WO2022242742A1 - Tube en acier sans soudure résistant à la corrosion au dioxyde de carbone et son procédé de fabrication - Google Patents

Tube en acier sans soudure résistant à la corrosion au dioxyde de carbone et son procédé de fabrication Download PDF

Info

Publication number
WO2022242742A1
WO2022242742A1 PCT/CN2022/094085 CN2022094085W WO2022242742A1 WO 2022242742 A1 WO2022242742 A1 WO 2022242742A1 CN 2022094085 W CN2022094085 W CN 2022094085W WO 2022242742 A1 WO2022242742 A1 WO 2022242742A1
Authority
WO
WIPO (PCT)
Prior art keywords
seamless steel
steel pipe
corrosion
manufacturing
present
Prior art date
Application number
PCT/CN2022/094085
Other languages
English (en)
Chinese (zh)
Inventor
骆素珍
齐亚猛
张忠铧
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US18/290,401 priority Critical patent/US20240247350A1/en
Publication of WO2022242742A1 publication Critical patent/WO2022242742A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/12Roll temperature

Definitions

  • the invention relates to a metal material and a manufacturing method thereof, in particular to a seamless steel pipe and a manufacturing method thereof.
  • CO2 corrosion-resistant steels include corrosion resistant alloy series, martensitic stainless steel series and low alloy series, such as 1Cr series developed by Tenaris, 3Cr series such as TN80Cr3, TN95Cr3, TN110Cr3, 13Cr series and 2205 duplex Corrosion-resistant alloy series such as stainless steel, V&M and JFE, as well as domestic Baosteel and Tiangang have also successfully developed the above-mentioned CO 2 corrosion-resistant oil pipe series products.
  • the present invention expects to obtain a carbon dioxide corrosion-resistant seamless steel pipe with high strength, good Processability and CO 2 corrosion resistance, it is especially suitable for casing, tubing and gathering pipelines in oil and gas environments with 60-90°C and 0.5MPa CO 2 content, its applicability is very wide, and it has good promotion prospects and applications value.
  • One of the objectives of the present invention is to provide a carbon dioxide corrosion-resistant seamless steel pipe with high strength, good processability and CO 2 corrosion resistance, which is especially suitable for 60-90°C, 0.5MPa CO 2 Casing, tubing and gathering pipelines in the oil and gas environment with high content have wide applicability and have good promotion prospects and application value.
  • the present invention provides a seamless steel pipe resistant to carbon dioxide corrosion, which, in addition to Fe and unavoidable impurities, also contains the following chemical elements in mass percentages as follows:
  • the seamless steel pipe of the present invention is composed of the following chemical elements in the following mass percentages:
  • the C content of the present invention needs to be added synergistically with elements such as Cr and Mo to find the best balance of material strength and CO2 resistance, thus in the seamless steel pipe of the present invention, the mass percentage of C element It is controlled between 0.05% and 0.18%.
  • the mass percentage of the C element can be controlled between 0.09-0.15%.
  • Si is the residual element of steel after smelting and deoxidation. Within the range of Si content that meets the deoxidation requirements in the molten steel smelting process, the Si content has no effect on CO2 corrosion resistance and material strength. obvious impact. Therefore, in the seamless steel pipe of the present invention, it is enough to control the range conventionally, and the mass percentage of Si element is controlled between 0.15% and 0.40%.
  • the mass percentage of the Si element can be controlled between 0.2-0.35%.
  • Mn In the seamless steel pipe of the present invention, adding an appropriate amount of Mn to the steel can improve the strength of the material, and the Mn element can also stabilize the P and S elements, thereby avoiding the formation of low-melting sulfides and improving the thermal processing performance of the material . Therefore, in order to achieve the above desired effects, the content of Mn element in the steel should not be too low. When the content of Mn in the steel is too low, the P and S elements cannot be well stabilized. At the same time, the content of Mn element in steel should not be too high.
  • the mass percentage of Mn element is controlled at 0.25-0.50%.
  • the mass percentage of the Mn element can be controlled between 0.3% and 0.45%.
  • the mass percentage of the Cr element can be controlled between 4.5% and 5.5%.
  • Mo in the seamless steel pipe of the present invention, adding an appropriate amount of Mo element to the steel can improve the solid solution strengthening ability and tempering stability of the material, and can improve the localized corrosion resistance of the material in a certain composition system .
  • the ability of Mo element to resist local corrosion in low alloy system is not as good as that in stainless steel.
  • the mass percentage of the Mo element is controlled between 0.08% and 0.35%.
  • the mass percentage of the Mo element can be controlled between 0.1% and 0.25%.
  • the addition of Al element is added to the molten steel for deoxidation, to ensure the O content in the steel, and to ensure that the number and size of the corresponding non-metallic inclusions affect the mechanical properties and CO resistance 2 Minimal adverse effects on corrosion performance. Based on this, in the seamless steel pipe of the present invention, the mass percentage of the Al element is controlled between 0.020-0.055%.
  • the mass percentage of the Al element can be controlled between 0.025% and 0.045%.
  • the addition of Ca element is to further control the properties of Al ⁇ Si non-metallic inclusions in the steel, to ensure that the composition and size of the non-metallic inclusions have a positive effect on the mechanical properties and CO2 corrosion resistance There is no impact on performance.
  • the mass percentage of Ca element is controlled between 0.001% and 0.004%.
  • the mass percentage of Ca element can be controlled between 0.0015% and 0.003%.
  • Ti, Nb, V, Ce and La elements can be further added, and these elements can further improve the performance of the seamless steel pipe described in the present invention.
  • the content of Ti, Nb, V, Ce and La elements can be controlled to satisfy: 0.003% ⁇ Ti+Nb+V+Ce+La ⁇ 0.20%.
  • each chemical element in the above formula is substituted into the mass percentage of the chemical element, and the microalloying of Ti, Nb, V, Ce and La can improve the strength, impact toughness and corrosion resistance of the material to a certain extent.
  • the content of each chemical element also satisfies at least one of the following items:
  • the seamless steel pipe according to the present invention among unavoidable impurities, P ⁇ 0.012 mass%, S ⁇ 0.005 mass%, N ⁇ 0.0045 mass%, O ⁇ 0.002 mass%.
  • P, S, N and O are unavoidable impurity elements in steel, and it is necessary to control the content of impurity elements in steel as low as possible under the premise of technical conditions.
  • P and S are impurity elements introduced in the raw and auxiliary materials of iron and steel or in the production process, and P can embrittle the grain boundary and deteriorate the toughness and processability of the material.
  • S element forms sulfide with low melting point, which reduces the processing performance of the material and its own mechanical properties.
  • N and O are impurity elements introduced during the smelting and pouring process, and N and O are easily formed inclusions in the steel, resulting in deterioration of the performance of the material. Therefore, in this In the invention, the content of N element and O element in the seamless steel pipe should be strictly controlled.
  • its microstructure is tempered sorbite.
  • the seamless steel pipe according to the present invention its performance satisfies at least one of the following items:
  • the weight loss corrosion rate is less than 0.08mm/d, and the pitting corrosion rate is less than 0.2mm/d.
  • another object of the present invention is to provide a method for manufacturing a carbon dioxide corrosion-resistant seamless steel pipe.
  • the seamless steel pipe prepared by the manufacturing method has good mechanical properties, and its excellent resistance to CO2 corrosion is especially suitable for At 60-90°C, 0.5MPa CO 2 oil and gas environment casing, tubing and gathering pipelines have good promotion prospects and application value.
  • the present invention provides the above-mentioned seamless steel pipe manufacturing method, the manufacturing method comprising the following steps:
  • the hot-rolled pipe needs to be quenched and kept at a temperature range of 860-940°C for 15-120 minutes, and then tempered and kept at a temperature range of 520-620°C for 30 minutes. -150min to obtain a tempered sorbite structure, thereby obtaining a seamless steel pipe product whose strength, toughness, and CO 2 corrosion resistance all meet the requirements of the service environment.
  • the tube blank is heated and kept at 1180-1280° C. for 120-350 minutes.
  • step (2) piercing, hot rolling and sizing are carried out in the range of 1160-1260°C.
  • the tube blank in the heating step of the above-mentioned step (2), can be heated and kept at 1180-1280°C for 120-350 minutes, and then high-temperature piercing is carried out at 1160-1260°C.
  • High temperature deformation such as hot rolling and sizing, and processed into hot rolled tubes of required specifications.
  • the above-mentioned composition system designed in the present invention is heated and kept at 1180-1280°C for 120-350 minutes, which can make the tube blank have good high-temperature thermoplasticity, and carry out high-temperature deformation such as high-temperature piercing, hot-rolling and sizing at 1160-1260°C. , is conducive to the prevention and control of hot rolling deformation defects.
  • the seamless steel pipe prepared by the method has almost no alloy element segregation and has uniform alloy element distribution. Therefore, the long-time annealing treatment steps for the tube billet described in the prior art for homogenizing the alloy elements, such as the spheroidizing annealing step, can be omitted.
  • the carbon dioxide corrosion-resistant seamless steel pipe and manufacturing method thereof of the present invention have the following advantages and beneficial effects:
  • the present invention can obtain a seamless steel pipe resistant to carbon dioxide corrosion through reasonable chemical composition design and optimized manufacturing process.
  • the seamless steel pipe has high strength, good processability and CO2 corrosion resistance , can be effectively applied in oil and gas development to avoid perforation failure accidents.
  • the seamless steel pipe of the present invention has good mechanical properties and CO2 corrosion resistance, it has high-strength mechanical properties after quenching and tempering heat treatment and meets: yield strength Rp0.2 ⁇ 550MPa, tensile strength Rm ⁇ 670MPa, elongation Rate A50 ⁇ 15%, impact performance KV8 ⁇ 60J.
  • the seamless steel pipe produced has a weight loss corrosion rate of less than 0.08mm/d and a pitting corrosion rate of less than 0.2mm/d under the conditions of 60-90°C, 0.5MPa CO 2 , 50000ppm Cl - , and 1m/s dynamic corrosion environment. Very good promotion prospect and application value.
  • Figure 1 is a photo of the microstructure of the seamless steel pipe of Example 1 under an optical microscope.
  • the seamless steel pipes of Examples 1-15 and the seamless steel pipes of Comparative Examples 1-2 and 4-5 were prepared by the following steps:
  • Table 1 lists the mass percentage of each chemical element in the seamless steel pipes of Examples 1-15 and the seamless steel pipes of Comparative Examples 1-5.
  • Table 2 lists the specific process parameters of the seamless steel pipes of Examples 1-15 and the seamless steel pipes of Comparative Examples 1-5.
  • Charpy V-notch impact test According to GB/T229-2020 "Metallic Materials Charpy Impact Pendulum Test Method", an impact test is carried out on the test steel pipe, and the impact performance of the steel pipe in each embodiment and comparative example is evaluated.
  • Table 3 lists the mechanical property test results of the seamless steel pipes of Examples 1-15 and the seamless steel pipes of Comparative Examples 1-5.
  • the corrosion resistance of the seamless steel pipes of each embodiment and comparative examples can be further tested.
  • the test of corrosion performance comprises that embodiment 1-15 and comparative example 1-5 are sampled, and carry out corrosion test, control embodiment 1-15 and comparative example 1-5 sample carry out corrosion test in autoclave, in Tested under 60-90°C, 0.5MPa CO 2 , 50000ppmCl - , 1m/s dynamic corrosion environment conditions to obtain the weight loss corrosion rate and pitting corrosion rate of Examples 1-15 and Comparative Examples 1-5.
  • the test results of the relevant corrosion tests are listed in Table 4 below.
  • Table 4 lists the CO 2 corrosion resistance test results of the seamless steel pipes of Examples 1-15 and the seamless steel pipes of Comparative Examples 1-5.
  • the seamless steel pipes of Examples 1-15 of the present invention not only have excellent mechanical properties but also have good CO2 corrosion resistance, and the yield strength of the seamless steel pipes of Examples 1-15 Between 585-936MPa, tensile strength between 679-1132MPa, elongation A50 ⁇ 15%, impact performance KV8 between 61-214J.
  • the weight loss corrosion rate and the pitting corrosion rate of the seamless steel pipes of each embodiment are all less than 0.079 mmm / d, and the pitting corrosion rates are all less than 0.152 mm/d.
  • the mechanical properties of the seamless steel pipes of Comparative Examples 1-5 fluctuate greatly, and its weight loss corrosion rate (at least 0.136mm/d) and pitting corrosion rate (at least 0.266mm /d) are higher than the seamless steel pipes of Examples 1-15, that is, the seamless steel pipes of Comparative Examples 1-5 have worse CO2 corrosion resistance.
  • Figure 1 is a photo of the microstructure of the high-strength seamless steel pipe of Example 1 under an optical microscope.
  • the microstructure of the high-strength seamless steel pipe of Example 1 is a tempered sorbite structure.
  • the present invention can obtain a seamless steel pipe resistant to carbon dioxide corrosion through reasonable chemical composition design and optimized manufacturing process.
  • the seamless steel pipe has high strength, good processability and CO2 corrosion resistance , which can be effectively used in oil and gas development to avoid perforation failure accidents, and has very good promotion prospects and application value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

La présente invention divulgue un tube en acier sans soudure à haute résistance résistant à la corrosion au dioxyde de carbone. En plus de contenir du Fe et des impuretés inévitables, le tube en acier sans soudure contient en outre les éléments chimiques suivants, en pourcentage en masse : C : 0,05-0,18 %, Si : 0,15-0,40 %, Mn : 0,25-0,50 %, Cr : 4,0-6,0 %, Mo : 0,08-0,35 %, Al : 0,020-0,055 %, Ca : 0,001-0,004 % ; et un ou plusieurs éléments choisis parmi Ti, Nb, V, Ce et La, où 0,003 % ≤ Ti + Nb + V + Ce + La ≤ 0,20 %. La présente invention divulgue également un procédé de fabrication du tube en acier sans soudure. Le procédé comprend les étapes suivantes consistant à : (1) fabriquer une ébauche de tube ; (2) soumettre l'ébauche de tube à un chauffage, une perforation, un laminage à chaud et un dimensionnement pour obtenir un tube laminé à chaud ; et (3) soumettre le tube laminé à chaud à un traitement thermique de trempe et de revenu, impliquant : la trempe de celui-ci et le maintien de la température dans une plage de température de 860 à 940 °C pendant 15 à 120 min, puis la trempe de celui-ci et le maintien de la température dans une plage de température de 520 à 620 °C pendant 30 à 150 min.
PCT/CN2022/094085 2021-05-21 2022-05-20 Tube en acier sans soudure résistant à la corrosion au dioxyde de carbone et son procédé de fabrication WO2022242742A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/290,401 US20240247350A1 (en) 2021-05-21 2022-05-20 Seamless steel tube resistant to carbon dioxide corrosion and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110559328.7 2021-05-21
CN202110559328.7A CN115369316A (zh) 2021-05-21 2021-05-21 一种抗二氧化碳腐蚀性能优良的高强度无缝钢管及其制造方法

Publications (1)

Publication Number Publication Date
WO2022242742A1 true WO2022242742A1 (fr) 2022-11-24

Family

ID=84059659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094085 WO2022242742A1 (fr) 2021-05-21 2022-05-20 Tube en acier sans soudure résistant à la corrosion au dioxyde de carbone et son procédé de fabrication

Country Status (3)

Country Link
US (1) US20240247350A1 (fr)
CN (1) CN115369316A (fr)
WO (1) WO2022242742A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102373386A (zh) * 2011-10-10 2012-03-14 辛培兴 一种高性能合金钢无缝钢管的制作工艺
CN103147006A (zh) * 2013-02-19 2013-06-12 宝山钢铁股份有限公司 一种抗腐蚀无缝集输管线管及其制造方法
CN104451394A (zh) * 2014-11-25 2015-03-25 江苏常宝钢管股份有限公司 CPE机组生产的150ksi以下抗CO2腐蚀油井管及其制造方法
CN104846279A (zh) * 2015-05-08 2015-08-19 内蒙古包钢钢联股份有限公司 一种中合金油井管及其制备方法
JP2015193868A (ja) * 2014-03-31 2015-11-05 Jfeスチール株式会社 耐硫化物応力腐食割れ性に優れたラインパイプ用厚肉高強度継目無鋼管の製造方法
JP2017020086A (ja) * 2015-07-13 2017-01-26 新日鐵住金株式会社 マルテンサイト鋼材
CN107151758A (zh) * 2016-10-28 2017-09-12 中国石油集团渤海石油装备制造有限公司 抗二氧化碳和氯离子腐蚀石油钻杆管体的制造方法
CN109423573A (zh) * 2017-08-31 2019-03-05 宝山钢铁股份有限公司 一种耐高温氧腐蚀不锈钢、套管及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262807B2 (ja) * 1997-09-29 2002-03-04 住友金属工業株式会社 耐湿潤炭酸ガス腐食性と耐海水腐食性に優れた油井管用鋼および継目無油井管
JP4203143B2 (ja) * 1998-02-13 2008-12-24 新日本製鐵株式会社 耐炭酸ガス腐食性に優れた耐食鋼及び耐食油井管
JP3451993B2 (ja) * 1999-08-19 2003-09-29 住友金属工業株式会社 耐硫化水素腐食性および耐炭酸ガス腐食性能に優れたCr含有油井管用鋼
CN102199729A (zh) * 2010-03-23 2011-09-28 宝山钢铁股份有限公司 经济型55Ksi钢级抗CO2腐蚀油井管及其制造方法
CN106957993B (zh) * 2016-01-12 2018-08-03 宝钢特钢有限公司 一种抗氯离子腐蚀抽油杆钢及其制造方法
CN107619994B (zh) * 2017-04-27 2019-04-02 中国石油大学(北京) 一种抗co2/h2s及硫酸盐还原菌腐蚀的无缝管线管及其制造方法
JP6773021B2 (ja) * 2017-12-27 2020-10-21 Jfeスチール株式会社 疲労強度に優れた厚肉大径電縫鋼管およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102373386A (zh) * 2011-10-10 2012-03-14 辛培兴 一种高性能合金钢无缝钢管的制作工艺
CN103147006A (zh) * 2013-02-19 2013-06-12 宝山钢铁股份有限公司 一种抗腐蚀无缝集输管线管及其制造方法
JP2015193868A (ja) * 2014-03-31 2015-11-05 Jfeスチール株式会社 耐硫化物応力腐食割れ性に優れたラインパイプ用厚肉高強度継目無鋼管の製造方法
CN104451394A (zh) * 2014-11-25 2015-03-25 江苏常宝钢管股份有限公司 CPE机组生产的150ksi以下抗CO2腐蚀油井管及其制造方法
CN104846279A (zh) * 2015-05-08 2015-08-19 内蒙古包钢钢联股份有限公司 一种中合金油井管及其制备方法
JP2017020086A (ja) * 2015-07-13 2017-01-26 新日鐵住金株式会社 マルテンサイト鋼材
CN107151758A (zh) * 2016-10-28 2017-09-12 中国石油集团渤海石油装备制造有限公司 抗二氧化碳和氯离子腐蚀石油钻杆管体的制造方法
CN109423573A (zh) * 2017-08-31 2019-03-05 宝山钢铁股份有限公司 一种耐高温氧腐蚀不锈钢、套管及其制造方法

Also Published As

Publication number Publication date
US20240247350A1 (en) 2024-07-25
CN115369316A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN102373387B (zh) 大应变冷弯管用钢板及其制造方法
CN100500917C (zh) 抗硫腐蚀钢的冶炼方法
CN106811700B (zh) 一种厚规格抗酸性x60ms热轧卷板及其制造方法
US20180312937A1 (en) Seamless Line Pipe Resistant to Corrosion by CO2/H2S and Sulfate-Reducing Bacteria and Manufacturing Method Thereof
WO2021218932A1 (fr) Acier inoxydable martensitique résistant à la corrosion à haute température et à haute résistance et procédé de fabrication associé
AU2020467306A1 (en) Thick low-carbon-equivalent high-toughness wear-resistant steel plate and manufacturing method therefor
WO2019242448A1 (fr) Tuyau de puits de pétrole résistant au soufre et ayant une nuance d'acier de 125 ksi et son procédé de fabrication
WO2017050227A1 (fr) Tube en acier sans soudure à haute résistance et haute ténacité et son procédé de fabrication
CN112756423A (zh) 一种含稀土的旋挖钻机键条用无缝钢管及其制备方法
CN115181911B (zh) 特厚Q500qE桥梁钢板及其生产方法
CN111893401A (zh) 高加载应力下抗sscc性能优良l450ms管线钢及其制造方法
CN101906586A (zh) 一种高强度直缝焊管用钢及其制造方法
CN115261746B (zh) 特厚Q420qE桥梁钢板及其生产方法
CN108728740B (zh) 一种低屈强比铁道车辆用热轧钢带及其生产方法
WO2022242742A1 (fr) Tube en acier sans soudure résistant à la corrosion au dioxyde de carbone et son procédé de fabrication
CN109055645A (zh) 一种正火态交货的经济型抗hic管线钢板x52ns及其制造方法
CN115927960A (zh) 一种125Ksi钢级抗硫化氢腐蚀油井管及其制备方法
CN114277310B (zh) 一种抗h2s腐蚀的油套管及其制造方法
CN114107816A (zh) 一种低成本、高强韧性x65ms级抗酸管线钢热轧卷板及制备方法
WO2023231981A1 (fr) Boîtier de tuyau de pétrole à haute résistance et son procédé de fabrication
CN115584431A (zh) 一种页岩气井用高性能抗挤毁套管及加工方法
JP2023523623A (ja) 高強度の抗崩壊オイルケーシングおよびその製造方法
CN114086083A (zh) 一种1100MPa级抗硫高压气瓶钢、高压气瓶及其制造方法
WO2022179595A1 (fr) Tuyau de forage géologique en baïnite à haute résistance et haute ténacité et son procédé de fabrication
CN108754322A (zh) 一种高强度电阻焊套管及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18290401

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523451483

Country of ref document: SA

122 Ep: pct application non-entry in european phase

Ref document number: 22804061

Country of ref document: EP

Kind code of ref document: A1