平面101上的辐射部10与位于第二平面102上的辐射部10相互间隔。
进一步的,在第三方向003上,两个辐射部10各自的连接处12之间的距离,小于两个辐射部10之间的最大距离。也即两个连接部20相对靠近,两个辐射部10则相背远离。在图11的示意中,两个连接部20呈相互平行的姿态延伸;在图12的示意中,两个连接部20也分别位于第一平面101和第二平面102上,且两个连接部20的相对距离较小,两个辐射部10之间的相对距离则较大。对于图11和图12的实施例,因为两个辐射部10沿第三方向003呈夹角设置,可以进一步拓宽天线单元100在俯仰方向上的波束宽度,使得天线单元100能在俯仰方向上实现更大范围的覆盖。
一种实施例请参见图13,天线单元100还包括引向器40。引向器40的数量为两个,每个引向器40对应一个辐射部10设置,并间隔设置于其对应的辐射部10之外。进一步,引向器40对应一个辐射部10的第一边缘部分111。如图所示,引向器40设置与第一边缘部分111的外侧。引向器40用于引导辐射部10的传播方向,使得第一边缘部分111向外传播的信号能经引向器40的引导朝向更大的水平方向范围拓展。
请结合图14一并理解。对位于同一侧的辐射部10和引向器40而言,引向器40需要位于辐射部10背离连接部20一侧,且位置与第一边缘部分111的位置对应,也即引向器40沿第一方向001位于辐射部10背离连接部20一侧,并同时沿第二方向002也位于辐射部10背离连接部20一侧。引向器40中包括至少一个寄生段41,在图14的示意中,引向器40包括有第一寄生段411、第二寄生段412和第三寄生段413。在其它实施例中,引向器40中的寄生段41数量还可以为一个、两个或三个以上。
寄生段41的形状与第一边缘部分111的形状相匹配。因为第一边缘部分111为线性结构,寄生段41为面结构,此处的二者形状相匹配可以理解为:寄生段41的外轮廓包括相对的第一平行边41a和第二平行边41b(参见图15),且第一平行边41a和第二平行边41b的形状均与第一边缘部分111的形状相同或者相似。第一平行边41a的两端分别与第二平行边41b的两端连接,以使得寄生段41的形状与第一边缘部分111的形状相匹配。在一种实施例中,第一平行边41a和第二平行边41b的尺寸还相对于第一边缘部分111的尺寸缩小,以避免引向器40占用太大的面积开销,影响天线单元100的组阵。本领域技术人员可知,“形状相匹配”没有严格定义在两者形状之间一定存在何种对应关系,两者形状相同、相似或者没有过大的偏差均涵盖在本申请范围之内,能实现辐射方向的引导即可。
在图14的示意中,第一寄生段411、第二寄生段412和第三寄生段413沿第一方向001依次间隔设置。进一步,这些寄生段41的形状相互匹配。第一寄生段411位于靠近第一边缘部分111一侧,第三寄生段413位于远离第一边缘部分111一侧。且第一寄生段411、第二寄生段412以及第三寄生段413大小不同。其中第一寄生段411的形状相对较大,第三寄生 段413的形状相对较小。也即,对于引向器40中的各个寄生段41而言,可以设置靠近第一边缘部分111的寄生段41的尺寸大小,大于远离第一边缘部分111的寄生段41的尺寸大小。同样可以在天线单元100组成阵列时,避免相邻两个天线单元100之间形成交叉并导致耦合。在一些实施例中,各个寄生段41还可以同时沿第一方向001和第二方向002组成的向量依次间隔设置。
图16a、图16b和图16c还示意了辐射部10在构造为月牙形、叶片形或旗帜形的结构时,其引向器40的形状和排布方式,分别对应图6a、图6b以及图6c所示意的辐射部10的结构。可以看到,在图示的实施例中,各个寄生段41的形状也与其对应的第一边缘部分111的形状相匹配,且各个寄生段41的尺寸也呈依次减小的趋势。
针对图2和图8等天线单元100的结构示意,在上述的实施例中,馈电部30分别采用了微带线馈电或基片集成波导(Substrate integrated waveguide,SIW)的方式馈电。其中采用基片集成波导方式馈电时,分列第一外表面201和第二外表面202上的两个连接部20之间具有180度的相位差。而馈电部30采用微带线馈电时,还设置了一分二功分器分别向两个连接部20馈入信号。在另一些实施例中,基于天线单元100的形式不同,或基于不同使用场景的需求,馈电部30还可以采用同轴馈电的方式进行馈电。而实现两个辐射部10之间馈入信号具有180度相位差的方式也相对较多,均可应用于天线单元100的结构中。
一种实施例,如图8所示,馈电部30采用基片集成波导馈电时,基片集成波导的通道宽度L2满足条件:3/8λ≤L2≤5/8λ。限定基片集成波导的通道宽度L2可以提升该馈电部30的馈电效率。
本申请涉及的天线单元制作方法,具体可以包括如下步骤:
S10、在基板上设置馈电部30;
S20、设置连接部20和彼此间隔的两个辐射部10,且两个辐射部10均通过连接部20与馈电部30导通;其中,辐射部10为金属填充的板状结构,包括有曲线形状的第一边缘部分111,第一边缘部分111的辐射方向背离连接部20,第一边缘部分111的长度L1满足条件:1/8λ≤L1≤3/8λ;其中λ为天线单元100传输的电磁波信号在介质中的波长。
可以理解的,本申请提供的天线单元制作方法,可以用于制作本申请上述的天线单元100。其中馈电部30制作于基板上,连接部20和辐射部10则同样可以制作于基板上,或连接部20与辐射部30采用钣金天线的结构。因为连接部20和辐射部10的配合关系,二者可以同时制作完成,也可以分别制作并组装成形。而当辐射部10、连接部20和馈电部30均形成于基板上时,还可以同时制作辐射部10、连接部20和馈电部30。也即,上述方法中步骤S10和步骤S20仅示意了馈电部30可以单独制作,连接部20和辐射部10也可以单独制作,但并没有限定馈电部30与连接部20、辐射部10之间制作的先后顺序。在一些实施例中,利用本申请方法,还可以先制作连接部20和辐射部10之后,再制作馈电部30,最后形成天线单元100的结构。
本制作方法对辐射部10的结构限制与上述天线单元100的限制相同,因此通过本方法得到的天线单元100所取得的有益效果与上述天线单元100的有益效果也类似,其各个实施例的展开也可以基于上述天线单元100的各实现方式得到,本说明书在此不做一一赘述。
图17示意了本申请涉及的一种阵列天线300。图17所提供的阵列天线300包括间隔排布的发射组件310和接收组件320。其中发射组件310中间隔排布有三个本申请提供的天线单元100,接收组件320中间隔排布有四个本申请提供的天线单元100。且在图17的示意中,各个天线单元100均沿第一方向001间隔排布。在其余实施例中,天线单元100还可以采用 环形阵列等方式排布。可以理解的,天线阵列300也可以应用于本申请所涉及的雷达中,且因为天线单元100的方位角覆盖范围相对较大,使得天线阵列的方位角覆盖范围也相应扩大。进一步的,图17的示意中,天线单元100为图8所示的实施方式,因此天线阵列300还同时扩大了俯仰覆盖范围,有利于装配阵列天线300的终端更好的探测周围的障碍物。
可以理解的,当图17所示的天线阵列300应用于车辆雷达中时,其构成了毫米波mTnR阵列的模式,其中m的数值为3,n的数值为4。而在另一些实施例中,天线阵列300的发射组件310和接收组件320中天线单元100的数量还可以对应调整。或,在一些实施例中,天线阵列300还可以仅在发射组件310或接收组件320中配置天线单元100,用以单独扩大天线阵列发射信号或接收信号的覆盖范围。
图18a、图18b以及图18c示意了图17所示3T4R的天线阵列300仿真得到的不同通道的方向图,其中每个通道即为天线阵列300中的不同天线单元100。图19则示意了图17所示3T4R的天线阵列300在不同频点处仿真得到的方向/俯仰波宽。通过上述仿真结果可知,图17所示的天线阵列300的方向3dB波束宽度为150度,俯仰波宽为250度。
而通过对天线阵列300的带宽和口径设置,还可以调整天线阵列300的距离分辨率和角度分辨率。对于本申请天线阵列300而言,参见下列公式:
Figure PCTCN2022086372-appb-000001
其中,c为光速。天线阵列300的距离分辨率d Res与带宽B成反比,带宽越宽则距离分辨率越高。在本申请阵列天线300中,回波带宽为3GHz,方向图带宽也为3GHz,因此其距离分辨率相对较高。
而对于角度分辨率,请参见下列公式:
Figure PCTCN2022086372-appb-000002
也即对于工作波长一定的天线阵列300而言,其角度分辨率θ与阵列天线300的天线口径成反比。其中d为天线单元100之间的间距,L为天线单元100的数量。天线口径分别与天线单元100的间距和数量成正比。当天线单元100之间的间距越大、数量越多时,天线阵列300的口径也相应更大,角度分辨率则越高。因此,通过调整阵列天线300的天线口径,也可以提高阵列天线300的角度分辨率,进而满足使用需求。
在一种实施例中,阵列天线300还可以包括平面透镜(图中未示)或天线罩(图中未示),以调整阵列天线300的辐射波束的指向或覆盖角度。如图20所示,在未设置天线罩或平面透镜时时,阵列天线300可以平行于水平方向辐射。而在设置了天线罩或平面透镜之后,阵列天线300的与水平方向形成倾角。也即通过天线罩等装置调整阵列天线300的辐射角度,可以引导阵列天线300的辐射方向朝向预设的方向偏移,进而在阵列天线300固有覆盖范围较大的基础上,进一步实现对阵列天线300探测方向的引导,同时对阵列天线300也起到了防护的效果。在图20的示意中,对于车辆而言,其更多在于对地面障碍物的探测,因此可以通过设置平面透镜或天线罩的方式,引导阵列天线300的辐射方向朝向地面倾斜,实现更好的探测效果。
以上描述,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,例如减少或添加结构件,改变结构件的形状等,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种天线单元,其特征在于,包括馈电部、连接部和两个辐射部,所述连接部连接于所述馈电部与所述辐射部之间,所述馈电部用于对两个所述辐射部分别馈入信号;
    所述辐射部构造为金属填充的板状结构,且两个所述辐射部彼此间隔设置;
    所述辐射部还包括第一边缘部分,所述第一边缘部分为曲线形状,且所述第一边缘部分的辐射方向朝向所述辐射部背离所述连接部的方向,所述第一边缘部分的长度L1满足条件:
    1/8λ≤L1≤3/8λ;
    其中,λ为所述天线单元传输的电磁波信号在介质中的波长。
  2. 根据权利要求1所述的天线单元,其特征在于,所述连接部的数量为两个,两个所述连接部彼此间隔设置,每一所述连接部连接于所述馈电部与一个所述辐射部之间。
  3. 根据权利要求2所述的天线单元,其特征在于,两个所述辐射部位于同一平面上,并于该平面上彼此间隔设置;或
    两个所述辐射部分别位于第一平面和第二平面上,且所述第一平面与所述第二平面彼此间隔设置。
  4. 根据权利要求3所述的天线单元,其特征在于,两个所述辐射部分别位于所述第一平面和所述第二平面上,且所述第一平面平行于所述第二平面。
  5. 根据权利要求3或4所述的天线单元,其特征在于,两个所述辐射部分别位于所述第一平面和所述第二平面上,位于所述第一平面上的所述连接部在所述第二平面上的投影,与位于所述第二平面上的所述连接部的形状至少部分重叠。
  6. 根据权利要求1-5任一项所述的天线单元,其特征在于,两个所述辐射部的形状、大小相同,且两个所述第一边缘部分的辐射方向轴对称。
  7. 根据权利要求1-6任一项所述的天线单元,其特征在于,所述天线单元还包括两个引向器,每个所述引向器对应一个所述辐射部的所述第一边缘部分间隔设置。
  8. 根据权利要求7所述的天线单元,其特征在于,所述引向器中包括至少一个寄生段,且所述寄生段的形状与所述第一边缘部分的形状匹配。
  9. 根据权利要求8所述的天线单元,其特征在于,所述引向器中包括多个所述寄生段,多个所述寄生段间隔排列,和/或
    多个所述寄生段的尺寸依次缩小。
  10. 根据权利要求1-9任一项所述的天线单元,其特征在于,所述第一边缘部分的长度L1满足条件:L1=1/4λ。
  11. 根据权利要求1-10任一项所述的天线单元,其特征在于,所述馈电部采用基片集成波导、微带线馈电或同轴馈电中的一种方式馈电。
  12. 根据权利要求11所述的天线单元,其特征在于,所述馈电部采用基片集成波导馈电,且所述基片集成波导的通道宽度L2满足条件:3/8λ≤L2≤5/8λ。
  13. 一种天线单元的制作方法,其特征在于,包括如下步骤:
    在基板上设置馈电部;
    设置连接部和彼此间隔的两个辐射部,且两个所述辐射部均通过所述连接部与所述馈电部导通;其中,所述辐射部为金属填充的板状结构,包括有曲线形状的第一边缘部分,所述第一边缘部分的辐射方向背离所述连接部,所述第一边缘部分的长度L1满足条件:1/8λ≤L1≤3/8λ;其中λ为所述天线单元传输的电磁波信号在介质中的波长。
  14. 一种阵列天线,其特征在于,包括间隔排布的发射组件和接收组件,所述发射组件和接收组件包含至少一个如权利要求1-12任一项所述的天线单元。
  15. 一种雷达,其特征在于,包括微波集成电路,以及如权利要求1-12任一项所述的天线单元,或如权利要求14所述的阵列天线,所述微波集成电路与所述天线单元或所述阵列天线电连接。
  16. 一种终端,其特征在于,包括如权利要求15所述的雷达。
  17. 根据权利要求16所述的终端,所述终端为智能家居、智能制造或者智能运输设备。
PCT/CN2022/086372 2021-04-25 2022-04-12 天线单元及其制作方法、阵列天线、雷达以及终端 WO2022228113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22794584.7A EP4322327A1 (en) 2021-04-25 2022-04-12 Antenna unit, fabrication method therefor, array antenna, radar, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110448433.3 2021-04-25
CN202110448433.3A CN115249893A (zh) 2021-04-25 2021-04-25 天线单元及其制作方法、阵列天线、雷达以及终端

Publications (1)

Publication Number Publication Date
WO2022228113A1 true WO2022228113A1 (zh) 2022-11-03

Family

ID=83697488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086372 WO2022228113A1 (zh) 2021-04-25 2022-04-12 天线单元及其制作方法、阵列天线、雷达以及终端

Country Status (3)

Country Link
EP (1) EP4322327A1 (zh)
CN (1) CN115249893A (zh)
WO (1) WO2022228113A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060022876A1 (en) * 2004-07-28 2006-02-02 Asahi Glass Company, Limited Antenna device
CN105119044A (zh) * 2015-09-09 2015-12-02 华为技术有限公司 一种辐射贴片、微带天线及通信器件
WO2021023083A1 (zh) * 2019-08-06 2021-02-11 华为技术有限公司 一种可穿戴设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060022876A1 (en) * 2004-07-28 2006-02-02 Asahi Glass Company, Limited Antenna device
CN105119044A (zh) * 2015-09-09 2015-12-02 华为技术有限公司 一种辐射贴片、微带天线及通信器件
WO2021023083A1 (zh) * 2019-08-06 2021-02-11 华为技术有限公司 一种可穿戴设备

Also Published As

Publication number Publication date
CN115249893A (zh) 2022-10-28
EP4322327A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
US20200365976A1 (en) Adaptive Polarimetric Radar Architecture for Autonomous Driving
US7420525B2 (en) Multi-beam antenna with shared dielectric lens
JP2019527945A (ja) 偏波回転層を含むアンテナおよびレーダシステム
WO2018094660A1 (zh) 天线组件及无人飞行器
CN112448134A (zh) 具有全景检测的雷达天线组件
US20100188309A1 (en) Radar antenna
WO2018233263A1 (zh) 汽车侧后方雷达天线阵列以及天线面阵
WO2021169926A1 (zh) 一种天线以及雷达系统
CN110676560A (zh) 一种77GHz毫米波雷达天线
CN111987464B (zh) Ku/Ka波段双频锥形波束喇叭天线
CN113725600B (zh) 一种用于毫米波汽车雷达的mimo阵列天线
CN110176665B (zh) 一种相控阵天线及相控阵雷达
CN109428175B (zh) 天线部件、车载雷达和汽车
WO2021072630A1 (zh) 天线阵列、雷达和可移动平台
US20150077301A1 (en) Broadband antenna feed array
WO2022228113A1 (zh) 天线单元及其制作方法、阵列天线、雷达以及终端
JP5762162B2 (ja) マイクロストリップアンテナ及び該アンテナを使用したアレーアンテナ
KR101887417B1 (ko) 낮은 부엽특성을 갖는 메타물질 기반의 혼-리플렉터 안테나
CN217281205U (zh) 天线组件和车辆雷达
CN214153217U (zh) 一种宽带双偶极子微带准八木天线
CN113725601A (zh) 一种用于毫米波汽车雷达的多视场阵列天线
Arumugam et al. A Comprehensive Review on Automotive Antennas for Short Range Radar Communications
Santhakumar et al. Design of Substrate-Integrated-Waveguide Antenna for Automotive Short Range Radar Application
CN116722349B (zh) 天线结构及雷达设备
WO2023108340A1 (zh) 天线装置、雷达,探测装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022794584

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022794584

Country of ref document: EP

Effective date: 20231106

NENP Non-entry into the national phase

Ref country code: DE