WO2022246948A1 - 一种柔性光波导板及其制作方法 - Google Patents

一种柔性光波导板及其制作方法 Download PDF

Info

Publication number
WO2022246948A1
WO2022246948A1 PCT/CN2021/103274 CN2021103274W WO2022246948A1 WO 2022246948 A1 WO2022246948 A1 WO 2022246948A1 CN 2021103274 W CN2021103274 W CN 2021103274W WO 2022246948 A1 WO2022246948 A1 WO 2022246948A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
optical waveguide
flexible substrate
flexible
layer
Prior art date
Application number
PCT/CN2021/103274
Other languages
English (en)
French (fr)
Inventor
刘晓锋
王国栋
缪桦
姚腾飞
李永凯
Original Assignee
深南电路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深南电路股份有限公司 filed Critical 深南电路股份有限公司
Priority to JP2021560064A priority Critical patent/JP2023531329A/ja
Priority to US17/509,088 priority patent/US20220381983A1/en
Publication of WO2022246948A1 publication Critical patent/WO2022246948A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching

Definitions

  • the invention relates to the technical field of flexible optical waveguides, in particular to a flexible optical waveguide plate and a manufacturing method thereof.
  • optical interconnection technology Compared with traditional electrical interconnection technology, optical interconnection technology has the advantages of no electromagnetic shielding interference, low energy consumption, high bandwidth, high speed, etc. It is the development trend of high-speed communication in the future.
  • the high-speed signal interface is transmitted through optical wiring, and at the same time an optoelectronic hybrid printed circuit board (EOPCB) is formed, which is the development trend of high-speed and large-capacity transmission boards.
  • EPCB optoelectronic hybrid printed circuit board
  • polymer optical waveguides As a new type of optical transmission medium, polymer optical waveguides have attracted great attention from academia and industry, especially considering its advantages such as high compatibility with PCB processing technology, flexible wiring, and easy realization of high density.
  • Polymer optical waveguides can be fabricated on a soft substrate to form a flexible waveguide board (FOPCB) in addition to being fabricated on a hard support substrate to realize board connection.
  • FOPCB flexible waveguide board
  • FOPCB can be bent, wound and folded freely, can be arranged arbitrarily according to the requirements of space layout, and can be moved and stretched arbitrarily in three-dimensional space, so as to achieve the integration of component assembly and wire connection, greatly reducing the volume and weight of electronic products, suitable for The need for the development of electronic products in the direction of high density, miniaturization, and high reliability.
  • FEOPCB flexible optoelectronic hybrid integrated printed circuit board
  • FEOPCB also has good heat dissipation and solderability, and the design of the combination of soft and hard also makes up for the slight deficiency of the flexible substrate in the component carrying capacity to a certain extent.
  • FEOPCB combines the advantages of flexible circuit board and optical interconnection technology, especially suitable for high-speed connection application scenarios with narrow spacing, bending, folding and movable parts, and can also use the pluggable standard optical fiber connector integrated at the end.
  • the flexible waveguide realizes the vertical coupling connection between the main board and the daughter board.
  • the flexible waveguide is combined with the traditional coupling connection method to realize coupling at any angle and in any direction.
  • the application proposes a flexible optical waveguide board and a manufacturing method thereof, in order to improve the structural reliability of the FOPCB board in the prior art and increase the environmental aging resistance of the FOPCB board.
  • the flexible optical waveguide plate includes: a flexible substrate, one side surface of the flexible substrate is a rough surface; an optical waveguide is arranged on the flexible substrate The rough surface of the bottom; a cover layer, disposed on the surface of the optical waveguide away from the flexible substrate.
  • the optical waveguide includes a waveguide lower cladding layer, a waveguide upper cladding layer, and a waveguide core layer located between the waveguide upper cladding layer and the waveguide upper cladding layer; wherein the waveguide lower cladding layer is close to the The side of the flexible substrate is arranged, and the upper cladding layer of the waveguide is arranged near the side of the covering layer.
  • the upper cladding layer of the waveguide and the lower cladding layer of the waveguide include an optical resin layer.
  • said optical waveguide comprises a polymeric optical waveguide.
  • the flexible substrate includes any one or more of polyimide, fluorosilicone rubber, polyether ether ketone, and perfluoroethylene propylene copolymer.
  • the roughness of the rough surface is 50nm-5000nm.
  • the covering layer includes polyimide, fluorosilicone rubber, polyether ether ketone, perfluoroethylene propylene copolymer and adhesive glue.
  • a plasma beam process is used to roughen the surface of the flexible substrate near the optical waveguide to form the rough surface.
  • a chemical etching process is used to roughen the surface of the flexible substrate close to the optical waveguide to form the rough surface.
  • an adhesive layer is provided on a side of the flexible substrate close to the optical waveguide to form the rough surface.
  • the present application also provides a manufacturing method of a flexible optical waveguide plate, the manufacturing method comprising: providing a flexible substrate plate; wherein, one side surface of the flexible substrate plate is a rough surface; forming an optical waveguide on the upper surface of the optical waveguide; using a pressing device to attach a cover film layer on the side of the optical waveguide away from the flexible substrate plate, so that the cover film layer and the flexible substrate plate form the flexibility of the optical waveguide The protective layer.
  • the step of providing a flexible substrate includes: roughening the side of the flexible substrate close to the optical waveguide by using a plasma beam treatment process.
  • the step of providing a flexible substrate includes: roughening the side of the flexible substrate close to the optical waveguide by using a chemical etching process.
  • the step of providing a flexible substrate includes: providing an adhesive layer on a side of the flexible substrate close to the optical waveguide to form the rough surface.
  • the step of forming an optical waveguide on the rough surface of the flexible substrate includes: coating the lower cladding layer of the waveguide on the rough surface of the flexible substrate, and coating the lower cladding of the waveguide Exposing the cladding layer; forming a waveguide core layer on the side of the waveguide lower cladding layer away from the flexible substrate plate; coating the waveguide upper cladding layer on the side of the waveguide core layer away from the waveguide lower cladding layer; Wherein, the waveguide lower cladding layer, the waveguide upper cladding layer and the waveguide core layer form the optical waveguide.
  • the step of forming a waveguide core layer on the side of the waveguide lower cladding away from the flexible substrate further includes: performing circuit pattern processing on the waveguide core layer by using a chemical process, so that the waveguide The core layer has a pattern.
  • the chemical process includes any one of lithography, laser direct writing, reactive ion etching, and nano-molding.
  • the flexible substrate is formed of any one or more materials selected from polyimide, fluorosilicone rubber, polyether ether ketone, and perfluoroethylene propylene copolymer.
  • the cover film layer includes polyimide, fluorosilicone rubber, polyether ether ketone, perfluoroethylene propylene copolymer and adhesive glue.
  • the roughness of the rough surface is 50nm-5000nm.
  • the beneficial effect of the present application is: by setting one side surface of the flexible substrate as a rough surface, and then setting the optical waveguide on the rough surface of the flexible substrate, thereby improving the bonding force between the optical waveguide and the flexible substrate, increasing
  • a covering layer is provided on the surface of the optical waveguide away from the flexible substrate, and the covering layer protects the optical waveguide from external erosion, thereby further improving the flexibility.
  • Fig. 1 is a schematic structural diagram of the first embodiment of the flexible optical waveguide plate of the present application
  • Fig. 2 is a schematic structural diagram of the second embodiment of the flexible optical waveguide plate of the present application.
  • Fig. 3 is a schematic structural diagram of the third embodiment of the flexible optical waveguide plate of the present application.
  • FIG. 4 is a schematic flowchart of an embodiment of a method for manufacturing a flexible optical waveguide plate of the present application.
  • FIG. 1 is a schematic structural diagram of the first embodiment of the flexible optical waveguide plate of the present application.
  • the flexible optical waveguide plate includes:
  • the flexible substrate 11 has a rough surface on one side of the flexible substrate 11 , specifically, a rough surface on the side of the flexible substrate 11 close to the optical waveguide 12 .
  • the optical waveguide 12 is arranged on the rough surface of the flexible substrate 11 .
  • a cover layer 13 , the cover layer 13 is disposed on the surface of the optical waveguide 12 away from the flexible substrate 11 .
  • the opposite sides of the flexible substrate 11 are both rough surfaces, the optical waveguide is fabricated on one of the rough surfaces, and other structures are fabricated on the other rough surface, thereby improving the flexibility of the flexible substrate 11.
  • the surface utilization rate is not limited here.
  • the flexible substrate 11 is a flexible substrate plate
  • the cover layer 13 is a cover film layer
  • the optical waveguide 12 is a polymer optical waveguide plate.
  • the optical waveguide 12 further includes a waveguide lower cladding layer 121 , a waveguide upper cladding layer 123 , and a waveguide core layer 122 located between the waveguide lower cladding layer 121 and the waveguide upper cladding layer 123 .
  • the lower cladding layer 121 of the waveguide is disposed close to/close to the side of the flexible substrate 11
  • the upper cladding layer 123 of the waveguide is disposed close to/close to the side of the cover layer 13 .
  • the waveguide core layer 122 is wrapped by the waveguide lower cladding layer 121 and the waveguide upper cladding layer 123 to form the optical waveguide 12, and the waveguide lower cladding layer 121 and the waveguide upper cladding layer 123 form the protective layer of the waveguide core layer 122, so as to The stability of the waveguide core layer 122 is protected.
  • the waveguide lower cladding layer 121 and the waveguide upper cladding layer 123 wrap the waveguide core layer 122, the waveguide core layer 122 can be a plurality of optical waveguide units, and the waveguide lower cladding layer 121 and the waveguide upper cladding layer 123 are filled with multiple optical waveguide units.
  • both the waveguide lower cladding layer 121 and the waveguide upper cladding layer 123 are optical resin layers, which are polymer resin layers formed by UV curing and crosslinking.
  • the polymer optical waveguide plate formed by ultraviolet light curing has obvious fragility and is not easy to bend.
  • the optical waveguide can be significantly increased. 12 bending resistance.
  • the flexible substrate 11 includes any one or more of polyimide (PI), fluorosilicone rubber, polyether ether ketone (PEEK), and perfluoroethylene propylene copolymer (FEP).
  • PI polyimide
  • PEEK polyether ether ketone
  • FEP perfluoroethylene propylene copolymer
  • the flexible substrate 11 composed of any one or more of polyimide (PI), fluorosilicone rubber, polyether ether ketone (PEEK), perfluoroethylene propylene copolymer (FEP) has surface activation energy Low, relatively smooth, etc., so the surface of the flexible substrate 11 needs to be treated to improve the bonding force between the flexible substrate 11 and the optical waveguide 12 .
  • the rough surface of the flexible substrate 11 is processed by a plasma beam roughening process.
  • the plasma beam is used to roughen the surface of the flexible substrate 11 near the optical waveguide 12 to form a rough surface, so as to improve the bonding force between the flexible substrate 11 and the optical waveguide 12 .
  • a chemical etching process is used to roughen the surface of the flexible substrate 11 near the optical waveguide 12 to form a rough surface, thereby improving the bonding force between the flexible substrate 11 and the optical waveguide 12 .
  • the treatment process of the rough surface is not limited here.
  • FIG. 2 is a schematic structural diagram of a second embodiment of the flexible optical waveguide plate of the present application. Specifically, an adhesive layer 111 is provided on the surface of the flexible substrate 11 close to the optical waveguide 12 to form a rough surface, thereby improving the bonding force between the flexible substrate 11 and the optical waveguide 12 .
  • it also includes setting the opposite sides of the flexible substrate 11 as rough surfaces, setting the optical waveguide 12 on one of the rough surfaces, and setting other materials on the other rough surface, or Optical waveguides 12 are provided on the rough surfaces of the side surfaces, which are not limited here.
  • the roughness of the rough surface of the flexible substrate 11 is set between 50nm-5000nm to ensure the bonding force between the flexible substrate 11 and the optical waveguide 12, so as to improve the thickness of the flexible substrate 11 and the optical waveguide 12.
  • the reliability of the combination thereby improving the reliability of the overall structure of the flexible optical waveguide plate.
  • the cover layer 13 includes a cover film 131 , specifically, the material of the cover film 131 is polyimide, fluorosilicone rubber, polyether ether ketone, or perfluoroethylene propylene copolymer.
  • the cover layer 13 further includes an adhesive adhesive layer 132 , please refer to FIG. 3 for details.
  • FIG. 3 is a schematic structural diagram of a third embodiment of the flexible optical waveguide plate of the present application.
  • the adhesive adhesive layer 132 is disposed between the cover film 131 and the optical waveguide 12 to bond the cover film 131 and the optical waveguide 12 to increase the binding force between the cover film 131 and the optical waveguide 12 .
  • the cover layer 13 only includes the cover film 131 .
  • the cover film 131 is directly bonded to the surface of the optical waveguide 12 by pressing.
  • the beneficial effects of this embodiment are: by setting one side surface of the flexible substrate 11 as a rough surface, then setting the optical waveguide 12 on the rough surface of the flexible substrate 11, and finally covering the surface of the optical waveguide 12 with a cover layer 13.
  • the medium of the optical waveguide 12 is located between the flexible substrate 11 and the cover layer 13, and the optical waveguide 12 is protected from external erosion through the flexible substrate 11 and the cover layer 13.
  • the flexible substrate 11 is close to one side of the optical waveguide 12
  • the side surface is set as a rough surface, which increases the bonding force between the flexible substrate 11 and the optical waveguide 12, and increases the stability of the flexible optical waveguide structure.
  • the flexible substrate 11 and the cover layer 13 are both composed of flexible media and have certain flexibility characteristics.
  • Combining the flexible substrate 11 and the cover layer 13 with the rigid optical waveguide 12 improves the bending resistance of the optical waveguide plate 12. properties, so that the optical waveguide 12 can be bent to a certain extent, thereby ensuring the overall bending resistance of the flexible optical waveguide plate.
  • FIG. 4 is a schematic flowchart of an embodiment of the method for manufacturing a flexible optical waveguide plate of the present application. As shown in Figure 4, including:
  • Step S11 providing a flexible substrate.
  • one side surface of the flexible substrate is a rough surface.
  • the flexible substrate is made of PI material or other flexible PCB materials, such as fluorosilicone rubber, PEEK, FEP, etc., which is not limited here.
  • the PI material is taken as an example. Since the surface of PI film and other flexible materials is smooth and the surface activation energy is low, in order to improve the bonding force between the flexible substrate and the optical resin of the optical waveguide, it is usually necessary to roughen the flexible substrate to improve the connection between the flexible substrate and the optical waveguide. Bonding force between the optical resin of the optical waveguide.
  • it includes: using a plasma beam treatment process or a chemical etching process to roughen the surface of the flexible substrate near the optical waveguide to form a rough surface; or, setting a layer on the surface of the flexible substrate near the optical waveguide. Adhesive layer, thus forming a rough surface.
  • a plasma beam treatment process or a chemical etching process to roughen the surface of the flexible substrate near the optical waveguide to form a rough surface
  • Adhesive layer thus forming a rough surface.
  • Step S12 forming an optical waveguide on the rough surface of the flexible substrate.
  • the optical waveguide includes a waveguide upper cladding layer, a waveguide lower cladding layer and a waveguide core layer.
  • the optical waveguide is a kind of polymer optical waveguide, which has good light transmission performance.
  • the waveguide upper cladding layer and the waveguide lower cladding layer of the optical waveguide are optical resin layers for protecting the waveguide core layer.
  • the waveguide upper cladding layer and the waveguide lower cladding layer wrap the waveguide core layer.
  • the lower cladding layer of the waveguide is coated on the rough surface of the flexible substrate, and the lower cladding layer of the waveguide is exposed to form a dry film of the lower cladding layer of the waveguide.
  • it includes: bonding the dry film material of the lower cladding of the waveguide on the surface of the flexible substrate by laminating equipment, or forming the wet film material of the lower cladding of the waveguide on the surface of the flexible substrate by using coating equipment.
  • the pressing equipment includes vacuum film laminating machine, roller film laminating machine and other equipment
  • the coating equipment includes spin coating machine, coating machine and other equipment. It is not limited here.
  • a waveguide core layer is formed on the side of the waveguide lower cladding away from the flexible substrate plate, and the waveguide core layer is subjected to circuit pattern processing by using a mold embossing process to obtain the waveguide core layer circuit. It specifically includes: after forming the waveguide core layer on the surface of the waveguide lower cladding by using lamination equipment or coating equipment, use any one of the processes of lithography, laser direct writing, reactive ion etching, and nano-molding to make circuit patterns on the waveguide core layer .
  • the waveguide upper cladding layer is coated on the side of the waveguide core layer away from the waveguide lower cladding layer to form an optical waveguide layer. Specifically, it includes: forming the upper cladding material of the waveguide on the surface of the waveguide core layer by using pressing equipment or coating equipment.
  • Step S13 Laminating a cover film layer on the side of the optical waveguide away from the flexible substrate by using a pressing device, so that the cover film and the flexible substrate form a flexible protective layer of the optical waveguide.
  • it includes: using a vacuum thermal pressing machine to attach a cover film on the upper cladding of the waveguide as a protective layer, so as to improve the structural reliability and environmental aging resistance of the flexible optical waveguide plate structure.
  • this step also includes: attaching a layer of adhesive adhesive layer on the side of the optical waveguide away from the flexible substrate, and then attaching a layer of cover film on the adhesive adhesive layer, thereby increasing the thickness of the optical waveguide. Bonding force with the covering film layer.
  • the covering film layer is a mixed material, specifically including: polyimide, fluorosilicone rubber, polyether ether ketone, perfluoroethylene propylene copolymer and an adhesive adhesive layer.
  • the substrate material of FEOPCB flexible optoelectronic hybrid integrated printed circuit board
  • the polyimide (PI) film selected in this application has excellent physical and mechanical properties, thermal stability and dielectric properties, and is an ideal supporting carrier material for flexible boards.
  • PI is used as a flexible substrate as an example for illustration. Due to the low surface activation energy of the PI film, in order to improve the bonding force between the PI film and the optical resin, the PI surface was roughened by ion beam. Then use laminating equipment to pack the cladding waveguide material on the surface of PI, or use coating to form the lower cladding material of the waveguide on the surface of the PI substrate. After the lower cladding of the waveguide is formed by normal exposure and baking, a core waveguide thin film is formed on the surface of the lower cladding of the waveguide by the same method. Then, waveguide circuits are fabricated by means of lithography, laser direct writing, reactive ion etching, and nano-molding.
  • the structural composition of the cover film is PI (polyimide), fluorosilicone rubber, PEEK (polyether ether ketone), FEP (perfluoroethylene propylene copolymer), etc. + adhesive glue.
  • the beneficial effects of this embodiment are: improving a flexible substrate with at least one side surface being a rough surface, forming an optical waveguide on the rough surface of the flexible substrate, and then using a pressing device to seal the optical waveguide on the side of the optical waveguide away from the flexible substrate.
  • Lay the cover film layer on top so that the cover film layer and the flexible substrate form a flexible protective layer for the optical waveguide plate, thereby increasing the structural reliability and environmental aging resistance of the flexible optical waveguide plate.
  • the flexible substrate plate and the cover film The layers are composed of flexible dielectric materials and have certain flexibility characteristics. Combining the flexible substrate and the cover film layer with the hard optical waveguide plate improves the bending resistance of the optical waveguide plate and makes the optical waveguide plate to a certain extent It can be bent, thereby ensuring the overall bending resistance of the flexible optical waveguide plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种柔性光波导板及其制作方法,柔性光波导板包括:柔性衬底(11),柔性衬底(11)的一侧表面为粗糙面;光波导(12),设置于柔性衬底(11)的粗糙面上;覆盖层(13),设置于光波导(12)远离柔性衬底(11)的一侧表面上。增加了柔性光波导板的结构可靠性和耐环境老化性能。

Description

一种柔性光波导板及其制作方法 【技术领域】
本发明涉及柔性光波导技术领域,特别是涉及一种柔性光波导板及其制作方法。
【背景技术】
与传统电互连技术相比,光互连技术具有不受电磁屏蔽干扰、低能耗、高带宽、高速率等优点,是未来高速通信的发展趋势。为了进一步节省空间缩减体积,增加布线性,将高速信号接口通过光配线进行传输,同时形成光电混载印刷线路板(EOPCB),是高速大容量传输板的发展趋势。
作为新型光传输介质,聚合物光波导受到了学术界和产业界的高度关注,尤其考虑到其与PCB的加工工艺高度兼容、且布线灵活,易于实现高密度化等优势。聚合物光波导除了可以在硬支撑基板上制作以实现板的连接外,还可以在软性衬底上进行制作,形成柔性波导板(FOPCB)。FOPCB可以自由弯曲、卷绕、折叠,可依照空间布局要求任意安排,并在三维空间任意移动和伸缩,从而达到元器件装配和导线连接的一体化,大大缩小了电子产品的体积和重量,适用电子产品向高密度、小型化、高可靠方向发展的需要。进一步地,将光配线的FOPCB与电气配线的传统PCB组合在一起可形成柔性光电混载一体化印刷线路板(FEOPCB)。FEOPCB还具有良好的散热性和可焊性,软硬结合的设计也在一定程度上弥补了柔性基板在元件承载能力上的略微不足。FEOPCB同时结合了柔性线路板与光互连技术的优点,尤其适用于窄间距、弯曲、折叠可活动等部位的高速连接应用场景,还可以利用尾端集成了可插拔的标准光纤连接器的柔性波导实现主板与子板之间的垂直耦合连接。柔性波导与传统的耦合连接方式相结合,可实现任意角度、任意方向的耦合。
当前,仅少数文献与专利技术报道了柔性波导材料的合成技术以及基于柔性波导材料的柔性波导线路制作技术。整体而言,柔性波导材料的选择面非常受限,通常为有机硅类型的波导材料,然而这些材料普遍存在耐热性不佳的问题。传统的基于紫外固化交联形成的聚合物波导,由于其高度交联形成的三维网络结构,在外力的作用下,表现出明显的脆性断裂行为,并不适用于制作FOPCB。因此,如何通过结构创新,开发新的波导工艺,利用非柔性波导材料 制作具有一定耐弯性能及高可靠结构的FOPCB,从而开辟普通波导树脂材料在柔性波导板中的应用具有重大的现实意义。波导与衬底间粘附不佳是柔性波导制作领域亟待解决问题。
【发明内容】
本申请提出了一种柔性光波导板及其制作方法,以提高现有技术中FOPCB板的结构可靠性和增加FOPCB的耐环境老化性能。
为解决上述问题,本申请提供了一种柔性光波导板,所述柔性光波导板包括:柔性衬底,所述柔性衬底的一侧表面为粗糙面;光波导,设置于所述柔性衬底的所述粗糙面上;覆盖层,设置于所述光波导远离所述柔性衬底的一侧表面上。
优选的,所述光波导包括波导下包层、波导上包层以及位于所述波导上包层和所述波导上包层之间的波导芯层;其中,所述波导下包层靠近所述柔性衬底一侧设置,所述波导上包层靠近所述覆盖层一侧设置。
优选的,所述波导上包层和所述波导下包层包括光学树脂层。
优选的,所述光波导包括聚合物光波导。
优选的,所述柔性衬底包括聚酰亚胺、氟硅橡胶、聚醚醚酮、全氟乙烯丙烯共聚物中的任意一种或多种。
优选的,所述粗糙面的粗糙度为50nm-5000nm。
优选的,所述覆盖层包括聚酰亚胺、氟硅橡胶、聚醚醚酮、全氟乙烯丙烯共聚物以及粘附性胶。
优选的,利用等离子束工艺对所述柔性衬底靠近所述光波导的一侧表面进行粗化处理,以形成所述粗糙面。
优选的,利用化学蚀刻工艺对所述柔性衬底靠近所述光波导的一侧表面进行粗化处理,以形成所述粗糙面。
优选的,在所述柔性衬底靠近所述光波导的一侧设置粘附层,以形成所述粗糙面。
本申请还提供了一种柔性光波导板的制作方法,所述制作方法包括:提供一种柔性衬底板;其中,柔性衬底板的一侧表面为粗糙面;在所述柔性衬底板的粗糙面上形成光波导;利用压合设备在所述光波导远离所述柔性衬底板的一侧面上贴合覆盖膜层,以使所述覆盖膜层与所述柔性衬底板形成所述光波导的柔性保护层。
优选的,所述提供一种柔性衬底板的步骤,包括:利用等离子束处理工艺 工艺对所述柔性衬底板靠近所述光波导的一侧进行粗化处理。
优选的,所述提供一种柔性衬底板的步骤,包括:利用化学蚀刻工艺对所述柔性衬底板靠近所述光波导的一侧进行粗化处理。
优选的,所述提供一种柔性衬底板的步骤,包括:在所述柔性衬底板靠近所述光波导的一侧设置粘附层,形成所述粗糙面。
优选的,所述在所述柔性衬底板的所述粗糙面上形成光波导的步骤,包括:在所述柔性衬底板的所述粗糙面上涂覆波导下包层,并对所述波导下包层进行曝光处理;在所述波导下包层远离所述柔性衬底板的一侧面形成波导芯层;在所述波导芯层远离所述波导下包层的一侧面涂覆波导上包层;其中,所述波导下包层、所述波导上包层以及所述波导芯层形成所述光波导。
优选的,所述在所述波导下包层远离所述柔性衬底板的一侧面形成波导芯层的步骤,还包括:利用化学工艺对所述波导芯层进行线路图案处理,以使所述波导芯层具有图案。
优选的,所述化学工艺包括平板影印、激光直写、反应离子蚀刻、纳米模压中任意一种工艺。
优选的,所述柔性衬底板包括聚酰亚胺、氟硅橡胶、聚醚醚酮、全氟乙烯丙烯共聚物中的任意一种或多种材料形成。
优选的,所述覆盖膜层包括聚酰亚胺、氟硅橡胶、聚醚醚酮、全氟乙烯丙烯共聚物以及粘附性胶。
优选的,所述粗糙面的粗糙度为50nm-5000nm。
本申请的有益效果是:通过将柔性衬底的一侧表面设置成粗糙面,然后在柔性衬底的粗糙面上设置光波导,从而提高了光波导与柔性衬底之间的结合力,增加了柔性衬底与光波导之间的黏接的可靠性,最后在光波导远离柔性衬底的一侧表面上设置覆盖层,通过覆盖层保护光波导免受于外界侵蚀,从而进一步提高了柔性光波导板结构的耐环境老化性能和结构可靠性能。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请柔性光波导板第一实施方式的结构示意图;
图2为本申请柔性光波导板第二实施方式的结构示意图;
图3为本申请柔性光波导板第三实施方式的结构示意图;
图4为本申请柔性光波导板的制作方法一实施方式的流程示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上文清楚地表示其他含义,“多种”一般包含至少两种,但是不排除包含至少一种的情况。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,本文中使用的术语“包括”、“包含”或者其他任何变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的每一个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请提供一种柔性光波导板,具体请参阅图1,图1为本申请柔性光波导板第一实施方式的结构示意图,如图1所示,柔性光波导板包括:
柔性衬底11,柔性衬底11的一侧表面为粗糙面,具体地,柔性衬底11靠近光波导12的一侧表面为粗糙面。光波导12,光波导12设置与柔性衬底11的粗糙面上。覆盖层13,覆盖层13设置于光波导12远离柔性衬底11的一侧表面上。在另一实施方式中,柔性衬底11的相对两侧表面均为粗糙面,在其中一侧 粗糙面上制作光波导,在另一侧粗糙面上制作其它结构,从而提高柔性衬底11的表面利用率,在此不作限定。
其中,柔性衬底11为柔性衬底板,覆盖层13为覆盖膜层,光波导12为聚合物光波导板。
其中,光波导12还包括波导下包层121、波导上包层123以及位于波导下包层121和波导上包层123之间的波导芯层122。具体地,波导下包层121靠近/贴靠于柔性衬底11一侧设置,波导上包层123靠近/贴靠于覆盖层13一侧设置。在本实施例中,波导芯层122由波导下包层121和波导上包层123包裹以形成光波导12,波导下包层121和波导上包层123形成波导芯层122的保护层,以保护波导芯层122的稳定性。在一实施方式中,波导下包层121和波导上包层123包裹波导芯层122,波导芯层122可以为多个光波导单元,波导下包层121和波导上包层123填充多个光波导单元之间的间隙,以完全包裹光波导芯层。其中,波导下包层121和波导上包层123均为光学树脂层,经过紫外光固化交联形成的聚合树脂层。经过紫外光固化形成的聚合物光波导板具有明显的易脆性,不易弯折,在本实施例中,通过在光波导12的相对两侧设置柔性衬底11和覆盖层13能明显增加光波导12的耐弯折性能。
在本实施例中,柔性衬底11包括聚酰亚胺(PI)、氟硅橡胶、聚醚醚酮(PEEK)、全氟乙烯丙烯共聚物(FEP)中的任意一种或多种。其中,以聚酰亚胺(PI)、氟硅橡胶、聚醚醚酮(PEEK)、全氟乙烯丙烯共聚物(FEP)中的任意一种或多种组成的柔性衬底11具有表面活化能低,比较光滑等特点,因而需要对柔性衬底11的表面进行处理,以提高柔性衬底11与光波导12之间的结合力。
在一实施方式中,利用等离子束粗化工艺对柔性衬底11的粗糙面进行处理。具体地,利用等离子束对柔性衬底11靠近光波导12的一侧表面进行粗化处理,形成粗糙面,以提高柔性衬底11与光波导12之间的结合力。
在另一实施方式中,利用化学蚀刻工艺对柔性衬底11靠近光波导12的一侧表面进行粗化处理,以形成粗糙面,从而提高柔性衬底11与光波导12之间的结合力。在此并不限定粗糙面的处理工艺。
在又一实施方式中,还包括:通过在柔性衬底11靠近光波导12的一侧表面上设置粘附层111,以形成粗糙面。请进一步参阅图2,图2为本申请柔性光波导板第二实施方式的结构示意图。具体地,在柔性衬底11靠近光波导12的一侧表面上设粘附层111,以形成粗糙面,从而提高柔性衬底11与光波导12之间的结合力。
在其它实施例中,还包括将柔性衬底11的相对两侧表面均设置成粗糙面, 在其中一个粗糙面上设置光波导12,在另一个粗糙面上可设置其它材料,或者在相对两侧表面的粗糙面上均设置光波导12,在此,不作限定。
在本实施例中,柔性衬底11的粗糙面的粗糙度设置在50nm-5000nm之间,以保证柔性衬底11与光波导12之间的结合力,以提高柔性衬底11与光波导12之间结合的可靠性,从而提高柔性光波导板整体结构的可靠性。
在本实施例中,覆盖层13包括覆盖膜131,具体地,覆盖膜131的材质为聚酰亚胺、氟硅橡胶、聚醚醚酮、全氟乙烯丙烯共聚物。
在一实施方式中,覆盖层13还包括粘附性胶层132,具体请参阅图3,图3为本申请柔性光波导板第三实施方式的结构示意图。其中,粘附性胶层132位于覆盖膜131和光波导12之间设置,以黏接覆盖膜131和光波导12,增大覆盖膜131和光波导12之间的结合力。
在另一实施方式中,覆盖层13只包括覆盖膜131,具体请参阅图1或图2所示,直接将覆盖膜131通过压合的方式黏贴于光波导12表面。
本实施例的有益效果是:通过将柔性衬底11的一侧表面设置成粗糙面,然后在柔性衬底11的粗糙面上设置光波导12,最后再在光波导12表面覆盖一层覆盖层13,使光波导12介质位于柔性衬底11和覆盖层13之间,通过柔性衬底11和覆盖层13保护光波导12免受于外界侵蚀,同时,柔性衬底11靠近光波导12的一侧表面设置成粗糙面,增大了柔性衬底11和光波导12之间的结合力,增加了柔性光波导结构的稳定性。另外,柔性衬底11和覆盖层13均为柔性介质组成,具有一定的柔性特性,将柔性衬底11和覆盖层13与硬制的光波导12结合,提高了光波导板12的耐弯折性,使光波导12在一定程度上可以被弯折,从而保证了柔性光波导板整体的耐弯折性。
本申请还提供一种柔性光波导板的制作方法,请进一步参阅图4,图4为本申请柔性光波导板的制作方法一实施方式的流程示意图。如图4所示,包括:
步骤S11:提供一种柔性衬底板。
其中,柔性衬底板的一侧表面为粗糙面。柔性衬底板为PI材料或其它柔性PCB制作材料,如氟硅橡胶、PEEK、FEP等,在此不作限定。在本实施例中,以PI材质为例。由于PI薄膜以及其它柔性材质的表面光滑,表面活化能低,为了提高柔性衬底板与光波导的光学树脂之间的结合力,通常需要对柔性衬底板进行粗化处理,以提高柔性衬底板与光波导的光学树脂之间的结合力。
具体包括:利用等离子束处理工艺或者化学蚀刻工艺对柔性衬底板靠近光波导的一侧表面进行粗化处理,以形成粗糙面;或者,在柔性衬底板靠近光波导的一侧表面上设置一层粘附层,从而形成粗糙面。在此不对粗化处理方式进 行限定。
步骤S12:在柔性衬底板的粗糙面上形成光波导。
其中,光波导包括波导上包层、波导下包层以及波导芯层。光波导为一种聚合物光波导,其具有良好的光传导性能。光波导的波导上包层和波导下包层为光学树脂层,用于保护波导芯层。在一实施方式中,波导上包层和波导下包层包裹波导芯层。
具体地,在柔性衬底板的粗糙面上涂覆波导下包层,并对波导下包层进行曝光处理,以形成波导下包层干膜。具体包括:利用压合设备在柔性衬底表面贴合波导下包层干膜材料,或者利用涂覆设备,在柔性衬底表面形成波导下包层湿膜材料。其中,压合设备包括真空贴膜机、辊轮式贴膜机等设备,涂覆设备包括旋涂机、涂覆机等设备。在此不作限定。
在波导下包层远离柔性衬底板的一侧面上形成波导芯层,并利用模压印工艺对波导芯层进行线路图案处理,得到波导芯层线路。具体包括:利用压合设备或者涂覆设备在波导下包层表面形成波导芯层之后,利用平板影印、激光直写、反应离子蚀刻、纳米模压中任意一种工艺对波导芯层进行线路图案制作。
最后,在波导芯层远离波导下包层的一侧面上涂覆波导上包层,形成光波导层。具体包括:利用压合设备或者涂覆设备在波导芯层表面形成波导上包层材料。
步骤S13:利用压合设备在光波导远离柔性衬底板的一侧面上贴合覆盖膜层,以使覆盖膜层与柔性衬底板形成光波导的柔性保护层。
具体包括:利用真空热压合机在波导上包层上贴合一层覆盖膜作为保护层,以提高柔性光波导板结构的结构可靠性与耐环境老化性能。
具体地,本步骤还包括:先在光波导远离柔性衬底板的一侧面上贴合一层粘附性胶层,再在粘附性胶层上贴合一层覆盖膜层,从而增加光波导与覆盖膜层之间的结合力。
在本实施例中,覆盖膜层为一种混合性材料,具体包括:聚酰亚胺、氟硅橡胶、聚醚醚酮、全氟乙烯丙烯共聚物以及粘附性胶层。
考虑到制作工艺的兼容性及实际应用场景,作为FEOPCB(柔性光电混载一体化印刷线路板)的衬底材料需要具有良好的介电性能、尺寸稳定性、耐溶剂性以及耐高温性能。本申请选用聚酰亚胺(PI)薄膜具有优异的物理机械性能、热稳定性和介电性能,是一种理想的柔性板支撑载体材料。
具体地,以PI作为柔性衬底为例进行说明。由于PI薄膜表面活化能低,为了提高PI薄膜与光学树脂之间的结合力,对PI面进行离子束粗化处理。然后利 用压合设备在PI表面提盒包层波导材料,或者利用涂覆设在PI衬底表面形成波导下包层材料。波导下包层经过正常曝光烘烤成型后,通过同样的方法在波导下包层表面形成芯层波导薄膜。然后利用平板影印、激光直写、反应离子蚀刻、纳米模压等方式进行波导线路的制作。然后利用压合设备在波导芯层表面贴合上包层波导材料或者利用涂覆设备在波导芯层表面形成下包层材料。最后利用压合设备在波导上包层上贴合一层覆盖膜作为保护层,进一步提高柔性光波导板结构的可靠性和耐环境老化性能。其中,覆盖膜的结构组成为PI(聚酰亚胺)、氟硅橡胶、PEEK(聚醚醚酮)、FEP(全氟乙烯丙烯共聚物)等+粘附性胶。
本实施例的有益效果是:提高一种至少一侧表面为粗糙面的柔性衬底板,在柔性衬底板的粗糙面上形成光波导,再利用压合设备在光波导远离柔性衬底板的一侧面上贴合覆盖膜层,以使覆盖膜层与柔性衬底板形成光波导板的柔性保护层,从而增加了柔性光波导板的结构可靠性和耐环境老化性能,另外,柔性衬底板和覆盖膜层均为柔性介质材料组成,具有一定的柔性特性,将柔性衬底板和覆盖膜层与硬制的光波导板结合,提高了光波导板的耐弯折性,使光波导板在一定程度上可以被弯折,从而保证了柔性光波导板整体的耐弯折性。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利保护范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种柔性光波导板,其特征在于,所述柔性光波导板包括:
    柔性衬底,所述柔性衬底的一侧表面为粗糙面;
    光波导,设置于所述柔性衬底的所述粗糙面上;
    覆盖层,设置于所述光波导远离所述柔性衬底的一侧表面上。
  2. 根据权利要求1所述的柔性光波导板,其特征在于,所述光波导包括波导下包层、波导上包层以及位于所述波导上包层和所述波导上包层之间的波导芯层;其中,所述波导下包层靠近所述柔性衬底一侧设置,所述波导上包层靠近所述覆盖层一侧设置。
  3. 根据权利要求2所述的柔性光波导板,其特征在于,所述波导上包层和所述波导下包层包括光学树脂层。
  4. 根据权利要求2所述的柔性光波导板,其特征在于,所述光波导包括聚合物光波导。
  5. 根据权利要求1所述的柔性光波导板,其特征在于,所述柔性衬底包括聚酰亚胺、氟硅橡胶、聚醚醚酮、全氟乙烯丙烯共聚物中的任意一种或多种。
  6. 根据权利要求1所述的柔性光波导板,其特征在于,所述粗糙面的粗糙度为50nm-5000nm。
  7. 根据权利要求1所述的柔性光波导板,其特征在于,所述覆盖层包括聚酰亚胺、氟硅橡胶、聚醚醚酮、全氟乙烯丙烯共聚物以及粘附性胶。
  8. 根据权利要求1所述的柔性光波导板,其特征在于,
    利用等离子束工艺对所述柔性衬底靠近所述光波导的一侧表面进行粗化处理,以形成所述粗糙面。
  9. 根据权利要求1所述的柔性光波导板,其特征在于,
    利用化学蚀刻工艺对所述柔性衬底靠近所述光波导的一侧表面进行粗化处理,以形成所述粗糙面。
  10. 根据权利要求1所述的柔性光波导板,其特征在于,
    在所述柔性衬底靠近所述光波导的一侧设置粘附层,以形成所述粗糙面。
  11. 一种柔性光波导板的制作方法,其特征在于,所述制作方法包括:
    提供一种柔性衬底板;其中,所述柔性衬底板的一侧表面为粗糙面;
    在所述柔性衬底板的所述粗糙面上形成光波导;
    利用压合设备在所述光波导远离所述柔性衬底板的一侧面上贴合覆盖膜层,以使所述覆盖膜层与所述柔性衬底板形成所述光波导的柔性保护层。
  12. 根据权利要求11所述的制作方法,其特征在于,所述提供一种柔性衬底板的步骤,包括:
    利用等离子束处理工艺工艺对所述柔性衬底板靠近所述光波导的一侧进行粗化处理。
  13. 根据权利要求11所述的制作方法,其特征在于,所述提供一种柔性衬底板的步骤,包括:
    利用化学蚀刻工艺对所述柔性衬底板靠近所述光波导的一侧进行粗化处理。
  14. 根据权利要求11所述的制作方法,其特征在于,所述提供一种柔性衬底板的步骤,包括:
    在所述柔性衬底板靠近所述光波导的一侧设置粘附层,以形成所述粗糙面。
  15. 根据权利要求11所述的制作方法,其特征在于,所述在所述柔性衬底板的所述粗糙面上形成光波导的步骤,包括:
    在所述柔性衬底板的所述粗糙面上涂覆波导下包层,并对所述波导下包层进行曝光处理;
    在所述波导下包层远离所述柔性衬底板的一侧面形成波导芯层;
    在所述波导芯层远离所述波导下包层的一侧面涂覆波导上包层;
    其中,所述波导下包层、所述波导上包层以及所述波导芯层形成所述光波导。
  16. 根据权利要求15所述的制作方法,其特征在于,所述在所述波导下包层远离所述柔性衬底板的一侧面形成波导芯层的步骤,还包括:
    利用化学工艺对所述波导芯层进行线路图案处理,以使所述波导芯层具有图案。
  17. 根据权利要求16所述的制作方法,其特征在于,所述化学工艺包括平板影印、激光直写、反应离子蚀刻、纳米模压中任意一种工艺。
  18. 根据权利要求11所述的制作方法,其特征在于,所述柔性衬底板包括聚酰亚胺、氟硅橡胶、聚醚醚酮、全氟乙烯丙烯共聚物中的任意一种或多种材料形成。
  19. 根据权利要求11所述的制作方法,其特征在于,所述覆盖膜层包括聚酰亚胺、氟硅橡胶、聚醚醚酮、全氟乙烯丙烯共聚物以及粘附性胶。
  20. 根据权利要求11所述的制作方法,其特征在于,所述粗糙面的粗糙度为50nm-5000nm。
PCT/CN2021/103274 2021-05-28 2021-06-29 一种柔性光波导板及其制作方法 WO2022246948A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021560064A JP2023531329A (ja) 2021-05-28 2021-06-29 フレキシブル光導波板及びその製作方法
US17/509,088 US20220381983A1 (en) 2021-05-28 2021-10-25 Flexible optical waveguide board and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110594305.X 2021-05-28
CN202110594305.XA CN115407455A (zh) 2021-05-28 2021-05-28 一种柔性光波导板及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/509,088 Continuation US20220381983A1 (en) 2021-05-28 2021-10-25 Flexible optical waveguide board and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022246948A1 true WO2022246948A1 (zh) 2022-12-01

Family

ID=84155926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103274 WO2022246948A1 (zh) 2021-05-28 2021-06-29 一种柔性光波导板及其制作方法

Country Status (2)

Country Link
CN (1) CN115407455A (zh)
WO (1) WO2022246948A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005302A (ja) * 2004-06-21 2006-01-05 Matsushita Electric Ind Co Ltd フレキシブル基板およびその製造方法
CN101571610A (zh) * 2008-04-28 2009-11-04 日立电线株式会社 柔性光波导及其制备方法
CN107645856A (zh) * 2017-08-25 2018-01-30 深南电路股份有限公司 一种有机光波导埋入式pcb的加工方法
CN109407872A (zh) * 2017-08-17 2019-03-01 上海和辉光电有限公司 一种柔性触控传感器及其制备方法、显示面板、显示装置
CN110518118A (zh) * 2019-08-08 2019-11-29 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005302A (ja) * 2004-06-21 2006-01-05 Matsushita Electric Ind Co Ltd フレキシブル基板およびその製造方法
CN101571610A (zh) * 2008-04-28 2009-11-04 日立电线株式会社 柔性光波导及其制备方法
CN109407872A (zh) * 2017-08-17 2019-03-01 上海和辉光电有限公司 一种柔性触控传感器及其制备方法、显示面板、显示装置
CN107645856A (zh) * 2017-08-25 2018-01-30 深南电路股份有限公司 一种有机光波导埋入式pcb的加工方法
CN110518118A (zh) * 2019-08-08 2019-11-29 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法

Also Published As

Publication number Publication date
CN115407455A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN107926110B (zh) 具有低介电性质的玻璃基材组装件
KR20050040589A (ko) 광도파로가 형성된 인쇄회로 기판 및 그 제조 방법
JP2007062352A (ja) ポリイミド銅箔積層板
CN101296562A (zh) 铜箔基板以及利用该铜箔基板制作软性印刷电路板的方法
KR20110052992A (ko) 연성 광기판 및 그 제조방법
JP2006284925A (ja) フレキシブル光電気混載基板およびこれを用いた電子機器
KR20040016329A (ko) 다층 인쇄회로기판, 및 광섬유를 다층 인쇄회로기판 내에삽입하는 방법
WO2022246948A1 (zh) 一种柔性光波导板及其制作方法
KR20220019217A (ko) 고-밀도 광 도파관 구조체 및 인쇄 회로 보드 및 이의 준비 방법
JP5321756B2 (ja) 光導波路の製造方法
TWI722309B (zh) 高頻高傳輸雙面銅箔基板、用於軟性印刷電路板之複合材料及其製法
US20220381983A1 (en) Flexible optical waveguide board and method for manufacturing the same
JP5338410B2 (ja) 配線板の製造方法
TWI695656B (zh) 一種多層軟性印刷線路板及其製法
TWI664086B (zh) 具有氟系聚合物且具高頻高傳輸特性之雙面銅箔基板及製備方法及複合材料
US20020135991A1 (en) Layered circuit boards and methods of production thereof
CN108174522B (zh) 一种嵌埋线路柔性电路板及其制备方法
CN111328217A (zh) Mems封装载板叠构及其制作方法
JP2015037184A (ja) コア基板及びコア基板の製造方法
CN215121302U (zh) 一种复合式高频基板
TWI807407B (zh) 柔性電路板及其製作方法
TWI792248B (zh) 傳輸線及其製造方法
TWI740498B (zh) 包含複合式液晶基板的三層軟性印刷電路板及其製備方法
JP2005150671A (ja) 印刷回路基板及びその製造方法
CN216249197U (zh) 一种折叠屏触控传感结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021560064

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942517

Country of ref document: EP

Kind code of ref document: A1