WO2022244837A1 - Semiconductor device manufacturing method and laser annealing device - Google Patents

Semiconductor device manufacturing method and laser annealing device Download PDF

Info

Publication number
WO2022244837A1
WO2022244837A1 PCT/JP2022/020813 JP2022020813W WO2022244837A1 WO 2022244837 A1 WO2022244837 A1 WO 2022244837A1 JP 2022020813 W JP2022020813 W JP 2022020813W WO 2022244837 A1 WO2022244837 A1 WO 2022244837A1
Authority
WO
WIPO (PCT)
Prior art keywords
annealing step
region
regions
laser light
beam spot
Prior art date
Application number
PCT/JP2022/020813
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 長谷川
暢彦 大森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023522713A priority Critical patent/JPWO2022244837A1/ja
Publication of WO2022244837A1 publication Critical patent/WO2022244837A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present disclosure relates to a semiconductor device manufacturing method and a laser annealing apparatus.
  • a laser annealing process is performed in which a semiconductor substrate is irradiated with laser light to anneal an impurity region for the purpose of activating an impurity region formed in the semiconductor substrate.
  • a semiconductor substrate is divided into a plurality of irradiation areas, and beam spots of laser light are sequentially formed on each irradiation area.
  • an overlap rate is generally set between adjacent irradiation regions, and adjacent regions with the set overlap rate are generally set.
  • the two matching irradiation regions are continuously irradiated with laser light.
  • Patent Document 1 In International Publication No. WO 2019/244665 (Patent Document 1), two irradiation regions with consecutive incident orders do not have overlapping portions, but two irradiation regions with non-sequential incident orders have overlapping portions with each other. discloses a technique for setting the irradiation order and arrangement of a plurality of irradiation areas. If the process of sequentially irradiating each of the plurality of irradiation regions with laser light is regarded as one laser annealing process, each overlapping portion is formed within the one laser annealing process.
  • the time difference between the first laser light irradiation and the second laser light irradiation for forming each overlapped portion is equal to the time difference between the two adjacent irradiations for which the overlap rate is set. Although it is longer than the time when the regions are continuously irradiated with the laser light, it is set shorter than the time required to sequentially irradiate each of the plurality of irradiation regions with the laser light once.
  • each of the plurality of irradiation regions has an overlapping portion, and the time difference between the two irradiations for forming each overlapping portion is relatively short. Therefore, in the conventional technology, the semiconductor substrate heated by the first laser beam irradiation is reheated by the second laser beam irradiation, and the temperature of the semiconductor substrate tends to rise relatively high. .
  • An example of such a structure is a protective film which is formed on the surface of the semiconductor substrate opposite to the laser beam irradiation surface before the laser annealing process and which is removed after the laser annealing process.
  • a main object of the present disclosure is to provide a method for manufacturing a semiconductor device capable of suppressing temperature rise of a semiconductor substrate as compared with the conventional technology while preventing formation of an impurity region that is not sufficiently annealed, and the manufacturing method.
  • An object of the present invention is to provide a laser annealing apparatus for realizing the method.
  • a method for manufacturing a semiconductor device has a first surface extending along a first direction and a second direction orthogonal to the first direction, and a plurality of element formation regions are arranged on the first surface. preparing a semiconductor substrate in which a first impurity region is formed in each of a plurality of element formation regions; and sequentially irradiating each of the plurality of element formation regions with a laser beam to anneal the first impurity region. and a first annealing step.
  • the first width in the first direction of the beam spot formed on the first surface by the laser light is narrower than the second width in the second direction of the beam spot.
  • the relative movement distance of the beam spot in the first direction is the first width
  • the beam spot in the second direction is The second width is the relative movement distance of the spot.
  • a laser annealing apparatus has a first surface extending along a first direction and a second direction orthogonal to the first direction, and holds a semiconductor substrate in which a first impurity region is formed. irradiating a first surface of a semiconductor substrate held by the holding portion with a laser beam, and one of a plurality of regions of the first surface arranged side by side in at least one of the first direction and the second direction; An optical system for forming beam spots in two regions, and a scanning unit for scanning one of the semiconductor substrate and the optical system with respect to the other.
  • the optical system is provided to form a beam spot on the first surface, the first width in the first direction being narrower than the second width in the second direction.
  • the scanning unit scans the first surface with respect to the optical system by a first width in the first direction, and scans the first surface with respect to the optical system in the first direction. After scanning by the first width, the first surface is scanned by the second width in the second direction with respect to the optical system.
  • a method for manufacturing a semiconductor device and a method for manufacturing a semiconductor device, which can suppress temperature rise of a semiconductor substrate as compared with conventional techniques while preventing formation of an impurity region that is not sufficiently annealed. It is possible to provide a laser annealing apparatus for realizing
  • FIG. 1 is a partial cross-sectional view showing an example of a semiconductor device according to Embodiment 1;
  • FIG. 4 is a flow chart showing an example of a method for manufacturing a semiconductor device according to Embodiment 1;
  • 4A and 4B are diagrams showing examples of the shape of a beam spot of laser light and the intensity distribution of laser light along each of the first direction and the second direction in the method of manufacturing the semiconductor device according to the first embodiment;
  • FIG. 3 is a diagram for explaining a scanning path of a beam spot in the first laser annealing step shown in FIG. 2; 7 is a diagram for more specifically explaining the scanning path of the beam spot shown in FIG. 6;
  • FIG. 1 is a block diagram showing an example of a laser annealing apparatus according to Embodiment 1;
  • FIG. 8 is a flow chart showing an example of a method for manufacturing a semiconductor device according to Embodiment 2; 10 is a flow chart showing an example of a method for manufacturing a semiconductor device according to Embodiment 3; 13 is a flow chart showing an example of a method for manufacturing a semiconductor device according to Embodiment 4; 14 is a flow chart showing an example of a method for manufacturing a semiconductor device according to Embodiment 5;
  • a semiconductor device 101 according to the first embodiment is obtained by dicing a plurality of chips formed on a semiconductor substrate 1 by a method for manufacturing the semiconductor device 101, which will be described later.
  • the semiconductor device 101 is, for example, a reverse conducting IGBT (RC-IGBT: Reverse Conducting Insulated Gate Bipolar Transistor), and includes a trench gate IGBT and a trench gate IGBT connected in anti-parallel with this IGBT.
  • RC-IGBT Reverse Conducting Insulated Gate Bipolar Transistor
  • the semiconductor substrate 1 has a first surface 1A and a second surface 1B opposite to the first surface 1A.
  • first surface 1A is the bottom surface of the semiconductor substrate 1 .
  • a second surface 1B is the upper surface of the semiconductor substrate 1 .
  • a semiconductor device 101 shown in FIG. 1 includes an IGBT region 101A that is an IGBT operating region and an FWD region 101B that is an FWD operating region.
  • IGBT region 101A and FWD region 101B are arranged in parallel in an active region on the same semiconductor substrate 1 .
  • the active region is the region through which current flows when in the ON state.
  • the IGBT 101A includes an n ⁇ type drift layer 2, a p type base layer 3, a p + type contact layer 4, an n + type emitter layer 5, a gate insulating film 6, a gate electrode 7, an n type buffer layer 8, a p type collector layer 9, an interlayer It has an insulating film 10, a barrier metal 11, a plug 12, an emitter electrode 13A and a collector electrode 14A.
  • the p-type base layer 3 is arranged on the top surface of the n ⁇ type drift layer 2 .
  • Each of p + -type contact layer 4 and n + -type emitter layer 5 is arranged on the upper surface of p-type base layer 3 .
  • the n + -type emitter layer 5 is arranged so as to surround the p + -type contact layer 4 .
  • the n-type buffer layer 8 is arranged on the lower surface of the n ⁇ type drift layer 2 .
  • P-type collector layer 9 is arranged on the lower surface of n ⁇ type drift layer 2 .
  • a plurality of trenches T are formed in the IGBT region 101A.
  • each of trenches T extends from the upper surface of n + -type emitter layer 5 through n + -type emitter layer 5 and p-type base layer 3 to reach n ⁇ -type drift layer 2 .
  • the gate insulating film 6 and the gate electrode 7 are embedded inside the trench T.
  • Gate insulating film 6 is arranged along the inner wall surface of trench T.
  • Gate electrode 7 faces p-type base layer 3 with gate insulating film 6 interposed therebetween.
  • Each of the plurality of trenches T is arranged at intervals in a direction in which the IGBT region 101A and the FWD region 101B are arranged (horizontal direction in FIG. 1), for example, in plan view.
  • Each of the plurality of trenches T extends, for example, in a direction (depth direction in FIG. 1) perpendicular to the direction in which the IGBT regions 101A and the FWD regions 101B are arranged.
  • the plurality of trenches T are arranged in stripes, for example, in a plan view.
  • n + -type emitter layer 5 is arranged between adjacent trenches T (mesa regions), it is not limited to this.
  • the n + -type emitter layer 5 may be arranged in at least one mesa region between adjacent trenches T (mesa region). There may be a mesa region where the n + -type emitter layer 5 is not arranged. Also, a plurality of n + -type emitter layers 5 may be arranged at predetermined intervals in the direction in which the trenches T extend in stripes (the depth direction in FIG. 1).
  • the interlayer insulating film 10 covers the top surface of the gate electrode 7 .
  • Interlayer insulating film 10 is provided so as to electrically insulate gate electrode 7 arranged under interlayer insulating film 10 and emitter electrode 13A arranged on interlayer insulating film 10 .
  • a contact hole is formed in the interlayer insulating film 10, and the p + -type contact layer 4 and the n + -type emitter layer 5 are exposed in the contact hole.
  • the barrier metal 11 is arranged so as to cover the surfaces of the interlayer insulating film 10 and the contact holes. Barrier metal 11 is in contact with the upper surfaces of p + -type contact layer 4 and n + -type emitter layer 5 exposed in the contact hole. A plug 12 is embedded on the barrier metal 11 in the contact hole.
  • the emitter electrode 13A is arranged on the barrier metal 11 and the plug 12.
  • An aluminum alloy is generally used for the emitter electrode 13A.
  • Emitter electrode 13A is connected to each of n + -type emitter layer 5 and p + -type contact layer 4 via barrier metal 11 and plug 12 .
  • Collector electrode 14A is in contact with p-type collector layer 9 .
  • the FWD region 101B of the semiconductor device 101 includes an n ⁇ type drift layer 2, a p type anode layer 15, a p + type anode layer 16, a gate insulating film 6, a dummy gate electrode 17, an n type buffer layer 8, an n + type cathode layer 18, It has an electrode 13B and a cathode electrode 14B.
  • the p-type anode layer 15 is arranged on the upper surface of the n ⁇ type drift layer 2 .
  • the p + -type anode layer 16 is arranged on the upper surface of the p-type anode layer 15 .
  • the n-type buffer layer 8 is arranged on the lower surface of the n ⁇ type drift layer 2 .
  • the n + -type cathode layer 18 is arranged on the bottom surface of the n-type buffer layer 8 .
  • a plurality of trenches T are formed in each of the FWD regions 101B.
  • each of trenches T extends from the upper surface of p + -type anode layer 16 through p + -type anode layer 16 and p-type anode layer 15 to reach n ⁇ -type drift layer 2 .
  • the gate insulating film 6 and the dummy gate electrode 17 are embedded inside the trench T. As shown in FIG.
  • the FWD region 101B includes an n-type drift layer 2, a gate insulating film 6, and an n-type buffer layer 8 in common with the IGBT region 101A.
  • the top surface of the dummy gate electrode 17 is covered with the interlayer insulating film 10 .
  • Dummy gate electrode 17 is electrically insulated by interlayer insulating film 10 from electrode 13B arranged on interlayer insulating film 10 .
  • the electrode 13B is provided integrally with the emitter electrode 13A.
  • the second electrode 13 as a single member is formed over both the IGBT region 101A and the FWD region 101B. 13 constitutes the electrode 13B.
  • the dummy gate electrode 17 may be electrically connected to the electrode 13B.
  • Cathode electrode 14B is joined to n+ type cathode layer 18 .
  • the cathode electrode 14B is provided integrally with the collector electrode 14A.
  • the first electrode 14 as a single member is formed over both the IGBT region 101A and the FWD region 101B. 14 constitutes the cathode electrode 14B.
  • n ⁇ type drift layer 2 the p type base layer 3, the p + type contact layer 4, the n + type emitter layer 5, the gate insulating film 6, the gate electrode 7, the n type buffer layer 8, and the p type collector layer 9 are formed on a semiconductor substrate.
  • 1 is arranged between the first surface 1A and the second surface 1B.
  • Collector electrode 14A is arranged on first surface 1A.
  • Interlayer insulating film 10, barrier metal 11, plug 12, and emitter electrode 13A are arranged on second surface 1B.
  • the semiconductor device 101 may have a breakdown voltage structure such as a guard ring provided in the edge termination region arranged so as to surround the active region.
  • the method for manufacturing a semiconductor device 101 includes a step of preparing a semiconductor substrate 1 having a first impurity region formed thereon (S10), and irradiating the first surface with a laser beam to perform the first step. and a first annealing step (S20) of annealing the one impurity region.
  • the first impurity region includes an impurity region to form n-type buffer layer 8 , an impurity region to form p-type collector layer 9 , and an impurity region to form n + type cathode layer 18 .
  • the semiconductor substrate 1 on which the p-type collector layer 9 and the n+ type cathode layer 18 are formed is prepared as an object to be laser-annealed in the first annealing step (S20).
  • the semiconductor substrate 1 is manufactured by, for example, sequentially performing the following steps (S1) to (S4).
  • step (S1) element structures are formed on the second surface 1B side of the semiconductor substrate 1 in each of the IGBT region 101A and the FWD region 101B.
  • a semiconductor substrate 1 is prepared.
  • the semiconductor substrate 1 has a third surface and a second surface 1B opposite to the third surface.
  • Each of the third surface and the second surface 1B extends along the first direction X and the second direction Y orthogonal to the first direction X.
  • the material constituting the semiconductor substrate 1 may be any semiconductor material, such as silicon (Si) or silicon carbide (SiC).
  • the conductivity type of the semiconductor substrate 1 is n ⁇ type.
  • a p-type base layer 3, a p-type anode layer 15, a p+-type contact layer 4, and an n+-type emitter layer 5 are formed on the upper surface (second surface 1B) of the semiconductor substrate 1.
  • Each of p-type base layer 3, p + -type contact layer 4 and n + -type emitter layer 5 is formed by ion implantation using a mask pattern formed by photolithography. For example, a set of a process of forming a mask pattern using photolithography, an ion implantation process using the mask pattern, and a process of removing the mask pattern is repeatedly performed under different conditions.
  • the p-type base layer 3 and the p-type anode layer 15 are formed by one ion implantation process, for example. In other words, p-type base layer 3 and p-type anode layer 15 are formed such that one of p-type base layer 3 and p-type anode layer 15 serves as the other.
  • the p + -type contact layer 4 and the n + -type emitter layer 5 are selectively formed inside the p-type base layer 3 in the IGBT region 101A.
  • a field oxide film covering the second surface 1B is formed in the edge termination region.
  • the field oxide film is formed by thermally oxidizing the second surface 1B of the semiconductor substrate 1, for example.
  • a plurality of trenches T are formed in each of IGBT region 101A and FWD region 101B. As described above, the plurality of trenches T are formed in stripes, for example, in plan view.
  • step (S1) next, a gate insulating film 6 is formed inside a plurality of trenches T in each of the IGBT regions 101A and the FWD regions 101B. Gate insulating film 6 is formed along the inner wall surface of each trench T. As shown in FIG. The gate insulating film 6 is formed by thermally oxidizing the inner wall surface of each trench T, for example.
  • step (S1) next, gate electrodes 7 and dummy gate electrodes 17 are formed inside the plurality of trenches T in each of the IGBT regions 101A and the FWD regions 101B.
  • the polysilicon film on second surface 1B is removed by an etch back process. As a result, the polysilicon film left inside each trench T becomes the gate electrode 7 and the dummy gate electrode 17, respectively.
  • a MOS gate having a trench gate structure composed of the n ⁇ type drift layer 2, the p type base layer 3, the p+ type contact layer 4, the n+ type emitter layer 5, the gate insulating film 6, and the gate electrode 7 is formed. It is formed. Note that the p + -type contact layer 4 and the n + -type emitter layer 5 may be formed after forming the gate electrode 7 .
  • interlayer insulating film 10 barrier metal 11, plug 12, and second electrode 13 are formed in each of IGBT region 101A and FWD region 101B.
  • Interlayer insulating film 10 is formed on second surface 1B.
  • a plurality of contact holes are formed in the interlayer insulating film 10 .
  • Each contact hole penetrates interlayer insulating film 10 in a direction perpendicular to second surface 1B.
  • the p + -type contact layer 4 and the n + -type emitter layer 5 are exposed.
  • Barrier metal 11 is formed on the upper surface of p + -type contact layer 4 and n + -type emitter layer 5 exposed from each contact hole, the inner wall surface of each contact hole, and the upper surface of interlayer insulating film 10 .
  • a plug 12 is formed on the barrier metal 11 so as to fill the inside of each contact hole.
  • a second electrode 13 is formed on the barrier metal 11 and the plug 12 .
  • an element structure is formed on the second surface 1B side of semiconductor substrate 1 in each of IGBT region 101A and FWD region 101B.
  • a protective film is formed on the second surface 1B (step (S2)).
  • the protective film is formed so as to cover the structures.
  • Materials constituting the protective film include at least one selected from the group consisting of, for example, polyimide, resist, and silicon oxide.
  • the protective film may be a film or tape-like member.
  • the protective film may be a coating film.
  • the temperature at which the protective film is not deformed, degraded, or the like is referred to as the heat resistant temperature of the protective film.
  • the heat-resistant temperature of the protective film is higher than the reaching temperature of the protective film in the post-process of this step (S2).
  • the heat resistance temperature of the protective film is, for example, lower than the glass transition temperature (Tg) of the material forming the protective film.
  • the semiconductor substrate 1 is ground (back ground) from the third surface side to thin the semiconductor substrate 1 (step (S3)).
  • step (S3) the thickness of the semiconductor substrate 1 is the thickness of the semiconductor substrate 1 in the semiconductor device 101 .
  • a first surface 1A is formed on the side of the semiconductor substrate 1 opposite to the second surface 1B.
  • an impurity region to be the n-type buffer layer 8 an impurity region to be the p-type collector layer 9, and an n + -type impurity region are formed on the first surface 1A side of the semiconductor substrate 1.
  • Impurity regions to be cathode layers 18 are formed (step (S4)).
  • an impurity region that will become the n-type buffer layer 8, an impurity region that will become the p-type collector layer 9, and an impurity region that will become the n+ type cathode layer 18 are formed in this order.
  • Each impurity region is formed by, for example, repeating under different conditions a set of steps of forming a mask pattern using photolithography, ion implantation using the mask pattern, and removing the mask pattern. ,It is formed.
  • n-type ions for forming n-type buffer layer 8 are implanted into semiconductor substrate 1 using a mask pattern that exposes first surface 1A of each of IGBT region 101A and FWD region 101B.
  • An n-type ion is, for example, phosphorus (P).
  • p-type ions for forming p-type collector layer 9 are implanted into semiconductor substrate 1 using a mask pattern that exposes first surface 1A of IGBT region 101A.
  • a p-type ion is, for example, boron (B).
  • n-type ions for forming the n+-type cathode layer 18 are implanted into the semiconductor substrate 1 .
  • An n-type ion is P, for example.
  • the semiconductor substrate 1 is prepared in which an impurity region that will form the n-type buffer layer 8, an impurity region that will form the p-type collector layer 9, and an impurity region that will form the n+ type cathode layer 18 are formed.
  • the prepared semiconductor substrate 1 is subjected to a first annealing step (S20).
  • laser light is applied to each of the impurity region that will form the n-type buffer layer 8, the impurity region that will form the p-type collector layer 9, and the impurity region that will form the n+ type cathode layer 18.
  • the impurity region to be the n-type buffer layer 8, the impurity region to be the p-type collector layer 9, and the impurity region to be the n + -type cathode layer 18 are annealed. Impurities in the impurity regions are activated.
  • An example of a laser annealing apparatus for performing this step (S20) will be described later.
  • the width (first width) in the first direction X of the beam spot S of the laser light irradiated onto the first surface 1A in step (S20) is the width in the second direction Y of the beam spot S. Narrower than the width (second width).
  • the beam spot S has an elongated shape in which the first direction X is the lateral direction and the second direction Y is the longitudinal direction.
  • the shape of the beam spot S may be any long shape, such as a rectangular shape.
  • the beam profile P1 of the laser light in the first direction X and the beam profile P2 of the laser light L in the second direction Y with which the first surface 1A is irradiated in step (S20) are top-flat. have a shape.
  • the beam spot S shown in FIG. 3 can be formed by irradiating the first surface 1A with laser light shaped by a beam homogenizer.
  • the first surface 1A is arranged side by side in each of the first direction X and the second direction Y, and has a first width in the first direction X and a second width in the second direction Y. It has an illuminated area.
  • the first surface 1A is divided into a plurality of irradiated areas having the same size as the beam spot.
  • the plurality of irradiated regions includes a first group of irradiated regions, a second group of irradiated regions, and a third group of irradiated regions.
  • Each of the first group of irradiation regions, the second group of irradiation regions, and the third group of irradiation regions includes a plurality of irradiation regions arranged side by side in the first direction X, and They are arranged side by side in the Y direction.
  • each of the plurality of irradiated regions may or may not be associated with each of the plurality of element forming regions of the semiconductor substrate 1 described above.
  • Each irradiated region may be a region that overlaps with an element formation region and an inner peripheral region of a dicing region (dicing line) arranged to surround it.
  • Each irradiated region may overlap with a plurality of element forming regions and a part of a dicing region (dicing line) arranged in a lattice to surround them.
  • an irradiation step of forming a beam spot in one of the plurality of irradiation regions is performed a plurality of times, and a laser beam is emitted during each of the plurality of irradiation steps.
  • a first step of scanning the first surface of the optical system by a first width in the first direction X, a second step of scanning the first surface of the optical system by a second width in the second direction Y, or A third step of scanning the first surface by the first width in the direction opposite to the first direction X with respect to the optical system is performed.
  • FIG. 4 is a diagram for explaining the path along which the beam spot is scanned with respect to the first surface 1A. In FIG. 4, illustration of the irradiated area is omitted.
  • the step (S20) first, among the plurality of irradiated regions, positioned at one end in the second direction Y (upper end toward the paper surface of FIG. 4), The above-described irradiation step is sequentially performed on the first group of irradiated regions arranged in line with X. As shown in FIG. Specifically, first, of the first group of irradiated regions, one irradiated region located at one end of the first surface 1A in the first direction X (the left end when facing the paper surface of FIG. 4) is , the irradiation step is performed. After that, the first step and the irradiation step are repeated. This scanning path is along line segment 61 in FIG. In the final irradiation step, one irradiated region located at the other end of the first surface 1A in the first direction X (the right end when facing the paper surface of FIG. 4) among the irradiated regions of the first group done.
  • a second step is then performed.
  • This scanning path is along line segment 62 in FIG.
  • the irradiation steps are sequentially performed. Specifically, first, of the second group of irradiated regions, one irradiated region positioned at the other end of the first surface 1A in the first direction X (the right end as viewed from the paper surface of FIG. 4) is , the irradiation step is performed. After that, the third step and the irradiation step are repeated.
  • This scanning path is along line segment 63 in FIG. In the last irradiation step, one irradiated region located at one end of the first surface 1A in the first direction X (the left end when facing the paper surface of FIG. 4) among the second group of irradiated regions done.
  • a second step is then performed.
  • This scanning path is along line segment 64 in FIG.
  • the irradiation steps are sequentially performed. Specifically, first, among the irradiation regions of the third group, for one irradiation region located at one end of the first surface 1A in the first direction X (the left end when facing the paper surface of FIG. 4) , the irradiation step is performed. After that, the first step and the irradiation step are repeated.
  • This scanning path is along line segment 65 in FIG.
  • one irradiation region located at the other end of the first surface 1A in the first direction X (the right end as viewed from the paper surface of FIG. 4) is irradiated with done. At least a part of the irradiated regions in the third group is in contact with each of the irradiated regions in the second group.
  • FIGS. 5(a) to (h) are diagrams for explaining the scanning path in more detail.
  • FIGS. 5A to 5H among the plurality of irradiation regions, each of the irradiation regions arranged in four rows in the first direction X and two rows in the second direction Y, and each coordinate, and 1 A beam spot S formed on one irradiated area is shown.
  • the irradiation process is performed on the irradiated region with coordinates (0, 0) among the eight irradiated regions. As a result, a beam spot S is formed on the irradiated region at coordinates (0, 0).
  • a first step is performed.
  • the irradiation process is performed on the irradiated region with coordinates (1, 0) among the eight irradiated regions.
  • a beam spot S is formed on the irradiated region at coordinates (1, 0).
  • This beam spot S is formed so as not to overlap with the irradiated region of coordinates (0, 0) in which the beam spot S was formed immediately before, but to be in contact therewith.
  • the beam spot S is formed such that its long side is in contact with the long side of the irradiated region of coordinates (0, 0) in which the beam spot S was formed immediately before.
  • a first step is performed.
  • the irradiation process is performed on the irradiated region at coordinates (2, 0) among the eight irradiated regions.
  • a beam spot S is formed on the irradiated region at coordinates (2, 0).
  • This beam spot S is formed so as not to overlap with the irradiated region of coordinates (1, 0) in which the beam spot S was formed immediately before, but to be in contact therewith.
  • the beam spot S is formed such that its long side is in contact with the long side of the irradiated region of coordinates (1, 0) in which the beam spot S was formed immediately before.
  • a first step is performed.
  • the irradiation process is performed on the irradiated region at coordinates (3, 0) among the eight irradiated regions.
  • a beam spot S is formed on the irradiated region at coordinates (3, 0).
  • This beam spot S is formed so as not to overlap with the irradiated region of coordinates (2, 0) in which the beam spot S was formed immediately before, but to be in contact therewith.
  • the beam spot S is formed such that its long side is in contact with the long side of the irradiated region at the coordinates (2, 0) where the beam spot S was formed immediately before.
  • the second step is performed.
  • the first step and the second step may be performed at least once, and the third step may be performed at least once in this order.
  • the beam spot when the beam spot is scanned in the second direction Y, the beam spot may be scanned outside the end of the first surface 1A in the first direction X.
  • the irradiation process is performed on the irradiated region at coordinates (3, 1) among the eight irradiated regions.
  • a beam spot S is formed on the irradiated region at coordinates (3, 1).
  • This beam spot S is formed so as not to overlap with the irradiated region of coordinates (3, 0) in which the beam spot S was formed immediately before, but to be in contact therewith.
  • the beam spot S is formed such that its short side is in contact with the short side of the irradiated region at the coordinates (3, 0) where the beam spot S was formed immediately before.
  • a third step is performed.
  • the irradiation process is performed on the irradiated region at coordinates (2, 1) among the eight irradiated regions.
  • a beam spot S is formed on the irradiated region at coordinates (2, 1).
  • This beam spot S overlaps the irradiated region with coordinates (2, 0) in which the beam spot S was previously formed and the irradiated region with coordinates (3, 1) in which the beam spot S was formed immediately before. instead, they are formed so as to touch each other.
  • the long side of the beam spot S is in contact with the long side of the irradiated area at the coordinates (3, 1) where the beam spot S was formed immediately before, and the short side is at the coordinates ( 2, 0) in contact with the short side of the irradiated region.
  • a third step is performed.
  • the irradiation process is performed on the irradiated region with coordinates (1, 1) among the eight irradiated regions.
  • a beam spot S is formed on the irradiated region at coordinates (1, 1).
  • This beam spot S overlaps the irradiated region with coordinates (1, 0) in which the beam spot S was previously formed and the irradiated region with coordinates (2, 1) in which the beam spot S was formed immediately before. instead, they are formed so as to touch each other.
  • the long side of the beam spot S is in contact with the long side of the irradiated area at the coordinates (2, 1) where the beam spot S was formed immediately before, and the short side is at the coordinates ( 1, 0) so as to be in contact with the short side of the irradiated region.
  • a third step is performed.
  • the irradiation process is performed on the irradiated region with coordinates (0, 1) among the eight irradiated regions.
  • a beam spot S is formed on the irradiated region at coordinates (0, 1).
  • This beam spot S overlaps the irradiated region with coordinates (0, 0) in which the beam spot S was previously formed and the irradiated region with coordinates (1, 1) in which the beam spot S was formed immediately before. instead, they are formed so as to touch each other.
  • the long side of the beam spot S is in contact with the long side of the irradiated area at the coordinates (1, 1) where the beam spot S was formed immediately before, and the short side is at the coordinates (1) where the beam spot S was formed first. 0, 0) in contact with the short side of the irradiated region.
  • the first annealing step (S20) is repeated twice.
  • the scanning path in the second first annealing step (S20) is the same as the scanning path in the first first annealing step (S20).
  • the second first annealing step (S20) is continuously performed after the first first annealing step (S20) is completed.
  • the intensity of the laser light in each of the first and second first annealing steps (S20) is set to be, for example, the same as the intensity of the laser light in the first first annealing step (S20).
  • a method for removing the protective film is, for example, at least one of a dry etching method and a wet etching method.
  • the first electrode 14 is formed on the first surface 1A (step (S40)).
  • a plurality of semiconductor devices 101 are obtained by singulating (dicing) each of the plurality of element forming regions of the semiconductor substrate 1 .
  • a laser annealing apparatus 200 shown in FIG. 6 is used in the above step (S20).
  • the laser annealing apparatus 200 mainly includes an optical system 30 , a holding section 31 , a scanning section 32 and a control section 33 .
  • the optical system 30 mainly includes a first laser oscillator 40 , a second laser oscillator 41 , a plurality of mirrors 42 , a coupling optical system 43 , a beam homogenizer 44 and a condenser lens 45 .
  • Each of the first laser oscillator 40 and the second laser oscillator 41 outputs pulsed laser light.
  • the pulsed laser output from the first laser oscillator 40 is called first pulsed laser light
  • the pulsed laser output from the second laser oscillator 41 is called second pulsed laser light.
  • the second laser oscillator 41 outputs the second pulsed laser beam after a predetermined delay time has elapsed since the first laser oscillator 40 output the first pulsed laser beam.
  • the first pulsed laser beam enters the coupling optical system 43 via the mirror 42 .
  • the second pulsed laser beam enters the coupling optical system 43 via the mirror 42 .
  • the coupling optical system 43 combines the first pulsed laser beam and the second pulsed laser beam into one laser beam. For example, the first pulsed laser beam is reflected by the coupling optical system 43 and the second pulsed laser beam is transmitted through the coupling optical system 43 . The first pulsed laser beam reflected by the coupling optical system 43 is coupled with the second pulsed laser beam transmitted through the coupling optical system 43 .
  • the laser beams combined by the coupling optical system 43 pass through the mirror 42 and enter the beam homogenizer 44 .
  • the beam homogenizer 44 shapes the beam spot shape and beam profile of the laser light on the first surface 1A.
  • the laser light shaped by the beam homogenizer 44 is condensed by the condensing lens 45 and then irradiated as the laser light L onto the first surface 1A.
  • the holding part 31 holds the semiconductor substrate 1 .
  • the holding part 31 horizontally holds the first surface 1A of the semiconductor substrate 1, for example.
  • Each of the first direction X and the second direction Y is a direction along the horizontal direction.
  • the semiconductor substrate 1 is arranged on the holding portion 31 such that the protective film formed on the second surface 1 ⁇ /b>B, for example, is in contact with the upper surface of the holding portion 31 .
  • the scanning unit 32 moves the semiconductor substrate 1 held by the holding unit 31 in the first direction X and the second direction Y respectively.
  • the scanning unit 32 is an XY stage that can move in the first direction X and the second direction Y, respectively.
  • the control unit 33 controls the intensity of the pulsed laser light output from each of the first laser oscillator 40 and the second laser oscillator 41 , the delay time described later, and the movement distance of the semiconductor substrate 1 by the scanning unit 32 .
  • the control unit 33 reads a signal from an encoder attached to the holding unit 31 and obtains position information of the semiconductor substrate 1 .
  • One shot of pulsed laser light is output from each of the first laser oscillator 40 and the second laser oscillator 41 based on the positional information of the semiconductor substrate 1, and the laser light is emitted from the optical system 30 to the target irradiation area. . Thereby, the beam spot is formed in the region.
  • FIG. 7 is a diagram for explaining how the intensity of each of the first pulsed laser beam, the second pulsed laser beam, and the laser beam combined by the coupling optical system 43 changes over time. is.
  • the horizontal axis of FIG. 7 indicates time, and the vertical axis indicates intensity.
  • waveform 201 indicates the intensity waveform of the first pulsed laser beam
  • waveform 202 indicates the intensity waveform of the second pulsed laser beam
  • waveform 210 indicates the intensity waveform of the laser beam irradiated from the optical system 30. show.
  • the laser light consists of a first pulsed laser beam and a second pulsed laser beam output after a delay time td has elapsed since the first pulsed laser beam was output from the first laser oscillator 40. It is generated by being combined with light.
  • the laser light By generating the laser light as described above, it is possible to sufficiently secure the time te in which the intensity of the laser light reaches the intensity P1 or more while suppressing the intensity of the laser light to the intensity P2 or less.
  • Intensity P1 is the intensity required to activate impurities in each of the impurity region to form n-type buffer layer 8, the impurity region to form p-type collector layer 9, and the impurity region to form n+ type cathode layer 18. is.
  • the strength P2 is a strength that can alter the quality of the protective film formed on the second surface 1B.
  • the delay time td can be arbitrarily set by adjusting the output timing of the trigger signal from the control section 33. Also, the time te can be adjusted to an arbitrary value by changing the delay time td, the intensity of each of the first pulsed laser beam and the second pulsed laser beam, and the like.
  • the waveform 210 of the laser light has a first peak and a second peak.
  • the delay time Td, the first pulsed laser light and the 2, each intensity of the pulsed laser light is set.
  • Each of the first pulsed laser light and the second pulsed laser light is visible light.
  • Each wavelength of the first pulsed laser light and the second pulsed laser light is set to 400 nm or more and less than 600 nm.
  • Each of the first pulsed laser light and the second pulsed laser light is, for example, a second harmonic of an Nd:YLF laser, a second harmonic of an Nd:YAG laser, or a second harmonic of an Nd:YVO4 laser. be.
  • the pulse half width of each of the first pulsed laser light and the second pulsed laser light is 100 ns or more and less than 5 ⁇ s.
  • the heat may not sufficiently reach a region with a depth of about 1 ⁇ m from the first surface 1A of the semiconductor substrate 1, and the impurities present in this region may not be sufficiently activated. Further, when the pulse half-value width is 5 ⁇ s or more, heat may be transmitted to the second surface 1B of the semiconductor substrate 1, and the structure on the second surface 1B may be thermally damaged.
  • the delay time td also depends on the pulse half width of each of the first pulsed laser beam and the second pulsed laser beam, preferably the delay time td is 200 ns or more, and the first peak value PP1 is the first It is set according to the pulse half width and intensity ratio of each of the first pulsed laser beam and the second pulsed laser beam so as to be 2 peak values PP2 or less.
  • the pulse repetition frequency is set between the order of kHz and the order of 10 kHz. If the pulse repetition frequency becomes too high, the pulse generation interval becomes short, and sufficient cooling time for the semiconductor substrate cannot be ensured, causing heat accumulation in the semiconductor substrate, which may melt the semiconductor substrate. On the other hand, if the pulse repetition frequency is too low, the activation processing time becomes long.
  • the first surface 1A is oriented in the first direction X with respect to the optical system 30 between each of the plurality of irradiation steps.
  • a first step of scanning by one width or a second step of scanning the first surface 1A in the second direction Y with respect to the optical system 30 by a second width is performed.
  • the beam spots S formed on the first surface 1A by each of the plurality of irradiation steps are sequentially formed on the entire surface of each of the plurality of irradiated regions without overlapping each other.
  • each irradiated region is irradiated with the laser light once. Therefore, in the semiconductor device manufacturing method according to the present embodiment, the beam profile of the laser light is the same as that of the semiconductor device manufacturing method according to the present embodiment, and the beam spots are formed on the entire surface of the plurality of irradiation regions.
  • the temperature rise of the semiconductor substrate 1 is suppressed as compared with the conventional technique in which each beam spot is formed so as to overlap each other in one annealing process for sequentially forming the .
  • each irradiated region of first surface 1A is irradiated with a laser beam having an intensity sufficient to activate the first impurity region in each of the plurality of irradiation steps. be. Therefore, in each irradiation step, the first surface 1A, which is the irradiation surface, is heated, and the heat generated on the first surface 1A side is conducted from the first surface 1A in the depth direction and reaches the second surface 1B. , the temperature of the entire irradiated region in the depth direction rises.
  • the beam spots do not overlap each other in one annealing step. Therefore, if the laser beam irradiation conditions are the same, the heat storage amount in the present embodiment is relatively smaller than the heat storage amount in the conventional technology, so the temperature of the second surface 1B, which is the non-irradiation surface, increases. The temperature is relatively low, and the structural body such as the protective film formed on the second surface 1B is less likely to deteriorate. As a result, residues are less likely to occur in the step of removing the protective film (S30), for example.
  • the first impurity region can be sufficiently activated compared to the case where the first annealing step (S20) is performed only once.
  • the time until one irradiated region irradiated with laser light in the first annealing step (S20) for the first time is irradiated with laser light in the first annealing step (S20) for the second time is It is long compared to the time between the first and second shots to form the beam spot overlap in the prior art.
  • the temperature reached by the second surface 1B in the second first annealing step (S20) is also the same as the temperature reached by the non-irradiated surface in the conventional technique. can be kept relatively low.
  • the method for manufacturing the semiconductor device according to the second embodiment has basically the same configuration as the method for manufacturing the semiconductor device according to the first embodiment, but the second first annealing step The method differs from the semiconductor device manufacturing method according to the first embodiment in that the intensity of the laser light in (S20) is set lower than the intensity of the laser light in the first annealing step (S20).
  • the semiconductor substrate 1 When the semiconductor substrate 1 becomes amorphous in the first annealing step (S20) of the first time, the semiconductor substrate 1 easily absorbs the laser beam, so the intensity of the laser beam in the second first annealing step (S10) is reduced. Even if it is lower than the first annealing step (S20), the first impurity region can be sufficiently activated. Furthermore, since the intensity of the laser light in the second first annealing step (S10) is lower than that in the first first annealing step (S20), the second first annealing step (S10) is lower than the first annealing step (S20). Also during the annealing step (S20), the temperature reached by second surface 1B is relatively low, and the structure such as the protective film formed on second surface 1B is less likely to deteriorate.
  • the semiconductor device 100 can also be manufactured by the semiconductor device manufacturing method according to the second embodiment.
  • the method for manufacturing a semiconductor device according to the third embodiment has basically the same configuration as the method for manufacturing a semiconductor device according to the first embodiment, except that a first annealing step (S20) is performed. is repeated three times, which is different from the manufacturing method of the semiconductor device according to the first embodiment. Differences from the first embodiment will be mainly described below.
  • the intensity E3 of the laser beam in the third first annealing step (S20) is set, for example, to be equal to the intensities E1 and E2 of the laser beams in the first and second first annealing steps (S20).
  • the third first annealing step (S20) can be performed. By doing so, the first impurity region can be sufficiently activated.
  • the semiconductor device manufacturing method according to the third embodiment may have the same configuration as the semiconductor device manufacturing method according to the second embodiment except that the first annealing step (S20) is repeated three times. good. That is, the intensity of the laser beam in the third first annealing step (S20) is lower than the intensity of the laser beam in the first annealing step (S20), for example, and the intensity of the laser beam in the second first annealing step (S20) It may be set equal to or lower than the intensity of the laser light in (S20). By doing so, the same effects as in the second embodiment can be obtained.
  • the semiconductor device 100 can also be manufactured by the semiconductor device manufacturing method according to the third embodiment.
  • Embodiment 4 The semiconductor device manufacturing method according to the fourth embodiment has basically the same configuration as the semiconductor device manufacturing method according to the first embodiment, but the first impurity region is annealed as shown in FIG.
  • the second annealing step (S50) of annealing the second impurity region is provided, which is different from the method of manufacturing the semiconductor device according to the first embodiment. Differences from the first embodiment will be mainly described below.
  • the first impurity region includes an impurity region to become the n-type buffer layer 8 .
  • the second impurity region includes an impurity region to form p-type collector layer 9 and an impurity region to form n + -type cathode layer 18 .
  • step (S5) a first impurity region that will become the n-type buffer layer 8 is formed (step (S5)).
  • Step (S5) is performed in the same manner as the step of forming an impurity region to become n-type buffer layer 8 in the first embodiment. Thereby, the semiconductor substrate 1 having the first impurity region to be the n-type buffer layer 8 is prepared.
  • a first annealing step (S20) is performed on the first impurity region.
  • the first annealing step (S20) is performed in the same manner as the first annealing step (S20) in the first embodiment. This activates the first impurity region.
  • step (S6) After the first annealing step (S20), an impurity region that will become the p-type collector layer 9 and an impurity region that will become the n+ type cathode layer 18 are formed (step (S6)).
  • This step (S6) is performed in the same manner as the step of forming the impurity region to be the p-type collector layer 9 and the impurity region to be the n+ type cathode layer 18 in the first embodiment.
  • an impurity region to form the p-type collector layer 9 and a second impurity region to form the n + -type cathode layer 18 are formed in the semiconductor substrate 1 .
  • a second annealing step (S50) is performed to irradiate the first surface 1A with laser light emitted from the optical system 30 to anneal the second impurity regions.
  • the second annealing step (S50) is performed in the same manner as the first annealing step (S20).
  • the laser annealing apparatus 200 shown in FIG. 3 is also used in the second annealing step (S50).
  • the scanning shown in FIGS. 4 and 5 is also performed in the second annealing step (S50).
  • the second annealing step (S50) is repeated, for example, twice.
  • the laser beam intensity E5 in the second second annealing step (S50) is set to be, for example, equal to the laser beam intensity E4 in the first second annealing step (S50).
  • the step of removing the protective film (S30) and the step of forming the first electrode 14 (S40) are performed.
  • the first annealing step (S20) for the first impurity region among the plurality of impurity regions formed on the first surface 1A side and the second annealing step for the second impurity region ( S50) are performed as separate steps.
  • the semiconductor device 100 can also be manufactured by the semiconductor device manufacturing method according to the fourth embodiment.
  • the second annealing step (S50) may be repeated three times or more.
  • the intensity of the laser beam in the third second annealing step (S50) is lower than, for example, the intensity of the laser beam in the first second annealing step (S50), and the second annealing step (S50 ) may be set equal to or lower than the intensity of the laser light.
  • the first annealing step (S20) may be performed similarly to the first annealing step (S20) in the second or third embodiment.
  • each of the first annealing step (S20) and the second annealing step (S50) may be performed only once.
  • the method for manufacturing the semiconductor device according to the fifth embodiment has basically the same configuration as the method for manufacturing the semiconductor device according to the first embodiment, but the second first annealing step is performed.
  • This method is different from the semiconductor device manufacturing method according to the first embodiment in that the delay time td2 of the laser light in (S20) is different from the delay time td1 of the laser light in the first annealing step (S20). Differences from the first embodiment will be mainly described below.
  • the laser beams used in the first annealing step (S20) for the first time are the first pulsed laser beam output from the first laser oscillator 40 and the first pulsed laser beam output from the first laser oscillator 40 with a delay. After the elapse of time td1, it is generated by being coupled with the second pulsed laser beam output from the second laser oscillator.
  • the laser beams used in the second first annealing step (S20) are the first pulsed laser beam output from the first laser oscillator 40 and the delay after the first pulsed laser beam is output from the first laser oscillator 40. After the elapse of time td2, it is generated by being coupled with the second pulsed laser beam output from the second laser oscillator.
  • the laser light delay time td2 in the second first annealing step (S20) is different from the laser light delay time td1 in the first first annealing step (S20).
  • the laser light delay time td2 in the second first annealing step (S20) may be longer than the laser light delay time td1 in the first first annealing step (S20).
  • the delay time td2 of the laser light in the second first annealing step (S20) is set to is longer than the delay time td1 of the laser light.
  • the intensity of the laser beam in the second first annealing step (S20) is less than or equal to the intensity of the laser beam in the first first annealing step (S20).
  • the intensity of the laser light in the second first annealing step (S20) may be the same as the intensity of the laser light in the first first annealing step (S20).
  • the intensity of the laser light in the first and second first annealing steps (S20) is equal to each other, and the shorter the delay time of the laser light, the easier it is to activate the impurity region, the second first annealing Even if the laser light delay time td2 in the step (S20) is longer than the laser light delay time td1 in the first annealing step (S20), the first impurity region can be sufficiently activated. This is because when the semiconductor substrate 1 becomes amorphous by the first annealing step (S20), the semiconductor substrate 1 easily absorbs the laser light.
  • the second first annealing step (S20) compared to the case where the intensity and delay time of the laser light are the same in the first and second first annealing steps (S20), the second first annealing step (S20) , the temperature reached by the second surface 1B becomes relatively low, and the structure such as the protective film formed on the second surface 1B is less likely to deteriorate.
  • the intensity of the laser light in the second first annealing step (S20) may be lower than the intensity of the laser light in the first first annealing step (S20).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

This semiconductor device manufacturing method comprises: a step for preparing a semiconductor substrate (1) which has a first surface extending in a first direction (X) and in a second direction (Y) perpendicular to the first direction (X), and in which a first impurity region is formed; and a first annealing step for annealing the first impurity region by irradiating the first surface with a laser beam emitted from an optical system. A first width in the first direction (X) of a beam spot formed on the first surface by the laser beam is smaller than a second width of the beam spot in the second direction (Y). The first surface has a plurality of regions that are arranged in at least one among the first direction (X) and the second direction (Y) and that each have a first width in the first direction (X) and a second width in the second direction. In the first annealing step, an irradiation step for forming a beam spot in one region among the plurality of regions is performed multiple times. A first step for scanning the first surface only the first width in the first direction (X) with respect to the optical system, and a second step for, after completing the first step, scanning the first surface only the second width in the second direction (Y) with respect to the optical system are performed between the irradiation steps performed multiple times.

Description

半導体装置の製造方法およびレーザアニール装置Semiconductor device manufacturing method and laser annealing apparatus
 本開示は、半導体装置の製造方法およびレーザアニール装置に関する。 The present disclosure relates to a semiconductor device manufacturing method and a laser annealing apparatus.
 従来、半導体装置の製造方法において、半導体基板に形成された不純物領域を活性化することを目的に、レーザ光を半導体基板に照射して不純物領域をアニールする、レーザアニール処理が行われている。 Conventionally, in the method of manufacturing a semiconductor device, a laser annealing process is performed in which a semiconductor substrate is irradiated with laser light to anneal an impurity region for the purpose of activating an impurity region formed in the semiconductor substrate.
 レーザアニール処理では、半導体基板が複数の照射エリアに区分され、レーザ光のビームスポットが各照射領域上に順次形成される。この際、十分にアニールされていない不純物領域が形成されることを防止するために、一般的に、隣り合う複数の照射領域間にはオーバーラップ率が設定され、オーバーラップ率が設定された隣り合う2つ照射領域には、レーザ光が連続して照射される。 In the laser annealing process, a semiconductor substrate is divided into a plurality of irradiation areas, and beam spots of laser light are sequentially formed on each irradiation area. At this time, in order to prevent formation of an impurity region that is not sufficiently annealed, an overlap rate is generally set between adjacent irradiation regions, and adjacent regions with the set overlap rate are generally set. The two matching irradiation regions are continuously irradiated with laser light.
 国際公開第2019/244665号(特許文献1)には、入射順序が連続する2つの照射領域は互いに重複部分を有さないが、入射順序が連続しない2つの照射領域が互いに重複部分を有するように、複数の照射領域の照射順序および配置を設定する技術が開示されている。複数の照射領域の各々にレーザ光を順次照射する工程を1つのレーザアニール工程とすると、各重複部分は当該1つのレーザアニール工程内で形成されている。言い換えると、特許文献1では、各重複部分を形成するための第1回目のレーザ光の照射と第2回目のレーザ光の照射との時間差は、オーバーラップ率が設定された隣り合う2つ照射領域にレーザ光が連続して照射される場合のそれと比べて長いが、複数の照射領域の各々にレーザ光を1回ずつ順次照射するのに要する時間よりも短く設定されている。 In International Publication No. WO 2019/244665 (Patent Document 1), two irradiation regions with consecutive incident orders do not have overlapping portions, but two irradiation regions with non-sequential incident orders have overlapping portions with each other. discloses a technique for setting the irradiation order and arrangement of a plurality of irradiation areas. If the process of sequentially irradiating each of the plurality of irradiation regions with laser light is regarded as one laser annealing process, each overlapping portion is formed within the one laser annealing process. In other words, in Patent Document 1, the time difference between the first laser light irradiation and the second laser light irradiation for forming each overlapped portion is equal to the time difference between the two adjacent irradiations for which the overlap rate is set. Although it is longer than the time when the regions are continuously irradiated with the laser light, it is set shorter than the time required to sequentially irradiate each of the plurality of irradiation regions with the laser light once.
国際公開第2019/244665号WO2019/244665
 従来の技術では、複数の照射領域の各々が重複部分を有しており、各重複部分を形成するための2回の照射の上記時間差が比較的短い。そのため、従来の技術では、1回目のレーザ光の照射により加熱された状態にある半導体基板が、2回目のレーザ光の照射により再加熱されることにより、半導体基板の温度が比較的高くなりやすい。 In the conventional technology, each of the plurality of irradiation regions has an overlapping portion, and the time difference between the two irradiations for forming each overlapping portion is relatively short. Therefore, in the conventional technology, the semiconductor substrate heated by the first laser beam irradiation is reheated by the second laser beam irradiation, and the temperature of the semiconductor substrate tends to rise relatively high. .
 半導体基板が高温になると、レーザアニール工程前に半導体基板上に形成された構造体を変質させるおそれある。このような構造体の一例として、レーザアニール工程前に半導体基板のうちレーザ光の照射面とは反対側の面上に形成され、かつレーザアニール工程後に除去される保護膜が挙げられる。 When the semiconductor substrate reaches a high temperature, there is a risk that the structure formed on the semiconductor substrate before the laser annealing process will change in quality. An example of such a structure is a protective film which is formed on the surface of the semiconductor substrate opposite to the laser beam irradiation surface before the laser annealing process and which is removed after the laser annealing process.
 本開示の主たる目的は、十分にアニールされていない不純物領域が形成されることを防止しながらも、従来の技術と比べて半導体基板の温度上昇を抑制できる、半導体装置の製造方法、および当該製造方法を実現するためのレーザアニール装置を提供することにある。 SUMMARY OF THE INVENTION A main object of the present disclosure is to provide a method for manufacturing a semiconductor device capable of suppressing temperature rise of a semiconductor substrate as compared with the conventional technology while preventing formation of an impurity region that is not sufficiently annealed, and the manufacturing method. An object of the present invention is to provide a laser annealing apparatus for realizing the method.
 本開示に係る半導体装置の製造方法は、第1方向および第1方向と直交する第2方向に沿って延びている第1面を有し、第1面に複数の素子形成領域が配置されており、かつ複数の素子形成領域の各々に第1不純物領域が形成されている半導体基板を準備する工程と、レーザ光を複数の素子形成領域の各々に順次照射して、第1不純物領域をアニールする第1アニール工程とを備える。レーザ光が第1面に形成するビームスポットの第1方向の第1幅は、ビームスポットの第2方向の第2幅よりも狭い。第1アニール工程では、ビームスポットが第1面に対して相対的に走査されながら照射が行われ、第1方向におけるビームスポットの相対的な移動距離が第1幅とされ、第2方向におけるビームスポットの相対的な移動距離が第2幅とされる。 A method for manufacturing a semiconductor device according to the present disclosure has a first surface extending along a first direction and a second direction orthogonal to the first direction, and a plurality of element formation regions are arranged on the first surface. preparing a semiconductor substrate in which a first impurity region is formed in each of a plurality of element formation regions; and sequentially irradiating each of the plurality of element formation regions with a laser beam to anneal the first impurity region. and a first annealing step. The first width in the first direction of the beam spot formed on the first surface by the laser light is narrower than the second width in the second direction of the beam spot. In the first annealing step, irradiation is performed while the beam spot is relatively scanned with respect to the first surface, the relative movement distance of the beam spot in the first direction is the first width, and the beam spot in the second direction is The second width is the relative movement distance of the spot.
 本開示に係るレーザアニール装置は、第1方向および第1方向と直交する第2方向に沿って延びている第1面を有し、第1不純物領域が形成されている半導体基板を保持する保持部と、保持部に保持された半導体基板の第1面にレーザ光を照射し、第1方向および第2方向の少なくともいずれかに並んで配置された第1面の複数の領域のうちの1つの領域にビームスポットを形成する光学系と、半導体基板および光学系の一方を他方に対して走査する走査部とを備える。光学系は、第1方向の第1幅が第2方向の第2幅よりも狭いビームスポットを第1面に形成するように設けられている。走査部は、光学系が1つのビームスポットを形成した後、光学系に対して第1面を第1方向に第1幅だけ走査し、光学系に対して前記第1面を前記第1方向に前記第1幅だけ走査した後光学系に対して第1面を第2方向に第2幅だけ走査する。 A laser annealing apparatus according to the present disclosure has a first surface extending along a first direction and a second direction orthogonal to the first direction, and holds a semiconductor substrate in which a first impurity region is formed. irradiating a first surface of a semiconductor substrate held by the holding portion with a laser beam, and one of a plurality of regions of the first surface arranged side by side in at least one of the first direction and the second direction; An optical system for forming beam spots in two regions, and a scanning unit for scanning one of the semiconductor substrate and the optical system with respect to the other. The optical system is provided to form a beam spot on the first surface, the first width in the first direction being narrower than the second width in the second direction. After the optical system forms one beam spot, the scanning unit scans the first surface with respect to the optical system by a first width in the first direction, and scans the first surface with respect to the optical system in the first direction. After scanning by the first width, the first surface is scanned by the second width in the second direction with respect to the optical system.
 本開示によれば、十分にアニールされていない不純物領域が形成されることを防止しながらも、従来の技術と比べて半導体基板の温度上昇を抑制できる、半導体装置の製造方法、および当該製造方法を実現するためのレーザアニール装置を提供できる。 INDUSTRIAL APPLICABILITY According to the present disclosure, a method for manufacturing a semiconductor device, and a method for manufacturing a semiconductor device, which can suppress temperature rise of a semiconductor substrate as compared with conventional techniques while preventing formation of an impurity region that is not sufficiently annealed. It is possible to provide a laser annealing apparatus for realizing
実施の形態1に係る半導体装置の一例を示す部分断面図である。1 is a partial cross-sectional view showing an example of a semiconductor device according to Embodiment 1; FIG. 実施の形態1に係る半導体装置の製造方法の一例を示すフローチャートである。4 is a flow chart showing an example of a method for manufacturing a semiconductor device according to Embodiment 1; 実施の形態1に係る半導体装置の製造方法において、レーザ光のビームスポットの形状、および第1方向および第2方向の各々に沿ったレーザ光の強度分布の各一例を示す図である。4A and 4B are diagrams showing examples of the shape of a beam spot of laser light and the intensity distribution of laser light along each of the first direction and the second direction in the method of manufacturing the semiconductor device according to the first embodiment; 図2に示される第1レーザアニール工程での、ビームスポットの走査経路を説明するための図である。FIG. 3 is a diagram for explaining a scanning path of a beam spot in the first laser annealing step shown in FIG. 2; 図6に示されるビームスポットの走査経路をより具体的に説明するための図である。7 is a diagram for more specifically explaining the scanning path of the beam spot shown in FIG. 6; FIG. 実施の形態1に係るレーザアニール装置の一例を示すブロック図である。1 is a block diagram showing an example of a laser annealing apparatus according to Embodiment 1; FIG. 図6に示されるレーザアニール装置の第1レーザ発振器および第2レーザ発信機の各々から出力されたパルスレーザ光、および両者が結合光学系にて結合されたレーザ光の各々の強度波形の一例を説明するための図である。An example of the intensity waveform of each of the pulsed laser light output from each of the first laser oscillator and the second laser oscillator of the laser annealing apparatus shown in FIG. It is a figure for explaining. 実施の形態2に係る半導体装置の製造方法の一例を示すフローチャートである。8 is a flow chart showing an example of a method for manufacturing a semiconductor device according to Embodiment 2; 実施の形態3に係る半導体装置の製造方法の一例を示すフローチャートである。10 is a flow chart showing an example of a method for manufacturing a semiconductor device according to Embodiment 3; 実施の形態4に係る半導体装置の製造方法の一例を示すフローチャートである。13 is a flow chart showing an example of a method for manufacturing a semiconductor device according to Embodiment 4; 実施の形態5に係る半導体装置の製造方法の一例を示すフローチャートである。14 is a flow chart showing an example of a method for manufacturing a semiconductor device according to Embodiment 5;
 以下、図面を参照して、本開示の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Embodiments of the present disclosure will be described below with reference to the drawings. In the drawings below, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 実施の形態1に係る半導体装置101は、後述する半導体装置101の製造方法によって半導体基板1上に形成された複数のチップが個片化(ダイシング)されたものである。図1に示されるように、半導体装置101は、一例として、逆導通型IGBT(RC-IGBT:Reverse Conducting Insulated Gate Bipolar Transistor)であり、トレンチゲート型のIGBTと、このIGBTと逆並列に接続されたFWD(Free Wheeling Diode)とが1つの半導体基板1に内蔵されて一体化されたものである。
Embodiment 1.
A semiconductor device 101 according to the first embodiment is obtained by dicing a plurality of chips formed on a semiconductor substrate 1 by a method for manufacturing the semiconductor device 101, which will be described later. As shown in FIG. 1, the semiconductor device 101 is, for example, a reverse conducting IGBT (RC-IGBT: Reverse Conducting Insulated Gate Bipolar Transistor), and includes a trench gate IGBT and a trench gate IGBT connected in anti-parallel with this IGBT. A FWD (Free Wheeling Diode) is embedded in one semiconductor substrate 1 and integrated.
 半導体基板1は、第1面1Aと、第1面1Aとは反対側に位置する第2面1Bとを有している。以下では、第1方向Xおよび第2方向Yの各々と直交する半導体基板1の厚み方向において、第1面1Aが向いている向きを下方、第2面1Bが向いている向きを上方とする。第1面1Aは、半導体基板1の下面である。第2面1Bは、半導体基板1の上面である。 The semiconductor substrate 1 has a first surface 1A and a second surface 1B opposite to the first surface 1A. Hereinafter, in the thickness direction of the semiconductor substrate 1 orthogonal to each of the first direction X and the second direction Y, the direction in which the first surface 1A faces is downward, and the direction in which the second surface 1B faces is upward. . The first surface 1A is the bottom surface of the semiconductor substrate 1 . A second surface 1B is the upper surface of the semiconductor substrate 1 .
 図1に示される半導体装置101は、IGBTの動作領域となるIGBT領域101Aと、FWDの動作領域となるFWD領域101Bとを含む。IGBT領域101AおよびFWD領域101Bは、同一の半導体基板1上の活性領域に互いに並列に配置されている。活性領域は、オン状態のときに電流が流れる領域である。 A semiconductor device 101 shown in FIG. 1 includes an IGBT region 101A that is an IGBT operating region and an FWD region 101B that is an FWD operating region. IGBT region 101A and FWD region 101B are arranged in parallel in an active region on the same semiconductor substrate 1 . The active region is the region through which current flows when in the ON state.
 IGBT101Aは、n-型ドリフト層2、p型ベース層3、p+型コンタクト層4、n+型エミッタ層5、ゲート絶縁膜6、ゲート電極7、n型バッファ層8、p型コレクタ層9、層間絶縁膜10、バリアメタル11、プラグ12、エミッタ電極13A、およびコレクタ電極14Aを備えている。 The IGBT 101A includes an n − type drift layer 2, a p type base layer 3, a p + type contact layer 4, an n + type emitter layer 5, a gate insulating film 6, a gate electrode 7, an n type buffer layer 8, a p type collector layer 9, an interlayer It has an insulating film 10, a barrier metal 11, a plug 12, an emitter electrode 13A and a collector electrode 14A.
 p型ベース層3は、n-型ドリフト層2の上面に配置されている。p+型コンタクト層4およびn+型エミッタ層5の各々は、p型ベース層3の上面に配置されている。n+型エミッタ層5は、p+型コンタクト層4を囲うように配置されている。n型バッファ層8は、n-型ドリフト層2の下面に配置されている。p型コレクタ層9は、n-型ドリフト層2の下面に配置されている。 The p-type base layer 3 is arranged on the top surface of the n− type drift layer 2 . Each of p + -type contact layer 4 and n + -type emitter layer 5 is arranged on the upper surface of p-type base layer 3 . The n + -type emitter layer 5 is arranged so as to surround the p + -type contact layer 4 . The n-type buffer layer 8 is arranged on the lower surface of the n− type drift layer 2 . P-type collector layer 9 is arranged on the lower surface of n− type drift layer 2 .
 IGBT領域101Aには、複数のトレンチTが形成されている。IGBT領域101Aにおいて、複数のトレンチTの各々は、n+型エミッタ層5の上面からn+型エミッタ層5およびp型ベース層3を貫通して、n-型ドリフト層2に達している。ゲート絶縁膜6およびゲート電極7は、トレンチTの内部に埋め込まれている。ゲート絶縁膜6は、トレンチTの内壁面に沿うように配置されている。ゲート電極7は、ゲート絶縁膜6を介してp型ベース層3に対向している。複数のトレンチTの各々は、平面視において、例えばIGBT領域101AとFWD領域101Bとが並ぶ方向(図1の横方向)に間隔を空けて配置されている。複数のトレンチTの各々は、例えばIGBT領域101AとFWD領域101Bとが並ぶ方向と直交する方向(図1の奥行き方向)に延びている。複数のトレンチTは、例えば平面視においてストライプ状に配置されている。 A plurality of trenches T are formed in the IGBT region 101A. In IGBT region 101A, each of trenches T extends from the upper surface of n + -type emitter layer 5 through n + -type emitter layer 5 and p-type base layer 3 to reach n − -type drift layer 2 . The gate insulating film 6 and the gate electrode 7 are embedded inside the trench T. As shown in FIG. Gate insulating film 6 is arranged along the inner wall surface of trench T. As shown in FIG. Gate electrode 7 faces p-type base layer 3 with gate insulating film 6 interposed therebetween. Each of the plurality of trenches T is arranged at intervals in a direction in which the IGBT region 101A and the FWD region 101B are arranged (horizontal direction in FIG. 1), for example, in plan view. Each of the plurality of trenches T extends, for example, in a direction (depth direction in FIG. 1) perpendicular to the direction in which the IGBT regions 101A and the FWD regions 101B are arranged. The plurality of trenches T are arranged in stripes, for example, in a plan view.
 なお、n+型エミッタ層5は、隣り合うトレンチT間(メサ領域)の各々に配置されているが、これに限られない。n+型エミッタ層5は、隣り合うトレンチT間(メサ領域)の少なくとも1つのメサ領域に配置されていればよい。n+型エミッタ層5が配置されていないメサ領域が存在してもよい。また、複数のn+型エミッタ層5が、トレンチTがストライプ状に延びる方向(図1の奥行き方向)において、予め定められた間隔を空けて配置されていてもよい。 Although the n + -type emitter layer 5 is arranged between adjacent trenches T (mesa regions), it is not limited to this. The n + -type emitter layer 5 may be arranged in at least one mesa region between adjacent trenches T (mesa region). There may be a mesa region where the n + -type emitter layer 5 is not arranged. Also, a plurality of n + -type emitter layers 5 may be arranged at predetermined intervals in the direction in which the trenches T extend in stripes (the depth direction in FIG. 1).
 層間絶縁膜10は、ゲート電極7の上面を覆っている。層間絶縁膜10は、層間絶縁膜10下に配置されているゲート電極7と、層間絶縁膜10上に配置されているエミッタ電極13Aとを電気的に絶縁するように設けられている。層間絶縁膜10には、コンタクトホールが形成されており、コンタクトホールにおいてp+型コンタクト層4とn+型エミッタ層5が露出している。 The interlayer insulating film 10 covers the top surface of the gate electrode 7 . Interlayer insulating film 10 is provided so as to electrically insulate gate electrode 7 arranged under interlayer insulating film 10 and emitter electrode 13A arranged on interlayer insulating film 10 . A contact hole is formed in the interlayer insulating film 10, and the p + -type contact layer 4 and the n + -type emitter layer 5 are exposed in the contact hole.
 バリアメタル11は、層間絶縁膜10およびコンタクトホールの表面を覆うように配置されている。バリアメタル11は、コンタクトホールにおいて露出しているp+型コンタクト層4およびn+型エミッタ層5の上面と接触している。プラグ12は、コンタクトホールにおいてバリアメタル11上に埋め込まれている。 The barrier metal 11 is arranged so as to cover the surfaces of the interlayer insulating film 10 and the contact holes. Barrier metal 11 is in contact with the upper surfaces of p + -type contact layer 4 and n + -type emitter layer 5 exposed in the contact hole. A plug 12 is embedded on the barrier metal 11 in the contact hole.
 エミッタ電極13Aは、バリアメタル11およびプラグ12の上に配置されている。エミッタ電極13Aには、一般的にアルミニウム合金が使用される。エミッタ電極13Aは、バリアメタル11およびプラグ12を介して、n+型エミッタ層5およびp+型コンタクト層4の各々と接合している。コレクタ電極14Aは、p型コレクタ層9と接合している。 The emitter electrode 13A is arranged on the barrier metal 11 and the plug 12. An aluminum alloy is generally used for the emitter electrode 13A. Emitter electrode 13A is connected to each of n + -type emitter layer 5 and p + -type contact layer 4 via barrier metal 11 and plug 12 . Collector electrode 14A is in contact with p-type collector layer 9 .
 半導体装置101のFWD領域101Bは、n-型ドリフト層2、p型アノード層15、p+型アノード層16、ゲート絶縁膜6、ダミーゲート電極17、n型バッファ層8、n+型カソード層18、電極13B、およびカソード電極14Bを備えている。 The FWD region 101B of the semiconductor device 101 includes an n − type drift layer 2, a p type anode layer 15, a p + type anode layer 16, a gate insulating film 6, a dummy gate electrode 17, an n type buffer layer 8, an n + type cathode layer 18, It has an electrode 13B and a cathode electrode 14B.
 p型アノード層15は、n-型ドリフト層2の上面に配置されている。p+型アノード層16は、p型アノード層15の上面に配置されている。n型バッファ層8は、n-型ドリフト層2の下面に配置されている。n+型カソード層18は、n型バッファ層8の下面に配置されている。 The p-type anode layer 15 is arranged on the upper surface of the n− type drift layer 2 . The p + -type anode layer 16 is arranged on the upper surface of the p-type anode layer 15 . The n-type buffer layer 8 is arranged on the lower surface of the n− type drift layer 2 . The n + -type cathode layer 18 is arranged on the bottom surface of the n-type buffer layer 8 .
 FWD領域101Bの各々には、複数のトレンチTが形成されている。FWD領域101Bにおいて、複数のトレンチTの各々は、p+型アノード層16の上面からp+型アノード層16およびp型アノード層15を貫通して、n-型ドリフト層2に達している。ゲート絶縁膜6およびダミーゲート電極17は、トレンチTの内部に埋め込まれている。 A plurality of trenches T are formed in each of the FWD regions 101B. In FWD region 101B, each of trenches T extends from the upper surface of p + -type anode layer 16 through p + -type anode layer 16 and p-type anode layer 15 to reach n − -type drift layer 2 . The gate insulating film 6 and the dummy gate electrode 17 are embedded inside the trench T. As shown in FIG.
 FWD領域101Bは、IGBT領域101Aと共通して、n-型ドリフト層2、ゲート絶縁膜6、およびn型バッファ層8を含む。 The FWD region 101B includes an n-type drift layer 2, a gate insulating film 6, and an n-type buffer layer 8 in common with the IGBT region 101A.
 ダミーゲート電極17の上面は、層間絶縁膜10により覆われている。ダミーゲート電極17は、層間絶縁膜10によって、層間絶縁膜10上に配置された電極13Bと電気的に絶縁されている。電極13Bは、エミッタ電極13Aと一体に設けられている。言い換えると、単一の部材としての第2電極13がIGBT領域101AおよびFWD領域101Bの両領域に渡って形成されており、第2電極13の一部がエミッタ電極13Aを構成し、第2電極13の残部が電極13Bを構成している。なお、ダミーゲート電極17は、電極13Bと電気的に接続されていてもよい。カソード電極14Bは、n+型カソード層18と接合されている。カソード電極14Bは、コレクタ電極14Aと一体に設けられている。言い換えると、単一の部材としての第1電極14がIGBT領域101AおよびFWD領域101Bの両領域に渡って形成されており、第1電極14の一部がコレクタ電極14Aを構成し、第1電極14の残部がカソード電極14Bを構成している。 The top surface of the dummy gate electrode 17 is covered with the interlayer insulating film 10 . Dummy gate electrode 17 is electrically insulated by interlayer insulating film 10 from electrode 13B arranged on interlayer insulating film 10 . The electrode 13B is provided integrally with the emitter electrode 13A. In other words, the second electrode 13 as a single member is formed over both the IGBT region 101A and the FWD region 101B. 13 constitutes the electrode 13B. Note that the dummy gate electrode 17 may be electrically connected to the electrode 13B. Cathode electrode 14B is joined to n+ type cathode layer 18 . The cathode electrode 14B is provided integrally with the collector electrode 14A. In other words, the first electrode 14 as a single member is formed over both the IGBT region 101A and the FWD region 101B. 14 constitutes the cathode electrode 14B.
 n-型ドリフト層2、p型ベース層3、p+型コンタクト層4、n+型エミッタ層5、ゲート絶縁膜6、ゲート電極7、n型バッファ層8、およびp型コレクタ層9は、半導体基板1の第1面1Aと第2面1Bとの間に配置されている。コレクタ電極14Aは、第1面1A上に配置されている。層間絶縁膜10、バリアメタル11、プラグ12、およびエミッタ電極13Aは、第2面1B上に配置されている。 The n − type drift layer 2, the p type base layer 3, the p + type contact layer 4, the n + type emitter layer 5, the gate insulating film 6, the gate electrode 7, the n type buffer layer 8, and the p type collector layer 9 are formed on a semiconductor substrate. 1 is arranged between the first surface 1A and the second surface 1B. Collector electrode 14A is arranged on first surface 1A. Interlayer insulating film 10, barrier metal 11, plug 12, and emitter electrode 13A are arranged on second surface 1B.
 半導体装置101は、活性領域を囲むように配置されたエッジ終端領域に設けられたガードリングなどの耐圧構造を備えていてもよい。 The semiconductor device 101 may have a breakdown voltage structure such as a guard ring provided in the edge termination region arranged so as to surround the active region.
 <半導体装置の製造方法>
 図2に示されるように、半導体装置101の製造方法は、第1不純物領域が形成されている半導体基板1を準備する工程(S10)と、レーザ光を上記第1面に照射して上記第1不純物領域をアニールする第1アニール工程(S20)とを備える。本実施の形態1において、第1不純物領域は、n型バッファ層8となるべき不純物領域、p型コレクタ層9となるべき不純物領域、およびn+型カソード層18となるべき不純物領域を含む。
<Method for manufacturing a semiconductor device>
As shown in FIG. 2, the method for manufacturing a semiconductor device 101 includes a step of preparing a semiconductor substrate 1 having a first impurity region formed thereon (S10), and irradiating the first surface with a laser beam to perform the first step. and a first annealing step (S20) of annealing the one impurity region. In the first embodiment, the first impurity region includes an impurity region to form n-type buffer layer 8 , an impurity region to form p-type collector layer 9 , and an impurity region to form n + type cathode layer 18 .
 工程(S10)では、第1アニール工程(S20)においてレーザアニール処理が施される対象物として、p型コレクタ層9およびn+型カソード層18が形成されている半導体基板1が準備される。この半導体基板1は、例えば以下の工程(S1)~工程(S4)が順に実施されることにより、製造される。 In the step (S10), the semiconductor substrate 1 on which the p-type collector layer 9 and the n+ type cathode layer 18 are formed is prepared as an object to be laser-annealed in the first annealing step (S20). The semiconductor substrate 1 is manufactured by, for example, sequentially performing the following steps (S1) to (S4).
 工程(S1)では、IGBT領域101AおよびFWD領域101Bの各々において、半導体基板1の第2面1B側に素子構造が形成される。 In step (S1), element structures are formed on the second surface 1B side of the semiconductor substrate 1 in each of the IGBT region 101A and the FWD region 101B.
 工程(S1)では、まず、半導体基板1が準備される。半導体基板1は、第3面と、第3面とは反対側に位置する第2面1Bとを有している。第3面および第2面1Bの各々は、第1方向Xおよび第1方向Xと直交する第2方向Yに沿って延びている。半導体基板1を構成する材料は、任意の半導体材料であればよく、例えばシリコン(Si)または炭化ケイ素(SiC)である。半導体基板1の導電型はn-型である。 In step (S1), first, a semiconductor substrate 1 is prepared. The semiconductor substrate 1 has a third surface and a second surface 1B opposite to the third surface. Each of the third surface and the second surface 1B extends along the first direction X and the second direction Y orthogonal to the first direction X. As shown in FIG. The material constituting the semiconductor substrate 1 may be any semiconductor material, such as silicon (Si) or silicon carbide (SiC). The conductivity type of the semiconductor substrate 1 is n− type.
 工程(S1)では、次に、半導体基板1の上面(第2面1B)に、p型ベース層3、p型アノード層15、p+型コンタクト層4、およびn+型エミッタ層5が形成される。p型ベース層3、p+型コンタクト層4、およびn+型エミッタ層5の各々は、フォトリソグラフィ法により形成されたマスクパターンを用いたイオン注入法により形成される。例えば、フォトリソグラフィ法を用いたマスクパターンを形成する工程、マスクパターンを用いたイオン注入工程、およびマスクパターンの除去工程を1組とする工程が異なる条件で繰り返し行われる。p型ベース層3およびp型アノード層15は、例えば1つのイオン注入工程により形成される。言い換えると、p型ベース層3およびp型アノード層15は、p型ベース層3およびp型アノード層15の一方が他方を兼ねるように形成される。p+型コンタクト層4、およびn+型エミッタ層5は、IGBT領域101Aにおいてp型ベース層3の内部に選択的に形成される。 In step (S1), next, a p-type base layer 3, a p-type anode layer 15, a p+-type contact layer 4, and an n+-type emitter layer 5 are formed on the upper surface (second surface 1B) of the semiconductor substrate 1. . Each of p-type base layer 3, p + -type contact layer 4 and n + -type emitter layer 5 is formed by ion implantation using a mask pattern formed by photolithography. For example, a set of a process of forming a mask pattern using photolithography, an ion implantation process using the mask pattern, and a process of removing the mask pattern is repeatedly performed under different conditions. The p-type base layer 3 and the p-type anode layer 15 are formed by one ion implantation process, for example. In other words, p-type base layer 3 and p-type anode layer 15 are formed such that one of p-type base layer 3 and p-type anode layer 15 serves as the other. The p + -type contact layer 4 and the n + -type emitter layer 5 are selectively formed inside the p-type base layer 3 in the IGBT region 101A.
 工程(S1)では、次に、エッジ終端領域において、第2面1Bを覆うフィールド酸化膜が形成される。フィールド酸化膜は、例えば半導体基板1の第2面1Bを熱酸化することにより、形成される。次に、IGBT領域101AおよびFWD領域101Bの各々において、複数のトレンチTが形成される。上述のように、複数のトレンチTは、例えば平面視においてストライプ状に形成される。 In the step (S1), next, a field oxide film covering the second surface 1B is formed in the edge termination region. The field oxide film is formed by thermally oxidizing the second surface 1B of the semiconductor substrate 1, for example. Next, a plurality of trenches T are formed in each of IGBT region 101A and FWD region 101B. As described above, the plurality of trenches T are formed in stripes, for example, in plan view.
 工程(S1)では、次に、IGBT領域101AおよびFWD領域101Bの各々において、複数のトレンチTの内部にゲート絶縁膜6が形成される。ゲート絶縁膜6は、各トレンチTの内壁面に沿うように形成される。ゲート絶縁膜6は、例えば各トレンチTの内壁面を熱酸化することにより形成される。 In step (S1), next, a gate insulating film 6 is formed inside a plurality of trenches T in each of the IGBT regions 101A and the FWD regions 101B. Gate insulating film 6 is formed along the inner wall surface of each trench T. As shown in FIG. The gate insulating film 6 is formed by thermally oxidizing the inner wall surface of each trench T, for example.
 工程(S1)では、次に、IGBT領域101AおよびFWD領域101Bの各々において、複数のトレンチTの内部にゲート電極7およびダミーゲート電極17が形成される。例えば、複数のトレンチTの各々の内部を埋め込むように、ゲート絶縁膜6上にポリシリコン膜が形成された後、第2面1B上のポリシリコン膜がエッチバッグ処理により除去される。これにより、各トレンチTの内部に残されたポリシリコン膜が、ゲート電極7およびダミーゲート電極17の各々とされる。 In step (S1), next, gate electrodes 7 and dummy gate electrodes 17 are formed inside the plurality of trenches T in each of the IGBT regions 101A and the FWD regions 101B. For example, after a polysilicon film is formed on gate insulating film 6 so as to fill the inside of each of trenches T, the polysilicon film on second surface 1B is removed by an etch back process. As a result, the polysilicon film left inside each trench T becomes the gate electrode 7 and the dummy gate electrode 17, respectively.
 このようにして、n-型ドリフト層2、p型ベース層3、p+型コンタクト層4、n+型エミッタ層5、ゲート絶縁膜6、およびゲート電極7により構成されたトレンチゲート構造のMOSゲートが形成される。なお、ゲート電極7を形成した後に、p+型コンタクト層4、およびn+型エミッタ層5が形成されてもよい。 In this manner, a MOS gate having a trench gate structure composed of the n− type drift layer 2, the p type base layer 3, the p+ type contact layer 4, the n+ type emitter layer 5, the gate insulating film 6, and the gate electrode 7 is formed. It is formed. Note that the p + -type contact layer 4 and the n + -type emitter layer 5 may be formed after forming the gate electrode 7 .
 工程(S1)では、次に、IGBT領域101AおよびFWD領域101Bの各々において、層間絶縁膜10、バリアメタル11、プラグ12、および第2電極13が形成される。層間絶縁膜10は、第2面1B上に形成される。層間絶縁膜10には複数のコンタクトホールが形成される。各コンタクトホールは、第2面1Bに直交する方向において層間絶縁膜10を貫通する。各コンタクトホールにおいて、p+型コンタクト層4とn+型エミッタ層5が露出する。バリアメタル11は、p+型コンタクト層4およびn+型エミッタ層5のうち各コンタクトホールから露出している上面、各コンタクトホールの内壁面、および層間絶縁膜10の上面上に形成される。プラグ12は、各コンタクトホールの内部を埋め込むように、バリアメタル11上に形成される。第2電極13は、バリアメタル11およびプラグ12上に形成される。このようにして、IGBT領域101AおよびFWD領域101Bの各々において、半導体基板1の第2面1B側に素子構造が形成される。 In step (S1), next, interlayer insulating film 10, barrier metal 11, plug 12, and second electrode 13 are formed in each of IGBT region 101A and FWD region 101B. Interlayer insulating film 10 is formed on second surface 1B. A plurality of contact holes are formed in the interlayer insulating film 10 . Each contact hole penetrates interlayer insulating film 10 in a direction perpendicular to second surface 1B. In each contact hole, the p + -type contact layer 4 and the n + -type emitter layer 5 are exposed. Barrier metal 11 is formed on the upper surface of p + -type contact layer 4 and n + -type emitter layer 5 exposed from each contact hole, the inner wall surface of each contact hole, and the upper surface of interlayer insulating film 10 . A plug 12 is formed on the barrier metal 11 so as to fill the inside of each contact hole. A second electrode 13 is formed on the barrier metal 11 and the plug 12 . Thus, an element structure is formed on the second surface 1B side of semiconductor substrate 1 in each of IGBT region 101A and FWD region 101B.
 次に、第2面1B上に保護膜が形成される(工程(S2))。保護膜は、第2面1B上に形成された第2電極13等の構造体を保護するために、当該構造体を覆うように形成される。保護膜を構成する材料は、例えばポリイミド、レジスト、および酸化ケイ素からなる群から選択される少なくとも1つを含む。保護膜は、フィルムまたはテープ状の部材であってもよい。保護膜は、塗布膜であってもよい。ここでは、保護膜に変形および変質等が生じない温度を、保護膜の耐熱温度とよぶ。保護膜の耐熱温度は、本工程(S2)よりも後工程における保護膜の到達温度よりも高い。保護膜の耐熱温度は、例えば保護膜を構成する材料のガラス転移温度(Tg)未満である。 Next, a protective film is formed on the second surface 1B (step (S2)). In order to protect the structures such as the second electrode 13 formed on the second surface 1B, the protective film is formed so as to cover the structures. Materials constituting the protective film include at least one selected from the group consisting of, for example, polyimide, resist, and silicon oxide. The protective film may be a film or tape-like member. The protective film may be a coating film. Here, the temperature at which the protective film is not deformed, degraded, or the like is referred to as the heat resistant temperature of the protective film. The heat-resistant temperature of the protective film is higher than the reaching temperature of the protective film in the post-process of this step (S2). The heat resistance temperature of the protective film is, for example, lower than the glass transition temperature (Tg) of the material forming the protective film.
 次に、IGBT領域101AおよびFWD領域101Bの各々において、半導体基板1を第3面側から研削(バックグラインド)し、半導体基板1を薄化する(工程(S3))。本工程(S3)により、半導体基板1の厚みは、半導体装置101における半導体基板1の厚みとされる。半導体基板1において第2面1Bとは反対側には、第1面1Aが形成される。 Next, in each of the IGBT region 101A and the FWD region 101B, the semiconductor substrate 1 is ground (back ground) from the third surface side to thin the semiconductor substrate 1 (step (S3)). Through this step ( S<b>3 ), the thickness of the semiconductor substrate 1 is the thickness of the semiconductor substrate 1 in the semiconductor device 101 . A first surface 1A is formed on the side of the semiconductor substrate 1 opposite to the second surface 1B.
 次に、IGBT領域101AおよびFWD領域101Bの各々において、半導体基板1の第1面1A側に、n型バッファ層8となるべき不純物領域、p型コレクタ層9となるべき不純物領域、およびn+型カソード層18となるべき不純物領域が形成される(工程(S4))。 Next, in each of the IGBT region 101A and the FWD region 101B, an impurity region to be the n-type buffer layer 8, an impurity region to be the p-type collector layer 9, and an n + -type impurity region are formed on the first surface 1A side of the semiconductor substrate 1. Impurity regions to be cathode layers 18 are formed (step (S4)).
 本工程(S4)では、例えば、n型バッファ層8となるべき不純物領域、p型コレクタ層9となるべき不純物領域、およびn+型カソード層18となるべき不純物領域が順に形成される。各不純物領域は、例えば、フォトリソグラフィ法を用いたマスクパターンを形成する工程、マスクパターンを用いたイオン注入工程、およびマスクパターンの除去工程を1組とする工程が異なる条件で繰り返し行われることにより、形成される。 In this step (S4), for example, an impurity region that will become the n-type buffer layer 8, an impurity region that will become the p-type collector layer 9, and an impurity region that will become the n+ type cathode layer 18 are formed in this order. Each impurity region is formed by, for example, repeating under different conditions a set of steps of forming a mask pattern using photolithography, ion implantation using the mask pattern, and removing the mask pattern. ,It is formed.
 まず、IGBT領域101AおよびFWD領域101Bの各々の第1面1Aを露出させるマスクパターンを用いて、n型バッファ層8を形成するためのn型のイオンが半導体基板1に注入される。n型のイオンは、例えばリン(P)である。次に、IGBT領域101Aの第1面1Aを露出させるマスクパターンを用いて、p型コレクタ層9を形成するためのp型のイオンが半導体基板1に注入される。p型のイオンは、例えばホウ素(B)である。次に、FWD領域101Bの第1面1Aを露出させるマスクパターンを用いて、n+型カソード層18を形成するためのn型のイオンが半導体基板1に注入される。n型のイオンは、例えばPである。 First, n-type ions for forming n-type buffer layer 8 are implanted into semiconductor substrate 1 using a mask pattern that exposes first surface 1A of each of IGBT region 101A and FWD region 101B. An n-type ion is, for example, phosphorus (P). Next, p-type ions for forming p-type collector layer 9 are implanted into semiconductor substrate 1 using a mask pattern that exposes first surface 1A of IGBT region 101A. A p-type ion is, for example, boron (B). Next, using a mask pattern that exposes the first surface 1A of the FWD region 101B, n-type ions for forming the n+-type cathode layer 18 are implanted into the semiconductor substrate 1 . An n-type ion is P, for example.
 このようにして、n型バッファ層8となるべき不純物領域、p型コレクタ層9となるべき不純物領域、およびn+型カソード層18となるべき不純物領域が形成された半導体基板1が準備される。 In this way, the semiconductor substrate 1 is prepared in which an impurity region that will form the n-type buffer layer 8, an impurity region that will form the p-type collector layer 9, and an impurity region that will form the n+ type cathode layer 18 are formed.
 次に、準備された半導体基板1に対し、第1アニール工程(S20)が実施される。本工程(S20)では、レーザ光が、n型バッファ層8となるべき不純物領域、p型コレクタ層9となるべき不純物領域、およびn+型カソード層18となるべき不純物領域の各々に照射される。これにより、各素子形成領域において、n型バッファ層8となるべき不純物領域、p型コレクタ層9となるべき不純物領域、およびn+型カソード層18となるべき不純物領域の各々がアニールされて、各不純物領域中の不純物が活性化する。本工程(S20)を実行するためのレーザアニール装置の一例は、後述する。 Next, the prepared semiconductor substrate 1 is subjected to a first annealing step (S20). In this step (S20), laser light is applied to each of the impurity region that will form the n-type buffer layer 8, the impurity region that will form the p-type collector layer 9, and the impurity region that will form the n+ type cathode layer 18. . As a result, in each element forming region, the impurity region to be the n-type buffer layer 8, the impurity region to be the p-type collector layer 9, and the impurity region to be the n + -type cathode layer 18 are annealed. Impurities in the impurity regions are activated. An example of a laser annealing apparatus for performing this step (S20) will be described later.
 図3に示されるように、工程(S20)において第1面1Aに照射されるレーザ光のビームスポットSの第1方向Xの幅(第1幅)は、ビームスポットSの第2方向Yの幅(第2幅)よりも狭い。言い換えると、ビームスポットSは、第1方向Xが短手方向となり第2方向Yが長手方向となる長尺形状を有している。ビームスポットSの形状は、任意の長尺形状であればよいが、例えば長方形状である。 As shown in FIG. 3, the width (first width) in the first direction X of the beam spot S of the laser light irradiated onto the first surface 1A in step (S20) is the width in the second direction Y of the beam spot S. Narrower than the width (second width). In other words, the beam spot S has an elongated shape in which the first direction X is the lateral direction and the second direction Y is the longitudinal direction. The shape of the beam spot S may be any long shape, such as a rectangular shape.
 図3に示されるように、工程(S20)において第1面1Aに照射されるレーザ光の第1方向XのビームプロファイルP1およびレーザ光Lの第2方向YのビームプロファイルP2は、それぞれトップフラット形状を有している。図3に示されるビームスポットSは、ビームホモジナイザにて整形されたレーザ光を第1面1Aに対して照射することにより、形成され得る。 As shown in FIG. 3, the beam profile P1 of the laser light in the first direction X and the beam profile P2 of the laser light L in the second direction Y with which the first surface 1A is irradiated in step (S20) are top-flat. have a shape. The beam spot S shown in FIG. 3 can be formed by irradiating the first surface 1A with laser light shaped by a beam homogenizer.
 第1面1Aは、第1方向Xおよび第2方向Yの各々に並んで配置されており、かつ第1方向Xに第1幅を有しかつ第2方向Yに第2幅を有する複数の被照射領域を有している。言い換えると、第1面1Aは、ビームスポットと同一の寸法を有する複数の被照射領域に区分される。複数の被照射領域は、第1群の被照射領域、第2群の被照射領域、および第3群の被照射領域とを含む。第1群の被照射領域、第2群の被照射領域、および第3群の被照射領域の各々は、第1方向Xに並んで配置されている複数の被照射領域を含み、かつ第2方向Yに順に並んで配置されている。 The first surface 1A is arranged side by side in each of the first direction X and the second direction Y, and has a first width in the first direction X and a second width in the second direction Y. It has an illuminated area. In other words, the first surface 1A is divided into a plurality of irradiated areas having the same size as the beam spot. The plurality of irradiated regions includes a first group of irradiated regions, a second group of irradiated regions, and a third group of irradiated regions. Each of the first group of irradiation regions, the second group of irradiation regions, and the third group of irradiation regions includes a plurality of irradiation regions arranged side by side in the first direction X, and They are arranged side by side in the Y direction.
 なお、複数の被照射領域の各々は、上述した半導体基板1の複数の素子形成領域の各々と対応付けられていてもよいし、対応付けられていなくてもよい。各被照射領域は、1つの素子形成領域、およびこれを囲むように配置されているダイシング領域(ダイシングライン)の内周領域と重なる領域とされてもよい。各被照射領域は、複数の素子形成領域、およびこれらを囲むように格子状に配置されているダイシング領域(ダイシングライン)の一部と重なる領域とされてもよい。 Note that each of the plurality of irradiated regions may or may not be associated with each of the plurality of element forming regions of the semiconductor substrate 1 described above. Each irradiated region may be a region that overlaps with an element formation region and an inner peripheral region of a dicing region (dicing line) arranged to surround it. Each irradiated region may overlap with a plurality of element forming regions and a part of a dicing region (dicing line) arranged in a lattice to surround them.
 本工程(S20)では、上記複数の被照射領域のうちの1つの被照射領域にビームスポットを形成する照射工程が複数回行われ、複数回の照射工程の各々の間に、レーザ光を出射する光学系に対して第1面を第1方向Xに第1幅だけ走査する第1工程、光学系に対して第1面を第2方向Yに第2幅だけ走査する第2工程、または光学系に対して第1面を第1方向Xとは逆方向に第1幅だけ走査する第3工程が行われる。 In this step (S20), an irradiation step of forming a beam spot in one of the plurality of irradiation regions is performed a plurality of times, and a laser beam is emitted during each of the plurality of irradiation steps. A first step of scanning the first surface of the optical system by a first width in the first direction X, a second step of scanning the first surface of the optical system by a second width in the second direction Y, or A third step of scanning the first surface by the first width in the direction opposite to the first direction X with respect to the optical system is performed.
 図4は、第1面1Aに対してビームスポットが走査される経路を説明するための図である。図4では、被照射領域の図示は省略されている。 FIG. 4 is a diagram for explaining the path along which the beam spot is scanned with respect to the first surface 1A. In FIG. 4, illustration of the irradiated area is omitted.
 図4に示されるように、工程(S20)では、最初に、複数の被照射領域のうち、第2方向Yの一方端部(図4の紙面に向かって上端)に位置し、第1方向Xに並んで配置されている第1群の被照射領域に対して、上記照射工程が順次行われる。具体的には、まず、第1群の被照射領域のうち、第1面1Aの第1方向Xの一方端部(図4の紙面に向かって左端)に位置する1つの被照射領域に対し、上記照射工程が行われる。その後、上記第1工程と上記照射工程とが繰り返し行われる。この走査経路は、図4中の線分61に沿ったものとなる。最後の照射工程は、第1群の被照射領域のうち、第1面1Aの第1方向Xの他方端部(図4の紙面に向かって右端)に位置する1つの被照射領域に対して行われる。 As shown in FIG. 4, in the step (S20), first, among the plurality of irradiated regions, positioned at one end in the second direction Y (upper end toward the paper surface of FIG. 4), The above-described irradiation step is sequentially performed on the first group of irradiated regions arranged in line with X. As shown in FIG. Specifically, first, of the first group of irradiated regions, one irradiated region located at one end of the first surface 1A in the first direction X (the left end when facing the paper surface of FIG. 4) is , the irradiation step is performed. After that, the first step and the irradiation step are repeated. This scanning path is along line segment 61 in FIG. In the final irradiation step, one irradiated region located at the other end of the first surface 1A in the first direction X (the right end when facing the paper surface of FIG. 4) among the irradiated regions of the first group done.
 次に、第2工程が行われる。この走査経路は、図4中の線分62に沿ったものとなる。
 次に、複数の被照射領域のうち、第1群の被照射領域と第2方向Yに並んでおり、第1方向Xに並んで配置されている第2群の被照射領域に対して、上記照射工程が順次行われる。具体的には、まず、第2群の被照射領域のうち、第1面1Aの第1方向Xの他方端部(図4の紙面に向かって右端)に位置する1つの被照射領域に対し、上記照射工程が行われる。その後、上記第3工程と上記照射工程とが繰り返し行われる。この走査経路は、図4中の線分63に沿ったものとなる。最後の照射工程では、第2群の被照射領域のうち、第1面1Aの第1方向Xの一方端部(図4の紙面に向かって左端)に位置する1つの被照射領域に対して行われる。
A second step is then performed. This scanning path is along line segment 62 in FIG.
Next, among the plurality of irradiated regions, for a second group of irradiated regions aligned in the second direction Y with the first group of irradiated regions and arranged in the first direction X, The irradiation steps are sequentially performed. Specifically, first, of the second group of irradiated regions, one irradiated region positioned at the other end of the first surface 1A in the first direction X (the right end as viewed from the paper surface of FIG. 4) is , the irradiation step is performed. After that, the third step and the irradiation step are repeated. This scanning path is along line segment 63 in FIG. In the last irradiation step, one irradiated region located at one end of the first surface 1A in the first direction X (the left end when facing the paper surface of FIG. 4) among the second group of irradiated regions done.
 次に、第2工程が行われる。この走査経路は、図4中の線分64に沿ったものとなる。
 次に、複数の被照射領域のうち、第2群の被照射領域と第2方向Yに並んでおり、第1方向Xに並んで配置されている第3群の被照射領域に対して、上記照射工程が順次行われる。具体的には、まず、第3群の被照射領域のうち、第1面1Aの第1方向Xの一方端部(図4の紙面に向かって左端)に位置する1つの被照射領域に対し、上記照射工程が行われる。その後、上記第1工程と上記照射工程とが繰り返し行われる。この走査経路は、図4中の線分65に沿ったものとなる。最後の照射工程では、第3群の被照射領域のうち、第1面1Aの第1方向Xの他方端部(図4の紙面に向かって右端)に位置する1つの被照射領域に対して行われる。第3群の被照射領域のうちの少なくとも一部の被照射領域は、第2群の被照射領域の各々と接している。
A second step is then performed. This scanning path is along line segment 64 in FIG.
Next, among the plurality of irradiated regions, for a third group of irradiated regions aligned in the second direction Y with the second group of irradiated regions and aligned in the first direction X, The irradiation steps are sequentially performed. Specifically, first, among the irradiation regions of the third group, for one irradiation region located at one end of the first surface 1A in the first direction X (the left end when facing the paper surface of FIG. 4) , the irradiation step is performed. After that, the first step and the irradiation step are repeated. This scanning path is along line segment 65 in FIG. In the last irradiation step, among the irradiation regions of the third group, one irradiation region located at the other end of the first surface 1A in the first direction X (the right end as viewed from the paper surface of FIG. 4) is irradiated with done. At least a part of the irradiated regions in the third group is in contact with each of the irradiated regions in the second group.
 図5(a)~(h)は、走査経路をより詳細に説明するための図である。図5(a)~(h)では、複数の被照射領域のうち、第1方向Xに4列、第2方向Yに2列並んで配置される被照射領域の各々および各座標と、1つの被照射領域上に形成されるビームスポットSとが図示されている。 FIGS. 5(a) to (h) are diagrams for explaining the scanning path in more detail. In FIGS. 5A to 5H, among the plurality of irradiation regions, each of the irradiation regions arranged in four rows in the first direction X and two rows in the second direction Y, and each coordinate, and 1 A beam spot S formed on one irradiated area is shown.
 図5(a)に示されるように、8つの被照射領域のうち、座標(0,0)の被照射領域に対して上記照射工程が行われる。これにより、座標(0,0)の被照射領域上にビームスポットSが形成される。次に、第1工程が行われる。 As shown in FIG. 5(a), the irradiation process is performed on the irradiated region with coordinates (0, 0) among the eight irradiated regions. As a result, a beam spot S is formed on the irradiated region at coordinates (0, 0). Next, a first step is performed.
 次に、図5(b)に示されるように、8つの被照射領域のうち、座標(1,0)の被照射領域に対して上記照射工程が行われる。これにより、座標(1,0)の被照射領域上にビームスポットSが形成される。このビームスポットSは、直前にビームスポットSが形成された座標(0,0)の被照射領域と重ならず、接するように形成される。ビームスポットSは、その長辺が直前にビームスポットSが形成された座標(0,0)の被照射領域の長辺と接するように形成される。次に、第1工程が行われる。 Next, as shown in FIG. 5(b), the irradiation process is performed on the irradiated region with coordinates (1, 0) among the eight irradiated regions. As a result, a beam spot S is formed on the irradiated region at coordinates (1, 0). This beam spot S is formed so as not to overlap with the irradiated region of coordinates (0, 0) in which the beam spot S was formed immediately before, but to be in contact therewith. The beam spot S is formed such that its long side is in contact with the long side of the irradiated region of coordinates (0, 0) in which the beam spot S was formed immediately before. Next, a first step is performed.
 次に、図5(c)に示されるように、8つの被照射領域のうち、座標(2,0)の被照射領域に対して上記照射工程が行われる。これにより、座標(2,0)の被照射領域上にビームスポットSが形成される。このビームスポットSは、直前にビームスポットSが形成された座標(1,0)の被照射領域と重ならず、接するように形成される。ビームスポットSは、その長辺が直前にビームスポットSが形成された座標(1,0)の被照射領域の長辺と接するように形成される。次に、第1工程が行われる。 Next, as shown in FIG. 5(c), the irradiation process is performed on the irradiated region at coordinates (2, 0) among the eight irradiated regions. As a result, a beam spot S is formed on the irradiated region at coordinates (2, 0). This beam spot S is formed so as not to overlap with the irradiated region of coordinates (1, 0) in which the beam spot S was formed immediately before, but to be in contact therewith. The beam spot S is formed such that its long side is in contact with the long side of the irradiated region of coordinates (1, 0) in which the beam spot S was formed immediately before. Next, a first step is performed.
 次に、図5(d)に示されるように、8つの被照射領域のうち、座標(3,0)の被照射領域に対して上記照射工程が行われる。これにより、座標(3,0)の被照射領域上にビームスポットSが形成される。このビームスポットSは、直前にビームスポットSが形成された座標(2,0)の被照射領域と重ならず、接するように形成される。ビームスポットSは、その長辺が直前にビームスポットSが形成された座標(2,0)の被照射領域の長辺と接するように形成される。 Next, as shown in FIG. 5(d), the irradiation process is performed on the irradiated region at coordinates (3, 0) among the eight irradiated regions. As a result, a beam spot S is formed on the irradiated region at coordinates (3, 0). This beam spot S is formed so as not to overlap with the irradiated region of coordinates (2, 0) in which the beam spot S was formed immediately before, but to be in contact therewith. The beam spot S is formed such that its long side is in contact with the long side of the irradiated region at the coordinates (2, 0) where the beam spot S was formed immediately before.
 次に、第2工程が行われる。ここで、第2工程に代えて、少なくとも1回の第1工程、第2工程が行われ、少なくとも1回の第3工程が、順に行われてもよい。言い換えると、ビームスポットは、第2方向Yに走査される際に、第1方向Xにおいて第1面1Aの端部よりも外側に走査されてもよい。 Next, the second step is performed. Here, instead of the second step, the first step and the second step may be performed at least once, and the third step may be performed at least once in this order. In other words, when the beam spot is scanned in the second direction Y, the beam spot may be scanned outside the end of the first surface 1A in the first direction X.
 次に、図5(e)に示されるように、8つの被照射領域のうち、座標(3,1)の被照射領域に対して上記照射工程が行われる。これにより、座標(3,1)の被照射領域上にビームスポットSが形成される。このビームスポットSは、直前にビームスポットSが形成された座標(3,0)の被照射領域と重ならず、接するように形成される。ビームスポットSは、その短辺が直前にビームスポットSが形成された座標(3,0)の被照射領域の短辺と接するように形成される。次に、第3工程が行われる。 Next, as shown in FIG. 5(e), the irradiation process is performed on the irradiated region at coordinates (3, 1) among the eight irradiated regions. As a result, a beam spot S is formed on the irradiated region at coordinates (3, 1). This beam spot S is formed so as not to overlap with the irradiated region of coordinates (3, 0) in which the beam spot S was formed immediately before, but to be in contact therewith. The beam spot S is formed such that its short side is in contact with the short side of the irradiated region at the coordinates (3, 0) where the beam spot S was formed immediately before. Next, a third step is performed.
 次に、図5(f)に示されるように、8つの被照射領域のうち、座標(2,1)の被照射領域に対して上記照射工程が行われる。これにより、座標(2,1)の被照射領域上にビームスポットSが形成される。このビームスポットSは、先にビームスポットSが形成された座標(2,0)の被照射領域、および直前にビームスポットSが形成された座標(3,1)の被照射領域の各々と重ならず、接するように形成される。ビームスポットSは、その長辺が直前にビームスポットSが形成された座標(3,1)の被照射領域の長辺と接するとともに、その短辺が先にビームスポットSが形成された座標(2,0)の被照射領域の短辺と接するように形成される。次に、第3工程が行われる。 Next, as shown in FIG. 5(f), the irradiation process is performed on the irradiated region at coordinates (2, 1) among the eight irradiated regions. As a result, a beam spot S is formed on the irradiated region at coordinates (2, 1). This beam spot S overlaps the irradiated region with coordinates (2, 0) in which the beam spot S was previously formed and the irradiated region with coordinates (3, 1) in which the beam spot S was formed immediately before. instead, they are formed so as to touch each other. The long side of the beam spot S is in contact with the long side of the irradiated area at the coordinates (3, 1) where the beam spot S was formed immediately before, and the short side is at the coordinates ( 2, 0) in contact with the short side of the irradiated region. Next, a third step is performed.
 次に、図5(g)に示されるように、8つの被照射領域のうち、座標(1,1)の被照射領域に対して上記照射工程が行われる。これにより、座標(1,1)の被照射領域上にビームスポットSが形成される。このビームスポットSは、先にビームスポットSが形成された座標(1,0)の被照射領域、および直前にビームスポットSが形成された座標(2,1)の被照射領域の各々と重ならず、接するように形成される。ビームスポットSは、その長辺が直前にビームスポットSが形成された座標(2,1)の被照射領域の長辺と接するとともに、その短辺が先にビームスポットSが形成された座標(1,0)の被照射領域の短辺と接するように形成される。次に、第3工程が行われる。 Next, as shown in FIG. 5(g), the irradiation process is performed on the irradiated region with coordinates (1, 1) among the eight irradiated regions. As a result, a beam spot S is formed on the irradiated region at coordinates (1, 1). This beam spot S overlaps the irradiated region with coordinates (1, 0) in which the beam spot S was previously formed and the irradiated region with coordinates (2, 1) in which the beam spot S was formed immediately before. instead, they are formed so as to touch each other. The long side of the beam spot S is in contact with the long side of the irradiated area at the coordinates (2, 1) where the beam spot S was formed immediately before, and the short side is at the coordinates ( 1, 0) so as to be in contact with the short side of the irradiated region. Next, a third step is performed.
 次に、図5(h)に示されるように、8つの被照射領域のうち、座標(0,1)の被照射領域に対して上記照射工程が行われる。これにより、座標(0,1)の被照射領域上にビームスポットSが形成される。このビームスポットSは、先にビームスポットSが形成された座標(0,0)の被照射領域、および直前にビームスポットSが形成された座標(1,1)の被照射領域の各々と重ならず、接するように形成される。ビームスポットSは、その長辺が直前にビームスポットSが形成された座標(1,1)の被照射領域の長辺と接するとともに、その短辺が先にビームスポットSが形成された座標(0,0)の被照射領域の短辺と接するように形成される。 Next, as shown in FIG. 5(h), the irradiation process is performed on the irradiated region with coordinates (0, 1) among the eight irradiated regions. As a result, a beam spot S is formed on the irradiated region at coordinates (0, 1). This beam spot S overlaps the irradiated region with coordinates (0, 0) in which the beam spot S was previously formed and the irradiated region with coordinates (1, 1) in which the beam spot S was formed immediately before. instead, they are formed so as to touch each other. The long side of the beam spot S is in contact with the long side of the irradiated area at the coordinates (1, 1) where the beam spot S was formed immediately before, and the short side is at the coordinates (1) where the beam spot S was formed first. 0, 0) in contact with the short side of the irradiated region.
 本実施の形態に係る半導体装置の製造方法では、上記第1アニール工程(S20)が2回繰り返し行われる。2回目の第1アニール工程(S20)での上記走査経路は、1回目の第1アニール工程(S20)での上記走査経路と同じである。2回目の第1アニール工程(S20)は、1回目の第1アニール工程(S20)が終了した後、連続して行われる。1回目および2回目の各第1アニール工程(S20)でのレーザ光の強度は、例えば、1回目の第1アニール工程(S20)でのレーザ光の強度と同等に設定される。 In the method of manufacturing a semiconductor device according to the present embodiment, the first annealing step (S20) is repeated twice. The scanning path in the second first annealing step (S20) is the same as the scanning path in the first first annealing step (S20). The second first annealing step (S20) is continuously performed after the first first annealing step (S20) is completed. The intensity of the laser light in each of the first and second first annealing steps (S20) is set to be, for example, the same as the intensity of the laser light in the first first annealing step (S20).
 次に、保護膜が除去される(工程(S30))。保護膜を除去する方法は、例えばドライエッチング法およびウェットエッチング法の少なくともいずれかである。 Next, the protective film is removed (step (S30)). A method for removing the protective film is, for example, at least one of a dry etching method and a wet etching method.
 次に、第1面1A上に、第1電極14が形成される(工程(S40))。次に、半導体基板1の複数の素子形成領域の各々が個片化(ダイシング)されることにより、複数の半導体装置101が得られる。 Next, the first electrode 14 is formed on the first surface 1A (step (S40)). Next, a plurality of semiconductor devices 101 are obtained by singulating (dicing) each of the plurality of element forming regions of the semiconductor substrate 1 .
 上記工程(S20)では、図6に示されるレーザアニール装置200が用いられる。レーザアニール装置200は、光学系30、保持部31、走査部32、および制御部33を主に備える。光学系30は、第1レーザ発振器40、第2レーザ発振器41、複数のミラー42、結合光学系43、ビームホモジナイザ44、および集光レンズ45を主に備える。 A laser annealing apparatus 200 shown in FIG. 6 is used in the above step (S20). The laser annealing apparatus 200 mainly includes an optical system 30 , a holding section 31 , a scanning section 32 and a control section 33 . The optical system 30 mainly includes a first laser oscillator 40 , a second laser oscillator 41 , a plurality of mirrors 42 , a coupling optical system 43 , a beam homogenizer 44 and a condenser lens 45 .
 第1レーザ発振器40および第2レーザ発振器41の各々は、パルスレーザ光を出力する。第1レーザ発振器40から出力されたパルスレーザを第1のパルスレーザ光とよび、第2レーザ発振器41から出力されたパルスレーザを第2のパルスレーザ光とよぶ。第2レーザ発振器41は、第1レーザ発振器40が第1のパルスレーザ光を出力してから予め定められた遅延時間が経過した後、第2のパルスレーザ光を出力する。第1のパルスレーザ光は、ミラー42を経て、結合光学系43に入射する。第2のパルスレーザ光は、ミラー42を経て、結合光学系43に入射する。 Each of the first laser oscillator 40 and the second laser oscillator 41 outputs pulsed laser light. The pulsed laser output from the first laser oscillator 40 is called first pulsed laser light, and the pulsed laser output from the second laser oscillator 41 is called second pulsed laser light. The second laser oscillator 41 outputs the second pulsed laser beam after a predetermined delay time has elapsed since the first laser oscillator 40 output the first pulsed laser beam. The first pulsed laser beam enters the coupling optical system 43 via the mirror 42 . The second pulsed laser beam enters the coupling optical system 43 via the mirror 42 .
 結合光学系43は、第1のパルスレーザ光と第2のパルスレーザ光とを1つのレーザ光に結合する。例えば、第1のパルスレーザ光は結合光学系43にて反射し、第2のパルスレーザ光は結合光学系43を透過する。結合光学系43にて反射した第1のパルスレーザ光は、結合光学系43を透過した第2のパルスレーザ光と結合される。 The coupling optical system 43 combines the first pulsed laser beam and the second pulsed laser beam into one laser beam. For example, the first pulsed laser beam is reflected by the coupling optical system 43 and the second pulsed laser beam is transmitted through the coupling optical system 43 . The first pulsed laser beam reflected by the coupling optical system 43 is coupled with the second pulsed laser beam transmitted through the coupling optical system 43 .
 結合光学系43にて結合されたレーザ光は、ミラー42を経て、ビームホモジナイザ44に入射する。ビームホモジナイザ44は、第1面1Aにおけるレーザ光のビームスポットの形状およびビームプロファイルを整形する。ビームホモジナイザ44にて整形されたレーザ光は、集光レンズ45にて集光された後、レーザ光Lとして第1面1Aに照射される。 The laser beams combined by the coupling optical system 43 pass through the mirror 42 and enter the beam homogenizer 44 . The beam homogenizer 44 shapes the beam spot shape and beam profile of the laser light on the first surface 1A. The laser light shaped by the beam homogenizer 44 is condensed by the condensing lens 45 and then irradiated as the laser light L onto the first surface 1A.
 保持部31は、半導体基板1を保持する。保持部31は、例えば半導体基板1の第1面1Aを水平に保持する。第1方向Xおよび第2方向Yの各々は、水平方向に沿った方向とされる。半導体基板1は、例えば第2面1B上に形成された保護膜が保持部31の上面と接するように、保持部31上に配置される。 The holding part 31 holds the semiconductor substrate 1 . The holding part 31 horizontally holds the first surface 1A of the semiconductor substrate 1, for example. Each of the first direction X and the second direction Y is a direction along the horizontal direction. The semiconductor substrate 1 is arranged on the holding portion 31 such that the protective film formed on the second surface 1</b>B, for example, is in contact with the upper surface of the holding portion 31 .
 走査部32は、保持部31に保持された半導体基板1を、第1方向Xおよび第2方向Yの各々に移動させる。走査部32は、第1方向Xおよび第2方向Yの各々に移動可能なXYステージである。 The scanning unit 32 moves the semiconductor substrate 1 held by the holding unit 31 in the first direction X and the second direction Y respectively. The scanning unit 32 is an XY stage that can move in the first direction X and the second direction Y, respectively.
 制御部33は、第1レーザ発振器40および第2レーザ発振器41の各々が出力するパルスレーザ光の強度、後述する遅延時間、および走査部32による半導体基板1の移動距離を制御する。制御部33は、保持部31に取り付けられたエンコーダからの信号を読み取って、半導体基板1の位置情報を取得する。半導体基板1の位置情報に基づいて、第1レーザ発振器40および第2レーザ発振器41の各々からパルスレーザ光を1ショット出力させて、光学系30から目標とする被照射領域にレーザ光を照射させる。これにより、当該領域に上記ビームスポットが形成される。 The control unit 33 controls the intensity of the pulsed laser light output from each of the first laser oscillator 40 and the second laser oscillator 41 , the delay time described later, and the movement distance of the semiconductor substrate 1 by the scanning unit 32 . The control unit 33 reads a signal from an encoder attached to the holding unit 31 and obtains position information of the semiconductor substrate 1 . One shot of pulsed laser light is output from each of the first laser oscillator 40 and the second laser oscillator 41 based on the positional information of the semiconductor substrate 1, and the laser light is emitted from the optical system 30 to the target irradiation area. . Thereby, the beam spot is formed in the region.
 図7は、第1のパルスレーザ光、第2のパルスレーザ光、およびこれらが結合光学系43にて結合されたレーザ光の各々の強度が時間経過に伴い変化することを説明するための図である。図7の横軸は、時間を示し、縦軸は強度を示している。図7において、波形201は第1のパルスレーザ光の強度波形を示し、波形202は第2のパルスレーザ光の強度波形を示し、波形210は光学系30から照射されるレーザ光の強度波形を示す。 FIG. 7 is a diagram for explaining how the intensity of each of the first pulsed laser beam, the second pulsed laser beam, and the laser beam combined by the coupling optical system 43 changes over time. is. The horizontal axis of FIG. 7 indicates time, and the vertical axis indicates intensity. In FIG. 7, waveform 201 indicates the intensity waveform of the first pulsed laser beam, waveform 202 indicates the intensity waveform of the second pulsed laser beam, and waveform 210 indicates the intensity waveform of the laser beam irradiated from the optical system 30. show.
 図7に示されるように、レーザ光は、第1パルスレーザ光と、第1パルスレーザ光が第1レーザ発振器40から出力されてから遅延時間tdが経過した後に出力された第2のパルスレーザ光とが結合されることにより生成されている。レーザ光を上記のように生成することで、レーザ光の強度を強度P2以下に抑えながらも、レーザ光の強度が強度P1以上となる時間teを十分に確保できる。 As shown in FIG. 7, the laser light consists of a first pulsed laser beam and a second pulsed laser beam output after a delay time td has elapsed since the first pulsed laser beam was output from the first laser oscillator 40. It is generated by being combined with light. By generating the laser light as described above, it is possible to sufficiently secure the time te in which the intensity of the laser light reaches the intensity P1 or more while suppressing the intensity of the laser light to the intensity P2 or less.
 強度P1は、n型バッファ層8となるべき不純物領域、p型コレクタ層9となるべき不純物領域、およびn+型カソード層18となるべき不純物領域の各々の不純物を活性化するために必要な強度である。強度P2は、第2面1B上に形成された保護膜が変質し得る強度である。 Intensity P1 is the intensity required to activate impurities in each of the impurity region to form n-type buffer layer 8, the impurity region to form p-type collector layer 9, and the impurity region to form n+ type cathode layer 18. is. The strength P2 is a strength that can alter the quality of the protective film formed on the second surface 1B.
 遅延時間tdは、制御部33からのトリガ信号の出力タイミングを調整することによって任意に設定することができる。また、時間teは、遅延時間td、第1のパルスレーザ光および第2のパルスレーザ光の各強度等を変更することによって、任意の値に調整することができる。 The delay time td can be arbitrarily set by adjusting the output timing of the trigger signal from the control section 33. Also, the time te can be adjusted to an arbitrary value by changing the delay time td, the intensity of each of the first pulsed laser beam and the second pulsed laser beam, and the like.
 本実施の形態では、レーザ光の波形210には第1ピークと第2ピークとが表れる。このうち、相対的に早い時間に表れる第1ピークの強度PP1が、相対的に遅い時間に表れる第2ピークの強度PP2以下となるように、遅延時間Td、および第1のパルスレーザ光および第2のパルスレーザ光の各強度が設定されている。 In this embodiment, the waveform 210 of the laser light has a first peak and a second peak. Among them, the delay time Td, the first pulsed laser light and the 2, each intensity of the pulsed laser light is set.
 第1のパルスレーザ光および第2のパルスレーザ光の各々は、可視光である。第1のパルスレーザ光および第2のパルスレーザ光の各々の波長は400nm以上600nm未満に設定される。第1のパルスレーザ光および第2のパルスレーザ光の各々は、例えば、Nd:YLFレーザの第2高調波、Nd:YAGレーザの第2高調波、またはNd:YVO4レーザの第2高調波である。好ましくは、第1のパルスレーザ光および第2のパルスレーザ光の各々のパルス半値幅は100ns以上5μs未満である。パルス半値幅が100nsよりも小さくなると、半導体基板1の第1面1Aから深さ1μm程度の領域まで熱が十分に届かず、当該領域に存在する不純物を十分に活性化できない可能性がある。また、パルス半値幅が5μs以上になると、半導体基板1の第2面1Bにまで熱が伝達し、第2面1B上の構造体に対して熱によるダメージを与える可能性がある。 Each of the first pulsed laser light and the second pulsed laser light is visible light. Each wavelength of the first pulsed laser light and the second pulsed laser light is set to 400 nm or more and less than 600 nm. Each of the first pulsed laser light and the second pulsed laser light is, for example, a second harmonic of an Nd:YLF laser, a second harmonic of an Nd:YAG laser, or a second harmonic of an Nd:YVO4 laser. be. Preferably, the pulse half width of each of the first pulsed laser light and the second pulsed laser light is 100 ns or more and less than 5 μs. If the half-value width of the pulse is less than 100 ns, the heat may not sufficiently reach a region with a depth of about 1 μm from the first surface 1A of the semiconductor substrate 1, and the impurities present in this region may not be sufficiently activated. Further, when the pulse half-value width is 5 μs or more, heat may be transmitted to the second surface 1B of the semiconductor substrate 1, and the structure on the second surface 1B may be thermally damaged.
 遅延時間tdは第1のパルスレーザ光および第2のパルスレーザ光の各々のパルス半値幅にも依存するが、好ましくは、遅延時間tdは、200ns以上であり、かつ第1ピーク値PP1が第2ピーク値PP2以下となるように、第1のパルスレーザ光および第2のパルスレーザ光の各々のパルス半値幅及び強度比に応じて設定される。 Although the delay time td also depends on the pulse half width of each of the first pulsed laser beam and the second pulsed laser beam, preferably the delay time td is 200 ns or more, and the first peak value PP1 is the first It is set according to the pulse half width and intensity ratio of each of the first pulsed laser beam and the second pulsed laser beam so as to be 2 peak values PP2 or less.
 好ましくは、第1のパルスレーザ光および第2のパルスレーザ光の各々において、パルスの繰り返し周波数は、kHzオーダから10kHzオーダの間に設定される。パルスの繰り返し周波数が高くなりすぎると、パルスの発生間隔が短くなり、半導体基板の冷却時間が十分に確保できず、当該半導体基板に蓄熱が生じ、当該半導体基板が溶融する可能性がある。また、パルスの繰り返し周波数が低すぎると活性化処理時間が長くなる。 Preferably, in each of the first pulsed laser light and the second pulsed laser light, the pulse repetition frequency is set between the order of kHz and the order of 10 kHz. If the pulse repetition frequency becomes too high, the pulse generation interval becomes short, and sufficient cooling time for the semiconductor substrate cannot be ensured, causing heat accumulation in the semiconductor substrate, which may melt the semiconductor substrate. On the other hand, if the pulse repetition frequency is too low, the activation processing time becomes long.
 <効果>
 実施の形態1に係る半導体装置の製造方法では、第1アニール工程(S20)において、複数回の照射工程の各々の間に、光学系30に対して第1面1Aを第1方向Xに第1幅だけ走査する第1工程、または光学系30に対して第1面1Aを第2方向Yに第2幅だけ走査する第2工程が行われる。
<effect>
In the method of manufacturing the semiconductor device according to the first embodiment, in the first annealing step (S20), the first surface 1A is oriented in the first direction X with respect to the optical system 30 between each of the plurality of irradiation steps. A first step of scanning by one width or a second step of scanning the first surface 1A in the second direction Y with respect to the optical system 30 by a second width is performed.
 つまり、複数の照射工程の各々により第1面1A上に形成されるビームスポットSは、複数の被照射領域の各々の全面上に、互いに重なることなく順次形成される。言い換えると、第1アニール工程(20)において、各被照射領域へのレーザ光の照射回数は、1回となる。そのため、本実施の形態に係る半導体装置の製造方法では、レーザ光のビームプロファイルが本実施の形態に係る半導体装置の製造方法と同等であって、かつ複数の被照射領域の全面上にビームスポットを順次形成する1つのアニール工程内において各ビームスポットが互いに重なるように形成される従来技術と比べて、半導体基板1の温度上昇が抑制される。 That is, the beam spots S formed on the first surface 1A by each of the plurality of irradiation steps are sequentially formed on the entire surface of each of the plurality of irradiated regions without overlapping each other. In other words, in the first annealing step (20), each irradiated region is irradiated with the laser light once. Therefore, in the semiconductor device manufacturing method according to the present embodiment, the beam profile of the laser light is the same as that of the semiconductor device manufacturing method according to the present embodiment, and the beam spots are formed on the entire surface of the plurality of irradiation regions. The temperature rise of the semiconductor substrate 1 is suppressed as compared with the conventional technique in which each beam spot is formed so as to overlap each other in one annealing process for sequentially forming the .
 具体的には、第1アニール工程(S20)では、複数の照射工程の各々において、上記第1不純物領域を十分に活性化し得る強度のレーザ光が第1面1Aの各被照射領域に照射される。そのため、各照射工程において、照射面である第1面1Aが加熱されるとともに、第1面1A側にて生じた熱が第1面1Aから深さ方向に伝導して第2面1Bに達し、被照射領域の深さ方向の全体の温度が上昇する。 Specifically, in the first annealing step (S20), each irradiated region of first surface 1A is irradiated with a laser beam having an intensity sufficient to activate the first impurity region in each of the plurality of irradiation steps. be. Therefore, in each irradiation step, the first surface 1A, which is the irradiation surface, is heated, and the heat generated on the first surface 1A side is conducted from the first surface 1A in the depth direction and reaches the second surface 1B. , the temperature of the entire irradiated region in the depth direction rises.
 従来技術のように、1つのアニール工程内において各ビームスポットが互いに重なるように形成されると、蓄熱量が相対的に多くなり、非照射面の温度が高温になる。その結果、非照射面上に形成されている保護膜などの構造体が変質するおそれがある。仮に保護膜が変質すると、保護膜を除去する工程(S30)において除去されずに残渣物が生じるおそれがある。 When each beam spot is formed so as to overlap each other in one annealing process as in the conventional technology, the amount of heat accumulated is relatively large, and the temperature of the non-irradiated surface becomes high. As a result, a structure such as a protective film formed on the non-irradiated surface may deteriorate. If the protective film deteriorates, there is a possibility that a residue may remain without being removed in the step of removing the protective film (S30).
 これに対し、本実施の形態に係る半導体装置の製造方法では、1つのアニール工程内において各ビームスポットが互いに重ならない。そのため、レーザ光の照射条件が同等であれば、本実施の形態での蓄熱量は従来技術での蓄熱量と比べて相対的に少なくなるため、非照射面である第2面1Bの温度が相対的に低温となり、第2面1B上に形成されている保護膜などの構造体が変質しにくい。その結果、例えば保護膜を除去する工程(S30)において、残渣物が生じにくい。 On the other hand, in the semiconductor device manufacturing method according to the present embodiment, the beam spots do not overlap each other in one annealing step. Therefore, if the laser beam irradiation conditions are the same, the heat storage amount in the present embodiment is relatively smaller than the heat storage amount in the conventional technology, so the temperature of the second surface 1B, which is the non-irradiation surface, increases. The temperature is relatively low, and the structural body such as the protective film formed on the second surface 1B is less likely to deteriorate. As a result, residues are less likely to occur in the step of removing the protective film (S30), for example.
 また、第1アニール工程(S20)が2回繰り返し行われるため、第1アニール工程(S20)が1回のみ行われる場合と比べて、上記第1不純物領域を十分に活性化できる。なお、1回目の第1アニール工程(S20)にてレーザ光が照射された1つの被照射領域に、2回目の第1アニール工程(S20)にてレーザ光が照射されるまでの時間は、従来技術においてビームスポットの重複部分を形成するための1回目の照射と2回目の照射との間の時間と比べて、長い。そのため、実施の形態1に係る半導体装置の製造方法によれば、2回目の第1アニール工程(S20)での第2面1Bの到達温度も、従来の技術での非照射面の到達温度と比べて低く抑えられ得る。 Also, since the first annealing step (S20) is repeated twice, the first impurity region can be sufficiently activated compared to the case where the first annealing step (S20) is performed only once. In addition, the time until one irradiated region irradiated with laser light in the first annealing step (S20) for the first time is irradiated with laser light in the first annealing step (S20) for the second time is It is long compared to the time between the first and second shots to form the beam spot overlap in the prior art. Therefore, according to the manufacturing method of the semiconductor device according to the first embodiment, the temperature reached by the second surface 1B in the second first annealing step (S20) is also the same as the temperature reached by the non-irradiated surface in the conventional technique. can be kept relatively low.
 実施の形態2.
 図8に示されるように、実施の形態2に係る半導体装置の製造方法は、実施の形態1に係る半導体装置の製造方法と基本的に同様の構成を備えるが、2回目の第1アニール工程(S20)でのレーザ光の強度が1回目の第1アニール工程(S20)でのレーザ光の強度よりも低く設定される点で、実施の形態1に係る半導体装置の製造方法とは異なる。
Embodiment 2.
As shown in FIG. 8, the method for manufacturing the semiconductor device according to the second embodiment has basically the same configuration as the method for manufacturing the semiconductor device according to the first embodiment, but the second first annealing step The method differs from the semiconductor device manufacturing method according to the first embodiment in that the intensity of the laser light in (S20) is set lower than the intensity of the laser light in the first annealing step (S20).
 1回目の第1アニール工程(S20)により、半導体基板1がアモルファスとなると、半導体基板1はレーザ光を吸収しやすくなるため、2回目の第1アニール工程(S10)でのレーザ光の強度が1回目の第1アニール工程(S20)と比べて低くても、第1不純物領域を十分に活性化できる。さらに、2回目の第1アニール工程(S10)でのレーザ光の強度が1回目の第1アニール工程(S20)と比べて低いため、両者が同等される場合と比べて、2回目の第1アニール工程(S20)時にも、第2面1Bの到達温度が相対的に低温となり、第2面1B上に形成されている保護膜などの構造体が変質しにくい。 When the semiconductor substrate 1 becomes amorphous in the first annealing step (S20) of the first time, the semiconductor substrate 1 easily absorbs the laser beam, so the intensity of the laser beam in the second first annealing step (S10) is reduced. Even if it is lower than the first annealing step (S20), the first impurity region can be sufficiently activated. Furthermore, since the intensity of the laser light in the second first annealing step (S10) is lower than that in the first first annealing step (S20), the second first annealing step (S10) is lower than the first annealing step (S20). Also during the annealing step (S20), the temperature reached by second surface 1B is relatively low, and the structure such as the protective film formed on second surface 1B is less likely to deteriorate.
 実施の形態2に係る半導体装置の製造方法によっても、半導体装置100が製造され得る。 The semiconductor device 100 can also be manufactured by the semiconductor device manufacturing method according to the second embodiment.
 実施の形態3.
 図9に示されるように、実施の形態3に係る半導体装置の製造方法は、実施の形態1に係る半導体装置の製造方法と基本的に同様の構成を備えるが、第1アニール工程(S20)が3回繰り返し行われる点で、実施の形態1に係る半導体装置の製造方法とは異なる。以下では、実施の形態1と異なる点を主に説明する。
Embodiment 3.
As shown in FIG. 9, the method for manufacturing a semiconductor device according to the third embodiment has basically the same configuration as the method for manufacturing a semiconductor device according to the first embodiment, except that a first annealing step (S20) is performed. is repeated three times, which is different from the manufacturing method of the semiconductor device according to the first embodiment. Differences from the first embodiment will be mainly described below.
 3回目の第1アニール工程(S20)でのレーザ光の強度E3は、例えば1回目および2回目の各第1アニール工程(S20)でのレーザ光の強度E1,E2と同等に設定される。 The intensity E3 of the laser beam in the third first annealing step (S20) is set, for example, to be equal to the intensities E1 and E2 of the laser beams in the first and second first annealing steps (S20).
 このようにすれば、第1アニール工程(S20)を2回繰り返したのみでは第1不純物領域を十分に活性化することが困難である場合にも、3回目の第1アニール工程(S20)が行われることにより、第1不純物領域を十分に活性化できる。 In this way, even if it is difficult to sufficiently activate the first impurity region by repeating the first annealing step (S20) only twice, the third first annealing step (S20) can be performed. By doing so, the first impurity region can be sufficiently activated.
 実施の形態3に係る半導体装置の製造方法は、第1アニール工程(S20)が3回繰り返し行われる点を除き、実施の形態2に係る半導体装置の製造方法と同等の構成を備えていてもよい。つまり、3回目の第1アニール工程(S20)でのレーザ光の強度は、例えば1回目の第1アニール工程(S20)でのレーザ光の強度と比べて低く、2回目の各第1アニール工程(S20)でのレーザ光の強度と同等またはそれよりも低く設定されてもよい。このようにすれば、実施の形態2と同様の効果を奏することができる。 The semiconductor device manufacturing method according to the third embodiment may have the same configuration as the semiconductor device manufacturing method according to the second embodiment except that the first annealing step (S20) is repeated three times. good. That is, the intensity of the laser beam in the third first annealing step (S20) is lower than the intensity of the laser beam in the first annealing step (S20), for example, and the intensity of the laser beam in the second first annealing step (S20) It may be set equal to or lower than the intensity of the laser light in (S20). By doing so, the same effects as in the second embodiment can be obtained.
 実施の形態3に係る半導体装置の製造方法によっても、半導体装置100が製造され得る。 The semiconductor device 100 can also be manufactured by the semiconductor device manufacturing method according to the third embodiment.
 実施の形態4.
 実施の形態4に係る半導体装置の製造方法は、実施の形態1に係る半導体装置の製造方法と基本的に同様の構成を備えるが、図10に示されるように、第1不純物領域をアニールする第1アニール工程(S20)に加えて、第2不純物領域をアニールする第2アニール工程(S50)を備える点で、実施の形態1に係る半導体装置の製造方法とは異なる。以下では、実施の形態1と異なる点を主に説明する。
Embodiment 4.
The semiconductor device manufacturing method according to the fourth embodiment has basically the same configuration as the semiconductor device manufacturing method according to the first embodiment, but the first impurity region is annealed as shown in FIG. In addition to the first annealing step (S20), the second annealing step (S50) of annealing the second impurity region is provided, which is different from the method of manufacturing the semiconductor device according to the first embodiment. Differences from the first embodiment will be mainly described below.
 本実施の形態4において、第1不純物領域は、n型バッファ層8となるべき不純物領域を含む。第2不純物領域は、p型コレクタ層9となるべき不純物領域、およびn+型カソード層18となるべき不純物領域を含む。 In the fourth embodiment, the first impurity region includes an impurity region to become the n-type buffer layer 8 . The second impurity region includes an impurity region to form p-type collector layer 9 and an impurity region to form n + -type cathode layer 18 .
 図10に示されるように、実施の形態4に係る半導体装置の製造方法では、工程(S3)後に、n型バッファ層8となるべき第1不純物領域が形成される(工程(S5))。工程(S5)は、実施の形態1におけるn型バッファ層8となるべき不純物領域を形成する工程と同様に行われる。これにより、n型バッファ層8となるべき第1不純物領域が形成された半導体基板1が準備される。 As shown in FIG. 10, in the method of manufacturing a semiconductor device according to the fourth embodiment, after the step (S3), a first impurity region that will become the n-type buffer layer 8 is formed (step (S5)). Step (S5) is performed in the same manner as the step of forming an impurity region to become n-type buffer layer 8 in the first embodiment. Thereby, the semiconductor substrate 1 having the first impurity region to be the n-type buffer layer 8 is prepared.
 次に、第1不純物領域に対し第1アニール工程(S20)が行われる。第1アニール工程(S20)は、実施の形態1における第1アニール工程(S20)と同様に行われる。これにより、第1不純物領域が活性化される。 Next, a first annealing step (S20) is performed on the first impurity region. The first annealing step (S20) is performed in the same manner as the first annealing step (S20) in the first embodiment. This activates the first impurity region.
 第1アニール工程(S20)後に、p型コレクタ層9となるべき不純物領域、およびn+型カソード層18となるべき不純物領域が形成される(工程(S6))。 After the first annealing step (S20), an impurity region that will become the p-type collector layer 9 and an impurity region that will become the n+ type cathode layer 18 are formed (step (S6)).
 本工程(S6)は、実施の形態1におけるp型コレクタ層9となるべき不純物領域、およびn+型カソード層18となるべき不純物領域を形成する工程と同様に行われる。これにより、p型コレクタ層9となるべき不純物領域、およびn+型カソード層18となるべき第2不純物領域が半導体基板1に形成される。 This step (S6) is performed in the same manner as the step of forming the impurity region to be the p-type collector layer 9 and the impurity region to be the n+ type cathode layer 18 in the first embodiment. As a result, an impurity region to form the p-type collector layer 9 and a second impurity region to form the n + -type cathode layer 18 are formed in the semiconductor substrate 1 .
 次に、光学系30から出射されたレーザ光を第1面1Aに照射して、第2不純物領域をアニールする第2アニール工程(S50)が行われる。第2アニール工程(S50)は、第1アニール工程(S20)と同様に行われる。第2アニール工程(S50)においても、図3に示されるレーザアニール装置200が用いられる。第2アニール工程(S50)においても、図4および図5に示される走査が行われる。 Next, a second annealing step (S50) is performed to irradiate the first surface 1A with laser light emitted from the optical system 30 to anneal the second impurity regions. The second annealing step (S50) is performed in the same manner as the first annealing step (S20). The laser annealing apparatus 200 shown in FIG. 3 is also used in the second annealing step (S50). The scanning shown in FIGS. 4 and 5 is also performed in the second annealing step (S50).
 第2アニール工程(S50)は、例えば2回繰り返し行われる。2回目の第2アニール工程(S50)でのレーザ光の強度E5は、例えば1回目の第2アニール工程(S50)でのレーザ光の強度E4と同等に設定される。 The second annealing step (S50) is repeated, for example, twice. The laser beam intensity E5 in the second second annealing step (S50) is set to be, for example, equal to the laser beam intensity E4 in the first second annealing step (S50).
 第2アニール工程(S50)が終了後、保護膜を除去する工程(S30)および第1電極14を形成する工程(S40)が行われる。 After the second annealing step (S50) is completed, the step of removing the protective film (S30) and the step of forming the first electrode 14 (S40) are performed.
 このように、実施の形態4では、第1面1A側に形成される複数の不純物領域のうちの第1不純物領域に対する第1アニール工程(S20)と、第2不純物領域に対する第2アニール工程(S50)とが、それぞれ別工程として行われる。このような実施の形態4に係る半導体装置の製造方法によっても、半導体装置100が製造され得る。 As described above, in the fourth embodiment, the first annealing step (S20) for the first impurity region among the plurality of impurity regions formed on the first surface 1A side and the second annealing step for the second impurity region ( S50) are performed as separate steps. The semiconductor device 100 can also be manufactured by the semiconductor device manufacturing method according to the fourth embodiment.
 実施の形態4において、第2アニール工程(S50)は、3回以上繰り返し行われてもよい。3回目の第2アニール工程(S50)でのレーザ光の強度は、例えば1回目の第2アニール工程(S50)でのレーザ光の強度と比べて低く、2回目の各第2アニール工程(S50)でのレーザ光の強度と同等またはそれよりも低く設定されてもよい。 In Embodiment 4, the second annealing step (S50) may be repeated three times or more. The intensity of the laser beam in the third second annealing step (S50) is lower than, for example, the intensity of the laser beam in the first second annealing step (S50), and the second annealing step (S50 ) may be set equal to or lower than the intensity of the laser light.
 実施の形態4において、第1アニール工程(S20)は、実施の形態2または3における第1アニール工程(S20)と同様に行われてもよい。 In the fourth embodiment, the first annealing step (S20) may be performed similarly to the first annealing step (S20) in the second or third embodiment.
 また、実施の形態1または実施の形態4に係る半導体装置の製造方法において、第1アニール工程(S20)および第2アニール工程(S50)の各々は、1回のみ行われてもよい。 Also, in the method of manufacturing a semiconductor device according to the first embodiment or the fourth embodiment, each of the first annealing step (S20) and the second annealing step (S50) may be performed only once.
 実施の形態5.
 図11に示されるように、実施の形態5に係る半導体装置の製造方法は、実施の形態1に係る半導体装置の製造方法と基本的に同様の構成を備えるが、2回目の第1アニール工程(S20)でのレーザ光の遅延時間td2が1回目の第1アニール工程(S20)でのレーザ光の遅延時間td1と異なる点で、実施の形態1に係る半導体装置の製造方法とは異なる。以下では、実施の形態1と異なる点を主に説明する。
Embodiment 5.
As shown in FIG. 11, the method for manufacturing the semiconductor device according to the fifth embodiment has basically the same configuration as the method for manufacturing the semiconductor device according to the first embodiment, but the second first annealing step is performed. This method is different from the semiconductor device manufacturing method according to the first embodiment in that the delay time td2 of the laser light in (S20) is different from the delay time td1 of the laser light in the first annealing step (S20). Differences from the first embodiment will be mainly described below.
 1回目の第1アニール工程(S20)に用いられるレーザ光は、第1レーザ発振器40から出力された第1パルスレーザ光と、第1パルスレーザ光が第1レーザ発振器40から出力されてから遅延時間td1が経過した後に第2レーザ発振器から出力された第2のパルスレーザ光とが結合されることにより生成される。2回目の第1アニール工程(S20)に用いられるレーザ光は、第1レーザ発振器40から出力された第1パルスレーザ光と、第1パルスレーザ光が第1レーザ発振器40から出力されてから遅延時間td2が経過した後に第2レーザ発振器から出力された第2のパルスレーザ光とが結合されることにより生成される。本実施の形態では、2回目の第1アニール工程(S20)でのレーザ光の遅延時間td2は、1回目の第1アニール工程(S20)でのレーザ光の遅延時間td1と異なる。 The laser beams used in the first annealing step (S20) for the first time are the first pulsed laser beam output from the first laser oscillator 40 and the first pulsed laser beam output from the first laser oscillator 40 with a delay. After the elapse of time td1, it is generated by being coupled with the second pulsed laser beam output from the second laser oscillator. The laser beams used in the second first annealing step (S20) are the first pulsed laser beam output from the first laser oscillator 40 and the delay after the first pulsed laser beam is output from the first laser oscillator 40. After the elapse of time td2, it is generated by being coupled with the second pulsed laser beam output from the second laser oscillator. In the present embodiment, the laser light delay time td2 in the second first annealing step (S20) is different from the laser light delay time td1 in the first first annealing step (S20).
 2回目の第1アニール工程(S20)でのレーザ光の遅延時間td2は、1回目の第1アニール工程(S20)でのレーザ光の遅延時間td1よりも長くてもよい。 The laser light delay time td2 in the second first annealing step (S20) may be longer than the laser light delay time td1 in the first first annealing step (S20).
 レーザ光の遅延時間が短いほど不純物領域を活性化しやすくなる場合、好ましくは、2回目の第1アニール工程(S20)でのレーザ光の遅延時間td2は1回目の第1アニール工程(S20)でのレーザ光の遅延時間td1よりも長い。 If the shorter the delay time of the laser light, the easier it is to activate the impurity region, preferably the delay time td2 of the laser light in the second first annealing step (S20) is set to is longer than the delay time td1 of the laser light.
 2回目の第1アニール工程(S20)でのレーザ光の強度は、1回目の第1アニール工程(S20)でのレーザ光の強度以下である。2回目の第1アニール工程(S20)でのレーザ光の強度は、1回目の第1アニール工程(S20)でのレーザ光の強度と同等であってもよい。 The intensity of the laser beam in the second first annealing step (S20) is less than or equal to the intensity of the laser beam in the first first annealing step (S20). The intensity of the laser light in the second first annealing step (S20) may be the same as the intensity of the laser light in the first first annealing step (S20).
 例えば、1回目及び2回目の各第1アニール工程(S20)でのレーザ光の強度が互いに等しく、さらにレーザ光の遅延時間が短いほど不純物領域を活性化しやすくなる場合、2回目の第1アニール工程(S20)でのレーザ光の遅延時間td2が1回目の第1アニール工程(S20)でのレーザ光の遅延時間td1よりも長くても、第1不純物領域は十分に活性化され得る。これは、1回目の第1アニール工程(S20)により、半導体基板1がアモルファスとなると、半導体基板1はレーザ光を吸収しやすくなるためである。さらに上記の場合、1回目及び2回目の各第1アニール工程(S20)でのレーザ光の強度及び遅延時間のそれぞれが同等である場合と比べて、2回目の第1アニール工程(S20)時に、第2面1Bの到達温度が相対的に低温となり、第2面1B上に形成されている保護膜などの構造体が変質しにくい。 For example, when the intensity of the laser light in the first and second first annealing steps (S20) is equal to each other, and the shorter the delay time of the laser light, the easier it is to activate the impurity region, the second first annealing Even if the laser light delay time td2 in the step (S20) is longer than the laser light delay time td1 in the first annealing step (S20), the first impurity region can be sufficiently activated. This is because when the semiconductor substrate 1 becomes amorphous by the first annealing step (S20), the semiconductor substrate 1 easily absorbs the laser light. Furthermore, in the above case, compared to the case where the intensity and delay time of the laser light are the same in the first and second first annealing steps (S20), the second first annealing step (S20) , the temperature reached by the second surface 1B becomes relatively low, and the structure such as the protective film formed on the second surface 1B is less likely to deteriorate.
 なお、本実施の形態においても、2回目の第1アニール工程(S20)でのレーザ光の強度は、1回目の第1アニール工程(S20)でのレーザ光の強度よりも低くてもよい。 Also in this embodiment, the intensity of the laser light in the second first annealing step (S20) may be lower than the intensity of the laser light in the first first annealing step (S20).
 以上のように本開示の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本開示の範囲は上述の実施の形態に限定されるものではない。本開示の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 Although the embodiment of the present disclosure has been described as above, it is also possible to modify the above-described embodiment in various ways. Also, the scope of the present disclosure is not limited to the above-described embodiments. The scope of the present disclosure is indicated by the claims, and is intended to include all changes within the meaning and range of equivalents to the claims.
 1 半導体基板、1A 第1面、1B 第2面、2 n-型ドリフト層、3 p型ベース層、4 p+型コンタクト層、5 n+型エミッタ層、6 ゲート絶縁膜、7 ゲート電極、8 n型バッファ層、9 p型コレクタ層、10 層間絶縁膜、11 バリアメタル、12 プラグ、13 第2電極、13A エミッタ電極、13B 電極、14 第1電極、14A コレクタ電極、14B カソード電極、15 p型アノード層、16 p+型アノード層、17 ダミーゲート電極、18 n+型カソード層、30 光学系、31 保持部、32 走査部、33 制御部、40 第1レーザ発振器、41 第2レーザ発振器、42 ミラー、43 結合光学系、44 ビームホモジナイザ、45 集光レンズ、101 半導体装置、101A IGBT領域、101B FWD領域、200 レーザアニール装置。 1 semiconductor substrate, 1A first surface, 1B second surface, 2 n− type drift layer, 3 p type base layer, 4 p + type contact layer, 5 n + type emitter layer, 6 gate insulating film, 7 gate electrode, 8 n type buffer layer, 9 p-type collector layer, 10 interlayer insulating film, 11 barrier metal, 12 plug, 13 second electrode, 13A emitter electrode, 13B electrode, 14 first electrode, 14A collector electrode, 14B cathode electrode, 15 p-type Anode layer, 16 p+ type anode layer, 17 dummy gate electrode, 18 n+ type cathode layer, 30 optical system, 31 holding section, 32 scanning section, 33 control section, 40 first laser oscillator, 41 second laser oscillator, 42 mirror , 43 coupling optical system, 44 beam homogenizer, 45 condenser lens, 101 semiconductor device, 101A IGBT region, 101B FWD region, 200 laser annealing device.

Claims (9)

  1.  第1方向および前記第1方向と直交する第2方向に沿って延びている第1面を有し、第1不純物領域が形成されている半導体基板を準備する工程と、
     光学系から出射されたレーザ光を前記第1面に照射して、前記第1不純物領域をアニールする第1アニール工程とを備え、
     前記レーザ光が前記第1面に形成するビームスポットの前記第1方向の第1幅は、前記ビームスポットの前記第2方向の第2幅よりも狭く、
     前記第1面は、前記第1方向および前記第2方向の少なくともいずれかに並んで配置されており、かつ前記第1方向に前記第1幅を有しかつ前記第2方向に前記第2幅を有する複数の領域を有し、
     前記第1アニール工程では、
     前記複数の領域のうちの1つの領域に前記ビームスポットを形成する照射工程が複数回行われ、
     前記複数回の照射工程の各々の間に、前記光学系に対して前記第1面を前記第1方向に前記第1幅だけ走査する第1工程と、前記第1工程完了後に前記光学系に対して前記第1面を前記第2方向に前記第2幅だけ走査する第2工程が行われる、半導体装置の製造方法。
    preparing a semiconductor substrate having a first surface extending along a first direction and a second direction orthogonal to the first direction and having a first impurity region formed thereon;
    a first annealing step of irradiating the first surface with a laser beam emitted from an optical system to anneal the first impurity region;
    a first width in the first direction of the beam spot formed on the first surface by the laser light is narrower than a second width in the second direction of the beam spot;
    The first surfaces are arranged side by side in at least one of the first direction and the second direction, and have the first width in the first direction and the second width in the second direction. having a plurality of regions with
    In the first annealing step,
    The irradiation step of forming the beam spot in one of the plurality of regions is performed multiple times,
    Between each of the plurality of irradiation steps, a first step of scanning the first surface in the first direction with respect to the optical system by the first width, and after the completion of the first step, the optical system A method of manufacturing a semiconductor device, wherein a second step of scanning the first surface by the second width in the second direction is performed.
  2.  前記複数の領域は、前記第1方向に並んで配置されている第1群の領域と、前記第1方向に並んで配置されており、かつ前記第2方向に前記第1群の領域と並んで配置されている第2群の領域とを含み、
     前記複数回の照射工程は、前記第1群の領域のうちの1つの領域に前記ビームスポットを形成する第1群の照射工程と、前記第2群の領域のうちの1つの領域に前記ビームスポットを形成する第2群の照射工程とを含み、
     前記第1アニール工程では、前記第1群の照射工程の各々が前記第1工程を挟んで繰り返し行われ、前記ビームスポットが前記第1群の領域のうち前記第1方向の第1端から第2端まで順次形成され、
     その後、前記第2工程が行われ、
     その後、前記第2群の照射工程の各々が前記光学系に対して前記第1面を前記第1方向とは逆方向に前記第1幅だけ走査する第3工程を挟んで行われ、前記ビームスポットが前記第2群の領域のうち前記第1方向の第3端から第4端まで順次形成される、請求項1に記載の半導体装置の製造方法。
    The plurality of regions includes a first group of regions arranged side by side in the first direction and a first group of regions arranged side by side in the first direction and arranged side by side with the first group of regions in the second direction. and a second group of regions arranged in
    The plurality of irradiation steps include a first group irradiation step of forming the beam spot in one region of the first group of regions, and a first group of irradiation steps of forming the beam spot in one region of the second group of regions. A second group of irradiation steps for forming a spot,
    In the first annealing step, each of the irradiation steps of the first group is repeatedly performed with the first step interposed therebetween, and the beam spot is radiated from the first end in the first direction to the first portion of the region of the first group. are formed sequentially up to two ends,
    After that, the second step is performed,
    Thereafter, each of the irradiation steps of the second group is performed with a third step of scanning the first surface by the first width in a direction opposite to the first direction with respect to the optical system. 2. The method of manufacturing a semiconductor device according to claim 1, wherein spots are sequentially formed in said second group of regions from a third end to a fourth end in said first direction.
  3.  前記第1アニール工程では、前記複数回の照射工程のうちの1つの前記照射工程にて形成される前記ビームスポットが、直前に行われた前記照射工程にて前記ビームスポットが形成された領域と接するように形成される、請求項1または2に記載の半導体装置の製造方法。 In the first annealing step, the beam spot formed in one irradiation step of the plurality of irradiation steps is the same as the region where the beam spot was formed in the immediately preceding irradiation step. 3. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is formed so as to be in contact with each other.
  4.  前記第1アニール工程が2回繰り返し行われ、
     2回目の前記第1アニール工程での前記レーザ光の強度は、1回目の前記第1アニール工程での前記レーザ光の強度以下である、請求項2または請求項3に記載の半導体装置の製造方法。
    The first annealing step is repeated twice,
    4. The manufacturing of the semiconductor device according to claim 2, wherein the intensity of said laser light in said first annealing step for a second time is equal to or less than the intensity of said laser light in said first annealing step for a first time. Method.
  5.  前記第1アニール工程が3回繰り返し行われ、
     3回目の前記第1アニール工程での前記レーザ光の強度は、前記2回目の第1アニール工程での前記レーザ光の強度以下である、請求項4に記載の半導体装置の製造方法。
    The first annealing step is repeated three times,
    5. The method of manufacturing a semiconductor device according to claim 4, wherein the intensity of said laser light in said first annealing step for a third time is equal to or less than the intensity of said laser light in said first annealing step for said second time.
  6.  前記第1アニール工程が2回繰り返し行われ、
     2回目の前記第1アニール工程での前記レーザ光の遅延時間は、1回目の前記第1アニール工程での前記レーザ光の遅延時間とは異なる、請求項2または請求項3に記載の半導体装置の製造方法。
    The first annealing step is repeated twice,
    4. The semiconductor device according to claim 2, wherein the delay time of said laser light in said first annealing step for a second time is different from the delay time of said laser light in said first annealing step for a first time. manufacturing method.
  7.  前記準備する工程では、第2不純物領域がさらに形成されている前記半導体基板が準備され、
     前記レーザ光を前記第2不純物領域に照射して、前記第2不純物領域をアニールする第2アニール工程をさらに備え、
     前記第2アニール工程では、
     前記複数回の照射工程と、
     前記複数回の照射工程の各々の間に、前記第1工程、または前記第2工程が行われ、
     前記第2アニール工程が複数回繰り返し行われ、
     2回目の前記第2アニール工程での前記レーザ光の強度は、1回目の前記第2アニール工程での前記レーザ光の強度以下である、請求項1~6のいずれか1項に記載の半導体装置の製造方法。
    In the preparing step, the semiconductor substrate further formed with a second impurity region is prepared;
    further comprising a second annealing step of irradiating the second impurity region with the laser light to anneal the second impurity region;
    In the second annealing step,
    The multiple irradiation steps;
    Between each of the plurality of irradiation steps, the first step or the second step is performed,
    The second annealing step is repeated multiple times,
    7. The semiconductor according to claim 1, wherein the intensity of said laser light in said second annealing step for a second time is equal to or less than the intensity of said laser light in said second annealing step for a first time. Method of manufacturing the device.
  8.  前記準備する工程では、前記第1面とは反対側に位置する第2面を有する前記半導体基板が準備され、
     前記準備する工程後、前記第1アニール工程前に、前記第2面上を保護する保護膜を形成する工程と、
     前記第1不純物領域をアニールした後に、前記保護膜を除去する工程とをさらに備え、
     前記第1アニール工程での前記保護膜の到達温度は、前記保護膜の耐熱温度未満である、請求項1~7のいずれか1項に記載の半導体装置の製造方法。
    In the preparing step, the semiconductor substrate having a second surface opposite to the first surface is prepared;
    forming a protective film for protecting the second surface after the preparing step and before the first annealing step;
    removing the protective film after annealing the first impurity region;
    8. The method of manufacturing a semiconductor device according to claim 1, wherein the temperature reached by said protective film in said first annealing step is lower than the heat resistance temperature of said protective film.
  9.  第1方向および前記第1方向と直交する第2方向に沿って延びている第1面を有し、第1不純物領域が形成されている半導体基板を保持する保持部と、
     前記保持部に保持された前記半導体基板の前記第1面にレーザ光を照射し、前記第1方向および前記第2方向の少なくともいずれかに並んで配置された前記第1面の複数の領域のうちの1つの領域にビームスポットを形成する光学系と、
     前記半導体基板および前記光学系の一方を他方に対して走査する走査部とを備え、
     前記光学系は、前記第1方向の第1幅が前記第2方向の第2幅よりも狭い前記ビームスポットを前記第1面に形成するように設けられており、
     前記走査部は、前記光学系が1つの前記ビームスポットを形成した後前記光学系に対して前記第1面を前記第1方向に前記第1幅だけ走査し、前記光学系に対して前記第1面を前記第1方向に前記第1幅だけ走査した後前記第1面を前記光学系に対して前記第1面を前記第2方向に前記第2幅だけ走査する、レーザアニール装置。
    a holding portion for holding a semiconductor substrate having a first surface extending along a first direction and a second direction orthogonal to the first direction and having a first impurity region formed thereon;
    irradiating the first surface of the semiconductor substrate held by the holding portion with a laser beam to irradiate a plurality of regions of the first surface arranged side by side in at least one of the first direction and the second direction; an optical system that forms a beam spot in one region of the
    a scanning unit that scans one of the semiconductor substrate and the optical system with respect to the other;
    The optical system is provided so as to form the beam spot on the first surface, wherein a first width in the first direction is narrower than a second width in the second direction,
    The scanning unit scans the first surface in the first direction with respect to the optical system by the first width after the optical system forms one beam spot, and scans the optical system with the first width. A laser annealing apparatus, wherein after scanning one surface by the first width in the first direction, the first surface is scanned by the second width in the second direction with respect to the optical system.
PCT/JP2022/020813 2021-05-21 2022-05-19 Semiconductor device manufacturing method and laser annealing device WO2022244837A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023522713A JPWO2022244837A1 (en) 2021-05-21 2022-05-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021086027 2021-05-21
JP2021-086027 2021-05-21

Publications (1)

Publication Number Publication Date
WO2022244837A1 true WO2022244837A1 (en) 2022-11-24

Family

ID=84141677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020813 WO2022244837A1 (en) 2021-05-21 2022-05-19 Semiconductor device manufacturing method and laser annealing device

Country Status (2)

Country Link
JP (1) JPWO2022244837A1 (en)
WO (1) WO2022244837A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044136A (en) * 1999-08-02 2001-02-16 Sumitomo Heavy Ind Ltd Precision laser beam irradiation apparatus and control method
JP2003045820A (en) * 2001-07-30 2003-02-14 Semiconductor Energy Lab Co Ltd Laser irradiation apparatus, and method, and method of manufacturing semiconductor device
JP2012044046A (en) * 2010-08-20 2012-03-01 Sumitomo Heavy Ind Ltd Apparatus and method for laser annealing
JP2012134228A (en) * 2010-12-20 2012-07-12 Sumitomo Heavy Ind Ltd Laser annealing method and laser annealing device
WO2019116826A1 (en) * 2017-12-15 2019-06-20 住友重機械工業株式会社 Chuck plate, annealing device, and annealing method
WO2019244665A1 (en) * 2018-06-22 2019-12-26 住友重機械工業株式会社 Laser annealing method for semiconductor device, semiconductor device, laser annealing method, control device for laser annealing device, and laser annealing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044136A (en) * 1999-08-02 2001-02-16 Sumitomo Heavy Ind Ltd Precision laser beam irradiation apparatus and control method
JP2003045820A (en) * 2001-07-30 2003-02-14 Semiconductor Energy Lab Co Ltd Laser irradiation apparatus, and method, and method of manufacturing semiconductor device
JP2012044046A (en) * 2010-08-20 2012-03-01 Sumitomo Heavy Ind Ltd Apparatus and method for laser annealing
JP2012134228A (en) * 2010-12-20 2012-07-12 Sumitomo Heavy Ind Ltd Laser annealing method and laser annealing device
WO2019116826A1 (en) * 2017-12-15 2019-06-20 住友重機械工業株式会社 Chuck plate, annealing device, and annealing method
WO2019244665A1 (en) * 2018-06-22 2019-12-26 住友重機械工業株式会社 Laser annealing method for semiconductor device, semiconductor device, laser annealing method, control device for laser annealing device, and laser annealing device

Also Published As

Publication number Publication date
JPWO2022244837A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
US7943534B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing system
EP2360717B1 (en) Method for producing a semiconductor device using laser annealing for selectively activating implanted dopants
EP2657958B1 (en) Method of manufacturing semiconductor device
JP2007123300A (en) Method for activating impurities, laser annealer, semiconductor device and method for fabricating same
CN102741982B (en) Process for production of semiconductor element
JP2010171057A (en) Semiconductor device, and method of manufacturing the same
JP2006351659A (en) Method of manufacturing semiconductor device
US9632320B2 (en) Laser irradiation device
JP5668270B2 (en) Manufacturing method of semiconductor device
US8809130B2 (en) Reverse block-type insulated gate bipolar transistor manufacturing method
JP6320799B2 (en) Manufacturing method of semiconductor device
WO2022244837A1 (en) Semiconductor device manufacturing method and laser annealing device
US20210111026A1 (en) Laser annealing method for semiconductor device, semiconductor device, laser annealing method, control device of laser annealing apparatus, and laser annealing apparatus
JP5201305B2 (en) Manufacturing method of semiconductor device
JP5751128B2 (en) Manufacturing method of semiconductor device
JP2006059876A (en) Manufacturing method of semiconductor element
US8853009B2 (en) Method for manufacturing reverse-blocking semiconductor element
JP2014195004A (en) Process of manufacturing semiconductor element and manufacturing apparatus of semiconductor element
JPWO2018179798A1 (en) Semiconductor device manufacturing method
JP6143591B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JP2013065790A (en) Semiconductor device manufacturing method
JP6215099B2 (en) Method for manufacturing mesa semiconductor device and mesa semiconductor device
JP2023023917A (en) Method for manufacturing semiconductor device
JP2020027871A (en) Semiconductor element, manufacturing method therefor, and semiconductor device
JP2009206171A (en) Photodiode array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023522713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804746

Country of ref document: EP

Kind code of ref document: A1