WO2022244206A1 - 測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及び非一時的なコンピュータ可読媒体 - Google Patents

測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及び非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2022244206A1
WO2022244206A1 PCT/JP2021/019226 JP2021019226W WO2022244206A1 WO 2022244206 A1 WO2022244206 A1 WO 2022244206A1 JP 2021019226 W JP2021019226 W JP 2021019226W WO 2022244206 A1 WO2022244206 A1 WO 2022244206A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
dimensional data
measured
equipment
policy
Prior art date
Application number
PCT/JP2021/019226
Other languages
English (en)
French (fr)
Inventor
聡 辻
善将 小野
次朗 安倍
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2023522135A priority Critical patent/JPWO2022244206A5/ja
Priority to PCT/JP2021/019226 priority patent/WO2022244206A1/ja
Publication of WO2022244206A1 publication Critical patent/WO2022244206A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the present invention relates to a measurement condition optimization system, a three-dimensional data measurement system, a measurement condition optimization method, and a non-transitory computer-readable medium.
  • Patent Literature 1 discloses a technology related to an inspection planning support system that can appropriately collect data on structures to be inspected and detect locations requiring inspection by appropriate and simple means.
  • Japanese Patent Application Laid-Open No. 2002-200003 discloses a technique for reducing the user's work by easily selecting a suitable image when selecting an image for a predetermined use from a group of images captured by a camera. disclosed.
  • a three-dimensional distance sensor such as LIDAR is mounted on an autonomous mobile means and made to patrol, acquire three-dimensional data of social infrastructure facilities, and use the acquired three-dimensional data to determine the facilities in the facility.
  • Technology for automatic inspection has been developed.
  • An object of the present disclosure is to provide a measurement condition optimization system, a three-dimensional data measurement system, and a measurement condition that can optimize measurement conditions when measuring three-dimensional data of equipment to be measured in a facility using a measurement device.
  • An optimization method and a non-transitory computer-readable medium are provided.
  • a measurement condition optimization system includes a three-dimensional data input unit for inputting three-dimensional data of equipment to be measured in a predetermined facility, measured under predetermined measurement conditions using a measuring device; an overlapping portion determination unit that performs alignment processing on each of the input three-dimensional data and determines an overlapping portion included in the three-dimensional data after the alignment processing; a measurement policy acquisition unit that acquires a measurement policy when acquiring three-dimensional data of equipment to be measured; and a measurement condition adjustment unit that adjusts the measurement conditions so that overlapping portions included in the three-dimensional data are reduced.
  • a three-dimensional data measurement system includes the above-described measurement condition optimization system and a measurement device that acquires three-dimensional data of the equipment to be measured in the facility, wherein the measurement device: Three-dimensional data of the equipment to be measured in the facility is newly acquired using the measurement conditions adjusted by the measurement condition adjustment unit.
  • a method for optimizing measurement conditions includes inputting three-dimensional data of equipment to be measured in a predetermined facility measured under predetermined measurement conditions using a measuring device, and obtaining the input three-dimensional data Alignment processing is performed for each of the above, overlapping portions included in the three-dimensional data after the alignment processing are determined, and three-dimensional data of the equipment to be measured in the facility is obtained using the measuring device.
  • a current measurement policy is acquired, and the measurement conditions are adjusted so as to satisfy the acquired measurement policy and to reduce overlapping portions included in the three-dimensional data determined to be overlapping portions.
  • a non-transitory computer-readable medium includes a process of inputting three-dimensional data of a facility to be measured in a predetermined facility, which is measured under predetermined measurement conditions using a measuring device; performing alignment processing on each of the three-dimensional data obtained by the alignment processing, determining overlapping portions included in the three-dimensional data after the alignment processing; a process of acquiring a measurement policy when acquiring three-dimensional data; and a process of satisfying the acquired measurement policy and reducing overlapping portions included in the three-dimensional data determined to be overlapping portions, and a process for adjusting the measurement conditions.
  • a measurement condition optimization system a three-dimensional data measurement system, and a measurement condition optimization that can optimize measurement conditions when acquiring three-dimensional data of equipment to be measured in a facility using a measurement device
  • a method and non-transitory computer-readable medium can be provided.
  • FIG. 1 is a block diagram showing a configuration example of a measurement condition optimization system according to Embodiment 1;
  • FIG. FIG. 2 is a plan view for explaining an example of a patrol route when measuring equipment to be measured in a facility using a measuring device;
  • FIG. 7 is a diagram for explaining overlapping portion determination processing of the measurement condition optimization system according to the first embodiment;
  • 4 is a flow chart for explaining the operation of the measurement condition optimization system according to the first embodiment;
  • FIG. 5 is a diagram for explaining an example of measurement condition optimization processing;
  • FIG. 9 is a diagram for explaining another example of measurement condition optimization processing;
  • FIG. 9 is a diagram for explaining another example of measurement condition optimization processing;
  • FIG. 2 is a block diagram showing a configuration example of a three-dimensional data measurement system according to a second embodiment;
  • FIG. 11 is a block diagram showing a configuration example of a three-dimensional data measurement system according to a third embodiment
  • FIG. 1 is a block diagram showing a hardware configuration example including a measurement condition optimization system and a three-dimensional data measurement system according to the present disclosure
  • FIG. 1 is a block diagram showing a configuration example of a measurement condition optimization system according to a first embodiment.
  • the measurement condition optimization system 1 according to the present embodiment includes a three-dimensional data input section 11, an overlapping part determination section 12, a measurement policy acquisition section 13, and a measurement condition adjustment section .
  • the measurement condition optimization system 1 according to the present embodiment is, for example, a system that optimizes the measurement conditions of the measurement device when the measurement device is made to tour and three-dimensional data of a predetermined facility such as a social infrastructure facility is acquired. is.
  • the measuring device is a device in which a three-dimensional distance sensor such as LIDAR is mounted on autonomous moving means.
  • a three-dimensional distance sensor such as LIDAR
  • autonomously movable vehicles equipped with LIDAR autonomously movable drones equipped with LIDAR
  • autonomously movable robots equipped with LIDAR autonomously movable robots equipped with LIDAR.
  • the measuring device is not limited to these, and any device having a three-dimensional distance sensor mounted on an autonomous moving means may be used.
  • FIG. 2 is a plan view for explaining an example of a patrol route when measuring equipment to be measured in a facility using a measuring device.
  • a predetermined facility 20 in a predetermined facility 20, facilities 21 to 23 to be measured are provided.
  • the predetermined facilities 20 are social infrastructure facilities such as power plants and substations.
  • the facilities 21 to 23 to be measured are transformers, insulators, steel structures, lead wires, and the like.
  • a measuring device 15 is also provided in the facility 20 .
  • the measuring device 15 can sequentially acquire three-dimensional data of the equipment to be measured 21 to 23 in the facility 20 by moving along the patrol route 25 shown in FIG. Note that the scope of application of the present disclosure is not limited to social infrastructure facilities such as power plants and substations, and can be applied to optimization of measurement conditions for equipment in all other facilities.
  • Three-dimensional data of the equipment to be measured 21 to 23 in the predetermined facility 20 can be acquired by measuring the equipment to be measured 21 to 23 under predetermined measurement conditions using the measuring device 15 .
  • the measurement conditions at this time are the measurement conditions before optimization, and can be arbitrary measurement conditions.
  • the measurement conditions may be such that the three-dimensional data of all the equipment to be measured 21 to 23 in the facility 20 can be obtained without omission (that is, the measurement conditions are provided with a large number of measurement positions).
  • three-dimensional data is, for example, point cloud data, three-dimensional CAD data, and the like.
  • point cloud data can be acquired using a three-dimensional distance sensor such as LIDAR, and three mutually orthogonal axes (XYZ coordinates, distance, azimuth angle, elevation It is a group of data on an axis such as an angle).
  • the point cloud data which is three-dimensional data, includes at least shape data (typically XYZ coordinates) of the facility to be measured, and may also include incidental information such as brightness information.
  • the three-dimensional data input unit 11 inputs three-dimensional data measured by the measuring device 15 .
  • the three-dimensional data input unit 11 may be a storage device that inputs and holds three-dimensional data measured by the measuring device 15 .
  • the overlapping portion determination unit 12 shown in FIG. 1 performs alignment processing on each of the three-dimensional data input to the three-dimensional data input unit 11, and determines the overlapping portions included in the three-dimensional data after the alignment processing. judge. For example, if point groups included in three-dimensional data acquired at adjacent measurement positions in the three-dimensional data after alignment processing are adjacent to each other, the overlapping portion determining unit 12 You may determine the part containing the point cloud which is made as an overlapping part.
  • FIG. 3 is a diagram for explaining overlapping part determination processing of the measurement condition optimization system according to the present embodiment.
  • FIG. 3 shows an example in which the overlapping portion determination process is performed on each of two pieces of three-dimensional data 31 and 32 .
  • the two three-dimensional data 31 and 32 are three-dimensional data measured at different measurement positions (for example, measurement positions P1 and P2 in FIG. 5).
  • the three-dimensional data 31 includes a point group 41
  • the three-dimensional data 32 includes a point group 42.
  • Each point group 41, 42 represents the characteristic points of the equipment to be measured.
  • the example shown in FIG. 3 shows the state after performing the alignment process on each of the three-dimensional data 31 and 32 .
  • the measurement range 35 of the three-dimensional data 31 and the measurement range 36 of the three-dimensional data 32 have an overlapping portion 37 that overlaps with each other. In the overlapping portion 37, there is a portion 43 where the point group 41 of the three-dimensional data 31 and the point group 42 of the three-dimensional data 32 are adjacent to each other.
  • the overlapping portion determination unit 12 thus detects a portion 43 where the point group 41 of the three-dimensional data 31 and the point group 42 of the three-dimensional data 32 are adjacent to each other, and determines that the point groups 41 and 42 are adjacent to each other.
  • a portion including the portion 43 where the overlap is determined as the overlapping portion 37 .
  • the point 43 where the point group 41 of the three-dimensional data 31 and the point group 42 of the three-dimensional data 32 are adjacent to each other correspond to the point group expressing the same characteristic point of the facility to be measured.
  • the overlapping portion determination unit 12 may use the information of the point groups 41 and 42 in the overlapping portion 37 to calculate the measurement position/beam direction when acquiring each of the point groups 41 and 42 . That is, based on the information of each of the point groups 41 and 42, the overlapping portion determination unit 12 calculates information on the measurement position and beam direction of the measuring device 15 used to acquire the point groups 41 and 42. may
  • the overlapping part determination unit 12 further calculates the orientation of the surface of the equipment to be measured on which the beam (the beam irradiated from the LIDAR) is incident using three-dimensional data, and irradiates the calculated surface orientation and the beam
  • the angle of incidence of the beam incident on the equipment to be measured may be calculated using the coordinates of the measured position.
  • the overlapping portion determination unit 12 uses the three-dimensional data (point cloud data) to calculate the orientation of the surface of the facility to be measured with respect to the measurement position (LIDAR position). Then, the overlapping part determination unit 12 uses the calculated orientation of the surface of the equipment to be measured and the coordinates of the measurement position (position of LIDAR) to calculate the incident angle of the beam incident on the equipment to be measured. can be done.
  • the measurement policy acquisition unit 13 shown in FIG. 1 acquires the measurement policy when acquiring the three-dimensional data of the equipment to be measured 21 to 23 in the facility 20 using the measurement device 15 .
  • the measurement policy includes the range of incident angles of the beams incident on the equipment to be measured 21 to 23, the resolution to be satisfied by the three-dimensional data measured by the measuring device 15, and the like.
  • the measurement policy acquisition unit 13 may acquire information about the measurement policy input by the user using the input unit 160 (see FIG. 10). Alternatively, the measurement policy acquisition unit 13 may store information regarding the measurement policy in advance. Note that the measurement policy may be set for each of the equipment to be measured 21 to 23, or may be set for the equipment to be measured 21 to 23 in the facility 20 collectively.
  • the measurement condition adjusting unit 14 shown in FIG. 1 satisfies the measurement policy acquired by the measurement policy acquiring unit 13 and reduces the overlapping portion included in the three-dimensional data determined by the overlapping portion determining unit 12. to adjust the measurement conditions.
  • the measurement condition adjusting unit 14 inputs information about the overlapping portion included in the three-dimensional data determined by the overlapping portion determining unit 12 and information about the measurement policy acquired by the measurement policy acquiring unit 13 .
  • the measurement condition adjustment unit 14 adjusts the measurement conditions such as the measurement position, measurement range, and resolution of the measurement device 15 based on the input information about the overlapping portion and information about the measurement policy.
  • the measurement condition adjustment unit 14 adjusts the measurement conditions of the measurement device 15 so as to reduce overlapping portions included in the three-dimensional data.
  • the measurement policy includes the range of the incident angle of the beam incident on the equipment to be measured
  • the measurement conditions of the measuring device 15 include the conditions under which the measuring device 15 acquires three-dimensional data of the equipment to be measured. Includes measurement range.
  • the measurement condition adjustment unit 14 adjusts the measurement apparatus so that the range of the incident angle of the beam incident on the equipment to be measured falls within the range of the measurement policy, and so that overlapping portions included in the three-dimensional data are reduced. Adjust 15 measurement ranges.
  • the measurement conditions may include the measurement position when the measurement device 15 acquires the three-dimensional data of the facility to be measured.
  • the measurement condition adjustment unit 14 may adjust the measurement position of the measurement device 15 so as to satisfy the measurement policy and reduce overlapping portions included in the three-dimensional data.
  • the measurement policy may include the resolution that the three-dimensional data measured by the measurement device 15 should satisfy.
  • the measurement condition adjustment unit 14 adjusts the measurement device 15 so that the resolution of the three-dimensional data measured by the measurement device 15 satisfies the measurement policy and that overlapping portions included in the three-dimensional data are reduced. Measurement conditions may be adjusted.
  • the overlapping portion may be reduced so that the area of the overlapping portion 37 in the measurement range 35 of the three-dimensional data 31 is less than or equal to a predetermined ratio (for example, less than or equal to 5%).
  • overlapping portions may be reduced so that the data size of the entire three-dimensional data is equal to or less than a predetermined data size. In this embodiment, it is preferable that the overlapping portion is as small as possible, and it is most preferable that there is no overlapping portion.
  • adjusting the measurement conditions of the measurement device 15 so as to reduce overlapping portions included in the three-dimensional data will be described later.
  • FIG. 4 is a flowchart for explaining the operation of the measurement condition optimization system according to this embodiment.
  • the three-dimensional data input unit 11 inputs the three-dimensional data of the equipment to be measured 21 to 23 in the predetermined facility 20 (step S1).
  • Three-dimensional data of the equipment to be measured 21 to 23 in the predetermined facility 20 can be obtained by measuring the equipment to be measured 21 to 23 (see FIG. 2) under predetermined measurement conditions using the measuring device 15. .
  • the measurement conditions at this time are the measurement conditions before optimization, and can be arbitrary measurement conditions.
  • FIG. 5 is a diagram for explaining an example of measurement condition optimization processing.
  • FIG. 5 shows a state in which the measuring device 15 moves along the patrol route 25 and acquires three-dimensional data of the facility to be measured 21 at each of the measuring positions P1 to P3.
  • the measuring device 15 is assumed to stop and measure at the measuring positions P1 to P3 when acquiring the three-dimensional data of the facility 21 to be measured. The same applies to other measurement positions.
  • the measuring device 15 acquires three-dimensional data of the equipment 21 to be measured by measuring the equipment 21 to be measured at the measurement positions P1 to P3.
  • the measurement range of the measurement device 15 at the measurement position P1 is ⁇ 1
  • the measurement range of the measurement device 15 at the measurement position P2 is ⁇ 2
  • the measurement range of the measurement device 15 at the measurement position P3 is ⁇ 3.
  • the three-dimensional data input unit 11 (see FIG. 1) inputs the three-dimensional data of the equipment to be measured 21 thus measured.
  • the overlapping portion determination unit 12 (see FIG. 1) performs alignment processing on each piece of three-dimensional data input to the three-dimensional data input unit 11, and performs alignment processing on the three-dimensional data after the alignment processing.
  • the included overlapping portion is determined (step S2).
  • the three-dimensional data of the facility to be measured 21 measured using the measuring device 15 includes overlapping portions D1 and D2.
  • the overlapping part determination unit 12 determines these overlapping parts D1 and D2.
  • the three-dimensional data measured at the measurement position P1 and the three-dimensional data measured at the measurement position P2 include the overlapping portion D1.
  • the three-dimensional data measured at the measurement position P2 and the three-dimensional data measured at the measurement position P3 include an overlapping portion D2.
  • the overlapping portion determination unit 12 determines such overlapping portions D1 and D2 included in the three-dimensional data input to the three-dimensional data input unit 11.
  • the overlapping portion determining unit 12 It is possible to determine that the portion including the point cloud that is the overlapping portion (see FIG. 3).
  • the measurement policy acquisition unit 13 acquires a measurement policy when acquiring three-dimensional data of the equipment to be measured 21 to 23 in the facility 20 using the measurement device 15 (step S3).
  • the measurement policy includes the range of incident angles of the beams incident on the equipment to be measured 21 to 23, the resolution to be satisfied by the three-dimensional data measured by the measuring device 15, and the like.
  • the measurement condition adjustment unit 14 adjusts the overlapping portion included in the three-dimensional data determined by the overlapping portion determination unit 12 so as to satisfy the measurement policy acquired by the measurement policy acquisition unit 13.
  • the measurement conditions are adjusted so as to decrease (step S4).
  • the measurement policy includes the range of the incident angle of the beam incident on the equipment to be measured
  • the measurement conditions of the measuring device 15 include the conditions under which the measuring device 15 acquires three-dimensional data of the equipment to be measured. Includes measurement range.
  • the measurement condition adjustment unit 14 adjusts the measurement apparatus so that the range of the incident angle of the beam incident on the equipment to be measured falls within the range of the measurement policy, and so that overlapping portions included in the three-dimensional data are reduced. Adjust 15 measurement ranges.
  • the measurement condition adjustment unit 14 adjusts the measurement range at the measurement position P2 from ⁇ 2 to ⁇ 2a so that the measurement range at the measurement position P1 of the measurement device 15 is from ⁇ 1 to ⁇ 1a.
  • the measurement range of the measurement device 15 is adjusted so that the measurement range at the measurement position P3 is from ⁇ 3 to ⁇ 3a.
  • the measurement ranges ⁇ 1a to ⁇ 3a may have the same angles or may have different angles. It is also assumed that the measurement range ⁇ 1a to ⁇ 3a satisfies the measurement policy acquired by the measurement policy acquisition unit 13.
  • FIG. 6 is a diagram for explaining another example of the measurement condition optimization process.
  • the measuring device 15 moves along the patrol route 25 and acquires three-dimensional data of the facility to be measured 21 at each of the measurement positions P11 to P14. .
  • the measuring device 15 acquires three-dimensional data of the equipment 21 to be measured by measuring the equipment 21 to be measured at the measurement positions P11 to P14.
  • the measurement range of the measurement device 15 at the measurement position P11 is ⁇ 11
  • the measurement range of the measurement device 15 at the measurement position P12 is ⁇ 12
  • the measurement range of the measurement device 15 at the measurement position P13 is ⁇ 13
  • the measurement range of the measurement device 15 at the measurement position P14 is The measurement range is ⁇ 14.
  • the three-dimensional data input unit 11 (see FIG. 1) inputs the three-dimensional data of the equipment to be measured 21 thus measured (step S1).
  • the overlapping portion determination unit 12 performs alignment processing on each piece of three-dimensional data input to the three-dimensional data input unit 11, and performs alignment processing on the three-dimensional data after the alignment processing.
  • the included overlapping portions D11, D12, D13 are determined (step S2). Specifically, as shown in the upper diagram of FIG. 6, the three-dimensional data measured at the measurement position P11 and the three-dimensional data measured at the measurement position P12 include an overlapping portion D11. Moreover, the three-dimensional data measured at the measurement position P12 and the three-dimensional data measured at the measurement position P13 include an overlapping portion D12. Moreover, the three-dimensional data measured at the measurement position P13 and the three-dimensional data measured at the measurement position P14 include an overlapping portion D13.
  • the overlapping portion determination section 12 determines such overlapping portions D11, D12, and D13 included in the three-dimensional data input to the three-dimensional data input section 11. FIG.
  • the measurement policy acquisition unit 13 acquires a measurement policy when acquiring three-dimensional data of the equipment to be measured 21 to 23 in the facility 20 using the measurement device 15 (step S3).
  • the measurement condition adjustment unit 14 adjusts the overlapping portion included in the three-dimensional data determined by the overlapping portion determination unit 12 so as to satisfy the measurement policy acquired by the measurement policy acquisition unit 13.
  • the measurement conditions are adjusted so as to decrease (step S4).
  • the measurement condition adjustment unit 14 adjusts the measurement positions P11 to P14 (upper diagram in FIG. 6) of the measurement device 15 to measurement positions P11a to P13a (lower diagram in FIG. 6). Further, the measurement condition adjusting unit 14 adjusts the measurement range at the measurement position P11a of the measurement device 15 to ⁇ 11a, the measurement range at the measurement position P12a to ⁇ 12a, and the measurement range at the measurement position P13a to ⁇ 13a. Then, the measuring range of the measuring device 15 is adjusted respectively.
  • the measurement ranges ⁇ 11a to ⁇ 13a may have the same angles or may have different angles.
  • the measurement condition adjustment unit 14 can reduce the overlapping portions 53 and 54 included in the three-dimensional data by adjusting the measurement position and measurement range of the measurement device 15 . Therefore, it is possible to optimize the measurement conditions when acquiring the three-dimensional data of the equipment to be measured in the facility using the measurement device 15 .
  • FIG. 7 is a diagram for explaining another example of the measurement condition optimization process.
  • the measuring device 15 moves along the patrol route 25 and acquires three-dimensional data of the equipment to be measured 21 at each of the measurement positions P21 to P24. .
  • the measuring device 15 obtains three-dimensional data of the equipment to be measured 21 by measuring the equipment to be measured 21 at the measurement positions P21 to P24.
  • the measurement range of the measurement device 15 at the measurement position P21 is ⁇ 21
  • the measurement range of the measurement device 15 at the measurement position P22 is ⁇ 22
  • the measurement range of the measurement device 15 at the measurement position P23 is ⁇ 23
  • the measurement range of the measurement device 15 at the measurement position P24 is The measurement range is ⁇ 24.
  • the three-dimensional data input unit 11 (see FIG. 1) inputs the three-dimensional data of the equipment to be measured 21 thus measured (step S1).
  • the overlapping portion determination unit 12 performs alignment processing on each piece of three-dimensional data input to the three-dimensional data input unit 11, and performs alignment processing on the three-dimensional data after the alignment processing.
  • the overlapping portions D21, D22, and D23 included are determined (step S2). Specifically, as shown in the upper diagram of FIG. 7, the three-dimensional data measured at the measurement position P21 and the three-dimensional data measured at the measurement position P22 include an overlapping portion D21. Moreover, the three-dimensional data measured at the measurement position P22 and the three-dimensional data measured at the measurement position P23 include an overlapping portion D22. Moreover, the three-dimensional data measured at the measurement position P23 and the three-dimensional data measured at the measurement position P24 include an overlapping portion D23.
  • the overlapping portion determining section 12 determines such overlapping portions D21, D22, and D23 included in the three-dimensional data input to the three-dimensional data input section 11.
  • the measurement policy acquisition unit 13 acquires a measurement policy when acquiring three-dimensional data of the equipment to be measured 21 to 23 in the facility 20 using the measurement device 15 (step S3).
  • the measurement condition adjustment unit 14 adjusts the overlapping portion included in the three-dimensional data determined by the overlapping portion determination unit 12 so as to satisfy the measurement policy acquired by the measurement policy acquisition unit 13.
  • the measurement conditions are adjusted so as to decrease (step S4).
  • the measurement condition adjustment unit 14 adjusts the measurement positions P21 to P24 (upper diagram in FIG. 7) of the measurement device 15 to measurement positions P21a to P24a (lower diagram in FIG. 7). That is, in the example shown in FIG. 7, as shown in the upper diagram of FIG. is too far away to meet the resolution requirements of the measurement policy.
  • the measurement condition adjustment unit 14 adjusts the measurement position of the measurement device 15 so that it approaches the facility 21 to be measured so as to meet the resolution requirements of the measurement policy. That is, the measurement condition adjustment unit 14 measures the measurement position of the measurement device 15 so that the distance between the measurement device 15 and the equipment to be measured 21 is d2 (d2 ⁇ d1), as shown in the lower diagram of FIG. Adjust to positions P21a to P24a. Further, the measurement condition adjustment unit 14 adjusts the measurement range at the measurement position P21a of the measurement device 15 to ⁇ 21a, the measurement range at the measurement position P22a to ⁇ 22a, and the measurement range at the measurement position P23a to ⁇ 23a. Then, the measuring range of the measuring device 15 is adjusted so that the measuring range at the measuring position P24a becomes ⁇ 24a.
  • the measurement ranges ⁇ 21a to ⁇ 24a may have the same angles or may have different angles. It is also assumed that the measurement range ⁇ 21a to ⁇ 24a satisfies the measurement policy acquired by the measurement policy acquisition unit 13. FIG. In this manner, the measurement condition adjustment unit 14 can reduce overlapping portions 55, 56, and 57 included in the three-dimensional data by adjusting the measurement position and measurement range of the measurement device 15. FIG. Therefore, it is possible to optimize the measurement conditions when acquiring the three-dimensional data of the equipment to be measured in the facility using the measurement device 15 .
  • the measurement conditions of the measurement device are optimized so as to reduce overlapping portions included in the acquired three-dimensional data.
  • the measurement time when the measurement device acquires three-dimensional data can be shortened, and the amount of acquired three-dimensional data can be reduced. can be done.
  • the measurement time of the measuring device can be shortened, the power consumption of the measuring device can be suppressed.
  • FIG. 8 is a block diagram of a configuration example of a three-dimensional data measurement system according to a second embodiment;
  • the three-dimensional data measurement system 2 according to the present embodiment includes a three-dimensional data input unit 11, an overlapping portion determination unit 12, a measurement policy acquisition unit 13, a measurement condition adjustment unit 14, and a measurement device 15.
  • a three-dimensional data measurement system 2 according to the present embodiment differs in that it includes a measurement device 15 in addition to the measurement condition optimization system 1 described in the first embodiment.
  • Other configurations and operations are the same as those described in the first embodiment, so redundant description will be omitted.
  • the measuring device 15 is configured to acquire three-dimensional data of the equipment to be measured 21 to 23 (see FIG. 2) in the facility 20. Using the measurement conditions adjusted by the measurement condition adjustment unit 14, the measurement device 15 newly acquires three-dimensional data of the equipment to be measured 21 to 23 in the facility 20. FIG. For example, after adjusting the measurement conditions, the measurement condition adjustment unit 14 supplies the adjusted measurement conditions to the measurement device 15 . Next, when the measuring device 15 moves in the facility 20 along the patrol route 25 and acquires the three-dimensional data of the equipment to be measured 21 to 23, the adjusted measurement conditions supplied from the measurement condition adjusting unit 14 are used. 3D data of the equipment to be measured 21 to 23 is acquired.
  • the measuring device 15 obtains the three-dimensional data of the equipment to be measured 21 to 23 using the adjusted measurement conditions, that is, the measurement conditions optimized so as to reduce overlapping portions included in the three-dimensional data. Get a new one. Therefore, the measurement time of the measuring device 15 can be shortened, and the amount of acquired three-dimensional data can be reduced. Furthermore, since the measurement time of the measuring device 15 can be shortened, the power consumption of the measuring device 15 can be suppressed.
  • the measuring device 15 may acquire three-dimensional data input to the three-dimensional data input unit 11 shown in FIG. That is, the measuring device 15 acquires three-dimensional data of the equipment to be measured 21 to 23 in the facility 20 under the pre-optimized measurement conditions, and supplies the acquired three-dimensional data to the three-dimensional data input unit 11. good too.
  • the measurement device 15 first acquires the three-dimensional data of all the equipment to be measured 21 to 23 in the facility 20 under measurement conditions (that is, measurement conditions with a large number of measurement positions). After that, the measuring device 15 may newly acquire three-dimensional data of the equipment to be measured 21 to 23 using the optimized measurement conditions.
  • the three-dimensional data measurement system 2 includes a three-dimensional data input unit 11, an overlapping portion determination unit 12, a measurement policy acquisition unit 13, a measurement condition adjustment unit 14, and a measurement device 15 integrated as the same device. may be configured.
  • the three-dimensional data measuring system 2 including the measuring device 15 acquires the three-dimensional data of the equipment to be measured 21-23.
  • the three-dimensional data measurement system 2 includes a three-dimensional data input unit 11, an overlapping part determination unit 12, a measurement policy acquisition unit 13, and a measurement condition adjustment unit, which are other components of the measurement device 15. 14 may be provided separately. That is, the three-dimensional data measurement system 2 according to the present embodiment includes the measurement condition optimization system 1 according to the first embodiment (see FIG. 1) and a measurement device 15 provided separately from the measurement condition optimization system 1. and may be used. In this case, the measuring device 15 acquires the three-dimensional data of the equipment to be measured 21-23.
  • FIG. 9 is a block diagram of a configuration example of a three-dimensional data measurement system according to a third embodiment.
  • the three-dimensional data measurement system 3 according to the present embodiment includes a three-dimensional data input unit 11, an overlapping part determination unit 12, a measurement policy acquisition unit 13, a measurement condition adjustment unit 14, a measurement device 15, and a coordinate transformation unit 16 .
  • a three-dimensional data measurement system 3 according to the present embodiment differs from the three-dimensional data measurement system 2 described in the second embodiment in that a coordinate conversion section 16 is provided.
  • Other configurations and operations are the same as those described in Embodiments 1 and 2, so redundant description will be omitted.
  • the coordinate conversion section 16 is configured to convert the coordinates of the three-dimensional data newly acquired by the measuring device 15. Specifically, the coordinate transformation unit 16 transforms the coordinates of the three-dimensional data newly acquired by the measuring device 15 using coordinate transformation parameters.
  • the coordinate transformation parameters used at this time are the coordinate transformation parameters used when the overlapped portion determination unit 12 performs alignment processing for each piece of three-dimensional data input to the three-dimensional data input unit 11 .
  • the overlapping part determination unit 12 uses coordinates to combine the pieces of three-dimensional data. Determine transformation parameters.
  • the overlapping part determination unit 12 outputs information about the coordinate transformation parameters determined at this time to the coordinate transformation unit 16 .
  • the coordinate transformation parameters are transformation parameters (translation, rotation) for point cloud data at each measurement position.
  • the coordinate transformation unit 16 uses the coordinate transformation parameters supplied from the overlapping part determination unit 12 to transform the coordinates of the three-dimensional data newly acquired by the measuring device 15 .
  • the measurement position of the three-dimensional data input to the three-dimensional data input unit 11 and the measurement position of the three-dimensional data newly acquired by the measuring device 15 are the same positions. That is, since the measurement position of the three-dimensional data input to the three-dimensional data input unit 11 and the measurement position of the three-dimensional data newly acquired by the measuring device 15 are the same, the coordinate conversion unit 16 uses the overlapping part determination unit The same coordinate transformation parameters as those used in 12 can be used.
  • the overlapping part determination unit 12 supplies the three-dimensional data after performing the alignment process (that is, the three-dimensional data after combination) to the coordinate conversion unit 16 .
  • the coordinate transformation unit 16 aligns the combined three-dimensional data supplied from the overlapping part determination unit 12 and the three-dimensional data newly acquired by the measurement device 15, and the measurement device 15 Coordinate transformation is performed on the newly acquired three-dimensional data, and coordinate transformation parameters are determined. After that, when new three-dimensional data is acquired using the measuring device 15, the measurement position is the same.
  • the coordinate transformation parameters thus determined can be used.
  • FIG. 10 is a block diagram for explaining a hardware configuration example including the measurement condition optimization system according to this embodiment.
  • the measurement condition optimization system according to this embodiment can be configured using an arithmetic processing unit 100 having a CPU (101) and a memory 102.
  • FIG. In the present embodiment, the measurement condition optimization system 1 can be configured by causing the CPU (101) to execute the above measurement condition optimization processing program.
  • a display unit 150 and an input unit 160 are connected to the processing unit 100 .
  • the display unit 150 is configured using a liquid crystal display, an organic EL (electro-luminescence) display, or the like.
  • the display unit 150 may display the measurement conditions of the measuring device 15, the three-dimensional data after alignment processing, the three-dimensional data of the equipment to be measured 21 to 23 measured by the measuring device 15, and the like.
  • the user may input the measurement policy and measurement conditions by operating the input unit 160 (keyboard, mouse, etc.).
  • the arithmetic processing device 100 may be configured to be able to transmit the adjusted measurement conditions (optimized measurement conditions) to the measurement device 15.
  • the measurement device 15 performs measurement based on the supplied measurement conditions after adjustment.
  • the measurement condition optimization system 1 may be provided in each facility 20. Moreover, the measurement condition optimization system 1 (arithmetic processing unit 100) may be configured as an application server. When the measurement condition optimization system 1 is configured as an application server, a plurality of users (facilities) can access the measurement condition optimization system 1 and optimize the measurement conditions of the measurement devices 15 of each facility. .
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (specifically flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (specifically magneto-optical discs), CD-ROMs (Read Only Memory ), CD-R, CD-R/W, semiconductor memory (specifically, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM)), flash ROM, and RAM (Random Access Memory).
  • the program may also be delivered to the computer on various types of transitory computer readable medium. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
  • measurement condition optimization system 2 3 three-dimensional data measurement system 11 three-dimensional data input unit 12 overlapping part determination unit 13 measurement policy acquisition unit 14 measurement condition adjustment unit 15 measurement device 16 coordinate conversion unit 20 facility 21, 22, 23 measurement Object facility 25 Patrol route 31, 32 Three-dimensional data 35, 36 Measurement range 37 Overlapping part 41, 42 Point group 100 Arithmetic processing unit 101 CPU 102 memory 150 display unit 160 input unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本開示は、測定装置を用いて施設内の測定対象設備の三次元データを測定する際の測定条件を最適化することを目的とする。本開示の一態様にかかる測定条件最適化システム(1)は、測定装置(15)を用いて測定した、所定の施設内の測定対象設備の三次元データを入力する三次元データ入力部(11)と、入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分を判定する重複部分判定部(12)と、測定装置(15)を用いて施設内の測定対象設備の三次元データを取得する際の測定ポリシーを取得する測定ポリシー取得部(13)と、測定ポリシー取得部(13)で取得した測定ポリシーを満たすように、かつ、重複部分判定部(12)で判定された三次元データに含まれる重複部分が減少するように、測定条件を調整する測定条件調整部(14)と、を備える。

Description

測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及び非一時的なコンピュータ可読媒体
 本発明は、測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及び非一時的なコンピュータ可読媒体に関する。
 近年、LIDAR(Light Detection And Ranging)等の三次元距離センサを用いて、測定対象の三次元データを取得する技術が開発されている。また、このような三次元距離センサを自律移動手段に搭載して巡回させ、社会インフラ施設の三次元データを取得し、取得した三次元データを用いて施設内の設備を自動で点検する技術が開発されている。
 特許文献1には、点検対象の構造物に関するデータを適切に収集し、要点検箇所の検出を適切に簡易な手段により行うことが可能な点検計画立案支援システムに関する技術が開示されている。特許文献2には、カメラで撮影した画像群から所定の用途のための画像を選択する際に、好適な画像を容易に選択することができ、ユーザの作業の手間を低減するための技術が開示されている。
特開2019-023901号公報 特開2020-005186号公報
 背景技術で説明したように、LIDAR等の三次元距離センサを自律移動手段に搭載して巡回させ、社会インフラ施設の三次元データを取得し、取得した三次元データを用いて施設内の設備を自動で点検する技術が開発されている。
 このような三次元データ測定システムでは、測定装置(三次元距離センサを搭載した自律移動手段)の測定条件(巡回ルート、測定位置、測定条件等)が適切に設定されていない場合、取得された三次元データに含まれる重複部分が多くなるという問題がある。このように、取得された三次元データに含まれる重複部分が多くなると、三次元データを取得するのに時間がかかり、また、取得した三次元データのデータ量が膨大になる等の問題がある。
 本開示の目的は、測定装置を用いて施設内の測定対象設備の三次元データを測定する際の測定条件を最適化することが可能な測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及び非一時的なコンピュータ可読媒体を提供することである。
 本開示の一態様にかかる測定条件最適化システムは、測定装置を用いて所定の測定条件で測定した、所定の施設内の測定対象設備の三次元データを入力する三次元データ入力部と、前記入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分を判定する重複部分判定部と、前記測定装置を用いて前記施設内の測定対象設備の三次元データを取得する際の測定ポリシーを取得する測定ポリシー取得部と、前記測定ポリシー取得部で取得した前記測定ポリシーを満たすように、かつ、前記重複部分判定部で判定された前記三次元データに含まれる重複部分が減少するように、前記測定条件を調整する測定条件調整部と、を備える。
 本開示の一態様にかかる三次元データ測定システムは、上述の測定条件最適化システムと、前記施設内の前記測定対象設備の三次元データを取得する測定装置と、を備え、前記測定装置は、前記測定条件調整部で調整された測定条件を用いて、前記施設内の前記測定対象設備の三次元データを新たに取得する。
 本開示の一態様にかかる測定条件最適化方法は、測定装置を用いて所定の測定条件で測定した、所定の施設内の測定対象設備の三次元データを入力し、前記入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分を判定し、前記測定装置を用いて前記施設内の測定対象設備の三次元データを取得する際の測定ポリシーを取得し、前記取得した測定ポリシーを満たすように、かつ、前記重複部分と判定された前記三次元データに含まれる重複部分が減少するように、前記測定条件を調整する。
 本開示の一態様にかかる非一時的なコンピュータ可読媒体は、測定装置を用いて所定の測定条件で測定した、所定の施設内の測定対象設備の三次元データを入力する処理と、前記入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分を判定する処理と、前記測定装置を用いて前記施設内の測定対象設備の三次元データを取得する際の測定ポリシーを取得する処理と、前記取得した測定ポリシーを満たすように、かつ、前記重複部分と判定された前記三次元データに含まれる重複部分が減少するように、前記測定条件を調整する処理と、を備える測定条件最適化処理をコンピュータに実行させるためのプログラムが格納された非一時的なコンピュータ可読媒体である。
 本開示により、測定装置を用いて施設内の測定対象設備の三次元データを取得する際の測定条件を最適化することが可能な測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及び非一時的なコンピュータ可読媒体を提供することができる。
実施の形態1にかかる測定条件最適化システムの構成例を示すブロック図である。 測定装置を用いて施設内の測定対象設備を測定する際の巡回ルートの一例を説明するための平面図である。 実施の形態1にかかる測定条件最適化システムの重複部分判定処理を説明するための図である。 実施の形態1にかかる測定条件最適化システムの動作を説明するためのフローチャートである。 測定条件最適化処理の一例を説明するための図である。 測定条件最適化処理の他の例を説明するための図である。 測定条件最適化処理の他の例を説明するための図である。 実施の形態2にかかる三次元データ測定システムの構成例を示すブロック図である。 実施の形態3にかかる三次元データ測定システムの構成例を示すブロック図である。 本開示にかかる測定条件最適化システム、及び三次元データ測定システムを含むハードウェア構成例を示すブロック図である。
<実施の形態1>
 以下、図面を参照して本開示の実施の形態について説明する。
 図1は、実施の形態1にかかる測定条件最適化システムの構成例を示すブロック図である。図1に示すように、本実施の形態にかかる測定条件最適化システム1は、三次元データ入力部11、重複部分判定部12、測定ポリシー取得部13、及び測定条件調整部14を備える。本実施の形態にかかる測定条件最適化システム1は、例えば、測定装置を巡回させて社会インフラ施設等の所定の施設の三次元データを取得する際の、測定装置の測定条件を最適化するシステムである。
 本実施の形態において測定装置は、LIDAR等の三次元距離センサを自律移動手段に搭載した装置である。一例を挙げると、LIDARを搭載した自律移動可能な車両、LIDARを搭載した自律移動可能なドローン、LIDARを搭載した自律移動可能なロボットなどである。なお、本実施の形態において測定装置はこれらに限定されることはなく、三次元距離センサを自律移動手段に搭載した装置であればどのような装置であってもよい。
 図2は、測定装置を用いて施設内の測定対象設備を測定する際の巡回ルートの一例を説明するための平面図である。図2に示すように、所定の施設20内には、測定対象設備21~23が設けられている。例えば、所定の施設20は発電所や変電所などの社会インフラ施設である。所定の施設20が変電所である場合、測定対象設備21~23は、変圧器、碍子、鉄構、リード線などである。また、施設20内には測定装置15が設けられている。例えば、測定装置15は、図2に示す巡回ルート25に沿って移動することで、施設20内の測定対象設備21~23の三次元データを順番に取得することができる。なお、本開示の適用範囲は、発電所や変電所などの社会インフラ施設に限定されることはなく、他のあらゆる施設の設備の測定条件の最適化に適用することができる。
 図1に示す三次元データ入力部11は、所定の施設20内の測定対象設備21~23の三次元データを入力する。所定の施設20内の測定対象設備21~23の三次元データは、測定装置15を用いて測定対象設備21~23を所定の測定条件で測定することで取得することができる。このときの測定条件は最適化する前の測定条件であり、任意の測定条件とすることができる。例えば、施設20内の測定対象設備21~23全体の三次元データを漏れなく取得できる測定条件(つまり、多めの測定位置を設けた測定条件)としてもよい。
 本実施の形態において三次元データとは、例えば、点群データや三次元CADデータ等である。例えば、点群データはLIDAR等の三次元距離センサを用いて取得することができ、施設や設備をデジタル空間上で表現するための互いに直交する三軸(XYZ座標、距離、アジマス角、エレベーション角などの軸)上のデータ群である。三次元データである点群データには、少なくとも測定対象設備の形状データ(典型的にはXYZ座標)が含まれており、更に輝度情報等の付帯情報が含まれていてもよい。
 三次元データ入力部11は、測定装置15で測定された三次元データを入力する。例えば、三次元データ入力部11は、測定装置15で測定された三次元データを入力して保持する記憶装置であってもよい。
 図1に示す重複部分判定部12は、三次元データ入力部11に入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分を判定する。例えば、重複部分判定部12は、位置合わせ処理後の三次元データのうち、互いに隣り合う測定位置の各々において取得された三次元データに含まれる点群同士が互いに隣接している場合、当該隣接している点群を含む部分を重複部分と判定してもよい。
 図3は、本実施の形態にかかる測定条件最適化システムの重複部分判定処理を説明するための図である。図3では、2つの三次元データ31、32の各々に対して重複部分判定処理を実施した場合の例を示している。なお、2つの三次元データ31、32は、各々異なる測定位置(例えば、図5の測定位置P1、P2)で測定された三次元データである。
 図3に示すように、三次元データ31には点群41が含まれており、三次元データ32には点群42が含まれている。各々の点群41、42は、測定対象設備の特徴点を示している。図3に示す例では、三次元データ31、32の各々に対して位置合わせ処理を実施した後の状態を示している。図3に示すように、三次元データ31の測定範囲35と三次元データ32の測定範囲36は、互いに重複している重複部分37が存在する。重複部分37では、三次元データ31の点群41と三次元データ32の点群42とが互いに隣接している箇所43が存在する。重複部分判定部12は、このように三次元データ31の点群41と三次元データ32の点群42とが互いに隣接している箇所43を検出し、この点群41、42が互いに隣接している箇所43を含む部分を重複部分37と判定する。つまり、三次元データ31の点群41と三次元データ32の点群42とが互いに隣接している箇所43は、測定対象設備の同じ特徴点を表現している点群に対応している。
 また、重複部分判定部12は、重複部分37における点群41、42の情報を用いることで、各々の点群41、42を取得する際の測定位置・ビーム方向を算出してもよい。つまり、重複部分判定部12は、各々の点群41、42の情報に基づいて、当該点群41、42を取得する際に用いられた測定装置15の測定位置やビーム方向の情報を算出してもよい。
 また、重複部分判定部12は更に、ビーム(LIDARから照射されたビーム)が入射した測定対象設備の面の向きを三次元データを用いて算出し、当該算出された面の向きとビームを照射した測定位置の座標とを用いて、測定対象設備に入射するビームの入射角を算出してもよい。
 つまり、重複部分判定部12は、三次元データ(点群データ)を用いて、測定位置(LIDARの位置)に対する測定対象設備の面の向きを算出する。そして、重複部分判定部12は、算出された測定対象設備の面の向きと、測定位置(LIDARの位置)の座標とを用いることで、測定対象設備に入射するビームの入射角を算出することができる。
 図1に示す測定ポリシー取得部13は、測定装置15を用いて施設20内の測定対象設備21~23の三次元データを取得する際の測定ポリシーを取得する。例えば、測定ポリシーは、測定対象設備21~23に入射するビームの入射角の範囲、測定装置15で測定された三次元データが満たすべき分解能等が含まれている。測定ポリシー取得部13は、入力部160(図10参照)を用いてユーザが入力した測定ポリシーに関する情報を取得してもよい。また、測定ポリシー取得部13が測定ポリシーに関する情報を予め格納するようにしてもよい。なお、測定ポリシーは、測定対象設備21~23毎に設定してもよく、また、施設20内の測定対象設備21~23に対して一括で設定してもよい。
 図1に示す測定条件調整部14は、測定ポリシー取得部13で取得された測定ポリシーを満たすように、かつ、重複部分判定部12で判定された三次元データに含まれる重複部分が減少するように、測定条件を調整する。つまり、測定条件調整部14は、重複部分判定部12で判定された三次元データに含まれる重複部分に関する情報と、測定ポリシー取得部13で取得された測定ポリシーに関する情報とを入力する。そして、測定条件調整部14は、入力された重複部分に関する情報と測定ポリシーに関する情報とに基づいて、測定装置15の測定位置、測定範囲、分解能などの測定条件を調整する。このとき、測定条件調整部14は、三次元データに含まれる重複部分が減少するように測定装置15の測定条件を調整する。
 例えば、測定ポリシーには、測定対象設備に入射するビームの入射角の範囲が含まれており、測定装置15の測定条件には、測定装置15が測定対象設備の三次元データを取得する際の測定範囲が含まれている。この場合、測定条件調整部14は、測定対象設備に入射するビームの入射角の範囲が測定ポリシーの範囲となるように、かつ、三次元データに含まれる重複部分が減少するように、測定装置15の測定範囲を調整する。
 また、例えば、測定条件には、測定装置15が測定対象設備の三次元データを取得する際の測定位置が含まれていてもよい。この場合、測定条件調整部14は、測定ポリシーを満たすように、かつ、三次元データに含まれる重複部分が減少するように、測定装置15の測定位置を調整してもよい。
 また、例えば、測定ポリシーには、測定装置15で測定された三次元データが満たすべき分解能が含まれていてもよい。この場合、測定条件調整部14は、測定装置15で測定された三次元データの分解能が測定ポリシーを満たすように、かつ、三次元データに含まれる重複部分が減少するように、測定装置15の測定条件を調整してもよい。
 ここで、「三次元データに含まれる重複部分が減少するように」とは、図3に示した三次元データ31と三次元データ32の重複部分37が減少するようにという意味である。例えば、三次元データ31の測定範囲35に占める重複部分37の面積が所定の割合以下(例えば、5%以下など)となるように重複部分を減らしてもよい。また、三次元データ全体のデータサイズが所定のデータサイズ以下となるように重複部分を減らしてもよい。本実施の形態において重複部分は少ないほど好ましく、重複部分が存在しないことが最も好ましい。なお、三次元データに含まれる重複部分が減少するように測定装置15の測定条件を調整する場合の具体例については後述する。
 次に、本実施の形態にかかる測定条件最適化システムの動作(測定条件最適化方法)について説明する。図4は、本実施の形態にかかる測定条件最適化システムの動作を説明するためのフローチャートである。
 まず、三次元データ入力部11(図1参照)は、所定の施設20内の測定対象設備21~23の三次元データを入力する(ステップS1)。所定の施設20内の測定対象設備21~23の三次元データは、測定装置15を用いて測定対象設備21~23(図2参照)を所定の測定条件で測定することで取得することができる。このときの測定条件は最適化する前の測定条件であり、任意の測定条件とすることができる。
 図5は、測定条件最適化処理の一例を説明するための図である。図5では一例として、測定装置15が巡回ルート25に沿って移動しながら、各々の測定位置P1~P3において測定対象設備21の三次元データを取得している状態を示している。なお、本実施の形態において、測定装置15は測定対象設備21の三次元データを取得する際に、測定位置P1~P3において停止して測定するものとする。他の測定位置においても同様である。
 図5の上図に示すように、測定装置15は測定位置P1~P3において測定対象設備21を測定することで、測定対象設備21の三次元データを取得する。このとき、測定位置P1における測定装置15の測定範囲はθ1、測定位置P2における測定装置15の測定範囲はθ2、測定位置P3における測定装置15の測定範囲はθ3である。三次元データ入力部11(図1参照)は、このようにして測定された測定対象設備21の三次元データを入力する。
 次に、重複部分判定部12(図1参照)は、三次元データ入力部11に入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分を判定する(ステップS2)。図5に示す例では、測定装置15を用いて測定された測定対象設備21の三次元データには、重複部分D1、D2が含まれる。重複部分判定部12は、これらの重複部分D1、D2を判定する。
 つまり、測定位置P1で測定された三次元データおよび測定位置P2で測定された三次元データには、重複部分D1が含まれる。また、測定位置P2で測定された三次元データおよび測定位置P3で測定された三次元データには、重複部分D2が含まれる。重複部分判定部12は、三次元データ入力部11に入力された三次元データに含まれるこのような重複部分D1、D2を判定する。
 例えば、重複部分判定部12は、位置合わせ処理後の三次元データのうち、互いに隣り合う測定位置の各々において取得された三次元データに含まれる点群同士が互いに隣接している場合、当該隣接している点群を含む部分を重複部分と判定することができる(図3参照)。
 次に、測定ポリシー取得部13(図1参照)は、測定装置15を用いて施設20内の測定対象設備21~23の三次元データを取得する際の測定ポリシーを取得する(ステップS3)。例えば、測定ポリシーは、測定対象設備21~23に入射するビームの入射角の範囲、測定装置15で測定された三次元データが満たすべき分解能等が含まれている。
 次に、測定条件調整部14(図1参照)は、測定ポリシー取得部13で取得した測定ポリシーを満たすように、かつ、重複部分判定部12で判定された三次元データに含まれる重複部分が減少するように、測定条件を調整する(ステップS4)。
 例えば、測定ポリシーには、測定対象設備に入射するビームの入射角の範囲が含まれており、測定装置15の測定条件には、測定装置15が測定対象設備の三次元データを取得する際の測定範囲が含まれている。この場合、測定条件調整部14は、測定対象設備に入射するビームの入射角の範囲が測定ポリシーの範囲となるように、かつ、三次元データに含まれる重複部分が減少するように、測定装置15の測定範囲を調整する。
 具体的には、図5の下図に示すように、測定条件調整部14は、測定装置15の測定位置P1における測定範囲がθ1からθ1aとなるように、測定位置P2における測定範囲がθ2からθ2aとなるように、測定位置P3における測定範囲がθ3からθ3aとなるように、測定装置15の測定範囲をそれぞれ調整する。なお、測定範囲θ1a~θ3aは互いに同一の角度であってもよく、また、異なる角度であってもよい。また、測定範囲θ1a~θ3aは、測定ポリシー取得部13で取得した測定ポリシーを満たすものとする。このように、各々の測定位置P1、P2、P3における測定範囲をそれぞれθ1a、θ2a、θ3aとすることで、三次元データに含まれる重複部分51、52を減少させることができる。よって、測定装置15を用いて施設内の測定対象設備の三次元データを取得する際の測定条件を最適化することができる。
 図6は、測定条件最適化処理の他の例を説明するための図である。図6の上図に示す例では、測定装置15が巡回ルート25に沿って移動しながら、各々の測定位置P11~P14において測定対象設備21の三次元データを取得している状態を示している。図6の上図に示すように、測定装置15は測定位置P11~P14において測定対象設備21を測定することで、測定対象設備21の三次元データを取得する。このとき、測定位置P11における測定装置15の測定範囲はθ11、測定位置P12における測定装置15の測定範囲はθ12、測定位置P13における測定装置15の測定範囲はθ13、測定位置P14における測定装置15の測定範囲はθ14である。三次元データ入力部11(図1参照)は、このようにして測定された測定対象設備21の三次元データを入力する(ステップS1)。
 次に、重複部分判定部12(図1参照)は、三次元データ入力部11に入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分D11、D12、D13を判定する(ステップS2)。具体的には、図6の上図に示すように、測定位置P11で測定された三次元データおよび測定位置P12で測定された三次元データには、重複部分D11が含まれる。また、測定位置P12で測定された三次元データおよび測定位置P13で測定された三次元データには、重複部分D12が含まれる。また、測定位置P13で測定された三次元データおよび測定位置P14で測定された三次元データには、重複部分D13が含まれる。重複部分判定部12は、三次元データ入力部11に入力された三次元データに含まれるこのような重複部分D11、D12、D13を判定する。
 次に、測定ポリシー取得部13(図1参照)は、測定装置15を用いて施設20内の測定対象設備21~23の三次元データを取得する際の測定ポリシーを取得する(ステップS3)。
 次に、測定条件調整部14(図1参照)は、測定ポリシー取得部13で取得した測定ポリシーを満たすように、かつ、重複部分判定部12で判定された三次元データに含まれる重複部分が減少するように、測定条件を調整する(ステップS4)。
 図6に示す例では、測定条件調整部14は、測定装置15の測定位置P11~P14(図6の上図)を測定位置P11a~P13a(図6の下図)に調整する。また、測定条件調整部14は、測定装置15の測定位置P11aにおける測定範囲がθ11aとなるように、測定位置P12aにおける測定範囲がθ12aとなるように、測定位置P13aにおける測定範囲がθ13aとなるように、測定装置15の測定範囲をそれぞれ調整する。なお、測定範囲θ11a~θ13aは互いに同一の角度であってもよく、また、異なる角度であってもよい。また、測定範囲θ11a~θ13aは、測定ポリシー取得部13で取得した測定ポリシーを満たすものとする。このように、測定条件調整部14は、測定装置15の測定位置と測定範囲を調整することで、三次元データに含まれる重複部分53、54を減少させることができる。よって、測定装置15を用いて施設内の測定対象設備の三次元データを取得する際の測定条件を最適化することができる。
 図7は、測定条件最適化処理の他の例を説明するための図である。図7の上図に示す例では、測定装置15が巡回ルート25に沿って移動しながら、各々の測定位置P21~P24において測定対象設備21の三次元データを取得している状態を示している。図7の上図に示すように、測定装置15は測定位置P21~P24において測定対象設備21を測定することで、測定対象設備21の三次元データを取得する。このとき、測定位置P21における測定装置15の測定範囲はθ21、測定位置P22における測定装置15の測定範囲はθ22、測定位置P23における測定装置15の測定範囲はθ23、測定位置P24における測定装置15の測定範囲はθ24である。三次元データ入力部11(図1参照)は、このようにして測定された測定対象設備21の三次元データを入力する(ステップS1)。
 次に、重複部分判定部12(図1参照)は、三次元データ入力部11に入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分D21、D22、D23を判定する(ステップS2)。具体的には、図7の上図に示すように、測定位置P21で測定された三次元データおよび測定位置P22で測定された三次元データには、重複部分D21が含まれる。また、測定位置P22で測定された三次元データおよび測定位置P23で測定された三次元データには、重複部分D22が含まれる。また、測定位置P23で測定された三次元データおよび測定位置P24で測定された三次元データには、重複部分D23が含まれる。重複部分判定部12は、三次元データ入力部11に入力された三次元データに含まれるこのような重複部分D21、D22、D23を判定する。
 次に、測定ポリシー取得部13(図1参照)は、測定装置15を用いて施設20内の測定対象設備21~23の三次元データを取得する際の測定ポリシーを取得する(ステップS3)。
 次に、測定条件調整部14(図1参照)は、測定ポリシー取得部13で取得した測定ポリシーを満たすように、かつ、重複部分判定部12で判定された三次元データに含まれる重複部分が減少するように、測定条件を調整する(ステップS4)。
 図7に示す例では、測定条件調整部14は、測定装置15の測定位置P21~P24(図7の上図)を測定位置P21a~P24a(図7の下図)に調整する。つまり、図7に示す例では、図7の上図に示すように、測定装置15の測定位置P21~P24は、測定対象設備21から距離d1離れており、測定装置15と測定対象設備21との距離が離れすぎているので、測定ポリシーの分解能の要件を満たしていない。
 この場合、測定条件調整部14は、測定ポリシーの分解能の要件を満たすように、測定装置15の測定位置が測定対象設備21に近づくように調整する。つまり、測定条件調整部14は、図7の下図に示すように、測定装置15と測定対象設備21との距離が距離d2(d2<d1)となるように、測定装置15の測定位置を測定位置P21a~P24aに調整する。また、測定条件調整部14は、測定装置15の測定位置P21aにおける測定範囲がθ21aとなるように、測定位置P22aにおける測定範囲がθ22aとなるように、測定位置P23aにおける測定範囲がθ23aとなるように、測定位置P24aにおける測定範囲がθ24aとなるように、測定装置15の測定範囲をそれぞれ調整する。
 なお、測定範囲θ21a~θ24aは互いに同一の角度であってもよく、また、異なる角度であってもよい。また、測定範囲θ21a~θ24aは、測定ポリシー取得部13で取得した測定ポリシーを満たすものとする。このように、測定条件調整部14は、測定装置15の測定位置と測定範囲を調整することで、三次元データに含まれる重複部分55、56、57を減少させることができる。よって、測定装置15を用いて施設内の測定対象設備の三次元データを取得する際の測定条件を最適化することができる。
 以上で説明したように、本実施の形態では、取得された三次元データに含まれる重複部分が減少するように、測定装置の測定条件を最適化している。このように、測定装置の測定条件を最適化することで、測定装置が三次元データを取得する際の測定時間を短くすることができ、また、取得した三次元データのデータ量を減少させることができる。更に、測定装置の測定時間を短くすることができるので、測定装置の消費電力量を抑えることができる。
<実施の形態2>
 次に本開示の実施の形態2について説明する。図8は、実施の形態2にかかる三次元データ測定システムの構成例を示すブロック図である。図8に示すように、本実施の形態にかかる三次元データ測定システム2は、三次元データ入力部11、重複部分判定部12、測定ポリシー取得部13、測定条件調整部14、及び測定装置15を備える。本実施の形態にかかる三次元データ測定システム2は、実施の形態1で説明した測定条件最適化システム1に加えて、測定装置15を備える点が異なる。これ以外の構成及び動作については、実施の形態1で説明した場合と同様であるので重複した説明を省略する。
 本実施の形態にかかる三次元データ測定システム2において、測定装置15は、施設20内の測定対象設備21~23(図2参照)の三次元データを取得するように構成されている。測定装置15は、測定条件調整部14で調整された測定条件を用いて、施設20内の測定対象設備21~23の三次元データを新たに取得する。例えば、測定条件調整部14は、測定条件を調整した後、調整後の測定条件を測定装置15に供給する。測定装置15は、次に施設20内を巡回ルート25に沿って移動して測定対象設備21~23の三次元データを取得する際、測定条件調整部14から供給された調整後の測定条件を用いて、測定対象設備21~23の三次元データを取得する。
 このように測定装置15は、調整後の測定条件、すなわち、三次元データに含まれる重複部分が減少するように最適化された測定条件を用いて、測定対象設備21~23の三次元データを新たに取得する。したがって、測定装置15の測定時間を短くすることができ、また、取得した三次元データのデータ量を減少させることができる。更に、測定装置15の測定時間を短くすることができるので、測定装置15の消費電力量を抑えることができる。
 また、測定装置15は、図1に示した三次元データ入力部11に入力される三次元データを取得してもよい。すなわち、測定装置15は、最適化する前の測定条件で施設20内の測定対象設備21~23の三次元データを取得し、この取得した三次元データを三次元データ入力部11に供給してもよい。例えば、測定装置15は最初に、施設20内の測定対象設備21~23全体の三次元データを漏れなく取得できる測定条件(つまり、多めの測定位置を設けた測定条件)で取得する。その後、測定装置15は、最適化された測定条件を用いて、測定対象設備21~23の三次元データを新たに取得してもよい。
 本実施の形態にかかる三次元データ測定システム2は、三次元データ入力部11、重複部分判定部12、測定ポリシー取得部13、測定条件調整部14、及び測定装置15が同一の装置として一体で構成されていてもよい。この場合は、測定装置15を含む三次元データ測定システム2が測定対象設備21~23の三次元データを取得する。
 また、本実施の形態にかかる三次元データ測定システム2は、測定装置15が他の構成要素である三次元データ入力部11、重複部分判定部12、測定ポリシー取得部13、及び測定条件調整部14と別に設けられていてもよい。すなわち、本実施の形態にかかる三次元データ測定システム2は、実施の形態1にかかる測定条件最適化システム1(図1参照)と、当該測定条件最適化システム1と別に設けられた測定装置15とを用いて構成してもよい。この場合は、測定装置15が測定対象設備21~23の三次元データを取得する。
<実施の形態3>
 次に本開示の実施の形態3について説明する。図9は、実施の形態3にかかる三次元データ測定システムの構成例を示すブロック図である。図9に示すように、本実施の形態にかかる三次元データ測定システム3は、三次元データ入力部11、重複部分判定部12、測定ポリシー取得部13、測定条件調整部14、測定装置15、及び座標変換部16を備える。本実施の形態にかかる三次元データ測定システム3は、実施の形態2で説明した三次元データ測定システム2に加えて、座標変換部16を備える点が異なる。これ以外の構成及び動作については、実施の形態1、2で説明した場合と同様であるので重複した説明を省略する。
 本実施の形態にかかる三次元データ測定システム3において、座標変換部16は、測定装置15で新たに取得された三次元データの座標を変換するように構成されている。具体的には、座標変換部16は、測定装置15で新たに取得された三次元データの座標を、座標変換パラメータを用いて変換する。このとき用いる座標変換パラメータは、三次元データ入力部11に入力された三次元データの各々に対して重複部分判定部12が位置合わせ処理を実施した際に用いた座標変換パラメータである。
 具体的には、重複部分判定部12は、三次元データ入力部11に入力された三次元データの各々に対して位置合わせ処理を実施する際、各々の三次元データ同士を結合するために座標変換パラメータを決定する。重複部分判定部12は、このとき決定された座標変換パラメータに関する情報を座標変換部16に出力する。例えば、座標変換パラメータは、各々の測定位置における点群データに対する変換パラメータ(並進、回転)である。
 座標変換部16は、重複部分判定部12から供給された座標変換パラメータを用いて、測定装置15で新たに取得された三次元データの座標を変換する。この場合、三次元データ入力部11に入力された三次元データの測定位置と、測定装置15で新たに取得された三次元データの測定位置は各々同じ位置である。つまり、三次元データ入力部11に入力された三次元データの測定位置と、測定装置15で新たに取得された三次元データの測定位置が各々同じなので、座標変換部16は、重複部分判定部12で用いた座標変換パラメータと同一の座標変換パラメータを用いることができる。
 なお、三次元データ入力部11に入力された三次元データの測定位置と、測定装置15で新たに取得された三次元データの測定位置とが異なる場合(つまり、測定位置の測定条件を変更した場合)は、次のようにして処理をする。すなわち、重複部分判定部12は、位置合わせ処理を実施した後の三次元データ(つまり結合後の三次元データ)を座標変換部16に供給する。そして、座標変換部16は、重複部分判定部12から供給された結合後の三次元データと、測定装置15で新たに取得された三次元データとの位置合わせを実施して、測定装置15で新たに取得された三次元データの座標変換を実施し、また座標変換パラメータを決定する。以降、測定装置15を用いて新たに三次元データを取得する場合は同じ測定位置なので、座標変換部16は、測定装置15で新たに取得された三次元データの座標を変換する際に、このようにして決定された座標変換パラメータを用いることができる。
 本実施の形態では、上述のように、測定装置15で新たに取得された三次元データの座標を変換する際に、既に得られた座標変換パラメータを用いているので、座標変換処理の負荷を軽減できる。
 なお、上述した実施の形態は、各構成要素の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。
 つまり、測定装置を用いて所定の測定条件で測定した、所定の施設内の測定対象設備の三次元データを入力する処理と、前記入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分を判定する処理と、前記測定装置を用いて前記施設内の測定対象設備の三次元データを取得する際の測定ポリシーを取得する処理と、前記取得した測定ポリシーを満たすように、かつ、前記重複部分と判定された前記三次元データに含まれる重複部分が減少するように、前記測定条件を調整する処理と、を備える測定条件最適化処理のプログラムをコンピュータに実行させることで、実現してもよい。
 図10は、本実施の形態にかかる測定条件最適化システムを含むハードウェア構成例を説明するためのブロック図である。図10に示すように、本実施の形態にかかる測定条件最適化システムは、CPU(101)とメモリ102とを備える演算処理装置100を用いて構成することができる。本実施の形態では、上述の測定条件最適化処理のプログラムをCPU(101)で実行させることで測定条件最適化システム1を構成することができる。演算処理装置100には、表示部150および入力部160が接続されている。
 表示部150は、液晶ディスプレイや有機EL(electro-luminescence)ディスプレイ等を用いて構成されている。表示部150には、測定装置15の測定条件、位置合わせ処理後の三次元データ、測定装置15で測定した測定対象設備21~23の三次元データ等が表示されるようにしてもよい。
 また、例えば、ユーザは入力部160(キーボードやマウス等)を操作することで、測定ポリシーや測定条件を入力してもよい。
 また、演算処理装置100(測定条件最適化システム1)は、調整後の測定条件(最適化された測定条件)を測定装置15に送信可能に構成されていてもよい。測定装置15は、演算処理装置100から調整後の測定条件が供給されると、供給された調整後の測定条件に基づいて測定を実施する。
 測定条件最適化システム1(演算処理装置100)は、各々の施設20に設けられていてもよい。また、測定条件最適化システム1(演算処理装置100)は、アプリケーションサーバとして構成されていてもよい。測定条件最適化システム1をアプリケーションサーバとして構成した場合は、複数のユーザ(施設)が測定条件最適化システム1にアクセスして、各々の施設の測定装置15の測定条件を最適化することができる。
 また、上記の実施の形態において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実態のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(具体的にはフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(具体的には光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(具体的には、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM))、フラッシュROM、RAM(Random Access Memory)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。また、本開示は、それぞれの実施形態を適宜組み合わせて実施されてもよい。
1 測定条件最適化システム
2、3 三次元データ測定システム
11 三次元データ入力部
12 重複部分判定部
13 測定ポリシー取得部
14 測定条件調整部
15 測定装置
16 座標変換部
20 施設
21、22、23 測定対象設備
25 巡回ルート
31、32 三次元データ
35、36 測定範囲
37 重複部分
41、42 点群
100 演算処理装置
101 CPU
102 メモリ
150 表示部
160 入力部

Claims (10)

  1.  測定装置を用いて所定の測定条件で測定した、所定の施設内の測定対象設備の三次元データを入力する三次元データ入力部と、
     前記入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分を判定する重複部分判定部と、
     前記測定装置を用いて前記施設内の測定対象設備の三次元データを取得する際の測定ポリシーを取得する測定ポリシー取得部と、
     前記測定ポリシー取得部で取得した前記測定ポリシーを満たすように、かつ、前記重複部分判定部で判定された前記三次元データに含まれる重複部分が減少するように、前記測定条件を調整する測定条件調整部と、を備える、
     測定条件最適化システム。
  2.  前記測定ポリシーには、前記測定対象設備に入射するビームの入射角の範囲が含まれており、
     前記測定条件には、前記測定装置が前記測定対象設備の三次元データを取得する際の測定範囲が含まれており、
     前記測定条件調整部は、前記測定対象設備に入射するビームの入射角の範囲が前記測定ポリシーの範囲となるように、かつ、前記三次元データに含まれる重複部分が減少するように、前記測定装置の測定範囲を調整する、
     請求項1に記載の測定条件最適化システム。
  3.  前記重複部分判定部は更に、前記ビームが入射した前記測定対象設備の面の向きを前記三次元データを用いて算出し、当該算出された面の向きと前記ビームを照射した測定位置の座標とを用いて、前記測定対象設備に入射するビームの入射角を算出する、
     請求項2に記載の測定条件最適化システム。
  4.  前記測定条件には、前記測定装置が前記測定対象設備の三次元データを取得する際の測定位置が含まれており、
     前記測定条件調整部は、前記測定ポリシーを満たすように、かつ、前記三次元データに含まれる重複部分が減少するように、前記測定装置の測定位置を調整する、
     請求項1~3のいずれか一項に記載の測定条件最適化システム。
  5.  前記測定ポリシーには、前記測定装置で測定された三次元データが満たすべき分解能が含まれており、
     前記測定条件調整部は、前記測定装置で測定された三次元データの分解能が前記測定ポリシーを満たすように、かつ、前記三次元データに含まれる重複部分が減少するように、前記測定装置の測定条件を調整する、
     請求項1~4のいずれか一項に記載の測定条件最適化システム。
  6.  前記重複部分判定部は、前記位置合わせ処理後の三次元データのうち、互いに隣り合う測定位置の各々において取得された三次元データに含まれる点群同士が互いに隣接している場合、当該隣接している点群を含む部分を重複部分と判定する、請求項1~5のいずれか一項に記載の測定条件最適化システム。
  7.  請求項1~6のいずれか一項に記載の測定条件最適化システムと、
     前記施設内の前記測定対象設備の三次元データを取得する測定装置と、を備え
     前記測定装置は、前記測定条件調整部で調整された測定条件を用いて、前記施設内の前記測定対象設備の三次元データを新たに取得する、
     三次元データ測定システム。
  8.  前記測定装置で新たに取得された三次元データの座標を変換する座標変換部を更に備え、
     前記座標変換部は、前記三次元データ入力部に入力された三次元データの各々に対して前記重複部分判定部が位置合わせ処理を実施した際に用いた座標変換パラメータを用いて、前記測定装置で新たに取得された三次元データの座標を変換する、
     請求項7に記載の三次元データ測定システム。
  9.  測定装置を用いて所定の測定条件で測定した、所定の施設内の測定対象設備の三次元データを入力し、
     前記入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分を判定し、
     前記測定装置を用いて前記施設内の測定対象設備の三次元データを取得する際の測定ポリシーを取得し、
     前記取得した測定ポリシーを満たすように、かつ、前記重複部分と判定された前記三次元データに含まれる重複部分が減少するように、前記測定条件を調整する、
     測定条件最適化方法。
  10.  測定装置を用いて所定の測定条件で測定した、所定の施設内の測定対象設備の三次元データを入力する処理と、
     前記入力された三次元データの各々に対して位置合わせ処理を実施し、当該位置合わせ処理後の三次元データに含まれる重複部分を判定する処理と、
     前記測定装置を用いて前記施設内の測定対象設備の三次元データを取得する際の測定ポリシーを取得する処理と、
     前記取得した測定ポリシーを満たすように、かつ、前記重複部分と判定された前記三次元データに含まれる重複部分が減少するように、前記測定条件を調整する処理と、を備える測定条件最適化処理をコンピュータに実行させるためのプログラムが格納された非一時的なコンピュータ可読媒体。
PCT/JP2021/019226 2021-05-20 2021-05-20 測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及び非一時的なコンピュータ可読媒体 WO2022244206A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023522135A JPWO2022244206A5 (ja) 2021-05-20 測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及びプログラム
PCT/JP2021/019226 WO2022244206A1 (ja) 2021-05-20 2021-05-20 測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及び非一時的なコンピュータ可読媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019226 WO2022244206A1 (ja) 2021-05-20 2021-05-20 測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及び非一時的なコンピュータ可読媒体

Publications (1)

Publication Number Publication Date
WO2022244206A1 true WO2022244206A1 (ja) 2022-11-24

Family

ID=84141164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019226 WO2022244206A1 (ja) 2021-05-20 2021-05-20 測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及び非一時的なコンピュータ可読媒体

Country Status (1)

Country Link
WO (1) WO2022244206A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088551A (ja) * 1998-09-10 2000-03-31 Fuji Xerox Co Ltd 面形状測定方法及び装置
JP2007212264A (ja) * 2006-02-09 2007-08-23 Taisei Corp 三次元レーザスキャナのスキャニング方法
JP2008241609A (ja) * 2007-03-28 2008-10-09 National Univ Corp Shizuoka Univ 距離計測システム及び距離計測方法
JP2010218173A (ja) * 2009-03-16 2010-09-30 Topcon Corp 三次元計測用画像撮影装置
CN106680798A (zh) * 2017-01-23 2017-05-17 辽宁工程技术大学 一种机载lidar航带重叠区冗余辨识及消除方法
JP2020005186A (ja) * 2018-06-29 2020-01-09 株式会社日立システムズ 画像表示システムおよび方法
CN111175769A (zh) * 2020-02-14 2020-05-19 深圳奥锐达科技有限公司 一种离轴扫描距离测量系统
US20200356092A1 (en) * 2018-01-19 2020-11-12 Trumpf Photonic Components Gmbh Time-of-flight imaging system for autonomous movable objects

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088551A (ja) * 1998-09-10 2000-03-31 Fuji Xerox Co Ltd 面形状測定方法及び装置
JP2007212264A (ja) * 2006-02-09 2007-08-23 Taisei Corp 三次元レーザスキャナのスキャニング方法
JP2008241609A (ja) * 2007-03-28 2008-10-09 National Univ Corp Shizuoka Univ 距離計測システム及び距離計測方法
JP2010218173A (ja) * 2009-03-16 2010-09-30 Topcon Corp 三次元計測用画像撮影装置
CN106680798A (zh) * 2017-01-23 2017-05-17 辽宁工程技术大学 一种机载lidar航带重叠区冗余辨识及消除方法
US20200356092A1 (en) * 2018-01-19 2020-11-12 Trumpf Photonic Components Gmbh Time-of-flight imaging system for autonomous movable objects
JP2020005186A (ja) * 2018-06-29 2020-01-09 株式会社日立システムズ 画像表示システムおよび方法
CN111175769A (zh) * 2020-02-14 2020-05-19 深圳奥锐达科技有限公司 一种离轴扫描距离测量系统

Also Published As

Publication number Publication date
JPWO2022244206A1 (ja) 2022-11-24

Similar Documents

Publication Publication Date Title
JP6161071B2 (ja) 設備状態検出方法およびその装置
Becerik-Gerber et al. Assessment of target types and layouts in 3D laser scanning for registration accuracy
WO2013108749A1 (ja) 搬入経路計画システム
US11426876B2 (en) Information processing apparatus, information processing method, and program
CN111158358B (zh) 一种基于三维模型对变电/换流站自优巡检的方法及系统
CN103737433B (zh) 大尺寸构件复合式精度测量方法
Sioma 3D imaging methods in quality inspection systems
JP2013221799A (ja) 形状計測装置及び形状計測方法
JP2017072442A (ja) 電磁波の測定装置、電磁波の測定方法およびプログラム
Huang et al. Obstacle distance measurement based on binocular vision for high-voltage transmission lines using a cable inspection robot
Ma et al. Non-diffracting beam based probe technology for measuring coordinates of hidden parts
CN115272560B (zh) 一种基于三维声场云图的变电设备隐患定位方法及系统
CN109813214A (zh) 一种快速测量十字运动平台二维定位误差的方法及装置
WO2022244206A1 (ja) 測定条件最適化システム、三次元データ測定システム、測定条件最適化方法、及び非一時的なコンピュータ可読媒体
Jin et al. Automatic multi-stereo-vision reconstruction method of complicated tubes for industrial assembly
Wu et al. A calibration method for spatial pose of a laser beam
JP6031368B2 (ja) ワークとの相関位置決め方法
Yongkang et al. An error analysis and optimization method for combined measurement with binocular vision
JP2022093291A (ja) 物体認識モデル及びナビゲーション計画を用いた誘導検査
CN105241378A (zh) 基于激光跟踪技术的变电站3d实景重绘方法
Jin et al. A multi-vision-based system for tube inspection
Shavrygina et al. Optical-electronic system controlling the position of a railway track with the help of reference marks
Wu et al. A novel precise guiding method for visual guiding theodolite measurement in volume space
CN112082450B (zh) 圆柱体直径测量方法及装置
WO2022244209A1 (ja) 巡回ルート決定システム、巡回ルート決定方法、及び非一時的なコンピュータ可読媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940820

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522135

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18290351

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940820

Country of ref document: EP

Kind code of ref document: A1