WO2022244116A1 - エレベーターのかご状態を検出する装置 - Google Patents

エレベーターのかご状態を検出する装置 Download PDF

Info

Publication number
WO2022244116A1
WO2022244116A1 PCT/JP2021/018851 JP2021018851W WO2022244116A1 WO 2022244116 A1 WO2022244116 A1 WO 2022244116A1 JP 2021018851 W JP2021018851 W JP 2021018851W WO 2022244116 A1 WO2022244116 A1 WO 2022244116A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
car
guide rail
movable rod
housing
Prior art date
Application number
PCT/JP2021/018851
Other languages
English (en)
French (fr)
Inventor
政之 垣尾
邦充 岸元
智香 山口
英敬 石黒
甫祥 山中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112021007691.4T priority Critical patent/DE112021007691T5/de
Priority to PCT/JP2021/018851 priority patent/WO2022244116A1/ja
Priority to CN202180098147.7A priority patent/CN117279852A/zh
Priority to JP2021566307A priority patent/JP7070810B1/ja
Publication of WO2022244116A1 publication Critical patent/WO2022244116A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3492Position or motion detectors or driving means for the detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • B66B7/04Riding means, e.g. Shoes, Rollers, between car and guiding means, e.g. rails, ropes

Definitions

  • the present disclosure relates to a device for detecting the car state of an elevator.
  • Patent Document 1 discloses an elevator car position detection device.
  • the car position detection device can detect the position of the car.
  • An object of the present disclosure is to provide an apparatus for detecting the car state of an elevator that can improve the detection accuracy of the car state.
  • a device for detecting an elevator car state includes a housing attached to an elevator car, a roller facing a guide rail of the elevator, a rotary encoder for detecting a rotation angle of the roller, and the housing. a shaft that is rotatably supported by the body, rotatably supports the roller, and is rotatably supported by the housing while the roller is in contact with the guide rail; and a shaft that rotatably supports the roller. and a movable rod arranged so that a line connecting the lines is along the guide rail.
  • a device for detecting an elevator car state includes a housing attached to an elevator car, a first roller facing one surface of a guide rail of the elevator, and a first roller facing the other surface of the guide rail. 2 rollers, a first rotary encoder that detects the rotation angle of the first roller, a second rotary encoder that detects the rotation angle of the second roller, and the housing rotatably supported, the first roller and a line connecting a shaft rotatably supported by the housing with the first roller in contact with the first guide rail and a shaft rotatably supporting the first roller
  • the movable rod or the like follows the guide rail. Therefore, it is possible to improve the detection accuracy of the car state of the elevator.
  • FIG. 1 is a configuration diagram of an elevator to which a device for detecting a car state of an elevator according to Embodiment 1 is applied;
  • FIG. 1 is a side view of a device for detecting a car state of an elevator according to Embodiment 1;
  • FIG. 1 is a front view of a device for detecting a car state of an elevator according to Embodiment 1;
  • FIG. 1 is a cross-sectional view of an elevator guide rail to which a device for detecting a car state of an elevator according to Embodiment 1 is applied;
  • FIG. 1 is a side view of a device for detecting a car state of an elevator according to Embodiment 1;
  • FIG. 10 is a side view when the structure of the car position detection device described in Patent Document 1 is mounted on the device 7 in Embodiment 1;
  • FIG. 4 is a diagram showing a detection error of a car position by a device for detecting a car state of an elevator according to Embodiment 1;
  • FIG. 11 is a side view of a device for detecting a car state of an elevator according to Embodiment 2;
  • FIG. 10 is a front view of a device for detecting a car state of an elevator according to Embodiment 2;
  • FIG. 11 is a side view of a device for detecting a car state of an elevator according to Embodiment 3;
  • FIG. 11 is a front view of a device for detecting a car state of an elevator according to Embodiment 3;
  • FIG. 11 is a side view of a device for detecting a car state of an elevator according to Embodiment 3;
  • FIG. 11 is a front view of a device for detecting a car state of an elevator according to Embodiment 3;
  • FIG. 11 is a side view of a device for detecting a car state of an elevator according to Embodiment 4;
  • FIG. 14 is a front view of a device for detecting a car state of an elevator according to Embodiment 4;
  • FIG. 1 is a configuration diagram of an elevator to which a device for detecting the car state of an elevator according to Embodiment 1 is applied.
  • the term "cage state” as used herein refers to the state of the car, for example, the speed of the car, the position of the car, and the speed and position of the car.
  • the hoistway 1 runs through each floor of the building (not shown).
  • the hoist 2 is provided in a machine room (not shown).
  • the main rope 3 is wound around the hoisting machine 2 .
  • the guide rail 4 is provided inside the hoistway 1 with its longitudinal direction set in the vertical direction.
  • the car 5 is provided inside the hoistway 1 .
  • a car 5 is supported on one side of the main rope 3 .
  • the car 5 is guided by the guide rails 4 .
  • a counterweight 6 is provided inside the hoistway 1 .
  • a counterweight 6 is supported on the other side of the main rope 3 .
  • a device 7 for detecting the state is provided in the car 5.
  • the device 7 is provided on the upper left side of the car 5 .
  • the hoist 2 rotates based on commands from a control device (not shown).
  • the main rope 3 moves following the rotation of the hoist 2 .
  • the car 5 and the counterweight 6 follow the movement of the main rope 3 and move up and down in opposite directions.
  • the device 7 detects the state of the car 5 .
  • FIG. 2 is a side view of the device 7 in Embodiment 1.
  • FIG. 3 is a front view of the device 7 in Embodiment 1.
  • FIG. 2 is a side view of the device 7 in Embodiment 1.
  • FIG. 3 is a front view of the device 7 in Embodiment 1.
  • a device 7 for detecting car status is attached to car 5 on one side of guide rail 4 .
  • the device 7 includes a housing 8 , a roller 9 , a rotary encoder 10 , a movable rod 11 , a movable rod rotating shaft 12 , a roller rotating shaft 13 and an elastic body 14 .
  • the housing 8 is attached to the car 5.
  • a roller 9 is arranged above the housing 8 .
  • a roller 9 faces the guide rail 4 .
  • the rotary encoder 10 is arranged above the housing 8 .
  • a rotary encoder 10 is arranged coaxially with the roller 9 .
  • the movable rod 11 is formed in a rod shape.
  • the movable rod rotating shaft 12 rotatably supports one end of the movable rod 11 with respect to the housing 8 .
  • the roller rotating shaft 13 rotatably supports the roller 9 with respect to the central portion of the movable rod 11 .
  • the roller rotating shaft 13 supports the rotary encoder 10 at the center of the movable rod 11 .
  • the elastic body 14 is arranged on the side opposite to the guide rail 4 with respect to the other end of the movable rod 11 .
  • One side of the elastic body 14 is connected to the projecting portion of the housing 8 .
  • the other end of the elastic body 14 is connected to the other end of the movable rod 11 .
  • the elastic body 14 generates a force that presses the other end of the movable rod 11 toward the guide rail 4 .
  • the rollers 9 are pressed against the guide rails 4 by the restoring force of the elastic bodies 14 .
  • the line connecting the movable rod rotating shaft 12 and the roller rotating shaft 13 runs along the guide rail 4 so as to be substantially parallel to the guide rail 4 .
  • the rollers 9 rotate due to the frictional force between them and the guide rails 4 .
  • the rotary encoder 10 detects the rotation angle of the roller 9 .
  • the amount of movement of the car 5 is detected by dividing the length of the outer circumference of the roller 9 by the number of pulses per round and multiplying the number of pulses measured when the car 5 moves.
  • the absolute position of the car 5 is detected by adding the amount of movement of the car 5 to the position of the car 5 before movement.
  • the speed of the car 5 is detected by differentiating the amount of movement of the car 5 with time.
  • FIG. 4 is a sectional view of an elevator guide rail 4 to which the device 7 in Embodiment 1 is applied.
  • the device 7 can be arranged in a plurality of positions.
  • the device 7 is arranged so that the outer peripheral surface of the roller 9 contacts the A surface of the guide rail 4 .
  • the device 7 is arranged so that the outer peripheral surface of the roller 9 contacts the B surface of the guide rail 4 .
  • the device 7 is arranged so that the outer peripheral surface of the roller 9 contacts the C surface of the guide rail 4 .
  • FIG. 5 is a side view of the device 7 in Embodiment 1.
  • FIG. FIG. 6 is a side view when the structure of the car position detection device described in Patent Document 1 is mounted on this device 7 for comparison with the device 7 in Embodiment 1.
  • FIG. 7 is a diagram showing the detection error of the position of the car by the device 7 in the first embodiment.
  • r is the radius of the roller 9.
  • l is the distance between the movable rod rotating shaft 12 and the roller rotating shaft 13 in the direction perpendicular to the longitudinal direction of the movable rod 11 .
  • the distance l is a preset distance.
  • FIG. 7 shows the position detection error of the car 5 by the device 7 when the car 5 is statically tilted.
  • the position detection value pos of the car 5 is expressed by the following equation (1).
  • s is the amount of slip between the roller 9 and the guide rail 4.
  • enc is the number of pulses measured by the rotary encoder 10;
  • PPR is the number of pulses measured by the rotary encoder 10 when the roller 9 rotates once.
  • is the inclination of the car 5 .
  • the inclination ⁇ of the car 5 is the same, the smaller the distance l between the movable rod rotating shaft 12 and the roller rotating shaft 13 in the direction orthogonal to the longitudinal direction of the movable rod 11, the better the position detection accuracy of the car 5 is.
  • the distance corresponding to the distance l is approximately 0. For this reason, the device 7 for detecting the car state of FIG. and velocity are detected with high accuracy.
  • the movable rod 11 has a shaft that is rotatably supported by the housing 8 while the roller 9 is in contact with the guide rail 4, and a shaft that rotatably supports the roller 9. are arranged along the guide rail 4. Specifically, a line connecting the movable rod rotating shaft 12 and the roller rotating shaft 13 runs along the guide rail 4 . Therefore, the detection accuracy of the state of the car 5 can be improved with an inexpensive configuration.
  • the car 5 also performs translational vibration, which is a horizontal movement caused by the difference in the state of the guide rail 4, and rotational vibration accompanying the movement of the user inside the car 5 when performing vertical motion that contributes to elevation.
  • translational vibration is a horizontal movement caused by the difference in the state of the guide rail 4, and rotational vibration accompanying the movement of the user inside the car 5 when performing vertical motion that contributes to elevation.
  • the rotational vibration of the car 5 can be received by rotatably supporting the movable rod 11 .
  • the translational vibration of the car 5 can be received by rotating the movable rod 11 .
  • the force applied from the movable rod 11 to the rollers 9 acts in a direction that deviates from the direction orthogonal to the guide rails 4 . Therefore, when the car 5 rotates dynamically, the rollers 9 vibrate in the direction of the movable rod 11 . In this case, the rollers 9 are deteriorated due to changes in the frictional state, and the detection accuracy of the state of the car 5 is lowered.
  • the distance between the movable rod rotating shaft 12 and the roller rotating shaft 13 in the direction orthogonal to the longitudinal direction of the movable rod 11 is almost zero. Therefore, deterioration of the rollers 9 and deterioration of detection accuracy of the state of the car 5 can be suppressed.
  • the elastic body 14 presses the movable rod 11 against the guide rail 4 on the side opposite to the shaft rotatably supported by the housing 8 with respect to the shaft rotatably supporting the roller 9 in the movable rod 11 . generate power. Therefore, even a small elastic body 14 can press the roller 9 against the guide rail 4 with a relatively large force due to the principle of leverage.
  • the device 7 for detecting the state of the car may be arranged at a position facing the guide rail 4 .
  • the guide rails 4 are arranged so as to sandwich the car 5 therebetween. Therefore, if the guide rail 4 is also present on the right side of the car 5 in FIG.
  • the device 7 may be arranged on the left or right side of the lower part of the car 5 .
  • a plurality of devices 7 may be arranged at positions facing the guide rails 4 in the car 5 .
  • FIG. 8 is a side view of a device for detecting the car state of an elevator according to Embodiment 2.
  • FIG. 9 is a front view of a device for detecting the car state of an elevator according to Embodiment 2.
  • the same reference numerals are given to the same or corresponding parts as those of the first embodiment. Description of this part is omitted.
  • the device 7 for detecting the state of the car is arranged so as to sandwich plane A and plane C in FIG.
  • the device 7 includes a housing 8, a first roller 9a, a second roller 9b, a first rotary encoder 10a, a second rotary encoder 10b, a first movable rod 11a, a second movable rod 11b, and a first movable rod. It comprises a rod rotating shaft 12a, a second movable rod rotating shaft 12b, a first roller rotating shaft 13a, a second roller rotating shaft 13b, a first elastic body 14a, and a second elastic body 14b.
  • the housing 8 is attached to the car 5.
  • the first roller 9 a is arranged above the housing 8 on one side of the guide rail 4 .
  • the first roller 9 a faces one surface of the guide rail 4 .
  • the second roller 9 b is provided above the housing 8 on the other side of the guide rail 4 .
  • the second roller 9 b faces the other surface of the guide rail 4 .
  • the first rotary encoder 10a is arranged coaxially with the first roller 9a.
  • the second rotary encoder 10b is arranged coaxially with the second roller 9b.
  • the first movable rod 11a is formed in a rod shape.
  • the second movable rod 11b is formed in a rod shape.
  • the first movable rod rotating shaft 12a rotatably supports one end of the first movable rod 11a with respect to one side of the housing 8.
  • the second movable rod rotating shaft 12b rotatably supports one end of the second movable rod 11b with respect to the other side of the housing 8.
  • the first roller rotating shaft 13a rotatably supports the first roller 9a with respect to the central portion of the first movable rod 11a.
  • the first roller rotating shaft 13a supports the first rotary encoder 10a at the central portion of the first movable rod 11a.
  • the second roller rotating shaft 13b rotatably supports the second roller 9b with respect to the central portion of the second movable rod 11b.
  • the second roller rotating shaft 13b supports the second rotary encoder 10b at the center of the second movable rod 11b.
  • the first elastic body 14a is arranged on the side opposite to the guide rail 4 with respect to the other end of the first movable rod 11a.
  • One side of the first elastic body 14 a is connected to the first projecting portion of the housing 8 .
  • the other side of the first elastic body 14a is connected to the other end of the first movable rod 11a.
  • the second elastic body 14b is arranged on the side opposite to the guide rail 4 with respect to the other end of the second movable rod 11b.
  • One side of the second elastic body 14 b is connected to the second projecting portion of the housing 8 .
  • the other side of the second elastic body 14b is connected to the other end of the second movable rod 11b.
  • the first roller 9a is pressed against the guide rail 4 by the restoring force of the first elastic body 14a.
  • the second roller 9b is pressed against the guide rail 4 by the restoring force of the second elastic body 14b.
  • a line connecting the first movable rod rotating shaft 12 a and the first roller rotating shaft 13 a runs along the guide rail 4 .
  • a line connecting the second movable rod rotating shaft 12 b and the second roller rotating shaft 13 b runs along the guide rail 4 .
  • the first roller 9 a rotates due to frictional force with the guide rail 4 .
  • the second roller 9b rotates due to the frictional force with the guide rail 4.
  • the first rotary encoder 10a detects the rotation angle of the first roller 9a.
  • the second rotary encoder 10b detects the rotation angle of the second roller 9b.
  • the first rotary encoder 10a detects the rotation angle of the first roller 9a.
  • the second rotary encoder 10b detects the rotation angle of the second roller 9b. Therefore, detection of the state of the car 5 can be easily duplicated.
  • the first rotary encoder Detection signals from the encoder 10a and the second rotary encoder 10b may be compared. Based on the comparison result at this time, after determining that there is an abnormality, measures such as stopping the car 5 or slowly moving the car 5 up and down to confirm the state may be taken.
  • the slippage between the first roller 9a and the second roller 9b becomes large.
  • the other one of 9b follows the guide rail 4 without slipping. Therefore, the state of the car 5 can be detected with high accuracy.
  • the detection values of the first rotary encoder 10a and the second rotary encoder 10b should be averaged. Just do it. In this case, the detection error of the state of the car 5 can be suppressed.
  • FIG. 10 is a side view of a device for detecting the car state of an elevator according to Embodiment 3.
  • FIG. 11 is a front view of an apparatus for detecting the car state of an elevator according to Embodiment 3.
  • FIG. The same reference numerals are given to the same or corresponding parts as those of the second embodiment. Description of this part is omitted.
  • one side of the elastic body 14 is connected to the other end of the first movable rod 11a.
  • the other side of the elastic body 14 is connected to the other end of the second movable rod 11b.
  • the first roller 9 a is pressed against the guide rail 4 by the tensile force of the elastic body 14 .
  • the second roller 9 b is pressed against the guide rail 4 by the tensile force of the elastic body 14 .
  • the line connecting the first movable rod rotating shaft 12a and the first roller rotating shaft 13a is the line connecting the second movable rod rotating shaft 12b along the guide rail 4 and the second roller rotating shaft 13b.
  • the first roller 9 a rotates due to frictional force with the guide rail 4 .
  • the second roller 9b rotates due to the frictional force with the guide rail 4.
  • the first rotary encoder 10a detects the rotation angle of the first roller 9a.
  • the second rotary encoder 10b detects the rotation angle of the second roller 9b.
  • FIG. 12 is a side view of the device 7 in Embodiment 3.
  • FIG. 13 is a front view of the device 7 in Embodiment 3.
  • FIG. 12 is a side view of the device 7 in Embodiment 3.
  • FIG. 13 is a front view of the device 7 in Embodiment 3.
  • the first roller 9a and the second roller 9b move in the same direction with respect to the housing 8 when the car 5 vibrates horizontally. At this time, the length of the elastic body 14 hardly changes. Therefore, the pressing forces of the first roller 9a and the second roller 9b against the guide rail 4 are substantially the same and do not substantially change.
  • the elastic body 14 presses the first roller 9a and the second roller 9b against the guide rail 4 with tensile force. Therefore, the number of elastic bodies 14 can be reduced more than in the second embodiment. Further, the width of the housing 8 can be narrowed by the amount that the elastic body 14 is positioned at the center of the device 7 for detecting the state of the car.
  • FIG. 14 is a side view of a device for detecting the car state of an elevator according to Embodiment 4.
  • FIG. FIG. 15 is a front view of a device for detecting the car state of an elevator according to Embodiment 4.
  • the same reference numerals are given to the same or corresponding parts as those of the first embodiment. Description of this part is omitted.
  • the floating structure 15 is provided between the car 5 and the housing 8, as shown in FIG.
  • the floating structure 15 connects the car 5 and the housing 8 softly.
  • floating structure 15 is a linear guide.
  • floating structure 15 is an elastic body. The floating structure 15 separates translational and rotational vibrations of the car 5 .
  • the floating structure 15 separates the translational vibration and rotational vibration of the car 5 . Therefore, regardless of the vibration of the car 5, the device 7 for detecting the state of the car following the guide rails 4 can be operated. As a result, by suppressing the slippage between the rollers 9 and the guide rails 4, the component of the vertical movement of the car 5 can be accurately extracted.
  • the outer peripheral surfaces of the roller 9, the first roller 9a, and the second roller 9b are deformed by being pressed against the guide rail 4.
  • the hardness of the roller 9, the first roller 9a, and the second roller 9b is low, the roller 9, the first roller 9a, The amount of movement of the outer peripheral surface of the second roller 9b changes. Therefore, the hardness of the roller 9, the first roller 9a, and the second roller 9b should be high.
  • the hardness of the roller 9, the first roller 9a, and the second roller 9b may be 90 or more.
  • the roller 9 may be made of hard resin.
  • the roller 9 may be made of metal. In this case, crushing of the outer peripheral surfaces of the roller 9, the first roller 9a, and the second roller 9b can be suppressed. As a result, the state of the car 5 can be detected with high accuracy.
  • the detection accuracy of the rotation angle of the roller 9 can be improved. may improve.
  • the amount of crushing of the roller 9, the first roller 9a, and the second roller 9b is By using it as a correction value for the diameter of the second roller 9b, the detection accuracy of the rotation angles of the roller 9, the first roller 9a, and the second roller 9b may be improved.
  • the roller 9, the first roller 9a, and the second roller 9b are frictionally driven with respect to the guide rail 4. Therefore, in the movement of the roller 9, the first roller 9a, and the second roller 9b, a slip amount s is theoretically generated. If the device 7 for detecting the car state continues to be used in this state, the information on the absolute position of the car 5 shifts. In this case, the origin may be corrected using an optical, magnetic, or mechanical sensor at any position on the hoistway.
  • the friction drive deteriorates the outer peripheral surfaces of the roller 9, the first roller 9a, and the second roller 9b.
  • the outer diameters of the roller 9, the first roller 9a and the second roller 9b change.
  • the amount of movement of the outer peripheral surfaces of the roller 9, the first roller 9a, and the second roller 9b when making one rotation changes. Therefore, the detection accuracy of the amount of movement of the car 5 may be lowered.
  • the outer diameters of the roller 9, the first roller 9a, and the second roller 9b after the change may be estimated using the origin correction. By using the estimated value at this time, it is possible to suppress a decrease in the detection accuracy of the amount of movement of the car 5 .
  • the roller 9, the first roller 9a, and the second roller 9b become more slippery due to a decrease in frictional force.
  • the surfaces of the rollers 9, the first rollers 9a and the second rollers 9b are grooved or knurled like automobile tires so that the rollers 9, the first rollers 9a and the second rollers 9a and 9b The coefficient of friction of 9b should be improved.
  • the device 7 for detecting the state of the car according to any one of the first to fourth embodiments may be applied.
  • the device for detecting the elevator car state of the present disclosure can be used for elevators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

かごの状態の検出精度を向上することができるエレベーターのかご状態を検出する装置を提供する。エレベーターのかご状態を検出する装置は、エレベーターのかごに取り付けられた筐体と、前記エレベーターのガイドレールに対向したローラと、前記ローラの回転角度を検出するロータリーエンコーダと、前記筐体に回転自在に支持され、前記ローラを回転自在に支持し、前記ローラが前記ガイドレールに接触した状態で前記筐体に回転自在に支持される軸と前記ローラを回転自在に支持する軸とを結ぶ線が前記ガイドレールに沿うように配置された可動棒と、を備える。

Description

エレベーターのかご状態を検出する装置
 本開示は、エレベーターのかご状態を検出する装置に関する。
 特許文献1は、エレベーターのかご位置検出装置を開示する。当該かご位置検出装置によれば、かごの位置を検出し得る。
日本実開平3-122061号公報
 しかしながら、特許文献1に記載のかご位置検出装置においては、ローラとガイドレールとの間の摩擦により可動棒が回転する方向に動作する。このため、かごの位置の検出精度が下がる。
 本開示は、上述の課題を解決するためになされた。本開示の目的は、かごの状態の検出精度を向上することができる、エレベーターのかご状態を検出する装置を提供することである。
 本開示に係るエレベーターのかご状態を検出する装置は、エレベーターのかごに取り付けられた筐体と、前記エレベーターのガイドレールに対向したローラと、前記ローラの回転角度を検出するロータリーエンコーダと、前記筐体に回転自在に支持され、前記ローラを回転自在に支持し、前記ローラが前記ガイドレールに接触した状態で前記筐体に回転自在に支持される軸と前記ローラを回転自在に支持する軸とを結ぶ線が前記ガイドレールに沿うように配置された可動棒と、を備えた。
 本開示に係るエレベーターのかご状態を検出する装置は、エレベーターのかごに取り付けられた筐体と、前記エレベーターのガイドレールの一面に対向した第1ローラと、前記ガイドレールの他面に対向した第2ローラと、前記第1ローラの回転角度を検出する第1ロータリーエンコーダと、前記第2ローラの回転角度を検出する第2ロータリーエンコーダと、前記筐体に回転自在に支持され、前記第1ローラを回転自在に支持し、前記第1ローラが前記第1ガイドレールに接触した状態で前記筐体に回転自在に支持される軸と前記第1ローラを回転自在に支持する軸とを結ぶ線が前記ガイドレールに沿うように配置された第1可動棒と、前記筐体に回転自在に支持され、前記第2ローラを回転自在に支持し、前記第2ローラが前記第2ガイドレールに接触した状態で前記筐体に回転自在に支持される軸と前記第2ローラを回転自在に支持する軸とを結ぶ線が前記ガイドレールに沿うように配置された第2可動棒と、を備えた。
 本開示によれば、可動棒等は、ガイドレールに沿う。このため、エレベーターのかご状態の検出精度を向上することができる。
実施の形態1におけるエレベーターのかご状態を検出する装置が適用されるエレベーターの構成図である。 実施の形態1におけるエレベーターのかご状態を検出する装置の側面図である。 実施の形態1におけるエレベーターのかご状態を検出する装置の正面図である。 実施の形態1におけるエレベーターのかご状態を検出する装置が適用されるエレベーターのガイドレールの断面図である。 実施の形態1におけるエレベーターのかご状態を検出する装置の側面図である。 実施の形態1における装置7に特許文献1に記載のかご位置検出装置の構造を載せた場合の側面図である。 実施の形態1におけるエレベーターのかご状態を検出する装置によるかごの位置の検出誤差を示す図である。 実施の形態2におけるエレベーターのかご状態を検出する装置の側面図である。 実施の形態2におけるエレベーターのかご状態を検出する装置の正面図である。 実施の形態3におけるエレベーターのかご状態を検出する装置の側面図である。 実施の形態3におけるエレベーターのかご状態を検出する装置の正面図である。 実施の形態3におけるエレベーターのかご状態を検出する装置の側面図である。 実施の形態3におけるエレベーターのかご状態を検出する装置の正面図である。 実施の形態4におけるエレベーターのかご状態を検出する装置の側面図である。 実施の形態4におけるエレベーターのかご状態を検出する装置の正面図である。
 実施の形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略される。
実施の形態1.
 図1は実施の形態1におけるエレベーターのかご状態を検出する装置が適用されるエレベーターの構成図である。ここでいうかご状態とは、例えば、かごの速度、かごの位置、かごの速度および位置、といったかごの状態を示す。
 図1のエレベーターにおいて、昇降路1は、図示されない建築物の各階を貫く。例えば、巻上機2は、図示されない機械室に設けられる。主ロープ3は、巻上機2に巻き掛けられる。
 ガイドレール4は、長手方向を鉛直方向にして昇降路1の内部に設けられる。かご5は、昇降路1の内部に設けられる。かご5は、主ロープ3の一側に支持される。かご5は、ガイドレール4に案内される。釣合おもり6は、昇降路1の内部に設けられる。釣合おもり6は、主ロープ3の他側に支持される。
 状態を検出する装置7は、かご5に設けられる。例えば、装置7は、かご5の上部の左側に設けられる。
 エレベーターにおいて、巻上機2は、図示されない制御装置からの指令に基づいて回転する。主ロープ3は、巻上機2の回転に追従して移動する。かご5と釣合おもり6とは、主ロープ3の移動に追従して互いに反対方向に昇降する。この際、装置7は、かご5の状態を検出する。
 次に、図2と図3とを用いて、かご状態を検出する装置7を説明する。
 図2は実施の形態1における装置7の側面図である。図3は実施の形態1における装置7の正面図である。
 図2と図3とに示されるように、かご状態を検出する装置7は、ガイドレール4の一側においてかご5に取り付けられる。装置7は、筐体8とローラ9とロータリーエンコーダ10と可動棒11と可動棒回転軸12とローラ回転軸13と弾性体14とを備える。
 筐体8は、かご5に取り付けられる。ローラ9は、筐体8の上方に配置される。ローラ9は、ガイドレール4に対向する。ロータリーエンコーダ10は、筐体8の上方に配置される。ロータリーエンコーダ10は、ローラ9と同軸上に配置される。可動棒11は、棒状に形成される。可動棒回転軸12は、筐体8に対して可動棒11の一端を回転自在に支持する。ローラ回転軸13は、可動棒11の中央部に対してローラ9を回転自在に支持する。ローラ回転軸13は、可動棒11の中央部においてロータリーエンコーダ10を支持する。弾性体14は、可動棒11の他端に対してガイドレール4とは反対側に配置される。弾性体14の一側は、筐体8の突出部に接続される。弾性体14の他側は、可動棒11の他端に接続される。弾性体14は、可動棒11の他端をガイドレール4の方向に押し付ける力を発生させる。
 かご状態を検出する装置7において、ローラ9は、弾性体14の復元力によりガイドレール4に押し付けられる。ローラ9の外周面がガイドレール4に接触した状態において、可動棒回転軸12とローラ回転軸13とを結んだ線は、ガイドレール4とほぼ平行となるようにガイドレール4に沿う。この状態において、かご5がガイドレール4に案内されながら移動すると、ローラ9は、ガイドレール4との間の摩擦力により回転する。この際、ロータリーエンコーダ10は、ローラ9の回転角度を検出する。
 かご5の移動量は、ローラ9の外周の長さを1周のパルス数で除して、かご5の移動時に測定されたパルス数を乗ずることで検出される。かご5の絶対位置は、かご5の移動前の位置にかご5の移動量を加えることで検出される。かご5の移動量を時間微分することで、かご5の速度は検出される。
 次に、図4を用いて、かご状態を検出する装置7の配置を説明する。
 図4は実施の形態1における装置7が適用されるエレベーターのガイドレール4の断面図である。
 図4に示されるように、ガイドレール4の断面がT字状である場合、装置7は、複数の位置に配置され得る。例えば、装置7は、ローラ9の外周面がガイドレール4のA面に接触するように配置される。例えば、装置7は、ローラ9の外周面がガイドレール4のB面に接触するように配置される。例えば、装置7は、ローラ9の外周面がガイドレール4のC面に接触するように配置される。
 次に、図5から図7を用いて、かご状態を検出する装置7の配置を説明する。
 図5は実施の形態1における装置7の側面図である。図6は、実施の形態1における装置7との比較のために、この装置7に特許文献1に記載のかご位置検出装置の構造を載せた場合の側面図である。図7は実施の形態1における装置7によるかごの位置の検出誤差を示す図である。
 図5と図6とにおいて、rは、ローラ9の半径である。図6において、lは、可動棒11の長手方向と直交する方向における可動棒回転軸12とローラ回転軸13との距離である。図6において、距離lは、予め設定された距離である。
 図7は、かご5を静的に傾けた状態における、装置7によるかご5の位置の検出誤差を示す。かご5の上昇時において、かご5の位置の検出値posは、次の(1)式で表される。
Figure JPOXMLDOC01-appb-M000001
 (1)式において、sは、ローラ9とガイドレール4との間の滑り量である。encは、ロータリーエンコーダ10に計測されたパルス数である。PPRは、ローラ9が1回転する際のロータリーエンコーダ10に計測されるパルス数である。θは、かご5の傾きである。なお、(1)式において、かご5の速度に依存する粘性抵抗、軸摩擦によるロスは無視される。
 図7に示されるように、lsinθが0に近づくほど、かご5の位置の検出精度はよい。かご5の傾きθが同一である場合、可動棒11の長手方向と直交する方向における可動棒回転軸12とローラ回転軸13との距離lが小さいほど、かご5の位置の検出精度はよい。
 図5において、距離lに対応する距離は、ほぼ0である。このため、図5のかご状態を検出する装置7は、図6のかご5の状態を検出するよりもかご5の状態、すなわち、かご5の位置、かご5の速度、または、かご5の位置および速度、の少なくとも一つ、を精度よく検出する。
 以上で説明した実施の形態1によれば、可動棒11は、ローラ9がガイドレール4に接触した状態で筐体8に回転自在に支持される軸とローラ9を回転自在に支持する軸とを結ぶ線がガイドレール4に沿うように配置される。具体的には、可動棒回転軸12とローラ回転軸13とを結んだ線は、ガイドレール4に沿う。このため、安価な構成でかご5の状態の検出精度を向上することができる。
 なお、かご5は、昇降に寄与する垂直運動を行う際にガイドレール4の状態の違いにより生じる横方向の動きである並進振動、利用者のかご5の内部での移動に伴う回転振動も行う。かご5がリニアガイド等により水平支持された場合、かご5の回転振動によりリニアガイド等に大きな摩擦力が作用する。この摩擦力の変動により、かご5の状態の検出において、大きな誤差が発生する。これに対し、本実施の形態のかご状態を検出する装置7においては、可動棒11が回転自在に支持されることで、かご5の回転振動を受け流すことができる。さらに可動棒11が回転することで、かご5の並進振動を受け流すことができる。
 また、かご5がガイドレール4に対して傾いている場合、可動棒11からローラ9にかかる力がガイドレール4に対して直交する方向からずれた方向に作用する。このため、かご5が動的に回転した場合、ローラ9は、可動棒11の方向に振動する。この場合、ローラ9が摩擦状態の変動に伴って劣化したり、かご5の状態の検出精度が低下したりする。これに対し、本実施の形態のかご状態を検出する装置7においては、可動棒11の長手方向と直交する方向における可動棒回転軸12とローラ回転軸13との距離がほぼ0である。このため、ローラ9の劣化およびかご5の状態の検出精度の低下を抑制することができる。
 また、弾性体14は、可動棒11においてローラ9を回転自在に支持する軸に対して筐体8に回転自在に支持される軸とは反対側で可動棒11をガイドレール4の側に押し付ける力を発生させる。このため、テコの原理により、小型の弾性体14でも比較的大きな力でローラ9をガイドレール4に押し付けることができる。
 なお、かご状態を検出する装置7は、ガイドレール4と対向する位置に配置されればよい。通常、ガイドレール4は、かご5を挟み込むように配置される。このため、図1においてかご5の右側にもガイドレール4が存在する場合、かご5の上部の右側に装置7を配置してもよい。また、かご5の下部の左側または右側に装置7を配置してもよい。さらに、かご5においてガイドレール4と対向する位置に複数の装置7を配置してもよい。
実施の形態2.
 図8は実施の形態2におけるエレベーターのかご状態を検出する装置の側面図である。図9は実施の形態2におけるエレベーターのかご状態を検出する装置の正面図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 実施の形態2においては、図8に示されるように、かご状態を検出する装置7は、図4のA面とC面とを挟み込むように配置される。具体的には、装置7は、筐体8と第1ローラ9aと第2ローラ9bと第1ロータリーエンコーダ10aと第2ロータリーエンコーダ10bと第1可動棒11aと第2可動棒11bと第1可動棒回転軸12aと第2可動棒回転軸12bと第1ローラ回転軸13aと第2ローラ回転軸13bと第1弾性体14aと第2弾性体14bとを備える。
 筐体8は、かご5に取り付けられる。第1ローラ9aは、ガイドレール4の一側において筐体8の上方に配置される。第1ローラ9aは、ガイドレール4の一面に対向する。第2ローラ9bは、ガイドレール4の他側において筐体8の上方に設けられる。第2ローラ9bは、ガイドレール4の他面に対向する。第1ロータリーエンコーダ10aは、第1ローラ9aと同軸上に配置される。第2ロータリーエンコーダ10bは、第2ローラ9bと同軸上に配置される。第1可動棒11aは、棒状に形成される。第2可動棒11bは、棒状に形成される。第1可動棒回転軸12aは、筐体8の一側に対して第1可動棒11aの一端を回転自在に支持する。第2可動棒回転軸12bは、筐体8の他側に対して第2可動棒11bの一端を回転自在に支持する。第1ローラ回転軸13aは、第1可動棒11aの中央部に対して第1ローラ9aを回転自在に支持する。第1ローラ回転軸13aは、第1可動棒11aの中央部において第1ロータリーエンコーダ10aを支持する。第2ローラ回転軸13bは、第2可動棒11bの中央部に対して第2ローラ9bを回転自在に支持する。第2ローラ回転軸13bは、第2可動棒11bの中央において第2ロータリーエンコーダ10bを支持する。第1弾性体14aは、第1可動棒11aの他端に対してガイドレール4とは反対側に配置される。第1弾性体14aの一側は、筐体8の第1突出部に接続される。第1弾性体14aの他側は、第1可動棒11aの他端に接続される。第2弾性体14bは、第2可動棒11bの他端に対してガイドレール4とは反対側に配置される。第2弾性体14bの一側は、筐体8の第2突出部に接続される。第2弾性体14bの他側は、第2可動棒11bの他端に接続される。
 かご状態を検出する装置7において、第1ローラ9aは、第1弾性体14aの復元力によりガイドレール4に押し付けられる。第2ローラ9bは、第2弾性体14bの復元力によりガイドレール4に押し付けられる。この際、第1可動棒回転軸12aと第1ローラ回転軸13aとを結んだ線は、ガイドレール4に沿う。第2可動棒回転軸12bと第2ローラ回転軸13bとを結んだ線は、ガイドレール4に沿う。この状態において、かご5がガイドレール4に沿って移動すると、第1ローラ9aは、ガイドレール4との間の摩擦力により回転する。第2ローラ9bは、ガイドレール4との間の摩擦力により回転する。この際、第1ロータリーエンコーダ10aは、第1ローラ9aの回転角度を検出する。第2ロータリーエンコーダ10bは、第2ローラ9bの回転角度を検出する。
 以上で説明した実施の形態2によれば、第1ロータリーエンコーダ10aは、第1ローラ9aの回転角度を検出する。第2ロータリーエンコーダ10bは、第2ローラ9bの回転角度を検出する。このため、かご5の状態の検出を容易に二重化することができる。
 なお、第1ロータリーエンコーダ10aまたは第2ロータリーエンコーダ10bが電気的に故障してOFFの状態が続いたり、極端に大きな信号を出力したりして、異常な信号が検出された際、第1ロータリーエンコーダ10aと第2ロータリーエンコーダ10bとの検出信号を比較すればよい。この際の比較結果に基づいて、異常であると判定したうえで、かご5を停止したり、状態確認のためにかご5をゆっくり上下動させたりする措置をとってもよい。
 また、ガイドレール4の表面の油等により第1ローラ9aと第2ローラ9bとのうちの一方の摩擦係数が大幅に低下して滑りが大きくなった場合でも、第1ローラ9aと第2ローラ9bとのうちの他方が滑らずにガイドレール4に追従して動作する。このため、かご5の状態を精度よく検出することができる。
 さらに、かご5の傾きにより第1ロータリーエンコーダ10aと第2ロータリーエンコーダ10bとの間に検出の差が出た際には、第1ロータリーエンコーダ10aと第2ロータリーエンコーダ10bの検出値を平均化すればよい。この場合、かご5の状態の検出誤差を抑制することができる。
実施の形態3.
 図10は実施の形態3におけるエレベーターのかご状態を検出する装置の側面図である。図11は実施の形態3におけるエレベーターのかご状態を検出する装置の正面図である。なお、実施の形態2の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 実施の形態3においては、図10に示されるように、弾性体14の一側は、第1可動棒11aの他端に接続される。弾性体14の他側は、第2可動棒11bの他端に接続される。
 かご状態を検出する装置7において、第1ローラ9aは、弾性体14の引張力によりガイドレール4に押し付けられる。第2ローラ9bは、弾性体14の引張力によりガイドレール4に押し付けられる。この際、第1可動棒回転軸12aと第1ローラ回転軸13aとを結んだ線は、ガイドレール4に沿う第2可動棒回転軸12bと第2ローラ回転軸13bとを結んだ線は、ガイドレール4に沿う。この状態において、かご5がガイドレール4に沿って移動すると、第1ローラ9aは、ガイドレール4との間の摩擦力により回転する。第2ローラ9bは、ガイドレール4との間の摩擦力により回転する。この際、第1ロータリーエンコーダ10aは、第1ローラ9aの回転角度を検出する。第2ロータリーエンコーダ10bは、第2ローラ9bの回転角度を検出する。
 次に、図12と図13とを用いて、かご5の水平振動時におけるかご状態を検出する装置7を説明する。
 図12は実施の形態3における装置7の側面図である。図13は実施の形態3における装置7の正面図である。
 図12に示されるように、かご5の水平振動時において、第1ローラ9aと第2ローラ9bとは、筐体8に対して同一方向に移動する。この際、弾性体14の長さは、ほとんど変化しない。このため、第1ローラ9aと第2ローラ9bとにおいて、ガイドレール4への押付力は、互いにほぼ同じ大きさでほぼ変化しない。
 以上で説明した実施の形態3によれば、弾性体14は、引張力により第1ローラ9aと第2ローラ9bとをガイドレール4に押し付ける。このため、実施の形態2よりも弾性体14の数を減らすことができる。また、弾性体14がかご状態を検出する装置7の中央にくる分、筐体8の幅を狭めることができる。
 さらに、かご5の水平振動時において、第1ローラ9aと第2ローラ9bとにおいて、ガイドレール4への押付力は、互いにほぼ同じ大きさでほぼ変化しない。このため、第1ローラ9aと第2ローラ9bとの滑りを抑制できるだけでなく、第1ローラ9aと第2ローラ9bとの滑りの差が抑制できる。
実施の形態4.
 図14は実施の形態4におけるエレベーターのかご状態を検出する装置の側面図である。図15は実施の形態4におけるエレベーターのかご状態を検出する装置の正面図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 実施の形態4においては、図14に示されるように、フローティング構造15は、かご5と筐体8の間に設けられる。フローティング構造15は、かご5と筐体8とを柔らかく接続する。例えば、フローティング構造15は、リニアガイドである。例えば、フローティング構造15は、弾性体である。フローティング構造15は、かご5の並進振動と回転振動とを分離する。
 以上で説明した実施の形態4によれば、フローティング構造15は、かご5の並進振動と回転振動とを分離する。このため、かご5の振動に関わらず、ガイドレール4に追従してかご状態を検出する装置7を動作させることができる。その結果、ローラ9とガイドレール4との間の滑りを抑制することで、かご5の垂直移動の成分を精度よく抽出することができる。
 なお、ローラ9、第1ローラ9a、第2ローラ9bの外周面は、ガイドレール4に押し付けられることで変形する。ローラ9、第1ローラ9a、第2ローラ9bの硬度が低い場合、ローラ9、第1ローラ9a、第2ローラ9bの外周面が潰れることで一回転したときのローラ9、第1ローラ9a、第2ローラ9bの外周面の移動量が変化する。このため、ローラ9、第1ローラ9a、第2ローラ9bの硬度は高いほうがよい。例えば、ローラ9、第1ローラ9a、第2ローラ9bの硬度を90以上とすればよい。例えば、ローラ9を硬質樹脂で形成すればよい。例えば、ローラ9を金属で形成すればよい。この場合、ローラ9、第1ローラ9a、第2ローラ9bの外周面の潰れを抑制することができる。その結果、かご5の状態を精度よく検出することができる。
 しかしながら、ローラ9、第1ローラ9a、第2ローラ9bの硬度を高くしても、ローラ9、第1ローラ9a、第2ローラ9bの外周面は、ガイドレール4に押し付けられることでわずかに潰れる。このため、ローラ9、第1ローラ9a、第2ローラ9bの潰れ量をローラ9、第1ローラ9a、第2ローラ9bの径の補正値として用いることで、ローラ9の回転角度の検出精度を向上してもよい。この場合、硬度が低いローラ9、第1ローラ9a、第2ローラ9bが使用される場合でも、ローラ9、第1ローラ9a、第2ローラ9bの潰れ量をローラ9、第1ローラ9a、第2ローラ9bの径の補正値として用いることで、ローラ9、第1ローラ9a、第2ローラ9bの回転角度の検出精度を向上してもよい。
 また、ローラ9、第1ローラ9a、第2ローラ9bは、ガイドレール4に対して摩擦駆動する。このため、ローラ9、第1ローラ9a、第2ローラ9bの移動においては、滑り量sが原理的に発生する。この状態において、かご状態を検出する装置7が使い続けられると、かご5の絶対位置の情報がずれていく。この場合、昇降路の任意の位置において、光学式、磁気式、機械式等のセンサを用いて原点補正を行えばよい。
 また、摩擦駆動は、ローラ9、第1ローラ9a、第2ローラ9bの外周面を劣化させる。その結果、ローラ9、第1ローラ9a、第2ローラ9bの外径が変化する。この場合、一回転した時のローラ9、第1ローラ9a、第2ローラ9bの外周面の移動量が変化する。このため、かご5の移動量の検出精度が低下し得る。この際、上記原点補正を用いて、変化後のローラ9、第1ローラ9a、第2ローラ9bの外径を推定すればよい。この際の推定値を用いることで、かご5の移動量の検出精度が低下することを抑制すればよい。
 また、油がガイドレール4に付着すると、ローラ9、第1ローラ9a、第2ローラ9bは、摩擦力の低下により滑りやすくなる。この場合、自動車のタイヤのようにローラ9、第1ローラ9a、第2ローラ9bの表面に対して溝加工したり、ローレット加工したりすることで、ローラ9、第1ローラ9a、第2ローラ9bの摩擦係数を向上すればよい。
 なお、機械室がなくて昇降路1の上部または下部に巻上機2が設けられるエレベーターにおいて、実施の形態1から実施の形態4のいずれかのかご状態を検出する装置7を適用してよい。
 以上のように、本開示のエレベーターのかご状態を検出する装置は、エレベーターに利用できる。
 1 昇降路、 2 巻上機、 3 主ロープ、 4 ガイドレール、 5 かご、 6 釣合おもり、 7 かご状態を検出する装置、 8 筐体、 9 ローラ、 9a 第1ローラ、 9b 第2ローラ、 10 ロータリーエンコーダ、 10a 第1ロータリーエンコーダ、 10b 第2ロータリーエンコーダ、 11 可動棒、 11a 第1可動棒、 11b 第2可動棒、 12 可動棒回転軸、 12a 第1可動棒回転軸、 12b 第2可動棒回転軸、 13 ローラ回転軸、 13a 第1ローラ回転軸、 13b 第2ローラ回転軸、 14 弾性体、 14a 第1弾性体、 14b 第2弾性体、 15 フローティング構造

Claims (10)

  1.  エレベーターのかごに取り付けられた筐体と、
     前記エレベーターのガイドレールに対向したローラと、
     前記ローラの回転角度を検出するロータリーエンコーダと、
     前記筐体に回転自在に支持され、前記ローラを回転自在に支持し、前記ローラが前記ガイドレールに接触した状態で前記筐体に回転自在に支持される軸と前記ローラを回転自在に支持する軸とを結ぶ線が前記ガイドレールに沿うように配置された可動棒と、
    を備えたエレベーターのかご状態を検出する装置。
  2.  前記可動棒において前記ローラを回転自在に支持する軸に対して前記筐体に回転自在に支持される軸とは反対側で前記可動棒を前記ガイドレールの側に押し付ける力を発生させる弾性体、
    を備えた請求項1に記載のエレベーターのかご状態を検出する装置。
  3.  前記ローラは、硬質樹脂または金属で形成された請求項1または請求項2に記載のエレベーターのかご状態を検出する装置。
  4.  前記ローラは、表面が溝加工された請求項1から請求項3のいずれか一項に記載のエレベーターのかご状態を検出する装置。
  5.  エレベーターのかごに取り付けられた筐体と、
     前記エレベーターのガイドレールの一面に対向した第1ローラと、
     前記ガイドレールの他面に対向した第2ローラと、
     前記第1ローラの回転角度を検出する第1ロータリーエンコーダと、
     前記第2ローラの回転角度を検出する第2ロータリーエンコーダと、
     前記筐体に回転自在に支持され、前記第1ローラを回転自在に支持し、前記第1ローラが前記ガイドレールに接触した状態で前記筐体に回転自在に支持される軸と前記第1ローラを回転自在に支持する軸とを結ぶ線が前記ガイドレールに沿うように配置された第1可動棒と、
     前記筐体に回転自在に支持され、前記第2ローラを回転自在に支持し、前記第2ローラが前記ガイドレールに接触した状態で前記筐体に回転自在に支持される軸と前記第2ローラを回転自在に支持する軸とを結ぶ線が前記ガイドレールに沿うように配置された第2可動棒と、
    を備えたエレベーターのかご状態を検出する装置。
  6.  前記第1可動棒において前記第1ローラを回転自在に支持する軸に対して前記筐体に回転自在に支持される軸とは反対側で前記第1可動棒を前記ガイドレールの一面の側に押し付ける力を発生させる第1弾性体と、
     前記第2可動棒において前記第2ローラを回転自在に支持する軸に対して前記筐体に回転自在に支持される軸とは反対側で前記第2可動棒を前記ガイドレールの他面の側に押し付ける力を発生させる第2弾性体と、
    を備えた請求項5に記載のエレベーターのかご状態を検出する装置。
  7.  前記第1可動棒において前記第1ローラを回転自在に支持する軸に対して前記筐体に回転自在に支持される軸とは反対側で前記第1可動棒に接続され、前記第2可動棒において前記第2ローラを回転自在に支持する軸に対して前記筐体に回転自在に支持される軸とは反対側で前記第2可動棒に接続され、前記第1可動棒を前記ガイドレールの一面の側に押し付ける力を発生させ、前記第2可動棒を前記ガイドレールの他面の側に押し付ける力を発生させる弾性体、
    を備えた請求項5に記載のエレベーターのかご状態を検出する装置。
  8.  前記第1ローラと前記第2ローラとは、硬質樹脂または金属で形成された請求項5から請求項7のいずれか一項に記載のエレベーターのかご状態を検出する装置。
  9.  前記第1ローラと前記第2ローラとは、表面が溝加工された請求項5から請求項8のいずれか一項に記載のエレベーターのかご状態を検出する装置。
  10.  前記かごと前記筐体の間に設けられたフローティング構造、
    を備えた請求項1から請求項9のいずれか一項に記載のエレベーターのかご状態を検出する装置。
PCT/JP2021/018851 2021-05-18 2021-05-18 エレベーターのかご状態を検出する装置 WO2022244116A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021007691.4T DE112021007691T5 (de) 2021-05-18 2021-05-18 Vorrichtung zum erfassen eines zustands eines fahrkorbs eines aufzugs und aufzug
PCT/JP2021/018851 WO2022244116A1 (ja) 2021-05-18 2021-05-18 エレベーターのかご状態を検出する装置
CN202180098147.7A CN117279852A (zh) 2021-05-18 2021-05-18 检测电梯的轿厢状态的装置
JP2021566307A JP7070810B1 (ja) 2021-05-18 2021-05-18 エレベーターのかご状態を検出する装置及びエレベーター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018851 WO2022244116A1 (ja) 2021-05-18 2021-05-18 エレベーターのかご状態を検出する装置

Publications (1)

Publication Number Publication Date
WO2022244116A1 true WO2022244116A1 (ja) 2022-11-24

Family

ID=81652895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018851 WO2022244116A1 (ja) 2021-05-18 2021-05-18 エレベーターのかご状態を検出する装置

Country Status (4)

Country Link
JP (1) JP7070810B1 (ja)
CN (1) CN117279852A (ja)
DE (1) DE112021007691T5 (ja)
WO (1) WO2022244116A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033589A (en) * 1989-10-02 1991-07-23 Houston Manufacturing & Specialty Company, Inc. Roller guide wheel assembly with improved replaceable tire
JPH0940321A (ja) * 1995-08-02 1997-02-10 Hitachi Ltd エレベーター装置及びエレベーター装置用案内手段
JPH09263371A (ja) * 1996-03-26 1997-10-07 Fujitec Co Ltd エレベータ装置
JPH11222369A (ja) * 1998-02-05 1999-08-17 Hitachi Building Systems Co Ltd エレベータの案内装置
US20050279585A1 (en) * 2004-05-04 2005-12-22 Race Timothy T Sr Roller guide
JP2013095526A (ja) * 2011-10-28 2013-05-20 Hitachi Ltd エレベータ用速度検出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122061U (ja) 1990-03-23 1991-12-12

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033589A (en) * 1989-10-02 1991-07-23 Houston Manufacturing & Specialty Company, Inc. Roller guide wheel assembly with improved replaceable tire
JPH0940321A (ja) * 1995-08-02 1997-02-10 Hitachi Ltd エレベーター装置及びエレベーター装置用案内手段
JPH09263371A (ja) * 1996-03-26 1997-10-07 Fujitec Co Ltd エレベータ装置
JPH11222369A (ja) * 1998-02-05 1999-08-17 Hitachi Building Systems Co Ltd エレベータの案内装置
US20050279585A1 (en) * 2004-05-04 2005-12-22 Race Timothy T Sr Roller guide
JP2013095526A (ja) * 2011-10-28 2013-05-20 Hitachi Ltd エレベータ用速度検出装置

Also Published As

Publication number Publication date
DE112021007691T5 (de) 2024-03-14
JP7070810B1 (ja) 2022-05-18
CN117279852A (zh) 2023-12-22
JPWO2022244116A1 (ja) 2022-11-24

Similar Documents

Publication Publication Date Title
JP5386377B2 (ja) エレベーター装置
EP1955972A1 (en) Control device for elevator
US20080087502A1 (en) System and method for detecting the position of an elevator car
JP5963335B1 (ja) エレベータ用速度検出装置およびエレベータ
JPWO2008155853A1 (ja) エレベータの安全装置及びロープスリップ検出方法
EP2361869A1 (en) Elevator apparatus
US10508004B2 (en) Lateral transfer station for elevator having a magnetic screw propulsion system
US12103817B2 (en) Measurement arrangement and method of monitoring rotation speed of a component of an elevator, escalator, moving walkway or moving ramp
US20080142313A1 (en) Elevator Apparatus
JP5079351B2 (ja) エレベータ装置
WO2022244116A1 (ja) エレベーターのかご状態を検出する装置
JP2017128427A (ja) 摩耗検出装置及びエレベーター
CN1232796C (zh) 一种测量纵向尺寸的测量柱
JP2019214457A (ja) ロープテスタ支持具及びロープテスタ装置
JP4882820B2 (ja) エレベータ速度検出方法
WO2019229890A1 (ja) 溝摩耗検知装置
JP2009122047A (ja) 角度検出装置
JP6272734B2 (ja) 異物挟み検出装置
JP4456924B2 (ja) エレベーター装置
JP2008247525A (ja) エレベータの安全装置
JP7223142B2 (ja) エレベーターの非常止め装置、並びにエレベーターの非常止め装置の点検装置
JP2014037302A (ja) エレベーター
JP2015093769A (ja) 乗客コンベア
JP2006151610A (ja) エレベーター調速機
WO2022190205A1 (ja) エレベーターの滑車と滑車の点検方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021566307

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180098147.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021007691

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940733

Country of ref document: EP

Kind code of ref document: A1