WO2017117732A1 - 一种基于信道特征的空气声波通信信道均衡方法和装置 - Google Patents

一种基于信道特征的空气声波通信信道均衡方法和装置 Download PDF

Info

Publication number
WO2017117732A1
WO2017117732A1 PCT/CN2016/070206 CN2016070206W WO2017117732A1 WO 2017117732 A1 WO2017117732 A1 WO 2017117732A1 CN 2016070206 W CN2016070206 W CN 2016070206W WO 2017117732 A1 WO2017117732 A1 WO 2017117732A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
sequence
data
equalization
frequency
Prior art date
Application number
PCT/CN2016/070206
Other languages
English (en)
French (fr)
Inventor
傅静静
蔡振华
谢晓辉
Original Assignee
北京司响无限文化传媒有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京司响无限文化传媒有限公司 filed Critical 北京司响无限文化传媒有限公司
Priority to PCT/CN2016/070206 priority Critical patent/WO2017117732A1/zh
Publication of WO2017117732A1 publication Critical patent/WO2017117732A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present invention relates to a wireless communication technology, and in particular to a method and apparatus for communicating using air acoustic waves, and more particularly to a method and apparatus for equalizing air acoustic wave communication channels based on channel characteristics.
  • phase shift keying modulation combined with channel equalization can offset the inter-symbol interference caused by multipath effects.
  • Equalization can be divided into time domain equalization and frequency domain equalization.
  • the symbol rate adaptively adjusts the equalizer coefficients and tracks the carrier phase.
  • Convergence; while frequency domain equalization can work in complex channel structures, but it is more sensitive to Doppler frequency offset. It can be seen that both the time domain equalization and the frequency domain equalization have their own shortcomings in the application of complex air acoustic channels.
  • the technical problem to be solved by the present invention is to propose an air acoustic wave communication channel equalization method based on channel characteristics, which can make advantages and avoid weaknesses, and has the advantages of both time domain equalization and frequency domain equalization, and can avoid the complicated channel structure.
  • the computational complexity of the domain equalization method is large, which improves the possibility of convergence of the algorithm, and improves the performance of frequency domain equalization under the Doppler frequency-biased air acoustic channel to achieve reliable airborne acoustic communication in different channel environments.
  • a channel feature-based air acoustic wave communication channel equalization method is divided into two parts: a transmitting end and a receiving end.
  • the specific steps of the transmitting end processing method include:
  • Step 1 constructing synchronization header data by using a pseudo-random sequence of a specific order, and the synchronization header may then be used for performing time-frequency two-dimensional synchronization on the receiving end, acquiring time-frequency synchronization information of the received signal, and performing channel estimation;
  • Step 2 Construct a UW sequence with a sequence of good periodic correlation and constant amplitude, such as a Frank sequence, a Zadoff-Chu sequence, and an m-sequence, as a training sequence for the time domain equalization at the receiving end and a frequency domain equalization cycle.
  • the prefix can further improve the accuracy of signal estimation;
  • Step 3 Establish a data frame, where the data frame structure includes a synchronization header, a special word UW, a data Data, a special word UW, and a zero-interpolation ZP.
  • the advantage of the frame structure is that both the time domain and the frequency domain equalization are satisfied.
  • the joint processing at the receiving end provides the basis.
  • the specific steps of the receiving end processing method include:
  • Step 1 performing time-frequency two-dimensional synchronization on the synchronization header of the received data frame to obtain time and frequency synchronization information
  • Step 2 intercepting the data signal according to the time synchronization information, and performing Doppler frequency offset compensation according to the frequency synchronization information;
  • Step 3 performing channel estimation
  • Step 5 Perform a decision on the channel decision operator Q C. If it is greater than a certain threshold, perform frequency domain equalization on the data after the Doppler frequency offset compensation; otherwise, the Doppler frequency offset The compensated data is time domain equalized;
  • Step 6 Output the result after equalization.
  • the channel feature-based air acoustic wave communication channel equalization method as described above may perform a copy correlation method for performing time-frequency two-dimensional synchronization, and the sequence of the special word UW may include, but not limited to, a Frank sequence, a Zadoff-Chu sequence. And m sequences, etc.
  • FIG. 1 is a schematic diagram of a data frame structure adopted by the method of the present invention.
  • FIG. 2 is a flowchart of a channel feature-based air acoustic wave communication channel equalization method according to the present invention
  • FIG. 3 is a schematic diagram of an air acoustic wave communication channel equalization apparatus based on channel characteristics according to the present invention.
  • the data frame structure employed by the method of the present invention includes a sync header, a zero insertion ZP, a special word UW, a data Data, a special word UW, and a zero insertion ZP.
  • the advantage of this frame structure is that it satisfies both the time domain and the frequency domain equalization requirements, and provides a basis for the joint processing of the receiving end.
  • the special word UW can be used as both a time domain equalization training and a frequency domain equalization cyclic prefix, and can also be improved. Channel estimation accuracy in frequency domain equalization.
  • the same known sequence is placed before and after the data segment as the special word UW, so that the special word UW before the data Data becomes the cyclic prefix of the data Data and the subsequent special word UW as a whole, the data Data
  • the preceding special words can also be used for channel estimation and training.
  • the special word UW sequence needs to have good periodic correlation characteristics and constant amplitude characteristics, and it is preferable that the amplitude is constant and the non-zero offset period autocorrelation function is zero.
  • the length of the data frame needs to be referenced to the communication rate in the actual application and the coherence time setting of the channel.
  • the generating step of the transmitting signal is: (1) generating, by the shift register, an m-sequence whose order is 9 characteristic polynomial is 1041 as a synchronization header; (2) generating an order of 8 characteristics by using the shift register.
  • the m sequence with a polynomial of 435 is used as the special word UW; (3) the special word UW is placed before and after the data segment; (4) the 50P ZP signal is inserted according to the frame structure shown in FIG. 1 to form a complete transmission signal for transmission.
  • the special word UW which can be used, includes, but is not limited to, a Frank sequence, a Zadoff-Chu sequence, an m sequence, and the like.
  • the data frame structure used in the transmitted signal is as shown in Fig. 1. Specifically, a 9th-order m-sequence (characteristic polynomial is 1041) is used as a synchronization signal (synchronization head), and an 8th-order m-sequence (characteristic polynomial) is adopted. 435) As a special word UW sequence, the length of the ZP sequence is 50 ms.
  • the receiver After receiving the signal, the receiver processes as follows:
  • a time-frequency two-dimensional search is performed on the received complex baseband signal by using the transmitted m sequence to obtain time synchronization and frequency offset estimation;
  • the data signal is intercepted according to the time synchronization information, the data signal is estimated according to the frequency offset, the Doppler frequency offset compensation is performed by using linear interpolation, and the linear minimum mean square error is performed on the channel by using the part of the corresponding special word UW sequence in the data signal.
  • Channel estimation of the criteria LMMSE
  • a 1/2 fractional interval decision feedback equalizer with a second order digital phase locked loop is used, and the self-applying tracking algorithm is a recursive least squares algorithm (RLS), a time domain equalizer stage.
  • RLS recursive least squares algorithm
  • the number is 40 steps.
  • the time domain equalizer is designed to effectively resist inter-symbol interference caused by multi-channels, and to quickly track the time-varying characteristics of the channel to ensure communication reliability and stability.
  • the data at the last ZP is first added to the UW received signal after the synchronization header to obtain an equivalent transmission signal and a channel response function cyclic correlation signal, and then according to the UW after the synchronization header.
  • the received signal is subjected to linear minimum mean square error criterion (LMMSE) optimal channel estimation, and the frequency domain equalizer coefficients under the minimum mean square error criterion are obtained by channel estimation.
  • LMMSE linear minimum mean square error criterion
  • FIG. 3 shows a channel characteristic based air acoustic wave communication channel equalization apparatus according to the present invention.
  • the apparatus includes a time-frequency synchronization unit, a Doppler compensation unit, a channel estimation unit, a channel decision operator calculation unit, a determination unit, a time domain equalizer, a frequency domain equalizer, and a result output. unit.
  • the time-frequency synchronization unit performs time-frequency two-dimensional synchronization on the synchronization header of the received data frame by using a copy correlation method to obtain time and frequency synchronization information.
  • the Doppler compensation unit intercepts the data signal based on the time synchronization information, and performs Doppler frequency offset compensation based on the frequency synchronization information.
  • the channel estimation unit performs channel estimation.
  • the determining unit determines the channel decision operator Q C.
  • the frequency domain equalizer performs frequency domain equalization on the data after the Doppler frequency offset compensation; otherwise, the time domain equalizer Performing time domain equalization on the data after the Doppler frequency offset compensation. Finally, the resulting output unit outputs the equalized result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明公开了一种基于信道特征的空气声波通信信道均衡方法和装置。该方法设计的帧结构同时满足时域和频域均衡的要求,为接收端的联合处理提供基础。本发明所述均衡方法兼具时域均衡和频域均衡两种方式的优点,既能避免在信道结构复杂下时域均衡方法的计算复杂度大,提高算法收敛的可能性,又能改善多普勒频偏空气声波信道下频域均衡的性能,以实现不同信道环境下的可靠空气声波通信。

Description

一种基于信道特征的空气声波通信信道均衡方法和装置 技术领域
本发明涉及无线通信技术,具体说,涉及一种利用空气声波进行通信的方法和装置,特别是涉及一种基于信道特征的空气声波通信信道均衡方法和装置。
背景技术
随着智能终端产品的快速普及与推广,手机作为一种移动终端成了信息传递的重要载体。用户可以利用手机进行支付,接收声音广播信息等,由于可以采用空气声波通信技术在手机等移动终端进行软件开发来实现上述功能,具有方便性和较好的用户体验性,应用前景十分广阔。
但利用空气声信道,会面临一些问题。声波的反射和折射会产生复杂的多径效应,此外,由于收发过程的相对运动造成的多普勒效应严重。针对上述问题,采用相位频移键控调制并结合信道均衡技术可以抵消多径效应带来的码间干扰,均衡可分为时域均衡和频域均衡两种方式,其中时域均衡由于可以用符号速率自适应调节均衡器系数,跟踪载波相位,但当信道结构过于复杂比如信道时间延迟较长时,会造成均衡器阶数过高,计算的复杂度加大,在某些场合下甚至不能收敛;而频域均衡则可以在信道结构复杂的情况下工作,但其对多普勒频偏较为敏感。可以看出,时域均衡和频域均衡两种方式在复杂的空气声信道中应用时都各有不足。
发明内容
本发明要解决的技术问题是提出一种基于信道特征的空气声波通信信道均衡方法,使之扬长避短,兼具时域均衡和频域均衡两种方式的优点,既能避免在信道结构复杂下时域均衡方法的计算复杂度大,提高算法收敛的可能性,又能改善多普勒频偏空气声波信道下频域均衡的性能,以实现不同信道环境下的可靠空气声波通信。
为了解决本发明所提出的问题,本发明所述的一种基于信道特征的空气声波通信信道均衡方法,分为发射端和接收端两个部分,发射端处理方法具体步骤包括:
步骤一、使用特定阶数的伪随机序列构造同步头数据,该同步头随后在接收端可以用来进行时频二维同步,获取接收信号的时频同步信息,并进行信道估计;
步骤二、使用如Frank序列、Zadoff-Chu序列和m序列等具有良好周期相关特性和恒幅特性的序列构造特字UW序列,用来作为接收端时域均衡的训练序列和频域均衡的循环前缀,还可以进一步提高信号估计的精度;
步骤三、建立数据帧,该数据帧结构包括同步头、特字UW、数据Data、特字UW、和插零ZP,这种帧结构的优点在于同时满足时域和频域均衡的要求,为接收端的联合处理提供了基础。
接收端处理方法具体步骤包括:
步骤一、对所接收的数据帧的同步头进行时频二维同步,获得时间和频率同步信息;
步骤二、根据时间同步信息,截取数据信号,根据频率同步信息,进行多普勒频偏补偿;
步骤三、进行信道估计;
步骤四、根据上述信道估计,计算信道长度参数L(单位为符号数)和多径个数M,并计算信道判决算子QC=L×M;
步骤五、对信道判决算子QC进行判决,如果大于某一个设定的阈值,对所述多普勒频偏补偿后的数据进行频域均衡;反之,则对所述多普勒频偏补偿后的数据进行时域均衡;
步骤六、输出均衡后的结果。
如上所述的基于信道特征的空气声波通信信道均衡方法,进行时频二维同步可以采用拷贝相关的方法,而所述特字UW,可以使用的序列包括但不限于Frank序列、Zadoff-Chu序列和m序列等。
附图说明
图1是本发明所述方法所采用的数据帧结构示意图;
图2为本发明所述的基于信道特征的空气声波通信信道均衡方法的流程图;
图3为本发明所述的基于信道特征的空气声波通信信道均衡装置的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
下面结合附图和具体实施例对本发明进行详细说明。
如图1所示,根据一个实施例,本发明所述方法所采用的数据帧结构包括同步头、插零ZP、特字UW、数据Data、特字UW、和插零ZP。这种帧结构的优点在于同时满足时域和频域均衡的要求,为接收端的联合处理提供了基础,其中特字UW可以同时用作时域均衡训练和频域均衡的循环前缀,还可以提高频域均衡中的信道估计精度。
图1中,采取在数据段的前后都放一个相同的已知序列作为特字UW,使数据Data之前的特字UW成为数据Data和后接的特字UW作为一个整体的循环前缀,数据Data前面的特字也可以用来做信道估计和训练。特字UW序列需要有良好的周期相关特性和恒幅特性,最好其幅度恒定且非零偏移周期自相关函数为零。数据帧的长度需要参考实际应用中通信速率和信道的相干时间设定。
根据一个实施例,发射信号的生成步骤为:(1)用移位寄存器产生一个阶数为9特征多项式为1041的m序列作为同步头;(2)用移位寄存器产生一个阶数为8特征多项式为435的m序列作为特字UW;(3)将特字UW放在数据段的前后;(4)按照图1所示的帧结构插入50ms的ZP信号形成完整的发射信号发送出去。
所述特字UW,可以使用的序列包括但不限于Frank序列、Zadoff-Chu序列和m序列等。
图2中,发射信号中,采用的数据帧结构如图1,具体地说,采用9阶m序列(特征多项式为1041)作为同步信号(同步头Synchronization Head),采用8阶m序列(特征多项式为435)作为特字UW序列,ZP序列的长度为50ms。
如图2所示,接收端接收到信号后,按照如下方法处理:
首先使用发射的m序列对接收的复基带信号进行时频二维搜索,获取时间同步和频率偏移估计;
根据时间同步信息截取数据信号,对数据信号根据频率偏移估计,使用线性插值的方式进行多普勒频偏补偿,并利用数据信号中对应特字UW序列的部分对信道进行线性最小均方误差准则(LMMSE)的信道估计;
利用估计的信道得到信道长度L(单位为符号数)和多径个数M等参数,并计算信道判决算子QC=L×M,根据判决算子的值,选择采用时域均衡或者频域均衡对得到的帧数据进行处理;
例如,如果QC的值大于20,采用频域均衡,而如果QC的值小于或等于20,则采用时域均衡;最终得到均衡输出信号。
本实施例中,对时域均衡器,使用内嵌二阶数字锁相环的1/2分数间隔判决反馈均衡器,自适用跟踪算法为递归最小二乘算法(RLS),时域均衡器阶数为40阶。这种时域均衡器的设计可以有效对抗多途信道造成的码间干扰,并快速跟踪信道的时变特性,保证通信的可靠性和稳定性。
本实施例中,对频域均衡器,首先将末尾ZP处的数据与同步头后的UW接收信号相加,获得等效的发射信号与信道响应函数循环相关信号,然后根据同步头后的UW接收信号进行线性最小均方误差准则(LMMSE)最佳信道估计,利用信道估计得到最小均方误差准则下的频域均衡器系数。这种频域均衡器的设计具有计算复杂度低的特点,可以在信道结构复杂的情况下工作。
图3示出了本发明所述的基于信道特征的空气声波通信信道均衡装置。如图3所示,该装置包括时频同步单元、多普勒补偿单元、信道估计单元、信道判决算子计算单元、判定单元、时域均衡器、频域均衡器和结果输出 单元。
时频同步单元采用拷贝相关的方法对所接收的数据帧的同步头进行时频二维同步,获得时间和频率同步信息。多普勒补偿单元根据时间同步信息,截取数据信号,根据频率同步信息,进行多普勒频偏补偿。信道估计单元进行信道估计。信道判决算子计算单元根据上述信道估计,计算信道长度参数L(单位为符号数)和多径个数M,并计算信道判决算子QC=L×M。判定单元对信道判决算子QC进行判决,如果大于某一个设定的阈值,则频域均衡器对所述多普勒频偏补偿后的数据进行频域均衡;否则,则时域均衡器对所述多普勒频偏补偿后的数据进行时域均衡。最后,结果输出单元输出均衡后的结果。
需要说明的是,以上实施例仅用以说明本发明而非限制,尽管参照较佳实施例对本发明进行详细的说明,本领域的普通技术人员应当理解,在不脱离本发明的精神和范围的前提下对本发明进行的改变、修改和变形或者等同替换,均应涵盖在本发明的权利要求范围当中。

Claims (20)

  1. 一种基于信道特征的空气声波通信信道均衡方法,其包括:
    在发射端使用特定阶数的伪随机序列构造同步头数据;
    使用具有良好周期相关特性和恒幅特性的序列构造特字UW序列;以及
    建立数据帧,该数据帧结构包括同步头、特字UW、数据Data、特字UW、和插零ZP。
  2. 如权利要求1所述的方法,其中所述特字UW序列包括Frank序列、Zadoff-Chu序列和m序列。
  3. 如权利要求1所述的方法,其中同步头为阶数为9特征多项式为1041的m序列,特字UW序列为阶数为8特征多项式为435的m序列,插零ZP序列的长度为50ms。
  4. 一种基于信道特征的空气声波通信信道均衡设备,其包括:
    用于在发射端使用特定阶数的伪随机序列构造同步头数据的装置;
    用于使用具有良好周期相关特性和恒幅特性的序列构造特字UW序列的装置;以及
    用于建立数据帧的装置,该数据帧结构包括同步头、特字UW、数据Data、特字UW、和插零ZP。
  5. 如权利要求4所述的设备,其中所述特字UW序列包括Frank序列、Zadoff-Chu序列和m序列。
  6. 如权利要求4所述的设备,其中同步头为阶数为9特征多项式为1041的m序列,特字UW序列为阶数为8特征多项式为435的m序列,插零ZP序列的长度为50ms。
  7. 一种基于信道特征的空气声波通信信道均衡方法,其包括:
    在接收端对所接收的数据帧的同步头进行时频二维同步,获得时间和频率同步信息;
    根据时间同步信息,截取数据信号,根据频率同步信息,进行多普勒频偏补偿;
    进行信道估计;
    根据该信道估计,计算信道长度参数L和多径个数M,并计算信道判决算子QC=L×M;
    对信道判决算子QC进行判决,如果大于设定的阈值,对所述多普勒频偏补偿后的数据进行频域均衡;反之,则对所述多普勒频偏补偿后的数据进行时域均衡;以及
    输出均衡后的结果。
  8. 如权利要求7所述的方法,其中,所述多普勒频偏补偿包括使用线性插值的方式。
  9. 如权利要求7所述的方法,其中,所述信道估计包括利用数据信号中对应特字UW序列的部分对信道进行线性最小均方差估计。
  10. 如权利要求7所述的方法,其中,所设定的阈值为20。
  11. 一种基于信道特征的空气声波通信信道均衡装置,其包括:
    时频同步单元,对所接收的数据帧的同步头进行时频二维同步,获得时间和频率同步信息;
    多普勒补偿单元,根据时间同步信息,截取数据信号,根据频率同步信息,进行多普勒频偏补偿;
    信道估计单元,进行信道估计;
    信道判决算子计算单元,根据该信道估计,计算信道长度参数L和多径个数M,并计算信道判决算子QC=L×M;
    判定单元,对信道判决算子QC进行判决,如果大于设定的阈值,频域 均衡器对所述多普勒频偏补偿后的数据进行频域均衡;反之,则时域均衡器对所述多普勒频偏补偿后的数据进行时域均衡;以及
    结果输出单元,输出均衡后的结果。
  12. 如权利要求11所述的装置,其中,时域均衡器使用内嵌二阶数字锁相环的1/2分数间隔判决反馈均衡器,自适用跟踪算法为递归最小二乘算法RLS,时域均衡器阶数为40阶。
  13. 如权利要求11所述的装置,其中,对频域均衡器,首先将插零ZP处的数据与帧头数据相加,获得循环相关,然后采用最小均方误差下的最佳信道估计,利用信道估计得到最小均方误差准则下的频域均衡器系数。
  14. 如权利要求11所述的装置,其中,所述多普勒频偏补偿包括使用线性插值的方式。
  15. 如权利要求11所述的装置,其中,所述信道估计包括利用数据信号中对应特字UW序列的部分对信道进行线性最小均方误差准则的信道估计。
  16. 如权利要求11所述的装置,其中,所设定的阈值为20。
  17. 一种基于信道特征的空气声波通信信道均衡设备,其包括:
    用于在接收端对所接收的数据帧的同步头进行时频二维同步,获得时间和频率同步信息的装置;
    用于根据时间同步信息,截取数据信号,根据频率同步信息,进行多普勒频偏补偿的装置;
    用于进行信道估计的装置;
    用于根据该信道估计,计算信道长度参数L和多径个数M,并计算信道判决算子QC=L×M的装置;
    用于对信道判决算子QC进行判决的装置,如果大于设定的阈值,对所 述多普勒频偏补偿后的数据进行频域均衡;反之,则对所述多普勒频偏补偿后的数据进行时域均衡;以及
    用于输出均衡后的结果的装置。
  18. 如权利要求17所述的设备,其中,所述多普勒频偏补偿包括使用线性插值的方式。
  19. 如权利要求17所述的设备,其中,所述信道估计包括利用数据信号中对应特字UW序列的部分对信道进行线性最小均方误差准则的信道估计。
  20. 如权利要求17所述的设备,其中,所设定的阈值为20。
PCT/CN2016/070206 2016-01-05 2016-01-05 一种基于信道特征的空气声波通信信道均衡方法和装置 WO2017117732A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070206 WO2017117732A1 (zh) 2016-01-05 2016-01-05 一种基于信道特征的空气声波通信信道均衡方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070206 WO2017117732A1 (zh) 2016-01-05 2016-01-05 一种基于信道特征的空气声波通信信道均衡方法和装置

Publications (1)

Publication Number Publication Date
WO2017117732A1 true WO2017117732A1 (zh) 2017-07-13

Family

ID=59273109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070206 WO2017117732A1 (zh) 2016-01-05 2016-01-05 一种基于信道特征的空气声波通信信道均衡方法和装置

Country Status (1)

Country Link
WO (1) WO2017117732A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225138A (zh) * 2021-04-25 2021-08-06 电子科技大学 一种消除水声强宽带干扰的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080025452A1 (en) * 2006-07-28 2008-01-31 Oki Electric Industry Co., Ltd. Frame synchronous control for use in a DSRC system using operational information provided from input circuitry of an on-board unit
CN102546486A (zh) * 2010-12-14 2012-07-04 中国科学院声学研究所 一种信道自适应单载波水声相干通信信号处理方法
CN104618282A (zh) * 2015-02-17 2015-05-13 招商局重庆交通科研设计院有限公司 单载波频域均衡实现方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080025452A1 (en) * 2006-07-28 2008-01-31 Oki Electric Industry Co., Ltd. Frame synchronous control for use in a DSRC system using operational information provided from input circuitry of an on-board unit
CN102546486A (zh) * 2010-12-14 2012-07-04 中国科学院声学研究所 一种信道自适应单载波水声相干通信信号处理方法
CN104618282A (zh) * 2015-02-17 2015-05-13 招商局重庆交通科研设计院有限公司 单载波频域均衡实现方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIA, NING ET AL.: "An Overview of Underwater Acoustic Communications", PHYSICS, vol. 43, no. 10, 12 October 2014 (2014-10-12), ISSN: 0379-4148 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225138A (zh) * 2021-04-25 2021-08-06 电子科技大学 一种消除水声强宽带干扰的方法

Similar Documents

Publication Publication Date Title
US9037187B2 (en) Interference cancellation receiver and method
JPH06506324A (ja) 被劣化信号を受信機内で等価にする装置および方法
KR101241824B1 (ko) Ofdm 통신 시스템의 수신 장치 및 그의 위상 잡음 완화 방법
JP2022064954A (ja) 送信機、受信機およびその対応方法
Pallares et al. TS-MUWSN: Time synchronization for mobile underwater sensor networks
JP5624527B2 (ja) シングルキャリア受信装置
WO2017117732A1 (zh) 一种基于信道特征的空气声波通信信道均衡方法和装置
US20060062333A1 (en) Method and apparatus for channel impulse response estimation in gsm systems
JP2010119070A (ja) 位相雑音補償受信機
WO2015101672A1 (en) Methods and devices for doppler shift compensation in a mobile communication system
CN107276654B (zh) 信号处理方法和系统
CN107276953B (zh) 定时同步方法、装置和系统
CN105450557A (zh) 一种基于信道特征的空气声波通信信道均衡方法和装置
CN103428131A (zh) 一种用于dmr通信中直流分量和判决门限的计算方法
CN101286958B (zh) 一种数字电视地面广播信道估计方法及其装置
Zeeshan et al. A two stage algorithm for carrier frequency offset recovery with DSP implementation on SDR platform
JP2003115786A (ja) ディジタル無線通信装置
WO2019205312A1 (zh) 一种基于格雷序列的信噪比估计方法
CN107276943B (zh) 定时同步方法、装置和系统
CN107277913B (zh) 定时同步方法、装置和系统
WO2018077028A1 (zh) 信号处理方法及装置
CN107276740B (zh) 定时同步方法、装置和系统
CN107294889B (zh) 载波同步方法和装置
CN107276708B (zh) 定时同步方法、装置和系统
WO2022244141A1 (ja) 通信装置及び推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882877

Country of ref document: EP

Kind code of ref document: A1