WO2022244141A1 - 通信装置及び推定方法 - Google Patents

通信装置及び推定方法 Download PDF

Info

Publication number
WO2022244141A1
WO2022244141A1 PCT/JP2021/018989 JP2021018989W WO2022244141A1 WO 2022244141 A1 WO2022244141 A1 WO 2022244141A1 JP 2021018989 W JP2021018989 W JP 2021018989W WO 2022244141 A1 WO2022244141 A1 WO 2022244141A1
Authority
WO
WIPO (PCT)
Prior art keywords
correlation
correlator
received signal
sliding
unit
Prior art date
Application number
PCT/JP2021/018989
Other languages
English (en)
French (fr)
Inventor
浩之 福本
洋輔 藤野
俊光 椿
美春 大岩
勇弥 伊藤
真理菜 中野
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN202180097481.0A priority Critical patent/CN117242717A/zh
Priority to EP21940757.4A priority patent/EP4344099A1/en
Priority to PCT/JP2021/018989 priority patent/WO2022244141A1/ja
Priority to JP2023522078A priority patent/JPWO2022244141A1/ja
Publication of WO2022244141A1 publication Critical patent/WO2022244141A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to technology of communication devices and estimation methods.
  • FIG. 14 is a diagram showing a specific example of burst errors caused by slips. After the slip occurs, errors continue to occur in the received data.
  • an equalizer with an internal FIR (Finite Impulse Response) filter may be used (see, for example, Non-Patent Document 1).
  • FIR Finite Impulse Response
  • FIG. 14 when the sampling timing shifts due to the Doppler shift, the coefficients of the FIR filter are offset in the time axis direction from the optimum values. Therefore, it is necessary to re-learn the coefficients of the FIR filter so as to correct the sampling timing deviation. However, even if the filter coefficients are re-learned for each symbol, the filter re-learning may not be done in time and the filter coefficients may diverge, resulting in failure in waveform equalization.
  • FIR Finite Impulse Response
  • a synchronization unit may be provided before the input to the equalizer to perform synchronization processing with respect to the Doppler shift (see Non-Patent Document 1, for example).
  • the filter coefficients can easily converge. Therefore, it is possible to stabilize the equalization process.
  • FIG. 15 is a diagram showing functional blocks of a conventional synchronization unit.
  • FIG. 15 particularly shows the configuration disclosed in Non-Patent Document 2 as an example.
  • Synchronization section 90 is provided before equalizer 99 .
  • the received signal corrected by the synchronization section 90 is input to the equalizer 99 .
  • the synchronization unit 90 includes an estimation unit 91 , a resampling unit 92 and a phase rotation unit 93 .
  • the estimation unit 91 estimates the Doppler shift amount.
  • the resampler 92 corrects the sampling timing based on the estimated value of the estimator 91 .
  • a phase rotation section 93 gives phase rotation to the received signal based on the estimated value of the estimation section 91 .
  • a frame of the received signal has a preamble part and a postamble part before and after the payload part.
  • the preamble part and the postamble part have signals of the preamble sequence and the postamble sequence, which are known to the device on the receiving side, respectively.
  • FIG. 16 is a diagram showing functional blocks of a conventional estimation unit 91. As shown in FIG. FIG. 16 particularly shows the configuration disclosed in Non-Patent Document 2 as an example.
  • the estimator 91 comprises a correlator 911 , a preamble peak detector 912 , a postamble peak detector 913 and a Doppler estimator 914 .
  • a correlator 911 calculates the correlation between the received signal and the preamble sequence and the correlation between the received signal and the postamble sequence, and estimates the delay profile before and after the frame.
  • FIG. 17 is a diagram showing an outline of the processing of the conventional estimation unit 91.
  • a preamble peak detector 912 detects the preamble insertion position from the peak (maximum) position of the absolute value of the delay profile estimated from the preamble sequence.
  • Postamble peak detection section 913 detects the postamble insertion position from the peak (maximum value) position of the delay profile estimated from the postamble sequence.
  • the Doppler estimation unit 914 calculates the elapsed time (T_rp) from the preamble start point to the postamble start point based on the insertion position information detected by the preamble peak detection unit 912 and the postamble peak detection unit 913 .
  • the Doppler estimating unit 914 estimates the Doppler shift by calculating the frame expansion/compression ratio T_tp/T_rp based on the transmission interval T_tp from the beginning of the preamble part to the beginning of the postamble part at the time of transmission and the interval T_rp at the time of reception. conduct.
  • Doppler shift estimation may fail in underwater environments that are susceptible to the adverse effects of multipath. Underwater, the intensity of multipath waves and the amount of Doppler shift tend to fluctuate in short cycles due to fluctuations in the water surface and fluctuations in the receiver. Therefore, the absolute value of each path in the estimated delay profile is likely to be reversed (see Non-Patent Document 3, for example).
  • FIG. 18 is a diagram showing an outline of such a reversal phenomenon.
  • FIG. 18A is a diagram showing a specific example of a received signal to be processed.
  • FIG. 18(B) is a diagram showing a specific example of the estimation result in a situation not affected by multipath.
  • FIG. 18C is a diagram showing a specific example of estimation results when a reversal phenomenon occurs under the influence of multipath.
  • the direct wave has a higher multipath level than the preamble, but the postamble has a higher multipath level than the direct wave.
  • the path for peak detection in the preamble part and the path for peak detection in the postamble part do not match.
  • the present invention aims to provide a technique capable of increasing the accuracy of Doppler shift estimation in a multipath environment such as underwater where the Doppler shift changes.
  • One aspect of the present invention includes a synchronization unit that performs synchronization processing according to a Doppler shift on a received signal, and an equalization unit that performs equalization processing on the received signal on which the synchronization processing has been performed,
  • the synchronization unit includes a correlator that outputs a correlation between a received signal and a known preamble sequence and a correlation between the received signal and a known postamble sequence, and a sliding correlation based on the output of the correlator. and a Doppler estimator that estimates a Doppler shift based on the sliding correlation of the sliding correlator.
  • One aspect of the present invention includes a synchronization unit that performs synchronization processing according to a Doppler shift on a received signal, and an equalization unit that performs equalization processing on the received signal on which the synchronization processing has been performed,
  • the synchronizer calculates a first cross-correlation between the received signal and a known preamble sequence and a second cross-correlation between the received signal and a known postamble sequence, and calculates the first cross-correlation and the second cross-correlation.
  • a communication apparatus comprising: a synthesis correlator that outputs a sliding correlation with a cross-correlation; and a Doppler estimator that estimates a Doppler shift based on the sliding correlation of the synthesis correlator.
  • One aspect of the present invention includes a synchronization unit that performs synchronization processing according to a Doppler shift on a received signal, and an equalization unit that performs equalization processing on the received signal that has undergone the synchronization processing.
  • An estimation method performed by a communication device comprising: a correlation step of outputting a correlation between a received signal and a known preamble sequence and a correlation between the received signal and a known postamble sequence; and a Doppler estimation step of estimating a Doppler shift based on the sliding correlation in the sliding correlation step.
  • One aspect of the present invention includes a synchronization unit that performs synchronization processing according to a Doppler shift on a received signal, and an equalization unit that performs equalization processing on the received signal that has undergone the synchronization processing.
  • An estimation method performed by a communication device comprising: calculating a first cross-correlation between the received signal and a known preamble sequence; and a second cross-correlation between the received signal and a known postamble sequence;
  • An estimation method comprising: a synthesis correlation step of outputting a sliding correlation between a correlation and said second cross-correlation; and a Doppler estimation step of estimating a Doppler shift based on said sliding correlation in said synthesis correlation step.
  • FIG. 4 is a diagram showing the output of correlator 911 as a time-series waveform
  • FIG. 10 is a diagram showing the output of a conventional correlator 911 as a time-series waveform when Doppler shift acts in the positive direction
  • FIG. 9 is a diagram showing the output of a conventional correlator 911 as a time-series waveform when Doppler shift acts in the negative direction.
  • 3 is a diagram showing a configuration example of a synchronizing section 10 according to the present invention
  • FIG. 2 is a diagram showing a functional configuration of an estimating unit 11 according to the first embodiment (estimating unit 11a);
  • FIG. 3 is a diagram showing a specific example of signals used in processing of the first embodiment (estimating unit 11a) of the estimating unit 11; 4 is a flowchart showing a specific example of the flow of processing by an estimation unit 11a of the first embodiment;
  • FIG. 12 is a diagram showing the functional configuration of the second embodiment (estimating unit 11b) of the estimating unit 11;
  • FIG. 10 is a diagram showing a specific example of signals used in the processing of the second embodiment (estimating unit 11b) of the estimating unit 11; It is a flow chart which shows a concrete example of the flow of processing of estimating part 11b of a 2nd embodiment. It is a figure which shows the environment of experiment. It is a figure which shows an experimental specification and an experimental result.
  • FIG. 10 is a diagram showing a specific example of burst errors caused by slips;
  • FIG. 10 is a diagram showing functional blocks of a conventional synchronization unit; It is a figure which shows the functional block of the conventional estimation part 91.
  • FIG. It is a figure which shows the outline of the process of the conventional estimation part 91.
  • FIG. FIG. 4 is a diagram showing a specific example of a received signal to be processed;
  • the amount of correlation deviation is calculated based on the sliding correlation between the preamble correlation result and the postamble correlation result. Then, the Doppler shift is estimated based on the correlation deviation amount.
  • FIG. 1(A) is a diagram showing the output of a correlator 911 provided in a conventional estimator 91 as a time-series waveform.
  • Reference numeral 951 indicates an example of delay profile estimated from the preamble sequence.
  • Reference numeral 952 indicates an example delay profile estimated from the postamble sequence.
  • t0 is any one point on the time axis.
  • T_tp is the time (transmission interval) from the preamble head position to the postamble head position at the time of transmission.
  • FIG. 1(B) is a diagram in which the output of the correlator 911 after t0 is folded back and the time positions of the t0+T_tp point and the starting point (t0) in the time series of FIG. 1(A) are aligned.
  • FIG. 1B is a diagram showing the time series of the output of correlator 911 for T_tp offsets.
  • Reference numeral 953 indicates an example of delay profile estimated from the preamble sequence.
  • the direct wave and the multipath wave have the same positional relationship when there is no Doppler shift.
  • FIG. 2A is a diagram showing the output of the conventional correlator 911 as a time-series waveform when the Doppler shift acts in the + direction.
  • FIG. 2(B) shows the relationship between the t0+T_tp point and the starting point (t0) in the time series of FIG.
  • FIG. 10 is a view aligned in time;
  • FIG. 2B is a diagram showing the time series of the output of the correlator 911 of the T_tp offset.
  • 2(C) is a diagram showing calculation results of the sliding correlations of FIGS. 2(A) and 2(B).
  • Reference numerals 961 and 963 indicate examples of delay profiles estimated from the preamble sequence.
  • Reference numeral 962 indicates an example of delay profile estimated from the postamble sequence.
  • FIG. 3A is a diagram showing the output of the conventional correlator 911 as a time-series waveform when the Doppler shift acts in the - direction.
  • FIG. 3B shows the relationship between the t0+T_tp point and the starting point (t0) in the time series of FIG.
  • FIG. 10 is a view aligned in time; In other words, FIG. 3B is a diagram showing the time series of the output of the correlator 911 of the T_tp offset.
  • FIG. 3A is a diagram showing the output of the conventional correlator 911 as a time-series waveform when the Doppler shift acts in the - direction.
  • FIG. 3B shows the relationship between the t0+T_tp point and the starting point (t0) in the time series of FIG.
  • FIG. 10 is a view aligned in time;
  • FIG. 3B is a diagram showing the time series of the output of the correlator 911 of the T_tp offset.
  • 3(C) is a diagram showing calculation results of the sliding correlations of FIGS. 3(A) and 3(B).
  • Reference numerals 971 and 973 indicate examples of delay profiles estimated from the preamble sequence.
  • Reference numeral 972 indicates an example of delay profile estimated from the postamble sequence.
  • the delay profile estimated from the postamble sequence is on the side of (relatively ahead of) the delay profile estimated from the preamble sequence. Observed. Therefore, the peak of the sliding correlation output shown in FIG. 3C shifts in the positive direction ( ⁇ T>0).
  • the magnitude of ⁇ T is proportional to the amount of Doppler shift. Therefore, it is possible to estimate the Doppler shift amount by observing the deviation of the section itself in which the preamble and the postamble are correlated.
  • FIGS. 1(C) to 3(C) are all unimodal. That is, the multipath effects (multimodal peaks) seen in the output of correlator 911 are eliminated.
  • the output of the sliding correlation shown in FIGS. 1(C) to 3(C) is the sliding correlation between the delay profile estimated by the preamble at the beginning of the frame and the delay profile estimated by the postamble at the end of the frame. obtained as a result. According to this approach of estimating the Doppler shift based on the peak (maximum value) of the absolute value of such sliding correlation, it is less susceptible to the delay profile itself unless the general characteristics of the delay profile itself change.
  • FIG. 4 is a diagram showing a configuration example of the synchronization unit 10 in the present invention.
  • Synchronization section 10 receives a received signal and outputs a corrected received signal to equalizer 20 .
  • the synchronization unit 10 includes an estimation unit 11 , a resampling unit 12 and a phase rotation unit 13 .
  • the estimation unit 11 estimates the Doppler shift amount.
  • the resampler 12 corrects the sampling timing based on the estimated value of the estimator 11 .
  • Phase rotation section 13 gives phase rotation to the received signal based on the estimated value of estimation section 11 .
  • Two configuration examples of a first embodiment and a second embodiment are shown below for the configuration of the estimation section 11 provided in the synchronization section 10 as described above.
  • the description A_B indicates that the character (character string) "B" is subscripted to the right of the character (character string) "A".
  • FIG. 5 is a diagram showing the functional configuration of the first embodiment (estimating unit 11a) of the estimating unit 11.
  • FIG. 6 is a diagram showing a specific example of signals used in the processing of the first embodiment (estimating unit 11a) of the estimating unit 11.
  • the estimator 11 a includes a correlator 111 , a first delayer 112 , a second delayer 113 , a preamble section extractor 114 a , a slide correlator 115 , a peak detector 116 and a Doppler estimator 117 .
  • the estimating unit 11a of the first embodiment configured in this manner is a device that naively implements the above-described approach.
  • the correlator 111 performs correlation calculation between the preamble signal sequence and postamble signal sequence and the received signal.
  • the data output from correlator 111 to slide correlator 115 is data starting at t0+T_tp-T_off.
  • the data output from correlator 111 to preamble segment extraction section 114a is data starting at time t0.
  • Preamble section extractor 114a outputs output data h_1(t) of correlator 111 from time t0 to time t0+tw.
  • a sliding correlator 115 computes the correlation between h_1(t) and the correlated function h_2(t).
  • t0 be set at a time immediately before the arrival of the preamble.
  • a power detector may be provided in the preceding stage of the synchronization section 10 .
  • the power detector outputs an amplitude value (or intensity value) of the received signal.
  • a starting point setter estimates the starting point of the received signal based on the output of the power detector. Such an estimate may be made roughly.
  • the start point setter may set the position of t0 from an estimate.
  • the start point setter may set the position of the start point (t0) by a process different from the process described above. For example, the starting point setter may analogize the position of the starting point (t0) from the starting position of the previous data frame.
  • tw represents the end point of the section to be extracted in the time-series data output from the correlator 111 .
  • tw may be set based on the multipath delay profile of the propagation path.
  • tw may be arbitrarily set in advance by the user.
  • Information on the output of the correlator 111 may be used to estimate the delay profile.
  • the delay amount T_off of the correlator output before the input to the slide correlator 115 may be calculated from the amount of waveform compression corresponding to the maximum Doppler frequency assumed by the system.
  • the correlated function h_2(t) is time-series data after t0+T_tp-T_off.
  • the slide correlator 115 performs the slide correlation calculations shown in FIGS. 1(C) to 3(C).
  • the slide correlator 115 calculates the cross-correlation between the correlator output sequence h_1(t) and the correlator output sequence h_2(t) extracted by the preamble segment extraction section 114a. That is, the output y(t) of the sliding correlator 115 is expressed by Equation 1 below.
  • Equation 2 Equation 3 below may be used.
  • the sliding correlator 115 may calculate moving average values of the correlator outputs h_1(t) and h_2(t) using a filter such as a CIC filter for the purpose of reducing the amount of calculation.
  • the peak detector 116 calculates the time difference ⁇ T_max corresponding to the peak value from the output of the slide correlator 115 .
  • the peak detector 116 may calculate the time difference ⁇ T_max using Equation 4 below.
  • the Doppler estimation unit 117 performs Doppler estimation (estimation of T_rp) using ⁇ T_max.
  • the Doppler estimator 117 may calculate T_rp using, for example, Equation 5 below.
  • ⁇ T is the relative time difference calculated by the slide correlator 115 and is expressed by Equation 6 below.
  • the Doppler estimator 117 calculates the estimated Doppler frequency f_d from T_rp using Equation 7 below.
  • f_c is the carrier frequency.
  • expansion/contraction rate (resample factor) of the waveform is calculated by the following equation 8, and an estimated value is output.
  • the resampling unit 12 and the phase rotation unit 13 provided in the synchronization unit 10 perform correction based on fd and ⁇ , respectively.
  • FIG. 7 is a flowchart showing a specific example of the processing flow of the estimation unit 11a of the first embodiment.
  • the correlator 111 performs cross-correlation calculation between the known preamble signal and the known postamble signal and the received signal.
  • Correlator 111 outputs a signal indicating the correlation result (step S11).
  • the preamble section extracting unit 114a extracts the signal from time t0 to time t0+tw from the output of the correlation result in step S11 as a signal in the preamble section (step S12).
  • the sliding correlator 115 calculates the sliding correlation between the correlation result output in step S11 and the preamble section signal extracted in step S12 (step S13).
  • the peak detection unit 116 detects the peak position T_max from the slide correlation calculation result (step S14).
  • the Doppler estimation unit 117 estimates the Doppler shift amount (fd and ⁇ ) from the peak position T_max (step S15).
  • the Doppler estimator 117 outputs the Doppler shift amount (fd and ⁇ ) as the estimation result (step S16).
  • the estimating unit 11a configured in this way acquires the sliding correlation between the preamble correlation value and the postamble correlation value.
  • the peak (maximum value) of the absolute value of the sliding correlation output is detected by peak detector 116, and Doppler estimator 117 estimates the Doppler shift based on the detection result. Therefore, it is possible to suppress the influence of the deviation of the position of the peak itself, compared to simply obtaining the position between the correlation peak of the preamble and the correlation peak of the postamble. That is, since ⁇ T is estimated by surface matching including the correlation values before and after the peak, the estimation is robust against multipath fluctuations.
  • FIG. 8 is a diagram showing the functional configuration of the second embodiment (estimating section 11b) of the estimating section 11.
  • FIG. 9 is a diagram showing a specific example of signals used in the processing of the second embodiment (estimating unit 11b) of the estimating unit 11.
  • the estimator 11b includes a first delayer 112, a second delayer 113, a preamble section extractor 114b, a synthesizing correlator 118, a peak detector 116, and a Doppler estimator 117.
  • FIG. The estimating unit 11b of the second embodiment configured in this way can realize the calculation of the correlator and the sliding correlator with a small amount of calculation.
  • the preamble section extracting unit 114b roughly extracts a section containing a preamble from the received signal.
  • a power detector may be provided before the synchronization section 10 .
  • the power detector outputs an amplitude value (or intensity value) of the received signal.
  • a starting point setter estimates the starting point of the received signal based on the output of the power detector.
  • the start point setter may set the position of t0 from an estimate.
  • the start point setter may set the position of the start point (t0) by a process different from the process described above. For example, the start point setter may infer the position of the start point (t0) from the start position of the previously arrived data frame.
  • the preamble section extractor 114b outputs a received signal X_1(t) from time t0 to time t0+tw.
  • the section Te to be extracted may be determined by the system based on the length of the postamble sequence and the length of the delay profile of the propagation path.
  • the interval Te may be arbitrarily designated by the user.
  • the synthetic correlator 118 simultaneously performs the calculation of the correlator 111 and the convolution calculation of the sliding correlator 115 in the first embodiment.
  • the combining correlator 118 may perform the calculation of Equation 9 as follows.
  • m_1(t) is the preamble sequence and m_2(t) is the postamble sequence.
  • an operator with a cross "x" in a circle represents a convolution operation.
  • the value of m_pre(t), given by Equation 10 below, can be pre-computed.
  • Equation 9 can be transformed into Equation 11 below.
  • the section in which the correlation is calculated is limited to the vicinity of the preamble and the vicinity of the postamble. Therefore, the amount of calculation can be reduced compared to the first embodiment. Further, similarly to the first embodiment, calculation between amplitude values may be performed as shown in Equation 12 below for the purpose of reducing the influence of phase noise and the like.
  • calculation may be performed in the frequency domain.
  • F is the Fourier transform.
  • the Fourier transform may be implemented with FFT (Fast Fourier Transform). Such an implementation may be applied in the first embodiment.
  • FFT Fast Fourier Transform
  • a frequency domain implementation can further reduce the amount of computation.
  • Equation 14 calculation may be performed as shown in Equation 14 below for the purpose of reducing the influence of phase noise and the like.
  • the output of the synthetic correlator 118 may be the same value as the output of the sliding correlator 115 of the first embodiment.
  • the peak detection unit 116 and the Doppler estimation unit 117 have the same configurations as the functions with the same names in the first embodiment.
  • FIG. 10 is a flowchart showing a specific example of the processing flow of the estimation unit 11b of the second embodiment.
  • the preamble section extraction unit 114b extracts a section corresponding to the preamble.
  • the synthesizing correlator 118 extracts a section corresponding to the postamble (step S21).
  • the synthetic correlator 118 calculates the synthetic correlation of each section extracted in step S21 (step S22).
  • the peak detection unit 116 detects the peak position T_max from the slide correlation calculation result (step S23).
  • the Doppler estimation unit 117 estimates the Doppler shift amount (fd and ⁇ ) from the peak position T_max (step S24).
  • the Doppler estimator 117 outputs the Doppler shift amount (fd and ⁇ ) as the estimation result (step S25).
  • FIG. 11 is a diagram showing the experimental environment.
  • An anechoic water tank reproduces a moving environment accompanied by multipaths in which the levels of reflected waves and direct waves are interchanged.
  • This experiment confirms that the Doppler estimation of the present invention is more effective than the conventional method.
  • sound waves are transmitted while moving the transmitter left and right, and the sound waves are received by the wave receiver array.
  • Doppler estimation according to the present invention (second embodiment) and conventional Doppler estimation are performed for each reception channel, waveform equalization is performed, and then BER characteristics are evaluated.
  • FIG. 12 is a diagram showing experimental specifications and experimental results. The graph shown in FIG.
  • the estimation method of the present invention has better CDF characteristics than the conventional estimation method. Processing other than the Doppler estimation is the same between the estimation method of the present invention and the conventional estimation method. Therefore, it can be seen that the estimation method of the present invention has better characteristics than the conventional estimation method, and can accurately estimate Doppler in a multipath environment.
  • FIG. 13 is a schematic diagram showing a hardware configuration common to the estimation unit 11 of each embodiment.
  • the estimation unit 11 may be configured using an information processing device 900 as shown in FIG. 13 .
  • the information processing device 900 includes a processor 901 , memory 902 and auxiliary storage device 903 .
  • Processor 901 , memory 902 and auxiliary storage device 903 are communicably connected via bus 904 .
  • Some or all of the functions of the estimation unit 11 may be realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Gate Array), and the like.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the present invention is applicable to underwater communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本発明の一態様は、受信信号に対してドップラーシフトに応じた同期処理を行う同期部と、前記同期処理が行われた受信信号に対して等化処理を行う等化部と、を備え、前記同期部は、受信信号と既知のプリアンブル系列との相関と、前記受信信号と既知のポストアンブル系列との相関と、を出力する相関器と、前記相関器の出力を基にスライディング相関を出力するスライド相関器と、前記スライド相関器の前記スライディング相関に基づいてドップラーシフトを推定するドップラー推定部と、を備える通信装置である。

Description

通信装置及び推定方法
 本発明は、通信装置及び推定方法の技術に関する。
 水中は電波の吸収減衰が極めて大きく、陸上と同じように電波を使った無線通信は困難である。このため、水中であっても吸収減衰が比較的小さい、1MHz以下の音波が無線通信によく利用される。このような通信を、水中音響通信と呼ぶことがある。音波は、その伝搬速度が遅いことから、端末の移動に伴い大きなドップラーシフトが生じることがある。さらに、海中環境はマルチパス環境であるため、ドップラーシフトを伴ったマルチパスが生じる可能性がある。
 ドップラーシフトは、サンプリングタイミングのずれを引き起こす。サンプリングタイミングのずれが蓄積し、そのずれの総量が1シンボル分の時間を超えると、スリップによるバースト誤りが発生してしまう。図14は、スリップによるバースト誤りの具体例を示す図である。スリップが発生した後は、受信データにおいて誤りが連続してしまう。
 マルチパスによる悪影響を受けやすい水中での通信においては、FIR(Finite Impulse Response)フィルターを内部に備える等化器が利用されることがある(例えば非特許文献1参照。)。図14のようにドップラーシフトによるサンプリングタイミングのずれが生じると、FIRフィルターの係数は最適値から時間軸方向にオフセットしていく。そのため、サンプリングタイミングのずれを補正するようにFIRフィルターの係数を再学習する必要がある。しかしながら、1シンボルごとにフィルターの係数の再学習を行ったとしても、フィルターの再学習が間に合わずにフィルターの係数が発散してしまい、波形等化に失敗する場合がある。
 そこで、水中音響通信では、等化器への入力の前段に同期部を設け、ドップラーシフトに対する同期処理を行うことがある(例えば非特許文献1参照。)。ドップラーシフトによるオフセットを追従できる範囲に等化器をあらかじめ補正しておくことで、フィルターの係数が収束しやすくなる。そのため、等化処理の安定化を図ることが可能となる。
 図15は、従来の同期部の機能ブロックを示す図である。図15は、特に非特許文献2に開示されている構成を例に示している。同期部90は、等化器99の前段に設けられる。同期部90において補正された受信信号が等化器99に入力される。
 同期部90は、推定部91、リサンプル部92及び位相回転部93を備える。推定部91は、ドップラーシフト量を推定する。リサンプル部92は、推定部91の推定値に基づき、サンプリングタイミングを補正する。位相回転部93は、推定部91の推定値に基づき、受信信号に対して位相回転を与える。受信信号のフレームは、ペイロード部の前後に、プリアンブル部とポストアンブル部とを有する。プリアンブル部及びポストアンブル部は、それぞれ受信側の装置において既知のプリアンブル系列及びポスタンブル系列の信号を有している。
 図16は、従来の推定部91の機能ブロックを示す図である。図16は、特に非特許文献2に開示されている構成を例に示している。推定部91は、相関器911、プリアンブルピーク検出部912、ポストアンブルピーク検出部913及びドップラー推定部914を備える。相関器911は、受信信号とプリアンブル系列との相関、受信信号とポストアンブル系列との相関をそれぞれ計算し、フレーム前後の遅延プロファイルを推定する。
 図17は、従来の推定部91の処理の概略を示す図である。プリアンブルピーク検出部912は、プリアンブル系列で推定した遅延プロファイルの絶対値のピーク(最大値)位置からプリアンブルの挿入位置を検出する。ポストアンブルピーク検出部913は、ポストアンブル系列で推定した遅延プロファイルのピーク(最大値)位置からポストアンブルの挿入位置を検出する。ドップラー推定部914は、プリアンブルピーク検出部912及びポストアンブルピーク検出部913によって検出された挿入位置の情報に基づいて、プリアンブル始点からポストアンブル始点までの経過時間(T_rp)を計算する。ドップラー推定部914は、送信時点のプリアンブル部先頭からポストアンブル部先頭までの送信間隔T_tpと受信時の間隔T_rpとを基にフレームの伸縮比T_tp/T_rpを計算することで、ドップラーシフトの推定を行う。
M. Johnson, L. Freitag and M. Stojanovic, "Improved Doppler tracking and correction for underwater acoustic communications,", 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, 1997, pp. 575-578 vol.1, doi: 10.1109/ICASSP.1997.599703. B. S. Sharif, J. Neasham, O. R. Hinton and A. E. Adams, "A computationally efficient Doppler compensation system for underwater acoustic communications," in IEEE Journal of Oceanic Engineering, vol. 25, no. 1, pp. 52-61, Jan. 2000, doi: 10.1109/48.820736. M. Stojanovic and J. Preisig, "Underwater acoustic communication channels: Propagation models and statistical characterization," in IEEE Communications Magazine, vol. 47, no. 1, pp. 84-89, January 2009, doi: 10.1109/MCOM.2009.4752682.
 しかしながら、マルチパスによる悪影響を受けやすい水中環境では、ドップラーシフトの推定に失敗することがある。水中は水面の揺らぎや受信装置の動揺により、マルチパス波の強さとドップラーシフト量とが短周期で変動しやすい。そのため、推定した遅延プロファイルにおける各パスの絶対値の逆転が生じやすい(例えば非特許文献3参照)。
 図18は、このような逆転現象の概略を示す図である。図18(A)は、処理の対象となっている受信信号の具体例を示す図である。図18(B)は、マルチパスの影響を受けていない状況における推定結果の具体例を示す図である。図18(C)は、マルチパスの影響を受けて逆転現象が生じた場合の推定結果の具体例を示す図である。図18(C)では、プリアンブルに関しては直接波の方がマルチパスはよりもレベルが高いが、ポストアンブルに関しては直接波よりもマルチパスのレベルが高い。このような逆転現象が起こると、プリアンブル部でピーク検出するパスと、ポストアンブルブル部でピーク検出するパスとが一致しない。同一のパスが検出されなければ、正しくドップラーシフトが推定されない。その結果、補正の精度が落ちてしまう。むしろ、誤った補正が受信信号に適用された結果、サンプリングタイミングのずれがさらに大きくなり等化に失敗する。
 上記事情に鑑み、本発明は、水中等のドップラーシフトの変化を伴うマルチパス環境において、ドップラーシフトの推定の精度を高くすることができる技術の提供を目的としている。
 本発明の一態様は、受信信号に対してドップラーシフトに応じた同期処理を行う同期部と、前記同期処理が行われた受信信号に対して等化処理を行う等化部と、を備え、前記同期部は、受信信号と既知のプリアンブル系列との相関と、前記受信信号と既知のポストアンブル系列との相関と、を出力する相関器と、前記相関器の出力を基にスライディング相関を出力するスライド相関器と、前記スライド相関器の前記スライディング相関に基づいてドップラーシフトを推定するドップラー推定部と、を備える通信装置である。
 本発明の一態様は、受信信号に対してドップラーシフトに応じた同期処理を行う同期部と、前記同期処理が行われた受信信号に対して等化処理を行う等化部と、を備え、前記同期部は、前記受信信号と既知のプリアンブル系列との第1相互相関と、前記受信信号と既知のポストアンブル系列の第2相互相関と、を計算し、前記第1相互相関と前記第2相互相関とのスライディング相関を出力する合成相関器と、前記合成相関器の前記スライディング相関に基づいてドップラーシフトを推定するドップラー推定部と、を備える通信装置である。
 本発明の一態様は、受信信号に対してドップラーシフトに応じた同期処理を行う同期部と、前記同期処理が行われた受信信号に対して等化処理を行う等化部と、を備えた通信装置が行う推定方法であって、受信信号と既知のプリアンブル系列との相関と、前記受信信号と既知のポストアンブル系列との相関と、を出力する相関ステップと、前記相関ステップにおける出力を基にスライディング相関を出力するスライド相関ステップと、前記スライド相関ステップにおける前記スライディング相関に基づいてドップラーシフトを推定するドップラー推定ステップと、を有する推定方法である。
 本発明の一態様は、受信信号に対してドップラーシフトに応じた同期処理を行う同期部と、前記同期処理が行われた受信信号に対して等化処理を行う等化部と、を備えた通信装置が行う推定方法であって、前記受信信号と既知のプリアンブル系列との第1相互相関と、前記受信信号と既知のポストアンブル系列の第2相互相関と、を計算し、前記第1相互相関と前記第2相互相関とのスライディング相関を出力する合成相関ステップと、前記合成相関ステップにおける前記スライディング相関に基づいてドップラーシフトを推定するドップラー推定ステップと、を有する推定方法である。
 本発明により、水中等のドップラーシフトの変化を伴うマルチパス環境において、ドップラーシフトの推定の精度を高くすることが可能となる。
相関器911の出力を時系列波形として示す図である。 ドップラーシフトが+方向に作用している場合の、従来の相関器911の出力を時系列波形として示す図である。 ドップラーシフトが-方向に作用している場合の、従来の相関器911の出力を時系列波形として示す図である。 本発明における同期部10の構成例を示す図である。 推定部11の第1実施形態(推定部11a)の機能構成を示す図である。 推定部11の第1実施形態(推定部11a)の処理で用いられる信号の具体例を示す図である。 第1実施形態の推定部11aの処理の流れの具体例を示すフローチャートである。 推定部11の第2実施形態(推定部11b)の機能構成を示す図である。 推定部11の第2実施形態(推定部11b)の処理で用いられる信号の具体例を示す図である。 第2実施形態の推定部11bの処理の流れの具体例を示すフローチャートである。 実験の環境を示す図である。 実験諸元と実験結果を示す図である。 各実施形態の推定部11に共通するハードウェア構成を示す概略図である。 スリップによるバースト誤りの具体例を示す図である。 従来の同期部の機能ブロックを示す図である。 従来の推定部91の機能ブロックを示す図である。 従来の推定部91の処理の概略を示す図である。 処理の対象となっている受信信号の具体例を示す図である。
 [技術の原理]
 まず、本発明に係る技術の原理について説明する。本発明では、プリアンブルの相関結果とポストアンブルの相関結果とのスライド相関に基づいて、相関のずれ量を計算する。そして、相関のずれ量に基づいてドップラーシフトを推定する。
 本発明に係る技術の原理について詳細に説明する。図1(A)は、従来の推定部91の備える相関器911の出力を時系列波形として示す図である。符号951は、プリアンブル系列から推定された遅延プロファイルの例を示す。符号952は、ポストアンブル系列から推定された遅延プロファイルの例を示す。t0は、時間軸上のいずれか一点である。T_tpは、送信時のプリアンブル先頭位置からポストアンブル先頭位置までの時間(送信間隔)である。
 図1(B)は、相関器911のt0以降の出力を折り返して、図1(A)の時系列のt0+T_tp点と始点(t0)との時間位置を合わせた図である。言い換えると、図1(B)は、T_tpオフセットの相関器911の出力の時系列を示す図である。符号953は、プリアンブル系列から推定された遅延プロファイルの例を示す。図1(A)及び図1(B)の時系列データの比較(図中の点線)からわかるように、ドップラーシフトが存在しない場合には、直接波及びマルチパス波の位置関係が一致する。すなわち、プリアンブル系列から推定された遅延プロファイルにおける直接波及びマルチパス波の位置関係と、ポストアンブル系列から推定された遅延プロファイルの直接波及びマルチパス波の位置関係とが一致する。これは、プリアンブルとポストアンブルとの挿入間隔がT_tpであり、受信点における挿入間隔がT_rp=T_tpであるためである。
 図1(C)は、図1(A)及び図1(B)のスライド相関の計算結果を示す図である。すなわち、図1(C)は、プリアンブル系列から推定された遅延プロファイルにおける直接波及びマルチパス波と、ポストアンブル系列から推定された遅延プロファイルの直接波及びマルチパス波とのスライド相関を示す図である。この場合、図1(A)と図1(B)との時間差ΔT=0でピークが出現する。
 次に、ドップラーシフトが+方向(近づく方向)に作用している場合について説明する。この場合、受信側で観測されるプリアンブルとポストアンブルとの間隔(挿入周期T_rp)がT_tpよりも短くなる。図2(A)は、ドップラーシフトが+方向に作用している場合の、従来の相関器911の出力を時系列波形として示す図である。図2(B)は、ドップラーシフトが+方向に作用している場合の、相関器911のt0以降の出力を折り返して、図2(A)の時系列のt0+T_tp点と始点(t0)との時間位置を合わせた図である。言い換えると、図2(B)は、T_tpオフセットの相関器911の出力の時系列を示す図である。図2(C)は、図2(A)及び図2(B)のスライド相関の計算結果を示す図である。符号961及び符号963は、プリアンブル系列から推定された遅延プロファイルの例を示す。符号962は、ポストアンブル系列から推定された遅延プロファイルの例を示す。
 図2(A)と図2(B)との比較から明らかなように、ポストアンブル系列から推定された遅延プロファイルは、プリアンブル系列から推定された遅延プロファイルよりも左側(相対的に遅れて)観測される。そのため、図2(C)が示すスライド相関の出力のピークは、負の方向(ΔT<0)にずれる。
 次に、ドップラーシフトが-方向(端末が遠ざかる方向)に作用している場合について説明する。この場合、受信側で観測されるプリアンブルとポストアンブルとの間隔(挿入周期T_rp)がT_tpよりも長くなる。図3(A)は、ドップラーシフトが-方向に作用している場合の、従来の相関器911の出力を時系列波形として示す図である。図3(B)は、ドップラーシフトが-方向に作用している場合の、相関器911のt0以降の出力を折り返して、図3(A)の時系列のt0+T_tp点と始点(t0)との時間位置を合わせた図である。言い換えると、図3(B)は、T_tpオフセットの相関器911の出力の時系列を示す図である。図3(C)は、図3(A)及び図3(B)のスライド相関の計算結果を示す図である。符号971及び符号973は、プリアンブル系列から推定された遅延プロファイルの例を示す。符号972は、ポストアンブル系列から推定された遅延プロファイルの例を示す。
 図3(A)と図3(B)との比較から明らかなように、ポストアンブル系列から推定された遅延プロファイルは、プリアンブル系列から推定された遅延プロファイルよりも⇒側(相対的に進んで)観測される。そのため、図3(C)が示すスライド相関の出力のピークは、正の方向(ΔT>0)にずれる。
 このように、ΔTの大きさはドップラーシフト量に比例する。そのため、プリアンブルとポストアンブルとが相関する区間自体のずれを観測することで、ドップラーシフト量を推定することが可能である。
 注目すべき点は、図1(C)~図3(C)のいずれのスライド相関出力も単峰性であることである。すなわち、相関器911の出力で見られるマルチパスの影響(多峰性のピーク)がなくなっている。図1(C)~図3(C)で示されるスライディング相関の出力は、フレーム先頭のプリアンブルで推定された遅延プロファイルと、フレーム後端のポストアンブルで推定された遅延プロファイルと、のスライディング相関の結果として得られる。このようなスライディング相関の絶対値のピーク(最大値)を基にドップラーシフトを推定する本アプローチによれば、遅延プロファイル自体の大まかな特徴が変化しない限り、その影響を受けにくくなる。相関のピーク位置一点でドップラーを推定する従来の技術(例えば非特許文献2の技術)よりも、ピークの前後の相関値も含めた相関(マッチング度合い)で面的に推定を行う本アプローチを用いた技術の方が、マルチパスの変動に対して推定が頑健になる。以下、本アプローチに沿ったドップラー推定を実現する装置及びその方法について説明する。
 図4は、本発明における同期部10の構成例を示す図である。同期部10は、受信信号を入力し、補正された受信信号を等化器20へ出力する。同期部10は、推定部11、リサンプル部12及び位相回転部13を備える。推定部11は、ドップラーシフト量を推定する。リサンプル部12は、推定部11の推定値に基づき、サンプリングタイミングを補正する。位相回転部13は、推定部11の推定値に基づき、受信信号に対して位相回転を与える。以下、このような同期部10に備えられる推定部11の構成について、第1実施形態及び第2実施形態の二つの構成例を示す。なお、以下の説明では、A_Bという記載は、“A”という文字(文字列)の右側に、“B”という文字(文字列)が下付文字で記載されていることを示す。
[第1実施形態]
 図5は、推定部11の第1実施形態(推定部11a)の機能構成を示す図である。図6は、推定部11の第1実施形態(推定部11a)の処理で用いられる信号の具体例を示す図である。推定部11aは、相関器111、第一遅延器112、第二遅延器113、プリアンブル区間抽出部114a、スライド相関器115、ピーク検出部116及びドップラー推定部117を備える。このように構成された第1実施形態の推定部11aは、上述したアプローチを素朴に実現する装置である。
 相関器111は、プリアンブルの信号系列及びポストアンブルの信号系列と受信信号との相関計算を行う。相関器111からスライド相関器115へ出力されるデータは、t0+T_tp-T_off時点を始点としたデータである。相関器111からプリアンブル区間抽出部114aへ出力されるデータは、t0時点を始点としたデータである。プリアンブル区間抽出部114aは、t0時点からt0+tw時点までの相関器111の出力データh_1(t)を出力する。スライド相関器115は、h_1(t)と被相関関数h_2(t)との相関を計算する。
 t0は、プリアンブルが到来する直前の時点に設定されることが望ましい。このような設定を実現するために、例えば、同期部10の前段にパワー検出器が設けられてもよい。パワー検出器は、受信信号の振幅値(あるいは強度値)を出力する。始点設定器は、パワー検出器の出力に基づいて、受信信号の開始時点を推定する。このような推定は、大まかに行われてもよい。始点設定器は、推定値からt0の位置を設定してもよい。始点設定器は、上述した処理とは異なる処理で始点(t0)の位置を設定してもよい。例えば、始点設定器は、前回のデータフレームの先頭位置から始点(t0)の位置を類推してもよい。twは、相関器111の出力の時系列データのうち、抽出の対象となる区間の終端点を表す。twは、伝搬路のマルチパスの遅延プロファイルに基づいて設定されてもよい。twは、ユーザによって予め任意に設定されてもよい。遅延プロファイルの推定に相関器111の出力の情報が用いられてもよい。
 スライド相関器115への入力前段の相関器出力の遅延量T_offは、システムが想定する最大のドップラー周波数相当の波形圧縮量から計算されてもよい。被相関関数h_2(t)は、t0+T_tp-T_offから後の時系列データである。
 スライド相関器115は、図1(C)~図3(C)に示されるスライド相関の計算を行う。スライド相関器115は、プリアンブル区間抽出部114aで抽出された相関器出力の系列h_1(t)と相関器出力の系列h_2(t)との相互相関を計算する。すなわち、スライド相関器115の出力y(t)は以下の式1で示される。
Figure JPOXMLDOC01-appb-M000001
 ここで、*は複素共役を表す。なお、式1に代えて、h_1(t)及びh_2(t)の振幅値だけで相関計算が実施されてもよい。本処理は、相関器出力の位相雑音の影響を低減する効果がある。以下の式2又は式3が用いられてもよい。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 また、スライド相関器115は、計算量の低減を目的として、CICフィルター等のフィルターを用いて、相関器出力h_1(t)及びh_2(t)の移動平均値を算出してもよい。
 ピーク検出部116は、スライド相関器115の出力から、ピーク値にあたる時刻差ΔT_maxを計算する。例えば、ピーク検出部116は、以下の式4を用いて時刻差ΔT_maxを計算してもよい。
Figure JPOXMLDOC01-appb-M000004
 ドップラー推定部117は、ΔT_maxを用いて、ドップラー推定(T_rpの推定)を行う。ドップラー推定部117は、例えば以下の式5を用いてT_rpを計算してもよい。
Figure JPOXMLDOC01-appb-M000005
である。ここで、ΔTはスライド相関器115で計算した相対時間差であり、以下の式6で表される。
Figure JPOXMLDOC01-appb-M000006
 さらに、ドップラー推定部117は、T_rpから推定ドップラー周波数f_dを以下の式7を用いて計算する。
Figure JPOXMLDOC01-appb-M000007
 ここで、f_cは搬送波周波数である。また、波形の伸縮率(リサンプルファクタ)を以下の式8で計算し、推定値を出力する。
Figure JPOXMLDOC01-appb-M000008
 同期部10の備えるリサンプル部12、位相回転部13は、それぞれfd,γに基づいて補正を行う。
 サンプリングレートをTsとすると、ΔT=N_t Tsである。ディジタル回路で実現する場合は、N_tが推定される。
 図7は、第1実施形態の推定部11aの処理の流れの具体例を示すフローチャートである。以下、図7を用いて第1実施形態の推定部11aの処理の具体例について説明する。まず、相関器111がプリアンブルの既知信号及びポストアンブルの既知信号と受信信号との相互相関計算を行う。相関器111は、相関結果を示す信号を出力する(ステップS11)。プリアンブル区間抽出部114aは、ステップS11における相関結果の出力のうち、時点t0から時点t0+twまでの信号をプリアンブル区間の信号として抽出する(ステップS12)。スライド相関器115は、ステップS11における相関結果の出力と、ステップS12で抽出されたプリアンブル区間の信号とのスライド相関を計算する(ステップS13)。
 ピーク検出部116は、スライド相関の計算結果からピーク位置T_maxを検出する(ステップS14)。ドップラー推定部117は、ピーク位置T_maxからドップラーシフト量(fd及びγ)を推定する(ステップS15)。ドップラー推定部117は、推定結果であるドップラーシフト量(fd及びγ)を出力する(ステップS16)。
 このように構成された推定部11aでは、プリアンブルの相関値及びポストアンブルの相関値のスライディング相関が取得される。スライディング相関の出力の絶対値のピーク(最大値)がピーク検出部116によって検出され、その検出結果を基にドップラー推定部117がドップラーシフトを推定する。そのため、単にプリアンブルの相関のピークとポストアンブルの相関のピークとの間を求める場合に比べて、ピークそのものの位置のずれの影響を小さく抑えることが可能となる。すなわち、ピークの前後の相関値も含めた相関で面的にマッチングが行われてΔTが推定されるため、マルチパスの変動に対して推定が頑健になる。
[第2実施形態]
 図8は、推定部11の第2実施形態(推定部11b)の機能構成を示す図である。図9は、推定部11の第2実施形態(推定部11b)の処理で用いられる信号の具体例を示す図である。推定部11bは、第一遅延器112、第二遅延器113、プリアンブル区間抽出部114b、合成相関器118、ピーク検出部116及びドップラー推定部117を備える。このように構成された第2実施形態の推定部11bは、相関器及びスライド相関器の計算を低演算量で実現できる。
 プリアンブル区間抽出部114bは、受信信号からプリアンブルが含まれる区間をおおまかに抽出する。プリアンブル区間のおおまかな抽出には、例えば、同期部10の前段にパワー検出器が設けられてもよい。パワー検出器は、受信信号の振幅値(あるいは強度値)を出力する。始点設定器は、パワー検出器の出力に基づいて、受信信号の開始時点を推定する。始点設定器は、推定値からt0の位置を設定してもよい。始点設定器は、上述した処理とは異なる処理で始点(t0)の位置を設定してもよい。例えば、始点設定器は、以前に到達したデータフレームの先頭位置から始点(t0)の位置を類推してもよい。プリアンブル区間抽出部114bは時点t0から時点t0+twの受信信号X_1(t)を出力する。
 また、合成相関器118における被相関関数の受信信号X_2(t)は、t=t0+T_tp-T_offからポストアンブルの終点付近t=t0+T_tp+Teまでおおまかに抽出してもよい。抽出される区間Teは、ポストアンブル系列の長さと伝搬路の遅延プロファイルの長さとに基づいてシステムが決定してもよい。区間Teは、ユーザによって任意に指定されてもよい。
 合成相関器118は、第1実施形態における相関器111の計算とスライド相関器115の畳み込み計算とを同時に行う。例えば、合成相関器118は、以下のような式9の計算を行ってもよい。
Figure JPOXMLDOC01-appb-M000009
 ここで、m_1(t)はプリアンブル系列、m_2(t)はポストアンブル系列である。また、円の中にクロス“×”を有する演算子は、畳み込み演算を表す。以下の式10によって示されるm_pre(t)の値は、事前に計算しておくことが可能である。
Figure JPOXMLDOC01-appb-M000010
この場合、式9は以下の式11のように変形できる。
Figure JPOXMLDOC01-appb-M000011
 相関計算される区間は、プリアンブル周辺とポストアンブル周辺に限定されている。そのため、第1実施形態に比べて計算量を削減できる。また、第1実施形態と同様に、位相雑音等の影響の低減を目的として、以下の式12に示されるように振幅値同士の計算が行われてもよい。
Figure JPOXMLDOC01-appb-M000012
 また、周波数領域で計算が行われてもよい。
Figure JPOXMLDOC01-appb-M000013
 ここで、Fはフーリエ変換である。フーリエ変換はFFT(Fast Fouirer Transform)で実装されてもよい。このような実装は第1実施形態において適用されてもよい。周波数領域の実装によれば、さらに演算量を削減出来る。
 また、第1実施形態と同様に位相雑音等の影響の低減を目的として、以下の式14に示されるように計算が行われてもよい。
Figure JPOXMLDOC01-appb-M000014
 合成相関器118の出力は、第1実施形態のスライド相関器115の出力と同値であってもよい。なお、ピーク検出部116及びドップラー推定部117は、第1実施形態の同名の各機能と同じ構成である。
 図10は、第2実施形態の推定部11bの処理の流れの具体例を示すフローチャートである。以下、図10を用いて第2実施形態の推定部11bの処理の具体例について説明する。まず、プリアンブル区間抽出部114bが、プリアンブルに相当する区間を抽出する。また、合成相関器118が、ポストアンブルに相当する区間を抽出する(ステップS21)。合成相関器118は、ステップS21で抽出された各区間の合成相関を計算する(ステップS22)。ピーク検出部116は、スライド相関の計算結果からピーク位置T_maxを検出する(ステップS23)。ドップラー推定部117は、ピーク位置T_maxからドップラーシフト量(fd及びγ)を推定する(ステップS24)。ドップラー推定部117は、推定結果であるドップラーシフト量(fd及びγ)を出力する(ステップS25)。
 次に、本実施形態の構成を適用した受信機を用いて行った実験について説明する。図11は、実験の環境を示す図である。反射波と直接波とのレベルが入れ替わるようなマルチパスを伴う移動環境を、無響水槽で再現している。この実験により、本発明のドップラー推定が従来手法に比べて有効であることを確認する。本実験では、送信機を左右に移動させながら音波を送信し、受波器アレーで音波を受信する。受信チャネルごとに本発明のドップラー推定(第2実施形態)と従来のドップラー推定とを行い、波形等化を行った後、BER特性を評価する。図12は、実験諸元と実験結果を示す図である。図12に示されるグラフは、BERの累積確率分布(CDF)を示す。このグラフは、同一の受信データに対して復調を行った時のBERを基に作成されている。曲線の立ち上がりが早いほど、平均的なBER特性が良い。明らかに、本発明の推定法の方が、従来の推定法よりもCDF特性が良いことがわかる。なお、ドップラー推定以外の処理は、本発明の推定法と従来の推定法とですべて同一の処理である。そのため、本発明の推定法が従来の推定法よりも特性が良く、マルチパス環境においてドップラーを精度よく推定できていることがわかる。
 図13は、各実施形態の推定部11に共通するハードウェア構成を示す概略図である。推定部11は、図13に示されるような情報処理装置900を用いて構成されてもよい。情報処理装置900は、プロセッサー901、メモリー902及び補助記憶装置903を備える。プロセッサー901、メモリー902及び補助記憶装置903は、バス904を介して通信可能に接続されている。推定部11の機能の一部又は全部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されても良い。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、水中の通信に適用可能である。
10…同期部、11,11a,11b…推定部、12…リサンプル部、13…位相回転部、20…等化器、111…相関器、112…第一遅延器、113…第二遅延器、114a、114b…プリアンブル区間抽出部、115…スライド相関器、116…ピーク検出部、117…ドップラー推定部、118…合成相関器

Claims (8)

  1.  受信信号に対してドップラーシフトに応じた同期処理を行う同期部と、前記同期処理が行われた受信信号に対して等化処理を行う等化部と、を備え、
     前記同期部は、
     受信信号と既知のプリアンブル系列との相関と、前記受信信号と既知のポストアンブル系列との相関と、を出力する相関器と、
     前記相関器の出力を基にスライディング相関を出力するスライド相関器と、
     前記スライド相関器の前記スライディング相関に基づいてドップラーシフトを推定するドップラー推定部と、を備える、通信装置。
  2.  前記スライド相関器は、前記相関器の出力の振幅情報のみに基づいてスライディング相関を出力する請求項1に記載の通信装置。
  3.  前記相関器及び前記スライド相関器は、相互相関の計算にFFT(Fast Fourier Transform)を用いる請求項1又は2に記載の通信装置。
  4.  受信信号に対してドップラーシフトに応じた同期処理を行う同期部と、前記同期処理が行われた受信信号に対して等化処理を行う等化部と、を備え、
     前記同期部は、
     前記受信信号と既知のプリアンブル系列との第1相互相関と、前記受信信号と既知のポストアンブル系列の第2相互相関と、を計算し、前記第1相互相関と前記第2相互相関とのスライディング相関を出力する合成相関器と、
     前記合成相関器の前記スライディング相関に基づいてドップラーシフトを推定するドップラー推定部と、を備える通信装置。
  5.  前記合成相関器は、前記プリアンブル系列と前記受信信号との相関の振幅値と、前記ポストアンブル系列と前記受信信号との相関の振幅値と、に基づいて前記スライディング相関を推定する、請求項4に記載の通信装置。
  6.  前記合成相関器は、相互相関の計算にFFTを用いる、請求項4又は請求項5に記載の通信装置。
  7.  受信信号に対してドップラーシフトに応じた同期処理を行う同期部と、前記同期処理が行われた受信信号に対して等化処理を行う等化部と、を備えた通信装置が行う推定方法であって、
     受信信号と既知のプリアンブル系列との相関と、前記受信信号と既知のポストアンブル系列との相関と、を出力する相関ステップと、
     前記相関ステップにおける出力を基にスライディング相関を出力するスライド相関ステップと、
     前記スライド相関ステップにおける前記スライディング相関に基づいてドップラーシフトを推定するドップラー推定ステップと、を有する推定方法。
  8.  受信信号に対してドップラーシフトに応じた同期処理を行う同期部と、前記同期処理が行われた受信信号に対して等化処理を行う等化部と、を備えた通信装置が行う推定方法であって、
     前記受信信号と既知のプリアンブル系列との第1相互相関と、前記受信信号と既知のポストアンブル系列の第2相互相関と、を計算し、前記第1相互相関と前記第2相互相関とのスライディング相関を出力する合成相関ステップと、
     前記合成相関ステップにおける前記スライディング相関に基づいてドップラーシフトを推定するドップラー推定ステップと、を有する推定方法。
PCT/JP2021/018989 2021-05-19 2021-05-19 通信装置及び推定方法 WO2022244141A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180097481.0A CN117242717A (zh) 2021-05-19 2021-05-19 通信装置和估计方法
EP21940757.4A EP4344099A1 (en) 2021-05-19 2021-05-19 Communication device and estimation method
PCT/JP2021/018989 WO2022244141A1 (ja) 2021-05-19 2021-05-19 通信装置及び推定方法
JP2023522078A JPWO2022244141A1 (ja) 2021-05-19 2021-05-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018989 WO2022244141A1 (ja) 2021-05-19 2021-05-19 通信装置及び推定方法

Publications (1)

Publication Number Publication Date
WO2022244141A1 true WO2022244141A1 (ja) 2022-11-24

Family

ID=84141450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018989 WO2022244141A1 (ja) 2021-05-19 2021-05-19 通信装置及び推定方法

Country Status (4)

Country Link
EP (1) EP4344099A1 (ja)
JP (1) JPWO2022244141A1 (ja)
CN (1) CN117242717A (ja)
WO (1) WO2022244141A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149056A (ja) * 1994-11-15 1996-06-07 Kokusai Electric Co Ltd 移動通信における適応等化方式
JP2006217267A (ja) * 2005-02-03 2006-08-17 Furuno Electric Co Ltd 水中通信システム
WO2008157609A2 (en) * 2007-06-18 2008-12-24 University Of Connecticut Apparatus, systems and methods for enhanced multi-carrier based underwater acoustic communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149056A (ja) * 1994-11-15 1996-06-07 Kokusai Electric Co Ltd 移動通信における適応等化方式
JP2006217267A (ja) * 2005-02-03 2006-08-17 Furuno Electric Co Ltd 水中通信システム
WO2008157609A2 (en) * 2007-06-18 2008-12-24 University Of Connecticut Apparatus, systems and methods for enhanced multi-carrier based underwater acoustic communications

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. S. SHARIFJ. NEASHAMO. R. HINTONA. E. ADAMS: "A computationally efficient Doppler compensation system for underwater acoustic communications", IEEE JOURNAL OF OCEANIC ENGINEERING, vol. 25, no. 1, January 2000 (2000-01-01), pages 52 - 61
M. JOHNSONL. FREITAGM. STOJANOVIC: "Improved Doppler tracking and correction for underwater acoustic communications", 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, MUNICH, vol. 1, 1997, pages 575 - 578
M. STOJANOVICJ. PREISIG: "Underwater acoustic communication channels: Propagation models and statistical characterization", IEEE COMMUNICATIONS MAGAZINE, vol. 47, no. 1, January 2009 (2009-01-01), pages 84 - 89

Also Published As

Publication number Publication date
CN117242717A (zh) 2023-12-15
JPWO2022244141A1 (ja) 2022-11-24
EP4344099A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
CN102017555B (zh) 接收装置及传播路径估计方法
CN109088838B (zh) 一种高动态下直扩dpsk信号的伪码—多普勒快速捕获方法
CN110247867B (zh) 水声多普勒估计方法及装置、水声通信方法及系统
JP2020517177A5 (ja)
TWI300296B (en) Apparatus of searching for known sequences
JP5624527B2 (ja) シングルキャリア受信装置
CN111082835A (zh) 高动态下直扩信号的伪码和多普勒的联合捕获方法
CN101116257A (zh) 用于确定相关值的设备和方法
WO2022244141A1 (ja) 通信装置及び推定方法
CN112953593B (zh) LoRa高级接收器
CN109756435B (zh) 一种对信号的频偏估计方法
WO2018188659A1 (zh) 一种信号同步方法及装置
JP3859903B2 (ja) 周波数誤差推定装置およびその方法
CN104796370A (zh) 一种水声通信的信号同步方法、系统及水声通信系统
Eynard et al. Blind Doppler compensation scheme for single carrier digital underwater communications
JP6975760B2 (ja) 自己相関器および受信機
JP7080209B2 (ja) シンボルタイミング生成器および受信機
CN109768812B (zh) 一种基于混沌调频的水声通信多普勒估计与同步方法
CN110943949B (zh) 一种基于sc-fde传输体制的宽带角跟踪方法
Sharif et al. Doppler compensation for underwater acoustic communications
Shakhtarin et al. OFDM signal synchronization algorithm in the multipath hydroacoustic channel
WO2017117732A1 (zh) 一种基于信道特征的空气声波通信信道均衡方法和装置
Zakharov et al. Doppler effect compensation for cyclic-prefix-free OFDM signals in fast-varying underwater acoustic channel
JP2005151396A (ja) 受信装置および受信制御方法
WO2023170970A1 (ja) 受信方法、同期装置及び受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522078

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180097481.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18561251

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021940757

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021940757

Country of ref document: EP

Effective date: 20231219