WO2022246703A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2022246703A1
WO2022246703A1 PCT/CN2021/096130 CN2021096130W WO2022246703A1 WO 2022246703 A1 WO2022246703 A1 WO 2022246703A1 CN 2021096130 W CN2021096130 W CN 2021096130W WO 2022246703 A1 WO2022246703 A1 WO 2022246703A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
pixel
sub
layer
substrate
Prior art date
Application number
PCT/CN2021/096130
Other languages
English (en)
French (fr)
Inventor
李鑫
樊星
杨静
陈善韬
韩城
卢江楠
李彦松
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/096130 priority Critical patent/WO2022246703A1/zh
Priority to US17/773,030 priority patent/US20240155904A1/en
Priority to CN202180001273.6A priority patent/CN117063627A/zh
Publication of WO2022246703A1 publication Critical patent/WO2022246703A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • This article relates to but is not limited to the field of display technology, especially a display substrate, a manufacturing method thereof, and a display device.
  • OLED Organic Light Emitting Diode
  • PM Passive Matrix
  • AM Active Matrix
  • AMOLED is a current drive device, using independent thin film transistors (TFT, Thin Film Transistor) controls each sub-pixel, and each sub-pixel can be continuously and independently driven to emit light.
  • Embodiments of the present disclosure provide a display substrate, a manufacturing method thereof, and a display device.
  • an embodiment of the present disclosure provides a display substrate, including: a base, the base includes a first display area, and the first display area is provided with a plurality of sub-pixels of different colors. At least one sub-pixel of the plurality of sub-pixels of different colors includes: a light emitting element and a pixel driving circuit electrically connected to the light emitting element.
  • the light-emitting element includes: a first electrode, a second electrode and an organic light-emitting layer arranged between the first electrode and the second electrode, and the first electrode is electrically connected to the pixel driving circuit.
  • a first structure is provided on a side of the first electrode of the light emitting element of at least one target color sub-pixel close to the base, and the surface of the first structure close to the first electrode is uneven.
  • the first structure includes: at least one convex structure; the orthographic projection of the first electrode on the substrate includes the orthographic projection of the at least one convex structure on the substrate.
  • the first structure further includes: a first insulating layer located on the side of the at least one convex structure close to the base; the orthographic projection of the first insulating layer on the base includes the first Orthographic projection of the electrodes on the substrate.
  • a surface of the first insulating layer on a side close to the convex structure is flat.
  • the surface of the first insulating layer near the convex structure has a concave portion
  • the orthographic projection of the convex structure on the substrate is the same as the orthographic projection of the concave portion of the first insulating layer on the substrate. Projections do not overlap.
  • the material of the at least one convex structure is a metal material or a photosensitive organic material.
  • the material of the at least one convex structure is a metal material
  • the first structure further includes: a second insulating layer located between the at least one convex structure and the first electrode.
  • the first structure has a flat portion and at least one non-flat portion; an orthographic projection of the flat portion on the substrate does not overlap with an orthographic projection of the at least one non-flat portion on the substrate ; the orthographic projection of the first electrode on the substrate includes an orthographic projection of at least one uneven portion on the substrate.
  • the at least one uneven portion includes at least one of the following: a convex structure, a concave structure; the thickness of the first structure at the convex structure is greater than the thickness at the flat portion, the first The thickness of the structure is smaller at the concave structure than at the flat part.
  • the convex structure in a plane perpendicular to the base, includes a top surface and a slope connecting the top surface, and a tangent of the slope is between a plane parallel to the base. The angle between them is about 3 degrees to 30 degrees.
  • the height of the convex structures is about 100 nanometers to 5 micrometers.
  • the length of the convex structure along the first direction is smaller than the length of the corresponding sub-pixel along the first direction, and the length of the convex structure along the second direction less than the length of the corresponding sub-pixel along the second direction; the first direction intersects the second direction.
  • the width of the convex structure in a plane parallel to the substrate, is about 500 nanometers to 15 microns, and the width of the non-planar structure formed by the first electrode based on the convex structure is about 1 micron to 25 microns.
  • the shape of the non-planar structure formed by the first electrode based on the first structure is different from that of the substrate.
  • the first electrode is a reflective electrode.
  • the sub-pixels of the at least one target color include at least one of the following: blue sub-pixels, green sub-pixels, and red sub-pixels.
  • the pixel driving circuit includes: an active layer, a first gate metal layer, a second gate metal layer, a first source-drain metal layer, and a second source-drain layer sequentially disposed on the substrate.
  • Metal layer the first structure is located between the second source-drain metal layer and the light-emitting element, and the thickness of the first structure is less than or equal to 2 microns.
  • the first source-drain metal layer and the second source-drain metal layer satisfy at least one of the following: the first source-drain metal layer and the second source-drain metal layer of the pixel driving circuit of the sub-pixel of the at least one target color
  • the overlapping area of the orthographic projection of the layer on the substrate is greater than that of the first source-drain metal layer and the second source-drain metal layer of the pixel driving circuit of the sub-pixel of the color other than the at least one target color.
  • the thickness of the second source-drain metal layer of the pixel driving circuit of the sub-pixel of the at least one target color is greater than the pixel of the sub-pixel of a color other than the at least one target color
  • the substrate further includes: a second display area; the second display area is a flat display area, and the first display area is a curved display area or a curved display area around the second display area. fold display area.
  • the second electrodes of the first display area and the second display area are integrated, and the insulating layers of the first display area and the second display area are integrated.
  • an embodiment of the present disclosure provides a display device, including the above-mentioned display substrate.
  • an embodiment of the present disclosure provides a method for manufacturing a display substrate, including: forming a plurality of sub-pixels of different colors in a first display region of the substrate. At least one sub-pixel of the plurality of sub-pixels of different colors includes: a light emitting element and a pixel driving circuit electrically connected to the light emitting element.
  • the light-emitting element includes: a first electrode, a second electrode and an organic light-emitting layer arranged between the first electrode and the second electrode, and the first electrode is electrically connected to the pixel driving circuit.
  • a first structure is formed on a side of the first electrode of the light emitting element of the sub-pixel of at least one target color close to the substrate, and the surface of the first structure close to the first electrode is uneven.
  • the forming a plurality of sub-pixels of different colors in the first display area of the substrate includes: forming a plurality of pixel driving circuits on the substrate; A first structure is formed on a side of the first electrode of the element close to the base, and a surface of the first structure close to the first electrode is uneven.
  • the first structure includes: at least one convex structure, and the orthographic projection of the first electrode on the substrate includes the orthographic projection of the at least one convex structure on the substrate.
  • the first electrode of the light-emitting element of the sub-pixel of at least one target color forms a first structure on a side close to the substrate, including at least one of the following: using a wet etching process to form a metal thin film Etching is performed to form a convex structure of the first structure; and photosensitive organic material is used for exposure and development to form the convex structure of the first structure.
  • FIG. 1 is a schematic diagram of a display substrate according to at least one embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of multiple sub-pixels of a display substrate according to at least one embodiment of the present disclosure
  • Figure 3A is a schematic diagram of the relative relationship between the microcavity factor and the intrinsic PL spectrum at different viewing angles
  • FIG. 3B is a schematic diagram of the relationship between the light emission spectrum of the light-emitting element and the viewing angle
  • Fig. 4 is the schematic diagram of spectral tristimulus value spectrum
  • Fig. 5 is the variation curve of the red, green and blue luminance of the OLED light-emitting element with the viewing angle
  • Fig. 6 is a schematic cross-sectional view along the P-P direction in Fig. 2;
  • FIG. 7A is a schematic diagram of a display substrate after forming a base in at least one embodiment of the present disclosure
  • FIG. 7B is a schematic diagram of a display substrate after forming a driving structure layer in at least one embodiment of the present disclosure
  • FIG. 7C is a schematic diagram of a display substrate after forming a first flat layer in at least one embodiment of the present disclosure
  • FIG. 7D is a schematic diagram of a display substrate after forming a convex structure in at least one embodiment of the present disclosure
  • FIG. 7E is a schematic diagram of a display substrate after forming a first electrode in at least one embodiment of the present disclosure.
  • FIG. 7F is a schematic diagram of a display substrate after forming an encapsulation layer in at least one embodiment of the present disclosure
  • Fig. 8 is another schematic cross-sectional view along the P-P direction in Fig. 2;
  • Fig. 9 is another schematic cross-sectional view along the P-P direction in Fig. 2;
  • Fig. 10 is another schematic cross-sectional view along the P-P direction in Fig. 2;
  • Fig. 11 is a kind of partial sectional schematic diagram along P-P direction in Fig. 2;
  • Fig. 12 is another schematic cross-sectional view along the P-P direction in Fig. 2;
  • FIG. 13 is a schematic diagram of a convex structure formed by thinning the first flat layer and the second flat layer according to at least one embodiment of the present disclosure
  • Fig. 14 is another schematic cross-sectional view along the P-P direction in Fig. 2;
  • Fig. 15 is another schematic cross-sectional view along the P-P direction in Fig. 2;
  • Fig. 16 is another schematic cross-sectional view along the P-P direction in Fig. 2;
  • FIG. 17 is another schematic structural view of a plurality of sub-pixels of a display substrate according to at least one embodiment of the present disclosure.
  • Fig. 18 is a schematic cross-sectional view along the Q-Q direction in Fig. 17;
  • Fig. 19 is another schematic cross-sectional view along the Q-Q direction in Fig. 17;
  • FIG. 20 is another structural schematic diagram of a plurality of sub-pixels of a display substrate according to at least one embodiment of the present disclosure
  • Figure 21 is a schematic cross-sectional view along the P-P direction in Figure 19;
  • FIG. 22 is another schematic structural view of a plurality of sub-pixels of a display substrate according to at least one embodiment of the present disclosure
  • Figure 23 is a schematic cross-sectional view along the P-P direction in Figure 22;
  • Fig. 24 is another schematic cross-sectional view along the P-P direction in Fig. 2;
  • FIG. 25 is a schematic diagram of a display substrate according to at least one embodiment of the present disclosure.
  • FIG. 26 is a schematic diagram of a display device according to at least one embodiment of the present disclosure.
  • Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Embodiments may be embodied in many different forms. Those skilled in the art can easily understand the fact that the manner and contents can be changed into one or more forms without departing from the spirit and scope of the present disclosure. Therefore, the present disclosure should not be interpreted as being limited only to the contents described in the following embodiments. In the case of no conflict, the embodiments in the present disclosure and the features in the embodiments can be combined arbitrarily with each other.
  • connection should be interpreted in a broad sense unless otherwise specified and limited. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two components.
  • connection should be interpreted in a broad sense unless otherwise specified and limited. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two components.
  • a transistor refers to an element including at least three terminals of a gate electrode, a drain electrode, and a source electrode.
  • a transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain) and a source electrode (source electrode terminal, source region, or source), and current can flow through the drain electrode, the channel region, and the source electrode .
  • a channel region refers to a region through which current mainly flows.
  • the first electrode of the transistor may be the drain electrode and the second electrode may be the source electrode, or the first electrode of the transistor may be the source electrode and the second electrode may be the drain electrode.
  • the gate electrode of the transistor may be referred to as a gate electrode. In cases where transistors with opposite polarities are used or when the direction of current changes during circuit operation, the functions of the "source electrode” and “drain electrode” may be interchanged. Therefore, in the present disclosure, “source electrode” and “drain electrode” may be interchanged with each other.
  • electrically connected includes a case where constituent elements are connected together through an element having some kind of electrical action.
  • the "element having some kind of electrical function” is not particularly limited as long as it can transmit electrical signals between connected components.
  • Examples of “elements having some kind of electrical function” include not only electrodes and wirings but also switching elements such as transistors, resistors, inductors, capacitors, other elements having one or more functions, and the like.
  • parallel means a state where the angle formed by two straight lines is -10° or more and 10° or less, and thus may include a state where the angle is -5° or more and 5° or less.
  • perpendicular refers to a state in which the angle formed by two straight lines is 80° to 100°, and therefore, an angle of 85° to 95° may be included.
  • film and “layer” are interchangeable.
  • conductive layer may sometimes be replaced with “conductive film”.
  • insulating film may sometimes be replaced with “insulating layer”.
  • thickness refers to the height of the surface away from the substrate from the surface close to the substrate in the direction perpendicular to the plane of the substrate.
  • slope means the ratio of the vertical height of the slope to the length in the horizontal direction on a plane perpendicular to the display substrate.
  • An embodiment of the present disclosure provides a display substrate, including: a base, the base includes a first display area, and the first display area is provided with a plurality of sub-pixels of different colors. At least one of the plurality of sub-pixels of different colors includes: a light emitting element and a pixel driving circuit electrically connected to the light emitting element.
  • the light emitting element includes: a first electrode, a second electrode and an organic light emitting layer arranged between the first electrode and the second electrode.
  • the first electrode is electrically connected with the pixel driving circuit.
  • a first structure is provided on a side of the first electrode of the light emitting element of at least one target color sub-pixel close to the base. A surface of the first structure close to the first electrode is uneven. For example, the surface of the first structure close to the first electrode may be convex or concave. However, this embodiment does not limit it.
  • the display substrate provided in this embodiment utilizes the first structure to be close to the non-planar surface of the first electrode, so that the first electrode also has a non-planar surface, and can adjust the light emission spectrum of at least one target color as it changes with the viewing angle, thus without affecting On the basis of the front display color gamut of the display substrate, the viewing angle deviation is improved.
  • the first structure may include: at least one convex structure.
  • the orthographic projection of the first electrode on the substrate may comprise an orthographic projection of at least one convex structure on the substrate.
  • the orthographic projection of the first electrode of a subpixel on the substrate may include an orthographic projection of one convex structure on the substrate, or the orthographic projection of the first electrode of a subpixel on the substrate may include two convex structures on the substrate. Orthographic projection on .
  • this embodiment does not limit it.
  • the first structure may include: at least one convex structure and a first insulating layer located on a side of the at least one convex structure close to the base.
  • the orthographic projection of the first insulating layer on the substrate includes the orthographic projection of the first electrode on the substrate.
  • the first structure may be a combined structure of the convex structure and the first insulating layer. However, this embodiment does not limit it.
  • the surface of the first insulating layer on the side close to the convex structure is flat.
  • the non-planar surface of the first structure on the side close to the first electrode is formed by a convex structure.
  • the thickness of the first structure at the convex structure is greater than that at the first insulating layer.
  • this embodiment does not limit it.
  • the non-planar surface of the first structure on the side close to the first electrode may be jointly formed by the convex structure and the first insulating layer.
  • the surface of the first insulating layer near the convex structure has a concave portion
  • the orthographic projection of the convex structure of the first structure on the substrate is not the same as the orthographic projection of the concave portion of the first insulating layer on the substrate. overlap.
  • the non-planar surface of the first structure on the side close to the first electrode is jointly formed by the convex structure and the concave portion of the first insulating layer.
  • the thickness of the first structure at the convex structure is greater than the thickness at the concave portion of the first insulating layer.
  • the material of at least one convex structure may be a metal material or a photosensitive organic material.
  • the convex structure is made of a metal material and is directly connected to the first electrode, which can reduce resistance and improve conductivity between the first electrode and the pixel driving circuit.
  • the material of the convex structure may be molybdenum (Mo), aluminum (Al), copper (Cu) and the like. However, this embodiment does not limit it.
  • a material of at least one convex structure is a metal material
  • the first structure includes: at least one convex structure, and a second insulating layer located between the at least one convex structure and the first electrode.
  • the first structure has a flat part and at least one non-flat part; the orthographic projection of the flat part on the substrate does not overlap with the orthographic projection of the at least one non-flat part on the substrate;
  • the orthographic projection on comprises an orthographic projection of at least one non-flat portion on the substrate.
  • the at least one uneven portion includes at least one of the following: a convex structure, a concave structure.
  • the thickness of the first structure at the convex structure is greater than the thickness at the flat part, and the thickness of the first structure at the concave structure is smaller than the thickness at the flat part.
  • the first structure may have a flat portion and at least one convex structure, the flat portion being connected between the convex structures.
  • the first structure may have a flat portion and at least one concave structure, the flat portion being connected between the concave structures.
  • the first structure may have a flat portion, at least one convex structure and at least one concave structure, and the flat portion may be connected between the convex structure and the concave structure.
  • this embodiment does not limit it.
  • the convex structure in a plane perpendicular to the base, includes a top surface and a slope connecting the top surface, and the included angle between the tangent of the slope and the plane parallel to the base is about 3 degrees to 30 degrees. Spend.
  • the convex structure when the convex structure is an independent structure, the convex structure further includes a bottom surface connecting the slope.
  • the convex structure may be trapezoidal. However, this embodiment does not limit it.
  • the height of the convex structure may be about 100 nanometers to 5 micrometers. In some examples, when the convex structures are free-standing structures, the height of the convex structures may be the distance between the top and bottom surfaces of the convex structures. In some examples, when the convex structure is a protrusion protruding from the flat part to the side away from the base, the height of the convex structure may be the distance between the top surface of the protrusion on the side away from the base and the top surface of the flat part away from the base. However, this embodiment does not limit it.
  • the length of the convex structure along the first direction is smaller than the length of the corresponding sub-pixel along the first direction, and the length of the convex structure along the second direction is shorter than the length of the corresponding sub-pixel along the The length of the second direction; the first direction intersects the second direction.
  • the first direction is the column direction in which the sub-pixels are arranged, and the second direction is the row direction in which the sub-pixels are arranged.
  • the first ratio between the length of the sub-pixel in the first direction and the length in the second direction is about 0.5 to 2.
  • the convex structure has a second ratio between the length in the first direction and the length in the second direction.
  • the second ratio of the convex structure may be greater than the first ratio of the sub-pixels, for example, the ratio of the second ratio to the first ratio may be about 1 to 3, so as to improve the lateral viewing angle.
  • the second ratio of the convex structure can be smaller than the first ratio of the sub-pixel, for example, the ratio of the second ratio to the first ratio can be about 0.5 to 2, thereby improving the flat display area. viewing angle characteristics.
  • the width of the convex structure in a plane parallel to the substrate, is about 500 nanometers (nm) to 15 micrometers ( ⁇ m), and the width of the non-planar structure formed by the first electrode based on the convex structure is about 1 microns to 25 microns.
  • the width of the convex structure is about 7.5 microns, and the width of the non-planar structure of the first electrode is about 10 microns.
  • "length” means a characteristic dimension along a first direction (eg, a column direction of a subpixel), and "width” means a characteristic dimension along a second direction (eg, a row direction of a subpixel).
  • the first direction intersects the second direction, for example, the first direction is perpendicular to the second direction.
  • the width is less than the length.
  • the shape of the non-planar structure formed by the first electrode based on the first structure is different from that of the substrate.
  • the non-planar structure formed by the first electrode is not due to bending of the flexible substrate, but is formed by providing the first structure with a non-planar surface.
  • the first electrode may be a reflective electrode.
  • the first electrode is a fully reflective anode
  • the second electrode is a semi-reflective cathode
  • the display substrate in this example may be a display substrate with a top emission structure.
  • this embodiment does not limit it.
  • the first electrode can be a transparent anode
  • the second electrode can be a reflective cathode; the first structure provided on the side of the transparent anode close to the substrate can make the reflective cathode form a non-planar structure on the side close to the organic light-emitting layer, so as to improve
  • the display substrate of this example may be a display substrate of a bottom emission structure.
  • the sub-pixels of at least one target color may include at least one of the following: blue sub-pixels, green sub-pixels, and red sub-pixels.
  • the first display area is provided with sub-pixels of three colors (that is, red sub-pixels, green sub-pixels and blue sub-pixels), then the target color can be blue sub-pixels, or green sub-pixels, or blue A sub-pixel and a green sub-pixel, or a blue sub-pixel, a green sub-pixel and a red sub-pixel.
  • this embodiment does not limit it.
  • sub-pixels of multiple colors provided in the first display area may all serve as sub-pixels of the target color.
  • the pixel driving circuit includes: an active layer, a first gate metal layer, a second gate metal layer, a first source-drain metal layer and a second source-drain metal layer sequentially disposed on the substrate.
  • the first structure is arranged between the second source-drain metal layer and the light-emitting element, and the thickness of the first structure is less than or equal to 2 microns.
  • the first source-drain metal layer and the second source-drain metal layer satisfy at least one of the following: the orthographic projection of the first source-drain metal layer and the second source-drain metal layer of the pixel driving circuit of the sub-pixel of at least one target color on the substrate
  • the overlapping area is larger than the overlapping area of the orthographic projection of the first source-drain metal layer and the second source-drain metal layer of the pixel driving circuit of the sub-pixel except the at least one target color on the substrate; at least one target
  • the thickness of the second source-drain electrode layer of the pixel driving circuit of the sub-pixel of the color is greater than the thickness of the second source-drain metal layer of the pixel driving circuit of the sub-pixel of the color other than the at least one target color.
  • the shape of the first electrode of the sub-pixel of the target color is adjusted by changing the layout of the pixel driving circuit, or the first electrode of the sub-pixel of the target color is adjusted by changing the thickness of the second source-drain metal layer.
  • the shape of an electrode is adjusted by changing the layout of the pixel driving circuit, or the first electrode of the sub-pixel of the target color is adjusted by changing the thickness of the second source-drain metal layer.
  • the substrate further includes: a second display area.
  • the second display area is a flat display area
  • the first display area is a curved display area or a bent display area around the second display area.
  • the display substrate can be a curved display substrate, then only the shape of the first electrode of the sub-pixel of the target color in the curved display area or the bent display area of the display substrate can be changed, so as to improve the curved display area or the bent display area in a targeted manner.
  • the viewing angle deviation of the display area is ensured to ensure the normal display effect of the flat display area of the display substrate.
  • the second electrodes of the first display area and the second display area are integrated, and the insulating layers of the first display area and the second display area are integrated.
  • the first display area and the second display area are connected areas.
  • FIG. 1 is a schematic diagram of a display substrate according to at least one embodiment of the present disclosure.
  • the display substrate of this embodiment includes: a display area 100 and a non-display area 200 located around the display area 100 .
  • the non-display area 200 may include a peripheral area located at the periphery of the display area 100 and a binding area located at one side of the display area 100 .
  • a plurality of sub-pixels of different colors are arranged in the display area 100 , and at least one sub-pixel in the plurality of sub-pixels includes: a light emitting element and a pixel driving circuit electrically connected to the light emitting element.
  • the light emitting element includes a first electrode, a second electrode, and an organic light emitting layer between the first electrode and the second electrode.
  • the first electrode is electrically connected with the pixel driving circuit.
  • the first electrode may be a fully reflective anode, and the second electrode may be a semi-reflective cathode; or, the first electrode may be a transparent anode, and the second electrode may be a reflective cathode.
  • the peripheral area includes at least a signal line transmitting a voltage signal to a plurality of sub-pixels, for example, a low-potential power supply line (VSS).
  • VSS low-potential power supply line
  • the binding area at least includes a binding circuit that connects the signal lines of the multiple sub-pixels to an external circuit board, and the binding circuit may include, for example, multiple binding electrodes that are bonded and connected to the external circuit board.
  • the size and resolution of the display substrate are not limited.
  • FIG. 2 is a schematic structural diagram of a plurality of sub-pixels of a display substrate according to at least one embodiment of the present disclosure.
  • FIG. 2 is a partially enlarged schematic diagram of area S in FIG. 1 .
  • a plurality of repeating units are arranged in each row on a plane parallel to the display substrate.
  • Each repeating unit includes: two first color sub-pixels 3A, one second color sub-pixel 3B and one third color sub-pixel 3C.
  • the second-color sub-pixel 3B and the third-color sub-pixel 3C are located on both sides of the two first-color sub-pixels 3A in the row direction, and the two first-color sub-pixels 3A are arranged in the column direction.
  • the repeating units between two adjacent rows are shifted in the row direction.
  • the repeating unit between two adjacent rows has a shift of 1.5 times the width of the sub-pixel 3C of the third color in the row direction.
  • this embodiment does not limit it.
  • the two sub-pixels 3A of the first color in the repeating unit are symmetrical to each other, and the axis of symmetry is parallel to the row direction.
  • the first color sub-pixel 3A can be rectangular (for example, rounded rectangle) or square or pentagonal; the second color sub-pixel 3B and the third color sub-pixel 3C can both be rectangular (for example, rounded rectangle) or hexagonal .
  • the length of the second color sub-pixel 3B and the third color sub-pixel 3C along the column direction may be the same, and the length of the first color sub-pixel 3A along the column direction is smaller than the length of the second color sub-pixel 3B along the column direction.
  • the length of the first color sub-pixel 3A along the row direction may be greater than or equal to the length of the second color sub-pixel 3B along the row direction, and the length of the third color sub-pixel 3C along the row direction may be greater than that of the first color sub-pixel 3A along the row direction. length.
  • the first color sub-pixel 3A may be a green (G) sub-pixel
  • the second color sub-pixel 3B may be a red (R) sub-pixel
  • the third color sub-pixel 3C may be a blue (B) sub-pixel .
  • this embodiment does not limit the shape and arrangement of the multiple sub-pixels in the display area.
  • multiple sub-pixels in the display area may be arranged in an RGB pattern.
  • each row is arranged in repeating units of one red sub-pixel, one green sub-pixel and one blue sub-pixel, and the sub-pixels in each column have the same color.
  • a plurality of sub-pixels of the display area may be arranged in a PenTile pattern.
  • each pixel unit may include a red sub-pixel and a green sub-pixel, or a blue sub-pixel and a green sub-pixel, and each pixel unit may use another color sub-pixel of its adjacent pixel unit to form three primary colors.
  • the first electrode of the light-emitting element of the first color sub-pixel 3A and the second color sub-pixel 3B is close to the side of the organic light-emitting layer
  • the surfaces are all planar.
  • a first structure is provided on the side of the first electrode of the light-emitting element of the third-color sub-pixel 3C close to the substrate, and the surface of the first structure close to the first electrode is uneven, so that the light-emitting element of the third-color sub-pixel 3C
  • the surface of the first electrode close to the organic light-emitting layer has a non-planar structure.
  • the orthographic projection of the first structure on the substrate on the side of the first electrode of the light-emitting element of the third-color sub-pixel 3C close to the substrate overlaps with the orthographic projection of the light-emitting region of the light-emitting element of the third-color sub-pixel 3C on the substrate.
  • the first structure includes at least one convex structure
  • the projection of the light-emitting area of the light-emitting element of the third color sub-pixel 3C on the substrate includes an orthographic projection of the at least one convex structure of the first structure on the substrate.
  • the light emitting region of the light emitting element is a region for emitting light exposed by the opening of the pixel definition layer.
  • the first structure on the side close to the base of the first electrode of the light-emitting element of the third color sub-pixel 3C may include: a first plane region 311 , a first slope region 312 and a first slope region 312 .
  • the first planar region 311 and the second planar region 313 may be parallel to each other, and the first slope region 312 connects the first planar region 311 and the second planar region 313 .
  • the orthographic projection of the second planar area 313 on the base does not overlap with the orthographic projections of the first slope area 312 and the first planar area 311 on the base.
  • the first structure may include a flat portion and a concave structure.
  • the orthographic projection of the first planar area 311 on the base can be rectangular; the orthographic projection of the first slope area 312 on the base can surround the perimeter of the orthographic projection of the first planar area 311 on the base, and the first slope
  • the orthographic projection of the area 312 on the base can be a rectangular ring; the orthographic projection of the second planar area 313 on the base can surround the perimeter of the orthographic projection of the first slope area 312 on the base, and the second planar area 313 is on the base
  • the orthographic projection of can be a rectangular ring.
  • this embodiment does not limit it.
  • the orthographic projection of the first plane area on the base can be a circle, ellipse or other figures, and the orthographic projections of the first slope area and the second plane area on the base can be circular, elliptical or other shapes ring.
  • the orthographic projection of the first planar area on the base can be an ellipse, and the orthographic projection of the second planar area on the base can be a rectangular ring.
  • the orthographic projection of the second planar area 313 on the base may include the orthographic projections of the first slope area 312 and the first planar area 311 on the base.
  • the first structure may include a convex structure.
  • the orthographic projection of the first planar area 311 on the base can be rectangular;
  • the orthographic projection of 312 on the base is, for example, a rectangular ring;
  • the orthographic projection of the second planar area 313 on the base can be rectangular, and covers the orthographic projections of the first slope area 312 and the first planar area 311 on the base.
  • this embodiment does not limit it.
  • the distance between the first planar region 311 and the substrate is greater than the distance between the second planar region 313 and the substrate, that is, the first structure may include a convex structure; or, the first The distance between the planar area 311 and the base is smaller than the distance between the second planar area 313 and the base, that is, the first structure may include a concave structure.
  • the first structure on the side of the first electrode of the light-emitting element of the third-color sub-pixel 3C close to the substrate may include a convex structure, so that the first electrode of the light-emitting element of the third-color sub-pixel 3C has a surface facing away from the substrate. A convex surface that protrudes from one side of the base.
  • the convex structure included in the first structure has a flat convex top surface and a convex bottom surface parallel to the convex top surface, and the convex top surface and the convex bottom surface are connected by a convex slope surface, then the first planar area 311 It may be the raised top surface, the first slope area 312 may be the raised slope, and the second plane area 313 may be the extended plane of the raised bottom.
  • the first structure on the side close to the substrate of the first electrode of the light-emitting element of the third color sub-pixel 3C may include a concave structure, and the concave structure has a flat groove bottom surface and a groove parallel to the groove bottom surface.
  • the groove top surface, and the groove top surface and the groove bottom surface are connected by a groove slope surface, then the first planar area 311 can be the groove bottom surface, and the first slope surface area 312 can be the groove slope surface,
  • the second plane region 313 may be an extended plane of the top surface of the groove.
  • this embodiment does not limit it.
  • the first color sub-pixel 3A may be a green sub-pixel
  • the second color sub-pixel 3B may be a red sub-pixel
  • the third color sub-pixel 3C may be a blue sub-pixel .
  • the first electrode may be a fully reflective anode
  • the second electrode may be a semireflective cathode. The total reflection anode, the organic light-emitting layer and the semi-reflection cathode together form a microcavity structure.
  • the microcavity structure of the top-emitting OLED can enhance the light intensity of the light-emitting element at the front viewing angle, and on the other hand, it can also improve the color purity of the light spectrum and the saturation of the display tone.
  • the influence of the microcavity factor on the light output of the light-emitting element can be regarded as the multiplication of the microcavity factor and the intrinsic PL spectrum of the light-emitting element.
  • 3A is a schematic diagram of the relative relationship between the microcavity factor and intrinsic photoluminescence (PL, Photoluminescence) spectrum at different viewing angles.
  • the dotted line represents the OLED microcavity function at different angles
  • the solid line represents the intrinsic PL spectrum of the material.
  • FIG. 3A is a schematic diagram showing the relationship between the light emission (EL) spectrum of the light-emitting element and the viewing angle.
  • EL light emission
  • FIG. 3B is a schematic diagram showing the relationship between the light emission (EL) spectrum of the light-emitting element and the viewing angle.
  • the intensity of the output spectrum of the light-emitting element decreases as the viewing angle increases, and the peak position of the spectrum shifts to short wavelengths.
  • white light is composed of three colors of red, green and blue light. When the brightness and hue of the three colors are inconsistent with the viewing angle, the synthesized white light will have a color cast.
  • Fig. 4 is a schematic diagram of a spectral tristimulus value spectrum.
  • the brightness information of light is mainly related to the Y stimulus value in the spectral tristimulus value spectrum.
  • the viewing angle decay of blue light is faster than that of green light and red light, and the viewing angle decay of red light is the slowest, as shown in Figure 5.
  • the first structure is arranged on the side of the reflective electrode of the light-emitting element of the blue sub-pixel close to the substrate, and the first structure is close to the blue
  • the surface of the reflective electrode of the light-emitting element of the sub-pixel is non-flat, so that the reflective electrode of the light-emitting element of the blue sub-pixel has a non-planar structure, so as to adjust the microcavity structure of the blue sub-pixel, and adjust the light emission spectrum of the blue sub-pixel as The change of the viewing angle, so as to improve the viewing angle deviation of the display substrate without affecting the front display color gamut of the display substrate.
  • FIG. 6 is a schematic cross-sectional view along the P-P direction in FIG. 2 .
  • the display region includes: a driving structure layer disposed on the base 10 , a first structure, and the light emitting structure layer disposed on the side of the first structure away from the substrate 10 .
  • the driving structure layer includes a plurality of pixel driving circuits
  • the light emitting structure layer includes a plurality of light emitting elements
  • the plurality of light emitting elements are connected to the plurality of pixel driving circuits in a one-to-one correspondence.
  • Each pixel driving circuit includes a plurality of transistors and at least one storage capacitor, for example, may be of 2T1C, 3T1C, 5T1C or 7T1C design.
  • three sub-pixels of different colors i.e., a first-color sub-pixel 3A, a second-color sub-pixel 3B, and a third-color sub-pixel 3C
  • the pixel driving circuit of each sub-pixel is only one
  • a transistor and a storage capacitor are used as an example to illustrate.
  • the driving structure layer includes: a buffer layer 11 , an active layer, and a first gate insulating layer 12 stacked on the substrate 10 in sequence. , a first gate metal layer, a second gate insulating layer 13, a second gate metal layer, an interlayer insulating layer 14 and a source-drain metal layer.
  • the active layer at least includes: a first active layer, a second active layer and a third active layer.
  • the first gate metal layer at least includes: a first gate electrode, a second gate electrode, a third gate electrode, a first capacitor electrode, a second capacitor electrode and a third capacitor electrode.
  • the second gate metal layer at least includes: a fourth capacitor electrode, a fifth capacitor electrode and a sixth capacitor electrode.
  • the source-drain metal layer at least includes: a first source electrode, a first drain electrode, a second source electrode, a second drain electrode, a third source electrode and a third drain electrode.
  • the first active layer, the first gate electrode, the first source electrode and the first drain electrode form the first transistor 101A
  • the first capacitor electrode and the fourth capacitor electrode form the first storage capacitor 102A.
  • the second active layer, the second gate electrode, the second source electrode and the second drain electrode form the second transistor 101B
  • the second capacitor electrode and the fifth capacitor electrode form the second storage capacitor 102B.
  • the third active layer, the third gate electrode, the third source electrode and the third drain electrode form the third transistor 101C
  • the third capacitor electrode and the sixth capacitor electrode form the third storage capacitor 102C.
  • the first structure on a plane perpendicular to the display substrate, includes: a first planar layer 15 and at least one convex structure (a first bump shown in FIG. 6 301 as an example).
  • the first flat layer 15 is the above-mentioned first insulating layer.
  • the surface of the first flat layer 15 near the convex structure is flat.
  • the first flat layer 15 is located on a side of the driving structure layer away from the base 10 , and at least one convex structure is located on a side of the first flat layer 15 away from the base 10 .
  • the light-emitting area of the sub-pixel of the third color overlaps with the orthographic projection of a convex structure on the substrate 10 , for example, the orthographic projection of the first bump 301 on the substrate 10 is located in the light-emitting area of the sub-pixel of the third color.
  • the first structure includes a convex structure
  • the surface of the first structure close to the first electrode of the light-emitting element of the third color sub-pixel is uneven, so that the first electrode of the light-emitting element of the third color sub-pixel is close to the organic light-emitting layer.
  • the surface is also uneven. That is, the surface of the first electrode of the light emitting element of the third color sub-pixel close to the organic light emitting layer has a non-planar structure.
  • the width of the surface on the side of the first bump 301 away from the base 10 is smaller than the width of the surface on the side near the base (ie, the bottom surface), and the top surface of the first bump 301 It is connected with the bottom surface through a slope.
  • the first bump 301 may be trapezoidal.
  • the slope of the first bump 301 may be about 3° to 30°, for example, the slope of the first bump 301 may be about 5°.
  • the orthographic projection of the top and bottom surfaces of the first bump 301 on the base 10 may be a rectangle, and the orthographic projection of the slope of the first bump 301 on the base 10 may be a rectangular ring surrounding the top surface.
  • this embodiment does not limit it.
  • the orthographic projection of the top surface and the bottom surface of the first bump 301 on the base may be circular or elliptical, and the orthographic projection of the slope surface on the base may be a circular ring or an elliptical ring surrounding the top surface.
  • the orthographic projections of the top surface and the bottom surface of the first bump 301 on the base may have different shapes, for example, the orthographic projection of the top surface on the base may be circular or elliptical, and the orthographic projection of the bottom surface on the base may be circular or oval. Projections can be rectangular.
  • the slopes of the slopes around the top surface of the first bump can be the same, or can be partly the same, for example, the slopes of the slopes on the left and right sides of the top surface are the same and less than or greater than that of the slopes on the upper and lower sides. slope. However, this embodiment does not limit it.
  • the distance between the top surface and the bottom surface of the first bump 301 may be about 100 nm to 3 ⁇ m, for example, the first thickness H1 may be 0.5 ⁇ m.
  • the first length of the orthographic projection of the first bump 301 on the substrate 10 may be smaller than the length of the pixel opening formed by the pixel definition layer 34, for example, the A length may be about 5 ⁇ m to 20 ⁇ m, for example, the first length may be about 10 ⁇ m; the first width of the orthographic projection of the first bump 301 on the substrate 10 may be smaller than the width of the pixel opening formed by the pixel definition layer 34, for example,
  • the first width W1 of the orthographic projection of the first bump 301 on the substrate 10 may be about 500 nm to 15 ⁇ m, for example, the first width W1 may be about 7.5 ⁇ m.
  • this embodiment does not limit
  • length means a characteristic dimension along a first direction (eg, a column direction of a subpixel)
  • width means a characteristic dimension along a second direction (eg, a row direction of a subpixel).
  • the first direction intersects the second direction, for example, the first direction is perpendicular to the second direction.
  • a light emitting structure layer is disposed on a side of the first structure away from the substrate 10 .
  • At least one light-emitting element of the light-emitting structure layer includes: first electrodes (for example, the first anode 31A, the second anode 31B or the third anode 31C shown in FIG. 6 ), an organic light-emitting layer (for example, shown in FIG. 6 The first organic light emitting layer 32A, the second organic light emitting layer 32B or the third organic light emitting layer 32C), the second electrode 33 and the pixel definition layer 34 are shown.
  • the first electrode is a reflective anode
  • the second electrode 33 is a semi-reflective cathode.
  • the first electrode is connected to the transistor of the pixel driving circuit through the via hole opened on the first planar layer 15 .
  • the organic light-emitting layer includes a light-emitting layer (EML, Emitting Layer) and a hole injection layer (HIL, Hole Injection Layer), a hole transport layer (HTL, Hole Transport Layer), a hole blocking layer (HBL, Hole Block Layer), A multilayer structure composed of one or more layers in the electron blocking layer (EBL, Electron Block Layer), electron injection layer (EIL, Electron Injection Layer), and electron transport layer (ETL, Electron Transport Layer).
  • the luminescence characteristic of the organic material is used to emit light according to the required gray scale.
  • Light emitting elements of different colors have different light emitting layers, for example, a red light emitting element includes a red light emitting layer, a green light emitting element includes a green light emitting layer, and a blue light emitting element includes a blue light emitting layer.
  • the pixel definition layer 34 includes a plurality of pixel openings arranged regularly, and the pixel definition layer 34 in each pixel opening is etched away to expose the first electrode.
  • Each pixel opening can be in the shape of a right-angled rectangle or a rounded rectangle, and the cross-sectional shape of each pixel opening can be an inverted trapezoid.
  • the organic light emitting layer is disposed in the pixel opening of the pixel definition layer 34 and is in contact with the first electrode, and the second electrode 33 covers the surface of the organic light emitting layer and is in contact with the organic light emitting layer.
  • the third anode 31C of the third color sub-pixel 3C covers the first bump 301 and is in direct contact with the surface of the first bump 301 away from the substrate 10 .
  • the third anode 31C formed on the first bump 301 can have a surface protruding toward the organic light emitting layer 32C, and the organic light emitting layer 32C also has a surface protruding toward the second anode.
  • the second electrode 33 On the surface of the second electrode 33 , the second electrode 33 has a surface protruding toward the encapsulation layer 40 , so that the light emitting direction of the third color light reflected by the third anode 31C and emitted through the second electrode 33 can be changed.
  • the morphology of the third anode 31C, the organic light emitting layer 32C and the second electrode 33 is adjusted by the first bump 301 of the first structure.
  • the thickness of the light emitting region of the light emitting element of the third color sub-pixel 3C gradually decreases from the middle to the surrounding.
  • the surface of the first anode 32A of the light-emitting element of the first color sub-pixel 3A near the first organic light-emitting layer 32A is a plane
  • the surface of the second anode 32B of the light emitting element of the second color sub-pixel 3B near the second organic light emitting layer 32B is a plane.
  • the distance between the first anode 31A of the light emitting element of the first color sub-pixel 3A and the substrate 10 is approximately equal to that of the second anode 31B of the light emitting element of the second color sub-pixel 3B.
  • the distance between the surface on the side of the second organic light emitting layer 32B and the substrate 10 is approximately equal to the third anode 31C of the light emitting element of the third color sub-pixel 3C except for the first bump 301 on the side of the surface close to the third organic light emitting layer 32C The distance between the outside plane and the substrate 10.
  • the structure of the display substrate will be described below by way of an example of the manufacturing process of the display substrate.
  • the “patterning process” mentioned in this disclosure includes deposition of film layer, coating of photoresist, mask exposure, development, etching and stripping of photoresist. Any one or more of sputtering, evaporation and chemical vapor deposition can be used for deposition, any one or more of spray coating and spin coating can be used for coating, and any of dry etching and wet etching can be used for etching. one or more.
  • “Film” refers to a layer of film produced by depositing or coating a certain material on a substrate.
  • the "thin film” does not require a patterning process during the entire manufacturing process, the “thin film” can also be called a “layer”. If the "film” requires a patterning process during the entire production process, it is called a “film” before the patterning process, and it is called a “layer” after the patterning process. The “layer” after the patterning process contains at least one "pattern”.
  • a and B are arranged in the same layer in this disclosure means that A and B are formed simultaneously through the same patterning process, and the "thickness" of the film layer is the dimension of the film layer in the direction perpendicular to the display substrate.
  • the orthographic projection of A includes the orthographic projection of B means that the boundary of the orthographic projection of B falls within the boundary range of the orthographic projection of A, or that the boundary of the orthographic projection of A and the orthographic projection of B Projected boundaries overlap.
  • the manufacturing process of the display substrate may include the following operations, as shown in FIGS. 7A to 7F .
  • a display substrate with a top emission structure is taken as an example for description.
  • 7A to 7F are schematic cross-sectional views along the P-P direction in FIG. 2 .
  • the flexible substrate 10 includes a first flexible material layer, a first inorganic material layer, a semiconductor layer, a second flexible material layer and a second inorganic material layer stacked on the glass carrier 1 .
  • the materials of the first and second flexible material layers can be materials such as polyimide (PI), polyethylene terephthalate (PET) or surface-treated polymer soft films, and the first and second inorganic materials
  • the material of the layer can be silicon nitride (SiNx) or silicon oxide (SiOx), etc., which are used to improve the water and oxygen resistance of the substrate.
  • the first and second inorganic material layers are also called barrier (Barrier) layers.
  • the semiconductor layer The material can be amorphous silicon (a-si).
  • the preparation process may include: first coating a layer of polyimide on the glass carrier 1, curing it into Form the first flexible (PI1) layer after the film; then deposit a layer of barrier film on the first flexible layer to form the first barrier (Barrier1) layer covering the first flexible layer; then deposit a layer of non- A thin film of crystalline silicon to form an amorphous silicon (a-si) layer covering the first barrier layer; then a layer of polyimide is coated on the amorphous silicon layer, and the second flexible (PI2) layer is formed after curing to form a film ; Then deposit a layer of barrier film on the second flexible layer to form a second barrier (Barrier2) layer covering the second flexible layer to complete the preparation of the flexible substrate, as shown in Figure 7A.
  • the driving structure layer includes a plurality of pixel driving circuits, at least one pixel driving circuit includes a plurality of transistors and at least one storage capacitor, for example, a 3T1C, 5T1C or 7T1C design may be adopted.
  • the manufacturing process of the driving structure layer may include the following processes.
  • a first insulating film and an active layer film are sequentially deposited on the substrate, and the active layer film is patterned through a patterning process to form a buffer layer 11 covering the entire substrate 10 and an active layer pattern disposed on the buffer layer 11 .
  • the active layer pattern is formed in the display area, including at least the first active layer 21A, the second active layer 21B and the third active layer 21C.
  • the first gate metal layer pattern is formed in the display area, including at least the first gate electrode 22A, the second gate electrode 22B, the third gate electrode 22C, the first capacitor electrode 23A, the second capacitor electrode 23B, the third capacitor electrode 23C, multiple gate lines (not shown) and a plurality of first gate leads (not shown).
  • a third insulating film and a second metal film are deposited in sequence, and the second metal film is patterned by a patterning process to form a second gate insulating layer 13 covering the first gate metal layer, and to be disposed on the second gate insulating layer 13 The second gate metal layer pattern.
  • the second gate metal layer pattern is formed in the display area, including at least the fourth capacitor electrode 24A, the fifth capacitor electrode 24B, the sixth capacitor electrode 24C, and the second gate lead (not shown), and the position of the fourth capacitor electrode 24A is the same as
  • the position of the first capacitive electrode 23A corresponds
  • the position of the fifth capacitive electrode 24B corresponds to the position of the second capacitive electrode 23B
  • the position of the sixth capacitive electrode 24C corresponds to the position of the third capacitive electrode 23C.
  • the interlayer insulating layer 14 is provided with a plurality of first via holes, a plurality of A second via hole and a plurality of third via holes; the positions of the two first via holes correspond to the two ends of the first active layer 21A respectively, and the positions of the two second via holes correspond to the positions of the second active layer 21A respectively.
  • the positions of the two ends of the layer 21B correspond to each other, and the positions of the two third via holes respectively correspond to the positions of the two ends of the third active layer 21C.
  • the interlayer insulating layer 14 , the second gate insulating layer 13 and the first gate insulating layer 12 in the plurality of first via holes are etched away, exposing the surface of the first active layer 21A respectively.
  • the interlayer insulating layer 14 , the second gate insulating layer 13 and the first gate insulating layer 12 in the plurality of second via holes are etched away, exposing the surface of the second active layer 21B respectively.
  • the interlayer insulating layer 14 , the second gate insulating layer 13 and the first gate insulating layer 12 in the plurality of third via holes are etched away, exposing the surface of the third active layer 21C respectively.
  • the source-drain metal layer is formed in the display area, including at least the first source electrode 25A, A first drain electrode 26A, a second source electrode 25B, a second drain electrode 26B, a third source electrode 25C, a third drain electrode 26C, a plurality of data lines (not shown) and a plurality of data wiring patterns.
  • the first source electrode 25A and the first drain electrode 26A are respectively connected to the first active layer 21A through first via holes.
  • the second source electrode 25B and the second drain electrode 26B are respectively connected to the second active layer 21B through the second via holes.
  • the third source electrode 25C and the third drain electrode 26C are respectively connected to the third active layer 21C through third via holes.
  • the source-drain metal layer may also include any one or more of a power line (VDD), a compensation line, and an auxiliary cathode, and the source-drain metal layer is also referred to as the first source Drain metal layer (SD1).
  • the first active layer 21A, the first gate electrode 22A, the first source electrode 25A and the first drain electrode 26A form the first transistor 101A
  • the second drain electrode 26B forms the second transistor 101B
  • the third active layer 21C, the third gate electrode 22C, the third source electrode 25C and the third drain electrode 26C form the third transistor 101C
  • the first capacitor electrode 23A and the fourth capacitor electrode 24A forms the first storage capacitor 102A
  • the second capacitor electrode 23B and the fifth capacitor electrode 24B form the second storage capacitor 102B
  • the third capacitor electrode 23C and the sixth capacitor electrode 24C form the third storage capacitor 102C.
  • a plurality of gate leads and data leads form a drive lead of a gate driver on array (GOA for short).
  • the first transistor 101A may be a driving transistor in a pixel driving circuit of a subpixel of a first color
  • the second transistor 101B may be a driving transistor in a pixel driving circuit of a subpixel of a second color
  • the third transistor 101B may be a driving transistor in a pixel driving circuit of a subpixel of a second color
  • the transistor 101C may be a driving transistor in the pixel driving circuit of the third color sub-pixel.
  • this embodiment is not limited to this.
  • the buffer layer 11, the first gate insulating layer 12, the second gate insulating layer 13 and the interlayer insulating layer 14 may use silicon oxide (SiOx), silicon nitride (SiNx) and silicon oxynitride Any one or more of (SiON), which can be single-layer, multi-layer or composite layer.
  • the first metal film, the second metal film and the third metal film can adopt metal materials, such as silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo) any one or More, or alloy materials of the above metals, such as aluminum-neodymium alloy (AlNd) or molybdenum-niobium alloy (MoNb), can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti and the like.
  • metal materials such as silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo) any one or More, or alloy materials of the above metals, such as aluminum-neodymium alloy (AlNd) or molybdenum-niobium alloy (MoNb)
  • AlNd aluminum-neodymium alloy
  • MoNb molybdenum-niobium alloy
  • the active layer film can be made of amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si), polycrystalline silicon (p-Si) , hexathiophene, polythiophene and other materials, that is, the present disclosure is applicable to transistors manufactured based on oxide (Oxide) technology, silicon technology and organic technology.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • hexathiophene polythiophene and other materials
  • an organic material film is coated on the substrate 10 with the aforementioned pattern to form a first planar layer 15 covering the entire substrate 10, and a plurality of fourth processes are formed on the first planar layer 15 through a patterning process.
  • holes, a plurality of fifth via holes and a plurality of sixth via holes are shown in FIG. 7C ).
  • the first flat layer 15 in the fourth via hole K4 is etched away, exposing the surface of the first drain electrode of the first transistor 101A, and the first flat layer 15 in the fifth via hole K5 is etched.
  • Etching away exposes the surface of the second drain electrode of the second transistor 101B, and the first planar layer 15 in the sixth via hole K6 is etched away exposing the surface of the third drain electrode of the third transistor 101C.
  • At least one convex structure is formed on the substrate on which the aforementioned pattern is formed.
  • a fourth metal film is deposited on the substrate 10 forming the aforementioned pattern, and the fourth metal film is patterned by a patterning process (for example, a wet etching process) to form at least one convex structure, such as a first convex structure.
  • Block 301 the orthographic projection of the first bump 301 on the substrate 10 may be located in the light-emitting area of the third-color sub-pixel, that is, the overlapping of the light-emitting element of the third-color sub-pixel formed subsequently and the first bump 301 The area may be located in the light emitting area of the third color sub-pixel. As shown in FIG.
  • the first bump 301 in a plane perpendicular to the display substrate, may be trapezoidal, the top surface and the bottom surface are planes parallel to each other, and the top surface and the bottom surface are connected by a slope surface, and the slope surface is a plane. .
  • the first width W1 of the first bump 301 may be about 7.5 ⁇ m; the distance between the top surface of the first bump 301 and the ground (that is, the first thickness H1 ) may be about 0.5 ⁇ m.
  • this embodiment does not limit it.
  • the first bump 301 can be disposed on the same layer as the electrostatic shielding layer in the non-display area around the display area, so as to achieve multiple utilization of technological means and optimize the manufacturing process.
  • this embodiment does not limit it.
  • the fourth metal thin film can use metal materials, such as any one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo) kind.
  • metal materials such as any one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo) kind.
  • molybdenum (Mo) can be used for the fourth metal thin film.
  • the controllable adjustment of the range and shape of the first bump can be realized, and the etching of the fourth metal film
  • the pattern can be optimized in detail by designing the exposure mask (Mask). However, this embodiment does not limit it.
  • the first electrode is a total reflection anode, and the first electrode is connected to a corresponding pixel driving circuit.
  • a conductive film is deposited on the substrate 10 formed with the foregoing pattern, and the conductive film is patterned by a patterning process to form the first electrode pattern.
  • the first electrode pattern at least includes: a first anode 31A, a second anode 31B and a third anode 31C.
  • the first anode 31A of the first color sub-pixel is connected to the first drain electrode of the first transistor 101A through the fourth via hole
  • the second anode 31B of the second color sub-pixel is connected to the second drain electrode of the second transistor 101B through the fifth via hole.
  • the drain electrode is connected, and the third anode 31C of the third color sub-pixel is connected to the third drain electrode of the third transistor 101C through the sixth via hole.
  • the third anode 31C of the third color sub-pixel is in direct contact with the first bump 301 , that is, there is an electrical connection between the third anode 31C and the first structure.
  • the orthographic projection of the third anode 31C on the substrate 10 may include the orthographic projection of the first bump 301 on the substrate 10 .
  • the orthographic projection of the first bump 301 on the substrate 10 may not overlap with the projection of the sixth via hole on the substrate 10 .
  • the third anode 31C is electrically connected to the third drain electrode of the third transistor 101C through the sixth via hole, and the first bump 301 does not affect the connection between the third anode 31C and the third drain electrode of the third transistor 101C. electrical connection.
  • this embodiment does not limit it.
  • the projections of the first bump and the sixth via hole on the substrate may overlap, that is, the third anode may be electrically connected to the third drain electrode of the third transistor of the pixel driving circuit by using the first bump.
  • the first bump 301 is made of metal material, and the first bump 301 is in direct contact with the third anode 31C, which has the function of reducing the series resistance and is beneficial to improve the third anode 31C and the third transistor 101C. The electrical connection effect between the drain electrodes.
  • the shape of the third anode 31C is affected by the first bump 301 to form a non-planar structure (such as a convex structure), and the position and shape of the non-planar structure of the third anode 31C match the position and shape of the first bump 301 .
  • the orthographic projection of the third anode 31C on the substrate 10 covers the orthographic projection of the first bump 301 on the substrate 10 .
  • the protruding area of the non-planar structure of the third anode 31C corresponds to the location of the first bump 301
  • the protruding height of the non-planar structure of the third anode 31C is determined by the thickness of the first bump 301 .
  • the non-planar design of the third anode of the third color sub-pixel is realized by using the first bump of metal material, the preparation method is simple, and the third anode can be realized by controlling the pattern density, etching time and thickness of the metal film
  • the multi-dimensional controllable adjustment of the morphology makes the non-planar effect on the third anode finely adjustable.
  • the first electrode can be made of a metal material, such as any one or more of magnesium (Mg), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo).
  • a metal material such as any one or more of magnesium (Mg), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo).
  • a variety of, or alloy materials of the above metals such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb)
  • AlNd aluminum neodymium alloy
  • MoNb molybdenum niobium alloy
  • a pixel definition (PDL, Pixel Definition Layer) layer, an organic light-emitting layer and a second electrode are formed on the substrate on which the aforementioned pattern is formed.
  • a pixel-defining film is coated on the substrate on which the aforementioned pattern is formed, and a pixel-defining layer pattern is formed by masking, exposing, and developing processes.
  • a plurality of pixel openings are opened on the pixel definition layer 34 in the display area, and the pixel definition layer 34 in the plurality of pixel openings is developed, exposing at least part of the surface of the first anode 31A, the second anode 31A, and the second anode respectively.
  • the part of the light emitting element located in the pixel opening is used for emitting light, and the pixel opening corresponds to the light emitting area of the light emitting element.
  • the organic light-emitting layer may include a stacked hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer, and the organic light-emitting layer is formed in the pixel opening of the display region to realize
  • the organic light-emitting layer is connected to the first electrode (for example, the first organic light-emitting layer 32A is connected to the first anode 31A, the second organic light-emitting layer 32B is connected to the second anode 31B, and the third organic light-emitting layer 32C is connected to the third anode 31C)
  • the second electrode 33 is formed on the pixel definition layer 34 and connected to the organic light emitting layer.
  • the hole injection layer and the hole transport layer are sequentially evaporated on the substrate 10 formed with the aforementioned pattern by using an open mask, and then the blue light emitting layer and the green light emitting layer are sequentially evaporated by using FMM.
  • the light-emitting layer and the red light-emitting layer are then sequentially vapor-deposited using an open mask to form an electron transport layer, an electron injection layer and a second electrode.
  • the pixel definition layer 34 may use organic materials such as polyimide, acrylic or polyethylene terephthalate.
  • the second electrode 33 is a semi-reflective cathode or a transparent cathode.
  • the light reflected by the first electrode exits from the side away from the substrate 10 through the second electrode 33 to achieve top emission of light.
  • an optical coupling layer may be formed on a side of the second electrode away from the substrate, and the optical coupling layer may be a common layer of multiple sub-pixels.
  • the light coupling layer can cooperate with the transparent second electrode to increase light output.
  • the material of the optical coupling layer can be a semiconductor material. However, this embodiment does not limit it.
  • the second electrode 33 can be made of any one or more of magnesium (Mg), silver (Ag), aluminum (Al), or any one or more of the above metals. alloy, or transparent conductive material, such as indium tin oxide (ITO), or a multi-layer composite structure of metal and transparent conductive material.
  • Mg magnesium
  • Ag silver
  • Al aluminum
  • ITO indium tin oxide
  • the encapsulation layer 40 may be a three-layer structure of inorganic/organic/inorganic, so as to complete the encapsulation of the display substrate.
  • this embodiment does not limit it.
  • the encapsulation layer may adopt a five-layer structure of inorganic/organic/inorganic/organic/inorganic.
  • the substrate 10 is detached from the glass carrier 1 using a laser lift-off process to obtain the display substrate of this exemplary embodiment.
  • the display substrate provided in this exemplary embodiment is provided with a first structure on the side of the reflective anode of the blue sub-pixel close to the substrate, and the first structure includes a first bump made of a metal material, so that the reflection of the blue sub-pixel
  • the anode forms a non-planar structure (such as a convex structure) to adjust the light emission spectrum of the blue sub-pixel to change with the viewing angle, thereby effectively improving the color shift without affecting the front display color gamut of the display substrate.
  • the amount of light emitted by the blue sub-pixel to a non-normal viewing angle can be increased, so that the brightness decays slowly with the viewing angle, thereby improving the viewing angle characteristics of the red sub-pixel and the green sub-pixel. match.
  • the display substrate of the exemplary embodiment of the present disclosure can effectively improve the viewing angle deviation of the display substrate without adding additional processes and costs, and without complicating the manufacturing process, and expand the material selection of the light-emitting element and the thickness of the film layer.
  • the adjustment space has great application and mass production value.
  • the preparation process of this exemplary embodiment can be realized by existing mature preparation equipment, and is well compatible with the existing preparation process. The process is simple to implement, easy to implement, high in production efficiency, low in production cost, and high in yield.
  • the display substrate may further include: a second source-drain metal layer, the second source-drain metal layer may include a plurality of connecting electrodes, and the first electrode may be connected to a transistor of the pixel driving circuit through the connecting electrodes.
  • the organic light-emitting layer may further include at least one of the following: an electron blocking layer, a hole blocking layer, and an electron injection layer.
  • the hole transport layer and the hole injection layer of the organic light emitting layer of the light emitting element may be set as a common layer.
  • the embodiments of the present disclosure are not limited here.
  • FIG. 8 is another schematic cross-sectional view along the P-P direction in FIG. 2 .
  • the first structure may include: at least one convex structure (for example, a first bump 301 ) and a second insulating layer 16 .
  • the second insulating layer 16 is located between the convex structure and the first electrode.
  • the first structure is located on a side of the first flat layer 15 away from the substrate 10 .
  • the cross section of the first bump 301 may be trapezoidal.
  • a plurality of via holes are opened on the second insulating layer 16, and the second insulating layer 16 and the first flat layer 15 in the plurality of via holes are etched away, so that the first electrode can communicate with the pixel driving circuit through the corresponding via holes.
  • Transistor connection As shown in FIG. 8, the third anode 31C can be connected to the third drain electrode of the third transistor 101C through the via hole on the second insulating layer 16, and the first anode 31A can be connected to the third drain electrode of the third transistor 101C through the via hole on the second insulating layer 16.
  • the first drain electrode of a transistor 101A is connected, and the second anode 31B may be connected to the second drain electrode of the second transistor 101B through a via hole in the second insulating layer 16 .
  • the first bump 301 may be made of a metal material, such as molybdenum (Mo).
  • Mo molybdenum
  • the third anode 31C is in direct contact with the second insulating layer 16, and there may be no electrical connection between the third anode 31C and the first bump 301.
  • the first bump 301 is only used to adjust the topography of the third anode 31C.
  • the thickness of the second insulating layer 16 may be smaller than that of the planar layer 15 , avoiding planarization of the first bump 301 through the second insulating layer 16 , so that the shape of the third anode 31C can be adjusted through the first bump 301 .
  • the second insulating layer 16 may use inorganic materials or organic materials. However, this embodiment does not limit it.
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the foregoing embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • FIG. 9 is another schematic cross-sectional view along the P-P direction in FIG. 2 .
  • the first structure may include: a first planar layer 15 and at least one convex structure (for example, a first bump 301 ).
  • the first flat layer 15 is the above-mentioned first insulating layer.
  • the surface of the first flat layer 15 on the side close to the convex structure may be flat.
  • the first planar layer 15 is located on a side of the driving structure layer away from the base 10
  • the first bump 301 is located on a side of the first planar layer 15 away from the base 10 .
  • the cross section of the first bump 301 may be trapezoidal.
  • the first bump 301 can be made of photosensitive organic material, such as photoresist.
  • a layer of photoresist can be coated on the first planar layer 15, and a halftone mask (Halftone Mask) is used to expose and develop the photoresist to form a photoresist. Engraved pattern.
  • the photoresist pattern may include an unexposed area, a partially exposed area, and a fully exposed area.
  • the unexposed area includes the position of the top surface of the first bump 301, and the partially exposed area includes: the position of the slope of the first bump 301, and a portion
  • the thickness of the photoresist in the exposed area is smaller than the thickness of the photoresist in the unexposed area; the remaining area is a fully exposed area, and the photoresist in the fully exposed area is completely removed, exposing the surface of the first flat layer 15 .
  • the thickness of the coated photoresist may be about 100 nm to 500 nm.
  • the distance between the top surface and the bottom surface of the first bump 301 may be about 0.32 ⁇ m, and the width of the slope of the first bump 301 may be about 2.43 ⁇ m.
  • this embodiment does not limit it.
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the previous embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • FIG. 10 is another schematic cross-sectional view along the P-P direction in FIG. 2 .
  • the first structure 30 is located between the first flat layer 15 and the first electrode of the light emitting element.
  • the first structure 30 includes a flat portion and at least one non-flat portion.
  • the uneven portion may be a convex structure.
  • the convex structure takes a first protrusion 302 shown in FIG. 10 as an example, and the first protrusion 302 is located on the surface of the flat part of the first structure 30 away from the base 10 .
  • the orthographic projection of the first structure 30 on the substrate 10 may include the orthographic projection of the first electrode on the substrate 10 .
  • the orthographic projection of the third anode 31C on the substrate 10 may include the orthographic projection of the first protrusion 302 on the substrate 10 .
  • the first structure 30 may use organic materials.
  • a plurality of via holes are opened on the first structure 30, and the first structure 30 and the first planar layer 15 in the plurality of via holes are etched away, so that the first electrode can be connected to the transistor of the pixel driving circuit through the corresponding via holes .
  • the third anode 31C can be connected to the third drain electrode of the third transistor 101C through the via hole on the first structure 30, and the first anode 31A can be connected to the first transistor 101C through the via hole on the first structure 30.
  • the convex structure of the first structure 30 made of organic materials can adjust the morphology of the third anode 31C, so that the third anode 31 forms a non-planar structure (eg, a convex structure matching the shape and position of the first protrusion 302 ).
  • an insulating barrier layer can be formed in the peripheral area, so as to achieve multiple utilization of technological means and optimize the manufacturing process.
  • this embodiment does not limit it.
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the foregoing embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • FIG. 11 is a schematic partial cross-sectional view along the P-P direction in FIG. 2 .
  • the first structure may include: a first planar layer 15 and at least one convex structure located between the first planar layer 15 and the first electrode of the light emitting element.
  • the convex structure is taken as an example of a first bump 301 shown in FIG. The slope of the bottom surface, and the slope is an arc surface.
  • the top surface and the bottom surface of the first bump 301 are connected by an arc surface.
  • the material of the first bump 301 may be a metal material or a photosensitive organic material. However, this embodiment does not limit it.
  • the first bump 301 can adjust the shape of the third anode 31C, so that the third anode 31 forms a convex structure matching the shape and position of the first bump 301 .
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the foregoing embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • FIG. 12 is another schematic cross-sectional view along the P-P direction in FIG. 2 .
  • the pixel driving circuit of the driving structure layer includes: an active layer, a first gate metal layer, a second Gate metal layer, first source-drain metal layer and second source-drain metal layer.
  • a first gate insulating layer 12 is provided between the active layer and the first gate metal layer
  • a second gate insulating layer 13 is provided between the first gate metal layer and the second gate metal layer
  • An interlayer insulating layer 14 is disposed between the source and drain metal layers
  • a first flat layer 15 is disposed between the first source and drain metal layers and the second source and drain metal layers.
  • a second planar layer 17 made of organic material is disposed between the second source-drain metal layer and the first electrode.
  • the thickness of the second flat layer 17 is smaller than the thickness of the first flat layer 15 .
  • the thickness of the second flat layer 17 may be less than or equal to 2 ⁇ m, for example, may be about 1.5 ⁇ m.
  • the second source-drain metal layer at least includes: a first connection electrode 27A, a second connection electrode 27B and a third connection electrode 27C.
  • the first anode 31A is connected to the first drain electrode of the first transistor 101A through the first connection electrode 27A
  • the second anode 31B is connected to the second drain electrode of the second transistor 101B through the second connection electrode 27B
  • the third anode 31C is connected to the second drain electrode of the second transistor 101B through the second connection electrode 27B.
  • the three-connection electrode 27C is connected to the third drain electrode of the third transistor 101C.
  • the first structure may include the second flat layer 17 .
  • the second planar layer 17 cannot achieve planarization between multiple sub-pixels, and the second planar layer 17 will form a convex structure, thereby Change the morphology of the third anode.
  • the thickness of the second source-drain metal layer of the pixel driving circuit of the sub-pixel of the first color is approximately equal to the thickness of the second source-drain metal layer of the pixel driving circuit of the sub-pixel of the second color, and the thickness of the second source-drain metal layer of the pixel driving circuit of the sub-pixel of the third color
  • the thickness of the second source-drain metal layer is greater than the thickness of the second source-drain metal layer of the pixel driving circuit of the first color sub-pixel.
  • the thickness of the second source-drain metal layer of the third color sub-pixel may be about 300nm to 800nm.
  • the thickness of the third connection electrode 27C is greater than the thickness of the first connection electrode 27A and also greater than the thickness of the second connection electrode 27B.
  • this embodiment does not limit it.
  • the thickness of the second source-drain metal layer of the third color sub-pixel is increased, and the second planar layer cannot achieve planarization between multiple sub-pixels, so that The second flat layer forms a convex structure, thereby changing the shape of the third anode of the third color sub-pixel.
  • the display substrate of the exemplary embodiment of the present disclosure can effectively improve the situation that the brightness of the blue sub-pixel decays too fast with the viewing angle without adding additional processes and costs.
  • the first structure may include a second planar layer.
  • the first structure may include a second planar layer.
  • the overlapping area of the orthographic projection of the source-drain metal layer and the second source-drain metal layer on the substrate, the orthographic projection of the first source-drain metal layer and the second source-drain metal layer of the pixel driving circuit of the first color sub-pixel on the substrate may be approximately equal to the overlapping area of the orthographic projection of the first source-drain metal layer and the second source-drain metal layer of the pixel driving circuit of the second color sub-pixel on the substrate.
  • the orthographic projection of the third anode of the third color sub-pixel on the substrate overlaps with the overlapping area of the first source-drain metal layer and the second source-drain metal layer on the substrate.
  • FIG. 13 is a schematic diagram of a convex structure formed by thinning the first flat layer and the second flat layer according to at least one embodiment of the present disclosure.
  • the Protrusions are formed at positions corresponding to the first source-drain metal layer 26 .
  • the second flat layer 17 is formed on the second source-drain metal layer 27, when the thickness of the second flat layer 17 cannot realize the planarization of the second source-drain metal layer 27, the Protrusions are formed at positions corresponding to the second source-drain metal layer 27 .
  • the protrusions of the first flat layer 15 and the second flat layer 17 due to unleveled Will be superimposed, or the increase will be small.
  • the thickness of the first flat layer 15 cannot achieve the planarization of the first source-drain metal layer 26, and the thickness of the second flat layer 17 cannot realize the planarization of the second source-drain metal layer 27.
  • the orthographic projections of the first source-drain metal layer 26 and the second source-drain metal layer 27 on the substrate overlap and the overlapping area is relatively large the first flat layer 15 and the second flat layer 17 are not leveled.
  • the protrusions are superimposed and form a convex surface that can change the topography of the first electrode of the light emitting element.
  • the first planar layer cannot realize the planarization of the first source-drain metal layer
  • the second planar layer cannot realize the planarization of the second source-drain metal layer.
  • the superposition of protrusions caused by leveling forms a convex surface that can change the shape of the first electrode of the light-emitting element of the third color sub-pixel, so as to change the shape of the third anode.
  • the ratio of the orthographic projection of the first source-drain metal layer and the second source-drain metal layer of the third color sub-pixel on the substrate is increased.
  • the overlapping area makes the protrusions of the first flat layer and the second flat layer overlap due to non-leveling to change the shape of the third anode of the third color sub-pixel.
  • the display substrate of the exemplary embodiment of the present disclosure can effectively improve the situation that the brightness of the blue sub-pixel decays too fast with the viewing angle without adding additional processes and costs.
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the foregoing embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • the thickness of the second source-drain metal layer of the pixel driving circuit of the pixel changes the shape of the third anode of the third color sub-pixel.
  • FIG. 14 is another schematic cross-sectional view along the P-P direction in FIG. 2 .
  • the first structure is, for example, the first planar layer 15 .
  • a side surface of the first flat layer 15 close to the first electrode has a flat portion and an uneven portion, and the uneven portion may include a convex structure.
  • the first flat layer 15 is located between the first electrode and the driving structure layer.
  • the convex structure takes a second protrusion 151 shown in FIG. 13 as an example, and the second protrusion 151 is formed on the surface of the flat portion of the first flat layer 15 away from the substrate 10 .
  • the shape of the third anode 31C can be adjusted through the convex structure on the first flat layer 15, so that it forms a convex structure matching the shape and position of the second protrusion 151, while the first anode 31A and the second anode 31B are both planar structure.
  • the first planar layer 15 made of organic materials can adjust the shape of the third anode 31C of the third color sub-pixel, so as to adjust the variation of the light emission spectrum of the third color sub-pixel with the viewing angle.
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the foregoing embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • FIG. 15 is another schematic cross-sectional view along the P-P direction in FIG. 2 .
  • the first structure is, for example, a first planar layer 15 .
  • a side surface of the first flat layer 15 close to the first electrode has a flat portion and an uneven portion, and the uneven portion may include a concave structure.
  • the first flat layer 15 is located between the first electrode and the driving structure layer.
  • the concave structure takes a first groove 152 shown in FIG. 15 as an example, and the first groove 152 is formed on the surface of the first flat layer 15 away from the substrate 10 .
  • the shape of the third anode 31C can be adjusted through the concave structure on the first flat layer 15, so that it forms a concave structure matching the shape and position of the first groove 152, while the first anode 31A and the second anode 31B are both planar structure.
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the foregoing embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • FIG. 16 is another schematic cross-sectional view along the P-P direction in FIG. 2 .
  • the first structure 30 is located between the first electrode of the light emitting element and the first flat layer 15 .
  • the first structure 30 has a flat portion and an uneven portion, and the uneven portion may be a concave structure.
  • the concave structure takes a second groove 303 shown in FIG. 16 as an example, and the second groove 303 is located on the surface of the first structure 30 away from the substrate 10 .
  • the first structure 30 may use a photosensitive organic material.
  • the first flat layer 15 and the first structure 30 may be sequentially formed.
  • the first structure 30 includes a second groove 303, and a plurality of via holes are opened, and the first structure 30 and the first flat layer 15 in the plurality of via holes are etched away, so that the first electrode can pass through the corresponding via holes Connected to the transistor of the pixel drive circuit.
  • the third anode 31C can be connected to the third drain electrode of the third transistor 101C through the via hole on the first structure 30, and the first anode 31A can be connected to the first drain electrode of the first transistor 101A through the via hole on the first structure 30.
  • the drain electrode is connected, and the second anode 31B can be connected to the second drain electrode of the second transistor 101B through the via hole on the first structure 30 .
  • the concave structure of the first structure 30 made of organic materials can adjust the morphology of the third anode 31C, so that the third anode 31 forms a concave structure matching the shape and position of the second groove 303 .
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the foregoing embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • FIG. 17 is another schematic structural view of a plurality of sub-pixels of a display substrate according to at least one embodiment of the present disclosure.
  • FIG. 17 is another partially enlarged schematic view of the area S in FIG. 1 .
  • a plurality of repeating units are arranged in each row on a plane parallel to the display substrate.
  • Each repeating unit includes: two first color sub-pixels 3A, one second color sub-pixel 3B and one third color sub-pixel 3C.
  • the second-color sub-pixel 3B and the third-color sub-pixel 3C are located on both sides of the two first-color sub-pixels 3A in the row direction, and the two first-color sub-pixels 3A are arranged in the column direction.
  • the repeating units between two adjacent rows are shifted in the row direction.
  • the repeating unit between two adjacent rows has a shift of 1.5 times the width of the sub-pixel 3C of the third color in the row direction.
  • the two sub-pixels 3A of the first color in the repeating unit are symmetrical to each other, and the axis of symmetry is parallel to the row direction.
  • the first color sub-pixel 3A can be rectangular (for example, rounded rectangle) or square or pentagonal; the second color sub-pixel 3B and the third color sub-pixel 3C can both be rectangular (for example, rounded rectangle) or hexagonal .
  • the length of the second color sub-pixel 3B and the third color sub-pixel 3C along the column direction may be the same, and the length of the first color sub-pixel 3A along the column direction is smaller than the length of the second color sub-pixel 3B along the column direction.
  • the length of the first color sub-pixel 3A along the row direction may be greater than or equal to the length of the second color sub-pixel 3B along the row direction, and the length of the third color sub-pixel 3C along the row direction may be greater than that of the first color sub-pixel 3A along the row direction. length.
  • the first color sub-pixel 3A may be a green (G) sub-pixel
  • the second color sub-pixel 3B may be a red (R) sub-pixel
  • the third color sub-pixel 3C may be a blue (B) sub-pixel .
  • this embodiment does not limit the shape and arrangement of the multiple sub-pixels in the display area.
  • the first electrodes of the light-emitting elements of the first-color sub-pixel 3A and the second-color sub-pixel 3B are close to the side of the organic light-emitting layer
  • the surfaces are all planar.
  • a first structure is provided on the side of the first electrode of the light-emitting element of the third-color sub-pixel 3C close to the substrate, and the surface of the first structure close to the first electrode is uneven, so that the light-emitting element of the third-color sub-pixel 3C
  • the surface of the first electrode close to the organic light-emitting layer has a non-planar structure.
  • the orthographic projection of the first structure on the substrate on the side of the first electrode of the light-emitting element of the third-color sub-pixel 3C close to the substrate overlaps with the orthographic projection of the light-emitting region of the light-emitting element of the third-color sub-pixel 3C on the substrate.
  • the first structure includes at least two convex structures
  • the orthographic projection of the light emitting region of the light emitting element of the third color sub-pixel 3C on the substrate includes the orthographic projection of the two convex structures of the first structure on the substrate.
  • this embodiment does not limit it.
  • the first structure may include a convex structure and a concave structure
  • the orthographic projection of the light emitting region of the light emitting element of the third color sub-pixel 3C on the substrate may include the orthographic projection of a convex structure and a concave structure of the first structure on the substrate .
  • the first structure on the side of the first electrode of the light-emitting element of the third-color sub-pixel 3C close to the substrate may include: a first planar region 311 , a first slope region 312 , a second The second plane area 313 , the third plane area 314 and the second slope area 315 .
  • Orthographic projections of the first planar region 311 and the third planar region 314 on the substrate may be rectangular.
  • the first slope area 312 surrounds the periphery of the first plane area 311, and the orthographic projection of the first slope area 312 on the base can be a rectangular ring; the second slope area 315 surrounds the periphery of the third plane area 314, and the second slope
  • the orthographic projection of the area 315 on the substrate may be a rectangular ring.
  • the second planar area 313 may surround the first slope area 312 and the second slope area 315 . However, this embodiment does not limit it.
  • the orthographic projection of the first plane area 311 on the base can be a circle, ellipse or other irregular figures
  • the orthographic projections of the first slope area 312 and the second plane area 313 on the base can be a circle, an ellipse rings or other shapes.
  • the first plane area 311, the second plane area 313 and the third plane area 314 are parallel to each other
  • the first slope area 312 connects the first plane area 311 and the second plane area 313, and the second slope area 315
  • the second planar region 313 and the third planar region 314 are connected.
  • the distance between the first planar area 311 and the base may be greater than the distance between the second planar area 313 and the base, and the distance between the third planar area 314 and the base
  • the distance between the second planar region 313 and the substrate may be greater than the distance between the first planar region 311 and the substrate may be greater than or equal to or smaller than the distance between the third planar region 314 and the substrate.
  • the distance between the first planar region 311 and the base may be smaller than the distance between the second planar region 313 and the substrate, and the distance between the third planar region 314 and the substrate The distance of may be greater than the distance between the second planar region 313 and the substrate.
  • the distance between the first planar region 311 and the base may be smaller than the distance between the second planar region 313 and the substrate, and the distance between the third planar region 314 and the substrate.
  • the distance between the second planar region 313 and the substrate may be smaller than the distance between the second planar region 313 and the substrate, and the distance between the first planar region 311 and the substrate may be greater than or equal to or smaller than the distance between the third planar region 314 and the substrate.
  • the two non-planar structures of the first structure are sequentially arranged along the row direction of the sub-pixel.
  • this embodiment does not limit the arrangement and density of the non-planar structures of the first structure.
  • multiple non-planar structures of the first structure may be arranged sequentially along the column direction of the sub-pixel.
  • the proportion adjustment of the planar area and the slope area of the first electrode can be realized by controlling the number of non-planar structures of the first structure, and the ratio of the slope area can be effectively controlled. The area ratio realizes the fine adjustment of the viewing angle brightness and color cast of the sub-pixel.
  • FIG. 18 is a schematic cross-sectional view along the Q-Q direction in FIG. 17 .
  • a first structure is provided on a side of the driving structure layer away from the substrate 10 .
  • the first structure includes: a first planar layer 15 and a convex structure located on a side of the first planar layer 15 away from the substrate 10 .
  • the orthographic projection of the convex structure of the first structure on the substrate 10 overlaps the light-emitting area of the sub-pixel of the third color, for example, the orthographic projection of the convex structure on the substrate 10 is located in the light-emitting area of the sub-pixel of the third color.
  • the convex structure of the first structure is configured such that the first electrode of the light emitting element of the third color sub-pixel forms a non-planar structure.
  • the first structure has two convex structures in the light-emitting region corresponding to the third color sub-pixel.
  • the two convex structures take the second bump 304 and the third bump 305 shown in FIG. 18 as an example.
  • both the second bump 304 and the third bump 305 may be trapezoidal.
  • the shape and size of the second bump 304 and the third bump 305 may be the same or different. However, this embodiment does not limit it.
  • the shape and size of the second bump 304 and the third bump 305 may be the same.
  • the second bump 304 is taken as an example below for illustration.
  • the width of the surface of the second bump 304 away from the base 10 ie, the top surface
  • the width of the second bump 304 away from the base 10 is smaller than the width of the surface (ie, the bottom surface) near the base.
  • the top of the second bump 304 The surface and the bottom surface are connected by a slope.
  • the slope of the slope of the second protrusion 304 may be about 3° to 30°, for example, about 5°.
  • Orthographic projections of the top and bottom surfaces of the second bump 304 on the base 10 may be rectangular, and the projection of the slope on the base 10 may be a rectangular ring surrounding the top surface. However, this embodiment does not limit it.
  • the projection of the top surface and the bottom surface of the second protrusion on the base may be a circle or an ellipse
  • the projection of the slope surface on the base may be a circle or an ellipse surrounding the top surface.
  • the slopes of the slopes around the top surface of the second bump can be the same, or can be partly the same, for example, the slopes of the slopes on the left and right sides of the top surface are the same and less than or greater than that of the slopes on the upper and lower sides. slope.
  • this embodiment does not limit it.
  • the distance between the top surface and the bottom surface of the second bump 301 may be about 100 nm to 5 ⁇ m, for example, about 0.5 ⁇ m.
  • the second length of the orthographic projection of the second bump 304 on the substrate 10 may be smaller than the length of the pixel opening formed on the pixel definition layer, for example, the second length may be It is about 5 ⁇ m to 20 ⁇ m, for example, the second length can be about 10 ⁇ m; the second width of the orthographic projection of the second bump 304 on the substrate 10 can be smaller than the width of the pixel opening formed on the pixel definition layer, for example, the second width can be about 3 ⁇ m to 15 ⁇ m, for example, the second width may be about 8 ⁇ m.
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the foregoing embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • FIG. 19 is another schematic cross-sectional view along the Q-Q direction in FIG. 17 .
  • the first structure includes: a first planar layer 15 and at least one convex structure located on a side of the first planar layer 15 away from the substrate 10 .
  • the first flat layer 15 has a flat portion and at least one concave portion, and the convex structure of the first structure does not overlap with the orthographic projection of the concave portion of the first flat layer 15 on the substrate 10 .
  • the orthographic projection of the third anode 31C on the substrate 10 includes an orthographic projection of a convex structure and a concave portion of the first planar layer 15 on the substrate 10 .
  • the convex structure of the first structure can be prepared by metal material or photosensitive organic material.
  • the convex structure takes a second bump 304 shown in FIG. 19 as an example
  • the concave portion of the first flat layer 15 takes a second groove 153 shown in FIG. 19 as an example.
  • the second bump 304 may be trapezoidal
  • the second groove 153 is formed on the surface of the first flat layer 15 away from the substrate 10 .
  • Orthographic projections of the second bump 304 and the second groove 153 on the substrate 10 do not overlap.
  • the slopes of the slopes of the second protrusion 304 and the second groove 153 may both be 3 degrees to 30 degrees.
  • the distance (thickness) between the top surface and the bottom surface of the second bump 304 and the distance (depth) between the top surface and the bottom surface of the second groove 153 may be the same, for example, the distance is about 100 nm to 5 ⁇ m.
  • the length of the orthographic projection of the second bump 304 on the substrate 10 can be less than the length of the pixel opening formed on the pixel definition layer, for example, the length is about 5 ⁇ m to 20 ⁇ m; the width of the orthographic projection of the second bump 304 on the substrate 10 can be Smaller than the width of the pixel opening formed on the pixel definition layer, for example, the width may be about 3 ⁇ m to 15 ⁇ m.
  • the dimension of the orthographic projection of the second groove 153 on the substrate 10 may be the same as the dimension of the orthographic projection of the second bump 304 on the substrate 10 . However, this embodiment does not limit it.
  • the shape of the third anode is jointly adjusted by the concave portion and the convex structure of the first flat layer 15, so that the third anode forms a non-planar structure (for example, corresponding to the shape and position of the second bump 304 The convex structure, the concave structure corresponding to the shape and position of the second groove 153).
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the foregoing embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • FIG. 20 is another schematic structural view of a plurality of sub-pixels of a display substrate according to at least one embodiment of the present disclosure.
  • FIG. 20 is another partially enlarged schematic view of the area S in FIG. 1 .
  • the first color sub-pixel 3A may be a green (G) sub-pixel
  • the second color sub-pixel 3B may be a red (R) sub-pixel
  • the third color sub-pixel 3C may be a green (G) sub-pixel. It may be a blue (B) sub-pixel.
  • the surface of the first electrode of the light emitting element of the second color sub-pixel 3B close to the organic light emitting layer is planar.
  • the side of the first electrode of the light emitting element of the third color sub-pixel 3C close to the substrate is provided with a first structure, for example, the first structure includes a convex structure or a concave structure.
  • the first structure in which the first electrode of the light-emitting element of the third color sub-pixel 3C is disposed on a side close to the substrate includes a first planar region 311 , a first slope region 312 and a second planar region 313 .
  • the first structure may include a flat portion and a concave structure.
  • the orthographic projection of the second planar area 313 on the base does not overlap with the orthographic projections of the first slope area 312 and the first planar area 311 on the base.
  • the first structure may comprise a convex structure.
  • the orthographic projection of the second planar area 313 on the base may include the orthographic projections of the first slope area 312 and the first planar area 311 on the base.
  • the side of the first electrode of the light emitting element of the first color sub-pixel 3A close to the substrate is provided with a first structure, for example, the first structure includes a convex structure or a concave structure.
  • the first structure in which the first electrode of the light-emitting element of the first color sub-pixel 3A is disposed on a side close to the substrate includes a fourth planar region 316 , a third slope region 317 and a fifth planar region 318 .
  • the first structure may include a flat portion and a concave structure.
  • the orthographic projection of the fifth planar area 318 on the base does not overlap with the orthographic projections of the third slope area 317 and the fourth planar area 316 on the base.
  • the first structure may comprise a convex structure.
  • the orthographic projection of the fifth planar area 318 on the base may include the orthographic projections of the third slope area 317 and the fourth planar area 316 on the base.
  • the distance between the first planar region 311 and the substrate is greater than the distance between the second planar region 313 and the substrate, or the distance between the first planar region 311 and the substrate is smaller than the distance between the second planar region 313 and the substrate the distance between.
  • the distance between the fourth planar region 316 and the base is greater than the distance between the fifth planar region 318 and the substrate, or the distance between the fourth planar region 316 and the substrate is smaller than the distance between the fifth planar region 318 and the substrate.
  • the distance between the second planar area 313 and the base is approximately equal to the distance between the fifth planar area 318 and the base.
  • FIG. 21 is a schematic cross-sectional view along the P-P direction in FIG. 20 .
  • the first structure includes: a first planar layer 15 located on the side of the driving structure layer away from the substrate 10; At least one convex structure on the side of layer 15 facing away from substrate 10 .
  • the orthographic projection of the light-emitting region of the third color sub-pixel on the substrate includes an orthographic projection of a convex structure on the substrate 10, and the orthographic projection of the light-emitting region of the first color sub-pixel on the substrate 10 includes a convex structure on the substrate 10. orthographic projection.
  • the first structure has a plurality of convex structures configured such that the first electrodes of the light emitting elements of the sub-pixels of the third color and the sub-pixels of the first color form a non-planar structure.
  • the two convex structures take the fourth bump 306 and the fifth bump 307 shown in FIG. 21 as an example.
  • the fourth bump 306 and the fifth bump 307 can are trapezoidal.
  • the shape and size of the fourth bump 306 and the fifth bump 307 may be the same or different.
  • the slope of the fourth bump 306 may be different from the slope of the fifth bump 307 , so as to improve the matching consistency of viewing angle characteristics of the red, green, and blue sub-pixels.
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the foregoing embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • FIG. 22 is another schematic structural view of a plurality of sub-pixels of a display substrate according to at least one embodiment of the present disclosure.
  • FIG. 22 is another partially enlarged schematic view of the area S in FIG. 1 .
  • FIG. 23 is a schematic cross-sectional view along the P-P direction in FIG. 22 .
  • the first color sub-pixel 3A may be a green sub-pixel
  • the second color sub-pixel 3B may be a red sub-pixel
  • the third color sub-pixel 3C may be a blue sub-pixel. color sub-pixels.
  • the first electrode 31C of the light-emitting element of the third-color sub-pixel 3C is provided with a first structure on a side close to the substrate, the first The structure has two convex structures in the light-emitting region corresponding to the third color sub-pixel 3C, such as two bumps 301 a and 301 b shown in FIG. 23 .
  • the first electrode 31B of the light-emitting element of the second-color sub-pixel 3B is also provided with a first structure on the side close to the substrate.
  • the first structure has two convex structures in the light-emitting region corresponding to the second-color sub-pixel 3B, for example, in FIG.
  • the first electrode 31A of the light-emitting element of the first-color sub-pixel 3A is also provided with a first structure on the side close to the substrate.
  • the first structure has two convex structures in the light-emitting region corresponding to the first-color sub-pixel 3A, as shown in FIG. 23
  • Two bumps 303a and 303b are illustrated.
  • the cross sections of the bumps 301a and 301b, 302a and 302b, and 303a and 303b may all be trapezoidal.
  • the plurality of bumps may have the same shape and size. However, this embodiment does not limit it.
  • the plurality of bumps may vary in shape and size.
  • FIG. 24 is another schematic cross-sectional view along the P-P direction in FIG. 2 .
  • the first color sub-pixel 3A may be a green sub-pixel
  • the second color sub-pixel 3B may be a red sub-pixel
  • the third color sub-pixel 3C may be a blue sub-pixel.
  • the first electrode is a transparent anode
  • the second electrode is a reflective cathode. The light reflected by the reflective cathode exits from the side close to the substrate 10 through the transparent anode.
  • the first structure may be a first flat layer 15 .
  • the first flat layer 15 is located between the first electrode and the driving structure layer, and the first flat layer 15 can be made of organic materials and has a concave structure.
  • the concave structure is a third groove 154 shown in FIG. 21 as an example, and the third groove 154 is formed on the surface of the first flat layer 15 away from the substrate 10 .
  • the morphology of the third anode 31C, the third organic light emitting layer 32C and the second electrode 33 can be sequentially adjusted, so that the surface of the third electrode close to the third organic light emitting layer 32C is formed.
  • a non-planar structure eg, a concave structure corresponding to the location and shape of the third groove 154.
  • the surface of the second electrode 33 near the first organic light emitting layer 32A and the second organic light emitting layer 32B has a planar structure.
  • the first flat layer 15 made of an organic material is used to adjust the shape of the first electrode of the third color sub-pixel, and finally adjust the shape of the second electrode of the third color sub-pixel, thereby adjusting The light emission spectrum of the third color sub-pixel changes with the viewing angle, so as to improve the viewing angle deviation.
  • the structure of the display substrate of this exemplary embodiment is only an exemplary illustration. In some exemplary implementations, the corresponding structures can be changed according to actual needs.
  • a first structure made of a metal material may be provided between the first electrode and the driving structure layer to change the morphology of the first electrode, the organic light-emitting layer and the second electrode.
  • the present disclosure is not limited here.
  • the structure of the display substrate in this exemplary embodiment is similar to the corresponding structure described in the foregoing embodiments, so it will not be repeated here.
  • the structures (or methods) shown in this embodiment mode can be appropriately combined with the structures (or methods) shown in other embodiment modes.
  • FIG. 25 is a schematic diagram of a display substrate according to at least one embodiment of the present disclosure.
  • the display substrate includes a first display area 100A and a second display area 100B.
  • the first display area 100A is located on opposite sides of the second display area 100B and communicates with the second display area 100B.
  • the first display area 100A is a curved display area
  • the second display area 100B is a flat display area.
  • a bending boundary line is used as the boundary line between the first display area 100A and the second display area 100B.
  • the plane where the second display area 100B is located may be parallel to the horizontal plane, and the tangent of the plane where the first display area 100A is located is not parallel to the horizontal plane. However, this embodiment does not limit it.
  • the structure of the sub-pixels in the first display region 100A can be as shown in the above-mentioned embodiments.
  • the reflective electrodes of the light-emitting elements of the sub-pixels of the target color in the first display area 100A are provided with the first structure on the side close to the substrate;
  • a first structure is provided on a side of the reflective electrode close to the substrate.
  • a surface of the first structure close to the first electrode is uneven.
  • the reflective electrodes of the light emitting elements of the sub-pixels of different colors in the second display region 100B may all have a planar structure.
  • the arrangement density of the convex structures of the first structure increases.
  • the side of the first electrode of the light-emitting element with fewer sub-pixels close to the substrate can be provided with a convex structure, and in the first display area 100A, it is far away from the second display area.
  • the side of the first electrode of the light-emitting element with more sub-pixels close to the base is provided with a convex structure.
  • this embodiment does not limit it.
  • only the sub-pixels in the curved display area of the display substrate are adjusted without changing the structure of the sub-pixels in the flat display area, so that the corresponding color shift can be adjusted in the curved display area.
  • the flat display area can maintain a normal display effect, avoiding the situation that the front brightness of the flat display area becomes lower due to the non-planar design of the reflective electrodes.
  • At least one embodiment of the present disclosure further provides a method for manufacturing a display substrate, including: forming a plurality of sub-pixels of different colors in a first display region of the substrate. At least one of the plurality of sub-pixels of different colors includes: a light emitting element and a pixel driving circuit electrically connected to the light emitting element.
  • the light-emitting element includes: a first electrode, a second electrode and an organic light-emitting layer arranged between the first electrode and the second electrode, and the first electrode is a reflective electrode electrically connected to the pixel driving circuit.
  • the first electrode of the light emitting element of at least one sub-pixel of the target color is formed with a first structure on a side close to the base. A surface of the first structure close to the first electrode is uneven.
  • forming a plurality of sub-pixels of different colors in the first display area of the substrate includes: forming a plurality of pixel driving circuits on the substrate; A first structure is formed on a side of the electrode close to the base, and a surface of the first structure close to the first electrode is uneven.
  • the first structure includes: at least one convex structure, and the orthographic projection of the first electrode on the substrate includes the orthographic projection of the at least one convex structure on the substrate.
  • forming the first structure on the side of the first electrode of the light-emitting element of the sub-pixel of at least one target color close to the substrate includes at least one of the following: etching the metal thin film using a wet etching process etch to form a convex structure of the first structure; use a photosensitive organic material for exposure and development to form a convex structure of the first structure.
  • FIG. 26 is a schematic diagram of a display device according to at least one embodiment of the present disclosure.
  • this embodiment provides a display device 91 , including: a display substrate 910 .
  • the display substrate 910 is the display substrate provided in the foregoing embodiments.
  • the display substrate 910 may be an OLED display substrate.
  • the display device 91 can be any product or component with a display function such as a mobile phone, a tablet computer, a television set, a monitor, a notebook computer, a digital photo frame, a navigator, and the like. However, this embodiment does not limit it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板(910)及其制备方法、显示装置(91),显示基板(910)包括:基底(10),基底(10)包括第一显示区域,第一显示区域设置有多个不同颜色的子像素。至少一个子像素包括:发光元件以及电连接发光元件的像素驱动电路。发光元件包括:第一电极、第二电极(33)以及设置在第一电极和第二电极(33)之间的有机发光层,第一电极与像素驱动电路电连接。至少一个目标颜色的子像素的发光元件的第一电极靠近基底(10)的一侧设置有第一结构(30),第一结构(30)靠近第一电极的表面是不平坦的。

Description

显示基板及其制备方法、显示装置 技术领域
本文涉及但不限于显示技术领域,尤指一种显示基板及其制备方法、显示装置。
背景技术
有机发光二极管(OLED,Organic Light Emitting Diode)具有超薄、大视角、主动发光、高亮度、发光颜色连续可调、成本低、响应速度快、低功耗、工作温度范围宽及可柔性显示等优点,已逐渐成为极具发展前景的下一代显示技术,并且受到越来越多的关注。依据驱动方式的不同,OLED可以分为无源矩阵驱动(PM,Passive Matrix)型和有源矩阵驱动(AM,Active Matrix)型两种,AMOLED是电流驱动器件,采用独立的薄膜晶体管(TFT,Thin Film Transistor)控制每个子像素,每个子像素皆可以连续且独立的驱动发光。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供一种显示基板及其制备方法、显示装置。
一方面,本公开实施例提供一种显示基板,包括:基底,所述基底包括第一显示区域,所述第一显示区域设置有多个不同颜色的子像素。所述多个不同颜色的子像素中的至少一个子像素包括:发光元件以及电连接所述发光元件的像素驱动电路。所述发光元件包括:第一电极、第二电极以及设置在所述第一电极和第二电极之间的有机发光层,所述第一电极与所述像素驱动电路电连接。在至少一个目标颜色的子像素的发光元件的第一电极靠近所述基底的一侧设置有第一结构,所述第一结构靠近所述第一电极的表面是不平坦的。
在一些示例性实施方式中,所述第一结构包括:至少一个凸面结构;所述第一电极在基底上的正投影包含所述至少一个凸面结构在基底上的正投影。
在一些示例性实施方式中,所述第一结构还包括:位于所述至少一个凸面结构靠近基底一侧的第一绝缘层;所述第一绝缘层在基底上的正投影包含所述第一电极在基底上的正投影。
在一些示例性实施方式中,所述第一绝缘层靠近所述凸面结构一侧的表面是平坦的。
在一些示例性实施方式中,所述第一绝缘层靠近所述凸面结构一侧的表面具有凹面部,所述凸面结构在基底上的正投影与第一绝缘层的凹面部在基底上的正投影没有交叠。
在一些示例性实施方式中,所述至少一个凸面结构的材料为金属材料或感光有机材料。
在一些示例性实施方式中,所述至少一个凸面结构的材料为金属材料,所述第一结构还包括:位于所述至少一个凸面结构和第一电极之间的第二绝缘层。
在一些示例性实施方式中,所述第一结构具有平坦部和至少一个非平坦部;所述平坦部在基底上的正投影与所述至少一个非平坦部在基底上的正投影没有交叠;所述第一电极在基底上的正投影包含至少一个非平坦部在基底上的正投影。
在一些示例性实施方式中,所述至少一个非平坦部包括以下至少一项:凸面结构、凹面结构;所述第一结构在凸面结构处的厚度大于在平坦部处的厚度,所述第一结构在凹面结构处的厚度小于在平坦部处的厚度。
在一些示例性实施方式中,在垂直于所述基底的平面内,所述凸面结构包括顶面和连接所述顶面的坡面,所述坡面的切线与平行于所述基底的平面之间的夹角约为3度至30度。
在一些示例性实施方式中,所述凸面结构的高度约为100纳米至5微米。
在一些示例性实施方式中,在平行于所述基底的平面内,所述凸面结构沿第一方向的长度小于对应的子像素沿第一方向的长度,所述凸面结构沿第 二方向的长度小于对应的子像素沿第二方向的长度;所述第一方向与第二方向交叉。
在一些示例性实施方式中,在平行于所述基底的平面内,所述凸面结构的宽度约为500纳米至15微米,所述第一电极基于所述凸面结构形成的非平面结构的宽度约为1微米至25微米。
在一些示例性实施方式中,所述第一电极基于所述第一结构形成的非平面结构的形状与所述基底的形状不同。
在一些示例性实施方式中,所述第一电极为反射电极。
在一些示例性实施方式中,所述至少一种目标颜色的子像素包括以下至少之一:蓝色子像素、绿色子像素、红色子像素。
在一些示例性实施方式中,所述像素驱动电路包括:依次设置在所述基底上的有源层、第一栅金属层、第二栅金属层、第一源漏金属层和第二源漏金属层;第一结构位于所述第二源漏金属层与所述发光元件之间,第一结构的厚度小于或等于2微米。所述第一源漏金属层和第二源漏金属层满足以下至少之一:所述至少一种目标颜色的子像素的像素驱动电路的第一源漏金属层和所述第二源漏金属层在所述基底上的正投影的交叠面积,大于除所述至少一种目标颜色以外颜色的子像素的像素驱动电路的第一源漏金属层和所述第二源漏金属层在所述基底上的投影的交叠面积;所述至少一种目标颜色的子像素的像素驱动电路的第二源漏金属层的厚度,大于除所述至少一种目标颜色以外颜色的子像素的像素驱动电路的第二源漏金属层的厚度。
在一些示例性实施方式中,所述基底还包括:第二显示区域;所述第二显示区域为平面显示区域,所述第一显示区域为所述第二显示区域周边的曲面显示区域或弯折显示区域。
在一些示例性实施方式中,所述第一显示区域和第二显示区域的第二电极为一体的,所述第一显示区域和第二显示区域的绝缘层为一体的。
另一方面,本公开实施例提供一种显示装置,包括如上所述的显示基板。
另一方面,本公开实施例提供一种显示基板的制备方法,包括:在基底的第一显示区域形成多个不同颜色的子像素。所述多个不同颜色的子像素中 的至少一个子像素包括:发光元件以及电连接所述发光元件的像素驱动电路。所述发光元件包括:第一电极、第二电极以及设置在所述第一电极和第二电极之间的有机发光层,所述第一电极与所述像素驱动电路电连接。在至少一种目标颜色的子像素的发光元件的第一电极靠近所述基底的一侧形成有第一结构,所述第一结构靠近所述第一电极的表面是不平坦的。
在一些示例性实施方式中,所述在基底的第一显示区域形成多个不同颜色的子像素,包括:在所述基底上形成多个像素驱动电路;在至少一个目标颜色的子像素的发光元件的第一电极靠近所述基底的一侧形成第一结构,所述第一结构靠近所述第一电极的表面是不平坦的。所述第一结构包括:至少一个凸面结构,所述第一电极在基底上的正投影包含所述至少一个凸面结构在基底上的正投影。
在一些示例性实施方式中,所述在至少一个目标颜色的子像素的发光元件的第一电极靠近所述基底的一侧形成第一结构,包括以下至少之一:采用湿刻工艺对金属薄膜进行刻蚀,形成第一结构的凸面结构;采用感光有机材料进行曝光显影,形成第一结构的凸面结构。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开的技术方案的限制。附图中一个或多个部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1为本公开至少一实施例的一种显示基板的示意图;
图2为本公开至少一实施例的显示基板的多个子像素的结构示意图;
图3A为不同视角的微腔因子与本征PL光谱的相对关系示意图;
图3B为发光元件的出光光谱随视角的变化关系示意图;
图4为光谱三刺激值谱的示意图;
图5为OLED发光元件的红绿蓝出光亮度随视角的变化曲线;
图6为图2中沿P-P方向的一种剖面示意图;
图7A为本公开至少一实施例中形成基底后的显示基板的示意图;
图7B为本公开至少一实施例中形成驱动结构层后的显示基板的示意图;
图7C为本公开至少一实施例中形成第一平坦层后的显示基板的示意图;
图7D为本公开至少一实施例中形成凸面结构后的显示基板的示意图;
图7E为本公开至少一实施例中形成第一电极后的显示基板的示意图;
图7F为本公开至少一实施例中形成封装层后的显示基板的示意图;
图8为图2中沿P-P方向的另一剖面示意图;
图9为图2中沿P-P方向的另一剖面示意图;
图10为图2中沿P-P方向的另一剖面示意图;
图11为图2中沿P-P方向的一种局部剖面示意图;
图12为图2中沿P-P方向的另一剖面示意图;
图13为本公开至少一实施例的第一平坦层和第二平坦层减薄形成凸面结构的示意图;
图14为图2中沿P-P方向的另一剖面示意图;
图15为图2中沿P-P方向的另一剖面示意图;
图16为图2中沿P-P方向的另一剖面示意图;
图17为本公开至少一实施例的显示基板的多个子像素的另一结构示意图;
图18为图17中沿Q-Q方向的一种剖面示意图;
图19为图17中沿Q-Q方向的另一剖面示意图;
图20为本公开至少一实施例的显示基板的多个子像素的另一结构示意图;
图21为图19中沿P-P方向的剖面示意图;
图22为本公开至少一实施例的显示基板的多个子像素的另一结构示意图;
图23为图22中沿P-P方向的剖面示意图;
图24为图2中沿P-P方向的另一剖面示意图;
图25为本公开至少一实施例的一种显示基板的示意图;
图26为本公开至少一实施例的显示装置的示意图。
具体实施方式
下面将结合附图对本公开的实施例进行详细说明。实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为一种或多种形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,夸大表示了一个或多个构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中多个部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
本公开中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。本公开中的“多个”表示两个或两个以上的数量。
在本公开中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可 以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开中的含义。
在本公开中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏极)与源电极(源电极端子、源区域或源极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。在本公开中,沟道区域是指电流主要流过的区域。
在本公开中,晶体管的第一极可以为漏电极、第二极可以为源电极,或者晶体管的第一极可以为源电极、第二极可以为漏电极。另外,晶体管的栅电极可以称为控制极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本公开中,“源电极”和“漏电极”可以互相调换。
在本公开中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的传输,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有一种或多种功能的元件等。
在本公开中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,可以包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,可以包括85°以上且95°以下的角度的状态。
在本公开中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
在本公开中,“厚度”指垂直于基底的平面方向上远离基底的表面距离靠近基底表面的高度。
在本公开中,“坡度”表示在垂直于显示基板的平面上,坡面的垂直高 度和水平方向的长度之比。
本公开实施例提供一种显示基板,包括:基底,基底包括第一显示区域,第一显示区域设置有多个不同颜色的子像素。多个不同颜色的子像素中的至少一个子像素包括:发光元件以及电连接发光元件的像素驱动电路。发光元件包括:第一电极、第二电极以及设置在第一电极和第二电极之间的有机发光层。第一电极与像素驱动电路电连接。在至少一个目标颜色的子像素的发光元件的第一电极靠近基底的一侧设置有第一结构。第一结构靠近第一电极的表面是不平坦的。例如,第一结构靠近第一电极的表面可以为凸面或凹面。然而,本实施例对此并不限定。
本实施例提供的显示基板,利用第一结构靠近第一电极的非平坦表面,使得第一电极也具有非平坦表面,可以调整至少一种目标颜色的出光光谱随视角的变化,从而在不影响显示基板的正面显示色域的基础上改善视角色偏。
在一些示例性实施方式中,第一结构可以包括:至少一个凸面结构。第一电极在基底上的正投影可以包含至少一个凸面结构在基底上的正投影。例如,一个子像素的第一电极在基底上的正投影可以包含一个凸面结构在基底上的正投影,或者,一个子像素的第一电极在基底上的正投影可以包含两个凸面结构在基底上的正投影。然而,本实施例对此并不限定。
在一些示例性实施方式中,第一结构可以包括:至少一个凸面结构以及位于至少一个凸面结构靠近基底一侧的第一绝缘层。第一绝缘层在基底上的正投影包含第一电极在基底上的正投影。在本示例中,第一结构可以为凸面结构和第一绝缘层的组合结构。然而,本实施例对此并不限定。
在一些示例性实施方式中,第一绝缘层靠近凸面结构一侧的表面是平坦的。在本示例中,第一结构靠近第一电极一侧的非平坦表面是由凸面结构形成的。第一结构在凸面结构处的厚度大于在第一绝缘层处的厚度。然而,本实施例对此并不限定。例如,第一结构靠近第一电极一侧的非平坦表面可以是由凸面结构和第一绝缘层共同形成的。
在一些示例性实施方式中,第一绝缘层靠近凸面结构一侧的表面具有凹面部,第一结构的凸面结构在基底上的正投影与第一绝缘层的凹面部在基底上的正投影没有交叠。在本示例中,第一结构靠近第一电极一侧的非平坦表 面是由凸面结构和第一绝缘层的凹面部共同形成的。第一结构在凸面结构处的厚度大于在第一绝缘层的凹面部的厚度。
在一些示例性实施方式中,至少一个凸面结构的材料可以为金属材料或感光有机材料。在一些示例中,凸面结构采用金属材料,并与第一电极直接连接,可以降低电阻,提高第一电极与像素驱动电路之间的导电性。例如,凸面结构的材料可以为钼(Mo)、铝(Al)、铜(Cu)等。然而,本实施例对此并不限定。
在一些示例性实施方式中,至少一个凸面结构的材料为金属材料,第一结构包括:至少一个凸面结构、以及位于至少一个凸面结构和第一电极之间的第二绝缘层。
在一些示例性实施方式中,第一结构具有平坦部和至少一个非平坦部;平坦部在基底上的正投影与至少一个非平坦部在基底上的正投影没有交叠;第一电极在基底上的正投影包含至少一个非平坦部在基底上的正投影。
在一些示例性实施方式中,至少一个非平坦部包括以下至少一项:凸面结构、凹面结构。第一结构在凸面结构处的厚度大于在平坦部处的厚度,第一结构在凹面结构处的厚度小于在平坦部处的厚度。在一些示例中,第一结构可以具有平坦部和至少一个凸面结构,平坦部连接在凸面结构之间。或者,第一结构可以具有平坦部和至少一个凹面结构,平坦部连接在凹面结构之间。或者,第一结构可以具有平坦部、至少一个凸面结构和至少一个凹面结构,平坦部可以连接在凸面结构和凹面结构之间。然而,本实施例对此并不限定。
在一些示例性实施方式中,在垂直于基底的平面内,凸面结构包括顶面和连接顶面的坡面,坡面的切线与平行于基底的平面之间的夹角约为3度至30度。在一些示例中,凸面结构为独立结构时,凸面结构还包括连接坡面的底面。例如,在垂直于显示基板的平面内,凸面结构可以为梯形。然而,本实施例对此并不限定。
在一些示例性实施方式中,凸面结构的高度可以约为100纳米至5微米。在一些示例中,凸面结构为独立结构时,凸面结构的高度可以为凸面结构的顶面和底面之间的距离。在一些示例中,凸面结构为从平坦部向远离基底一侧凸出的突起时,凸面结构的高度可以为突起远离基底一侧的顶面与平坦部 远离基底一侧顶面之间的距离。然而,本实施例对此并不限定。
在一些示例性实施方式中,在平行于基底的平面内,凸面结构沿第一方向的长度小于对应的子像素沿第一方向的长度,凸面结构沿第二方向的长度小于对应的子像素沿第二方向的长度;第一方向与第二方向交叉。例如,第一方向为子像素排布的列方向,第二方向为子像素排布的行方向。在一些示例中,子像素在第一方向的长度和第二方向的长度之间的第一比值约为0.5至2。凸面结构在第一方向的长度和第二方向的长度之间具有第二比值。当第一显示区域为曲面显示区域时,凸面结构的第二比值可以大于子像素的第一比值,例如,第二比值与第一比值之比可以约为1至3,从而改善横向视角。当第一显示区域为平面显示区域时,凸面结构的第二比值可以小于子像素的第一比值,例如,第二比值与第一比值之比可以约为0.5至2,从而改善平面显示区域的视角特性。
在一些示例性实施方式中,在平行于基底的平面内,凸面结构的宽度约为500纳米(nm)至15微米(μm),第一电极基于凸面结构形成的非平面结构的宽度约为1微米至25微米。例如,凸面结构的宽度约为7.5微米,第一电极的非平面结构的宽度约为10微米。在本公开中,“长度”表示沿第一方向(例如,子像素的列方向)的特征尺寸,“宽度”表示沿第二方向(例如,子像素的行方向)的特征尺寸。第一方向与第二方向交叉,例如第一方向垂直于第二方向。在一些示例中,宽度小于长度。
在一些示例性实施方式中,第一电极基于第一结构形成的非平面结构的形状与基底的形状不同。在本示例中,第一电极形成的非平面结构不是由于柔性基底弯曲形成的,而且通过设置具有非平面表面的第一结构所形成的。
在一些示例性实施方式中,第一电极可以为反射电极。例如,第一电极为全反射阳极,第二电极为半反射阴极,本示例的显示基板可以为顶发射结构的显示基板。然而,本实施例对此并不限定。在一些示例中,第一电极可以为透明阳极,第二电极可以为反射阴极;通过透明阳极靠近基底一侧设置的第一结构可以使得反射阴极靠近有机发光层一侧形成非平面结构,以改善视角色偏,本示例的显示基板可以为底发射结构的显示基板。
在一些示例性实施方式中,至少一种目标颜色的子像素可以包括以下至 少之一:蓝色子像素、绿色子像素、红色子像素。例如,第一显示区域设置有三种颜色的子像素(即,红色子像素、绿色子像素和蓝色子像素),则目标颜色可以为蓝色子像素,或者,绿色子像素,或者,蓝色子像素和绿色子像素,或者,蓝色子像素、绿色子像素及红色子像素。然而,本实施例对此并不限定。在一些示例中,第一显示区域设置的多种颜色的子像素均可以作为目标颜色子像素。
在一些示例性实施方式中,像素驱动电路包括:依次设置在基底上的有源层、第一栅金属层、第二栅金属层、第一源漏金属层和第二源漏金属层。第一结构设置在第二源漏金属层与发光元件之间,第一结构的厚度小于或等于2微米。第一源漏金属层和第二源漏金属层满足以下至少之一:至少一个目标颜色的子像素的像素驱动电路的第一源漏金属层和第二源漏金属层在基底上的正投影的交叠面积,大于除所述至少一个目标颜色以外颜色的子像素的像素驱动电路的第一源漏金属层和第二源漏金属层在基底上的正投影的交叠面积;至少一个目标颜色的子像素的像素驱动电路的第二源漏电极层的厚度,大于除所述至少一个目标颜色以外颜色的子像素的像素驱动电路的第二源漏金属层的厚度。本示例性实施方式通过改变像素驱动电路的版图,来调整目标颜色的子像素的第一电极的形貌,或者,通过改变第二源漏金属层的厚度,来调整目标颜色的子像素的第一电极的形貌。
在一些示例性实施方式中,基底还包括:第二显示区域。第二显示区域为平面显示区域,第一显示区域为第二显示区域周边的曲面显示区域或弯折显示区域。例如,显示基板可以为曲面显示基板,则可以仅改变显示基板的曲面显示区域或弯折显示区域的目标颜色的子像素的第一电极的形貌,从而针对性地改善曲面显示区域或弯折显示区域的视角色偏,并保证显示基板的平面显示区域的正常显示效果。
在一些示例性实施方式中,第一显示区域和第二显示区域的第二电极为一体的,第一显示区域和第二显示区域的绝缘层为一体的。在本示例中,第一显示区域和第二显示区域为连通区域。
下面通过一些示例对本实施例的方案进行说明。
图1为本公开至少一实施例的一种显示基板的示意图。如图1所示,本 实施例的显示基板包括:显示区域100和位于显示区域100周边的非显示区域200。非显示区域200可以包括位于显示区域100外围的周边区域、以及位于显示区域100一侧的绑定区域。显示区域100内设置有多个不同颜色的子像素,多个子像素中的至少一个子像素包括:发光元件以及电连接发光元件的像素驱动电路。发光元件包括第一电极、第二电极和位于第一电极和第二电极之间的有机发光层。其中,第一电极与像素驱动电路电连接。在一些示例中,第一电极可以为全反射阳极,第二电极可以为半反射阴极;或者,第一电极可以为透明阳极,第二电极可以为反射阴极。周边区域至少包括向多个子像素传输电压信号的信号线,例如,低电位电源线(VSS)。绑定区域至少包括将多个子像素的信号线连接至外部电路板的绑定电路,绑定电路例如可以包括与外部电路板绑定连接的多个绑定电极。本实施例对于显示基板的尺寸和分辨率并不限定。
图2为本公开至少一实施例的显示基板的多个子像素的结构示意图。图2为图1中区域S的局部放大示意图。在一些示例性实施方式中,如图2所示,在平行于显示基板的平面上,在每一行上排布有多个重复单元。每个重复单元包括:两个第一颜色子像素3A、一个第二颜色子像素3B和一个第三颜色子像素3C。在一个重复单元中,第二颜色子像素3B和第三颜色子像素3C在行方向上位于两个第一颜色子像素3A的两侧,两个第一颜色子像素3A沿列方向排布。在一些示例中,相邻两行之间的重复单元在行方向上存在移位。例如,相邻两行之间的重复单元在行方向上具有1.5倍第三颜色子像素3C宽度的移位。然而,本实施例对此并不限定。
如图2所示,在本示例中,重复单元中的两个第一颜色子像素3A相互对称,且对称轴与行方向平行。第一颜色子像素3A可以呈矩形(例如,圆角矩形)或正方形或五边形;第二颜色子像素3B和第三颜色子像素3C可以均呈矩形(例如圆角矩形)或六边形。第二颜色子像素3B和第三颜色子像素3C沿列方向的长度可以相同,第一颜色子像素3A沿列方向的长度小于第二颜色子像素3B沿列方向的长度。第一颜色子像素3A沿行方向的长度可以大于或等于第二颜色子像素3B沿行方向的长度,第三颜色子像素3C在行方向上的长度可以大于第一颜色子像素3A沿行方向的长度。在一些示例中, 第一颜色子像素3A可以为绿色(G)子像素,第二颜色子像素3B可以为红色(R)子像素,第三颜色子像素3C可以为蓝色(B)子像素。然而,本实施例对于显示区域的多个子像素的形状以及排布方式并不限定。在一些示例中,显示区域内的多个子像素可以按照RGB图案进行排布。例如,在每一行按照一个红色子像素、一个绿色子像素和一个蓝色子像素的重复单元排布,每一列的子像素的颜色相同。或者,在一些示例中,显示区域的多个子像素可以按照PenTile图案排列。例如,每个像素单元可以包括红色子像素和绿色子像素,或者蓝色子像素和绿色子像素,每个像素单元可以借用与其相邻的像素单元的另一颜色子像素来构成三基色。
在一些示例性实施方式中,如图2所示,在平行于显示基板的平面上,第一颜色子像素3A和第二颜色子像素3B的发光元件的第一电极靠近有机发光层的一侧表面均呈平面状。在第三颜色子像素3C的发光元件的第一电极靠近基底的一侧设置有第一结构,第一结构靠近第一电极的表面是不平坦的,使得第三颜色子像素3C的发光元件的第一电极靠近有机发光层的一侧表面具有非平面结构。在第三颜色子像素3C的发光元件的第一电极靠近基底一侧的第一结构在基底上的正投影与第三颜色子像素3C的发光元件的发光区域在基底上的正投影存在交叠。例如,第一结构包括至少一个凸面结构,第三颜色子像素3C的发光元件的发光区域在基底上的投影包括第一结构的至少一个凸面结构在基底上的正投影。在本示例中,发光元件的发光区域为像素定义层的开口暴露的用于发光的区域。
在一些示例中,如图2所示,位于第三颜色子像素3C的发光元件的第一电极靠近基底一侧的第一结构可以包括:第一平面区311、第一坡面区312和第二平面区313。第一平面区311和第二平面区313可以相互平行,第一坡面区312连接第一平面区311和第二平面区313。
在一些示例中,第二平面区313在基底上的正投影与第一坡面区312和第一平面区311在基底上的正投影没有交叠。在一些示例中,第一结构可以包括平坦部和凹面结构。例如,第一平面区311在基底上的正投影可以呈矩形;第一坡面区312在基底上的正投影可以围绕在第一平面区311在基底上的正投影的周边,第一坡面区312在基底上的正投影可以为矩形环;第二平 面区313在基底上的正投影可以围绕在第一坡面区312在基底上的正投影的周边,第二平面区313在基底上的正投影可以为矩形环。然而,本实施例对此并不限定。例如,第一平面区在基底上的正投影可以为圆形、椭圆形或其他图形,第一坡面区和第二平面区在基底上的正投影可以为圆环、椭圆环或其他形状的环形。例如,第一平面区在基底上的正投影可以为椭圆形,第二平面区在基底上的正投影可以为矩形环。
在一些示例中,第二平面区313在基底上的正投影可以包含第一坡面区312和第一平面区311在基底上的正投影。在本示例中,第一结构可以包括凸面结构。例如,第一平面区311在基底上的正投影可以呈矩形;第一坡面区312在基底上的正投影围绕在第一平面区311在基底上的正投影的周边,第一坡面区312在基底上的正投影例如为矩形环;第二平面区313在基底上的正投影可以为矩形,且覆盖第一坡面区312和第一平面区311在基底上的正投影。然而,本实施例对此并不限定。
在一些示例中,在垂直于基底的平面上,第一平面区311与基底之间的距离大于第二平面区313与基底之间的距离,即第一结构可以包括凸面结构;或者,第一平面区311与基底之间的距离小于第二平面区313与基底之间的距离,即第一结构可以包括凹面结构。
在一些示例中,在第三颜色子像素3C的发光元件的第一电极靠近基底一侧的第一结构可以包括凸面结构,使得第三颜色子像素3C的发光元件的第一电极具有朝着远离基底一侧凸出的凸面。第一结构包括的凸面结构具有平整的凸起顶面和与凸起顶面平行的凸起底面,且凸起顶面和凸起底面之间通过凸起坡面连接,则第一平面区311可以为该凸起顶面,第一坡面区312可以为该凸起坡面,第二平面区313可以为该凸起底面的延伸平面。或者,在一些示例中,在第三颜色子像素3C的发光元件的第一电极靠近基底一侧的第一结构可以包括凹面结构,该凹面结构具有平整的凹槽底面和与凹槽底面平行的凹槽顶面,且凹槽顶面和凹槽底面之间通过凹槽坡面连接,则第一平面区311可以为该凹槽底面,第一坡面区312可以为该凹槽坡面,第二平面区313可以为该凹槽顶面的延伸平面。然而,本实施例对此并不限定。
在一些示例性实施方式中,如图2所示,第一颜色子像素3A可以为绿 色子像素,第二颜色子像素3B可以为红色子像素,第三颜色子像素3C可以为蓝色子像素。以顶发射结构的显示基板为例,第一电极可以为全反射阳极,第二电极可以为半反射阴极。全反射阳极、有机发光层与半反射阴极一起构成微腔结构。顶发射OLED的微腔结构一方面能够增强发光元件正视角的出光强度,另一方面也能提升出光光谱的颜色纯度,以及提升显示色调的饱和度。微腔因子对发光元件的出光影响可以看作微腔因子与发光元件本征PL光谱相乘。图3A为不同视角的微腔因子与本征光致发光(PL,Photoluminescence)光谱的相对关系示意图。在图3A中,虚线表示不同角度下的OLED微腔函数,实线表示材料的本征PL光谱。如图3A所示,微腔因子随着观察视角增大。图3B为发光元件的出光(EL)光谱随视角的变化关系示意图。如图3B所示,微腔因子作用后,发光元件的出光光谱随着视角增加强度降低,光谱峰位向短波长移动。在OLED发光元件中,白光是由红色、绿色和蓝色三种颜色的光混合而成的,当三种颜色的光亮度和色调随着视角变化不一致时,合成的白光就会发生偏色。图4为光谱三刺激值谱的示意图。如图4所示,由色度学知识可知,光的亮度信息主要与光谱三刺激值谱中的Y刺激值有关。由红绿蓝光谱与三刺激值谱中Y刺激值的相对位置关系可知,蓝光的视角衰减比绿光和红光的视角衰减快,红光的视角衰减最慢,如图5所示。基于此,在本示例性实施例中,仅将蓝色子像素作为目标颜色子像素,在蓝色子像素的发光元件的反射电极靠近基底一侧设置第一结构,且第一结构靠近蓝色子像素的发光元件的反射电极的表面为非平坦,使得蓝色子像素的发光元件的反射电极具有非平面结构,以调整蓝色子像素的微腔结构,调整蓝色子像素的出光光谱随视角的变化,从而在不影响显示基板的正面显示色域的基础上,改善显示基板的视角色偏。
图6为图2中沿P-P方向的一种剖面示意图。在一些示例性实施方式中,如图6所示,在垂直于显示基板的平面上,显示区域包括:设置在基底10上的驱动结构层、设置在驱动结构层远离基底10一侧的第一结构、以及设置在第一结构远离基底10一侧的发光结构层。驱动结构层包括多个像素驱动电路,发光结构层包括多个发光元件,多个发光元件与多个像素驱动电路一一对应连接。每个像素驱动电路包括多个晶体管和至少一个存储电容,例如,可以是2T1C、3T1C、5T1C或7T1C设计。图6中以三个不同颜色的子像素 (即第一颜色子像素3A、第二颜色子像素3B和第三颜色子像素3C)为例进行示意,且每个子像素的像素驱动电路仅以一个晶体管和一个存储电容为例进行示意。
在一些示例性实施方式中,如图6所示,在垂直于显示基板的平面上,驱动结构层包括:依次叠设在基底10上的缓冲层11、有源层、第一栅绝缘层12、第一栅金属层、第二栅绝缘层13、第二栅金属层、层间绝缘层14和源漏金属层。有源层至少包括:第一有源层、第二有源层和第三有源层。第一栅金属层至少包括:第一栅电极、第二栅电极、第三栅电极、第一电容电极、第二电容电极和第三电容电极。第二栅金属层至少包括:第四电容电极、第五电容电极和第六电容电极。源漏金属层至少包括:第一源电极、第一漏电极、第二源电极、第二漏电极、第三源电极和第三漏电极。第一有源层、第一栅电极、第一源电极和第一漏电极组成第一晶体管101A,第一电容电极和第四电容电极组成第一存储电容102A。第二有源层、第二栅电极、第二源电极和第二漏电极组成第二晶体管101B,第二电容电极和第五电容电极组成第二存储电容102B。第三有源层、第三栅电极、第三源电极和第三漏电极组成第三晶体管101C,第三电容电极和第六电容电极组成第三存储电容102C。
在一些示例性实施方式中,如图6所示,在垂直于显示基板的平面上,第一结构包括:第一平坦层15和至少一个凸面结构(以图6所示的一个第一凸块301为例)。第一平坦层15即为上述的第一绝缘层。在本示例中,第一平坦层15靠近凸面结构一侧的表面是平坦的。第一平坦层15位于驱动结构层远离基底10的一侧,至少一个凸面结构位于第一平坦层15远离基底10的一侧。第三颜色子像素的发光区域与一个凸面结构在基底10上的正投影存在交叠,例如,第一凸块301在基底10上的正投影位于第三颜色子像素的发光区域内。由于第一结构包括凸面结构,使得第一结构靠近第三颜色子像素的发光元件的第一电极的表面是不平坦的,使得第三颜色子像素的发光元件的第一电极靠近有机发光层的表面也是不平坦的。即,第三颜色子像素的发光元件的第一电极靠近有机发光层的表面具有非平面结构。
在本示例中,如图6所示,第一凸块301远离基底10一侧表面(即顶面)的宽度小于靠近基底一侧表面(即底面)的宽度,第一凸块301的顶面与底 面之间通过坡面连接。在垂直于显示基板的平面内,第一凸块301可以为梯形。第一凸块301的坡面的坡度可以约为3°至30°,例如,第一凸块301的坡面的坡度可以约为5°。第一凸块301的顶面和底面在基底10上的正投影可以为矩形,第一凸块301的坡面在基底10上的正投影可以为围绕顶面的矩形环。然而,本实施例对此并不限定。例如,第一凸块301的顶面和底面在基底上的正投影可以为圆形或椭圆形,坡面在基底上的正投影可以为围绕顶面的圆环或椭圆环。在一些示例中,第一凸块301的顶面和底面在基底上的正投影可以为不同形状,例如,顶面在基底上的正投影可以为圆形或椭圆形,底面在基底上的正投影可以为矩形。在一些示例中,第一凸块的顶面四周的坡面的坡度可以相同,或者,可以部分相同,例如顶面左右两侧的坡面的坡度相同且小于或大于上下两侧的坡面的坡度。然而,本实施例对此并不限定。
在一些示例中,第一凸块301的顶面与底面之间的距离(如图6所示的第一厚度H1)可以约为100nm至3μm,例如,第一厚度H1可以为0.5μm。以第一凸块301在基底10上的正投影为矩形为例,第一凸块301在基底10上的正投影的第一长度可以小于像素定义层34形成的像素开口的长度,例如,第一长度可以约为5μm至20μm,比如,第一长度可以约为10μm;第一凸块301在基底10上的正投影的第一宽度可以小于像素定义层34形成的像素开口的宽度,比如,第一凸块301在基底10上的正投影的第一宽度W1可以约为500nm至15μm,例如,第一宽度W1可以约为7.5μm。然而,本实施例对此并不限定。
在本公开中,“长度”表示沿第一方向(例如,子像素的列方向)的特征尺寸,“宽度”表示沿第二方向(例如,子像素的行方向)的特征尺寸。第一方向与第二方向交叉,例如第一方向垂直于第二方向。
在一些示例性实施方式中,如图6所示,在垂直于显示基板的平面上,第一结构远离基底10的一侧设置有发光结构层。发光结构层的至少一个发光元件包括:依次叠设的第一电极(例如,图6所示的第一阳极31A、第二阳极31B或第三阳极31C)、有机发光层(例如,图6所示的第一有机发光层32A、第二有机发光层32B或第三有机发光层32C)、第二电极33以及像素定义层34。在本示例中,第一电极为反射阳极,第二电极33为半反射阴极。 第一电极通过第一平坦层15上开设的过孔与像素驱动电路的晶体管连接。有机发光层包括发光层(EML,Emitting Layer)以及包括空穴注入层(HIL,Hole Injection Layer)、空穴传输层(HTL,Hole Transport Layer)、空穴阻挡层(HBL,Hole Block Layer)、电子阻挡层(EBL,Electron Block Layer)、电子注入层(EIL,Electron Injection Layer)、电子传输层(ETL,Electron Transport Layer)中的一个或多个膜层组成的多层结构。例如,在第一电极和第二电极的电压驱动下,利用有机材料的发光特性根据需要的灰度发光。不同颜色的发光元件的发光层不同,例如,红色发光元件包括红色发光层,绿色发光元件包括绿色发光层,蓝色发光元件包括蓝色发光层。像素定义层34包括规则排布的多个像素开口,每个像素开口内的像素定义层34被刻蚀掉,暴露出第一电极。每个像素开口可以呈直角矩形或圆角矩形,且每个像素开口的剖面形状可以呈倒置梯形。有机发光层设置在像素定义层34的像素开口内并与第一电极接触,第二电极33覆盖在有机发光层表面,与有机发光层接触。如图6所示,第三颜色子像素3C的第三阳极31C覆盖第一凸块301,并与第一凸块301远离基底10的表面直接接触。由于第一凸块301具有凸向第三阳极31C的表面,可以使形成在第一凸块301上的第三阳极31C具有凸向有机发光层32C的表面,有机发光层32C也具有凸向第二电极33的表面,第二电极33具有凸向封装层40的表面,继而可以改变由第三阳极31C反射经由第二电极33射出的第三颜色光线的出光方向。换言之,通过第一结构的第一凸块301调整了第三阳极31C、有机发光层32C和第二电极33的形貌。在本示例中,第三颜色子像素3C的发光元件的发光区域的厚度从中间向四周逐渐减小。
在一些示例性实施方式中,如图6所示,在垂直于显示基板的平面上,第一颜色子像素3A的发光元件的第一阳极32A靠近第一有机发光层32A一侧的表面为平面,第二颜色子像素3B的发光元件的第二阳极32B靠近第二有机发光层32B一侧的表面为平面。第一颜色子像素3A的发光元件的第一阳极31A靠近第一有机发光层32A一侧的表面与基底10之间的距离约等于第二颜色子像素3B的发光元件的第二阳极31B靠近第二有机发光层32B一侧的表面与基底10之间的距离,并约等于第三颜色子像素3C的发光元件的第三阳极31C靠近第三有机发光层32C一侧表面除第一凸块301之外的平面 与基底10之间的距离。
下面通过显示基板的制备过程的示例说明显示基板的结构。本公开所说的“构图工艺”包括沉积膜层、涂覆光刻胶、掩模曝光、显影、刻蚀和剥离光刻胶处理。沉积可以采用溅射、蒸镀和化学气相沉积中的任意一种或多种,涂覆可以采用喷涂和旋涂中的任意一种或多种,刻蚀可以采用干刻和湿刻中的任意一种或多种。“薄膜”是指将某一种材料在基底上利用沉积或涂覆工艺制作出的一层薄膜。若在整个制作过程中该“薄膜”无需构图工艺,则该“薄膜”还可以称为“层”。若在整个制作过程中该“薄膜”需构图工艺,则在构图工艺前称为“薄膜”,构图工艺后称为“层”。经过构图工艺后的“层”中包含至少一个“图案”。
本公开所说的“A和B同层设置”是指,A和B通过同一次构图工艺同时形成,膜层的“厚度”为膜层在垂直于显示基板方向上的尺寸。本公开示例性实施例中,“A的正投影包含B的正投影”,是指B的正投影的边界落入A的正投影的边界范围内,或者A的正投影的边界与B的正投影的边界重叠。
在一些示例性实施方式中,显示基板的制备过程可以包括如下操作,如图7A至图7F所示。在本示例性实施方式中,以顶发射结构的显示基板为例进行说明。图7A至图7F均为图2中沿P-P方向的剖面示意图。
(1)、在玻璃载板上制备柔性的基底。
在一些示例性实施方式中,柔性的基底10包括在玻璃载板1上叠设的第一柔性材料层、第一无机材料层、半导体层、第二柔性材料层和第二无机材料层。第一、第二柔性材料层的材料可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料,第一、第二无机材料层的材料可以采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高基底的抗水氧能力,第一、第二无机材料层也称之为阻挡(Barrier)层,半导体层的材料可以采用非晶硅(a-si)。在一示例性实施方式中,以叠层结构PI1/Barrier1/a-si/PI2/Barrier2为例,其制备过程可以包括:先在玻璃载板1上涂布一层聚酰亚胺,固化成膜后形成第一柔性(PI1)层;随后在第一柔性层上沉积一层阻挡薄膜,形成覆盖第一柔性层的第一阻挡(Barrier1)层;然后在第一阻挡层上沉积一层非晶硅薄膜,形成覆盖第一阻挡层的非晶硅(a-si) 层;然后在非晶硅层上再涂布一层聚酰亚胺,固化成膜后形成第二柔性(PI2)层;然后在第二柔性层上沉积一层阻挡薄膜,形成覆盖第二柔性层的第二阻挡(Barrier2)层,完成柔性基底的制备,如图7A所示。
(2)、在基底上制备驱动结构层图案。
在一些示例性实施方式中,驱动结构层包括多个像素驱动电路,至少一个像素驱动电路包括多个晶体管和至少一个存储电容,例如,可以采用3T1C、5T1C或7T1C设计。
在一些示例性实施方式中,驱动结构层的制备过程可以包括以下过程。
在基底上依次沉积第一绝缘薄膜和有源层薄膜,通过构图工艺对有源层薄膜进行构图,形成覆盖整个基底10的缓冲层11,以及设置在缓冲层11上的有源层图案。有源层图案形成在显示区域,至少包括第一有源层21A、第二有源层21B和第三有源层21C。
随后,依次沉积第二绝缘薄膜和第一金属薄膜,通过构图工艺对第一金属薄膜进行构图,形成覆盖有源层图案的第一栅绝缘层12,以及设置在第一栅绝缘层12上的第一栅金属层图案。第一栅金属层图案形成在显示区域,至少包括第一栅电极22A、第二栅电极22B、第三栅电极22C、第一电容电极23A、第二电容电极23B、第三电容电极23C、多条栅线(未示出)和多条第一栅引线(未示出)。
随后,依次沉积第三绝缘薄膜和第二金属薄膜,通过构图工艺对第二金属薄膜进行构图,形成覆盖第一栅金属层的第二栅绝缘层13,以及设置在第二栅绝缘层13上的第二栅金属层图案。第二栅金属层图案形成在显示区域,至少包括第四电容电极24A、第五电容电极24B、第六电容电极24C、和第二栅引线(未示出),第四电容电极24A的位置与第一电容电极23A的位置相对应,第五电容电极24B的位置与第二电容电极23B的位置相对应,第六电容电极24C的位置与第三电容电极23C的位置相对应。
随后,沉积第四绝缘薄膜,通过构图工艺对第四绝缘薄膜进行构图,形成覆盖第二栅金属层的层间绝缘层14图案,层间绝缘层14上开设有多个第一过孔、多个第二过孔和多个第三过孔;两个第一过孔的位置分别与第一有 源层21A的两端位置相对应,两个第二过孔的位置分别与第二有源层21B的两端位置相对应,两个第三过孔的位置分别与第三有源层21C的两端位置相对应。多个第一过孔内的层间绝缘层14、第二栅绝缘层13和第一栅绝缘层12被刻蚀掉,分别暴露出第一有源层21A的表面。多个第二过孔内的层间绝缘层14、第二栅绝缘层13和第一栅绝缘层12被刻蚀掉,分别暴露出第二有源层21B的表面。多个第三过孔内的层间绝缘层14、第二栅绝缘层13和第一栅绝缘层12被刻蚀掉,分别暴露出第三有源层21C的表面。
随后,沉积第三金属薄膜,通过构图工艺对第三金属薄膜进行构图,在层间绝缘层14上形成源漏金属层图案,源漏金属层形成在显示区域,至少包括第一源电极25A、第一漏电极26A、第二源电极25B、第二漏电极26B、第三源电极25C、第三漏电极26C、多条数据线(未示出)和多条数据引线图案。第一源电极25A和第一漏电极26A分别通过第一过孔与第一有源层21A连接。第二源电极25B和第二漏电极26B分别通过第二过孔与第二有源层21B连接。第三源电极25C和第三漏电极26C分别通过第三过孔与第三有源层21C连接。在一示例性实施方式中,根据实际需要,源漏金属层还可以包括电源线(VDD)、补偿线和辅助阴极中的任意一种或多种,源漏金属层也称之为第一源漏金属层(SD1)。
至此,在基底10上制备完成驱动结构层图案,如图7B所示。第一有源层21A、第一栅电极22A、第一源电极25A和第一漏电极26A组成第一晶体管101A,第二有源层21B、第二栅电极22B、第二源电极25B和第二漏电极26B组成第二晶体管101B,第三有源层21C、第三栅电极22C、第三源电极25C和第三漏电极26C组成第三晶体管101C,第一电容电极23A和第四电容电极24A组成第一存储电容102A,第二电容电极23B和第五电容电极24B组成第二存储电容102B,第三电容电极23C和第六电容电极24C组成第三存储电容102C。多条栅引线和数据引线组成阵列基板栅极驱动(Gate Driver on Array,简称GOA)的驱动引线。在一示例性实施方式中,第一晶体管101A可以是第一颜色子像素的像素驱动电路中的驱动晶体管,第二晶体管101B可以是第二颜色子像素的像素驱动电路中的驱动晶体管,第三晶体管101C可以是第三颜色子像素的像素驱动电路中的驱动晶体管。然而,本实施例对 此并不限定。
在一些示例性实施方式中,缓冲层11、第一栅绝缘层12、第二栅绝缘层13和层间绝缘层14可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或更多种,可以是单层、多层或复合层。第一金属薄膜、第二金属薄膜和第三金属薄膜可以采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。有源层薄膜可以采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩、聚噻吩等多种材料,即本公开适用于基于氧化物(Oxide)技术、硅技术以及有机物技术制造的晶体管。
(3)、在形成前述图案的基底上形成第一平坦(PLN,Planarization)层。
在一些示例性实施方式中,在形成前述图案的基底10上涂覆有机材料薄膜,形成覆盖整个基底10的第一平坦层15,通过构图工艺在第一平坦层15上形成多个第四过孔、多个第五过孔和多个第六过孔(图7C中仅示意一个第四过孔K4、一个第五过孔K5和一个第六过孔K6)。如图7C所示,第四过孔K4内的第一平坦层15被刻蚀掉,暴露出第一晶体管101A的第一漏电极的表面,第五过孔K5内的第一平坦层15被刻蚀掉,暴露出第二晶体管101B的第二漏电极的表面,第六过孔K6内的第一平坦层15被刻蚀掉,暴露出第三晶体管101C的第三漏电极的表面。
(4)、在形成前述图案的基底上,形成至少一个凸面结构。
在一些示例性实施方式中,在形成前述图案的基底10上沉积第四金属薄膜,通过构图工艺(例如,湿刻工艺)对第四金属薄膜进行构图,形成至少一个凸面结构,例如第一凸块301。如图7D所示,第一凸块301在基底10上的正投影可以位于第三颜色子像素的发光区域,即后续形成的第三颜色子像素的发光元件与第一凸块301的交叠区域可以位于第三颜色子像素的发光区域。如图7D所示,在垂直于显示基板的平面内,第一凸块301可以呈梯形,顶面和底面为相互平行的平面,顶面和底面之间通过坡面连接,且坡面 为平面。
在一些示例中,如图7D所示,第一凸块301的第一宽度W1可以约为7.5μm;第一凸块301的顶面与地面之间的距离(即第一厚度H1)可以约为0.5μm。然而,本实施例对此并不限定。
在一些示例性实施方式中,第一凸块301可以与显示区域周边的非显示区域内的静电屏蔽层同层设置,从而实现工艺手段的多次利用,优化制备过程。然而,本实施例对此并不限定。
在一些示例性实施方式中,第四金属薄膜可以采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种。示例性地,第四金属薄膜可以采用钼(Mo)。
在本示例性实施方式中,通过调节对第四金属薄膜的刻蚀时间、第四金属薄膜的厚度可以实现对第一凸块的范围和形貌的可控调节,第四金属薄膜的刻蚀图案可以通过设计曝光掩模版(Mask)进行细节优化。然而,本实施例对此并不限定。
(5)、在形成前述图案的基底上形成第一电极图案。其中,第一电极为全反射阳极,且第一电极与对应的像素驱动电路连接。
在一些示例性实施方式中,在形成前述图案的基底10上沉积导电薄膜,通过构图工艺对导电薄膜进行构图,形成第一电极图案。如图7E所示,第一电极图案至少包括:第一阳极31A、第二阳极31B和第三阳极31C。第一颜色子像素的第一阳极31A通过第四过孔与第一晶体管101A的第一漏电极连接,第二颜色子像素的第二阳极31B通过第五过孔与第二晶体管101B的第二漏电极连接,第三颜色子像素的第三阳极31C通过第六过孔与第三晶体管101C的第三漏电极连接。第三颜色子像素的第三阳极31C与第一凸块301直接接触,即第三阳极31C与第一结构之间存在电性连接。第三阳极31C在基底10上的正投影可以包括第一凸块301在基底10上的正投影。第一凸块301在基底10上的正投影与第六过孔在基底10上的投影可以没有交叠。即,第三阳极31C通过第六过孔与第三晶体管101C的第三漏电极电连接,且第一凸块301并不影响第三阳极31C与第三晶体管101C的第三漏电极之间的电性连接。然而,本实施例对此并不限定。例如,第一凸块与第六过孔在基 底上的投影可以存在交叠,即第三阳极可以利用第一凸块与像素驱动电路的第三晶体管的第三漏电极实现电性连接。在本示例中,第一凸块301采用金属材料,且第一凸块301与第三阳极31C直接接触,具有降低串联电阻的功能,有利于改善第三阳极31C与第三晶体管101C的第三漏电极之间的电性连接效果。
在本示例性实施方式中,通过在第一凸块301远离基底10的一侧形成第三阳极31C,第三阳极31C的形貌受到第一凸块301的影响,形成非平面结构(例如一个凸面结构),且第三阳极31C的非平面结构的位置和形状与第一凸块301的位置和形状匹配。第三阳极31C在基底10上的正投影覆盖第一凸块301在基底10上的正投影。在本示例中,第三阳极31C的非平面结构的凸出区域对应第一凸块301所在位置,且第三阳极31C的非平面结构的凸出高度由第一凸块301的厚度确定。通过采用金属材料的第一凸块来实现第三颜色子像素的第三阳极的非平面设计,制备方法简单,而且通过对金属薄膜的图案密度、刻蚀时间和厚度的控制可以实现第三阳极形貌的多维度可控调节,使得对第三阳极的非平面效果精细可调。
在一些示例中,第一电极可以采用金属材料,如镁(Mg)、银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等,或者,是金属和透明导电材料形成的堆栈结构,如ITO/Ag/ITO、Mo/AlNd/ITO等反射型材料。
(6)、在形成前述图案的基底上,形成像素定义(PDL,Pixel Definition Layer)层、有机发光层和第二电极。
在一些示例性实施方式中,在形成前述图案的基底上涂覆像素定义薄膜,通过掩膜、曝光、显影工艺,形成像素定义层图案。如图7F所示,显示区域的像素定义层34上开设有多个像素开口,多个像素开口内的像素定义层34被显影掉,分别暴露出第一阳极31A的至少部分表面、第二阳极31B的至少部分表面和第三阳极31C的至少部分表面。发光元件的位于像素开口的部分用于发光,像素开口对应发光元件的发光区域。
在一些示例性实施方式中,有机发光层可以包括叠设的空穴注入层、空 穴传输层、发光层、电子传输层和电子注入层,有机发光层形成在显示区域的像素开口内,实现有机发光层与第一电极连接(例如,第一有机发光层32A与第一阳极31A连接,第二有机发光层32B与第二阳极31B连接,第三有机发光层32C与第三阳极31C连接),第二电极33形成在像素定义层34上,与有机发光层连接。在一些示例中,在形成前述图案的基底10上采用开放式掩膜版(Open Mask)依次蒸镀形成空穴注入层和空穴传输层,然后采用FMM依次蒸镀形成蓝色发光层、绿色发光层和红色发光层,然后采用开放式掩膜版依次蒸镀形成电子传输层、电子注入层和第二电极。
在一些示例性实施方式中,像素定义层34可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等有机材料。
在一些示例性实施方式中,第二电极33为半反射阴极或透明阴极。由第一电极反射的光线通过第二电极33从远离基底10的一侧出射,实现顶发射出光。在一些示例中,可以在第二电极远离基底的一侧形成光耦合层,光耦合层可以为多个子像素的共通层。光耦合层可以与透明的第二电极配合,起到增加光输出的作用。例如,光耦合层的材料可以采用半导体材料。然而,本实施例对此并不限定。
在一些示例性实施方式中,第二电极33可以采用镁(Mg)、银(Ag)、铝(Al)中的任意一种或更多种,或采用上述金属中任意一种或多种制成的合金,或者采用透明导电材料,例如,氧化铟锡(ITO),或者,金属与透明导电材料的多层复合结构。
(7)、在形成前述图案的基底上封装层。在一些示例性实施方式中,如图7F所示,封装层40可以为无机/有机/无机的三层结构,以完成显示基板的封装。然而,本实施例对此并不限定。在一些示例中,封装层可以采用无机/有机/无机/有机/无机的五层结构。
在上述步骤之后,使用激光剥离工艺将基板10从玻璃载板1上揭下,即可得到本示例性实施例的显示基板。
本示例性实施方式提供的显示基板通过在蓝色子像素的反射阳极靠近基底的一侧设置第一结构,且第一结构包括采用金属材料制备的第一凸块,使得蓝色子像素的反射阳极形成非平面结构(如凸面结构),以调整蓝色子像 素的出光光谱随视角变化,从而在不影响显示基板的正面显示色域的情况下可以有效改善色偏。通过在蓝色子像素的发射阳极形成凸面结构,可以增加蓝色子像素向非正视角的出光量,使得亮度随视角的衰减变慢,从而改善与红色子像素和绿色子像素的视角特性的匹配。
本公开示例性实施例的显示基板可以在不增加额外工序和成本、不对制备工艺进行复杂化的前提下,可以有效改善显示基板的视角色偏,扩展了发光元件的材料选择和膜层厚度的调整空间,具有较大的应用和量产价值。本示例性实施例的制备工艺利用现有成熟的制备设备即可实现,可以很好地与现有制备工艺兼容,工艺实现简单,易于实施,生产效率高,生产成本低,良品率高。
本公开实施例的显示基板的结构及其制备过程仅仅是一种示例性说明。在一些示例性实施方式中,可以根据实际需要变更相应结构以及增加或减少构图工艺。例如,显示基板还可以包括:第二源漏金属层,第二源漏金属层可以包括多个连接电极,第一电极可以通过连接电极与像素驱动电路的晶体管连接。又如,有机发光层还可以包括以下至少之一:电子阻挡层、空穴阻挡层、电子注入层。又如,发光元件的有机发光层的空穴传输层、空穴注入层可以设置为共通层。然而,本公开实施例在此不做限定。
图8为图2中沿P-P方向的另一剖面示意图。在一些示例性实施方式中,如图8所示,第一结构可以包括:至少一个凸面结构(例如,第一凸块301)以及第二绝缘层16。第二绝缘层16位于凸面结构和第一电极之间。第一结构位于第一平坦层15远离基底10的一侧。如图8所示,在垂直于显示基板的平面内,第一凸块301的截面可以为梯形。第二绝缘层16上开设有多个过孔,多个过孔内的第二绝缘层16和第一平坦层15被刻蚀掉,使得第一电极可以通过对应的过孔与像素驱动电路的晶体管连接。如图8所示,第三阳极31C可以通过第二绝缘层16上的过孔与第三晶体管101C的第三漏电极连接,第一阳极31A可以通过第二绝缘层16上的过孔与第一晶体管101A的第一漏电极连接,第二阳极31B可以通过第二绝缘层16上的过孔与第二晶体管101B的第二漏电极连接。在本示例中,第一凸块301可以采用金属材料,例如钼(Mo)。第三阳极31C与第二绝缘层16直接接触,第三阳极31C与第一凸 块301之间可以没有电性连接。第一凸块301仅用于调节第三阳极31C的形貌。第二绝缘层16的厚度可以小于平坦层15的厚度,避免通过第二绝缘层16对第一凸块301进行平坦化,使得通过第一凸块301可以调整第三阳极31C的形貌。在一些示例中,第二绝缘层16可以采用无机材料或有机材料。然而,本实施例对此并不限定。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图9为图2中沿P-P方向的另一剖面示意图。在一些示例性实施方式中,如图9所示,第一结构可以包括:第一平坦层15和至少一个凸面结构(例如,第一凸块301)。第一平坦层15即为上述的第一绝缘层。在本示例中,第一平坦层15靠近凸面结构一侧的表面可以是平坦的。第一平坦层15位于驱动结构层远离基底10的一侧,第一凸块301位于第一平坦层15远离基底10的一侧。在本示例中,以图9中示意的一个第一凸块301为例,在垂直于显示基板的平面内,第一凸块301的截面可以为梯形。第一凸块301可以采用感光有机材料,例如光刻胶。
在一些示例中,在形成第一平坦层15之后,可以在第一平坦层15上涂覆一层光刻胶,采用半色调掩模版(Halftone Mask)对光刻胶进行曝光、显影后形成光刻胶图案。光刻胶图案可以包括未曝光区域、部分曝光区域和完全曝光区域,未曝光区域包括第一凸块301的顶面所在位置,部分曝光区域包括:第一凸块301的坡面所在位置,部分曝光区域的光刻胶的厚度小于未曝光区域的光刻胶的厚度;其余区域为完全曝光区域,完全曝光区域的光刻胶被完全去除,暴露出第一平坦层15的表面。其中,涂覆的光刻胶的厚度可以约为100nm至500nm。通过调节曝光强度可以对部分曝光区域进行多次曝光形成坡面。然而,本实施例对此并不限定。
在一些示例中,在垂直于显示基板的平面内,第一凸块301的顶面与底面之间的距离可以约为0.32μm,第一凸块301的坡面的宽度可以约为2.43μm。然而,本实施例对此并不限定。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类 似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图10为图2中沿P-P方向的另一剖面示意图。在一些示例性实施方式中,如图10所示,第一结构30位于第一平坦层15和发光元件的第一电极之间。第一结构30包括平坦部和至少一个非平坦部。在本示例中,非平坦部可以为凸面结构。本示例中,凸面结构以图10中示意的一个第一突起302为例,第一突起302位于第一结构30的平坦部远离基底10一侧的表面。第一结构30在基底10上的正投影可以包含第一电极在基底10上的正投影。第三阳极31C在基底10上的正投影可以包含第一突起302在基底10上的正投影。在本示例中,第一结构30可以采用有机材料。第一结构30上开设有多个过孔,多个过孔内的第一结构30和第一平坦层15被刻蚀掉,使得第一电极可以通过对应的过孔与像素驱动电路的晶体管连接。如图10所示,第三阳极31C可以通过第一结构30上的过孔与第三晶体管101C的第三漏电极连接,第一阳极31A可以通过第一结构30上的过孔与第一晶体管101A的第一漏电极连接,第二阳极31B可以通过第一结构30上的过孔与第二晶体管101B的第二漏电极连接。采用有机材料制备的第一结构30的凸面结构可以调节第三阳极31C的形貌,使第三阳极31形成非平面结构(例如,与第一突起302的形状和位置匹配的凸面结构)。在一些示例中,在利用有机材料在显示区域形成第一结构30的同时,可以在周边区域形成绝缘阻挡层,从而实现工艺手段的多次利用,优化制备过程。然而,本实施例对此并不限定。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图11为图2中沿P-P方向的局部剖面示意图。图11中仅示意第三颜色子像素的剖面示意图,省略示意第一颜色子像素和第二颜色子像素的剖面结构。在一些示例性实施方式中,如图11所示,第一结构可以包括:第一平坦层15以及位于第一平坦层15和发光元件的第一电极之间的至少一个凸面结构。在本示例中,凸面结构以图11中示意的一个第一凸块301为例,在垂直于显示基板的平面上,第一凸块301具有相互平行的顶面和底面,以及连接 顶面和底面的坡面,且坡面为弧面。换言之,第一凸块301的顶面和底面之间通过弧面连接。在一些示例中,第一凸块301的材料可以为金属材料或感光有机材料。然而,本实施例对此并不限定。第一凸块301可以调节第三阳极31C的形貌,使第三阳极31形成与第一凸块301的形状和位置匹配的凸面结构。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图12为图2中沿P-P方向的另一剖面示意图。在一些示例性实施方式中,如图12所示,在垂直于显示基板的平面上,驱动结构层的像素驱动电路包括:依次设置在基底上的有源层、第一栅金属层、第二栅金属层、第一源漏金属层和第二源漏金属层。有源层和第一栅金属层之间设置有第一栅绝缘层12,第一栅金属层和第二栅金属层之间设置有第二栅绝缘层13,第二栅金属层和第一源漏金属层之间设置有层间绝缘层14,第一源漏金属层和第二源漏金属层之间设置有第一平坦层15。第二源漏金属层和第一电极之间设置有采用有机材料制备的第二平坦层17。第二平坦层17的厚度小于第一平坦层15的厚度。第二平坦层17的厚度可以小于或等于2μm,例如,可以约为1.5μm。第二源漏金属层至少包括:第一连接电极27A、第二连接电极27B和第三连接电极27C。第一阳极31A通过第一连接电极27A与第一晶体管101A的第一漏电极连接,第二阳极31B通过第二连接电极27B与第二晶体管101B的第二漏电极连接,第三阳极31C通过第三连接电极27C与第三晶体管101C的第三漏电极连接。
在本示例性实施方式中,第一结构可以包括第二平坦层17。通过增大第三颜色子像素的像素驱动电路的第二源漏金属层的厚度,使得第二平坦层17无法实现多个子像素之间的平坦化,第二平坦层17会形成凸面结构,从而改变第三阳极的形貌。其中,第一颜色子像素的像素驱动电路的第二源漏金属层的厚度约等于第二颜色子像素的像素驱动电路的第二源漏金属层的厚度,第三颜色子像素的像素驱动电路的第二源漏金属层的厚度,大于第一颜色子像素的像素驱动电路的第二源漏金属层的厚度。例如,第三颜色子像素的第 二源漏金属层的厚度可以约为300nm至800nm。如图12所示,第三连接电极27C的厚度大于第一连接电极27A的厚度,也大于第二连接电极27B的厚度。然而,本实施例对此并不限定。
本示例性实施方式中,在减薄第二平坦层的基础上,增加第三颜色子像素的第二源漏金属层的厚度,第二平坦层无法实现多个子像素之间的平坦化,使得第二平坦层形成凸面结构,从而改变第三颜色子像素的第三阳极的形貌。本公开示例性实施例的显示基板可以在不增加额外工序和成本的前提下,可以有效改善蓝色子像素的亮度随视角衰减过快的情况。
在一些示例性实施方式中,第一结构可以包括第二平坦层。通过增大第三颜色子像素的像素驱动电路的第一源漏金属层和第二源漏金属层在基底上的正投影的交叠面积,并使得第一平坦层和第二平坦层的厚度均小于2μm,使得第二平坦层靠近第一电极一侧表面是不平坦的。其中,第三颜色子像素的像素驱动电路的第一源漏金属层和第二源漏金属层在基底上的正投影的交叠面积,可以大于第一颜色子像素的像素驱动电路的第一源漏金属层和第二源漏金属层在基底上的正投影的交叠面积,第一颜色子像素的像素驱动电路的第一源漏金属层和第二源漏金属层在基底上的正投影的交叠面积可以约等于第二颜色子像素的像素驱动电路的第一源漏金属层和第二源漏金属层在基底上的正投影的交叠面积。第三颜色子像素的第三阳极在基底上的正投影与第一源漏金属层和第二源漏金属层在基底上的交叠区域存在交叠。
图13为本公开至少一实施例的第一平坦层和第二平坦层减薄形成凸面结构的示意图。如图13(a)所示,在第一源漏金属层26上形成第一平坦层15之后,在第一平坦层15的厚度无法实现第一源漏金属层26的平坦化时,会在第一源漏金属层26对应的位置形成突起。如图13(b)所示,在第二源漏金属层27上形成第二平坦层17之后,在第二平坦层17的厚度无法实现第二源漏金属层27的平坦化时,会在第二源漏金属层27对应的位置形成突起。由于第一源漏金属层26和第二源漏金属层27在基底上的投影没有交叠或交叠面积较小时,第一平坦层15和第二平坦层17由于未流平造成的突起不会叠加,或者增加幅度较小。如图13(c)所示,在第一平坦层15的厚度无法实现第一源漏金属层26的平坦化,第二平坦层17的厚度无法实现第二源漏 金属层27的平坦化,且第一源漏金属层26和第二源漏金属层27在基底上的正投影存在交叠且交叠面积较大时,第一平坦层15和第二平坦层17由于未流平造成的突起叠加,并形成可以改变发光元件的第一电极的形貌变化的凸面。
在本示例性实施方式中,在减薄第一平坦层和第二平坦层的基础上,第一平坦层无法实现第一源漏金属层的平坦化,第二平坦层无法实现第二源漏金属层的平坦化,而且增加第三颜色子像素的第一源漏金属层和第二源漏金属层在基底上的正投影的交叠面积,使得第一平坦层和第二平坦层由于未流平造成的突起叠加形成可以改变第三颜色子像素的发光元件的第一电极的形貌变化的凸面,以改变第三阳极的形貌。
本示例性实施方式中,在减薄第一平坦层和第二平坦层的基础上,增加第三颜色子像素的第一源漏金属层和第二源漏金属层在基底上的正投影的交叠面积,使得第一平坦层和第二平坦层由于未流平造成的突起叠加以改变第三颜色子像素的第三阳极的形貌。本公开示例性实施例的显示基板可以在不增加额外工序和成本的前提下,可以有效改善蓝色子像素的亮度随视角衰减过快的情况。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。在一些示例中,可以不仅增大第三颜色子像素的像素驱动电路的第一源漏金属层和第二源漏金属层在基底上的正投影的交叠面积,也增大第三颜色子像素的像素驱动电路的第二源漏金属层的厚度,从而改变第三颜色子像素的第三阳极的形貌。
图14为图2中沿P-P方向的另一剖面示意图。在一些示例性实施方式中,如图14所示,第一结构例如为第一平坦层15。第一平坦层15靠近第一电极的一侧表面具有平坦部和非平坦部,非平坦部可以包括凸面结构。第一平坦层15位于第一电极与驱动结构层之间。在本示例中,凸面结构以图13中示意的一个第二突起151为例,第二突起151形成在第一平坦层15的平坦部远离基底10一侧的表面。通过第一平坦层15上的凸面结构可以调整第三阳极31C的形貌,使其形成与第二突起151的形状和位置匹配的凸面结构,而第 一阳极31A和第二阳极31B均为平面结构。在本示例性实施方式中,采用有机材料制备的第一平坦层15可以调整第三颜色子像素的第三阳极31C的形貌,以调整第三颜色子像素的出光光谱随视角变化。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图15为图2中沿P-P方向的另一剖面示意图。在一些示例性实施方式中,如图15所示,第一结构例如为第一平坦层15。第一平坦层15靠近第一电极的一侧表面具有平坦部和非平坦部,非平坦部可以包括凹面结构。第一平坦层15位于第一电极与驱动结构层之间。在本示例中,凹面结构以图15中示意的一个第一凹槽152为例,第一凹槽152形成在第一平坦层15远离基底10一侧的表面。通过第一平坦层15上的凹面结构可以调整第三阳极31C的形貌,使其形成与第一凹槽152的形状和位置匹配的凹面结构,而第一阳极31A和第二阳极31B均为平面结构。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图16为图2中沿P-P方向的另一剖面示意图。在一些示例性实施方式中,如图16所示,第一结构30位于发光元件的第一电极与第一平坦层15之间。第一结构30具有平坦部和非平坦部,非平坦部可以为凹面结构。在本示例中,凹面结构以图16中示意的一个第二凹槽303为例,第二凹槽303位于第一结构30远离基底10一侧的表面。在本示例中,第一结构30可以采用感光有机材料。在一些示例中,在形成驱动结构层之后,可以依次形成第一平坦层15和第一结构30。第一结构30包括第二凹槽303,且开设有多个过孔,多个过孔内的第一结构30和第一平坦层15被刻蚀掉,使得第一电极可以通过对应的过孔与像素驱动电路的晶体管连接。例如,第三阳极31C可以通过第一结构30上的过孔与第三晶体管101C的第三漏电极连接,第一阳极31A可以通过第一结构30上的过孔与第一晶体管101A的第一漏电极连接,第二阳极31B可以通过第一结构30上的过孔与第二晶体管101B的第二漏电极连接。 采用有机材料制备的第一结构30的凹面结构可以调节第三阳极31C的形貌,使第三阳极31形成与第二凹槽303的形状和位置匹配的凹面结构。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图17为本公开至少一实施例的显示基板的多个子像素的另一结构示意图。图17为图1中区域S的另一局部放大示意图。在一些示例性实施方式中,如图17所示,在平行于显示基板的平面上,在每一行上排布有多个重复单元。每个重复单元包括:两个第一颜色子像素3A、一个第二颜色子像素3B和一个第三颜色子像素3C。在一个重复单元中,第二颜色子像素3B和第三颜色子像素3C在行方向上位于两个第一颜色子像素3A的两侧,两个第一颜色子像素3A沿列方向排布。在一些示例中,相邻两行之间的重复单元在行方向上存在移位。例如,相邻两行之间的重复单元在行方向上具有1.5倍第三颜色子像素3C宽度的移位。如图17所示,在本示例中,重复单元中的两个第一颜色子像素3A相互对称,且对称轴与行方向平行。第一颜色子像素3A可以呈矩形(例如,圆角矩形)或正方形或五边形;第二颜色子像素3B和第三颜色子像素3C可以均呈矩形(例如圆角矩形)或六边形。第二颜色子像素3B和第三颜色子像素3C沿列方向的长度可以相同,第一颜色子像素3A沿列方向的长度小于第二颜色子像素3B沿列方向的长度。第一颜色子像素3A沿行方向的长度可以大于或等于第二颜色子像素3B沿行方向的长度,第三颜色子像素3C在行方向上的长度可以大于第一颜色子像素3A沿行方向的长度。在一些示例中,第一颜色子像素3A可以为绿色(G)子像素,第二颜色子像素3B可以为红色(R)子像素,第三颜色子像素3C可以为蓝色(B)子像素。然而,本实施例对于显示区域的多个子像素的形状以及排布方式并不限定。
在一些示例性实施方式中,如图17所示,在平行于显示基板的平面上,第一颜色子像素3A和第二颜色子像素3B的发光元件的第一电极靠近有机发光层的一侧表面均呈平面状。在第三颜色子像素3C的发光元件的第一电极靠近基底的一侧设置有第一结构,第一结构靠近第一电极的表面是不平坦的, 使得第三颜色子像素3C的发光元件的第一电极靠近有机发光层的一侧表面具有非平面结构。在第三颜色子像素3C的发光元件的第一电极靠近基底一侧的第一结构在基底上的正投影与第三颜色子像素3C的发光元件的发光区域在基底上的正投影存在交叠。例如,第一结构包括至少两个凸面结构,第三颜色子像素3C的发光元件的发光区域在基底上的正投影包括第一结构的两个凸面结构在基底上的正投影。然而,本实施例对此并不限定。例如,第一结构可以包括凸面结构和凹面结构,第三颜色子像素3C的发光元件的发光区域在基底上的正投影可以包括第一结构的一个凸面结构和一个凹面结构在基底上的正投影。
在一些示例中,如图17所示,第三颜色子像素3C的发光元件的第一电极靠近基底的一侧的第一结构可以包括:第一平面区311、第一坡面区312、第二平面区313、第三平面区314和第二坡面区315。第一平面区311和第三平面区314在基底上的正投影可以呈矩形。第一坡面区312围绕在第一平面区311周边,第一坡面区312在基底上的正投影可以为矩形环;第二坡面区315围绕在第三平面区314周边,第二坡面区315在基底上的正投影可以为矩形环。第二平面区313可以围绕在第一坡面区312和第二坡面区315周边。然而,本实施例对此并不限定。例如,第一平面区311在基底上的正投影可以为圆形、椭圆形或其他非规则图形,第一坡面区312和第二平面区313在基底上的正投影可以为圆环、椭圆环或其他形状的环形。在本示例中,第一平面区311、第二平面区313和第三平面区314相互平行,第一坡面区312连接第一平面区311和第二平面区313,第二坡面区315连接第二平面区313和第三平面区314。
在一些示例中,在垂直于显示基板的平面内,第一平面区311与基底之间的距离可以大于第二平面区313与基底之间的距离,第三平面区314与基底之间的距离可以大于第二平面区313与基底之间的距离,且第一平面区311与基底之间的距离可以大于或等于或小于第三平面区314与基底之间的距离。或者,在一些示例中,在垂直于显示基板的平面内,第一平面区311与基底之间的距离可以小于第二平面区313与基底之间的距离,第三平面区314与基底之间的距离可以大于第二平面区313与基底之间的距离。或者,在一些 示例中,在垂直于显示基板的平面内,第一平面区311与基底之间的距离可以小于第二平面区313与基底之间的距离,第三平面区314与基底之间的距离可以小于第二平面区313与基底之间的距离,且第一平面区311与基底之间的距离可以大于或等于或小于第三平面区314与基底之间的距离。
在一些示例中,如图17所示,在第三颜色子像素内,第一结构的两个非平面结构沿子像素的行方向顺序排布。然而,本实施例对于第一结构的非平面结构的排布方式和密度并不限定。例如,在一个子像素内,第一结构的多个非平面结构可以沿子像素的列方向顺序排布。在本示例性实施方式中,在一个子像素内,可以通过控制第一结构的非平面结构的数目,来实现第一电极的平面区和坡面区的比例调节,可以有效控制坡面区的面积占比,实现对子像素的视角亮度和色偏的精细调节。
图18为图17中沿Q-Q方向的一种剖面示意图。在一些示例性实施方式中,如图18所示,在垂直于显示基板的平面上,驱动结构层远离基底10的一侧设置有第一结构。第一结构包括:第一平坦层15以及位于第一平坦层15远离基底10的一侧的凸面结构。第一结构的凸面结构在基底10上的正投影与第三颜色子像素的发光区域存在交叠,例如,凸面结构在基底10上的正投影位于第三颜色子像素的发光区域。第一结构的凸面结构配置为使得第三颜色子像素的发光元件的第一电极形成非平面结构。在本示例中,第一结构在对应第三颜色子像素的发光区域具有两个凸面结构,两个凸面结构以图18中示意的第二凸块304和第三凸块305为例,在垂直于显示基板的平面内,第二凸块304和第三凸块305可以均为梯形。第二凸块304和第三凸块305的形状和尺寸可以相同或不同。然而,本实施例对此并不限定。
在本示例中,第二凸块304和第三凸块305的形状和尺寸可以相同。下面以第二凸块304为例进行说明,第二凸块304远离基底10一侧表面(即顶面)的宽度小于靠近基底一侧表面(即底面)的宽度,第二凸块304的顶面与底面之间通过坡面连接。第二凸块304的坡面的坡度可以约为3°至30°,例如,可以约为5°。第二凸块304的顶面和底面在基底10的正投影可以为矩形,坡面在基底10的投影可以为围绕顶面的矩形环。然而,本实施例对此并不限定。例如,第二凸块的顶面和底面在基底的投影可以为圆形或椭圆形, 坡面在基底的投影可以为围绕顶面的圆环或椭圆环。在一些示例中,第二凸块的顶面四周的坡面的坡度可以相同,或者,可以部分相同,例如顶面左右两侧的坡面的坡度相同且小于或大于上下两侧的坡面的坡度。然而,本实施例对此并不限定。
在一些示例中,在垂直于显示基板的平面内,第二凸块301的顶面与底面之间的距离可以约为100nm至5μm,例如,可以约为0.5μm。以第二凸块304在基底10的正投影为矩形为例,第二凸块304在基底10的正投影的第二长度可以小于像素定义层上形成的像素开口的长度,例如第二长度可以约为5μm至20μm,例如,第二长度可以约为10μm;第二凸块304在基底10的正投影的第二宽度可以小于像素定义层上形成的像素开口的宽度,例如第二宽度可以约为3μm至15μm,例如,第二宽度可以约为8μm。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图19为图17中沿Q-Q方向的另一剖面示意图。在一些示例性实施方式中,如图19所示,第一结构包括:第一平坦层15以及位于第一平坦层15远离基底10一侧的至少一个凸面结构。第一平坦层15具有平坦部和至少一个凹面部,第一结构的凸面结构与第一平坦层15的凹面部在基底10上的正投影没有交叠。第三阳极31C在基底10上的正投影包含一个凸面结构和第一平坦层15的一个凹面部在基底10上的正投影。第一结构的凸面结构可以采用金属材料或感光有机材料制备。在本示例中,凸面结构以图19中示意的一个第二凸块304为例,第一平坦层15的凹面部以图19中示意的一个第二凹槽153为例,在垂直于显示基板的平面内,第二凸块304可以为梯形,第二凹槽153形成在第一平坦层15远离基底10一侧的表面。第二凸块304和第二凹槽153在基底10上的正投影没有交叠。第二凸块304和第二凹槽153的坡面的坡度可以均为3度至30度。第二凸块304的顶面与底面之间的距离(厚度)与第二凹槽153的顶面与底面之间的距离(深度)可以相同,例如距离约为100nm至5μm。第二凸块304在基底10上的正投影的长度可以小于像素定义层上形成的像素开口的长度,例如长度约为5μm至20μm;第二 凸块304在基底10上的正投影的宽度可以小于像素定义层上形成的像素开口的宽度,例如宽度可以约为3μm至15μm。第二凹槽153在基底10上的正投影的尺寸可以与第二凸块304在基底10上的正投影的尺寸相同。然而,本实施例对此并不限定。
本示例性实施方式中,通过第一平坦层15的凹面部和凸面结构共同调节第三阳极的形貌,使得第三阳极形成非平面结构(例如,与第二凸块304的形状和位置对应的凸面结构,与第二凹槽153的形状和位置对应的凹面结构)。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图20为本公开至少一实施例的显示基板的多个子像素的另一结构示意图。图20为图1中区域S的另一局部放大示意图。
在一些示例性实施方式中,如图20所示,第一颜色子像素3A可以为绿色(G)子像素,第二颜色子像素3B可以为红色(R)子像素,第三颜色子像素3C可以为蓝色(B)子像素。
在一些示例性实施方式中,如图20所示,在平行于显示基板的平面上,第二颜色子像素3B的发光元件的第一电极靠近有机发光层的一侧表面呈平面状。第三颜色子像素3C的发光元件的第一电极靠近基底的一侧设置有第一结构,例如第一结构包括凸面结构或凹面结构。第三颜色子像素3C的发光元件的第一电极靠近基底的一侧设置的第一结构包括第一平面区311、第一坡面区312和第二平面区313。例如,第一结构可以包括平坦部和凹面结构。第二平面区313在基底上的正投影与第一坡面区312和第一平面区311在基底上的正投影没有交叠。例如,第一结构可以包括凸面结构。第二平面区313在基底上的正投影可以包含第一坡面区312和第一平面区311在基底上的正投影。
在一些示例性实施方式中,如图20所示,第一颜色子像素3A的发光元件的第一电极靠近基底的一侧设置有第一结构,例如第一结构包括凸面结构或凹面结构。第一颜色子像素3A的发光元件的第一电极靠近基底的一侧设置的第一结构包括第四平面区316、第三坡面区317和第五平面区318。例如, 第一结构可以包括平坦部和凹面结构。第五平面区318在基底上的正投影与第三坡面区317和第四平面区316在基底上的正投影没有交叠。例如,第一结构可以包括凸面结构。第五平面区318在基底上的正投影可以包含第三坡面区317和第四平面区316在基底上的正投影。
在一些示例中,第一平面区311与基底之间的距离大于第二平面区313与基底之间的距离,或者,第一平面区311与基底之间的距离小于第二平面区313与基底之间的距离。第四平面区316与基底之间的距离大于第五平面区318与基底之间的距离,或者,第四平面区316与基底之间的距离小于第五平面区318与基底之间的距离。第二平面区313与基底之间的距离约等于第五平面区318与基底之间的距离。
图21为图20中沿P-P方向的剖面示意图。在一些示例性实施方式中,如图21所示,在垂直于显示基板的平面上,第一结构包括:位于驱动结构层远离基底10的一侧的第一平坦层15、以及位于第一平坦层15远离基底10的一侧的至少一个凸面结构。第三颜色子像素的发光区域在基底上的正投影包含一个凸面结构在基底10上的正投影,第一颜色子像素的发光区域在基底10上的正投影包含一个凸面结构在基底10上的正投影。第一结构具有多个凸面结构,配置为使得第三颜色子像素和第一颜色子像素的发光元件的第一电极形成非平面结构。在本示例中,两个凸面结构以图21中示意的第四凸块306和第五凸块307为例,在垂直于显示基板的平面内,第四凸块306和第五凸块307可以均为梯形。第四凸块306和第五凸块307的形状和尺寸可以相同或不同。在一些示例中,第四凸块306的坡面的坡度可以不同于第五凸块307的坡面的坡度,从而改善红色、绿色、蓝色三种子像素的视角特性匹配一致性。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图22为本公开至少一实施例的显示基板的多个子像素的另一结构示意图。图22为图1中区域S的另一局部放大示意图。图23为图22中沿P-P方向的剖面示意图。
在一些示例性实施方式中,如图22和图23所示,第一颜色子像素3A可以为绿色子像素,第二颜色子像素3B可以为红色子像素,第三颜色子像素3C可以为蓝色子像素。
在一些示例性实施方式中,如图22所示,在平行于显示基板的平面内,第三颜色子像素3C的发光元件的第一电极31C靠近基底的一侧设置有第一结构,第一结构在对应第三颜色子像素3C的发光区域具有两个凸面结构,例如图23中示意的两个凸块301a和301b。第二颜色子像素3B的发光元件的第一电极31B靠近基底的一侧也设置有第一结构,第一结构在对应第二颜色子像素3B的发光区域具有两个凸面结构,例如图23中示意的两个凸块302a和302b。第一颜色子像素3A的发光元件的第一电极31A靠近基底的一侧也设置有第一结构,第一结构在对应第一颜色子像素3A的发光区域具有两个凸面结构,例如图23中示意的两个凸块303a和303b。在垂直于显示基板的平面内,凸块301a和301b、302a和302b以及303a和303b的截面可以均为梯形。在本示例中,多个凸块的形状和尺寸可以相同。然而,本实施例对此并不限定。例如,多个凸块的形状和尺寸可以不同。
关于本实施例的第一结构的平面示意结构的相关说明可以参照图17的说明,故于此不再赘述。本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图24为图2中沿P-P方向的另一剖面示意图。在一些示例性实施方式中,第一颜色子像素3A可以为绿色子像素,第二颜色子像素3B可以为红色子像素,第三颜色子像素3C可以为蓝色子像素。以底发射结构的显示基板为例,第一电极为透明阳极,第二电极为反射阴极,由反射阴极反射的光线通过透明阳极从靠近基底10的一侧出射。
在一些示例性实施方式中,如图24所示,第一结构可以为第一平坦层15。第一平坦层15位于第一电极与驱动结构层之间,第一平坦层15可以采用有机材料制备并具有凹面结构。在本示例中,凹面结构以图21中示意的一个第三凹槽154为例,第三凹槽154形成在第一平坦层15远离基底10一侧的表面。通过第一平坦层15上形成的凹面结构可以依次调整第三阳极31C、 第三有机发光层32C和第二电极33的形貌,使第三电极靠近第三有机发光层32C一侧的表面形成非平面结构(例如,与第三凹槽154的位置和形状对应的凹面结构)。而第二电极33靠近第一有机发光层32A和第二有机发光层32B一侧的表面为平面结构。在本示例性实施方式中,采用有机材料制备的第一平坦层15调整第三颜色子像素的第一电极的形貌,并最终调整第三颜色子像素的第二电极的形貌,从而调整第三颜色子像素的出光光谱随视角变化,以改善视角偏差。
本示例性实施例的显示基板的结构仅仅是一种示例性说明。在一些示例性实施方式中,可以根据实际需要变更相应结构。例如,可以在第一电极和驱动结构层之间设置采用金属材料制备的第一结构,来改变第一电极、有机发光层和第二电极的形貌。然而,本公开在此不做限定。
本示例性实施例中的显示基板的结构与前述实施例中描述的相应结构类似,故于此不再赘述。本实施方式所示的结构(或方法)可以与其它实施方式所示的结构(或方法)适当地组合。
图25为本公开至少一实施例的一种显示基板的示意图。如图25所示,显示基板包括第一显示区域100A和第二显示区域100B,第一显示区域100A位于第二显示区域100B的相对两侧,并与第二显示区域100B连通。第一显示区域100A为曲面显示区域,第二显示区域100B为平面显示区域。在一些示例中,以弯折分界线作为第一显示区域100A和第二显示区域100B的分界线。第二显示区域100B所在平面可以与水平面平行,第一显示区域100A所在平面的切线与水平面不平行。然而,本实施例对此并不限定。
在本示例性实施方式中,第一显示区域100A内的子像素的结构可以如上述实施例所示。例如,第一显示区域100A内的目标颜色的子像素的发光元件的反射电极靠近基底的一侧设置有第一结构,又如,第一显示区域100A内的所有颜色的子像素的发光元件的反射电极靠近基底的一侧设置第一结构。第一结构靠近第一电极的表面是不平坦的。第二显示区域100B内的不同颜色子像素的发光元件的反射电极可以均为平面结构。在一些示例中,在第一显示区域100A内,沿着远离第二显示区域100B的方向上,第一结构的凸面结构的排布密度增加。在第一显示区域100A内靠近第二显示区域100B的区 域内,较少子像素的发光元件的第一电极靠近基底的一侧可以设置凸面结构,在第一显示区域100A内远离第二显示区域100B的区域内,较多子像素的发光元件的第一电极靠近基底的一侧设置凸面结构。然而,本实施例对此并不限定。
本示例性实施方式中,仅对显示基板的曲面显示区域的子像素进行调节,而不改变平面显示区域的子像素的结构,可以实现对曲面显示区域进行相应的色偏针对性调节,而对于平面显示区域则可以保持正常显示效果,避免由于对反射电极的非平面设计造成平面显示区域的正面亮度变低的情况。
本公开至少一实施例还提供一种显示基板的制备方法,包括:在基底的第一显示区域形成多个不同颜色的子像素。多个不同颜色的子像素中的至少一个子像素包括:发光元件以及电连接发光元件的像素驱动电路。发光元件包括:第一电极、第二电极以及设置在第一电极和第二电极之间的有机发光层,第一电极为反射电极与像素驱动电路电连接。至少一个目标颜色的子像素的发光元件的第一电极在靠近基底的一侧形成有第一结构。第一结构靠近第一电极的表面是不平坦的。
在一些示例性实施方式中,在基底的第一显示区域形成多个不同颜色的子像素,包括:在基底上形成多个像素驱动电路;在至少一个目标颜色的子像素的发光元件的第一电极靠近所述基底的一侧形成第一结构,所述第一结构靠近所述第一电极的表面是不平坦的。所述第一结构包括:至少一个凸面结构,所述第一电极在基底上的正投影包含所述至少一个凸面结构在基底上的正投影。
在一些示例性实施方式中,在至少一个目标颜色的子像素的发光元件的第一电极靠近所述基底的一侧形成第一结构,包括以下至少之一:采用湿刻工艺对金属薄膜进行刻蚀,形成第一结构的凸面结构;采用感光有机材料进行曝光显影,形成第一结构的凸面结构。
关于本实施例的制备方法可以参照前述实施例的说明,故于此不再赘述。
图26为本公开至少一实施例的显示装置的示意图。如图26所示,本实施例提供一种显示装置91,包括:显示基板910。显示基板910为前述实施例提供的显示基板。其中,显示基板910可以为OLED显示基板。显示装置 91可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。然而,本实施例对此并不限定。
本公开中的附图只涉及本公开涉及到的结构,其他结构可参考通常设计。在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
本领域的普通技术人员应当理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本公开的权利要求的范围当中。

Claims (23)

  1. 一种显示基板,包括:
    基底,所述基底包括第一显示区域,所述第一显示区域设置有多个不同颜色的子像素;
    所述多个不同颜色的子像素中的至少一个子像素包括:发光元件以及电连接所述发光元件的像素驱动电路;所述发光元件包括:第一电极、第二电极以及设置在所述第一电极和第二电极之间的有机发光层,所述第一电极与所述像素驱动电路电连接;
    在至少一个目标颜色的子像素的发光元件的第一电极靠近所述基底的一侧设置有第一结构,所述第一结构靠近所述第一电极的表面是不平坦的。
  2. 根据权利要求1所述的显示基板,其中,所述第一结构包括:至少一个凸面结构;所述第一电极在基底上的正投影包含所述至少一个凸面结构在基底上的正投影。
  3. 根据权利要求2所述的显示基板,其中,所述第一结构还包括:位于所述至少一个凸面结构靠近基底一侧的第一绝缘层;所述第一绝缘层在基底上的正投影包含所述第一电极在基底上的正投影。
  4. 根据权利要求3所述的显示基板,其中,所述第一绝缘层靠近所述凸面结构一侧的表面是平坦的。
  5. 根据权利要求3所述的显示基板,其中,所述第一绝缘层靠近所述凸面结构一侧的表面具有凹面部,所述凸面结构在基底上的正投影与所述第一绝缘层的凹面部在基底上的正投影没有交叠。
  6. 根据权利要求2至5中任一项所述的显示基板,其中,所述至少一个凸面结构的材料为金属材料或感光有机材料。
  7. 根据权利要求2至5中任一项所述的显示基板,其中,所述至少一个凸面结构的材料为金属材料,所述第一结构还包括:位于所述至少一个凸面结构和第一电极之间的第二绝缘层。
  8. 根据权利要求1所述的显示基板,其中,所述第一结构具有平坦部和至少一个非平坦部;所述平坦部在基底上的正投影与所述至少一个非平坦部 在基底上的正投影没有交叠;
    所述第一电极在基底上的正投影包含至少一个非平坦部在基底上的正投影。
  9. 根据权利要求8所述的显示基板,其中,所述至少一个非平坦部包括以下至少一项:凸面结构、凹面结构;所述第一结构在凸面结构处的厚度大于在平坦部处的厚度,所述第一结构在凹面结构处的厚度小于在平坦部处的厚度。
  10. 根据权利要求2至7及9中任一项所述的显示基板,其中,在垂直于所述基底的平面内,所述凸面结构包括顶面和连接所述顶面的坡面,所述坡面的切线与平行于所述基底的平面之间的夹角约为3度至30度。
  11. 根据权利要求2至7及9中任一项所述的显示基板,其中,所述凸面结构的高度约为100纳米至5微米。
  12. 根据权利要求2至7及9中任一项所述的显示基板,其中,在平行于所述基底的平面内,所述凸面结构沿第一方向的长度小于对应的子像素沿第一方向的长度,所述凸面结构沿第二方向的长度小于对应的子像素沿第二方向的长度;所述第一方向与第二方向交叉。
  13. 根据权利要求2至7及9中任一项所述的显示基板,其中,在平行于所述基底的平面内,所述凸面结构的宽度约为500纳米至15微米,所述第一电极基于所述凸面结构形成的非平面结构的宽度约为1微米至25微米。
  14. 根据权利要求1至13中任一项所述的显示基板,其中,所述第一电极基于所述第一结构形成的非平面结构的形状与所述基底的形状不同。
  15. 根据权利要求1至14中任一项所述的显示基板,其中,所述第一电极为反射电极。
  16. 根据权利要求1至15中任一项所述的显示基板,其中,所述至少一种目标颜色的子像素包括以下至少之一:蓝色子像素、绿色子像素、红色子像素。
  17. 根据权利要求8所述的显示基板,其中,所述像素驱动电路包括:依次设置在所述基底上的有源层、第一栅金属层、第二栅金属层、第一源漏 金属层和第二源漏金属层;所述第一结构设置在所述第二源漏金属层与所述发光元件之间,所述第一结构的厚度小于或等于2微米;
    所述第一源漏金属层和第二源漏金属层满足以下至少之一:
    所述至少一个目标颜色的子像素的像素驱动电路的第一源漏金属层和所述第二源漏金属层在所述基底上的正投影的交叠面积,大于除所述至少一个目标颜色以外颜色的子像素的像素驱动电路的第一源漏金属层和所述第二源漏金属层在所述基底上的正投影的交叠面积;
    所述至少一个目标颜色的子像素的像素驱动电路的第二源漏金属层的厚度,大于除所述至少一个目标颜色以外颜色的子像素的像素驱动电路的第二源漏金属层的厚度。
  18. 根据权利要求1至17中任一项所述的显示基板,其中,所述基底还包括:第二显示区域;所述第二显示区域为平面显示区域,所述第一显示区域为所述第二显示区域周边的曲面显示区域或弯折显示区域。
  19. 根据权利要求18所述的显示基板,其中,所述第一显示区域和第二显示区域的第二电极为一体的,所述第一显示区域和第二显示区域的绝缘层为一体的。
  20. 一种显示装置,包括如权利要求1至19中任一项所述的显示基板。
  21. 一种显示基板的制备方法,包括:
    在基底的第一显示区域形成多个不同颜色的子像素;
    所述多个不同颜色的子像素中的至少一个子像素包括:发光元件以及电连接所述发光元件的像素驱动电路;所述发光元件包括:第一电极、第二电极以及设置在所述第一电极和第二电极之间的有机发光层,所述第一电极与所述像素驱动电路电连接;
    在至少一个目标颜色的子像素的发光元件的第一电极靠近所述基底的一侧形成有第一结构,所述第一结构靠近所述第一电极的表面是不平坦的。
  22. 根据权利要求21所述的制备方法,其中,所述在基底的第一显示区域形成多个不同颜色的子像素,包括:
    在所述基底上形成多个像素驱动电路;
    在至少一个目标颜色的子像素的发光元件的第一电极靠近所述基底的一侧形成第一结构,所述第一结构靠近所述第一电极的表面是不平坦的;
    所述第一结构包括:至少一个凸面结构,所述第一电极在基底上的正投影包含所述至少一个凸面结构在基底上的正投影。
  23. 根据权利要求22所述的制备方法,其中,所述在至少一个目标颜色的子像素的发光元件的第一电极靠近所述基底的一侧形成第一结构,包括以下至少之一:
    采用湿刻工艺对金属薄膜进行刻蚀,形成第一结构的凸面结构;
    采用感光有机材料进行曝光显影,形成第一结构的凸面结构。
PCT/CN2021/096130 2021-05-26 2021-05-26 显示基板及其制备方法、显示装置 WO2022246703A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/096130 WO2022246703A1 (zh) 2021-05-26 2021-05-26 显示基板及其制备方法、显示装置
US17/773,030 US20240155904A1 (en) 2021-05-26 2021-05-26 Display Substrate, Manufacturing Method Thereof, and Display Device
CN202180001273.6A CN117063627A (zh) 2021-05-26 2021-05-26 显示基板及其制备方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096130 WO2022246703A1 (zh) 2021-05-26 2021-05-26 显示基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022246703A1 true WO2022246703A1 (zh) 2022-12-01

Family

ID=84229317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096130 WO2022246703A1 (zh) 2021-05-26 2021-05-26 显示基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20240155904A1 (zh)
CN (1) CN117063627A (zh)
WO (1) WO2022246703A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117529168A (zh) * 2024-01-04 2024-02-06 北京京东方技术开发有限公司 显示基板和显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996694A (zh) * 2014-04-25 2014-08-20 京东方科技集团股份有限公司 一种oled显示器及其制备方法
CN104752460A (zh) * 2013-12-25 2015-07-01 清华大学 有机发光二极管阵列的制备方法
CN106373985A (zh) * 2016-10-28 2017-02-01 昆山国显光电有限公司 有机发光二级管显示装置及制备方法
CN109616500A (zh) * 2018-12-06 2019-04-12 合肥鑫晟光电科技有限公司 有机发光二极管面板及其制备方法、显示装置
CN111092107A (zh) * 2019-12-25 2020-05-01 厦门天马微电子有限公司 一种显示面板及显示装置
CN111384119A (zh) * 2018-12-26 2020-07-07 乐金显示有限公司 发光显示设备
CN111969121A (zh) * 2019-05-20 2020-11-20 乐金显示有限公司 发光显示装置
CN112234086A (zh) * 2020-10-15 2021-01-15 京东方科技集团股份有限公司 显示面板的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752460A (zh) * 2013-12-25 2015-07-01 清华大学 有机发光二极管阵列的制备方法
CN103996694A (zh) * 2014-04-25 2014-08-20 京东方科技集团股份有限公司 一种oled显示器及其制备方法
CN106373985A (zh) * 2016-10-28 2017-02-01 昆山国显光电有限公司 有机发光二级管显示装置及制备方法
CN109616500A (zh) * 2018-12-06 2019-04-12 合肥鑫晟光电科技有限公司 有机发光二极管面板及其制备方法、显示装置
CN111384119A (zh) * 2018-12-26 2020-07-07 乐金显示有限公司 发光显示设备
CN111969121A (zh) * 2019-05-20 2020-11-20 乐金显示有限公司 发光显示装置
CN111092107A (zh) * 2019-12-25 2020-05-01 厦门天马微电子有限公司 一种显示面板及显示装置
CN112234086A (zh) * 2020-10-15 2021-01-15 京东方科技集团股份有限公司 显示面板的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117529168A (zh) * 2024-01-04 2024-02-06 北京京东方技术开发有限公司 显示基板和显示装置
CN117529168B (zh) * 2024-01-04 2024-04-12 北京京东方技术开发有限公司 显示基板和显示装置

Also Published As

Publication number Publication date
CN117063627A (zh) 2023-11-14
US20240155904A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2022057491A1 (zh) 显示基板及其制备方法、显示装置
US10381415B2 (en) Display device
US10651258B2 (en) Organic light emitting display device with improved aperture ratio
US7064482B2 (en) Organic electroluminescent display panel device and method of fabricating the same
WO2022042046A1 (zh) 显示基板及其制备方法、显示装置
CN114373774A (zh) 显示基板及其制备方法、显示装置
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
WO2023280110A1 (zh) 显示基板及其制备方法
JP2022539621A (ja) ディスプレイパネル及びその製造方法、表示装置
WO2022012235A1 (zh) 显示基板及其制备方法、显示装置
CN109560115B (zh) 一种显示面板的制备方法、显示面板及显示装置
WO2022178827A1 (zh) 显示基板及其制备方法、显示装置
US12016232B2 (en) Display substrate and preparation method thereof, and display apparatus
WO2022246703A1 (zh) 显示基板及其制备方法、显示装置
WO2022110169A1 (zh) 一种显示基板及相关装置
WO2021189484A9 (zh) 显示基板及其制作方法、显示装置
KR101450887B1 (ko) 유기전계발광표시장치
WO2023246379A1 (zh) 显示基板及其制备方法、显示装置
WO2021189480A1 (zh) 显示基板及其制备方法、显示装置
KR20160060835A (ko) 유기발광다이오드 표시장치 및 그 제조방법
WO2022198374A1 (zh) 显示基板及其制备方法、显示装置、彩膜基板
WO2022087938A1 (zh) 显示基板及其制备方法、显示装置
WO2022252230A1 (zh) 显示基板和显示装置
WO2022226737A1 (zh) 显示基板及其制备方法、显示装置
WO2023092473A1 (zh) 显示基板及其制备方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180001273.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 17773030

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/04/2024)