WO2022242759A1 - 应用于海上升压站的无人智能巡检系统及方法 - Google Patents

应用于海上升压站的无人智能巡检系统及方法 Download PDF

Info

Publication number
WO2022242759A1
WO2022242759A1 PCT/CN2022/094191 CN2022094191W WO2022242759A1 WO 2022242759 A1 WO2022242759 A1 WO 2022242759A1 CN 2022094191 W CN2022094191 W CN 2022094191W WO 2022242759 A1 WO2022242759 A1 WO 2022242759A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
offshore
offshore booster
robot
station
Prior art date
Application number
PCT/CN2022/094191
Other languages
English (en)
French (fr)
Inventor
杜静宇
任鑫
王�华
王恩民
赵鹏程
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022242759A1 publication Critical patent/WO2022242759A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H5/00Buildings or groups of buildings for industrial or agricultural purposes
    • E04H5/02Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories
    • E04H5/04Transformer houses; Substations or switchgear houses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C1/00Registering, indicating or recording the time of events or elapsed time, e.g. time-recorders for work people
    • G07C1/20Checking timed patrols, e.g. of watchman
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the disclosure belongs to the technical field of intelligent inspection, and in particular relates to an unmanned intelligent inspection system and method applied to offshore booster stations.
  • Wind energy resources are abundant, and offshore wind power has developed rapidly due to the advantages of high power generation utilization hours and large stand-alone capacity.
  • the offshore booster station is a key facility for power transmission and transformation of the entire offshore wind farm. Since the offshore step-up station is far away from the shore, its equipment is vulnerable to corrosion by sea salt spray, resulting in a high failure rate of equipment.
  • this disclosure adopts an unmanned intelligent inspection system for the offshore booster station to perform unmanned intelligent inspection and realize the control of the offshore booster station. Monitoring of the station environment, equipment, instruments, etc., so as to achieve the goal of no one on duty and few people on duty.
  • the present disclosure provides an unmanned intelligent inspection system and method applied to offshore booster stations, and optimizes the design of inspection routes for the special cabin layout of offshore booster stations, so as to realize the control of offshore booster stations.
  • Comprehensive coverage of key monitoring areas and inspection content of the station reducing potential losses caused by human factors such as missed inspections and false inspections by on-site personnel.
  • an embodiment of the present disclosure proposes an unmanned intelligent inspection system applied to an offshore booster station.
  • the unmanned intelligent inspection system applied to the offshore booster station includes an inspection terminal and a supervision center.
  • the inspection terminal includes a robot body, a monitoring instrument, a power supply system and a communication system.
  • the monitoring instrument is arranged on the robot body.
  • the monitoring instrument includes Visible light camera, infrared thermal imaging camera, gas detector and sound pickup;
  • the power supply system supplies power to the robot body, monitoring instruments and communication system;
  • the communication system includes a network bridge device installed on the robot and a wireless working network composed of multiple wireless network bridges in the station.
  • the monitoring center communicates with the inspection terminal; the robot body is also equipped with a laser radar.
  • the network bridge device installed by the inspection robot is set to the client mode, and multiple wireless network bridges of the station are connected to the switch, and the multiple wireless network bridges are all set to the AP working mode.
  • the robot is an autonomously controlled robot.
  • the robot body is equipped with a controller, and the monitoring instrument is connected to the controller in two-way communication.
  • the power supply system includes a battery and a retractable charging mechanism.
  • the drive signal input end of the retractable charging mechanism is connected to the output end of the controller.
  • the laser radar is connected to the input end of the controller, and the retractable charging mechanism is connected to the charging end of the storage battery.
  • the retractable charging mechanism is provided with a pole piece adapted to the pole piece clip of the charging stand.
  • the robot body is provided with a memory, and the controller and the memory are connected through an I/O interface; the three-dimensional map of the booster station and the attribute information of the inspection target point in the three-dimensional map are stored in the memory, and the attribute information of the target point includes the target The position of the point in the three-dimensional map, the cabin structure of the offshore booster station corresponding to the target point, and the monitoring parameter information corresponding to the cabin structure of the offshore booster station.
  • An ambient temperature monitoring sensor is also arranged on the robot body, and the ambient temperature monitoring sensor is connected to the input end of the controller.
  • the embodiments of the present disclosure propose an unmanned intelligent inspection method applied to offshore booster stations based on the system described in any one of the above embodiments, specifically as follows:
  • the inspection terminal regularly inspects the cabins of the offshore booster station to obtain data that reflects the operating status of the offshore booster station;
  • the inspection route of the inspection terminal is obtained by the robot autonomous positioning and navigation method based on SLAM;
  • the cabins of the offshore booster station for regular inspection include switch cabinet room, main transformer room, communication relay room, GIS room, diesel engine room, emergency power distribution room and fire pump room.
  • the SLAM-based robot autonomous positioning and navigation method is as follows:
  • the laser radar acquires the location information of the robot. Based on the location information, the point cloud matching algorithm is used to match the local point cloud data with the corresponding position of the map inside the offshore booster station, and the point cloud data is fused with the actual map to obtain the booster station. 3D map of
  • the inspection terminal inspects the inspection target points one by one to obtain data reflecting the operating status of the offshore step-up station.
  • An optimal inspection route of the robot is planned based on the three-dimensional map and inspection target points marked in the three-dimensional map.
  • the data reflecting the operating status of the offshore booster station include image data obtained by visible light cameras, temperature distribution image data obtained by infrared thermal imaging cameras, audio data obtained by sound pickups, and gas concentration data obtained by gas detectors.
  • the unmanned intelligent inspection system applied to offshore booster stations is equipped with monitoring instruments and laser radars.
  • the monitoring instruments include visible light cameras, infrared thermal imaging cameras, gas detectors and sound pickups.
  • the monitoring instruments can obtain offshore booster The operating status image and temperature of the equipment in the station cabin, and the state of the insulating gas can be monitored at the same time.
  • the laser radar can be used to collect the 3D point cloud data of the cabin of the offshore booster station, and provide accurate data for the construction of a 3D map of the cabin of the offshore booster station.
  • the inspection terminal can fully replace manual inspection, which helps to reduce potential losses caused by human factors such as missed inspections and false inspections by on-site personnel.
  • the real-time monitoring of the ambient temperature can provide a reference temperature for the monitoring state, and can avoid the influence of the judgment due to large changes in the ambient temperature.
  • the inspection route is optimized and designed for the special cabin layout of the offshore booster station, so as to achieve full coverage of the key monitoring areas and inspection content of the offshore booster station, reducing the number of on-site personnel Potential losses caused by human factors such as missed detection and false detection;
  • the inspection route adopts the robot autonomous positioning and navigation method based on SLAM, which can realize the functions of simultaneous positioning and map construction, path planning and motion control, which is more flexible and stable and requires less storage space. The amount is small.
  • the communication system of the robot adopts a more reliable and stable multi-bridge networking mode for wireless network communication, which can realize stable and reliable data transmission.
  • Figure 1 is a schematic diagram of the structure of the unmanned intelligent inspection system.
  • Figure 2 is a schematic diagram of the equipment inspection route on the second floor of the offshore booster station.
  • Figure 3 is a schematic diagram of the inspection route of the equipment on the third floor of the offshore booster station.
  • an unmanned intelligent inspection system applied to offshore booster stations includes an inspection terminal and a supervision center, where the inspection terminal is the mobile carrier and information collection and control carrier of the entire system, and the inspection terminal includes a robot Ontology, monitoring instruments, power supply system and communication system.
  • the functions realized by the inspection terminal include but are not limited to visible light and infrared image acquisition, mobile positioning, motor drive control and PTZ control.
  • the robot body includes a drive mechanism, a chassis, and a shell. Commercially available robots can be used to load the robot with lidar and monitoring instruments.
  • the monitoring instruments include visible light cameras, infrared thermal imaging cameras, gas detectors, and pickups.
  • the power supply system includes charging docks and charging mechanisms.
  • the communication system adopts a multi-bridge networking method.
  • the communication system includes a bridge device installed on the robot and a wireless working group composed of multiple wireless bridges in the station.
  • the bridge device installed by the inspection robot is set to the client mode, which supports the use of high-speed wireless roaming client products. After multiple wireless bridges in the station are connected to the switch, they are all set to the AP mode.
  • the authentication and encryption methods are the same, which can ensure The communication network automatically switches from a bridge with a weaker signal to a bridge with a better signal to ensure stable and reliable data transmission.
  • the supervision center includes a background server system and an intelligent analysis system.
  • the background server system is used to complete the acquisition and storage of the data collected by the inspection terminal, and the intelligent analysis system is to process and analyze unstructured data such as images and audio collected by the inspection. Based on the image recognition analysis algorithm, the instrument reading, knife switch status, switch position and indicator status are obtained. By comparing with the standard parameters stored in the database, the operating status of the equipment is judged. If there is any abnormality, an alarm command or message is issued.
  • the workflow of the intelligent inspection system is generally to set the inspection mode in the supervision center.
  • the inspection mode includes two modes: regular automatic inspection and manual remote inspection.
  • Scheduled automatic inspection is based on the pre-set inspection content, time, cycle, route and other parameter information.
  • Manual remote inspection uses the remote control interface to formulate specific inspection routes and inspection equipment, and quickly completes data collection according to preset inspection points.
  • the robot autonomous positioning and navigation is used to plan the inspection route.
  • the robot autonomous positioning and navigation includes two parts: synchronous positioning and map construction (also called SLAM technology), path planning and motion control.
  • the laser radar mounted on the robot body, the built-in encoder and the inertial measurement unit draw a map by directly measuring the distance data to realize the real-time positioning of the robot.
  • the location information also called point cloud
  • the point cloud matching algorithm uses the point cloud matching algorithm to match the local point cloud data with the corresponding position on the map, and then complete the fusion of point cloud data and actual map to establish a three-dimensional map.
  • the map constructed based on SLAM technology marks the target points of the offshore step-up station that need to be inspected, which is helpful for the overall planning of the optimal route for robot inspection.
  • the specific inspection route is planned as follows: the robot starts from the fixed charging pile position 9, passes through the two rows of switch cabinets in the first switch cabinet room 7, and enters the switch cabinet room 8 through the second channel 6 on the second floor after the inspection.
  • the content of the indoor inspection is the same, and the specific inspection content includes the readings of the instruments and meters in the switch cabinet, the status of the knife switch, the switch position, the indicator light, abnormal gas or sound, the grounding transformer winding and the temperature of the cabinet body, etc.; after the inspection of the switch cabinet room , the robot enters the second main transformer room 5 through the second channel 6 on the second floor.
  • the inspection content of the main transformer room includes oil temperature, oil level, winding temperature, temperature-sensing cable indicator light, abnormal gas or sound, etc.; the inspection of the main transformer room After the end, the robot enters the communication relay room 2 through the first channel 3 on the second floor, and inspects the charging cabinet and power cabinet according to the zigzag route.
  • the inspection content includes instrument readings, indicator status, switch position, pressure difference, environment etc.; after the inspection of the communication relay protection room is completed, the robot enters the first GIS room for inspection.
  • the inspection content includes switches, switch blades, ground blades, arrester air chamber pressure, SF6 gas pressure, control cabinet indication status, switch classification, etc. Combination status, lightning protection times, temperature, environment, etc.; after coming out of the GIS room, the robot enters the first main transformer room 4 through the first passage on the second floor 3, and the inspection content includes oil temperature, oil level, winding temperature, and temperature-sensing cable indicator lights , abnormal gas or sound, etc.; then the robot enters the first switch cabinet room 7 through the second channel 6 on the second floor and returns to the charging pile 9. At this point, the robot completes the inspection on the second floor of the offshore booster station.
  • the cabins that need to be inspected include the fire pump room Emergency distribution room Diesel engine room
  • the specific inspection route is planned as follows: the robot starts from the charging pile Departure, inspect and pass the diesel engine room Diesel engine room
  • the specific inspection contents include the lubricating oil pressure temperature, cooling water temperature, cooling water level, main engine speed, and the instrument reading of the oil level gauge; Enter the emergency power distribution room Emergency distribution room
  • the inspection content includes instrument readings, switch status, abnormal gas or sound, environmental monitoring, etc.; after the inspection of the emergency power distribution room, the robot passes through the three-story channel Enter the fire pump room fire pump room
  • the specific inspection contents include voltmeter, system pressure, water tank level, fire pipeline, etc., environmental monitoring, etc. After the inspection, the robot passes through the three-story channel Enter the diesel engine room Return to the charging pile At the end of this inspection route, of course, you can also enter the temporary rest room 10, the first ventilation room Second Ventilator Room and battery room Conduct inspections.

Abstract

一种应用于海上升压站的无人智能巡检系统及方法。该系统包括巡检终端和监管中心,巡检终端包括机器人本体、监测仪器、供电系统和通信系统,监测仪器设置在机器人本体上,监测仪器包括可见光摄像机、红外热像仪、气体检测仪和拾音器;供电系统为机器人本体、监测仪器和通信系统供电;通信系统包括机器人上安装的网桥装置和场站多个无线网桥所组成的无线工作组,监管中心与巡检终端通信连接;机器人本体上还设置有激光雷达。

Description

应用于海上升压站的无人智能巡检系统及方法
相关申请的交叉引用
本申请基于申请号为202110552372.5、申请日为2021年5月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本文作为参考。
技术领域
本公开属于智能巡检技术领域,具体涉及应用于海上升压站的无人智能巡检系统及方法。
背景技术
风能资源丰富,海上风电由于发电利用小时数高、单机容量大等优势得到了快速的发展。海上升压站作为海上风电场的电能汇集中心,是整个海上风电场输变电的关键设施。由于海上升压站离岸较远,其设备容易受到海上盐雾的腐蚀,导致设备故障率偏高。
在风电机组发生故障或者运行维护时,传统的巡检方式需要运维人员搭乘运维船直接登靠海上风电平台,而恶劣海况导致运维船舶难以停靠风电机组。因此,这种巡检方式很难适应恶劣的海洋环境,稳定性较差,巡检频率和效率不能保证。
为了满足海上升压站远程巡检的需要,并且充分考虑海上升压站结构特点,本公开采用一种海上升压站无人智能巡检系统来进行无人智能巡检,实现对海上升压站环境、设备、仪表等监测,从而达到无人值班、少人值守的目标。
发明内容
为了解决相关技术中存在的问题,本公开提供一种应用于海上升压站的无人智能巡检系统及方法,针对海上升压站特殊的舱室布局优化设计巡检路线,实现对海上升压站重点监控区域和巡检内容的全面覆盖,减少现场人员漏检误检等人为因素带来的潜在损失。
为了实现上述目的,在一个方面,本公开实施例提出了一种应用于海上升压站的无人智能巡检系统。所述应用于海上升压站的无人智能巡检系统包括巡检终端和监管中心,巡检终端包括机器人本体、监测仪器、供电系统和通信系统,监测仪器设置在机器人本体上,监测仪器包括可见光摄像机、红外热像仪、气体检测仪和拾音器;供电系统为机器人本体、监测仪器和通信系统供电;通信系统包括机器人上安装的网桥装置和场站多个无线网桥所组成的无线工作组,监管中心与巡检终端通信连接;机器人本体上还设置有激光雷达。
巡检机器人安装的网桥装置设置为客户端模式,场站的多个无线网桥接入交换机,所述多个无线网桥均设置为AP工作模式。
机器人采用自主控制的机器人,机器人本体上设置有控制器,监测仪器与控制器双向通信连接,供电系统包括蓄电池和可伸缩充电机构,可伸缩充电机构的驱动信号输入端连接控制器的输出端,激光雷达连接控制器的输入端,可伸缩充电机构与蓄电池的充电端连接,可伸缩充电机构上设置有适配充电座极片夹的极片。
机器人本体中设置有存储器,控制器与存储器通过I/O接口连接;存储器中存储有升压站的三维图和所述三维图中的巡检目标点的属性信息,目标点的属性信息包括目标点在三维图中的位置、与所述目标点对应的海上升压站舱室结构、所述海上升压站舱室结构对应的监测参数信息。
机器人本体上还设置有环境温度监测传感器,所述环境温度监测传感器连接控制器的输入端。
在另一方面,本公开实施例提出了一种基于以上实施例任一项所述系统的应用于海上升压站的无人智能巡检方法,具体如下:
巡检终端对海上升压站舱室定期巡检,获取用于反映海上升压站运行状态的数据;
巡检终端的巡检路线采用基于SLAM的机器人自主定位导航方法得到;
从巡检终端获取所述数据,基于图像识别分析方法对所述数据进行处理,得到海上升压站中仪器仪表读数、刀闸状态、开关位置和指示灯状态;
将所述海上升压站中仪器仪表读数、刀闸状态、开关位置和指示灯状态与数据库中的标准参数进行对比,判断出海上升压站中设备的运行状态,如有异常,则发出报警指令或信息。
定期巡检的海上升压站舱室包括开关柜室、主变室、通信继保室、GIS室、柴油机房、应急配电室以及消防泵房。
基于SLAM的机器人自主定位导航方法具体如下:
激光雷达获取机器人的位置信息,基于所述位置信息采用点云匹配算法将局部点云数据与海上升压站内部的地图相对应位置进行匹配,将点云数据与实际地图融合,得到升压站的三维地图;
在所述三维地图中标注巡检目标点;
巡检终端对所述巡检目标点进行逐个巡检,获得反映海上升压站运行状态的数据。
基于所述三维地图及所述三维地图中标注巡检目标点规划机器人的最优巡检路线。
反映海上升压站运行状态的数据包括可见光摄像机获取的图像数据、红外热像仪获取的温度分布图像数据拾音器获取的音频数据以及气体检测仪获取的气体浓度数据。
本公开实施例提供的应用于海上升压站的无人智能巡检系统设置监测仪器以及激光雷达,监测仪器包括可见光摄像机、红外热像仪、气体检测仪和拾音器,监测仪器能获取海上升压站舱室中设备运行状态图像和温度,同时还能监测到绝缘气体的状态,采用激光雷达能够用于采集海上升压站舱室的三维点云数据,为构建海上升压站舱室三维地图提供准确数 据,巡检终端能够充分代替人工巡检,有助于减少现场人员漏检误检等人为因素带来的潜在损失。
在本公开的实施例中,实时监测环境温度能为监测状态提供参考温度,而且能避免由于环境温度变化较大对判断造成影响。
基于本公开实施例所述的无人智能巡检方法,针对海上升压站特殊的舱室布局优化设计巡检路线,实现对海上升压站重点监控区域和巡检内容的全面覆盖,减少现场人员漏检误检等人为因素带来的潜在损失;巡检路线采用基于SLAM的机器人自主定位导航方法,能够实现同步定位与地图构建、路径规划及运动控制两部分功能,更加灵活稳定且所需存储量较小。
在本公开的实施例中,机器人的通信系统采用更为可靠和稳定的多网桥组网方式进行无线网络通信,能够实现数据的稳定可靠传输。
附图说明
图1是无人智能巡检系统的结构示意图。
图2是海上升压站二层设备巡检路线示意图。
图3是海上升压站三层设备巡检路线示意图。
具体实施方式
下面结合附图与具体实施对本公开做详细叙述:
参考图1,一种应用于海上升压站的无人智能巡检系统,系统包括巡检终端和监管中心,其中巡检终端是整个系统的移动载体和信息采集控制载体,巡检终端包括机器人本体、监测仪器、供电系统和通信系统。巡检终端实现功能包括但不限于可见光和红外图像采集、移动定位、电机驱动控制和云台控制。机器人本体包括驱动机构、底盘和外壳,可以采用市售机器人,为机器人装载激光雷达和监测仪器,监测仪器包括可见光摄像机、红外热像仪、气体检测仪和拾音器,供电系统包括充电座和充电机构,充电时,机器人通过电机驱动板控制充电机构电机转动,电机通过齿轮齿条与传动丝杠配合,完成充电机构的伸出或收回动作,从而实现充电机构极片与充电座极片夹的电气连接。通信系统采用多网桥组网的方式,通信系统包括机器人上安装的网桥装置和场站多个无线网桥所组成的无线工作组。巡检机器人安装的网桥装置设置为客户端模式,支持使用高速无线漫游客户端的产品,场站的多个无线网桥接入交换机后均设置为AP模式,其认证和加密方式相同,能够保证通信网络自动从信号较弱的网桥切换至信号较好的网桥,保障数据的稳定可靠传输。
监管中心包括后台服务器系统和智能分析系统,后台服务器系统用于完成巡检终端采集数据的获取和存储,智能分析系统则是对巡检采集得到的图像、音频等非结构化数据进行处理分析,基于图像识别分析算法获得仪器仪表读数、刀闸状态、开关位置和指示灯状态,通 过与数据库存储的标准参数进行对比,判断设备运行状态,如有异常则发出报警指令或信息。
智能巡检系统的工作流程一般是在监管中心设置巡检模式,巡检模式包括定时自动巡检和手动遥控巡检两种模式。定时自动巡检是根据预先设置好的巡检内容、时间、周期、路线等参数信息,达到执行时间,机器人自动触发启动监测仪器,并按照定义路线进行巡检。手动遥控巡检则通过遥控界面,制定特定的巡检路线和巡检设备,按照预先设定的巡检点,快速完成数据采集。规划巡检路线采用机器人自主定位导航,机器人自主定位导航包括同步定位与地图构建(也称SLAM技术)、路径规划及运动控制两部分。机器人本体挂载的激光雷达及内置编码器和惯性测量单元通过直接测量距离数据绘制地图,实现机器人实时定位,具体原理是首先对激光雷达采集的原始数据点进行滤波等预处理,得到某一时刻所在位置信息(也称点云),再采用点云匹配算法将局部点云数据与地图相对应位置进行匹配,然后完成点云数据与实际地图的融合,建立起三维地图。基于SLAM技术构建的地图中标注海上升压站需要巡检的目标点,有助于全局规划机器人巡检的最优路线。
由于海上升压站舱室结构较为紧凑,监控范围集中在海上升压站的二层和三层,基于其中一例海上升压站的二层实际舱室布局,需要巡检的舱室包括GIS室①、通信继保室②、第一主变室④、第二主变室⑤、第一开关柜室⑦和第二开关柜室⑧。这里需要说明的是,由于GIS室①、第一主变室④和第二主变室⑤内电气设备较高,室内高度占据两层,而巡检范围主要集中在二层。规划具体巡检路线为:机器人从固定的充电桩位置⑨出发,途径第一开关柜室⑦的两排开关柜,巡检完毕经由二层第二通道⑥进入开关柜室⑧,两间开关柜室巡检内容一致,具体巡检内容包括开关柜内的仪器仪表读数、刀闸状态、开关位置、指示灯、异常气体或者声响、接地变绕组及柜体温度等;开关柜室巡检结束后,机器人通过二层第二通道⑥进入第二主变室⑤,主变室巡检内容包括油温、油位、绕组温度、感温电缆指示灯、异常气体或者声响等;主变室巡检结束后机器人经由二层第一通道③进入通信继保室②,按照之字形路线对充电柜及电源柜进行巡检,巡检内容包括仪器仪表读数、指示灯状态、开关位置、压差、环境等;结束通信继保室的巡检后,机器人进入第一GIS室进行巡检,巡检内容包括开关、闸刀、地刀、避雷器气室压力、SF6气体压力、控制柜指示状态、开关分合状态、避雷次数、温度、环境等;从GIS室出来,机器人经由二层第一通道③进入第一主变室④,巡检内容包括油温、油位、绕组温度、感温电缆指示灯、异常气体或者声响等;之后机器人经由二层第二通道⑥进入第一开关柜室⑦回到充电桩⑨,至此,机器人完成对海上升压站二层的巡检。
基于其中一例海上升压站的三层实际舱室的布局,需要巡检的舱室包括消防泵房
Figure PCTCN2022094191-appb-000001
应急配电室
Figure PCTCN2022094191-appb-000002
柴油机房
Figure PCTCN2022094191-appb-000003
规划具体巡检路线为:机器人从充电桩
Figure PCTCN2022094191-appb-000004
出发,巡检经过柴油机房
Figure PCTCN2022094191-appb-000005
柴油机房
Figure PCTCN2022094191-appb-000006
中具体巡检内容包括滑油压力温度、冷却水温度、冷却水位、主机转速、油位计的仪表读数;从柴油机房出发,经由三层通道
Figure PCTCN2022094191-appb-000007
进入应急配电室
Figure PCTCN2022094191-appb-000008
应急配电室
Figure PCTCN2022094191-appb-000009
巡检内容包括仪器仪表读数、开关状态、异常气体或者声响、环境监测等;应急配电室巡检完毕后,机器人通过三层通道
Figure PCTCN2022094191-appb-000010
进入消防泵房
Figure PCTCN2022094191-appb-000011
消防泵房
Figure PCTCN2022094191-appb-000012
中具体巡检内容包括电压表、系统压力、水箱水位、消防管路等、环境监测等。巡检完毕后,机器人经由三层通道
Figure PCTCN2022094191-appb-000013
进入柴油机房
Figure PCTCN2022094191-appb-000014
返回充电桩
Figure PCTCN2022094191-appb-000015
结束本次巡检路线,当然也可以进入临时休息室⑩、第一通风机房
Figure PCTCN2022094191-appb-000016
第二通风机房
Figure PCTCN2022094191-appb-000017
以及蓄电池室
Figure PCTCN2022094191-appb-000018
进行巡检。

Claims (10)

  1. 一种应用于海上升压站的无人智能巡检系统,其特征在于,包括巡检终端和监管中心,巡检终端包括机器人本体、监测仪器、供电系统和通信系统,监测仪器设置在机器人本体上,监测仪器包括可见光摄像机、红外热像仪、气体检测仪和拾音器;供电系统为机器人本体、监测仪器和通信系统供电;通信系统包括机器人上安装的网桥装置和场站多个无线网桥所组成的无线工作组,监管中心与巡检终端通信连接;机器人本体上还设置有激光雷达。
  2. 根据权利要求1所述的应用于海上升压站的无人智能巡检系统,其特征在于,巡检机器人安装的网桥装置设置为客户端模式,场站的多个无线网桥接入交换机,所述多个无线网桥均设置为AP工作模式。
  3. 根据权利要求1或2所述的应用于海上升压站的无人智能巡检系统,其特征在于,巡检机器人采用自主控制的机器人本体,机器人本体上设置有控制器,监测仪器与控制器双向通信连接,供电系统包括蓄电池和可伸缩充电机构,可伸缩充电机构的驱动信号输入端连接控制器的输出端,激光雷达连接控制器的输入端,可伸缩充电机构与蓄电池的充电端连接,可伸缩充电机构上设置有适配充电座极片夹的极片。
  4. 根据权利要求1至3中任一项所述的应用于海上升压站的无人智能巡检系统,其特征在于,机器人本体中设置有存储器,控制器与存储器通过I/O接口连接;存储器中存储有升压站的三维图和所述三维图中的巡检目标点的属性信息,目标点的属性信息包括目标点在三维图中的位置、与所述目标点对应的海上升压站舱室结构、所述海上升压站舱室结构对应的监测参数信息。
  5. 根据权利要求4所述的应用于海上升压站的无人智能巡检系统,其特征在于,机器人本体上还设置有环境温度监测传感器,所述环境温度监测传感器连接控制器的输入端。
  6. 一种基于权利要求1-5中任一项所述系统的应用于海上升压站的无人智能巡检方法,其特征在于,具体如下:
    巡检终端对海上升压站舱室定期巡检,获取用于反映海上升压站运行状态的数据;
    巡检终端的巡检路线采用基于SLAM的机器人自主定位导航方法得到;
    从巡检终端获取所述数据,基于图像识别分析方法对所述数据进行处理,得到海上升压站中仪器仪表读数、刀闸状态、开关位置和指示灯状态;
    将所述海上升压站中仪器仪表读数、刀闸状态、开关位置和指示灯状态与数据库中的标准参数进行对比,判断出海上升压站中设备的运行状态,如有异常,则发出报警指令或信息。
  7. 根据权利要求6所述的应用于海上升压站的无人智能巡检方法,其特征在于,定期巡检的海上升压站舱室包括开关柜室、主变室、通信继保室、GIS室、柴油机房、应急配电室以及消防泵房。
  8. 根据权利要求6或7所述的应用于海上升压站的无人智能巡检方法,其特征在于,基于SLAM的机器人自主定位导航方法具体如下:
    激光雷达获取机器人的位置信息,基于所述位置信息采用点云匹配算法将局部点云数据与海上升压站内部的地图相对应位置进行匹配,将点云数据与实际地图融合,得到升压站的三维地图;
    在所述三维地图中标注巡检目标点;
    巡检终端对所述巡检目标点进行逐个巡检,获得反映海上升压站运行状态的数据。
  9. 根据权利要求8所述的应用于海上升压站的无人智能巡检方法,其特征在于,基于所述三维地图及所述三维地图中标注巡检目标点规划机器人的最优巡检路线。
  10. 根据权利要求6至9中任一项所述的应用于海上升压站的无人智能巡检方法,其特征在于,反映海上升压站运行状态的数据包括可见光摄像机获取的图像数据、红外热像仪获取的温度分布图像数据拾音器获取的音频数据以及气体检测仪获取的气体浓度数据。
PCT/CN2022/094191 2021-05-20 2022-05-20 应用于海上升压站的无人智能巡检系统及方法 WO2022242759A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110552372.5 2021-05-20
CN202110552372.5A CN113296113A (zh) 2021-05-20 2021-05-20 一种应用于海上升压站的无人智能巡检系统及方法

Publications (1)

Publication Number Publication Date
WO2022242759A1 true WO2022242759A1 (zh) 2022-11-24

Family

ID=77323191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094191 WO2022242759A1 (zh) 2021-05-20 2022-05-20 应用于海上升压站的无人智能巡检系统及方法

Country Status (2)

Country Link
CN (1) CN113296113A (zh)
WO (1) WO2022242759A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117092631A (zh) * 2023-10-19 2023-11-21 江苏翰林正川工程技术有限公司 一种输电通道施工机械目标定位与测距方法及系统
CN117092631B (zh) * 2023-10-19 2024-04-19 江苏翰林正川工程技术有限公司 一种输电通道施工机械目标定位与测距方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113296113A (zh) * 2021-05-20 2021-08-24 华能(浙江)能源开发有限公司清洁能源分公司 一种应用于海上升压站的无人智能巡检系统及方法
CN113650038A (zh) * 2021-09-30 2021-11-16 中国华能集团清洁能源技术研究院有限公司 一种巡检机器人
CN114326741A (zh) * 2021-12-30 2022-04-12 国家能源集团乐东发电有限公司 基于四足机器人的海水淡化监视控制系统
CN117309247B (zh) * 2023-11-28 2024-03-01 北京市农林科学院信息技术研究中心 鸡舍密闭性的判别方法、装置、系统、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180165931A1 (en) * 2016-12-14 2018-06-14 Nanjing Avatarmind Robot Technology Co., Ltd. Robot security inspection method based on environment map and robot thereof
CN108375962A (zh) * 2018-02-09 2018-08-07 中国能源建设集团广东省电力设计研究院有限公司 海上升压站巡控系统
CN108527399A (zh) * 2018-06-08 2018-09-14 国家电网公司 一种基于互联网的变电站智能巡检机器人监测系统
CN110605718A (zh) * 2019-09-20 2019-12-24 国网湖北省电力有限公司电力科学研究院 一种变电站巡检机器人系统及巡检方法
CN111611855A (zh) * 2020-04-17 2020-09-01 广东电网有限责任公司 一种变电站三维可视化机器人智能巡检系统
CN113296113A (zh) * 2021-05-20 2021-08-24 华能(浙江)能源开发有限公司清洁能源分公司 一种应用于海上升压站的无人智能巡检系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873837B (zh) * 2018-06-21 2020-08-25 徐正强 巡检机器人系统
CN111487642A (zh) * 2020-03-10 2020-08-04 国电南瑞科技股份有限公司 基于三维激光和双目视觉的变电站巡检机器人定位导航系统及方法
CN112213979A (zh) * 2020-10-14 2021-01-12 西南石油大学 一种场站智能机器人巡检系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180165931A1 (en) * 2016-12-14 2018-06-14 Nanjing Avatarmind Robot Technology Co., Ltd. Robot security inspection method based on environment map and robot thereof
CN108375962A (zh) * 2018-02-09 2018-08-07 中国能源建设集团广东省电力设计研究院有限公司 海上升压站巡控系统
CN108527399A (zh) * 2018-06-08 2018-09-14 国家电网公司 一种基于互联网的变电站智能巡检机器人监测系统
CN110605718A (zh) * 2019-09-20 2019-12-24 国网湖北省电力有限公司电力科学研究院 一种变电站巡检机器人系统及巡检方法
CN111611855A (zh) * 2020-04-17 2020-09-01 广东电网有限责任公司 一种变电站三维可视化机器人智能巡检系统
CN113296113A (zh) * 2021-05-20 2021-08-24 华能(浙江)能源开发有限公司清洁能源分公司 一种应用于海上升压站的无人智能巡检系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117092631A (zh) * 2023-10-19 2023-11-21 江苏翰林正川工程技术有限公司 一种输电通道施工机械目标定位与测距方法及系统
CN117092631B (zh) * 2023-10-19 2024-04-19 江苏翰林正川工程技术有限公司 一种输电通道施工机械目标定位与测距方法及系统

Also Published As

Publication number Publication date
CN113296113A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2022242759A1 (zh) 应用于海上升压站的无人智能巡检系统及方法
CN108890657B (zh) 一种配电房智能巡检机器人
He et al. Research of multi-rotor UAVs detailed autonomous inspection technology of transmission lines based on route planning
CN109760837B (zh) 一种电缆沟与隧道巡检无人机系统
CN202471867U (zh) 变电站在线设备自动检测装置
CN109657808A (zh) 一种热电厂锅炉群巡检方法
CN206348665U (zh) 一种基于北斗导航的热力管网无人机智能巡检系统
CN206194076U (zh) 一种变电站设备检测系统
CN103427366B (zh) 用于控制识别输电线路的直升机机载系统的实时空间位置动态度量方法
CN109818416A (zh) 一种多功能变电站智能机器人巡检系统
CN112466000A (zh) 一种基于电力巡检机器人的巡检系统及巡检控制方法
CN102856827A (zh) 地空异构式变电站全方位巡检系统
CN103455036A (zh) 一种场景空中巡视方法和飞行器
CN207268846U (zh) 电力巡检机器人
CN108762307A (zh) 基于无人机检测的高层建筑天然气立管安全预警系统
CN108960442A (zh) 一种水电厂设备巡检方法
CN113075686B (zh) 一种基于多传感器融合的电缆沟智能巡检机器人建图方法
CN105655920A (zh) 一种多功能陆空两用电力无人机
CN111857178A (zh) 一种用于房建施工现场安全巡检的无人机系统
CN218984811U (zh) 一种配电间智能机器人巡检系统
CN113021295A (zh) 一种海上油气田智能防爆巡检机器人
CN113077561A (zh) 一种无人机智能巡检系统
CN201699349U (zh) 智能巡线机器人
Li et al. Unmanned aerial vehicle intelligent patrol-inspection system applied to transmission grid
CN208077009U (zh) 一种用于电力安全监护的无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE