WO2022247048A1 - 石墨烯聚合物电化学传感器及制备方法与其在检测对硝基酚的应用 - Google Patents

石墨烯聚合物电化学传感器及制备方法与其在检测对硝基酚的应用 Download PDF

Info

Publication number
WO2022247048A1
WO2022247048A1 PCT/CN2021/116572 CN2021116572W WO2022247048A1 WO 2022247048 A1 WO2022247048 A1 WO 2022247048A1 CN 2021116572 W CN2021116572 W CN 2021116572W WO 2022247048 A1 WO2022247048 A1 WO 2022247048A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
carbon
electrode
voltage
electrochemical sensor
Prior art date
Application number
PCT/CN2021/116572
Other languages
English (en)
French (fr)
Inventor
李一苇
肖雷雷
马耀宏
宋瑾
史建国
杨俊慧
Original Assignee
山东省科学院生物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省科学院生物研究所 filed Critical 山东省科学院生物研究所
Priority to AU2021447399A priority Critical patent/AU2021447399A1/en
Publication of WO2022247048A1 publication Critical patent/WO2022247048A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Definitions

  • the invention relates to the fields of electrochemical sensors, electrochemical processing technology, nanometer materials and analytical chemistry, in particular to a graphene polymer electrochemical sensor, a preparation method and its application in detecting p-nitrophenol.
  • p-nitrophenol (p-nitrophenol, pNP, p-nitrophenol) is an important raw material and intermediate product widely used in medicine, agriculture, industry, papermaking and other fields, and has been widely distributed in various water bodies around the world middle.
  • pNP is extremely toxic and poses obvious threats to animals, plants and humans.
  • the chemical stability of pNP is extremely strong, it is difficult to decompose in the natural environment, and it will also form a food chain enrichment effect. Its environmental hazards are very prominent, and it has been included in the list of 114 major pollutants by the US Environmental Protection Agency (USEPA), so its analysis and detection is very important.
  • USEPA US Environmental Protection Agency
  • the object of the present invention is to provide a graphene polymer electrochemical sensor and its preparation method and its application in detecting p-nitrophenol.
  • the graphene polymer electrochemical sensor provided by the invention has a low detection limit , wide linear detection range, high stability, and low cost, it can be used not only for the preparation of disposable pNP test strips, but also for long-term continuous monitoring of pNP in situ.
  • a graphene polymer electrochemical sensor includes a carbon-based electrode, the surface of the carbon-based electrode is modified with a composite material, and the composite material is formed by compounding graphene and polyarginine.
  • the present invention finds through research that the carbon-based electrode can perform electro-oxidation and electro-reduction catalysis on pNP, so as to generate electrochemical signals that can be used for quantitative analysis.
  • the electro-oxidation process can cause the electrochemical polymerization of pNP products, leading to electrode contamination and contamination of the sensing signal; however, this problem can be avoided by using the electro-reduction reaction.
  • the electrochemical in situ synthesis of polyarginine-graphene interface can greatly enhance the electroreduction signal of pNP on the carbon electrode, and realize the detection of pNP with low detection limit, wide linear detection range and high stability.
  • a preparation method of a graphene polymer electrochemical sensor the carbon-based electrode is subjected to an electrochemical treatment to make the surface of the carbon-based electrode synthesize graphene in situ, and then the carbon-based electrode synthesized on the surface of the graphene is subjected to a second Secondary electrochemical treatment, polycondensation of arginine into polyarginine, and composite of polyarginine and graphene.
  • the fifth aspect is an electrochemical detection method for p-nitrophenol, which uses the above-mentioned graphene polymer electrochemical sensor as a working electrode, and immerses the working electrode in a solution to be tested containing p-nitrophenol to perform electrochemical detection.
  • the present invention finds through experiments that the composite of carbon-based electrode surface-modified graphene and polyarginine has a phenomenon of stagnation or even disorder in the current intensity of the sensing signal of pNP. Based on this phenomenon, it is found that surface-modified graphene and polyarginine
  • the acid-composite carbon-based electrodes can serve as pNP electrochemical sensors.
  • the electrochemical sensor provided by the present invention has the advantages of low detection limit, wide linear detection range, high selectivity and high stability for the electrochemical detection of pNP.
  • Fig. 1 is the P(Arg)/eG/SPE prepared in Example 1 of the present invention, the eG/SPE prepared in Comparative Example 1 and the element composition histogram of SPE;
  • Fig. 2 is the XPS spectrogram of P(Arg)/eG/SPE prepared in Example 1 of the present invention and eG/SPE prepared in Comparative Example 1, a is eG/SPE, b is P(Arg)/eG/SPE, c is L-arginine;
  • Fig. 3 is the FTIR spectrum of P(Arg) in the P(Arg)/eG/SPE prepared in Example 1 of the present invention
  • Fig. 5 is the AC impedance characterization result figure of experimental example 1 of the present invention.
  • Fig. 6 is the cyclic voltammetry test result figure of experimental example 2 of the present invention.
  • Fig. 7 is the electric reduction reaction constant potential current test result figure of experimental example 3 of the present invention.
  • Fig. 8 is the electro-oxidation reaction constant potential current test result figure of experimental example 3 of the present invention.
  • Fig. 9 is the result figure of the SWV scanning test of experimental example 4 of the present invention.
  • Fig. 10 is the result figure of the selectivity test of experimental example 4 of the present invention.
  • Fig. 11 is a diagram of test results of Experimental Example 6 of the present invention.
  • a typical embodiment of the present invention provides a graphene polymer electrochemical sensor, including a carbon-based electrode, the surface of the carbon-based electrode is modified composite material, and the composite material is formed by compounding graphene and polyarginine .
  • the surface of the carbon-based electrode is modified with a compound of graphene and polyarginine, so that pNP can be electrooxidized, and the pNP electrooxidation reaction can be used to realize the detection of pNP with low detection limit, wide linear detection range and high stability. .
  • the graphene is in-situ synthesized graphene.
  • the carbon-based electrode is a carbon screen-printed electrode.
  • Another embodiment of the present invention provides a method for preparing a graphene polymer electrochemical sensor.
  • the carbon-based electrode is subjected to an electrochemical treatment to synthesize graphene in situ on the surface of the carbon-based electrode, and then the surface is synthesized into graphite
  • the carbon-based electrode of alkene is subjected to a secondary electrochemical treatment to polycondense arginine into polyarginine, and to composite polyarginine with graphene.
  • Electrochemical treatment methods include voltammetric, amperometric, and amperometric methods.
  • Voltammetry includes, but is not limited to, cyclic voltammetry, square wave pulse voltammetry, differential pulse voltammetry, linear voltammetry.
  • the current method used includes but not limited to potentiostatic current method and differential pulse current method.
  • an electrochemical treatment process is as follows: first use a positive DC voltage to treat the carbon-based electrode or apply a positive voltage to scan the carbon-based electrode, and then apply a negative voltage for scanning treatment or use a negative DC voltage to treat the carbon-based electrode. .
  • the positive DC voltage is 1.0-3.0V.
  • the time for treating the carbon-based electrode with positive DC voltage is 150-250s.
  • the scanning range of the positive voltage and the negative voltage is 0-2.2V.
  • the scan rate is 50-150mV/s, and the number of scans is 5-30.
  • the scanning range of the negative voltage is -1.5-0V.
  • the scanning rate is 50-150mV/s, and the number of scanning is 10-40.
  • the negative DC voltage is -2.0 ⁇ -1.5V.
  • the processing time is 100-150s.
  • the electrolyte solution in the electrochemical treatment is a phosphate buffered saline solution.
  • the pH of the phosphate buffer solution is 7.0-7.4.
  • the secondary electrochemical treatment is a positive DC voltage treatment or a positive voltage sweep treatment.
  • the voltage of the secondary electrochemical treatment is 0.20-0.25V.
  • the processing time is 150-200s.
  • the scanning range of the positive voltage is 0-2.2V.
  • the scan rate is 50-150mV/s, and the number of scans is 5-20.
  • the carbon-based electrode is a carbon screen-printed electrode.
  • the third embodiment of the present invention provides an application of the above-mentioned graphene polymer electrochemical sensor in catalyzing the electrochemical polymerization of p-nitrophenol.
  • the fourth embodiment of the present invention provides an application of the above-mentioned graphene polymer electrochemical sensor in detecting p-nitrophenol.
  • the fifth embodiment of the present invention provides an electrochemical detection method for p-nitrophenol, using the above-mentioned graphene polymer electrochemical sensor as a working electrode, and immersing the working electrode in a solution to be tested containing p-nitrophenol , for electrochemical detection.
  • the carbon electrode of the carbon screen printing electrode (SPE) is used as the working electrode, the carbon counter electrode is used as the counter electrode, and the Ag electrode is used as the reference electrode to form a three-electrode system (C-C-Ag three-electrode), with 0.1M pH 7.0 phosphate Buffer solution (PBS) was used as a supporting electrolyte for electrochemical in situ graphene synthesis.
  • SPE carbon screen printing electrode
  • PBS pH 7.0 phosphate Buffer solution
  • the carbon electrode of the carbon screen printing electrode (SPE) is used as the working electrode, the carbon counter electrode is used as the counter electrode, and the Ag electrode is used as the reference electrode to form a three-electrode system (C-C-Ag three-electrode), with 0.1M pH 7.0 phosphate Buffer solution (PBS) was used as a supporting electrolyte for electrochemical in situ graphene synthesis.
  • SPE carbon screen printing electrode
  • PBS pH 7.0 phosphate Buffer solution
  • the carbon electrode of the carbon screen printing electrode (SPE) is used as the working electrode, the carbon counter electrode is used as the counter electrode, and the Ag electrode is used as the reference electrode to form a three-electrode system (C-C-Ag three-electrode), with 0.1M pH 7.0 phosphate Buffer solution (PBS) was used as a supporting electrolyte for electrochemical in situ graphene synthesis.
  • SPE carbon screen printing electrode
  • PBS pH 7.0 phosphate Buffer solution
  • Immerse the screen printing under the surface of the supporting electrolyte solution apply a working voltage of 1.5V to the electrode system through the constant potential mode, and maintain the constant voltage for 240s, take out the working electrode and fully rinse it with deionized water and dry it before use. Then immerse the electrode in the supporting electrolyte solution, perform 25 consecutive scans at -1.5 ⁇ 0V, 120mV/s by cyclic voltammetry, take out the working electrode and fully rinse it with deionized water. Place the electrode in the same PBS containing 2mM arginine, and treat it at a constant potential at 0.21V for 200s. After taking it out, the working electrode is fully rinsed with deionized water and dried. The working electrode after rinsed and dried is the pNP electrochemical sensor.
  • the carbon electrode of the carbon screen printing electrode (SPE) is used as the working electrode, the carbon counter electrode is used as the counter electrode, and the Ag electrode is used as the reference electrode to form a three-electrode system (C-C-Ag three-electrode), with 0.1M pH 7.0 phosphate Buffer solution (PBS) was used as a supporting electrolyte for electrochemical in situ graphene synthesis.
  • SPE carbon screen printing electrode
  • PBS pH 7.0 phosphate Buffer solution
  • Immerse the screen printing under the surface of the supporting electrolyte solution apply a working voltage of 2.5V to the electrode system through the constant potential mode, and maintain the constant voltage for 180s, take out the working electrode and fully rinse it with deionized water and dry it before use. Then immerse the electrode in the supporting electrolyte solution, perform 15 consecutive scans at -1.5 to 0V, 80mV/s by cyclic voltammetry, take out the working electrode and fully rinse it with deionized water. Place the electrode in the same PBS containing 2mM arginine, and treat it at a constant potential at 0.24V for 160s. After taking it out, the working electrode is fully rinsed with deionized water and dried. The working electrode after rinsed and dried is the pNP electrochemical sensor.
  • the carbon electrode of the carbon screen printing electrode (SPE) is used as the working electrode, the carbon counter electrode is used as the counter electrode, and the Ag electrode is used as the reference electrode to form a three-electrode system (C-C-Ag three-electrode), with 0.1M pH 7.0 phosphate Buffer solution (PBS) was used as a supporting electrolyte for electrochemical in situ graphene synthesis.
  • SPE carbon screen printing electrode
  • PBS pH 7.0 phosphate Buffer solution
  • the aqueous phase graphene oxide (GO) was synthesized by the classic Hummers method, and the GO aqueous phase dispersion was prepared, and the SPE was modified by the drop coating method to obtain GO/SPE.
  • the specific method refer to the literature (Li, Y.W., Zhou.J., Song , J., Liang, X.S., Zhang, Z.P., Men, D., Wang, D.B., Zhang, X.E., 2019. Chemical nature of electrochemical activation of carbon electrodes. Biosens. Bioelectron. 144, 111534.) to operate.
  • GO/SPE was immersed in 0.1M PBS with pH 7.0 for 10 consecutive cycles of cyclic voltammetry scanning treatment, the potential was -1.5–0V, and the scanning rate was 0.1V/s.
  • the electrode obtained after taking it out and drying it was designated as rGO/SPE.
  • the peak shape at eV is the corresponding functional group of graphite and binder; in the P(Arg)/eG/SPE curve, there are more new peaks at 285.9eV, which are CN structures, indicating the existence of guanidine and amide structures ;
  • the L-arginine monomer curve has an extra 288.0eV peak representing -NH 2 , which does not exist in the P(Arg)/eG/SPE results, further confirming the polymerization of arginine.
  • the electrocatalytic performance of SPE is the lowest, the catalytic current intensity is the smallest, and the peak potential difference ( ⁇ E) is the largest, indicating that the kinetics of the electron transfer process on it is hysteresis; significantly reduced, indicating that the electrochemical in situ synthesized graphene interface has a significant advantage over the carbon interface in terms of electrochemical catalytic activity for interface-dependent electrochemically active species; the response curve of P(Arg)/eG/SPE is relatively The response current intensity of eG/SPE has been further significantly enhanced, and the ⁇ E value has been further reduced, which proves its strong electrochemical catalytic performance and is extremely suitable as an optimized interface solution for high-efficiency electrochemical sensors.
  • the circuit fitting results also showed that one of the main factors affecting the performance of the three electrodes lies in their respective interfacial charge transfer resistance (Rct).
  • the Rct of SPE is as high as 2136 ⁇ , while for the eG/SPE and P(Arg)/eG/SPE interfaces, the Rct is reduced to 258.6 and 343.5 ⁇ , respectively, which is extremely conducive to the fast kinetic process of the interface electron transfer process.
  • P(Arg)/eG/SPE was immersed in the PBS solution containing 1mM pNP, and its sensing selectivity was tested in the mixed solution containing different concentrations of various interfering components. The results are shown in Figure 10. It was found that for common Environmental interference, P(Arg)/eG/SPE can maintain good anti-interference performance and truly reflect the concentration of pNP in the sample to be tested.
  • P(Arg)/eG/SPE was used to test and analyze three kinds of samples collected from factory sewage (industrial wastewater), laboratory wastewater and river water by the standard addition method.
  • the detection method is as described in Example 5.
  • the spiked concentration, test recovery and standard error are shown in Table 1.
  • P(Arg)/eG/SPE-1 can realize in-situ continuous monitoring of the pNP concentration in the water environment, which is useful for the long-term pollution of the water body, the monitoring of the discharge of sewage outlets, and the environmental governance and restoration. Real-time information grasping and other functions can meet the demand very well.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了石墨烯聚合物电化学传感器及制备方法与其在检测对硝基酚的应用,其制备方法为对碳基电极进行一次电化学处理,使碳基电极表面原位合成石墨烯,然后将表面合成石墨烯的碳基电极进行二次电化学处理,使精氨酸缩聚为聚精氨酸,并使聚精氨酸与石墨烯复合。本发明提供的石墨烯聚合物电化学传感器传感检测限低、线性检测范围宽、稳定性高、成本低,既可用于一次可抛型pNP试纸条的制备,亦可用于pNP原位长时间连续监测。

Description

石墨烯聚合物电化学传感器及制备方法与其在检测对硝基酚的应用 技术领域
本发明涉及电化学传感器、电化学加工技术、纳米材料和分析化学领域,具体涉及石墨烯聚合物电化学传感器及制备方法与其在检测对硝基酚的应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
对硝基苯酚(p-nitrophenol,pNP,对硝基酚)是在医药、农业、工业、造纸等领域中广泛应用的重要原料及中间产物,目前已在世界范围内广泛分布于各种水体环境中。但是,pNP具有极强的毒性,对于动植物及人类的威胁十分明显。并且,pNP的化学稳定性极强,在自然环境中难以分解,还会形成食物链富集作用。其环境危害十分突出,已被美国环境保护署(USEPA)列入114主要污染物名单,因此其分析检测十分重要。
pNP的常用检测技术包括HPLC法、电泳分析法、荧光分析法、酶联免疫吸附测定法等。这些方法均需要大型而昂贵的专用仪器,分析成本高、分析时间长,且要求专业人员操作。相比之下,电化学分析技术具有灵敏度高、分析成本低、分析时间短、便于便携式设计及易操作等优势,是研发pNP传感器的理想技术方案。
在现有报道中,有多种基于纳米材料、聚合物材料、金属基电催化剂等开发pNP电化学传感器的报道。但是,发明人研究发现,这些技术方案或制备过于繁复昂贵,或面临检测限、检测范围、稳定性等不足的问题,面对实际应用测试场景往往较难满足测试需求。因此,目前市场上对于兼具低检测限、宽测试范围、高稳定、低成本的pNP传感器尚有迫切需求。
发明内容
为了解决现有技术的不足,本发明的目的是提供石墨烯聚合物电化学传感器及制备方法与其在检测对硝基酚的应用,本发明提供的石墨烯聚合物电化学传感器传感检测限低、线性检测范围宽、稳定性高、成本低,既可用于一次可抛型pNP试纸条的制备,亦可用于pNP原位长时间连续监测。
为了实现上述目的,本发明的技术方案为:
一方面,一种石墨烯聚合物电化学传感器,包括碳基电极,所述碳基电极表面修饰复合材料,所述复合材料为石墨烯与聚精氨酸复合形成。
本发明经过研究发现,碳基电极能够对pNP进行电氧化和电还原性催化,以此产生可用 于定量分析的电化学信号。对比发现,电氧化过程可造成pNP产物电化学聚合导致电极污染而感染传感信号;而利用电还原反应可避免此问题。利用电化学原位合成聚精氨酸-石墨烯界面可使碳电极上pNP的电还原信号大副提升,实现对pNP低检测限、宽线性检测范围、高稳定性的检测。
另一方面,一种石墨烯聚合物电化学传感器的制备方法,对碳基电极进行一次电化学处理,使碳基电极表面原位合成石墨烯,然后将表面合成石墨烯的碳基电极进行二次电化学处理,使精氨酸缩聚为聚精氨酸,并使聚精氨酸与石墨烯复合。
第三方面,一种上述石墨烯聚合物电化学传感器在催化对硝基酚进行电化学聚合中的应用。
第四方面,一种上述石墨烯聚合物电化学传感器在检测对硝基酚的应用。
第五方面,一种对硝基酚的电化学检测方法,以上述石墨烯聚合物电化学传感器作为工作电极,将工作电极浸入含有对硝基酚的待测溶液中,进行电化学检测。
本发明的有益效果为:
1.本发明通过实验发现,碳基电极表面修饰石墨烯与聚精氨酸的复合物对pNP的传感信号电流强度出现停滞甚至紊乱的现象,基于该现象发现表面修饰石墨烯与聚精氨酸的复合物的碳基电极能够作为pNP电化学传感器。
2.本发明提供的电化学传感器对pNP的电化学检测具有检测限低、线性检测范围宽、选择性高、稳定性高的优点。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1制备的P(Arg)/eG/SPE、对比例1制备的eG/SPE和SPE的元素组成柱状图;
图2为本发明实施例1制备的P(Arg)/eG/SPE、对比例1制备的eG/SPE的XPS谱图,a为eG/SPE,b为P(Arg)/eG/SPE,c为L-精氨酸;
图3为本发明实施例1制备的P(Arg)/eG/SPE中P(Arg)的FTIR图谱;
图4为本发明实验例1的电化学传感性能检测表征结果图;
图5为本发明实验例1的交流阻抗表征结果图;
图6为本发明实验例2的循环伏安测试结果图;
图7为本发明实验例3的电还原反应恒电位电流测试结果图;
图8为本发明实验例3的电氧化反应恒电位电流测试结果图;
图9为本发明实验例4的SWV扫描测试的结果图;
图10为本发明实验例4的选择性测试的结果图;
图11为本发明实验例6的测试结果图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本发明的一种典型实施方式,提供了一种石墨烯聚合物电化学传感器,包括碳基电极,所述碳基电极表面修饰复合材料,所述复合材料为石墨烯与聚精氨酸复合形成。
本发明以石墨烯与聚精氨酸的复合物修饰碳基电极表面,能够使pNP产生电氧化反应,利用pNP电氧化反应能够实现对pNP低检测限、宽线性检测范围、高稳定性的检测。
该实施方式的一些实施例中,所述石墨烯为原位合成的石墨烯。
该实施方式的一些实施例中,所述碳基电极为碳丝网印刷电极。
本发明的另一种实施方式,提供了一种石墨烯聚合物电化学传感器的制备方法,对碳基电极进行一次电化学处理,使碳基电极表面原位合成石墨烯,然后将表面合成石墨烯的碳基电极进行二次电化学处理,使精氨酸缩聚为聚精氨酸,并使聚精氨酸与石墨烯复合。
电化学处理的方法包括伏安法、安培法、电流法。伏安法包括但不限于循环伏安法、方波脉冲伏安法、差分脉冲伏安法、线性伏安法。所采用的电流法包括但不限于恒电位电流法、差分脉冲电流法。
该实施方式的一些实施例中,一次电化学处理过程为:先采用正直流电压对碳基电极进行处理或施加正电压对碳基电极扫描处理,然后施加负电压扫描处理或采用负直流电压处理。
在一种或多种实施例中,正直流电压为1.0~3.0V。采用正直流电压对碳基电极进行处理的时间为150~250s。
在一种或多种实施例中,施加正电压扫描处理时,正电压负电压的扫描范围是0~2.2V。扫描速率为50~150mV/s,扫描次数为5~30。
在一种或多种实施例中,负电压扫描处理时,负电压的扫描范围是-1.5~0V。扫描速 率为50~150mV/s,扫描次数为10~40。
在一种或多种实施例中,负直流电压为-2.0~-1.5V。处理时间为100~150s。
该实施方式的一些实施例中,电化学处理中的电解质溶液为磷酸盐缓冲溶液。磷酸盐缓冲溶液的pH为7.0~7.4。
该实施方式的一些实施例中,二次电化学处理为正直流电压处理或正电压扫描处理。
在一种或多种实施例中,二次电化学处理的电压为0.20~0.25V。处理时间为150~200s。
在一种或多种实施例中,正电压扫描处理时,正电压的扫描范围是0~2.2V。扫描速率为50~150mV/s,扫描次数为5~20。
该实施方式的一些实施例中,所述碳基电极为碳丝网印刷电极。
本发明的第三种实施方式,提供了一种上述石墨烯聚合物电化学传感器在催化对硝基酚进行电化学聚合中的应用。
本发明的第四种实施方式,提供了一种上述石墨烯聚合物电化学传感器在检测对硝基酚的应用。
本发明的第五种实施方式,提供了一种对硝基酚的电化学检测方法,以上述石墨烯聚合物电化学传感器作为工作电极,将工作电极浸入含有对硝基酚的待测溶液中,进行电化学检测。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例与对比例详细说明本发明的技术方案。
实施例1
以碳丝网印刷电极(SPE)的碳电极为工作电极,碳对电极为对电极,Ag电极为参比电极构成三电极系统(C-C-Ag三电极),以0.1M的pH 7.0的磷酸盐缓冲液(PBS)作为支持电解质进行电化学原位石墨烯合成。
将丝网印刷浸没入支持电解质溶液面下,通过恒电位模式向电极体系施加2.0V的工作电压,恒压维持200s,取出工作电极以去离子水充分润洗晾干后待用。再将此电极浸入支持的电解质溶液中,以循环伏安法进行-1.5~0V,100mV/s的20次连续扫描,取出工作电极以去离子水充分润洗。将电极置于含2mM精氨酸的相同PBS中,于0.22V下恒电位处理180s,取出后工作电极以去离子水充分润洗晾干,润洗晾干后的工作电极即为pNP电化学传感器,记为P(Arg)/eG/SPE。
实施例2
以碳丝网印刷电极(SPE)的碳电极为工作电极,碳对电极为对电极,Ag电极为参比电极构成三电极系统(C-C-Ag三电极),以0.1M的pH 7.0的磷酸盐缓冲液(PBS)作为支持电 解质进行电化学原位石墨烯合成。
将丝网印刷浸没入支持电解质溶液面下,通过循环伏安模式向电极体系施加范围为0-2.2V的工作电压,在100mV/s速率下进行15循环的连续扫描,取出工作电极以去离子水充分润洗。再将此电极浸入支持的电解质溶液中,恒电位于-1.8V下连续处理120s,取出工作电极以去离子水充分润洗。将电极置于含2mM精氨酸的相同PBS中,以循环伏安法在0-2.2V范围内于100mV/s速率下进行连续10次扫描,取出后工作电极以去离子水充分润洗晾干待用,记为P(Arg)/eG/SPE-1。
实施例3
以碳丝网印刷电极(SPE)的碳电极为工作电极,碳对电极为对电极,Ag电极为参比电极构成三电极系统(C-C-Ag三电极),以0.1M的pH 7.0的磷酸盐缓冲液(PBS)作为支持电解质进行电化学原位石墨烯合成。
将丝网印刷浸没入支持电解质溶液面下,通过恒电位模式向电极体系施加1.5V的工作电压,恒压维持240s,取出工作电极以去离子水充分润洗晾干后待用。再将此电极浸入支持的电解质溶液中,以循环伏安法进行-1.5~0V,120mV/s的25次连续扫描,取出工作电极以去离子水充分润洗。将电极置于含2mM精氨酸的相同PBS中,于0.21V下恒电位处理200s,取出后工作电极以去离子水充分润洗晾干,润洗晾干后的工作电极即为pNP电化学传感器。
实施例4
以碳丝网印刷电极(SPE)的碳电极为工作电极,碳对电极为对电极,Ag电极为参比电极构成三电极系统(C-C-Ag三电极),以0.1M的pH 7.0的磷酸盐缓冲液(PBS)作为支持电解质进行电化学原位石墨烯合成。
将丝网印刷浸没入支持电解质溶液面下,通过恒电位模式向电极体系施加2.5V的工作电压,恒压维持180s,取出工作电极以去离子水充分润洗晾干后待用。再将此电极浸入支持的电解质溶液中,以循环伏安法进行-1.5~0V,80mV/s的15次连续扫描,取出工作电极以去离子水充分润洗。将电极置于含2mM精氨酸的相同PBS中,于0.24V下恒电位处理160s,取出后工作电极以去离子水充分润洗晾干,润洗晾干后的工作电极即为pNP电化学传感器。
对比例1
以碳丝网印刷电极(SPE)的碳电极为工作电极,碳对电极为对电极,Ag电极为参比电极构成三电极系统(C-C-Ag三电极),以0.1M的pH 7.0的磷酸盐缓冲液(PBS)作为支持电解质进行电化学原位石墨烯合成。
将丝网印刷浸没入支持电解质溶液面下,通过恒电位模式向电极体系施加2.0V的工作 电压,恒压维持200s,取出工作电极以去离子水充分润洗晾干后待用。再将此电极浸入支持的电解质溶液中,以循环伏安法进行-1.5~0V,100mV/s的20次连续扫描,取出工作电极以去离子水充分润洗,晾干后获得的工作电极记为eG/SPE。
对比例2
首先以经典Hummers方法进行水相氧化石墨烯(GO)合成,并制备GO水相分散系,以滴涂法修饰SPE获得GO/SPE,具体方法参照文献(Li,Y.W.,Zhou.J.,Song,J.,Liang,X.S.,Zhang,Z.P.,Men,D.,Wang,D.B.,Zhang,X.E.,2019.Chemical nature of electrochemical activation of carbon electrodes.Biosens.Bioelectron.144,111534.)进行操作。随后将GO/SPE浸入0.1M的pH 7.0的PBS中进行连续10个循环的循环伏安扫描处理,电位-1.5–0V,扫描速率0.1V/s。取出晾干后获得的电极记为rGO/SPE。
对P(Arg)/eG/SPE、eG/SPE和SPE进行原位EDS元素谱分析,元素组成如图1所示,表明经过电化原位石墨烯合成处理的eG/SPE较SPE的O%显著增高而C%有所降低,说明界面氧化石墨烯类结构的产生;而P(Arg)/eG/SPE较eG/SPE,O%差异较小,N%明显增多,表明其界面石墨烯-聚精氨酸的界面的形成。
P(Arg)/eG/SPE、eG/SPE和L-精氨酸的XPS谱图,如图2所示,eG/SPE的XPS C1s谱中仅观测到284.67eV、285.2eV、286.5eV、288.8eV处的峰形,均为石墨及粘合剂相应官能团;P(Arg)/eG/SPE曲线中较之则多出285.9eV处的新峰,为C-N结构,表明胍基及酰胺结构的存在;相比而言,L-精氨酸单体曲线则多出代表-NH 2的288.0eV峰,在P(Arg)/eG/SPE结果中不存在,进一步印证精氨酸的聚合。
如图3所示,较L-精氨酸单体,聚精氨酸(P(Arg))样本中出现1077cm -1处的新峰,为C-N及N-H伸缩振动峰;1524cm -1处新峰为N-H弯曲振动,说明聚合物上标志性酰胺键的形成。
实验例1
在含有1mM铁氰化钾的PBS溶液中,测试SPE、eG/SPE、P(Arg)/eG/SPE的循环伏安响应。以铁氰化钾作为界面依赖型电化学活性物种(包括pNP)的代表性探针分子,考察几种电极的电化学传感性能潜质,如图4所示。其中,SPE的电催化性能最低,催化电流强度最小,峰电位差(δE)最大,说明其上电子转移过程动力学迟滞;eG/SPE对应的曲线峰电流强度明显增大,且伴随有δE的大幅度减小,说明电化学原位合成的石墨烯界面较碳素界面对于界面依赖型电化学活性物种在电化学催化活性方面的显著优势;P(Arg)/eG/SPE的响应曲线则较eG/SPE的响应电流强度又有进一步显著增强,δE值进一步缩小,证明其强大的电化学催化性能,极其适合作为高效电化学传感器的优化界面方案。
对SPE、eG/SPE、P(Arg)/eG/SPE界面进行交流阻抗(EIS)分析,并对三种电极界面进 行等效电路模拟分析,结果如图5所示。结果显示:SPE的等效电路模拟重合度较低,显示界面稳定性相对较低且均一度低,形成复合电路元件结构,不利于传感器稳定性的实现;eG/SPE同P(Arg)/eG/SPE则较SPE相比显示完美的模拟重合度,显示其界面的强均一性,有利于获得高稳定性传感器。电路拟合结果还表明,影响三种电极性能的主要因素之一在于其各自界面电荷转移电阻(Rct)。其中,SPE的Rct高达2136Ω,而对于eG/SPE、P(Arg)/eG/SPE界面,Rct分别降低至258.6和343.5Ω,极度有利于界面电子转移过程的快速动力学过程。
实验例2
在含有1mM pNP的0.1M PBS(pH 7.0)中的循环伏安测试结果如图6所示。rGO/SPE同eG/SPE相比,电化学催化活性低,说明电化学原位合成石墨烯相对于化学法合成石墨烯的性能优势;eG/SPE同P(Arg)/eG/SPE相比,发现P(Arg)/eG/SPE的电化学信号明显高于eG/SPE。说明P(Arg)/eG/SPE具有对pNP极佳的电化学分析性能,是制备pNP电化学传感器的理想技术方案。
实验例3
利用P(Arg)/eG/SPE对pNP的电还原反应,对不同pNP浓度下的溶液进行恒电位电流测试,结果表明:P(Arg)/eG/SPE对pNP在5-1250μM范围内存在良好的线性响应,电流-浓度回归曲线为Ipc(μA)=0.067C(μM)+8.7405(R 2=0.9983);响应的检测限为2.4nM,读数时间3s,证明P(Arg)/eG/SPE对pNP的强大分析性能,如图7所示。
利用P(Arg)/eG/SPE对pNP的电氧化反应,对不同pNP浓度下的溶液进行恒电位电流测试,如图8所示,结果表明:P(Arg)/eG/SPE对pNP在5-200μM范围内存在良好的线性响应,电流-浓度回归曲线为Ipa(μA)=-0.041C(μM)–5.0597(R 2=0.9983);响应的检测限为3.9nM。在超过200μM的测试过程中,发现P(Arg)/eG/SPE对pNP的传感信号电流强度出现停滞甚至紊乱情况,这主要是由于P(Arg)/eG/SPE对pNP的电氧化过程会导致pNP产物的电化学聚合,并由此导致电极污染而感染传感信号。对比发现,利用P(Arg)/eG/SPE的电化学氧化或还原过程均能够实现pNP的高灵敏电化学分析,但是,利用其电氧化反应可以实现更高性能的pNP电化学传感。
实验例4
将P(Arg)/eG/SPE浸入含不同pNP浓度的0.1M PBS(pH 7.0)中,进行SWV扫描测试,结果如图9所示,发现在0.5-1250μM的宽浓度范围内,传感器均对pNP保持良好的线性响应。相应的回归曲线为Ipc(μA)=0.0342C(μM)+115.1(R 2=0.998)。经计算,其检测下限达12nM,检测时间小于15s。
将P(Arg)/eG/SPE浸入含有1mM pNP的PBS溶液中,其中含不同浓度的各种干扰组分的混合溶液中测试其传感选择性,结果如图10所示,发现对于常见的环境干扰物,P(Arg)/eG/SPE能够保持良好的抗干扰性能,真实地反映待测样本中pNP的浓度情况。
该实验例表明实施例1制备的P(Arg)/eG/SPE对pNP表现低检测限、宽浓度范围、高选择性的电化学传感性能。
实验例5 可抛式pNP高灵敏分析
采用P(Arg)/eG/SPE对采自工厂排污口污水(工业废水)、实验室废水和河水3种样本进行加标法测试分析。检测方法如实施例5所述。分别向3种水体样本中加入不同含量的pNP基准物,并测试加标前后P(Arg)/eG/SPE的SWV响应变化,读取其峰电流值作为分析结果。加标浓度、测试回收率及标准误差情况如表1所示。
表1 P(Arg)/eG/SPE对不同样本的加标浓度、回收率及标准误差情况
Figure PCTCN2021116572-appb-000001
结果显示,P(Arg)/eG/SPE对3种水体的加标测试性能理想,误差极小,说明P(Arg)/eG/SPE对pNP的传感准确性不会因水体成分的复杂性而收到明显影响,其能够对水体环境中pNP的浓度做出正确电化学响应及指示。
实验例6 真实水体样本的可抛式pNP高灵敏分析
将P(Arg)/eG/SPE-1置于0.1M PBS溶液内,开始向其中引入不同浓度的pNP基准物,开始在-0.8V工作电位下测试P(Arg)/eG/SPE的电流响应情况。如图11结果显示,随着溶液环境中pNP浓度的增高,P(Arg)/eG/SPE能够快速对其进行电流响应,电流增量同相应的pNP浓度增量呈现严格对应关系。同时,当pNP浓度在溶液环境中有所降低时,P(Arg)/eG/SPE同样能做出快速响应,并定量指示该变化情况。
由此说明,利用电流分析技术,P(Arg)/eG/SPE-1能够实现对水体环境中pNP浓度的原位连续监控,对于水体长期污染状况、排污口排放量监控、环境治理及修复情况等的实时信息掌握能需求能够极好满足。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种石墨烯聚合物电化学传感器,其特征是,包括碳基电极,所述碳基电极表面修饰复合材料,所述复合材料为石墨烯与聚精氨酸复合形成。
  2. 如权利要求1所述的石墨烯聚合物电化学传感器,其特征是,所述石墨烯为原位合成的石墨烯。
  3. 如权利要求1所述的石墨烯聚合物电化学传感器,其特征是,所述碳基电极为碳丝网印刷电极。
  4. 一种石墨烯聚合物电化学传感器的制备方法,其特征是,对碳基电极进行一次电化学处理,使碳基电极表面原位合成石墨烯,然后将表面合成石墨烯的碳基电极进行二次电化学处理,使精氨酸缩聚为聚精氨酸,并使聚精氨酸与石墨烯复合。
  5. 如权利要求4所述的石墨烯聚合物电化学传感器的制备方法,其特征是,一次电化学处理过程为:先采用正直流电压对碳基电极进行处理或施加正电压对碳基电极扫描处理,然后施加负电压扫描处理或采用负直流电压处理;
    优选地,正直流电压为1.0~3.0V;进一步优选地,采用正直流电压对碳基电极进行处理的时间为150~250s;
    优选地,施加正电压扫描处理时,正电压负电压的扫描范围是0~2.2V;进一步优选地,扫描速率为50~150mV/s,扫描次数为5~30;
    优选地,负电压扫描处理时,负电压的扫描范围是-1.5~0V;进一步优选地,扫描速率为50~150mV/s,扫描次数为10~40;
    优选地,负直流电压为-2.0~-1.5V;进一步优选地,处理时间为100~150s。
  6. 如权利要求4所述的石墨烯聚合物电化学传感器的制备方法,其特征是,电化学处理中的电解质溶液为磷酸盐缓冲溶液;优选地,磷酸盐缓冲溶液的pH为7.0~7.4。
  7. 如权利要求4所述的石墨烯聚合物电化学传感器的制备方法,其特征是,二次电化学处理为正直流电压处理或正电压扫描处理;
    优选地,二次电化学处理的电压为0.20~0.25V;进一步优选地,处理时间为150~200s;
    优选地,正电压扫描处理时,正电压的扫描范围是0~2.2V;进一步优选地,扫描速率为50~150mV/s,扫描次数为5~20。
  8. 一种权利要求1~3任一所述的石墨烯聚合物电化学传感器或权利要求4~7任一所述制备方法获得的石墨烯聚合物电化学传感器在催化对硝基酚进行电化学聚合中的应用。
  9. 一种权利要求1~3任一所述的石墨烯聚合物电化学传感器或权利要求4~7任一所述制备方法获得的石墨烯聚合物电化学传感器在检测对硝基酚的应用。
  10. 一种对硝基酚的电化学检测方法,其特征是,以权利要求1~3任一所述的石墨烯聚 合物电化学传感器或权利要求4~7任一所述制备方法获得的石墨烯聚合物电化学传感器作为工作电极,将工作电极浸入含有对硝基酚的待测溶液中,进行电化学检测。
PCT/CN2021/116572 2021-05-28 2021-09-04 石墨烯聚合物电化学传感器及制备方法与其在检测对硝基酚的应用 WO2022247048A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021447399A AU2021447399A1 (en) 2021-05-28 2021-09-04 Graphene polymer electrochemical sensor, and manufacturing method therefor and application thereof in detection of p-nitrophenol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110594678.7 2021-05-28
CN202110594678.7A CN113447545B (zh) 2021-05-28 2021-05-28 石墨烯聚合物电化学传感器检测对硝基酚的应用

Publications (1)

Publication Number Publication Date
WO2022247048A1 true WO2022247048A1 (zh) 2022-12-01

Family

ID=77810491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116572 WO2022247048A1 (zh) 2021-05-28 2021-09-04 石墨烯聚合物电化学传感器及制备方法与其在检测对硝基酚的应用

Country Status (3)

Country Link
CN (1) CN113447545B (zh)
AU (1) AU2021447399A1 (zh)
WO (1) WO2022247048A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774510B (zh) * 2022-04-12 2023-11-17 深圳大学 一种用于检测对硝基酚的试纸条及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693904A (zh) * 2016-12-26 2017-05-24 信阳师范学院华锐学院 L‑精氨酸/氧化石墨烯复合材料、制备方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183557B (zh) * 2011-01-22 2013-09-04 青岛大学 一种环糊精功能化石墨烯的制备方法
CN104374815B (zh) * 2014-09-16 2017-06-06 江南大学 一种基于石墨烯分子印迹材料的电化学传感器及其制备方法
CN105597745B (zh) * 2014-11-20 2018-09-11 中国科学院苏州纳米技术与纳米仿生研究所 三维石墨烯泡沫-纳米金复合材料、其制备方法及应用
CN109856204A (zh) * 2019-01-18 2019-06-07 中国科学院武汉病毒研究所 一种基于电化学原位石墨烯合成的碳基电极修饰方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693904A (zh) * 2016-12-26 2017-05-24 信阳师范学院华锐学院 L‑精氨酸/氧化石墨烯复合材料、制备方法及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAI ZHIKUN, ZHANG YI-TAO; LI SHE-HONG; LUO HONG-XIA: "A Flexible Electrochemical Sensor Based on L-Arginine Modified Chemical Vapor Deposition Graphene Platform Electrode for Selective Determination of Xanthine", CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, CHANGCHUN, CN, vol. 48, no. 9, 30 September 2020 (2020-09-30), CN , pages 1149 - 1159, XP093008768, ISSN: 0253-3820, DOI: 10.19756/j.issn.0253-3820.201019 *
HU QINGQING, ZHU QING-REN; SUN DENG-MING: "The Determination of Sunset Yellow by Poly-L-Arginine-Graphene Modified Electrode", CHEMICAL SENSORS, vol. 35, no. 4, 31 December 2015 (2015-12-31), pages 50 - 54, XP093008765, ISSN: 1008-2298 *
LI YIWEI; MA YAOHONG; LICHTFOUSE ERIC; SONG JIN; GONG RUI; ZHANG JINHENG; WANG SHUO; XIAO LEILEI: "In situ electrochemical synthesis of graphene-poly(arginine) composite for p-nitrophenol monitoring", JOURNAL OF HAZARDOUS MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 421, 24 July 2021 (2021-07-24), AMSTERDAM, NL , XP086823272, ISSN: 0304-3894, DOI: 10.1016/j.jhazmat.2021.126718 *
ZHANG NA, DONG-DONG RU, XU LIU, DENG-MING SUN: "The determination of uric acid by L-arginine and graphene polymer modified electrodes", CHEMICAL SENSORS, vol. 37, no. 4, 31 December 2017 (2017-12-31), pages 39 - 44, XP093008766, ISSN: 1008-2298 *

Also Published As

Publication number Publication date
CN113447545A (zh) 2021-09-28
AU2021447399A1 (en) 2024-01-25
CN113447545B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Ahammad et al. Enzyme-free impedimetric glucose sensor based on gold nanoparticles/polyaniline composite film
Zhang et al. Simultaneous determination of dopamine and ascorbic acid at an in‐site functionalized self‐assembled monolayer on gold electrode
Wang et al. Electrochemical determination of 4-nitrophenol using uniform nanoparticle film electrode of glass carbon fabricated facilely by square wave potential pulses
Zhang et al. High sensitive on-site cadmium sensor based on AuNPs amalgam modified screen-printed carbon electrodes
Langley et al. Manganese dioxide graphite composite electrodes: application to the electroanalysis of hydrogen peroxide, ascorbic acid and nitrite
Aziz et al. Nanomolar amperometric sensing of hydrogen peroxide using a graphite pencil electrode modified with palladium nanoparticles
Zou et al. Amperometric tyrosinase biosensor based on boron-doped nanocrystalline diamond film electrode for the detection of phenolic compounds
CN108680636A (zh) 多壁碳纳米管/l-甲硫氨酸修饰电极的制备方法、产品及检测叔丁基对苯二酚的方法
Zhao et al. Simultaneous electrochemical determination of uric acid and ascorbic acid using L-cysteine self-assembled gold electrode
Laghlimi et al. A new sensor based on graphite carbon paste modified by an organic molecule for efficient determination of heavy metals in drinking water
Naseri et al. Nanostructured Metal Organic Framework Modified Glassy Carbon Electrode as a High Efficient Non-Enzymatic Amperometric Sensor for Electrochemical Detection of H 2 O 2
WO2022247048A1 (zh) 石墨烯聚合物电化学传感器及制备方法与其在检测对硝基酚的应用
PA et al. A sensitive novel approach towards the detection of 8-hydroxyquinoline at anionic surfactant modified carbon nanotube based biosensor: A voltammetric study
Hu et al. Simultaneous determination of dopamine and ascorbic acid using the nano‐gold self‐assembled glassy carbon electrode
Mohadesi et al. A new negative charged self-assembled monolayer for selective electroanalytical determination of dopamine in the presence of ascorbic acid
Babaei et al. A Sensitive Simultaneous Determination of Adrenalin and Paracetamol on a Glassy Carbon Electrode Coated with a Film of Chitosan/Room Temperature Ionic Liquid/Single‐Walled Carbon Nanotubes Nanocomposite
Fu et al. A novel nonenzymatic hydrogen peroxide electrochemical sensor based on SnO2-reduced graphene oxide nanocomposite
Peng et al. Simultaneous voltammetric determination of ascorbic acid and uric acid using a seven-hole carbon nanotube paste multielectrode array
Babaei et al. Nanomolar simultaneous determination of epinephrine and acetaminophen on a glassy carbon electrode coated with a novel Mg–Al layered double hydroxide–nickel hydroxide nanoparticles–multi-walled carbon nanotubes composite
CN106018532B (zh) 氧化石墨烯与植酸修饰电极的制备及组装的电化学检测装置
Wang et al. Covalent modification of glassy carbon electrode with aspartic acid for simultaneous determination of hydroquinone and catechol
Cheng et al. Application of gold nanoparticles and nano-diamond modified electrode for hemoglobin electrochemistry
Wang et al. Simultaneous determination of dihydroxybenzene isomers using preanodized inlaying ultrathin carbon paste electrode
Wu et al. Sensitive detection of hydroxylamine on poly (3, 4-ethylenedioxythiophene)/graphene oxide nanocomposite electrode
Habibi et al. Multi-walled carbon nanotubes/ionic liquid nanocomposite modified carbon-ceramic electrode: electrochemistry and measurement of tryptophan in the presence of uric acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021447399

Country of ref document: AU

Ref document number: AU2021447399

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021447399

Country of ref document: AU

Date of ref document: 20210904

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21942615

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/05/2025)