WO2022248184A1 - Elektrolyseur, bipolarplatte und verfahren zu ihrer herstellung - Google Patents

Elektrolyseur, bipolarplatte und verfahren zu ihrer herstellung Download PDF

Info

Publication number
WO2022248184A1
WO2022248184A1 PCT/EP2022/062128 EP2022062128W WO2022248184A1 WO 2022248184 A1 WO2022248184 A1 WO 2022248184A1 EP 2022062128 W EP2022062128 W EP 2022062128W WO 2022248184 A1 WO2022248184 A1 WO 2022248184A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
catalyst
temperature
composite material
bipolar plate
Prior art date
Application number
PCT/EP2022/062128
Other languages
English (en)
French (fr)
Inventor
Kai Weeber
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN202280052603.9A priority Critical patent/CN117730171A/zh
Publication of WO2022248184A1 publication Critical patent/WO2022248184A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form

Definitions

  • the present invention relates to a bipolar plate and a method for manufacturing the bipolar plate.
  • the present invention relates to an electrolyzer having the bipolar plate.
  • Water electrolyzers can be operated as alkaline electrolyzers, which use aqueous potassium hydroxide solution as the electrolyte. Such alkaline electrolyzers do not require noble metal catalysts. Instead, Raney nickel, for example, is used as a catalyst. This is applied to a metal grid as a porous structure. This metal grid also acts as a current transmitter.
  • the bipolar plates of such alkaline electrolyzers are usually made of steel. Due to the alkaline conditions, they are generally not subject to corrosion.
  • DE 10 2018220464 A1 describes a distributor structure for an electrolyzer that functions as a bipolar plate.
  • This is designed as an electrically conductive graphite/plastic compound. It has a channel structure on its surface to improve water discharge.
  • This bipolar plate is corrosion-resistant and can therefore also be used in acidic conditions in particular.
  • the bipolar plate which is provided in particular for an electrolyzer, has a plate that has an electrically conductive plastic composite material. It preferably consists of this plastic composite material. Electrically conductive is understood to mean in particular that the plate has an electrical conductivity of more than 10 6 S/m at a temperature of 25°C.
  • the plate is textured on at least one side.
  • the plate is coated with a catalyst on its structured side.
  • This bipolar plate has numerous advantages, particularly when used in an alkaline water electrolyzer.
  • the bipolar plate can be manufactured more cost-effectively.
  • it can be thermally welded to other components of the electrolyser, so that insert seals can be dispensed with.
  • this bipolar plate makes it possible to dispense with a metal grid with a porous surface structure as a carrier for a catalyst. Inserting such a metal grid into the electrolyser increases the ohmic resistance at the interface between the bipolar plate and the metal grid. This leads to a reduction in the efficiency of the electrolyzer and thus to an increase in the hydrogen production costs. Due to the higher efficiency of the electrolyzer when using this bipolar plate, which also serves as a carrier for the catalyst, the higher efficiency of the electrolyzer reduces the power loss that has to be discharged from a stack in the electrolyzer.
  • the plastic composite material contains graphite and/or at least one metal and at least one thermoplastic.
  • the thermoplastic makes it possible to thermally fix the catalyst to the structured side of the plate without using additional adhesives.
  • the graphite and/or the metal gives the composite material electrical conductivity in a cost-effective manner.
  • its proportion by weight in the plastic composite material is preferably in the range from 88% by weight to 95% by weight.
  • the thermoplastic is in particular polyphenylene sulfide (PPS) and/or polypropylene (PP).
  • the catalyst preferably has metal particles with a number-average particle size in the range from 10 ⁇ m to 30 ⁇ m.
  • the metal particles have a porous surface structure. Particularly preferred is he from these metal particles.
  • this grain size of the metal particles makes it possible to provide a sufficiently large catalyst surface for the water electrolysis, while at the same time the catalyst layer is easy to produce.
  • the number-average grain size can be determined in particular by means of a sieve analysis in accordance with the DIN 66165 standard.
  • the catalyst Even if it is fundamentally conceivable to provide a catalyst containing noble metals in order to use the bipolar plate in a PEM (proton exchange membrane) electrolyser operated under acidic conditions or in a fuel cell, it is preferable for the catalyst to be a Raney nickel trades. This allows the bipolar plate to be used in an alkaline electrolyzer, which can do without large amounts of noble metals as catalyst material, as are required in an acidic environment.
  • PEM proto exchange membrane
  • the plate is first provided, which has the electrically conductive plastic composite material and preferably consists of this. At least one side of the panel is textured. The plate is heated to a first temperature. In addition, a powdered catalyst is heated to a second temperature. The second temperature is greater than the first temperature. The catalyst is applied to the textured side of the panel. Due to the higher temperature of the powdered catalyst, some of the individual catalyst particles melt into the surface of the structured side of the plate and in this way permanently bond with it.
  • the first temperature corresponds to at least one Vicat softening point of a plastic of the plastic composite material. This already causes the plate to soften, so that catalyst particles hitting the plate can easily penetrate into it. However, the plate remains dimensionally stable.
  • the second temperature preferably corresponds to at least one
  • Heat deflection temperature of the plastic of the plastic composite material As soon as such a hot catalyst particle hits the surface of the plate has hit and adheres there due to its softening, it transfers further heat to the plastic composite material, so that it is no longer dimensionally stable at certain points, which leads to a permanent connection between the catalyst particle and the plate.
  • the Vicat softening point can be determined in particular according to standard ISO 306 at a heating rate of 50°C and a force of 50 N, and the deflection temperature can be determined in particular according to standard ISO 75-1/-2 at a pressure of 0.45 MPa will.
  • the catalyst is blown onto the structured side of the plate.
  • the catalyst particles can be given high kinetic energy in order to drill into the surface of the plate.
  • the catalyst particles can be applied to the plate by means of a decal process.
  • the catalyst is first applied to a carrier foil.
  • the carrier film is heated to the second temperature together with the catalyst.
  • the carrier foil is then pressed onto the structured side of the plate, the side of the carrier foil provided with the catalyst facing the plate.
  • the pressure can be precisely controlled in order to press the catalyst particles deep enough into the surface of the plate.
  • the backing sheet is removed.
  • thermoplasticity of the plastic in the plastic composite material makes it possible in particular to provide the plate by being produced from the plastic composite material by means of injection molding or by means of embossing.
  • the electrolyzer has at least one of the bipolar plates described. It preferably has only such bipolar plates. It is designed in particular as a water electrolyzer. It can be operated alkaline.
  • Figure 1 shows an exploded view of a stack in an electrolyzer according to an embodiment of the invention.
  • FIG. 2 shows a cross-sectional illustration of a bipolar plate according to an exemplary embodiment of the invention.
  • FIG. 3 shows a flow chart of a method according to an exemplary embodiment of the invention.
  • FIG. 4 shows a flow chart of a method according to another exemplary embodiment of the invention.
  • An electrolyzer 10 is designed as a water electrolyzer. It is intended for alkaline electrolysis and uses potassium hydroxide as the electrolyte. During operation it is filled with 30% caustic potash.
  • Figure 1 shows the structure of one of its stacks. A cell frame 11 is followed by a first bipolar plate 20 which is thermoplastically welded to it. This is followed by a cathode cell frame 12, a cathode electrode 13, a membrane frame 14, a cell membrane 15, an anode electrode 16, an anode cell frame 17 and then the next bipolar plate 20.
  • FIG. It has a plate 21 which, in the present exemplary embodiment, consists of polypropylene which contains graphite.
  • a plate 21 which, in the present exemplary embodiment, consists of polypropylene which contains graphite.
  • One side 22 of plate 21 is textured. This structuring consists of channels. Particles of Raney nickel are applied as a catalyst 23 on this side 22 .
  • the catalyst has a number-average particle size of 20 ⁇ m. He is partially embedded in the plate 21, where the particles are distributed at the bottom of the channels, on their walls and also outside the channels on the side 22.
  • the plate 21 is provided 31.
  • the plate 21 is produced by injection molding or by embossing.
  • the plate 21 is then heated 32 to a first temperature Ti.
  • This first temperature Ti is above the Vicat softening point of polypropylene of 97°C and below the heat distortion point of polypropylene of 133°C.
  • the powdered catalyst 23 is heated 33 to a second temperature T2 of more than 133°C.
  • the heated particles of the catalyst 23 are blown 34 onto the heated plate 21 from the structured side 22 by means of a powder coating device.
  • the catalyst 23 adheres to the plate 21 and fuses with its surface.
  • steps 30 to 32 are performed in the same manner as in the first embodiment of the method.
  • the powdered catalyst 23 is first applied to a decal carrier film 41 before it is subsequently heated 33 to the second temperature. Thereafter, the side of the carrier film provided with the heated catalyst 23 is pressed 42 onto the structured side 22 of the plate 21. The particles of the catalyst 23 bore into the plate 21 and are partially melted into it.
  • the carrier film is removed 43 and the method is then ended 35. In this way, too, a bipolar plate 20 can be obtained whose catalyst 23 is firmly fixed on the plate 21.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Die Erfindung betrifft eine Bipolarplatte (20), aufweisend eine Platte (21), die ein elektrisch leitfähiges Kunststoffverbundmaterial aufweist und auf zumindest einer Seite (22) strukturiert ist. Die Platte (21) ist auf ihrer strukturierten Seite (22) mit einem Katalysator (23) beschichtet. Weiterhin betrifft die Erfindung einen Elektrolyseur, der mindestens eine solche Bipolarplatte (20) aufweist. Die Herstellung der Bipolarplatte (20) erfolgt durch Bereitstellen einer Platte (21), die ein elektrisch leitfähiges Kunststoffverbundmaterial aufweist, Erhitzen der Platte (21) auf eine erste Temperatur, Erhitzen eines pulverförmigen Katalysators (23) auf eine zweite Temperatur, die größer als die erste Temperatur ist, und Aufbringen des Katalysators (23) auf eine strukturierte Seite (22) der Platte (21).

Description

Beschreibung
Titel
Elektrolyseur, Bipolarplate und Verfahren zu ihrer Herstellung
Die vorliegende Erfindung betrifft eine Bipolarplatte und ein Verfahren zur Herstellung der Bipolarplatte. Außerdem betrifft die vorliegende Erfindung einen Elektrolyseur, der die Bipolarplatte aufweist.
Stand der Technik
Wasserelektrolyseure können als alkalische Elektrolyseure betrieben werden, welche wässrige Kalilauge als Elektrolyt verwenden. Solche alkalischen Elektrolyseure benötigen keine Edelmetallkatalysatoren. Stattdessen wird beispielsweise Raney-Nickel als Katalysator verwendet. Dieser wird auf einem Metallgitter als poröse Struktur aufgebracht. Jenes Metallgitter fungiert gleichzeitig als Stromüberträger. Die Bipolarplatten solcher alkalischen Elektrolyseure werden in der Regel aus Stahl gefertigt. Aufgrund der alkalischen Bedingungen unterliegen Sie in der Regel keiner Korrosion.
In der DE 10 2018220464 Al wird eine als Bipolarplatte fungierende Verteilerstruktur für einen Elektrolyseur beschrieben. Diese ist als elektrisch leitfähiges Graphil/Kunststoff-Compound ausgeführt. Sie weist an ihrer Oberfläche eine Kanalstruktur auf, um den Wasseraustrag zu verbessern. Diese Bipolarplatte ist korrosionsbeständig und kann daher insbesondere auch unter sauren Bedingungen verwendet werden.
Offenbarung der Erfindung
Die Bipolarplatte, die insbesondere für einen Elektrolyseur vorgesehen ist, weist eine Platte auf, die ein elektrisch leitfähiges Kunststoffverbundmaterial aufweist. Vorzugsweise besteht sie aus diesem Kunststoffverbundmaterial. Unter elektrisch leitfähig wird dabei insbesondere verstanden, dass die Platte bei einer Temperatur von 25° C eine elektrische Leitfähigkeit von mehr als 106 S/m aufweist. Die Platte ist auf zumindest einer Seite strukturiert. Auf ihrer strukturierten Seite ist die Platte mit einem Katalysator beschichtet.
Diese Bipolarplatte hat insbesondere dann, wenn sie in einem alkalischen Wasserelektrolyseur verwendet wird, zahlreiche Vorteile. Durch die Verwendung des Kunststoffverbundmaterials anstelle eines Metalls kann die Bipolarplatte kostengünstiger gefertigt werden. Außerdem kann sie thermisch mit anderen Bestandteilen des Elektrolyseurs verschweißt werden, sodass auf Einlegedichtungen verzichtet werden kann. Vor allem ermöglicht diese Bipolarplatte es allerdings auf ein Metallgitter mit poröser Oberflächenstruktur als Träger eines Katalysators zu verzichten. Das Einlegen eines solchen Metallgitters in den Elektrolyseur erhöht den ohmschen Widerstand an der Grenzfläche zwischen der Bipolarplatte und dem Metallgitter. Dies führt zu einer Absenkung der Effizienz des Elektrolyseurs und damit zur Erhöhung der Wasserstoffgestehungskosten. Durch die höhere Effizienz des Elektrolyseurs bei Verwendung dieser Bipolarplatte, die zugleich als Träger des Katalysators dient, wird durch die höhere Effizienz des Elektrolyseurs die Verlustleistung verringert, welche im Elektrolyseur aus einem Stack ausgetragen werden muss.
Es ist bevorzugt, dass das Kunststoffverbundmaterial Graphit und/oder mindestens ein Metall sowie mindestens einen thermoplastischen Kunststoff enthält. Der thermoplastische Kunststoff ermöglicht es, den Katalysator ohne Verwendung zusätzlicher Adhäsionsmittel thermisch auf der strukturierten Seite der Platte zu fixieren. Der Graphit und/oder das Metall verleiht dem Verbundmaterial dabei in kostengünstiger Weise elektrische Leitfähigkeit. Hierzu liegt sein Gewichtsanteil an dem Kunststoffverbundmaterial vorzugsweise im Bereich von 88 Gew.-% bis 95 Gew.-%. Bei dem Thermoplast handelt es sich insbesondere um Polyphenylensulfid (PPS) und/oder Polypropylen (PP).
Der Katalysator weist bevorzugt Metallpartikel mit einer zahlenmittleren Korngröße im Bereich von 10 pm bis 30 pm auf. Insbesondere weisen die Metallpartikel eine poröse Oberflächenstruktur auf. Besonders bevorzugt besteht er aus diesen Metallpartikeln. In Verbindung mit der strukturierten Oberfläche der Platte ermöglicht es diese Korngröße der Metallpartikel eine für die Wasserelektrolyse ausreichend hohe Katalysatoroberfläche bereitzustellen, wobei gleichzeitig eine einfache Herstellbarkeit der Katalysatorschicht gewährleistet ist. Die zahlenmittlere Korngröße kann insbesondere mittels Siebanalyse gemäß der Norm DIN 66165 ermittelt werden.
Auch wenn es grundsätzlich denkbar ist, einen edelmetallhaltigen Katalysator vorzusehen, um die Bipolarplatte in einem unter sauren Bedingungen betriebenen PEM-Elektrolyseur (proton exchange membrane) oder in einer Brennstoffzelle zu verwenden, ist es doch bevorzugt, dass es sich bei dem Katalysator um Raney-Nickel handelt. Dies ermöglicht die Verwendung der Bipolarplatte in einem alkalischen Elektrolyseur, der auf große Mengen von Edelmetallen als Katalysatormaterial verzichten kann, wie sie in einem sauren Milieu benötigt werden.
In dem Verfahren zur Herstellung der Bipolarplatte wird zunächst die Platte bereitgestellt, die das elektrisch leitfähige Kunststoffverbundmaterial aufweist und vorzugsweise aus diesem besteht. Mindestens eine Seite der Platte ist strukturiert. Die Platte wird auf eine erste Temperatur erhitzt. Außerdem wird ein pulverförmiger Katalysator auf eine zweite Temperatur erhitzt. Die zweite Temperatur ist größer als die erste Temperatur. Der Katalysator wird auf die strukturierte Seite der Platte aufgebracht. Durch die höhere Temperatur des pulverförmigen Katalysators schmelzen sich einzelne Katalysatorpartikel teilweise in die Oberfläche der strukturierten Seite der Platte ein und verbinden sich auf diese Weise dauerhaft mit ihr.
Um diesen Effekt besonders effizient zu erzielen ist es bevorzugt, dass die erste Temperatur mindestens einer Vicat- Erweichungstemperatur eines Kunststoffs des Kunststoffverbundmaterials entspricht. Dies bewirkt bereits ein Erweichen der Platte, sodass auf die Platte treffende Katalysatorpartikel leicht in diese eindringen können. Dabei bleibt die Platte jedoch formstabil. Die zweite Temperatur entspricht vorzugsweise mindestens einer
Formbeständigkeitstemperatur des Kunststoffs des Kunststoffverbundmaterials. Sobald ein derart heißer Katalysatorpartikel auf die Oberfläche der Platte aufgetroffen ist und dort aufgrund ihrer Erweichung anhaftet, überträgt er weitere Wärme auf das Kunststoffverbundmaterial, sodass es punktuell nicht mehr formstabil ist, was zu einer dauerhaften Verbindung zwischen dem Katalysatorpartikel und der Platte führt. Die Vicat- Erweichungstemperatur kann insbesondere nach der Norm ISO 306 bei einer Aufheizgeschwindigkeit von 50°C und einer Kraft von 50 N ermittelt werden und die Formbeständigkeitstemperatur kann insbesondere nach der Norm ISO 75-1/-2 bei einem Druck von 0,45 MPa ermittelt werden.
In einer Ausführungsform des Verfahrens wird der Katalysator auf die strukturierte Seite der Platte aufgeblasen. In ähnlicher Weise wie bei einem Sandstrahlverfahren können die Katalysatorpartikel hierbei mit einer hohen kinetischen Energie versehen werden, um sich so in die Oberfläche der Platte zu bohren.
In einer anderen Ausführungsform des Verfahrens können die Katalysatorpartikel mittels eines Decal- Prozesses auf die Platte aufgebracht werden. Hierzu wird der Katalysator zunächst auf eine Trägerfolie aufgebracht. Die Trägerfolie wird zusammen mit dem Katalysator auf die zweite Temperatur erhitzt. Dann wird die Trägerfolie auf die strukturierte Seite der Platte aufgedrückt, wobei die mit dem Katalysator versehene Seite der Trägerfolie der Platte zugewandt wird. Der Druck kann dabei präzise gesteuert werden, um die Katalysatorpartikel ausreichend tief in die Oberfläche der Platte einzudrücken. Nachdem die Platte ausreichend abgekühlt ist, um eine dauerhafte Verbindung zwischen dem Katalysator und dem Kunststoffverbundmaterial zu schaffen, wird die Trägerfolie schließlich entfernt.
Die Thermoplastizität des Kunststoffs im Kunststoffverbundmaterial ermöglicht es insbesondere die Platte bereitzustellen, indem sie mittels Spritzgießens oder mittels Prägens aus dem Kunststoffverbundmaterial hergestellt wird.
Der Elektrolyseur weist zumindest eine der beschriebenen Bipolarplatten auf. Vorzugsweise weist er ausschließlich solche Bipolarplatten auf. Er ist insbesondere als Wasserelektrolyseur ausgeführt. Dabei kann er alkalisch betrieben werden. Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
Figur 1 zeigt eine Explosionsdarstellung eines Stacks in einem Elektrolyseur gemäß einem Ausführungsbeispiel der Erfindung.
Figur 2 zeigt eine Querschnittsdarstellung einer Bipolarplatte gemäß einem Ausführungsbeispiel der Erfindung.
Figur 3 zeigt ein Ablaufdiagramm eines Verfahrens gemäß einem Ausführungsbeispiel der Erfindung.
Figur 4 zeigt ein Ablaufdiagramm eines Verfahrens gemäß einem anderen Ausführungsbeispiel der Erfindung.
Ausführungsbeispiele der Erfindung
Ein Elektrolyseur 10 gemäß einem Ausführungsbeispiel der Erfindung ist als Wasserelektrolyseur ausgeführt. Er ist zur alkalischen Elektrolyse vorgesehen und verwendet Kaliumhydroxid als Elektrolyt. Im Betrieb ist er mit 30 %-iger Kalilauge gefüllt. Figur 1 zeigt den Aufbau eines seiner Stacks. Auf einen Zellrahmen 11 folgt eine erste Bipolarplatte 20, die thermoplastisch mit diesem verschweißt ist. Es folgen ein Kathodenzellrahmen 12, eine Kathodenelektrode 13, ein Membranrahmen 14, eine Zellmembran 15, eine Anodenelektrode 16, ein Anodenzellrahmen 17 und anschließend die nächste Bipolarplatte 20.
Eine der Bipolarplatten 20 ist in Figur 2 dargestellt. Sie weist eine Platte 21 auf, die im vorliegenden Ausführungsbeispiel aus Polypropylen besteht, welches Graphit enthält. Eine Seite 22 der Platte 21 ist strukturiert. Diese Strukturierung besteht in Kanälen. Auf dieser Seite 22 sind Partikel aus Raney-Nickel als Katalysator 23 aufgebracht. Der Katalysator weist eine zahlenmittlere Partikelgröße von 20 pm auf. Er ist teilweise in die Platte 21 eingebettet, wobei die Partikel am Boden der Kanäle, an ihren Wänden und auch außerhalb der Kanäle auf der Seite 22 verteilt sind.
In einem ersten Ausführungsbeispiel des Verfahrens zur Herstellung der Bipolarplatte 20 ist, wie in Figur 3 dargestellt ist, nach dem Start 30 des Verfahrens vorgesehen, die Platte 21 bereitzustellen 31. Hierzu wird die Platte 21 mittels Spritzgießens oder mittels Prägens hergestellt. Es folgt ein Erhitzen 32 der Platte 21 auf eine erste Temperatur Ti. Diese erste Temperatur Ti liegt über der Vicat- Erweichungstemperatur des Polypropylens von 97°C und unter der Formbeständigkeitstemperatur des Polypropylens von 133°C. Außerdem erfolgt ein Erhitzen 33 des pulverförmigen Katalysators 23 auf eine zweite Temperatur T2 von mehr als 133°C. Schließlich werden die erhitzten Partikel des Katalysators 23 von der strukturierten Seite 22 mittels einer Pulverbeschichtungsvorrichtung auf die erhitzte Platte 21 aufgeblasen 34. Dabei haftet der Katalysator 23 an der Platte 21 an und verschmilzt mit ihrer Oberfläche. Nach dem Abkühlen der so erhaltenden Bipolarplatte 20 auf Raumtemperatur erfolgt ein Beenden 35 des Verfahrens. Der Katalysator 23 ist nun dauerhaft auf der Platte 21 fixiert.
In einem zweiten Ausführungsbeispiel des Verfahrens, das in Figur 4 dargestellt ist, werden die Schritte 30 bis 32 in derselben Weise wie im ersten Ausführungsbeispiel des Verfahrens durchgeführt. Der pulverförmige Katalysator 23 wird jedoch zunächst auf eine Decal-Trägerfolie aufgebracht 41 bevor anschließend sein Erhitzen 33 auf die zweite Temperatur erfolgt. Danach wird die mit dem erhitzten Katalysator 23 versehene Seite der Trägerfolie auf die strukturierte Seite 22 der Platte 21 aufgedrückt 42. Dabei bohren sich die Partikel des Katalysators 23 in die Platte 21 und werden teilweise in diese eingeschmolzen. Nach dem Abkühlen der Bipolarplatte 20 auf Raumtemperatur erfolgt ein Entfernen 43 der Trägerfolie und das Verfahren wird anschließend beendet 35. Auch auf diese Weise kann eine Bipolarplatte 20 erhalten werden, deren Katalysator 23 fest auf der Platte 21 fixiert ist.

Claims

Ansprüche
1. Bipolarplatte (20), aufweisend eine Platte (21), die ein elektrisch leitfähiges Kunststoffverbundmaterial aufweist und auf zumindest einer Seite (22) strukturiert ist, dadurch gekennzeichnet, dass die Platte (21) auf ihrer strukturierten Seite (22) mit einem Katalysator (23) beschichtet ist.
2. Bipolarplatte (20) nach Anspruch 1, dadurch gekennzeichnet, dass das Kunststoffverbundmaterial Graphit und/oder mindestens ein Metall sowie mindestens einen thermoplastischen Kunststoff enthält.
3. Bipolarplatte (20) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Katalysator (23) Metallpartikeln mit einer zahlenmittleren Korngröße im Bereich von 10 pm bis 30 pm aufweist.
4. Verfahren zur Herstellung einer Bipolarplatte (20) nach einem der Ansprüche 1 bis 3, umfassend die folgenden Schritte:
Bereitstellen (31) einer Platte (21), die ein elektrisch leitfähiges Kunststoffverbundmaterial aufweist,
Erhitzen (32) der Platte (21) auf eine erste Temperatur (Ti),
Erhitzen (33) eines pulverförmigen Katalysators (23) auf eine zweite Temperatur (T2), die größer als die erste Temperatur (Ti) ist, und
Aufbringen des Katalysators (23) auf eine strukturierte Seite (22) der Platte (21).
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die erste Temperatur (Ti) mindestens einer Vicat- Erweichungstemperatur eines Kunststoffs des Kunststoffverbundmaterials entspricht und die zweite Temperatur (T2) mindestens einer Formbeständigkeitstemperatur des Kunststoffs des Kunststoffverbundmaterials entspricht.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Katalysator (23) auf die strukturierte Seite (22) der Platte (21) aufgeblasen wird (34).
7. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Katalysator (23) auf eine Trägerfolie aufgebracht wird (41), auf der Trägerfolie auf die zweite Temperatur (T2) erhitzt wird (33), die Trägerfolie auf die strukturierte Seite (22) der Platte (21) aufgedrückt (42) wird und die Trägerfolie anschließend von der Platte (21) entfernt wird (43).
8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass die Platte (21) bereitgestellt wird (31), indem sie mittels Spritzgießens oder mittels Prägens aus dem Kunststoffverbundmaterial hergestellt wird.
9. Elektrolyseur (10), aufweisend mindestens eine Bipolarplatte (20) nach einem der Ansprüche 1 bis 3.
PCT/EP2022/062128 2021-05-28 2022-05-05 Elektrolyseur, bipolarplatte und verfahren zu ihrer herstellung WO2022248184A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280052603.9A CN117730171A (zh) 2021-05-28 2022-05-05 电解装置、双极板和用于其制造的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021205458.7 2021-05-28
DE102021205458.7A DE102021205458A1 (de) 2021-05-28 2021-05-28 Elektrolyseur, Bipolarplatte und Verfahren zu ihrer Herstellung

Publications (1)

Publication Number Publication Date
WO2022248184A1 true WO2022248184A1 (de) 2022-12-01

Family

ID=81941005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/062128 WO2022248184A1 (de) 2021-05-28 2022-05-05 Elektrolyseur, bipolarplatte und verfahren zu ihrer herstellung

Country Status (3)

Country Link
CN (1) CN117730171A (de)
DE (1) DE102021205458A1 (de)
WO (1) WO2022248184A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0169301A1 (de) * 1984-06-27 1986-01-29 W.C. Heraeus GmbH Verbundelektrode, Verfahren zu ihrer Herstellung und ihre Anwendung
DE10038538A1 (de) * 2000-08-08 2002-02-28 Stefan Hoeller Elektrochemische Zelle
US20050112443A1 (en) * 2003-10-27 2005-05-26 Jane Allin Coated aluminum separator plates for fuel cells
DE102004057447A1 (de) * 2004-11-24 2006-06-01 Reinz-Dichtungs-Gmbh Elektrochemisches System sowie Versorgungsplatte
DE102018220464A1 (de) 2018-11-28 2020-05-28 Robert Bosch Gmbh Verteilerstruktur für Brennstoffzelle und Elektrolyseur

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951924B2 (ja) 2005-10-07 2012-06-13 学校法人早稲田大学 固体高分子電解質型燃料電池用バイポーラプレート及び固体高分子電解質型燃料電池
DE102007042985A1 (de) 2007-09-10 2009-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bipolarplatte für einen PEM-Elektrolyseur
JP6098998B2 (ja) 2013-09-12 2017-03-22 住友電気工業株式会社 電池用セルスタック、およびレドックスフロー電池
DE102019218861A1 (de) 2019-12-04 2021-06-10 Robert Bosch Gmbh Bipolarplatte für eine Brennstoffzelle, Verfahren zur Herstellung einer Brennstoffzelle und Brennstoffzelle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0169301A1 (de) * 1984-06-27 1986-01-29 W.C. Heraeus GmbH Verbundelektrode, Verfahren zu ihrer Herstellung und ihre Anwendung
DE10038538A1 (de) * 2000-08-08 2002-02-28 Stefan Hoeller Elektrochemische Zelle
US20050112443A1 (en) * 2003-10-27 2005-05-26 Jane Allin Coated aluminum separator plates for fuel cells
DE102004057447A1 (de) * 2004-11-24 2006-06-01 Reinz-Dichtungs-Gmbh Elektrochemisches System sowie Versorgungsplatte
DE102018220464A1 (de) 2018-11-28 2020-05-28 Robert Bosch Gmbh Verteilerstruktur für Brennstoffzelle und Elektrolyseur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN W ET AL: "Evaluation of a compression molded composite bipolar plate for direct methanol fuel cell", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER, AMSTERDAM, NL, vol. 35, no. 8, 1 April 2010 (2010-04-01), pages 3783 - 3788, XP026994001, ISSN: 0360-3199, [retrieved on 20100302] *

Also Published As

Publication number Publication date
DE102021205458A1 (de) 2022-12-01
CN117730171A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
DE69933566T2 (de) Brennstoffzelle mit festem polymerelektrolyten
EP2201157B1 (de) Bipolarplatte für einen pem-elektrolyseur
DE102008029628B4 (de) Brennstoffzellenstapel mit Bipolarplatten-Diffusionsmedienanordnung mit niedrigem elektrischen Widerstand und Verfahren zu seiner Herstellung
WO2005006480A2 (de) Membran-elektroden-einheit für die wasserelektrolyse
DE10196698B3 (de) Brennstoffzellenseparator, Herstellungsverfahren desselben, und den Separator verwendende Feststoffpolymerbrennstoffzelle
DE10207743A1 (de) Elektrode für eine Polymerelektrolyt-Brennstoffzelle, Trennwand hierfür sowie Polymerelektrolyt-Brennstoffzelle und Elektrizitätserzeugungssystem unter Verwendung derselben
DD263086A5 (de) Feste polymerelektrolytstruktur
EP0154772B1 (de) Bipolarplatte für einen aus mehreren elektrochemischen Zellen mit Feststoffelektrolyt aufgebauten stapelartigen Apparat und Verfahren zu deren Herstellung
DE3104122A1 (de) Fester polymerer elektrolyt und verfahren zur herstellung
DE3640206A1 (de) Batterien aus methanol/luft-brennstoffzellen hoher energie- und leistungsdichte
DE102017107422A1 (de) Verfahren zur Herstellung einer Bipolarplatte-Stromkollektor-Einheit, Bipolarplatte-Stromkollektor-Einheit und deren Verwendung
DE10151134A1 (de) Diffusionsschicht für eine Brennstoffzelle und ein Verfahren und Vorrichtung zur Herstellung derselben
DE3021454A1 (de) Verfahren zur elektrolyse einer waessrigen alkalichloridloesung
DE19836651A1 (de) Mehrschichtige Elektrode für elektrochemische Anwendungen
EP3456866A1 (de) Verfahren zur herstellung eines interkonnektors, interkonnektor und dessen verwendung
WO2022248184A1 (de) Elektrolyseur, bipolarplatte und verfahren zu ihrer herstellung
DE2316067A1 (de) Brennstoffbatterie in filterpressenbauweise
DE102017000960B4 (de) Verfahren zum Herstellen einer Membran-Elektroden-Anordnung für eine Brennstoffzelle
EP2487739B1 (de) Verfahren zur Herstellung einer Bipolarplatte und Bipolarplatte für eine bipolare Batterie
DE102008036318A1 (de) Verfahren zur Herstellung einer Bipolarzelle und Bipolarzelle für eine bipolare Batterie
DE102004023712B4 (de) Bipolarplatte sowie Verfahren zur Herstellung einer Bipolarplatte einer Brennstoffzelle
WO2021198137A1 (de) Verfahren zur herstellung einer gas- und/oder elektronenleitungsstruktur und brennstoff-/elektrolysezelle
DE102018123040A1 (de) Herstellungsverfahren für einen Brennstoffzellenseparator
DE102008036320B4 (de) Verfahren zur Herstellung einer Bipolarplatte und Bipolarplatte für eine bipolare Batterie
DE102018204602A1 (de) Gasverteilerstruktur für eine Brennstoffzelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22728096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202280052603.9

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22728096

Country of ref document: EP

Kind code of ref document: A1