WO2022246827A1 - 一种电感及其制作方法 - Google Patents

一种电感及其制作方法 Download PDF

Info

Publication number
WO2022246827A1
WO2022246827A1 PCT/CN2021/096903 CN2021096903W WO2022246827A1 WO 2022246827 A1 WO2022246827 A1 WO 2022246827A1 CN 2021096903 W CN2021096903 W CN 2021096903W WO 2022246827 A1 WO2022246827 A1 WO 2022246827A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
conductor
holes
metal sheet
core
Prior art date
Application number
PCT/CN2021/096903
Other languages
English (en)
French (fr)
Inventor
夏胜程
李有云
侯勤田
王莹莹
余鑫树
姚泽鸿
Original Assignee
东莞顺络电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞顺络电子有限公司 filed Critical 东莞顺络电子有限公司
Priority to PCT/CN2021/096903 priority Critical patent/WO2022246827A1/zh
Publication of WO2022246827A1 publication Critical patent/WO2022246827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances

Definitions

  • the present application relates to the technical field of electronic components, in particular to an inductor and a manufacturing method thereof.
  • the existing inductors have low product reliability under high temperature and high humidity conditions.
  • the present application provides an inductor, comprising: an integrally formed magnetic core, the magnetic core is provided with at least two through holes; at least one part is attached to the outer surface of the magnetic core; The magnetic core is extended through the two through holes.
  • the inductor provided by this application has an integrally formed magnetic core and a conductor attached to the magnetic core to reduce the gap between components.
  • the heat generated can be exported through the conductor in time, so the heat dissipation is strong , and high reliability.
  • FIG. 1 is a schematic structural diagram of an inductor according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic structural diagram of the inductor after the two terminal parts in FIG. 1 rotate along the A direction and the B direction respectively;
  • Figure 3 is an exploded view of Figure 1;
  • FIG. 4 is a schematic structural diagram of an inductor in Embodiment 2 of the present application.
  • Figure 5 is an exploded view of Figure 4.
  • FIG. 6 is a schematic structural diagram of an inductor according to Embodiment 3 of the present application.
  • Figure 7 is an exploded view of Figure 6;
  • FIG. 8 is a schematic flowchart of a manufacturing method of an inductor according to an embodiment of the present application.
  • the inventors found that the existing assembled inductors are bonded together by a combination of multiple components, and there are gaps between the components during bonding, which reduces the heat dissipation capacity of the inductor. Lower product reliability.
  • the embodiment of the present application proposes an inductor with strong heat dissipation capability and high reliability.
  • an inductor provided in this embodiment includes: a magnetic core 120 and a conductor 110, wherein the magnetic core 120 is integrally formed, and at least two through holes are provided on it, which are respectively the first through holes 122, As well as the second through hole 123 , the conductor 110 has at least one, and at least one part is attached to the outer surface of the magnetic core 120 , and the two ends of the conductor 110 respectively pass through the two through holes and extend out of the magnetic core 120 .
  • the inductor has an integrally formed magnetic core 120 and a conductor 110 attached to the magnetic core 120, which reduces the gap between components.
  • the heat generated can be exported through the conductor 110 in time. , so the heat dissipation is strong and the reliability is high.
  • the integrally formed magnetic core 120 in this embodiment has an integrated structure rather than splicing multiple components.
  • the conductor 110 can be a metal terminal, and in other embodiments, the conductor 110 can also be an air-core coil; and the two through holes can be cylindrical, cuboid, stepped, etc., preferably, the two through holes
  • the shape of the hole matches the shape of the part where the conductor 110 passes through the two through holes, so that the part where the conductor 110 passes through the two through holes fits closely with the magnetic core 120, thereby increasing the assembly stability of the magnetic core 120 and the conductor 110 .
  • the conductor 110 there is one conductor 110 and one magnetic core 120.
  • the conductor 110 and the magnetic core 120 form an inductance that is a single-phase inductance.
  • the conductor 110 can also be composed of multiple magnetic cores 120
  • the conductor 110 includes: a heat dissipation part 111, a base and a terminal part; the heat dissipation part 111 is attached to the magnetic core 120; The core 120 ; the terminal portion is disposed at the end of the magnetic core 120 extending away from the heat dissipation portion 111 at the base.
  • the terminal includes a first terminal 114 corresponding to the first base 112, and a second terminal 115 corresponding to the second base 113 .
  • the conductor 110 includes: a body of the conductor 110 and a protective layer, the protective layer is coated on the surface of the body of the conductor 110 , and the protective layer includes at least a heat-conducting material.
  • the protective layer is all made of heat-conducting material. While protecting the body of the conductor 110, the heat-conducting material can well absorb the heat generated by the body of the conductor 110, thereby dissipating the heat generated by the body of the conductor 110 in time.
  • the protective layer may also include heat-conducting materials and other materials. Since the protective layer is doped with heat-conducting materials, it is also possible to dissipate the heat produced by the body of the conductor 110 in time.
  • the length of the heat dissipation portion 111 in the direction of the line connecting the two through holes is greater than or equal to the distance between the two through holes.
  • the length of the heat dissipation part 11 is greater than the distance between the two through holes.
  • Such a heat dissipation part 111 can fit a larger area of the magnetic core 120, thereby better absorbing the heat generated by the magnetic core 120 and improving the inductance. cooling capacity.
  • the conductor 110 can be integrally formed or assembled, and the terminal part is arranged at one end of the heat dissipation part 111 extending out of the magnetic core 120 to form an electrode.
  • the conductor 110 is integrally formed.
  • the conductor 110 is a first conductive terminal, and the first conductive terminal is an integrally formed first metal sheet.
  • the shape of the magnetic core 120 is a cuboid.
  • the first metal sheet is bonded to the outer surface of the magnetic core 120.
  • the bonded part of the first metal sheet As the heat dissipation part 111, the two ends of the first metal sheet are bent, and the bent two ends are used to pass through two through holes, as two bases, and the two bases extend out of the magnetic core 120, and the extended parts constitute the terminal part .
  • the base includes a first base 112 and a second base 113 , the first base 112 extends out of the magnetic core 120 to form a first terminal 114 , and the second base 113 extends out of the magnetic core 120 to form a second terminal 115 .
  • the first conductive terminal is U-shaped as a whole, and the protective layer is a tin layer.
  • a first groove 121 and two second grooves 124 are provided on opposite sides of the magnetic core 120 along the penetrating direction. 120, each second groove 124 communicates with a corresponding through hole, the terminal part of the first metal sheet extending out of the magnetic core 120 is bent, and each terminal part of the bending is respectively accommodated in a different first Inside the two grooves 124 .
  • the first groove 121 is opened on the upper surface of the magnetic core 120, and the thickness of the heat dissipation part 111 is the same as the depth of the first groove 121, so that when the heat dissipation part 111 is located in the first groove 121, the upper surface of the magnetic core 120 It is on the same level as the heat dissipation part 111 .
  • the second groove 124 is provided on the lower surface of the magnetic core 120, and a terminal part is respectively accommodated in the two second grooves 124, wherein the thickness of the terminal part is the same as the depth of the second groove 124, so that the terminal The portion is flush with the lower surface of the magnetic core 120.
  • the magnetic core 120 is composed of FeNi alloy powder, specifically pressed by FeNi alloy powder, and sintered at 650° C. in nitrogen for 40 minutes to form the final shape, so as to produce an integrated inductor.
  • the first metal sheet can be made by stamping, or by other known processing methods that are not limited to, and the first metal sheet is a copper sheet.
  • the conductors are assembled and formed.
  • the conductor is the second conductive terminal
  • the second conductive terminal includes: two second metal sheets 220 and a third metal sheet 230, the shape of the magnetic core 240 is a cuboid, and the third metal sheet 230 is bonded to the magnetic core 240 for heat dissipation part
  • the two second metal sheets 220 respectively go through the corresponding through holes to make electrical contact with the third metal sheet 230 and fixedly assemble to form an electrical connection
  • the second metal sheet 220 is bent into a first part and a second part
  • the first part passes through the through hole as the base 222 of the conductor
  • the part of the base 222 extending out of the through hole is used as the connecting part 221
  • the connecting part 221 is in electrical contact with the base and fixedly assembled to form an electrical connection
  • the second part is in the magnetic core 240 externally constitutes the terminal portion 223 .
  • first through hole 241 there are two through holes, namely a first through hole 241 and a second through hole 242, one metal sheet 220 passes through the first through hole 241, and the other metal sheet 220 passes through the second through hole 242.
  • the third metal sheet 230 is bonded to the upper surface of the magnetic core 240 and can absorb the heat generated by the magnetic core 240 in a timely manner.
  • the length and width of the side adjoining the magnetic core 240 and the third metal sheet 230 are the same, so that the heat generated by the magnetic core 240 can be better absorbed.
  • the third metal sheet 230 is provided with two strip-shaped holes 231, and the bases 212 of the two second metal sheets 220 respectively extend into the two strip-shaped holes 231 and are electrically contacted and fixedly assembled with the third metal sheet 230; the magnetic core 240 is provided with There are two third grooves 243 , each third groove 243 communicates with a corresponding through hole, and the terminal portions 213 of the two second metal sheets 220 are accommodated in the two third grooves 243 respectively.
  • the cross section in the extending direction of the second metal sheet 220 is the same as the cross section in the depth direction of the strip hole 231, so that the second metal sheet 220 can be better assembled with the third metal sheet 230 .
  • the third groove 243 is opened on the lower surface of the magnetic core 240, and the thickness of the terminal part 213 of the second metal sheet 220 is the same as the depth of the third groove 243, so that the terminal part 213 can be connected with the magnetic core 240.
  • the lower surface of the core 240 is flush.
  • the magnetic core 240 is composed of FeNi alloy powder, specifically pressed by FeNi alloy powder, and sintered at 800° C. in air for 30 minutes to finally shape it.
  • the second metal sheet 220 and the third metal sheet 230 can be processed from copper sheets by punching, cutting, etching, molding, etc., specifically, the third metal sheet 230 is processed into a flat cuboid shape, and the second metal sheet The sheet 220 is processed into an L shape, and the protective layer includes a nickel layer and a tin layer.
  • the connecting parts 211 of the two second metal sheets 220 are respectively penetrated from the entrances of the first through hole 241 and the second through hole 242 at the bottom of the magnetic core 240, Pass through the exits at the top of the magnetic core 240 from the first through hole 241 and the second through hole 242 respectively, and then cover the third metal sheet 230 on the top of the magnetic core 240, and the connecting portion 221 of the second metal sheet 220 accommodates Placed in the strip-shaped hole 231 opened by the third metal sheet 230, so that the second metal sheet 220 and the third metal sheet 230 are assembled;
  • the assembly method can be laser welding, soldering, conductive glue, etc.
  • the second metal sheet 220 is L-shaped, it does not need to be bent, and its terminal portion 213 can be directly embedded in the third groove 243 to form an electrode, that is, the electrode can be processed before the induction before assembly, and the electrode can be avoided
  • the shape of the electrode is complicated and the thickness of the electrode is large, so that the magnetic core 240 will be broken due to the large force when the electrode is formed by processing or bending after assembling the inductor.
  • the second metal sheet 220 and the third metal sheet 230 are copper sheets.
  • the conductor is integrally formed.
  • the conductor is an air-core coil 310
  • the magnetic core 320 includes a magnetic core housing 321 and a magnetic core center column 322.
  • One side of the magnetic core housing 321 is open, and the magnetic core center column 322 is arranged in the magnetic core housing 321, and two through holes are opened.
  • the winding of the air-core coil 310 is wound on the core column 322, and the air-core coil is located on one side of the opening of the magnetic core housing 321 as the heat dissipation part 311, and the two sides of the air-core coil 310
  • the leading end passes through the through hole, serves as the base portion 312 , and extends out of the magnetic core housing 320 , and the portion extending out of the magnetic core housing serves as the terminal portion 314 .
  • the air-core coil 310 is helically wound around the core post 322 .
  • the heat dissipation part 311 is bonded to the central post 322 of the magnetic core, and can absorb the heat generated by the central post 322 of the magnetic core in time.
  • the open side of the magnetic core housing 321 is the upper surface, and two through holes are opened on the surface of the magnetic core housing 321 .
  • the air-core coil 310 is made of copper wire, and the protective layer is a mixture of alumina, aluminum nitride, and silica gel; the magnetic core 320 is composed of FeSiAl alloy powder, which is specifically pressed into a block using FeSiAl alloy powder , and then cut into shape, and sintered at 700°C in nitrogen for 40 minutes to finally shape.
  • This embodiment provides a method for manufacturing an inductor, including:
  • the magnetic core is integrally formed, has at least two through holes, and the conductor has at least two bases;
  • Attach a part of the conductor to the magnetic core pass the two bases of the conductor through the two through holes respectively, and extend out of the magnetic core, and the part where the base extends out of the magnetic core is an electrode.
  • the inductor produced in this embodiment has an integrally formed magnetic core and a conductor attached to the magnetic core to reduce the gap between the components.
  • the heat generated can be exported through the conductor in time, so the heat dissipation Strong and reliable.
  • making the conductor and the magnetic core includes: providing FeNi alloy powder and copper sheet; pressing the FeNi alloy powder into a cuboid magnetic core blank, the top of the magnetic core blank is provided with a first groove, and a Two through holes, two second grooves are opened at the bottom, and the two second grooves communicate with the two through holes and the first groove respectively; the magnetic core body is sintered in nitrogen at 650°C for 40min , to obtain a magnetic core; stamping the copper sheet to obtain a "U"-shaped conductor, the thickness of the conductor is consistent with the depth of the first groove, and the length and width of the conductor are respectively the same as the length and width of the first groove.
  • the inductor in Embodiment 1 can be manufactured, so that when the manufactured inductor is in use, the heat generated can be exported through the conductor in time, so the heat dissipation is strong and the reliability is high.
  • making the conductor and the magnetic core includes: providing FeCrSi alloy powder and at least three copper sheets; pressing the FeCrSi alloy powder into a cuboid magnetic core blank, and the magnetic core blank is provided with an opening from top to bottom.
  • Two through holes, two second grooves are opened at the bottom, and the two second grooves communicate with the two through holes respectively;
  • the magnetic core body is sintered in the air at 800°C for 30 minutes to obtain the magnetic core;
  • the at least two A copper sheet is processed into an L-shaped second copper sheet by punching, cutting, etching, molding, etc.;
  • at least one copper sheet is made into a rectangular third copper sheet, and two openings are formed on the third copper sheet
  • the strip holes correspond to the two through holes, and the two second copper sheets and one third copper sheet serve as a conductor.
  • the inductor in the second embodiment can be manufactured, so that the heat generated by the manufactured inductor can be exported through the conductor in time when the manufactured inductor is in use, so the heat dissipation is strong and the reliability is high.
  • making the conductor and the magnetic core includes: providing FeSiAl alloy powder and copper wire; pressing the FeCrSi alloy powder into a rectangular parallelepiped magnetic core body with an opening, a hollow core, and a central column therein.
  • the core blank is provided with two through holes; the copper wire is wound along the central column to form a hollow coil, the hollow coil is a conductor, and the two leading ends of the hollow coil are respectively used to pass through the two through holes.
  • the inductor in Embodiment 3 can be manufactured, so that when the manufactured inductor is used, the heat generated can be exported through the conductor in time, so the heat dissipation is stronger and the reliability is higher.
  • the surface of the conductor is coated with a protective layer, and the protective layer includes at least a heat-conducting material.
  • the protective layer is entirely made of heat-conducting material. While protecting the conductor body, the heat-conducting material can well absorb the heat generated by the conductor body, thereby dissipating the heat generated by the conductor body in time.
  • the protective layer may also include heat-conducting materials and other materials. Since the protective layer is doped with heat-conducting materials, it is also possible to dissipate the heat produced by the conductor body in time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本申请公开一种电感,包括:一体成型的磁芯,所述磁芯至少开设有两个通孔;至少一个部分贴合于所述磁芯外表面的导体,所述导体的两端分别穿过两个所述通孔,延伸出所述磁芯。本申请提供的电感,散热能力强,可靠性高。

Description

一种电感及其制作方法 技术领域
本申请涉及电子元器件技术领域,具体涉及一种电感及其制作方法。
背景技术
现有的组装式电感,其由多个组件组合粘结在一起,粘结时组件之间存在间隙,使电感的散热能力下降。
技术问题
现有的电感在高温高湿条件下产品可靠性低。
技术解决方案
本申请提供一种电感,包括:一体成型的磁芯,所述磁芯至少开设有两个通孔;至少一个部分贴合于所述磁芯外表面的导体,所述导体的两端分别穿过两个所述通孔,延伸出所述磁芯。
有益效果
本申请提供的电感,具有一体成型的磁芯,以及贴合在磁芯上的导体,减少各组件之间的间隙,电感在使用时,产生的热量能够及时通过导体导出,因此散热性较强,且可靠性较高。
附图说明
图1为本申请实施例一电感的结构示意图;
图2为图1中的两个端子部分别沿A方向和B方向旋转后的电感的结构示意图;
图3为图1的爆炸图;
图4为本申请实施例二电感的结构示意图;
图5为图4的爆炸图;
图6为本申请实施例三电感的结构示意图;
图7为图6的爆炸图;
图8为本申请实施例电感的制作方法的流程示意图。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如背景技术所述,发明人研究发现,现有的组装式电感,其由多个组件组合粘结在一起,粘结时组件之间存在间隙,使电感的散热能力下降,在高温高湿条件下产品可靠性降低。
本申请实施例提出一种电感,散热能力强,可靠性高。
实施例一
请参阅图1,为本实施例提供的一种电感,包括:磁芯120及导体110,其中,磁芯120一体成型,其上至少开设有两个通孔,分别为第一通孔122,以及第二通孔123,导体110至少有一个,至少一个部分贴合于磁芯120的外表面,导体110的两端分别穿过两个通孔,延伸出磁芯120。
在本实施例中,电感具有一体成型的磁芯120,以及贴合在磁芯120上的导体110,减少了各组件之间的间隙,电感在使用时,产生的热量能够及时通过导体110导出,因此散热性较强,且可靠性较高。
本实施例中的一体成型的磁芯120,其结构是一体化的,而不是由多个零部件拼接得到。
在本实施例中,导体110可以是金属端子,在其他实施例中,导体110也可以是空心线圈;而两个通孔可以是圆柱形、长方体型、梯台形等,优选的,两个通孔的形状与导体110穿过两个通孔部位的形状相适配,使得导体110穿过两个通孔的部位与磁芯120相贴合,从而增加磁芯120及导体110装配的稳定性。
具体地,在本实施例中,导体110有一个,磁芯120有一个,导体110与磁芯120构成电感为单相电感,在其他实施例中,导体110还可以由多个,磁 芯120也可以有多个,多个导体110及磁芯120串联或并联,构成多相电感。
在一个实施例中,导体110包括:散热部111、基部及端子部;散热部111与磁芯120相贴合;基部电性连接散热部111相对两端作为导体110的两端,基部贯穿磁芯120;端子部设置于基部远离散热部111延伸出磁芯120一端。
其中,基部有两个,包括第一基部112及第二基部113,相应的,端子部包括与第一基部112对应的第一端子部114,以及与第二基部113对应的第二端子部115。
在一个实施例中,导体110包括:导体110本体及保护层,保护层涂覆在导体110本体表面,保护层至少包括导热材料。
在本实施例中,保护层全部由导热材料制成,在对导体110本体进行保护的同时,导热材料能够很好的吸收导体110本体产生的热量,从而及时将导体110本体产生的散发出去。在其他实施例中,保护层还可包括导热材料及其他材料,由于保护层掺杂了导热材料,同样能够及时将导体110本体产生的散发出去。
在一个实施例中,散热部111在两个通孔的连线方向上,长度大于或等于两个通孔的距离。
在本实施例中,散热部11的长度大于两个通孔的距离,这样的散热部111,能够贴合磁芯120更大的面积,从而更好地吸收磁芯120产生的热量,提升电感的散热能力。
在本实施例中,导体110可以一体成型,也可以组装成型,端子部设置在散热部111延伸出磁芯120的一端,构成电极。
具体地,在本实施例中,导体110一体成型。
导体110为第一导电端子,第一导电端子为一体成型的第一金属片,磁芯120的形状为长方体,第一金属片与磁芯120外表面相贴合,贴合的部分第一金属片作为散热部111,第一金属片的两端弯折,弯折的两端用于穿过两个通孔,作为两个基部,两个基部延伸出磁芯120,延伸出的部分构成端子部。
其中,基部包括第一基部112及第二基部113,第一基部112延伸出磁芯120 构成第一端子部114,第二基部113延伸出磁芯120构成第二端子部115。
在本实施例中,第一导电端子整体呈U型,保护层则为锡层。
在本实施例中,磁芯120沿贯穿方向的相对两面分别开设有第一凹槽121及两个第二凹槽124,第一金属片的散热部设置于第一凹槽121内与磁芯120相贴合,每个第二凹槽124分别与一个对应的通孔连通,第一金属片延伸出磁芯120的端子部弯折,弯折的每个端子部分别容置于不同的第二凹槽124内。
其中,第一凹槽121开设在磁芯120的上表面,散热部111的厚度与第一凹槽121的深度相同,使得散热部111位于第一凹槽121内时,磁芯120的上表面与散热部111在同一水平面。
第二凹槽124开设在磁芯120的下表面,两个第二凹槽124内分别容置有一个端子部,其中,端子部的厚度与第二凹槽124的深度相同,从而能够使得端子部与磁芯120的下表面平齐。
在本实施例中,磁芯120由FeNi合金粉末组成,具体为使用FeNi合金粉末压制而成,且在650℃,氮气中烧结40分钟最终成型,从而制作出一体成型的电感。
第一金属片可以采用冲压的方式制成,也可以采用不限于已知的其他加工方式制成,第一金属片为铜片。
实施例二
具体地,在本实施例中,导体组装成型。
导体为第二导电端子,第二导电端子包括:两个第二金属片220及第三金属片230,磁芯240的形状为长方体,第三金属片230与磁芯240相贴合,作为散热部,两个第二金属片220分别穿过对应的通孔与第三金属片230电性接触并固定装配以形成电性连接,第二金属片220被弯折为第一部位和第二部位,第一部位穿过通孔作为导体的基部222,基部222延伸出通孔的部位作为连接部221,连接部221与基部电性接触并固定装配以形成电性连接,第二部位在磁芯240外部构成端子部223。
本实施例中,通孔有两个,分别是第一通孔241及第二通孔242,一个金属 片220穿过第一通孔241,另一个金属片220穿过第二通孔242。
在本实施例中,第三金属片230与磁芯240的上表面相贴合,能够及时地吸收磁芯240产生的热量,其中,第三金属片230和磁芯240相贴合一面的长与宽,与磁芯240和第三金属片230相贴合一面的长与宽相同,从而能够更好地吸收磁芯240产生的热量。
第三金属片230开设有两个条形孔231,两个第二金属片220的基部212分别延伸入两个条形孔231与第三金属片230电性接触并固定装配;磁芯240开设有两个第三凹槽243,每个第三凹槽243分别与一个对应的通孔连通,两个第二金属片220的端子部213,分别容置于两个第三凹槽243内。
在本实施例中,第二金属片220延伸方向上的横截面,与条形孔231深度方向上的横截面相同,从而使得第二金属片220能够更好地与第三金属片230相装配。
在本实施例中,第三凹槽243开设在磁芯240的下表面,第二金属片220的端子部213的厚度,与第三凹槽243的深度相同,从而能够使得端子部213与磁芯240的下表面平齐。
在本实施例中,磁芯240由FeNi合金粉末组成,具体为使用FeNi合金粉末压制而成,且在800℃,空气中烧结30分钟最终成型。
第二金属片220及第三金属片230可以采用冲裁、切割、蚀刻、模压等方式将铜片加工而成,具体地,将第三金属片230加工成扁平的长方体型,将第二金属片220加工成L型,保护层则包括镍层和锡层。
在组装第二金属片220及第三金属片230时,将两个第二金属片220的连接部211分别从第一通孔241及第二通孔242位于磁芯240底部的入口穿入,再分别从第一通孔241及第二通孔242位于磁芯240顶部的出口穿出,再将第三金属片230盖在磁芯240的顶部,且第二金属片220的连接部221容置于第三金属片230开设的条形孔231内,使得第二金属片220与第三金属片230相装配;装配方式则可以为激光焊、焊锡、点导电胶等。
由于第二金属片220时L型的,因此无需弯折,其端子部213可以直接嵌 入第三凹槽243内,形成电极,即可以在组装前电感前,对电极进行加工,而可以避免因电极形状复杂、电极厚度大,导致在组装电感后,加工或折弯成型构成电极时,磁芯240因受力大而破裂。
在本实施例中,第二金属片220及第三金属片230为铜片。
实施例三
具体地,在本实施例中,导体一体成型。
导体为空心线圈310,磁芯320包括磁芯壳体321及磁芯中柱322,磁芯壳体321一侧开口,磁芯中柱322设置于磁芯壳体321内,两个通孔开设于磁芯壳体321相对于开口的另一侧,空心线圈310绕组绕设于磁芯中柱322,且空心线圈位于磁芯壳体321开口的一侧作为散热部311,空心线圈310的两引出端穿过通孔,作为基部312,并延伸出磁芯壳体320,延伸出所述磁芯壳体的部分作为所述端子部314。
其中,空心线圈310呈螺旋状绕设于磁芯中柱322。
在本实施例中,散热部311与磁芯中柱322相贴合,能够及时吸收磁芯中柱322产生的热量。
在本实施例中,磁芯壳体321开口的一侧为上表面,两个通孔开设于磁芯壳体321的表面。
在本实施例中,空心线圈310由铜制导线绕制而成,保护层则为氧化铝、氮化铝、硅胶混合物;磁芯320由FeSiAl合金粉末组成,具体为使用FeSiAl合金粉末压制成块,再经过切割成型,且在700℃,氮气中烧结40分钟最终成型。
在将铜制的导线绕制成空心线圈310时,将导线的一端固定,另一端连续穿过磁芯320的中柱,绕制成空心线圈310即可,随后导线的两端分别穿过两个通孔,延伸出磁芯壳体321。
实施例四
请参阅图8,本实施例提供一种电感的制作方法,包括:
S1、制作导体及磁芯,磁芯一体成型,具有至少两个通孔,导体至少有两个基部;
S2、将导体的一部分与磁芯相贴合,并将导体的两个基部分别穿过两个通孔,并延伸出磁芯,基部延伸出磁芯的部位为电极。
本实施例制作出的电感,具有一体成型的磁芯,以及贴合在磁芯上的导体,减少各组件之间的间隙,电感在使用时,产生的热量能够及时通过导体导出,因此散热性较强,且可靠性较高。
在一个实施例中,制作导体及磁芯包括:提供FeNi合金粉末及铜片;将FeNi合金粉末压制成长方体型的磁芯坯体,磁芯坯体顶部开设有第一凹槽,并开设有两个通孔,底部开设有两个第二凹槽,两个第二凹槽分别与两个通孔连通,且与第一凹槽连通;将磁芯坯体在650℃的氮气中烧结40min,得到磁芯;将铜片进行冲压,得到“U”型的导体,导体的厚度与第一凹槽的深度一致,导体的长度、宽度,分别与第一凹槽的长度、宽度相同。
本实施例可制作出实施例一中的电感,从而使得制作出的电感在使用时,产生的热量能够及时通过导体导出,因此散热性较强,且可靠性较高。
在另一个实施例中,制作导体及磁芯包括:提供FeCrSi合金粉末及至少三个铜片;将FeCrSi合金粉末压制成长方体型的磁芯坯体,磁芯坯体开设有从顶部至底部的两个通孔,底部开设有两个第二凹槽,两个第二凹槽分别与两个通孔连通;将磁芯坯体在800℃的空气中烧结30min,得到磁芯;将至少两个铜片采用冲裁、切割、蚀刻、模压等方式将铜片加工成L形的第二铜片;将至少一个铜片制作成矩形的第三铜片,并在第三铜片上开设两个条形孔,两个条形孔与两个通孔相对应,两个第二铜片及一个第三铜片作为一个导体。
本实施例可制作出实施例二中的电感,从而使得制作出的电感在使用时,产生的热量能够及时通过导体导出,因此散热性较强,且可靠性较高。
在另一个实施例中,制作导体及磁芯包括:提供FeSiAl合金粉末及铜线;将FeCrSi合金粉末压制成具有开口、并空心、且其内具有中柱的长方体型的磁芯坯体,磁芯坯体开设有两个通孔;将铜线沿中柱绕制成空心线圈,空心线圈为导体,空心线圈的两引出端用于分别穿过两通孔。
本实施例可制作出实施例三中的电感,从而使得制作出的电感在使用时, 产生的热量能够及时通过导体导出,因此散热性较强,且可靠性较高。
在本实施例中,导体表面涂覆有保护层,保护层至少包括导热材料。
在本实施例中,保护层全部由导热材料制成,在对导体本体进行保护的同时,导热材料能够很好的吸收导体本体产生的热量,从而及时将导体本体产生的散发出去。在其他实施例中,保护层还可包括导热材料及其他材料,由于保护层掺杂了导热材料,同样能够及时将导体本体产生的散发出去。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种电感,包括:
    一体成型的磁芯,所述磁芯至少开设有两个通孔;
    至少一个部分贴合于所述磁芯外表面的导体,所述导体的两端分别穿过两个所述通孔,延伸出所述磁芯。
  2. 根据权利要求1所述的电感,其中,
    所述导体包括:
    与所述磁芯相贴合的散热部;
    电性连接所述散热部相对两端的两个基部作为所述导体的两端,所述两个基部贯穿所述磁芯;
    设置于所述基部远离所述散热部延伸出所述磁芯一端的端子部。
  3. 根据权利要求2所述的电感,其中,
    所述散热部在两个通孔的连线方向上,长度大于或等于两个所述通孔之间的距离。
  4. 根据权利要求2所述的电感,其中,
    所述导体包括:
    导体本体;
    涂覆在所述导体本体表面的保护层,所述保护层至少包括导热材料。
  5. 根据权利要求2所述的电感,其中,
    所述导体为第一导电端子,所述第一导电端子为一体成型的第一金属片,所述磁芯的形状为长方体,所述第一金属片与所述磁芯外表面相贴合,所述贴合的部分所述第一金属片作为所述散热部,所述第一金属片的两端弯折,弯折的两端用于穿过两个所述通孔,作为所述两个基部,所述两个基部延伸出所述磁芯,延伸出的部分分别作为端子部。
  6. 根据权利要求5所述的电感,其中,
    所述磁芯沿贯穿方向的相对两面分别开设有第一凹槽及两个第二凹槽,所 述第一金属片的散热部设置于所述第一凹槽内与所述磁芯相贴合,每个所述第二凹槽分别与一个对应的所述通孔连通,所述第一金属片延伸出所述磁芯的端子部弯折,弯折的每个所述端子部分别容置于不同的所述第二凹槽内。
  7. 根据权利要求2所述的电感,其中,
    所述导体为第二导电端子,所述第二导电端子包括:两个第二金属片及第三金属片,所述磁芯的形状为长方体,所述第三金属片与所述磁芯相贴合,作为所述散热部,两个所述第二金属片分别穿过对应的所述通孔与所述第三金属片电性接触并固定装配以形成电性连接,所述第二金属片被弯折为第一部位和第二部位,第一部位穿过所述通孔作为所述导体的基部,所述基部延伸出通孔的部位作为连接部,所述连接部与所述基部电性接触并固定装配以形成电性连接,第二部位在所述磁芯外部构成端子部。
  8. 根据权利要求7所述的电感,其中,
    所述第三金属片开设有两个条形孔,两个所述第二金属片的基部分别延伸入两个所述条形孔与所述第三金属片电性接触并固定装配;
    所述磁芯开设有两个第三凹槽,每个第三凹槽分别与一个对应的所述通孔连通,两个所述第二金属片的所述端子部,分别容置于两个所述第三凹槽内。
  9. 根据权利要求2所述的电感,其中,
    所述导体为空心线圈,所述磁芯包括磁芯壳体及磁芯中柱,所述磁芯壳体一侧开口,所述磁芯中柱设置于所述磁芯壳体内,两个通孔开设于所述磁芯壳体相对于所述开口的另一侧,所述空心线圈绕组绕设于所述磁芯中柱,且所述空心线圈位于所述磁芯壳体开口的一侧作为所述散热部,所述空心线圈的两引出端穿过所述通孔,作为基部,并延伸出所述磁芯壳体,延伸出所述磁芯壳体的部分作为所述端子部。
  10. 根据权利要求9所述的电感,其中,
    所述空心线圈呈螺旋状绕设于所述磁芯中柱。
  11. 一种电感的制作方法,包括:
    制作导体及磁芯,所述磁芯一体成型,具有至少两个通孔,所述导体至少 有两个基部;
    将所述导体的一部分与所述磁芯相贴合,并将所述导体的两个基部分别穿过两个所述通孔,并延伸出所述磁芯,所述基部延伸出所述磁芯的部位为电极。
  12. 根据权利要求11所述的电感的制作方法,其中,
    所述制作导体及磁芯包括:
    提供FeNi合金粉末及铜片;
    将FeNi合金粉末压制成长方体型的磁芯坯体,所述磁芯坯体顶部开设有第一凹槽,并开设有两个通孔,底部开设有两个第二凹槽,两个第二凹槽分别与两个所述通孔连通,且与所述第一凹槽连通;
    将所述磁芯坯体在650℃的氮气中烧结40min,得到所述磁芯;
    将所述铜片进行冲压,得到“U”型的所述导体,所述导体的厚度与所述第一凹槽的深度一致,所述导体的长度、宽度,分别与所述第一凹槽的长度、宽度相同。
  13. 根据权利要求11所述的电感的制作方法,其中,
    所述制作导体及磁芯包括:
    提供FeCrSi合金粉末及至少三个铜片;
    将FeCrSi合金粉末压制成长方体型的磁芯坯体,所述磁芯坯体开设有从顶部至底部的两个通孔,底部开设有两个第二凹槽,两个第二凹槽分别与两个所述通孔连通;
    将所述磁芯坯体在800℃的空气中烧结30min,得到所述磁芯;
    将至少两个所述铜片采用冲裁、切割、蚀刻、模压等方式将铜片加工成L形的第二铜片;
    将至少一个所述铜片制作成矩形的第三铜片,并在所述第三铜片上开设两个条形孔,两个所述条形孔与两个所述通孔相对应,两个所述第二铜片及一个所述第三铜片作为一个所述导体。
  14. 根据权利要求11所述的电感的制作方法,其中,
    所述制作导体及磁芯包括:
    提供FeSiAl合金粉末及铜线;
    将FeCrSi合金粉末压制成具有开口、并空心、且其内具有中柱的长方体型的磁芯坯体,所述磁芯坯体开设有两个通孔;
    将所述铜线沿所述中柱绕制成空心线圈,所述空心线圈为导体,所述空心线圈的两引出端用于分别穿过两所述通孔。
  15. 根据权利要求11所述的电感的制作方法,其中,
    所述导体表面涂覆有保护层,所述保护层至少包括导热材料。
PCT/CN2021/096903 2021-05-28 2021-05-28 一种电感及其制作方法 WO2022246827A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096903 WO2022246827A1 (zh) 2021-05-28 2021-05-28 一种电感及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096903 WO2022246827A1 (zh) 2021-05-28 2021-05-28 一种电感及其制作方法

Publications (1)

Publication Number Publication Date
WO2022246827A1 true WO2022246827A1 (zh) 2022-12-01

Family

ID=84228356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096903 WO2022246827A1 (zh) 2021-05-28 2021-05-28 一种电感及其制作方法

Country Status (1)

Country Link
WO (1) WO2022246827A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202855475U (zh) * 2012-10-10 2013-04-03 深圳顺络电子股份有限公司 一种电感元件及电感元件组
CN108492965A (zh) * 2018-03-14 2018-09-04 北京航天发射技术研究所 一种新型差共模滤波电感结构
CN209118868U (zh) * 2019-01-03 2019-07-16 惠州三盛源电子有限公司 一种共模电感器
CN110718371A (zh) * 2019-10-19 2020-01-21 南京英发电子科技有限公司 射频变压器、导线及其应用方法
CN110800073A (zh) * 2017-06-26 2020-02-14 博格华纳公司 用于电动充电装置的节流阀
CN211150287U (zh) * 2019-11-22 2020-07-31 深圳市艺感科技有限公司 一种一体磁芯组装电感

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202855475U (zh) * 2012-10-10 2013-04-03 深圳顺络电子股份有限公司 一种电感元件及电感元件组
CN110800073A (zh) * 2017-06-26 2020-02-14 博格华纳公司 用于电动充电装置的节流阀
CN108492965A (zh) * 2018-03-14 2018-09-04 北京航天发射技术研究所 一种新型差共模滤波电感结构
CN209118868U (zh) * 2019-01-03 2019-07-16 惠州三盛源电子有限公司 一种共模电感器
CN110718371A (zh) * 2019-10-19 2020-01-21 南京英发电子科技有限公司 射频变压器、导线及其应用方法
CN211150287U (zh) * 2019-11-22 2020-07-31 深圳市艺感科技有限公司 一种一体磁芯组装电感

Similar Documents

Publication Publication Date Title
KR960012525B1 (ko) 하이브리드 집적회로 평면형 변압기
US7884696B2 (en) Lead frame-based discrete power inductor
TW201009859A (en) A magnetic electrical device
JPH06215953A (ja) マグネット素子とその製造方法
JPWO2006070544A1 (ja) 磁性素子
US6239683B1 (en) Post-mountable planar magnetic device and method of manufacture thereof
JPS61503063A (ja) 1方の巻線が第2巻線の支持体として用いられる低プロフィル型磁気構造
US7142085B2 (en) Insulation and integrated heat sink for high frequency, low output voltage toroidal inductors and transformers
TWI451455B (zh) Inductor and its manufacturing method
KR20150053964A (ko) 평면 코일의 중간체, 및 평면 코일의 제조 방법
JP2000164431A (ja) インダクタ
JP2000323336A (ja) インダクタ及びその製造方法
WO2022246827A1 (zh) 一种电感及其制作方法
JPH11176660A (ja) コイルを含む電気回路装置
JP6489283B2 (ja) 面実装型電子部品の端子構造、及びその端子構造を有する面実装型電子部品、並びに面実装型リアクトル
JPH1154345A (ja) トランス
JPH0746660B2 (ja) 薄形トランス
JPH11345721A (ja) 表面実装型小型コイル部品
JP2018198252A (ja) トランス、及び回路構成体
JP2001196226A (ja) インダクタ及びその製造方法
US20050012585A1 (en) Space saving surface-mounted inductors
JPH06290975A (ja) コイル部品並びにその製造方法
JP3346188B2 (ja) チョークコイル
CN113410029A (zh) 一种电感
JP2004103815A (ja) 面実装型チョークコイル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942401

Country of ref document: EP

Kind code of ref document: A1