WO2022249283A1 - 半導体光位相変調器及びその検査方法 - Google Patents

半導体光位相変調器及びその検査方法 Download PDF

Info

Publication number
WO2022249283A1
WO2022249283A1 PCT/JP2021/019813 JP2021019813W WO2022249283A1 WO 2022249283 A1 WO2022249283 A1 WO 2022249283A1 JP 2021019813 W JP2021019813 W JP 2021019813W WO 2022249283 A1 WO2022249283 A1 WO 2022249283A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor optical
optical amplifier
optical
semiconductor
phase modulator
Prior art date
Application number
PCT/JP2021/019813
Other languages
English (en)
French (fr)
Inventor
正和 高林
洋介 鈴木
智志 西川
浩一 秋山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021563696A priority Critical patent/JP7072736B1/ja
Priority to US18/561,304 priority patent/US20240231176A1/en
Priority to PCT/JP2021/019813 priority patent/WO2022249283A1/ja
Priority to CN202180098386.2A priority patent/CN117355790A/zh
Publication of WO2022249283A1 publication Critical patent/WO2022249283A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2257Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure the optical waveguides being made of semiconducting material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Definitions

  • the present disclosure relates to a semiconductor optical phase modulator and an inspection method thereof.
  • Patent Document 1 discloses an optical phase modulator.
  • the optical phase modulator comprises a QPSK phase modulator, a first semiconductor optical amplifier arranged at the input of the QPSK phase modulator, and a second semiconductor optical amplifier arranged at the output of the QPSK phase modulator. ing.
  • An optical input end of the optical phase modulator is optically coupled to an input optical fiber for inputting light into the optical phase modulator.
  • An optical output end of the optical phase modulator is optically coupled to an output optical fiber for transmitting modulated signal light generated by the optical phase modulator.
  • an input passive waveguide is formed between the optical input terminal of the optical phase modulator and the first semiconductor optical amplifier, and the optical phase modulator
  • An output passive waveguide is formed between the optical output end and the second semiconductor optical amplifier.
  • the optical confinement factor of each of the input passive waveguide and the output passive waveguide is greater than the optical confinement factor of the first semiconductor optical amplifier and greater than the optical confinement factor of the second semiconductor optical amplifier. Since the mode field diameter of light in each of the input passive waveguide and the output passive waveguide is small, the optical coupling loss between the optical phase modulator and the input optical fiber and between the optical phase modulator and the output optical fiber has a large optical coupling loss.
  • the inspection of the optical phase modulator disclosed in Patent Document 1 is performed by the following method.
  • An inspection light source and an input optical fiber are arranged at the optical input end of the optical phase modulator.
  • An output optical fiber and a power meter are arranged at the optical output end of the optical phase modulator.
  • Light emitted from a light source enters an optical phase modulator through an input optical fiber.
  • the light output from the optical phase modulator is made incident on the power meter through the output optical fiber. If the output of the power meter is equal to or higher than the reference output, the optical phase modulator is determined to be non-defective. On the other hand, if the output of the power meter is less than the reference output, the optical phase modulator is determined to be defective.
  • An object of the first aspect of the present disclosure is to provide a semiconductor optical phase modulator capable of reducing optical coupling loss with an optical fiber.
  • An object of a second aspect of the present disclosure is to provide an inspection method for a semiconductor optical phase modulator capable of shortening the inspection time of the semiconductor optical phase modulator.
  • a semiconductor optical phase modulator of the present disclosure includes an optical phase modulation element, a first semiconductor optical amplifier that amplifies light input to the optical phase modulation element, and a first semiconductor optical amplifier that amplifies modulated signal light output from the optical phase modulation element. and two semiconductor optical amplifiers.
  • a first semiconductor optical amplifier includes a first core layer having a first multiple quantum well structure.
  • the optical phase modulation element includes a second core layer having a second multiple quantum well structure.
  • a second semiconductor optical amplifier includes a third core layer having a third multiple quantum well structure.
  • the first thickness of the first core layer is less than the second thickness of the second core layer.
  • the number of first well layers in the first multiple quantum well structure is less than the number of second well layers in the second multiple quantum well structure.
  • the third thickness of the third core layer is less than the second thickness of the second core layer.
  • the number of third well layers in the third multiple quantum well structure is smaller than the number of second well layers in the second multiple quantum well structure.
  • the optical input end of the semiconductor optical phase modulator is the optical input end face of the first semiconductor optical amplifier.
  • the optical output end of the semiconductor optical phase modulator is the optical output end face of the second semiconductor optical amplifier.
  • a semiconductor optical phase modulator inspection method applies a forward bias voltage to one of the first semiconductor optical amplifier and the second semiconductor optical amplifier, and inspects the semiconductor optical phase modulator from one of the first semiconductor optical amplifier and the second semiconductor optical amplifier. emitting light; applying a reverse bias voltage to the other of the first semiconductor optical amplifier and the second semiconductor optical amplifier; Comparing the intensity and a reference light intensity.
  • the optical confinement factor of the first semiconductor optical amplifier is smaller than the optical confinement factor of the optical phase modulation element
  • the optical confinement factor of the second semiconductor optical amplifier is smaller than the optical confinement factor of the optical phase modulation element.
  • the mode field diameter of light in each of the first semiconductor optical amplifier and the second semiconductor optical amplifier increases.
  • the optical coupling loss between the semiconductor optical phase modulator and the input optical fiber and the optical coupling loss between the semiconductor optical phase modulator and the output optical fiber can be reduced.
  • the inspection method of the semiconductor optical phase modulator of the present disclosure there is no need to prepare an inspection light source, an input optical fiber, an output optical fiber, and a power meter separately from the semiconductor optical phase modulator. There is no need to align the inspection light source, the input optical fiber, the output optical fiber and the power meter with respect to the instrument. Therefore, according to the inspection method of the semiconductor optical phase modulator of the present disclosure, the inspection time of the semiconductor optical phase modulator can be shortened.
  • FIG. 2 is a schematic plan view of the semiconductor optical phase modulator of Embodiment 1;
  • FIG. 2 is a schematic cross-sectional view of a passive waveguide of the semiconductor optical phase modulator of Embodiment 1;
  • FIG. 2 is a schematic cross-sectional view of an optical splitter and an optical coupler of the semiconductor optical phase modulator of Embodiment 1;
  • FIG. 3A and 3B are schematic cross-sectional views of a phase modulation section and a phase adjustment section of the semiconductor optical phase modulator of Embodiment 1;
  • 2 is a schematic cross-sectional view of a first semiconductor optical amplifier of the semiconductor optical phase modulator of Embodiment 1;
  • FIG. 4 is a schematic cross-sectional view of a second semiconductor optical amplifier of the semiconductor optical phase modulator of Embodiment 1;
  • FIG. 2 is a control block diagram of the semiconductor optical phase modulation device of Embodiment 1.
  • FIG. 4 is a diagram showing a flowchart of an inspection method for the semiconductor optical phase modulator according to the first embodiment;
  • FIG. FIG. 8 is a schematic plan view of a semiconductor optical phase modulator according to a second embodiment; 8 is a schematic cross-sectional view of a monitor photodiode of the semiconductor optical phase modulator of Embodiment 2;
  • FIG. 8 is a schematic cross-sectional view of a monitor photodiode of the semiconductor optical phase modulator of Embodiment 2;
  • FIG. 10 is a diagram showing a flowchart of an inspection method for a semiconductor optical phase modulator according to a second embodiment
  • FIG. 11 is a schematic plan view of a semiconductor optical phase modulator according to Embodiment 3
  • 11 is a schematic cross-sectional view of a third semiconductor optical amplifier of the semiconductor optical phase modulator of Embodiment 3
  • FIG. 11 is a diagram showing a flowchart of a method for inspecting a semiconductor optical phase modulator according to Embodiment 3;
  • Embodiment 1 A semiconductor optical phase modulator 1 according to a first embodiment will be described with reference to FIGS. 1 to 6.
  • FIG. The semiconductor optical phase modulator 1 mainly includes an optical phase modulation element 3 , a first semiconductor optical amplifier 40 , a second semiconductor optical amplifier 50 and a substrate 9 .
  • the substrate 9 is, for example, a semiconductor substrate such as an InP substrate.
  • the substrate 9 includes a first end surface 9a and a second end surface 9b.
  • the second end face 9b may be on the opposite side of the first end face 9a.
  • the optical phase modulation element 3 , the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 are formed on the substrate 9 .
  • the optical phase modulation element 3 is, for example, an IQ (In-phase Quadrature) optical modulation section capable of quadrature phase shift keying (QPSK).
  • the optical phase modulation element 3 includes a parent Mach-Zehnder interferometer 10, two child Mach-Zehnder interferometers 20, phase modulation sections 25 and 26, parent phase adjustment sections 17 and 18, and child phase adjustment sections 27 and 28. .
  • the parent Mach-Zehnder interferometer 10, the two child Mach-Zehnder interferometers 20, the phase modulation sections 25 and 26, the parent phase adjustment sections 17 and 18, and the child phase adjustment sections 27 and 28 have common materials and layer structures.
  • a core layer core layers 32, 42, 52 may be included.
  • the parent Mach-Zehnder interferometer 10 includes two first arm waveguides 11 and 12, an optical splitter 13, and an optical coupler 14.
  • the first arm waveguides 11 and 12 each include a lower clad layer 31, a core layer 32, and an upper clad layer 33.
  • the first arm waveguides 11 , 12 may further include an insulating protective layer 37 .
  • the lower clad layer 31 is formed on the substrate 9 .
  • the lower clad layer 31 is, for example, an n-type InP layer.
  • a core layer 32 is formed on the lower clad layer 31 .
  • the core layer 32 has a refractive index higher than that of the lower clad layer 31 and higher than that of the upper clad layer 33 .
  • the core layer 32 is made of a semiconductor material such as AlGaInAs, for example.
  • the core layer 32 has, for example, a multiple quantum well (MQW) structure.
  • the upper clad layer 33 is formed on the core layer 32 .
  • the upper clad layer 33 is, for example, an i-type InP layer.
  • the first arm waveguides 11 and 12 each have a high mesa structure.
  • An insulating protective layer 37 is formed on the high mesa structure. Specifically, the insulating protective layer 37 is formed on the top and side surfaces of the upper clad layer 33 , the side surfaces of the core layer 32 , and the lower clad layer 31 .
  • the insulating protective layer 37 is made of an inorganic insulating material such as silicon oxide or silicon nitride, or an organic insulating material such as benzocyclobutene (BCB).
  • BCB benzocyclobutene
  • the optical splitter 13 is formed between the two first arm waveguides 11 and 12 and the first semiconductor optical amplifier 40 .
  • the optical splitter 13 splits the light amplified by the first semiconductor optical amplifier 40 and outputs it to the two first arm waveguides 11 and 12 .
  • the optical splitter 13 includes a lower clad layer 31, a core layer 32 and an upper clad layer 33, similar to the first arm waveguides 11,12.
  • the optical splitter 13 is made of the same material as the first arm waveguides 11 and 12 and has the same layer structure.
  • Optical splitter 13 is, for example, a multimode interference (MMI) splitter.
  • the optical splitter 13 is, for example, a 2 ⁇ 2 MMI splitter.
  • the width of the core layer 32 of the optical splitter 13 is larger than the width of each core layer 32 of the two first arm waveguides 11 and 12 .
  • Two output ports of the optical splitter 13 are connected to the two first arm waveguides 11 and 12 .
  • One of the two input ports of optical splitter 13 is optically coupled to first semiconductor optical amplifier 40 .
  • the optical waveguide 39 is connected to one of the two input ports of the optical splitter 13 and the first semiconductor optical amplifier 40 .
  • the optical waveguide 39 has the same configuration as each of the first arm waveguides 11 and 12 .
  • the optical coupler 14 is formed between the two first arm waveguides 11 and 12 and the second semiconductor optical amplifier 50 .
  • the optical coupler 14 multiplexes the light propagating through the two first arm waveguides 11 and 12 and outputs the combined light toward the second semiconductor optical amplifier 50 .
  • the optical coupler 14 is constructed similarly to the optical splitter 13 .
  • the optical coupler 14 is made of the same material as the optical splitter 13 and the second arm waveguide, and has the same layer structure.
  • the optical coupler 14 is, for example, an MMI coupler.
  • Optical coupler 14 is, for example, a 2 ⁇ 2 MMI coupler.
  • the width of the core layer 32 of the optical coupler 14 is larger than the width of each core layer 32 of the two first arm waveguides 11 and 12 .
  • Two input ports of the optical coupler 14 are connected to the two first arm waveguides 11 and 12 .
  • One of the two output ports of optical coupler 14 is optically coupled to second semiconductor optical amplifier 50 .
  • the optical waveguide 49 is connected to one of the two output ports of the optical coupler 14 and the second semiconductor optical amplifier 50 .
  • the optical waveguide 49 has the same configuration as each of the first arm waveguides 11 and 12 .
  • the two child Mach-Zehnder interferometers 20 are connected to the two first arm waveguides 11 and 12, respectively.
  • the child Mach-Zehnder interferometer 20 and the phase modulation units 25 and 26 connected to the first arm waveguide 11 constitute, for example, a Mach-Zehnder type optical phase modulator for the I channel.
  • the secondary Mach-Zehnder interferometer 20 and the phase modulators 25 and 26 connected to the first arm waveguide 12 constitute, for example, a Q-channel Mach-Zehnder optical phase modulator.
  • Each child Mach-Zehnder interferometer 20 includes two second arm waveguides 21, 22, an optical splitter 23, and an optical coupler 24. FIG.
  • the second arm waveguides 21 and 22 each have the same configuration as the first arm waveguides 11 and 12 respectively.
  • the second arm waveguides 21 and 22 are made of the same material as the first arm waveguides 11 and 12 and have the same layer structure.
  • the optical splitter 23 is formed between the two second arm waveguides 21 and 22 and the optical splitter 13 .
  • the optical splitter 23 further splits the light split by the optical splitter 13 and outputs the split light to the two second arm waveguides 21 and 22 .
  • optical splitter 23 is configured similarly to optical splitter 13 .
  • the optical splitter 23 is, for example, an MMI splitter.
  • the optical splitter 23 is, for example, a 2 ⁇ 2 MMI splitter.
  • Two output ports of the optical splitter 23 are connected to the two second arm waveguides 21 and 22 .
  • One of the two input ports of the optical splitter 23 is connected to one of the two first arm waveguides 11,12.
  • the optical coupler 24 is formed between the two second arm waveguides 21 and 22 and the optical coupler 14 .
  • the optical coupler 24 multiplexes the light propagating through the two second arm waveguides 21 and 22 and outputs the combined light toward the optical coupler 14 .
  • optical coupler 24 is configured similarly to optical coupler 14 .
  • the optical coupler 24 is, for example, an MMI coupler.
  • Optical coupler 24 is, for example, a 2 ⁇ 2 MMI coupler.
  • Two input ports of the optical coupler 24 are connected to the two second arm waveguides 21 and 22 .
  • One of the two output ports of the optical coupler 24 is connected to one of the two first arm waveguides 11,12.
  • the phase modulating sections 25 and 26 are provided on the two second arm waveguides 21 and 22 .
  • the phase modulating section 25 is provided in the second arm waveguide 21 .
  • the phase modulating section 26 is provided in the second arm waveguide 22 .
  • the phase modulation sections 25 and 26 each include a contact layer 34 and an electrode 36 in addition to the lower clad layer 31, core layer 32 and upper clad layer 33b.
  • the phase modulating sections 25 and 26 may further include an insulating protective layer 37 .
  • the upper clad layer 33b of the phase modulating sections 25 and 26 is, for example, a p-type InP layer.
  • the contact layer 34 is, for example, a p-type InGaAs layer, AuZn layer or AuBe layer.
  • the electrodes 36 are made of metal such as Ti, Au, Pt, Nb or Ni, for example.
  • the phase modulating sections 25 and 26 have, for example, a high mesa structure.
  • An insulating protective layer 37 is formed on the high mesa structure. Specifically, the insulating protective layer 37 is formed on the side surface of the contact layer 34 , the side surface of the upper clad layer 33 b , the side surface of the core layer 32 , and the lower clad layer 31 .
  • the parent phase adjusters 17 and 18 are provided on the two first arm waveguides 11 and 12 .
  • the parent phase adjuster 17 is provided in the first arm waveguide 11 .
  • the parent phase adjuster 18 is provided in the first arm waveguide 12 .
  • the parent phase adjusters 17 and 18 have the same configuration as the phase modulators 25 and 26 .
  • the parent phase adjustment sections 17 and 18 are made of the same material as the phase modulation sections 25 and 26 and have the same layer structure.
  • the phase difference between the I-channel optical signal output from the first arm waveguide 11 and the Q-channel optical signal output from the first arm waveguide 12 at the input port of the optical coupler 14 is ⁇ /2.
  • the phases applied to the I-channel optical signal and the Q-channel optical signal are adjusted in the parent phase adjusters 17 and 18, respectively.
  • the child phase adjusters 27 and 28 are provided on the two second arm waveguides 21 and 22 . Specifically, the child phase adjustment section 27 is provided in the second arm waveguide 21 . The child phase adjustment section 28 is provided in the second arm waveguide 22 . As shown in FIG. 4, child phase adjusters 27 and 28 have the same configuration as phase modulating sections 25 and 26 . The child phase adjustment sections 27 and 28 are made of the same material as the phase modulation sections 25 and 26 and have the same layer structure.
  • the first semiconductor optical amplifier 40 is formed between the optical phase modulation element 3 and the first end face 9a of the substrate 9.
  • the optical input end of the semiconductor optical phase modulator 1 is the optical input end surface 40 a of the first semiconductor optical amplifier 40 .
  • a first semiconductor optical amplifier 40 is optically coupled to the input optical fiber 5a.
  • the light input end face 40 a of the first semiconductor optical amplifier 40 may be flush with the first end face 9 a of the substrate 9 .
  • the first semiconductor optical amplifier 40 amplifies light input to the optical phase modulation element 3 .
  • the first semiconductor optical amplifier 40 includes a lower clad layer 41, a core layer 42, an upper clad layer 43, a current blocking layer 45, contact layers 44a and 44b, and electrodes 46a and 46b. including.
  • the first semiconductor optical amplifier 40 may further include an insulating protective layer 37 .
  • a lower clad layer 41 is formed on the substrate 9 .
  • the lower clad layer 41 is, for example, an n-type InP layer.
  • a core layer 42 is formed on the lower clad layer 41 .
  • the core layer 42 has a refractive index higher than that of the lower clad layer 41 and higher than that of the upper clad layer 43 .
  • the core layer 42 is made of a semiconductor material such as AlGaInAs, for example.
  • the core layer 42 has, for example, a multiple quantum well (MQW) structure.
  • the thickness of the core layer 42 of the first semiconductor optical amplifier 40 is smaller than the thickness of the core layer 32 of the optical phase modulation element 3 .
  • the number of well layers in the core layer 42 of the first semiconductor optical amplifier 40 is smaller than the number of well layers in the core layer 32 of the optical phase modulation element 3 . Therefore, the optical confinement factor of the first semiconductor optical amplifier 40 is smaller than the optical confinement factor of the optical phase modulation element 3 .
  • the upper clad layer 43 is, for example, a p-type InP layer.
  • the first semiconductor optical amplifier 40 has, for example, a high mesa structure.
  • the current blocking layers 45 are formed on both side surfaces of the core layer 42 .
  • the current blocking layer 45 concentrates the current flowing between the electrodes 46a and 46b to the core layer 42.
  • the current blocking layer 45 includes, for example, a p-type semiconductor layer 45a such as p-type InP and an n-type semiconductor layer 45b such as n-type InP.
  • the current blocking layer 45 may be a semi-insulating layer such as an Fe-doped InP layer.
  • the contact layers 44a and 44b are, for example, n-type InGaAs layers, AuZn layers or AuBe layers.
  • the electrodes 46a, 46b are made of metal such as Ti, Au, Pt, Nb or Ni, for example.
  • An insulating protective layer 37 is formed on the high mesa structure. Specifically, the insulating protective layer 37 is formed on the contact layers 44 a and 44 b , the side surfaces of the upper clad layer 43 , the side surface of the current blocking layer 45 and the lower clad layer 41 .
  • the second semiconductor optical amplifier 50 is formed between the optical phase modulation element 3 and the second end face 9b of the substrate 9.
  • the optical output end of the semiconductor optical phase modulator 1 is the optical output end surface 50 a of the second semiconductor optical amplifier 50 .
  • a second semiconductor optical amplifier 50 is optically coupled to the output optical fiber 5b.
  • the light output end face 50 a of the second semiconductor optical amplifier 50 may be flush with the second end face 9 b of the substrate 9 .
  • the second semiconductor optical amplifier 50 amplifies the modulated signal light output from the optical phase modulation element 3 .
  • the second semiconductor optical amplifier 50 is configured similarly to the first semiconductor optical amplifier 40 .
  • the second semiconductor optical amplifier 50 includes a lower clad layer 51, a core layer 52, an upper clad layer 53, a current blocking layer 55, and contact layers 54a and 54b. , electrodes 56a and 56b.
  • the current blocking layer 55 includes, for example, a p-type semiconductor layer 55a such as p-type InP and an n-type semiconductor layer 55b such as n-type InP.
  • the current blocking layer 55 may be a semi-insulating layer such as an Fe-doped InP layer.
  • the second semiconductor optical amplifier 50 may further include an insulating protective layer 37 .
  • the core layer 42 of the first semiconductor optical amplifier 40 and the core layer 52 of the second semiconductor optical amplifier 50 are made of the same material and may have the same layer structure.
  • the thickness of the core layer 52 of the second semiconductor optical amplifier 50 is smaller than the thickness of the core layer 32 of the optical phase modulation element 3 .
  • the number of well layers in the core layer 52 of the second semiconductor optical amplifier 50 is smaller than the number of well layers in the core layer 32 of the optical phase modulation element 3 . Therefore, the optical confinement factor of the core layer 52 of the second semiconductor optical amplifier 50 is smaller than the optical confinement factor of the core layer 32 of the optical phase modulation element 3 .
  • the second length of the second semiconductor optical amplifier 50 may be shorter than the first length of the first semiconductor optical amplifier 40 .
  • the first length of the first semiconductor optical amplifier 40 means the length between the light input end surface 40a of the first semiconductor optical amplifier 40 and the light output end surface of the first semiconductor optical amplifier 40
  • the second length of the second semiconductor optical amplifier 50 means the length between the light input end face of the second semiconductor optical amplifier 50 and the light output end face 50 a of the second semiconductor optical amplifier 50 .
  • the carrier density in the semiconductor optical amplifier fluctuates depending on the intensity distribution of light incident on the semiconductor optical amplifier.
  • the intensity distribution of light entering the semiconductor optical amplifier means the intensity distribution of the light in a cross section perpendicular to the traveling direction of the light. Fluctuations in carrier density within the semiconductor optical amplifier cause variations in the refractive index within the semiconductor optical amplifier, causing phase distortion in the light amplified by the semiconductor optical amplifier.
  • optical phase modulation device 2 includes semiconductor optical phase modulator 1 and controller 7 .
  • Semiconductor optical phase modulator 1 is connected to controller 7 .
  • the controller 7 applies voltages to the phase modulation sections 25 and 26, voltages applied to the parent phase adjustment sections 17 and 18, voltages applied to the child phase adjustment sections 27 and 28, and injection to the first semiconductor optical amplifier 40.
  • the current to be applied, the current to be injected into the second semiconductor optical amplifier 50, the voltage to be applied to the first semiconductor optical amplifier 40, and the voltage to be applied to the second semiconductor optical amplifier 50 can be controlled.
  • the controller 7 compares the intensity of the inspection light detected by the other of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 with the reference light intensity to determine whether the semiconductor optical phase modulator 1 is non-defective. can determine whether Controller 7 is, for example, a microcomputer or electronic circuit including a processor.
  • the operation of the semiconductor optical phase modulator 1 of this embodiment will be described.
  • the first semiconductor optical amplifier 40 amplifies light input to the semiconductor optical phase modulator 1 .
  • a high-frequency electrical signal is applied to the phase modulating portions 25 and 26 to change the refractive index of the core layer 32 of the phase modulating portions 25 and 26 .
  • a secondary Mach-Zehnder interferometer 20 connected to the first arm waveguide 11 outputs an I-channel optical signal.
  • a child Mach-Zehnder interferometer 20 connected to the first arm waveguide 12 outputs a Q-channel optical signal.
  • the optical coupler 14 multiplexes the I-channel optical signal and the Q-channel optical signal.
  • the optical phase modulation element 3 outputs modulated signal light toward the second semiconductor optical amplifier 50 .
  • the second semiconductor optical amplifier 50 amplifies the modulated signal light.
  • the semiconductor optical phase modulator 1 outputs modulated signal light.
  • the inspection method of the semiconductor optical phase modulator 1 of the present embodiment consists of radiating inspection light from one of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 (S1), applying a reverse bias voltage to the other of the second semiconductor optical amplifiers 50 (S2), the intensity of the inspection light detected by the other of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50, and the reference light intensity; and (S5).
  • the inspection method of the semiconductor optical phase modulator 1 according to the present embodiment includes the child phase adjusters. It further comprises adjusting the voltage applied to the units 27 and 28 (S3) and adjusting the voltage applied to the parent phase adjustment units 17 and 18 (S4).
  • step S1 a forward bias voltage is applied to one of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50, for example.
  • One of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 emits amplified spontaneous emission light (ASE light). This ASE light is used as inspection light, and one of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 functions as a light source for the inspection light.
  • ASE light amplified spontaneous emission light
  • step S2 a reverse bias voltage is applied to the other of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50.
  • the other of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 functions as a photodiode that detects the intensity of inspection light. Either step S2 or step S1 may be performed first.
  • step S3 the voltage applied to the child phase adjusters 27 and 28 is adjusted.
  • the controller 7 adjusts the voltage applied to the child phase adjusters 27 and 28 so that the intensity of the inspection light detected by the other of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 is maximized. .
  • step S4 the voltage applied to the parent phase adjusters 17 and 18 is adjusted.
  • the controller 7 adjusts the voltage applied to the parent phase adjusters 17 and 18 so that the intensity of the inspection light detected by the other of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 is maximized.
  • Steps S3 and S4 may be performed repeatedly.
  • step S5 the controller 7 compares the intensity of the inspection light detected by the other of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 with the reference light intensity. For example, when the intensity of the inspection light is greater than or equal to the reference light intensity, the controller 7 determines that the semiconductor optical phase modulator 1 is non-defective. On the other hand, when the intensity of the inspection light is less than the reference light intensity, the controller 7 determines that the semiconductor optical phase modulator 1 is defective.
  • the semiconductor optical phase modulator 1 of the present embodiment includes the optical phase modulation element 3, the first semiconductor optical amplifier 40 that amplifies the light input to the optical phase modulation element 3, and the light output from the optical phase modulation element 3. and a second semiconductor optical amplifier 50 for amplifying the modulated signal light.
  • the first semiconductor optical amplifier 40 includes a first core layer (core layer 42) having a first multiple quantum well structure.
  • the optical phase modulation element 3 includes a second core layer (core layer 32) having a second multiple quantum well structure.
  • the second semiconductor optical amplifier 50 includes a third core layer (core layer 52) having a third multiple quantum well structure.
  • the first thickness of the first core layer is less than the second thickness of the second core layer.
  • the number of first well layers in the first multiple quantum well structure is less than the number of second well layers in the second multiple quantum well structure.
  • the third thickness of the third core layer is less than the second thickness of the second core layer.
  • the number of third well layers in the third multiple quantum well structure is smaller than the number of second well layers in the second multiple quantum well structure.
  • the optical input end of the semiconductor optical phase modulator 1 is the optical input end surface 40 a of the first semiconductor optical amplifier 40 .
  • the optical output end of the semiconductor optical phase modulator 1 is the optical output end surface 50 a of the second semiconductor optical amplifier 50 .
  • the optical confinement factor of the first semiconductor optical amplifier 40 is smaller than the optical confinement factor of the optical phase modulation element 3
  • the optical confinement factor of the second semiconductor optical amplifier 50 is smaller than the optical confinement factor of the optical phase modulation element 3. small.
  • the mode field diameter of light in each of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 increases.
  • the optical coupling loss between the semiconductor optical phase modulator 1 and the input optical fiber 5a and the optical coupling loss between the semiconductor optical phase modulator 1 and the output optical fiber 5b can be reduced.
  • the semiconductor optical phase modulator 1 of this embodiment further includes a substrate 9 on which the optical phase modulation element 3, the first semiconductor optical amplifier 40, and the second semiconductor optical amplifier 50 are mounted.
  • the light input end face 40 a of the first semiconductor optical amplifier 40 is flush with the first end face 9 a of the substrate 9 .
  • the light output end face 50a of the second semiconductor optical amplifier 50 is flush with the second end face 9b of the substrate 9, which is different from the first end face 9a. Therefore, the optical coupling loss between the semiconductor optical phase modulator 1 and the input optical fiber 5a and the optical coupling loss between the semiconductor optical phase modulator 1 and the output optical fiber 5b can be reduced.
  • the second length of the second semiconductor optical amplifier 50 is shorter than the first length of the first semiconductor optical amplifier 40 . Therefore, the phase distortion that the second semiconductor optical amplifier 50 gives to the modulated signal light output from the optical phase modulation element 3 can be reduced.
  • the semiconductor optical phase modulator 1 can output phase-modulated signal light of higher quality.
  • the first core layer (core layer 42) and the third core layer (core layer 52) are made of the same material and have the same layer structure. have. Therefore, the core layer of the semiconductor optical phase modulator 1 is made of two kinds of core materials. Since the types of core layers of the semiconductor optical phase modulator 1 are reduced, the cost of the semiconductor optical phase modulator 1 can be reduced.
  • the optical phase modulation element 3 includes a parent Mach-Zehnder interferometer 10, two child Mach-Zehnder interferometers 20, and phase modulation sections 25 and 26.
  • the parent Mach-Zehnder interferometer 10 includes two first arm waveguides 11,12.
  • the two child Mach-Zehnder interferometers 20 are connected to the two first arm waveguides 11 and 12 respectively, and the two child Mach-Zehnder interferometers 20 are each connected to the two second arm waveguides 21 , 22.
  • the phase modulating sections 25 and 26 are provided on the two second arm waveguides 21 and 22, respectively. Therefore, the semiconductor optical phase modulator 1 can output a multilevel phase modulated signal such as QPSK.
  • the optical phase modulation element 3 further includes parent phase adjusters 17 and 18 and child phase adjusters 27 and 28 .
  • the parent phase adjusters 17 and 18 are provided on the two first arm waveguides 11 and 12 .
  • the secondary phase adjusting sections 27 and 28 are provided on the two second arm waveguides 21 and 22 . Therefore, the semiconductor optical phase modulator 1 can output a higher quality multilevel phase modulated signal.
  • a forward bias voltage is applied to one of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50, and the first semiconductor optical amplifier 40 and the second semiconductor emitting inspection light from one of the optical amplifiers 50 (S1); applying a reverse bias voltage to the other of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 (S2); 40 and comparing the intensity of the inspection light detected by the other of the second semiconductor optical amplifier 50 with the reference light intensity (S5).
  • the inspection method of the semiconductor optical phase modulator 1 of the present embodiment there is no need to prepare an inspection light source, an input optical fiber, an output optical fiber, and a power meter separately from the semiconductor optical phase modulator 1. It is not necessary to align the inspection light source, the input optical fiber, the output optical fiber, and the power meter with respect to the semiconductor optical phase modulator 1 . Therefore, the inspection time of the semiconductor optical phase modulator 1 can be shortened.
  • Embodiment 2 A semiconductor optical phase modulator 1b according to a second embodiment will be described with reference to FIGS. 9 to 12.
  • FIG. The semiconductor optical phase modulator 1b of the present embodiment has the same configuration as the semiconductor optical phase modulator 1 of the first embodiment, but differs mainly in the following points.
  • the semiconductor optical phase modulator 1b further includes a monitor photodiode 60 and a monitor photodiode .
  • a monitor photodiode 60 is optically coupled to the other of the two output ports of the optical coupler 14 .
  • a monitoring photodiode 70 is optically coupled to the other of the two output ports of the optical coupler 24 .
  • a monitor photodiode 60 includes a lower clad layer 61, a light absorption layer 62, an upper clad layer 63, contact layers 64a and 64b, and electrodes 66a and 66b.
  • the monitor photodiode 60 may further include an insulating protective layer 37 .
  • a lower clad layer 61 is formed on the substrate 9 .
  • the lower clad layer 61 is, for example, an n-type InP layer.
  • the refractive index of the light absorption layer 62 is higher than the refractive index of the lower clad layer 61 and higher than the refractive index of the upper clad layer 63 .
  • the light absorbing layer 62 is made of a semiconductor material such as AlGaInAs, for example.
  • the light absorption layer 62 has, for example, a multiple quantum well (MQW) structure.
  • the light absorption layer 62 of the monitor photodiode 60 is made of the same material as the core layer 42 of the first semiconductor optical amplifier 40 and the core layer 52 of the second semiconductor optical amplifier 50, and has the same layer structure. You may
  • the upper clad layer 63 is, for example, a p-type InP layer.
  • the monitor photodiode 60 has, for example, a high mesa structure.
  • the contact layers 64a and 64b are, for example, n-type InGaAs layers, AuZn layers or AuBe layers.
  • the electrodes 66a, 66b are made of metal such as Ti, Au, Pt, Nb or Ni, for example.
  • An insulating protective layer 37 is formed on the high mesa structure. Specifically, the insulating protective layer 37 is formed on the contact layers 64 a and 64 b, the side surfaces of the upper clad layer 63 and the lower clad layer 61 .
  • monitor photodiode 70 has the same configuration as monitor photodiode 60 .
  • the monitor photodiodes 70 each include a lower clad layer 71, a light absorption layer 72, an upper clad layer 73, contact layers 74a and 74b, and electrodes 76a and 76b.
  • the monitor photodiode 70 may further include an insulating protective layer 37 .
  • the light absorption layer 72 of the monitor photodiode 70 is made of the same material and has the same layer structure as the light absorption layer 62 of the monitor photodiode 60 .
  • the light absorption layer 72 of the monitor photodiode 70 is made of the same material as the core layer 42 of the first semiconductor optical amplifier 40 and the core layer 52 of the second semiconductor optical amplifier 50, and has the same layer structure. You may
  • an optical phase modulating device 2 of the present embodiment is similar to the optical phase modulating device 2 of the first embodiment, but instead of semiconductor optical phase modulator 1, a semiconductor optical phase modulator 1b.
  • the controller 7 may receive signals regarding the intensity of the interrogation light from the monitoring photodiodes 60,70.
  • the method for inspecting semiconductor optical phase modulator 1b of the present embodiment includes the same steps as the method for inspecting semiconductor optical phase modulator 1 of Embodiment 1, but differs mainly in the following points.
  • the method for inspecting semiconductor optical phase modulator 1b of the present embodiment further comprises applying a reverse bias voltage to monitor photodiodes 60 and 70 (S12).
  • S4 the voltages applied to the parent phase adjusters 17 and 18
  • S4 the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50
  • a reverse bias voltage is applied (S2) to the other of the .
  • step S1 of the present embodiment is the same as step S1 of the embodiment.
  • One of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 functions as a light source for inspection light.
  • step S12 a reverse bias voltage is applied to the photodiodes 60 and 70 for monitoring.
  • the monitoring photodiodes 60 and 70 can detect inspection light emitted from one of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 .
  • step S3 the voltage applied to the child phase adjusters 27 and 28 is adjusted.
  • the controller 7 adjusts the voltage applied to the child phase adjusters 27 and 28 so that the intensity of the inspection light detected by the monitor photodiode 70 is maximized.
  • step S4 the voltage applied to the parent phase adjusters 17 and 18 is adjusted.
  • the controller 7 adjusts the voltage applied to the parent phase adjusters 17 and 18 so that the intensity of the inspection light detected by the monitor photodiode 60 is maximized.
  • Step S2 is performed after step S4.
  • step S2 a reverse bias voltage is applied to the other of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50.
  • FIG. Therefore, the other of the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 functions as a photodiode that detects inspection light.
  • Step S5 is performed following step S2.
  • Step S5 of this embodiment is the same as step S5 of the embodiment.
  • the semiconductor optical phase modulator 1b of this embodiment further includes a first monitor photodiode (monitor photodiode 60) and a second monitor photodiode (monitor photodiode 70).
  • Parent Mach-Zehnder interferometer 10 includes a first 2 ⁇ 2 optical coupler (optical coupler 14) that includes a first optical output port and a second optical output port. The first optical output port is optically coupled to a second semiconductor optical amplifier 50 . The second optical output port is optically coupled to the first monitoring photodiode.
  • Two child Mach-Zehnder interferometers 20 each include a second 2 ⁇ 2 optical coupler (optical coupler 24) including a third optical output port and a fourth optical output port.
  • a third optical output port is connected to one of the two first arm waveguides 11 , 12 of the parent Mach-Zehnder interferometer 10 .
  • the fourth optical output port is optically coupled to the second monitor photodiode.
  • the parent phase adjusters 17 and 18 can be adjusted based on the intensity of the detected light detected by the first monitor photodiode (monitor photodiode 60).
  • the child phase adjusters 27 and 28 can be adjusted based on the intensity of the detected light detected by the second monitor photodiode (monitor photodiode 70).
  • the parent phase adjusters 17, 18 and the child phase adjusters 27, 28 can be adjusted independently of each other.
  • the parent phase adjustment units 17 and 18 can more accurately adjust the optical path lengths of the two first arm waveguides 11 and 12, and the child phase adjustment units 27 and 28 can adjust the optical path lengths of the two second arm waveguides 21 and 21. , 22 can be adjusted more accurately.
  • the semiconductor optical phase modulator 1b can output phase-modulated signal light of higher quality.
  • the first monitor photodiode (monitoring photodiode 60) includes a first light absorption layer (light absorption layer 62) having a fourth multiple quantum well structure.
  • the second monitor photodiode (monitor photodiode 70) includes a second light absorption layer (light absorption layer 72) having a fifth multiple quantum well structure.
  • the first core layer (core layer 42), the third core layer (core layer 52), the first light absorption layer, and the second light absorption layer are made of the same material and have the same layer structure. have. Therefore, the types of core layers and light absorption layers of the semiconductor optical phase modulator 1b are reduced. The cost of the semiconductor optical phase modulator 1b can be reduced.
  • Embodiment 3 The semiconductor optical phase modulator 1c of Embodiment 3 will be described with reference to FIGS. 13 and 14.
  • FIG. The semiconductor optical phase modulator 1c of the present embodiment has the same configuration as the semiconductor optical phase modulator 1 of the first embodiment, but differs mainly in the following points.
  • the semiconductor optical phase modulator 1 c further includes a third semiconductor optical amplifier 80 .
  • the other of the two input ports of optical splitter 23 is optically coupled to third semiconductor optical amplifier 80 .
  • the third semiconductor optical amplifier 80 is configured similarly to the first semiconductor optical amplifier 40 and the second semiconductor optical amplifier 50 .
  • the third semiconductor optical amplifier 80 includes a lower clad layer 81, a core layer 82, an upper clad layer 83, a current blocking layer 85, and contact layers 84a and 84b. , electrodes 86a and 86b.
  • the current blocking layer 85 includes, for example, a p-type semiconductor layer 85a such as p-type InP and an n-type semiconductor layer 85b such as n-type InP.
  • the current blocking layer 85 may be a semi-insulating layer such as an Fe-doped InP layer.
  • the third semiconductor optical amplifier 80 may further include an insulating protective layer 37 .
  • the core layer 82 of the third semiconductor optical amplifier 80 is made of the same material as the core layer 42 of the first semiconductor optical amplifier 40 and the core layer 52 of the second semiconductor optical amplifier 50, and has the same layer structure. You may
  • a method for inspecting the semiconductor optical phase modulator 1c of the third embodiment will be described with reference to FIG.
  • the method for inspecting the semiconductor optical phase modulator 1c of the present embodiment includes the same steps as the method for inspecting the semiconductor optical phase modulator 1 of the first embodiment, but differs mainly in the following points.
  • an optical phase modulating device 2 of the present embodiment is similar to the optical phase modulating device 2 of the first embodiment, but instead of semiconductor optical phase modulator 1, a semiconductor optical phase modulator 1c.
  • the controller 7 can also control the current injected into the third semiconductor optical amplifier 80 .
  • the method for inspecting the semiconductor optical phase modulator 1c of the present embodiment comprises emitting first inspection light from the first semiconductor optical amplifier 40 and emitting second inspection light from the third semiconductor optical amplifier 80 (S21). , applying a reverse bias voltage to the second semiconductor optical amplifier 50 (S22), and comparing the intensity of the inspection light detected by the second semiconductor optical amplifier 50 with the reference light intensity (S25). Prepare.
  • the intensity of the inspection light is the sum of the first intensity of the first inspection light and the second intensity of the second inspection light.
  • the inspection method of the semiconductor optical phase modulator 1c according to the present embodiment includes the child phase adjusters. It further comprises adjusting the voltage applied to the units 27 and 28 (S3) and adjusting the voltage applied to the parent phase adjustment units 17 and 18 (S4).
  • a forward bias voltage is applied to the first semiconductor optical amplifier 40 and the third semiconductor optical amplifier 80.
  • the first semiconductor optical amplifier 40 and the third semiconductor optical amplifier 80 output ASE light.
  • ASE light emitted from the first semiconductor optical amplifier 40 is used as first inspection light, and the first semiconductor optical amplifier 40 functions as a first light source for the first inspection light.
  • ASE light emitted from the third semiconductor optical amplifier 80 is used as second inspection light, and the third semiconductor optical amplifier 80 functions as a second light source for the second inspection light.
  • a reverse bias voltage is applied to the second semiconductor optical amplifier 50.
  • the second semiconductor optical amplifier 50 functions as a photodiode that detects the intensity of inspection light.
  • the intensity of the inspection light is the sum of the first intensity of the first inspection light and the second intensity of the second inspection light.
  • step S3 the voltage applied to the child phase adjusters 27 and 28 is adjusted. Specifically, the controller 7 adjusts the voltage applied to the child phase adjusters 27 and 28 so that the intensity of the inspection light detected by the second semiconductor optical amplifier 50 is maximized.
  • step S4 the voltage applied to the parent phase adjusters 17 and 18 is adjusted. Specifically, the controller 7 adjusts the voltage applied to the parent phase adjusters 17 and 18 so that the intensity of the inspection light detected by the second semiconductor optical amplifier 50 is maximized. Steps S3 and S4 may be performed repeatedly.
  • the controller 7 compares the intensity of the inspection light detected by the second semiconductor optical amplifier 50 with the reference light intensity. For example, when the intensity of the inspection light is greater than or equal to the reference light intensity, the controller 7 determines that the semiconductor optical phase modulator 1c is non-defective. On the other hand, when the intensity of the inspection light is less than the reference light intensity, the controller 7 determines that the semiconductor optical phase modulator 1c is defective.
  • the semiconductor optical phase modulator 1c of this embodiment further includes a third semiconductor optical amplifier 80.
  • FIG. Two child Mach-Zehnder interferometers 20 each include a second 2 ⁇ 2 optical splitter (optical splitter 23) including a third optical input port and a fourth optical input port.
  • a third optical input port is connected to one of the two first arm waveguides 11 , 12 of the parent Mach-Zehnder interferometer 10 .
  • a fourth optical input port is optically coupled to a third semiconductor optical amplifier 80 .
  • the inspection light is supplied not only from the first semiconductor optical amplifier 40 but also from the third semiconductor optical amplifier 80.
  • the light intensity of the inspection light detected at the second semiconductor optical amplifier 50, which can function as a photodiode, is increased.
  • the semiconductor optical phase modulator 1c can be inspected with higher accuracy.
  • a forward bias voltage is applied to the first semiconductor optical amplifier 40 and the third semiconductor optical amplifier 80, and the first inspection light is emitted from the first semiconductor optical amplifier 40.
  • emitting second inspection light from the third semiconductor optical amplifier 80 (S21); applying a reverse bias voltage to the second semiconductor optical amplifier 50 (S22); Comparing (S25) the intensity of the detected inspection light and a reference light intensity.
  • the intensity of the inspection light is the sum of the first intensity of the first inspection light and the second intensity of the second inspection light.
  • the inspection light is supplied not only from the first semiconductor optical amplifier 40 but also from the third semiconductor optical amplifier 80.
  • the light intensity of the inspection light detected at the second semiconductor optical amplifier 50, which can function as a photodiode, is increased.
  • the semiconductor optical phase modulator 1c can be inspected with higher accuracy.
  • Embodiments 1 to 3 disclosed this time are examples in all respects and are not restrictive. As long as there is no contradiction, at least two of Embodiments 1 to 3 disclosed this time may be combined.
  • the scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of claims.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

半導体光位相変調器(1)は、光位相変調素子(3)と、光位相変調素子(3)に入力される光を増幅する第一半導体光増幅器(40)と、光位相変調素子(3)から出力される変調信号光を増幅する第二半導体光増幅器(50)とを備える。半導体光位相変調器(1)の光入力端は、第一半導体光増幅器(40)の光入力端面(40a)である。半導体光位相変調器(1)の光出力端は、第二半導体光増幅器(50)の光出力端面(50a)である。

Description

半導体光位相変調器及びその検査方法
 本開示は、半導体光位相変調器及びその検査方法に関する。
 特許第6541898号公報(特許文献1)は、光位相変調器を開示している。この光位相変調器は、QPSK位相変調器と、QPSK位相変調器の入力に配置されている第一半導体光増幅器と、QPSK位相変調器の出力に配置されている第二半導体光増幅器とを備えている。
特許第6541898号公報
 光位相変調器に光を入力するために、光位相変調器の光入力端は、入力光ファイバに光学的に結合される。光位相変調器で生成された変調信号光を伝送するために、光位相変調器の光出力端は、出力光ファイバに光学的に結合される。しかし、特許文献1に開示されている光位相変調器では、光位相変調器の光入力端と第一半導体光増幅器との間に入力受動導波路が形成されているとともに、光位相変調器の光出力端と第二半導体光増幅器との間に出力受動導波路が形成されている。入力受動導波路及び出力受動導波路の各々の光閉じ込め係数は、第一半導体光増幅器の光閉じ込め係数より大きく、かつ、第二半導体光増幅器の光閉じ込め係数より大きい。入力受動導波路及び出力受動導波路の各々における光のモードフィールド径は小さいため、光位相変調器と入力光ファイバとの間の光結合損失、及び、光位相変調器と出力光ファイバとの間の光結合損失は大きい。
 また、特許文献1に開示されている光位相変調器の検査は、以下の方法で行われる。光位相変調器の光入力端に、検査光源と入力光ファイバを配置する。光位相変調器の光出力端に、出力光ファイバとパワーメータとを配置する。光源から放射された光を、入力光ファイバを通して、光位相変調器に入射させる。光位相変調器から出力された光を、出力光ファイバを通して、パワーメータに入射させる。パワーメータの出力が基準出力以上である場合には、光位相変調器は良品であると判断する。これに対し、パワーメータの出力が基準出力未満である場合には、光位相変調器は不良品であると判断する。このような光位相変調器の検査方法では、光位相変調器に対して、入力光ファイバ及び出力光ファイバを正確に位置合わせする必要がある。しかし、光位相変調器に対する入力光ファイバ及び出力光ファイバの位置合わせには多くの時間がかかる。
 本開示の第一の局面の目的は、光ファイバとの光結合損失を減少させることができる半導体光位相変調器を提供することである。本開示の第二の局面の目的は、半導体光位相変調器の検査時間を短縮することができる半導体光位相変調器の検査方法を提供することである。
 本開示の半導体光位相変調器は、光位相変調素子と、光位相変調素子に入力される光を増幅する第一半導体光増幅器と、光位相変調素子から出力される変調信号光を増幅する第二半導体光増幅器とを備える。第一半導体光増幅器は、第一多重量子井戸構造を有する第一コア層を含む。光位相変調素子は、第二多重量子井戸構造を有する第二コア層を含む。第二半導体光増幅器は、第三多重量子井戸構造を有する第三コア層を含む。第一コア層の第一厚さは、第二コア層の第二厚さより小さい。第一多重量子井戸構造の第一の井戸層数は、第二多重量子井戸構造の第二の井戸層数より少ない。第三コア層の第三厚さは、第二コア層の第二厚さより小さい。第三多重量子井戸構造の第三の井戸層数は、第二多重量子井戸構造の第二の井戸層数より少ない。半導体光位相変調器の光入力端は、第一半導体光増幅器の光入力端面である。半導体光位相変調器の光出力端は、第二半導体光増幅器の光出力端面である。
 本開示の半導体光位相変調器の検査方法は、第一半導体光増幅器及び第二半導体光増幅器の一方に順バイアス電圧を印加して、第一半導体光増幅器及び第二半導体光増幅器の一方から検査光を放射させることと、第一半導体光増幅器及び第二半導体光増幅器の他方に逆バイアス電圧を印加することと、第一半導体光増幅器及び第二半導体光増幅器の他方において検出される検査光の強度と、基準光強度とを比較することとを備える。
 そのため、第一半導体光増幅器の光閉じ込め係数は、光位相変調素子の光閉じ込め係数より小さく、かつ、第二半導体光増幅器の光閉じ込め係数は、光位相変調素子の光閉じ込め係数より小さい。第一半導体光増幅器及び第二半導体光増幅器の各々における光のモードフィールド径が増加する。半導体光位相変調器と入力光ファイバとの間の光結合損失と半導体光位相変調器と出力光ファイバとの間の光結合損失は、減少し得る。
 本開示の半導体光位相変調器の検査方法では、半導体光位相変調器とは別に、検査光源と、入力光ファイバと、出力光ファイバと、パワーメータとを準備する必要がなく、半導体光位相変調器に対して、検査光源と入力光ファイバと出力光ファイバとパワーメータとを位置合わせする必要がない。そのため、本開示の半導体光位相変調器の検査方法によれば、半導体光位相変調器の検査時間を短縮することができる。
実施の形態1の半導体光位相変調器の概略平面図である。 実施の形態1の半導体光位相変調器の受動導波路の概略断面図である。 実施の形態1の半導体光位相変調器の光スプリッタ及び光カプラの概略断面図である。 実施の形態1の半導体光位相変調器の位相変調部及び位相調整部の概略断面図である。 実施の形態1の半導体光位相変調器の第一半導体光増幅器の概略断面図である。 実施の形態1の半導体光位相変調器の第二半導体光増幅器の概略断面図である。 実施の形態1の半導体光位相変調装置の制御ブロック図である。 実施の形態1の半導体光位相変調器の検査方法のフローチャートを示す図である。 実施の形態2の半導体光位相変調器の概略平面図である。 実施の形態2の半導体光位相変調器のモニタ用フォトダイオードの概略断面図である。 実施の形態2の半導体光位相変調器のモニタ用フォトダイオードの概略断面図である。 実施の形態2の半導体光位相変調器の検査方法のフローチャートを示す図である。 実施の形態3の半導体光位相変調器の概略平面図である。 実施の形態3の半導体光位相変調器の第三半導体光増幅器の概略断面図である。 実施の形態3の半導体光位相変調器の検査方法のフローチャートを示す図である。
 以下、本開示の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。
 実施の形態1.
 図1から図6を参照して、実施の形態1の半導体光位相変調器1を説明する。半導体光位相変調器1は、光位相変調素子3と、第一半導体光増幅器40と、第二半導体光増幅器50と、基板9とを主に備える。
 基板9は、例えば、InP基板のような半導体基板である。基板9は、第一端面9aと、第二端面9bとを含む。第二端面9bは、第一端面9aとは反対側にあってもよい。光位相変調素子3と第一半導体光増幅器40と第二半導体光増幅器50とは、基板9上に形成されている。
 光位相変調素子3は、例えば、四位相偏移変調(QPSK)が可能なIQ(In-phase Quadrature)光変調部である。光位相変調素子3は、親マッハツェンダ干渉計10と、二つの子マッハツェンダ干渉計20と、位相変調部25,26と、親位相調整部17,18と、子位相調整部27,28とを含む。親マッハツェンダ干渉計10と、二つの子マッハツェンダ干渉計20と、位相変調部25,26と、親位相調整部17,18と、子位相調整部27,28とは、材料及び層構造において共通するコア層(コア層32,42,52)を含んでもよい。
 親マッハツェンダ干渉計10は、二本の第一アーム導波路11,12と、光スプリッタ13と、光カプラ14とを含む。
 図2に示されるように、第一アーム導波路11,12は、各々、下部クラッド層31と、コア層32と、上部クラッド層33とを含む。第一アーム導波路11,12は、絶縁保護層37をさらに含んでもよい。
 下部クラッド層31は、基板9上に形成されている。下部クラッド層31は、例えば、n型InP層である。コア層32は、下部クラッド層31上に形成されている。コア層32の屈折率は、下部クラッド層31の屈折率より大きく、かつ、上部クラッド層33の屈折率より大きい。コア層32は、例えば、AlGaInAsのような半導体材料で形成されている。コア層32は、例えば、多重量子井戸(MQW)構造を有している。上部クラッド層33は、コア層32上に形成されている。上部クラッド層33は、例えば、i型InP層である。第一アーム導波路11,12は、各々、ハイメサ構造を有している。
 絶縁保護層37が、ハイメサ構造上に形成されている。具体的には、絶縁保護層37は、上部クラッド層33の上面及び側面上と、コア層32の側面上と、下部クラッド層31上とに形成されている。絶縁保護層37は、酸化シリコンもしくは窒化シリコンのような無機絶縁材料、または、ベンゾシクロブテン(BCB)のような有機絶縁材料で形成されている。絶縁保護層37は、半導体光位相変調器1が半導体光位相変調器1の周囲雰囲気に含まれている酸素または水などに接触して、酸化または変質することを防ぐ。
 光スプリッタ13は、二本の第一アーム導波路11,12と第一半導体光増幅器40との間に形成されている。光スプリッタ13は、第一半導体光増幅器40によって増幅された光を分波して、二本の第一アーム導波路11,12に出力する。図3に示されるように、光スプリッタ13は、第一アーム導波路11,12と同様に、下部クラッド層31と、コア層32と、上部クラッド層33とを含む。光スプリッタ13は、第一アーム導波路11,12と、同じ材料で形成されており、かつ、同じ層構造を有している。光スプリッタ13は、例えば、多モード干渉(MMI)スプリッタである。光スプリッタ13は、例えば、2×2MMIスプリッタである。光スプリッタ13のコア層32の幅は、二本の第一アーム導波路11,12の各々のコア層32の幅より大きい。
 光スプリッタ13の二つの出力ポートは、二本の第一アーム導波路11,12に接続されている。光スプリッタ13の二つの入力ポートのうちの一方は、第一半導体光増幅器40に光学的に結合されている。具体的には、光導波路39は、光スプリッタ13の二つの入力ポートのうちの一方と第一半導体光増幅器40とに接続されている。光導波路39は、第一アーム導波路11,12の各々と同じ構成を有している。
 光カプラ14は、二本の第一アーム導波路11,12と第二半導体光増幅器50との間に形成されている。光カプラ14は、二本の第一アーム導波路11,12を伝搬する光を合波して、第二半導体光増幅器50に向けて出力する。図3に示されるように、光カプラ14は、光スプリッタ13と同様に構成されている。光カプラ14は、光スプリッタ13及び第二アーム導波路と、同じ材料で形成されており、かつ、同じ層構造を有している。光カプラ14は、例えば、MMIカプラである。光カプラ14は、例えばえ、2×2MMIカプラである。光カプラ14のコア層32の幅は、二本の第一アーム導波路11,12の各々のコア層32の幅より大きい。
 光カプラ14の二つの入力ポートは、二本の第一アーム導波路11,12に接続されている。光カプラ14の二つの出力ポートのうちの一方は、第二半導体光増幅器50に光学的に結合されている。具体的には、光導波路49は、光カプラ14の二つの出力ポートのうちの一方と第二半導体光増幅器50とに接続されている。光導波路49は、第一アーム導波路11,12の各々と同じ構成を有している。
 二つの子マッハツェンダ干渉計20は、それぞれ、二本の第一アーム導波路11,12に接続されている。第一アーム導波路11に接続されている子マッハツェンダ干渉計20と位相変調部25,26は、例えば、Iチャネル用のマッハツェンダ型光位相変調器を構成する。第一アーム導波路12に接続されている子マッハツェンダ干渉計20と位相変調部25,26は、例えば、Qチャネル用のマッハツェンダ型光位相変調器を構成する。子マッハツェンダ干渉計20は、各々、二本の第二アーム導波路21,22と、光スプリッタ23と、光カプラ24とを含む。
 図2に示されるように、第二アーム導波路21,22は、各々、第一アーム導波路11,12の各々と同じ構成を有している。第二アーム導波路21,22は、第一アーム導波路11,12と、同じ材料で形成されており、かつ、同じ層構造を有している。
 光スプリッタ23は、二本の第二アーム導波路21,22と光スプリッタ13との間に形成されている。光スプリッタ23は、光スプリッタ13によって分波された光をさらに分波して、二本の第二アーム導波路21,22に出力する。図3に示されるように、光スプリッタ23は、光スプリッタ13と同様に構成されている。光スプリッタ23は、例えば、MMIスプリッタである。光スプリッタ23は、例えば、2×2MMIスプリッタである。光スプリッタ23の二つの出力ポートは、二本の第二アーム導波路21,22に接続されている。光スプリッタ23の二つの入力ポートのうちの一方は、二本の第一アーム導波路11,12のうちの一つに接続されている。
 光カプラ24は、二本の第二アーム導波路21,22と光カプラ14との間に形成されている。光カプラ24は、二本の第二アーム導波路21,22を伝搬する光を合波して、光カプラ14に向けて出力する。図3に示されるように、光カプラ24は、光カプラ14と同様に構成されている。光カプラ24は、例えば、MMIカプラである。光カプラ24は、例えば、2×2MMIカプラである。光カプラ24の二つの入力ポートは、二本の第二アーム導波路21,22に接続されている。光カプラ24の二つの出力ポートのうちの一方は、二本の第一アーム導波路11,12のうちの一つに接続されている。
 位相変調部25,26は、二本の第二アーム導波路21,22に設けられている。具体的には、位相変調部25は、第二アーム導波路21に設けられている。位相変調部26は、第二アーム導波路22に設けられている。図4に示されるように、位相変調部25,26は、各々、下部クラッド層31、コア層32及び上部クラッド層33bに加えて、コンタクト層34と、電極36とを含む。位相変調部25,26は、絶縁保護層37をさらに含んでもよい。位相変調部25,26の上部クラッド層33bは、例えば、p型InP層である。コンタクト層34は、例えば、p型InGaAs層、AuZn層またはAuBe層である。電極36は、例えば、Ti、Au、Pt、NbまたはNiのような金属で形成されている。位相変調部25,26は、例えば、ハイメサ構造を有している。
 絶縁保護層37が、ハイメサ構造上に形成されている。具体的には、絶縁保護層37は、コンタクト層34の側面上と、上部クラッド層33bの側面上と、コア層32の側面上と、下部クラッド層31上とに形成されている。
 親位相調整部17,18は、二本の第一アーム導波路11,12に設けられている。具体的には、親位相調整部17は、第一アーム導波路11に設けられている。親位相調整部18は、第一アーム導波路12に設けられている。図4に示されるように、親位相調整部17,18は、位相変調部25,26と同じ構成を有している。親位相調整部17,18は、位相変調部25,26と、同じ材料で形成されており、かつ、同じ層構造を有している。例えば、光カプラ14の入力ポートにおいて第一アーム導波路11から出力されるIチャネル光信号と第一アーム導波路12から出力されるQチャネル光信号との間の位相差がπ/2となるように、親位相調整部17,18においてIチャネル光信号及びQチャネル光信号に与えられる位相が調整される。
 子位相調整部27,28は、二本の第二アーム導波路21,22に設けられている。具体的には、子位相調整部27は、第二アーム導波路21に設けられている。子位相調整部28は、第二アーム導波路22に設けられている。図4に示されるように、子位相調整部27,28は、位相変調部25,26と同じ構成を有している。子位相調整部27,28は、位相変調部25,26と、同じ材料で形成されており、かつ、同じ層構造を有している。
 第一半導体光増幅器40は、光位相変調素子3と基板9の第一端面9aとの間に形成されている。半導体光位相変調器1の光入力端は、第一半導体光増幅器40の光入力端面40aである。第一半導体光増幅器40は、入力光ファイバ5aに光学的に結合される。第一半導体光増幅器40の光入力端面40aは、基板9の第一端面9aに面一であってもよい。第一半導体光増幅器40は、光位相変調素子3に入力される光を増幅する。
 図5に示されるように、第一半導体光増幅器40は、下部クラッド層41と、コア層42と、上部クラッド層43と、電流ブロック層45と、コンタクト層44a,44bと、電極46a,46bとを含む。第一半導体光増幅器40は、絶縁保護層37をさらに含んでもよい。
 下部クラッド層41は、基板9上に形成されている。下部クラッド層41は、例えば、n型InP層である。コア層42は、下部クラッド層41上に形成されている。コア層42の屈折率は、下部クラッド層41の屈折率より大きく、かつ、上部クラッド層43の屈折率より大きい。コア層42は、例えば、AlGaInAsのような半導体材料で形成されている。コア層42は、例えば、多重量子井戸(MQW)構造を有している。第一半導体光増幅器40のコア層42の厚さは、光位相変調素子3のコア層32の厚さより小さい。第一半導体光増幅器40のコア層42の井戸層数は、光位相変調素子3のコア層32の井戸層数より少ない。そのため、第一半導体光増幅器40の光閉じ込め係数は、光位相変調素子3の光閉じ込め係数より小さい。上部クラッド層43は、例えば、p型InP層である。第一半導体光増幅器40は、例えば、ハイメサ構造を有している。
 電流ブロック層45は、コア層42の両側面に形成されている。電流ブロック層45は、電極46a,46b間を流れる電流を、コア層42に集中させる。電流ブロック層45は、例えば、p型InPのようなp型半導体層45aと、n型InPのようなn型半導体層45bとを含む。電流ブロック層45は、Fe添加InP層のような半絶縁層であってもよい。コンタクト層44a,44bは、例えば、n型InGaAs層、AuZn層またはAuBe層である。電極46a,46bは、例えば、Ti、Au、Pt、NbまたはNiのような金属で形成されている。
 絶縁保護層37が、ハイメサ構造上に形成されている。具体的には、絶縁保護層37は、コンタクト層44a,44b上と、上部クラッド層43の側面上と、電流ブロック層45の側面上と、下部クラッド層41上とに形成されている。
 第二半導体光増幅器50は、光位相変調素子3と基板9の第二端面9bとの間に形成されている。半導体光位相変調器1の光出力端は、第二半導体光増幅器50の光出力端面50aである。第二半導体光増幅器50は、出力光ファイバ5bに光学的に結合される。第二半導体光増幅器50の光出力端面50aは、基板9の第二端面9bに面一であってもよい。第二半導体光増幅器50は、光位相変調素子3から出力される変調信号光を増幅する。
 第二半導体光増幅器50は、第一半導体光増幅器40と同様に構成されている。具体的には、図6に示されるように、第二半導体光増幅器50は、下部クラッド層51と、コア層52と、上部クラッド層53と、電流ブロック層55と、コンタクト層54a,54bと、電極56a,56bとを含む。電流ブロック層55は、例えば、p型InPのようなp型半導体層55aと、n型InPのようなn型半導体層55bとを含む。電流ブロック層55は、Fe添加InP層のような半絶縁層であってもよい。第二半導体光増幅器50は、絶縁保護層37をさらに含んでもよい。第一半導体光増幅器40のコア層42と第二半導体光増幅器50のコア層52とは、互いに同じ材料で形成されており、かつ、互いに同じ層構造を有してもよい。
 第二半導体光増幅器50のコア層52の厚さは、光位相変調素子3のコア層32の厚さより小さい。第二半導体光増幅器50のコア層52の井戸層数は、光位相変調素子3のコア層32の井戸層数より少ない。そのため、第二半導体光増幅器50のコア層52の光閉じ込め係数は、光位相変調素子3のコア層32の光閉じ込め係数より小さい。
 第二半導体光増幅器50の第二長さは、第一半導体光増幅器40の第一長さより短くてもよい。本明細書において、第一半導体光増幅器40の第一長さは、第一半導体光増幅器40の光入力端面40aと第一半導体光増幅器40の光出力端面との間の長さを意味し、第二半導体光増幅器50の第二長さは、第二半導体光増幅器50の光入力端面と第二半導体光増幅器50の光出力端面50aとの間の長さを意味する。
 一般に、半導体光増幅器に入射する光の強度分布に依存して、半導体光増幅器内のキャリア密度が変動する。半導体光増幅器に入射する光の強度分布は、当該光の進行方向に垂直な断面における当該光の強度分布を意味する。半導体光増幅器内のキャリア密度の変動は、半導体光増幅器内の屈折率を変動させて、半導体光増幅器によって増幅される光に位相歪みを生じさせる。より強度が大きな光が入射する第二半導体光増幅器50の第二長さを第一半導体光増幅器40の第一長さより短くすることによって、第二半導体光増幅器50が光位相変調素子3から出力される変調信号光に与える位相歪みを減少させることができる。
 図7を参照して、光位相変調装置2は、半導体光位相変調器1と、コントローラ7とを備える。半導体光位相変調器1は、コントローラ7に接続されている。コントローラ7は、位相変調部25,26に印加する電圧と、親位相調整部17,18に印加する電圧と、子位相調整部27,28に印加する電圧と、第一半導体光増幅器40に注入する電流と、第二半導体光増幅器50に注入する電流と、第一半導体光増幅器40に印加する電圧と、第二半導体光増幅器50に印加する電圧とを制御し得る。コントローラ7は、第一半導体光増幅器40及び第二半導体光増幅器50の他方において検出される検査光の強度と、基準光強度とを比較して、半導体光位相変調器1が良品であるか否かを判断し得る。コントローラ7は、例えば、プロセッサを含むマイクロコンピュータまたは電子回路である。
 本実施の形態の半導体光位相変調器1の動作を説明する。
 第一半導体光増幅器40は、半導体光位相変調器1に入力される光を増幅する。位相変調部25,26に高周波電気信号を印加して、位相変調部25,26のコア層32の屈折率を変化させる。第一アーム導波路11に接続されている子マッハツェンダ干渉計20は、Iチャネル光信号を出力する。第一アーム導波路12に接続されている子マッハツェンダ干渉計20は、Qチャネル光信号を出力する。光カプラ14は、Iチャネル光信号とQチャネル光信号とを合波する。光位相変調素子3は、変調信号光を第二半導体光増幅器50に向けて出力する。第二半導体光増幅器50は、変調信号光を増幅する。こうして、半導体光位相変調器1は、変調信号光を出力する。
 図8を参照して、実施の形態1の半導体光位相変調器1の検査方法を説明する。
 本実施の形態の半導体光位相変調器1の検査方法は、第一半導体光増幅器40及び第二半導体光増幅器50の一方から検査光を放射させること(S1)と、第一半導体光増幅器40及び第二半導体光増幅器50の他方に逆バイアス電圧を印加すること(S2)と、第一半導体光増幅器40及び第二半導体光増幅器50の他方において検出される検査光の強度と、基準光強度とを比較することと(S5)を備える。半導体光位相変調器1が親位相調整部17,18と子位相調整部27,28とを備えている場合には、本実施の形態の半導体光位相変調器1の検査方法は、子位相調整部27,28に印加する電圧を調整すること(S3)と、親位相調整部17,18に印加する電圧を調整すること(S4)とをさらに備える。
 ステップS1では、例えば、第一半導体光増幅器40及び第二半導体光増幅器50の一方に順バイアス電圧を印加する。第一半導体光増幅器40及び第二半導体光増幅器50の一方は、増幅された自然放射光(ASE光)を放射する。このASE光は検査光として利用され、第一半導体光増幅器40及び第二半導体光増幅器50の一方は検査光の光源として機能する。
 ステップS2では、第一半導体光増幅器40及び第二半導体光増幅器50の他方に逆バイアス電圧を印加する。第一半導体光増幅器40及び第二半導体光増幅器50の他方は、検査光の強度を検出するフォトダイオードとして機能する。ステップS2とステップS1とは、いずれか先に行われてもよい。
 ステップS3では、子位相調整部27,28に印加する電圧を調整する。例えば、第一半導体光増幅器40及び第二半導体光増幅器50の他方で検出される検査光の強度が最大となるように、コントローラ7は、子位相調整部27,28に印加する電圧を調整する。
 ステップS4では、親位相調整部17,18に印加する電圧を調整する。例えば、第一半導体光増幅器40及び第二半導体光増幅器50の他方で検出される検査光の強度が最大となるように、コントローラ7は、親位相調整部17,18に印加する電圧を調整する。ステップS3とステップS4とは、繰り返し行われてもよい。
 ステップS5では、コントローラ7は、第一半導体光増幅器40及び第二半導体光増幅器50の他方において検出される検査光の強度と、基準光強度とを比較する。例えば、検査光の強度が基準光強度以上であるとき、コントローラ7は、半導体光位相変調器1が良品であると判断する。これに対し、検査光の強度が基準光強度未満であるとき、コントローラ7は、半導体光位相変調器1が不良品であると判断する。
 本実施の形態の半導体光位相変調器1及びその検査方法の効果を説明する。
 本実施の形態の半導体光位相変調器1は、光位相変調素子3と、光位相変調素子3に入力される光を増幅する第一半導体光増幅器40と、光位相変調素子3から出力される変調信号光を増幅する第二半導体光増幅器50とを備える。第一半導体光増幅器40は、第一多重量子井戸構造を有する第一コア層(コア層42)を含む。光位相変調素子3は、第二多重量子井戸構造を有する第二コア層(コア層32)を含む。第二半導体光増幅器50は、第三多重量子井戸構造を有する第三コア層(コア層52)を含む。第一コア層の第一厚さは、第二コア層の第二厚さより小さい。第一多重量子井戸構造の第一の井戸層数は、第二多重量子井戸構造の第二の井戸層数より少ない。第三コア層の第三厚さは、第二コア層の第二厚さより小さい。第三多重量子井戸構造の第三の井戸層数は、第二多重量子井戸構造の第二の井戸層数より少ない。半導体光位相変調器1の光入力端は、第一半導体光増幅器40の光入力端面40aである。半導体光位相変調器1の光出力端は、第二半導体光増幅器50の光出力端面50aである。
 そのため、第一半導体光増幅器40の光閉じ込め係数は、光位相変調素子3の光閉じ込め係数より小さく、かつ、第二半導体光増幅器50の光閉じ込め係数は、光位相変調素子3の光閉じ込め係数より小さい。第一半導体光増幅器40及び第二半導体光増幅器50の各々における光のモードフィールド径が増加する。半導体光位相変調器1と入力光ファイバ5aとの間の光結合損失と半導体光位相変調器1と出力光ファイバ5bとの間の光結合損失は、減少し得る。
 本実施の形態の半導体光位相変調器1は、光位相変調素子3と第一半導体光増幅器40と第二半導体光増幅器50とが搭載されている基板9をさらに備える。第一半導体光増幅器40の光入力端面40aは、基板9の第一端面9aに面一である。第二半導体光増幅器50の光出力端面50aは、第一端面9aとは異なる基板9の第二端面9bに面一である。そのため、半導体光位相変調器1と入力光ファイバ5aとの間の光結合損失と半導体光位相変調器1と出力光ファイバ5bとの間の光結合損失は、減少し得る。
 本実施の形態の半導体光位相変調器1では、第二半導体光増幅器50の第二長さは、第一半導体光増幅器40の第一長さより短い。そのため、第二半導体光増幅器50が光位相変調素子3から出力される変調信号光に与える位相歪みを減少させることができる。半導体光位相変調器1は、より高品質な位相変調信号光を出力することができる。
 本実施の形態の半導体光位相変調器1では、第一コア層(コア層42)及び第三コア層(コア層52)は、互いに同じ材料で形成されており、かつ、互いに同じ層構造を有している。そのため、半導体光位相変調器1のコア層は、二種類のコア材料で形成される。半導体光位相変調器1のコア層の種類が減少するため、半導体光位相変調器1のコストが低減し得る。
 本実施の形態の半導体光位相変調器1では、光位相変調素子3は、親マッハツェンダ干渉計10と、二つの子マッハツェンダ干渉計20と、位相変調部25,26とを含む。親マッハツェンダ干渉計10は、二本の第一アーム導波路11,12を含む。二つの子マッハツェンダ干渉計20は、それぞれ、二本の第一アーム導波路11,12に接続されており、かつ、二つの子マッハツェンダ干渉計20は、各々、二本の第二アーム導波路21,22を含む。位相変調部25,26は、二本の第二アーム導波路21,22に設けられている。そのため、半導体光位相変調器1は、QPSKのような多値位相変調信号を出力することができる。
 本実施の形態の半導体光位相変調器1では、光位相変調素子3は、親位相調整部17,18と、子位相調整部27,28とをさらに含む。親位相調整部17,18は、二本の第一アーム導波路11,12に設けられている。子位相調整部27,28は、二本の第二アーム導波路21,22に設けられている。そのため、半導体光位相変調器1は、より高品質な多値位相変調信号を出力することができる。
 本実施の形態の半導体光位相変調器1の検査方法は、第一半導体光増幅器40及び第二半導体光増幅器50の一方に順バイアス電圧を印加して、第一半導体光増幅器40及び第二半導体光増幅器50の一方から検査光を放射させること(S1)と、第一半導体光増幅器40及び第二半導体光増幅器50の他方に逆バイアス電圧を印加すること(S2)と、第一半導体光増幅器40及び第二半導体光増幅器50の他方において検出される検査光の強度と、基準光強度とを比較することと(S5)を備える。
 本実施の形態の半導体光位相変調器1の検査方法では、半導体光位相変調器1とは別に、検査光源と、入力光ファイバと、出力光ファイバと、パワーメータとを準備する必要がなく、半導体光位相変調器1に対して、検査光源と入力光ファイバと出力光ファイバとパワーメータとを位置合わせする必要がない。そのため、半導体光位相変調器1の検査時間が短縮され得る。
 実施の形態2.
 図9から図12を参照して、実施の形態2の半導体光位相変調器1bを説明する。本実施の形態の半導体光位相変調器1bは、実施の形態1の半導体光位相変調器1と同様の構成を備えるが、主に、以下の点で異なる。
 図9を参照して、半導体光位相変調器1bは、モニタ用フォトダイオード60と、モニタ用フォトダイオード70とをさらに備える。モニタ用フォトダイオード60は、光カプラ14の二つの出力ポートのうちの他方に光学的に結合されている。モニタ用フォトダイオード70は、光カプラ24の二つの出力ポートのうちの他方に光学的に結合されている。
 図10を参照して、モニタ用フォトダイオード60は、下部クラッド層61と、光吸収層62と、上部クラッド層63と、コンタクト層64a,64bと、電極66a,66bとを含む。モニタ用フォトダイオード60は、絶縁保護層37をさらに含んでもよい。
 下部クラッド層61は、基板9上に形成されている。下部クラッド層61は、例えば、n型InP層である。光吸収層62の屈折率は、下部クラッド層61の屈折率より大きく、かつ、上部クラッド層63の屈折率より大きい。光吸収層62は、例えば、AlGaInAsのような半導体材料で形成されている。光吸収層62は、例えば、多重量子井戸(MQW)構造を有している。モニタ用フォトダイオード60の光吸収層62は、第一半導体光増幅器40のコア層42及び第二半導体光増幅器50のコア層52と、同じ材料で形成されており、かつ、同じ層構造を有してもよい。上部クラッド層63は、例えば、p型InP層である。モニタ用フォトダイオード60は、例えば、ハイメサ構造を有している。
 コンタクト層64a,64bは、例えば、n型InGaAs層、AuZn層またはAuBe層である。電極66a,66bは、例えば、Ti、Au、Pt、NbまたはNiのような金属で形成されている。絶縁保護層37が、ハイメサ構造上に形成されている。具体的には、絶縁保護層37は、コンタクト層64a,64b上と、上部クラッド層63の側面上と、下部クラッド層61上とに形成されている。
 図11を参照して、モニタ用フォトダイオード70は、モニタ用フォトダイオード60と同じ構成を有している。具体的には、モニタ用フォトダイオード70は、各々、下部クラッド層71と、光吸収層72と、上部クラッド層73と、コンタクト層74a,74bと、電極76a,76bとを含む。モニタ用フォトダイオード70は、絶縁保護層37をさらに含んでもよい。モニタ用フォトダイオード70の光吸収層72は、モニタ用フォトダイオード60の光吸収層62と、同じ材料で形成されており、かつ、同じ層構造を有している。モニタ用フォトダイオード70の光吸収層72は、第一半導体光増幅器40のコア層42及び第二半導体光増幅器50のコア層52と、同じ材料で形成されており、かつ、同じ層構造を有してもよい。
 図7を参照して、本実施の形態の光位相変調装置2は、実施の形態1の光位相変調装置2と同様であるが、半導体光位相変調器1に代えて、半導体光位相変調器1bを備えている。コントローラ7は、モニタ用フォトダイオード60,70から検査光の強度に関する信号を受信し得る。
 図12を参照して、実施の形態2の半導体光位相変調器1bの検査方法を説明する。本実施の形態の半導体光位相変調器1bの検査方法は、実施の形態1の半導体光位相変調器1の検査方法と同様のステップを備えるが、主に、以下の点で異なる。本実施の形態の半導体光位相変調器1bの検査方法は、モニタ用フォトダイオード60,70に逆バイアス電圧を印加すること(S12)をさらに備える。本実施の形態の半導体光位相変調器1bの検査方法では、親位相調整部17,18に印加する電圧を調整すること(S4)の後に、第一半導体光増幅器40及び第二半導体光増幅器50の他方に逆バイアス電圧を印加すること(S2)を行っている。
 具体的には、本実施の形態のステップS1は、実施の形態のステップS1と同じである。第一半導体光増幅器40及び第二半導体光増幅器50の一方は、検査光の光源として機能する。
 ステップS12では、モニタ用フォトダイオード60,70に逆バイアス電圧を印加する。モニタ用フォトダイオード60,70は、第一半導体光増幅器40及び第二半導体光増幅器50の一方から放射される検査光を検出し得る。
 ステップS3では、子位相調整部27,28に印加する電圧を調整する。例えば、モニタ用フォトダイオード70で検出される検査光の強度が最大となるように、コントローラ7は、子位相調整部27,28に印加する電圧を調整する。
 ステップS4では、親位相調整部17,18に印加する電圧を調整する。例えば、モニタ用フォトダイオード60で検出される検査光の強度が最大となるように、コントローラ7は、親位相調整部17,18に印加する電圧を調整する。
 ステップS2は、ステップS4の後に行われる。ステップS2では、第一半導体光増幅器40及び第二半導体光増幅器50の他方に逆バイアス電圧を印加する。そのため、第一半導体光増幅器40及び第二半導体光増幅器50の他方は、検査光を検出するフォトダイオードとして機能する。
 ステップS5は、ステップS2に続いて行われる。本実施の形態のステップS5は、実施の形態のステップS5と同じである。
 本実施の形態の半導体光位相変調器1bの効果を説明する。
 本実施の形態の半導体光位相変調器1bは、第一のモニタ用フォトダイオード(モニタ用フォトダイオード60)と、第二のモニタ用フォトダイオード(モニタ用フォトダイオード70)とをさらに備える。親マッハツェンダ干渉計10は、第一光出力ポートと第二光出力ポートとを含む第一の2×2光カプラ(光カプラ14)を含む。第一光出力ポートは、第二半導体光増幅器50に光学的に結合されている。第二光出力ポートは、第一のモニタ用フォトダイオードに光学的に結合されている。二つの子マッハツェンダ干渉計20は、各々、第三光出力ポートと第四光出力ポートとを含む第二の2×2光カプラ(光カプラ24)を含む。第三光出力ポートは、親マッハツェンダ干渉計10の二本の第一アーム導波路11,12のうちの一つに接続されている。第四光出力ポートは、第二のモニタ用フォトダイオードに光学的に結合されている。
 そのため、親位相調整部17,18は、第一のモニタ用フォトダイオード(モニタ用フォトダイオード60)で検出される検出光の強度に基づいて調整され得る。子位相調整部27,28は、第二のモニタ用フォトダイオード(モニタ用フォトダイオード70)で検出される検出光の強度に基づいて調整され得る。親位相調整部17,18と子位相調整部27,28とは互いに独立して調整され得る。親位相調整部17,18は、二本の第一アーム導波路11,12の光路長をより正確に調整し得るとともに、子位相調整部27,28は、二本の第二アーム導波路21,22の光路長をより正確に調整し得る。半導体光位相変調器1bは、より高品質な位相変調信号光を出力することができる。
 本実施の形態の半導体光位相変調器1bでは、第一のモニタ用フォトダイオード(モニタ用フォトダイオード60)は、第四多重量子井戸構造を有する第一光吸収層(光吸収層62)を含む。第二のモニタ用フォトダイオード(モニタ用フォトダイオード70)は、第五多重量子井戸構造を有する第二光吸収層(光吸収層72)を含む。第一コア層(コア層42)、第三コア層(コア層52)、第一光吸収層及び第二光吸収層は、互いに、同じ材料で形成されており、かつ、互いに同じ層構造を有している。そのため、半導体光位相変調器1bのコア層及び光吸収層の種類が減少する。半導体光位相変調器1bのコストが低減し得る。
 実施の形態3.
 図13及び図14を参照して、実施の形態3の半導体光位相変調器1cを説明する。本実施の形態の半導体光位相変調器1cは、実施の形態1の半導体光位相変調器1と同様の構成を備えるが、主に、以下の点で異なる。
 半導体光位相変調器1cは、第三半導体光増幅器80をさらに備える。光スプリッタ23の二つの入力ポートのうちの他方は、第三半導体光増幅器80に光学的に結合されている。
 第三半導体光増幅器80は、第一半導体光増幅器40及び第二半導体光増幅器50と同様に構成されている。具体的には、図14に示されるように、第三半導体光増幅器80は、下部クラッド層81と、コア層82と、上部クラッド層83と、電流ブロック層85と、コンタクト層84a,84bと、電極86a,86bとを含む。電流ブロック層85は、例えば、p型InPのようなp型半導体層85aと、n型InPのようなn型半導体層85bとを含む。電流ブロック層85は、Fe添加InP層のような半絶縁層であってもよい。第三半導体光増幅器80は、絶縁保護層37をさらに含んでもよい。第三半導体光増幅器80のコア層82は、第一半導体光増幅器40のコア層42及び第二半導体光増幅器50のコア層52と、同じ材料で形成されており、かつ、同じ層構造を有してもよい。
 図15を参照して、実施の形態3の半導体光位相変調器1cの検査方法を説明する。本実施の形態の半導体光位相変調器1cの検査方法は、実施の形態1の半導体光位相変調器1の検査方法と同様のステップを備えるが、主に、以下の点で異なる。
 図7を参照して、本実施の形態の光位相変調装置2は、実施の形態1の光位相変調装置2と同様であるが、半導体光位相変調器1に代えて、半導体光位相変調器1cを備えている。コントローラ7は、さらに、第三半導体光増幅器80に注入する電流を制御し得る。
 本実施の形態の半導体光位相変調器1cの検査方法は、第一半導体光増幅器40から第一検査光を放射させるとともに、第三半導体光増幅器80から第二検査光を放射させること(S21)と、第二半導体光増幅器50に逆バイアス電圧を印加すること(S22)と、第二半導体光増幅器50において検出される検査光の強度と、基準光強度とを比較すること(S25)とを備える。検査光の強度は、第一検査光の第一強度と第二検査光の第二強度との和である。半導体光位相変調器1cが親位相調整部17,18と子位相調整部27,28とを備えている場合には、本実施の形態の半導体光位相変調器1cの検査方法は、子位相調整部27,28に印加する電圧を調整すること(S3)と、親位相調整部17,18に印加する電圧を調整すること(S4)とをさらに備える。
 具体的には、ステップS21では、第一半導体光増幅器40及び第三半導体光増幅器80に順バイアス電圧を印加する。第一半導体光増幅器40及び第三半導体光増幅器80は、ASE光を出力する。第一半導体光増幅器40から放射されるASE光は第一検査光として利用され、第一半導体光増幅器40は第一検査光の第一光源として機能する。第三半導体光増幅器80から放射されるASE光は第二検査光として利用され、第三半導体光増幅器80は第二検査光の第二光源として機能する。
 ステップS22では、第二半導体光増幅器50に逆バイアス電圧を印加する。第二半導体光増幅器50は、検査光の強度を検出するフォトダイオードとして機能する。検査光の強度は、第一検査光の第一強度と第二検査光の第二強度との和である。
 ステップS3では、子位相調整部27,28に印加する電圧を調整する。具体的には、第二半導体光増幅器50で検出される検査光の強度が最大となるように、コントローラ7は、子位相調整部27,28に印加する電圧を調整する。
 ステップS4では、親位相調整部17,18に印加する電圧を調整する。具体的には、第二半導体光増幅器50で検出される検査光の強度が最大となるように、コントローラ7は、親位相調整部17,18に印加する電圧を調整する。ステップS3とステップS4とは、繰り返し行われてもよい。
 ステップS25では、コントローラ7は、第二半導体光増幅器50において検出される検査光の強度と、基準光強度とを比較する。例えば、検査光の強度が基準光強度以上であるとき、コントローラ7は、半導体光位相変調器1cが良品であると判断する。これに対し、検査光の強度が基準光強度未満であるとき、コントローラ7は、半導体光位相変調器1cが不良品であると判断する。
 本実施の形態の半導体光位相変調器1c及びその検査方法の効果を説明する。
 本実施の形態の半導体光位相変調器1cは、第三半導体光増幅器80をさらに備える。二つの子マッハツェンダ干渉計20は、各々、第三光入力ポートと第四光入力ポートとを含む第二の2×2光スプリッタ(光スプリッタ23)を含む。第三光入力ポートは、親マッハツェンダ干渉計10の二本の第一アーム導波路11,12のうちの一つに接続されている。第四光入力ポートは、第三半導体光増幅器80に光学的に結合されている。
 検査光は、第一半導体光増幅器40だけでなく第三半導体光増幅器80からも供給される。フォトダイオードとして機能し得る第二半導体光増幅器50において検出される検査光の光強度が増加する。半導体光位相変調器1cは、より高い精度で検査され得る。
 本実施の形態の半導体光位相変調器1cの検査方法は、第一半導体光増幅器40及び第三半導体光増幅器80に順バイアス電圧を印加して、第一半導体光増幅器40から第一検査光を放射させるとともに、第三半導体光増幅器80から第二検査光を放射させること(S21)と、第二半導体光増幅器50に逆バイアス電圧を印加すること(S22)と、第二半導体光増幅器50において検出される検査光の強度と、基準光強度とを比較すること(S25)とを備える。検査光の強度は、第一検査光の第一強度と第二検査光の第二強度との和である。
 検査光は、第一半導体光増幅器40だけでなく第三半導体光増幅器80からも供給される。フォトダイオードとして機能し得る第二半導体光増幅器50において検出される検査光の光強度が増加する。半導体光位相変調器1cは、より高い精度で検査され得る。
 今回開示された実施の形態1から実施の形態3はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態1から実施の形態3の少なくとも2つを組み合わせてもよい。本開示の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
 1,1b,1c 半導体光位相変調器、2 光位相変調装置、3 光位相変調素子、5a 入力光ファイバ、5b 出力光ファイバ、7 コントローラ、9 基板、9a 第一端面、9b 第二端面、10 親マッハツェンダ干渉計、11,12 第一アーム導波路、13,23 光スプリッタ、14,24 光カプラ、17,18 親位相調整部、20 子マッハツェンダ干渉計、21,22 第二アーム導波路、25,26 位相変調部、27,28 子位相調整部、31,41,51,61,71,81 下部クラッド層
32,42,52,82 コア層、33,33b,43,53,63,73,83 上部クラッド層、34,44a,44b,54a,54b,64a,64b,74a,74b,84a,84b コンタクト層、36,46a,46b,56a,56b,66a,66b,76a,76b,86a,86b 電極、37 絶縁保護層、39,49 光導波路、40 第一半導体光増幅器、40a 光入力端面、45,55,65,75,85 電流ブロック層、45a,55a,85a p型半導体層、45b,55b,85b n型半導体層、50 第二半導体光増幅器、50a 光出力端面、60,70 モニタ用フォトダイオード、62,72 光吸収層、80 第三半導体光増幅器。

Claims (11)

  1.  光位相変調素子と、
     前記光位相変調素子に入力される光を増幅する第一半導体光増幅器と、
     前記光位相変調素子から出力される変調信号光を増幅する第二半導体光増幅器とを備える半導体光位相変調器において、
     前記第一半導体光増幅器は、第一多重量子井戸構造を有する第一コア層を含み、
     前記光位相変調素子は、第二多重量子井戸構造を有する第二コア層を含み、
     前記第二半導体光増幅器は、第三多重量子井戸構造を有する第三コア層を含み、
     前記第一コア層の第一厚さは、前記第二コア層の第二厚さより小さく、
     前記第一多重量子井戸構造の第一の井戸層数は、前記第二多重量子井戸構造の第二の井戸層数より少なく、
     前記第三コア層の第三厚さは、前記第二コア層の前記第二厚さより小さく、
     前記第三多重量子井戸構造の第三の井戸層数は、前記第二多重量子井戸構造の前記第二の井戸層数より少なく、
     前記半導体光位相変調器の光入力端は、前記第一半導体光増幅器の光入力端面であり、
     前記半導体光位相変調器の光出力端は、前記第二半導体光増幅器の光出力端面である、半導体光位相変調器。
  2.  前記光位相変調素子と前記第一半導体光増幅器と前記第二半導体光増幅器とが搭載されている基板をさらに備え、
     前記第一半導体光増幅器の前記光入力端面は、前記基板の第一端面に面一であり、
     前記第二半導体光増幅器の前記光出力端面は、前記第一端面とは異なる前記基板の第二端面に面一である、請求項1に記載の半導体光位相変調器。
  3.  前記第二半導体光増幅器の長さは、前記第一半導体光増幅器の長さより短い、請求項1または請求項2に記載の半導体光位相変調器。
  4.  前記第一コア層及び前記第三コア層は、互いに同じ材料で形成されており、かつ、互いに同じ層構造を有している、請求項1から請求項3のいずれか一項に記載の半導体光位相変調器。
  5.  前記光位相変調素子は、親マッハツェンダ干渉計と、二つの子マッハツェンダ干渉計と、位相変調部とを含み、
     前記親マッハツェンダ干渉計は、二本の第一アーム導波路を含み、
     前記二つの子マッハツェンダ干渉計は、それぞれ、前記二本の第一アーム導波路に接続されており、かつ、前記二つの子マッハツェンダ干渉計は、各々、二本の第二アーム導波路を含み、
     前記位相変調部は、前記二本の第二アーム導波路に設けられている、請求項1から請求項4のいずれか一項に記載の半導体光位相変調器。
  6.  前記光位相変調素子は、親位相調整部と、子位相調整部とをさらに含み、
     前記親位相調整部は、前記二本の第一アーム導波路に設けられており、
     前記子位相調整部は、前記二本の第二アーム導波路に設けられている、請求項5に記載の半導体光位相変調器。
  7.  第一のモニタ用フォトダイオードと、
     第二のモニタ用フォトダイオードとをさらに備え、
     前記親マッハツェンダ干渉計は、第一光出力ポートと第二光出力ポートとを含む第一の2×2光カプラを含み、
     前記第一光出力ポートは、前記第二半導体光増幅器に光学的に結合されており、
     前記第二光出力ポートは、前記第一のモニタ用フォトダイオードに光学的に結合されており、
     前記二つの子マッハツェンダ干渉計は、各々、第三光出力ポートと第四光出力ポートとを含む第二の2×2光カプラを含み、
     前記第三光出力ポートは、前記親マッハツェンダ干渉計の前記二本の第一アーム導波路のうちの一つに接続されており、
     前記第四光出力ポートは、前記第二のモニタ用フォトダイオードに光学的に結合されている、請求項6に記載の半導体光位相変調器。
  8.  前記第一のモニタ用フォトダイオードは、第四多重量子井戸構造を有する第一光吸収層を含み、
     前記第二のモニタ用フォトダイオードは、第五多重量子井戸構造を有する第二光吸収層を含み、
     前記第一コア層、前記第三コア層、前記第一光吸収層及び前記第二光吸収層は、互いに、同じ材料で形成されており、かつ、互いに同じ層構造を有している、請求項7に記載の半導体光位相変調器。
  9.  第三半導体光増幅器をさらに備え、
     前記二つの子マッハツェンダ干渉計は、各々、第三光入力ポートと第四光入力ポートとを含む第二の2×2光スプリッタを含み、
     前記第三光入力ポートは、前記親マッハツェンダ干渉計の前記二本の第一アーム導波路のうちの一つに光学的に結合されており、
     前記第四光入力ポートは、前記第三半導体光増幅器に光学的に結合されている、請求項5から請求項8のいずれか一項に記載の半導体光位相変調器。
  10.  前記第一半導体光増幅器及び前記第二半導体光増幅器の一方に順バイアス電圧を印加して、前記第一半導体光増幅器及び前記第二半導体光増幅器の前記一方から検査光を放射させることと、
     前記第一半導体光増幅器及び前記第二半導体光増幅器の他方に逆バイアス電圧を印加することと、
     前記第一半導体光増幅器及び前記第二半導体光増幅器の前記他方において検出される前記検査光の強度と、基準光強度とを比較することとを備える、請求項1から請求項9のいずれか一項に記載の半導体光位相変調器の検査方法。
  11.  前記第一半導体光増幅器及び前記第三半導体光増幅器に順バイアス電圧を印加して、前記第一半導体光増幅器から第一検査光を放射させるとともに、前記第三半導体光増幅器から第二検査光を放射させることと、
     前記第二半導体光増幅器に逆バイアス電圧を印加することと、
     前記第二半導体光増幅器において検出される検査光の強度と、基準光強度とを比較することとを備え、前記検査光の前記強度は、前記第一検査光の第一強度と前記第二検査光の第二強度との和である、請求項9に記載の半導体光位相変調器の検査方法。
PCT/JP2021/019813 2021-05-25 2021-05-25 半導体光位相変調器及びその検査方法 WO2022249283A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021563696A JP7072736B1 (ja) 2021-05-25 2021-05-25 半導体光位相変調器及びその検査方法
US18/561,304 US20240231176A1 (en) 2021-05-25 2021-05-25 Semiconductor optical phase modulator and method of testing the same
PCT/JP2021/019813 WO2022249283A1 (ja) 2021-05-25 2021-05-25 半導体光位相変調器及びその検査方法
CN202180098386.2A CN117355790A (zh) 2021-05-25 2021-05-25 半导体光相位调制器及其检查方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019813 WO2022249283A1 (ja) 2021-05-25 2021-05-25 半導体光位相変調器及びその検査方法

Publications (1)

Publication Number Publication Date
WO2022249283A1 true WO2022249283A1 (ja) 2022-12-01

Family

ID=81654300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019813 WO2022249283A1 (ja) 2021-05-25 2021-05-25 半導体光位相変調器及びその検査方法

Country Status (4)

Country Link
US (1) US20240231176A1 (ja)
JP (1) JP7072736B1 (ja)
CN (1) CN117355790A (ja)
WO (1) WO2022249283A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024209535A1 (ja) * 2023-04-04 2024-10-10 三菱電機株式会社 半導体光変調器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319454A (ja) * 1997-04-10 1998-12-04 Alcatel Alsthom Co General Electricite 二進光信号の波長変換器
US20110135314A1 (en) * 2009-12-08 2011-06-09 Onechip Photonics Inc. Waveguide Optically Pre-Amplified Detector with Passband Wavelength Filtering
JP2012004441A (ja) * 2010-06-18 2012-01-05 Furukawa Electric Co Ltd:The 光増幅装置
JP2018206899A (ja) * 2017-06-01 2018-12-27 富士通株式会社 光増幅器及び光増幅回路装置
JP6541898B2 (ja) * 2017-01-10 2019-07-10 三菱電機株式会社 半導体光増幅器およびその製造方法、光位相変調器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10666016B2 (en) * 2018-05-09 2020-05-26 Elenion Technologies, Llc Tunable lasers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319454A (ja) * 1997-04-10 1998-12-04 Alcatel Alsthom Co General Electricite 二進光信号の波長変換器
US20110135314A1 (en) * 2009-12-08 2011-06-09 Onechip Photonics Inc. Waveguide Optically Pre-Amplified Detector with Passband Wavelength Filtering
JP2012004441A (ja) * 2010-06-18 2012-01-05 Furukawa Electric Co Ltd:The 光増幅装置
JP6541898B2 (ja) * 2017-01-10 2019-07-10 三菱電機株式会社 半導体光増幅器およびその製造方法、光位相変調器
JP2018206899A (ja) * 2017-06-01 2018-12-27 富士通株式会社 光増幅器及び光増幅回路装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024209535A1 (ja) * 2023-04-04 2024-10-10 三菱電機株式会社 半導体光変調器

Also Published As

Publication number Publication date
JP7072736B1 (ja) 2022-05-20
US20240231176A1 (en) 2024-07-11
JPWO2022249283A1 (ja) 2022-12-01
CN117355790A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US6208454B1 (en) All-optical mach-zehnder wavelength converter with monolithically integrated laser
US7606447B2 (en) Mach-Zehnder type semiconductor device and method of controlling the same
US6766070B2 (en) High power fiber optic modulator system and method
JP5144306B2 (ja) 光半導体装置及びその製造方法
US6614213B1 (en) Optical power measurement in photonic integrated devices
US9054486B2 (en) Optical amplifier device
Hiraki et al. Membrane InGaAsP Mach–Zehnder modulator integrated with optical amplifier on Si platform
JP5503266B2 (ja) 多値光位相変調器
WO2022249283A1 (ja) 半導体光位相変調器及びその検査方法
US9379821B2 (en) Optical receiver
Houtsma et al. A 1 W linear high-power InP balanced uni-traveling carrier photodetector
JP2011209371A (ja) 光変調器
CA2267018C (en) Optical wavelength converter with active waveguide
JP2012118276A (ja) 光半導体装置
JP6761390B2 (ja) 半導体光集積素子
Rosborough et al. Residual Amplitude Modulation Reduction in Integrated Indium Phosphide Phase Modulators
Theurer Electroabsorption modulated lasers and hybridly integrated lasers for communication and sensing
JP2019057541A (ja) 半導体光集積素子
Hiraki et al. Loss-less operation of membrane III-V semiconductor Mach-Zehnder modulator with optical amplifier on Si platform
US20240272511A1 (en) Semiconductor optical integrated device and optical integrated apparatus
Chung et al. Large enhancement of linearity in electroabsorption modulator with composite quantum-well absorption core
US20230221612A1 (en) Optical phase modulator
Li et al. All-optical ACP-OPLL photonic integrated circuit
Lange Optical feedback effects within 1.55 μm InP-based DFB laser integrated Mach-Zehnder modulators for up to 100 GBd data transmission
Novack Silicon Photonic Platforms and Systems for High-speed Communications

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021563696

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18561304

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180098386.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942939

Country of ref document: EP

Kind code of ref document: A1