WO2022239860A1 - In-vehicle reflection control film - Google Patents

In-vehicle reflection control film Download PDF

Info

Publication number
WO2022239860A1
WO2022239860A1 PCT/JP2022/020220 JP2022020220W WO2022239860A1 WO 2022239860 A1 WO2022239860 A1 WO 2022239860A1 JP 2022020220 W JP2022020220 W JP 2022020220W WO 2022239860 A1 WO2022239860 A1 WO 2022239860A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection
reflected light
light
amount
meth
Prior art date
Application number
PCT/JP2022/020220
Other languages
French (fr)
Japanese (ja)
Inventor
友博 堀野
Original Assignee
株式会社トッパンTomoegawaオプティカルフィルム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トッパンTomoegawaオプティカルフィルム filed Critical 株式会社トッパンTomoegawaオプティカルフィルム
Priority to KR1020237028067A priority Critical patent/KR20230129049A/en
Priority to CN202280018000.7A priority patent/CN116997826A/en
Priority to JP2023521261A priority patent/JPWO2022239860A1/ja
Publication of WO2022239860A1 publication Critical patent/WO2022239860A1/en
Priority to JP2024117917A priority patent/JP2024144532A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/22Display screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to an in-vehicle reflection control film used for in-vehicle display devices and the like.
  • center information displays and center console displays have been used as in-vehicle display devices for car navigation systems.
  • the number of in-vehicle display devices has been increasing, and the use of new in-vehicle display devices such as digital outer monitors, digital inner monitors, and digital meter clusters is expected. Since light enters the vehicle interior from various directions through the windows, visibility of the vehicle-mounted display device can be ensured by providing the vehicle-mounted display device with an optical film having an antireflection function.
  • Patent Document 1 describes an antireflection film which is configured by laminating a plurality of layers on an optical substrate and has a reflectance of 0.1% or less for light incident at 45 degrees in a wavelength range of 300 to 660 nm. Have been described. Further, Patent Document 2 describes an optical sheet in which translucent inorganic particles and/or translucent organic particles are dispersed on at least one surface of a transparent substrate.
  • an object of the present invention is to provide a vehicle-mounted reflection control film having optical properties suitable for vehicle-mounted applications.
  • the vehicle-mounted reflection control film according to the present invention includes a base material and a reflection control layer laminated on the base material.
  • the reflection control layer of the reflection control film for vehicle use is obliquely 30° with respect to the normal line of the reflection control film.
  • the light amount of the specularly reflected light of the light incident from the direction is 0 to 25%
  • the light amount of the reflected light in the direction of the reflection angle of ⁇ 5° of the specularly reflected light is 0.3 to 2.0%, It is characterized by a haze of 3 to 11%.
  • FIG. 1 is a cross-sectional view showing the structure of an in-vehicle reflection control film according to an embodiment.
  • FIG. 2 is a diagram for explaining the reflection direction of light.
  • FIG. 1 is a cross-sectional view showing the configuration of an in-vehicle reflection control film according to an embodiment.
  • a vehicle-mounted reflection control film 10 (hereinafter simply referred to as a "reflection control film") according to the present embodiment includes a substrate 1 and a reflection control layer 5 laminated on one side of the substrate 1 .
  • the base material 1 is a film that serves as the base of the reflection control film 10, and is made of a material with excellent visible light transmittance.
  • Materials for forming the substrate 1 include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyacrylates such as polymethyl methacrylate; polyamides such as nylon 6 and nylon 66; Transparent resins such as arylate, polycarbonate, triacetylcellulose, polyacrylate, polyvinyl alcohol, polyvinyl chloride, cycloolefin copolymer, norbornene-containing resin, polyethersulfone, and polysulfone, and inorganic glass can be used. Among these, a film made of polyethylene terephthalate can be suitably used.
  • the thickness of the substrate 1 is not particularly limited, it is preferably 10 to 200 ⁇ m.
  • the surface of the base material 1 may be subjected to surface modification treatment in order to improve adhesion with the reflection control layer 5 .
  • surface modification treatment include alkali treatment, corona treatment, plasma treatment, sputtering treatment, application of surfactants, silane coupling agents, and the like, and Si vapor deposition.
  • the reflection control layer 5 includes an antiglare layer 2 and a low reflection layer 3 in order from the substrate 1 side.
  • the anti-glare layer 2 is an optical function layer that has fine unevenness on the surface and reduces reflection of outside light by scattering outside light with the unevenness.
  • the antiglare layer 2 is formed by applying a coating liquid containing a binder resin and organic fine particles and/or inorganic fine particles to the substrate 1 and curing the coating film.
  • an active energy ray-curable resin that is cured by irradiation with ionizing radiation or ultraviolet rays can be used.
  • a monofunctional, difunctional, or trifunctional or higher (meth)acrylate monomer can be used.
  • (meth)acrylate is a generic term for both acrylate and methacrylate
  • (meth)acryloyl is a generic term for both acryloyl and methacryloyl.
  • Examples of monofunctional (meth)acrylate compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl ( meth)acrylate, t-butyl (meth)acrylate, glycidyl (meth)acrylate, acryloylmorpholine, N-vinylpyrrolidone, tetrahydrofurfuryl acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isobornyl (meth)acrylate ) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate,
  • bifunctional (meth)acrylate compounds include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, nonanediol di(meth) Acrylates, ethoxylated hexanediol di(meth)acrylate, propoxylated hexanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate Di(meth)acrylates such as meth)acrylate, neopentyl glycol di(meth)acrylate, ethoxylated neopentyl glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, neopentyl
  • tri- or higher functional (meth)acrylate compounds include trimethylolpropane tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, and tris-2-hydroxyethyl.
  • Tri(meth)acrylates such as isocyanurate tri(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, etc.) Functional (meth)acrylate compounds, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, ditrimethylolpropane penta(meth)acrylate ) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane hexa (meth) acrylate trifunctional or higher polyfunctional (meth) acrylate compounds, and
  • Urethane (meth)acrylate can also be used as an active energy ray-curable resin.
  • urethane (meth)acrylates include those obtained by reacting a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer with a (meth)acrylate monomer having a hydroxyl group. .
  • urethane (meth)acrylates examples include pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate toluene diisocyanate.
  • Examples include urethane prepolymers, pentaerythritol triacrylate isophorone diisocyanate urethane prepolymers, and dipentaerythritol pentaacrylate isophorone diisocyanate urethane prepolymers.
  • the above active energy ray-curable resins may be used alone, or two or more may be used in combination. Moreover, the active energy ray-curable resin described above may be a monomer in the coating liquid, or may be a partially polymerized oligomer.
  • active energy ray-curable resin in addition to the above-described compounds having radically polymerizable functional groups, monomers, oligomers, and prepolymers having cationic polymerizable functional groups such as epoxy groups, vinyl ether groups, and oxetane groups can be used alone. can be used alone or mixed.
  • Monomers include epoxy compounds such as unsaturated polyesters, epoxy acrylates, tetramethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether and various alicyclic epoxies; Oxetane compounds such as ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl)methoxy]methyl ⁇ benzene, and di[1-ethyl(3-oxetanyl)]methyl ether can be exemplified. .
  • Photopolymerization initiators include radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, and benzoin methyl ether; cationic polymerization initiators such as aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, and metallocene compounds. Agents can be used alone or in admixture.
  • the organic fine particles are a material that mainly forms fine unevenness on the surface of the antiglare layer 2 and imparts the function of diffusing external light.
  • translucent resin materials such as acrylic resins, polystyrene resins, styrene-(meth)acrylic acid ester copolymers, polyethylene resins, epoxy resins, silicone resins, polyvinylidene fluoride, and polyethylene fluoride resins are used.
  • Resin particles can be used.
  • the refractive index of the resin particle material is preferably 1.40 to 1.75. In order to adjust the refractive index and the dispersion of the resin particles, two or more kinds of resin particles having different materials (refractive indexes) may be mixed and used.
  • the inorganic fine particles added to the base resin of the optical functional layer are preferably nanoparticles with an average particle size of 10 to 200 nm.
  • the amount of inorganic fine particles added is preferably 0.1 to 5.0%.
  • the inorganic fine particles are mainly a material for adjusting sedimentation and aggregation of organic fine particles in the antiglare layer 2 .
  • silica fine particles, metal oxide fine particles, various mineral fine particles, and the like can be used.
  • silica fine particles that can be used include colloidal silica and silica fine particles surface-modified with reactive functional groups such as (meth)acryloyl groups.
  • metal oxide fine particles that can be used include alumina, zinc oxide, tin oxide, antimony oxide, indium oxide, titania, and zirconia.
  • Mineral fine particles include, for example, mica, synthetic mica, vermiculite, montmorillonite, iron montmorillonite, bentonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, islarite, kanemite, layered titanate, smectite, synthetic Smectite and the like can be used.
  • Mineral fine particles may be either natural products or synthetic products (including substituted products and derivatives), and a mixture of the two may be used.
  • layered organoclays are more preferred.
  • a layered organic clay is a swelling clay in which an organic onium ion is introduced between layers.
  • the organic onium ion is not limited as long as it can be organized by utilizing the cation exchange property of the swelling clay.
  • the synthetic smectites described above can be suitably used.
  • Synthetic smectite has the function of increasing the viscosity of the coating liquid for forming the antiglare layer, suppressing the sedimentation of resin particles and inorganic fine particles, and adjusting the irregular shape of the surface of the optical function layer.
  • a leveling agent may be added to the coating liquid for forming the antiglare layer.
  • the leveling agent has the function of orienting on the surface of the coating film during the drying process, equalizing the surface tension of the coating film, and reducing surface defects of the coating film.
  • organic solvent may be added as appropriate to the resin composition for forming the optical function layer.
  • organic solvents include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, isopropyl alcohol and isobutanol; ketones such as acetone, methyl ethyl ketone, cyclohexanone and methyl isobutyl ketone; and ketone alcohols such as diacetone alcohol.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • glycols such as ethylene glycol, propylene glycol and hexylene glycol
  • ethyl cellosolve butyl cellosolve
  • ethyl carbitol butyl carbitol
  • diethyl cellosolve diethyl carbitol
  • propylene Among glycol ethers such as glycol monomethyl ether, esters such as methyl lactate, ethyl lactate, methyl acetate, ethyl acetate and amyl acetate
  • ethers such as dimethyl ether and diethyl ether, N-methylpyrrolidone, dimethylformamide, water, etc. , can be used singly or in combination of two or more.
  • the low-reflection layer 3 reduces the surface reflection of the reflection control film 10 by canceling the light reflected on the surface of the low-reflection layer 3 by interference with the light reflected on the interface between the low-reflection layer 3 and the antiglare layer 2. It is an optical function layer that The low reflection layer 3 can be formed by applying a coating liquid containing a binder resin and low refractive index fine particles to the surface of the antiglare layer 2 and curing the coating film.
  • the binder resin used for forming the low-reflection layer 3 is not particularly limited, and the compounds exemplified as the material for the anti-glare layer 2 can be used.
  • low refractive index fine particles examples include fine particles such as LiF, MgF, 3NaF ⁇ AlF, or AlF (all of which have a refractive index of 1.4), or Na 3 AlF 6 (cryolite, refractive index of 1.33), Silica fine particles having voids inside can be preferably used. Silica fine particles having voids inside can make the refractive index of the air (approximately 1) in the void portions, so that they are free to lower the refractive index of the low-reflection layer 3 . Specifically, porous silica particles and shell-structured silica particles can be used.
  • the average particle size of the low refractive index fine particles is preferably 1 nm or more and 100 nm or less. If the average particle size of the low refractive index fine particles exceeds 100 nm, the light may be significantly reflected by Rayleigh scattering, causing the low reflection layer 3 to whiten and reduce the transparency of the reflection control film 10 . On the other hand, when the average particle size of the low refractive index fine particles is less than 1 nm, problems such as particle non-uniformity in the low reflection layer 3 may occur due to aggregation of the particles.
  • a solvent and various additives can be added to the coating liquid for forming the low-reflection layer 3 as necessary.
  • the solvent for example, those exemplified as the material of the antiglare layer 2 can be used.
  • additives include antifoaming agents, leveling agents, antioxidants, ultraviolet absorbers, light stabilizers, polymerization inhibitors, and photosensitizers.
  • a photopolymerization initiator is added to the coating liquid.
  • the photopolymerization initiator those exemplified as the material for the antiglare layer 2 can be used.
  • the refractive index of the low-reflection layer 3 is preferably smaller than the refractive index of the antiglare layer 2 and within the range of 1.25 to 1.50.
  • the lower the refractive index of the refractive index layer is, the closer it is to the refractive index of air (refractive index 1), making it easier to achieve a low reflectance. It may become weaker and more susceptible to scratches.
  • the refractive index of the low-reflection layer exceeds 1.50, the reflectance may increase due to an increase in the difference in refractive index from air.
  • the film thickness of the low-reflection layer 3 is preferably in the range of 5 nm to 1 ⁇ m from the characteristics as an optical interference layer. It is more preferable to design the thickness to be approximately equal to 1/4 of the wavelength of visible light (wavelength to be suppressed) in terms of thinning and suppression of reflectance.
  • FIG. 2 is a diagram for explaining the reflection direction of light.
  • FIG. 2 is a view of the in-vehicle display device viewed from above.
  • outside light such as the lights of nearby vehicles and the light of streetlights may enter the display surface of the in-vehicle display device.
  • optical films used in image display devices have been mainly aimed at improving the visibility of displayed images, and have been designed to reduce reflection of images of incident light on the display surface as much as possible.
  • the image of external light reflected on the display surface of the in-vehicle display device can be regarded as information representing the situation around the vehicle.
  • the image reflected on the display surface of the in-vehicle display device As information about the vehicle's surroundings, it is important that the image be identifiable.
  • the identifiability of the image means that the occupant can distinguish between the displayed image displayed on the image display device and the reflected image, and can recognize what the reflected image is.
  • the image of the external light reflected on the display surface of the in-vehicle display device is too sharp, it becomes difficult to distinguish between the displayed image and the image of the external light. It was found that if the reflection of outside light is suppressed too much, the visibility of the displayed image is improved, but the image of outside light cannot be used to grasp the situation around the vehicle.
  • the amount of specularly reflected light Lr which is specularly reflected light Li incident on the reflection control layer laminated on the base from a direction oblique to the normal of the base at 30°, is the standard. 0 to 25% of the amount of light
  • the reflection control layer laminated on the substrate is reflected in the direction of the reflection angle of ⁇ 5° of the specularly reflected light Lr of the light Li incident from the direction of 30° with respect to the normal of the substrate.
  • the amount of light that is, the amount of reflected light Lr′ reflected in a direction oblique to the normal of the base material at 25° and the amount of reflected light Lr′′ reflected in a direction at 35° to the normal are all 0.3 to 2.0% of the reference light intensity, (3)
  • the haze of the reflection control film 10 is 3-11%. Haze is a value measured according to JIS K7105.
  • the reflection control film 10 suppresses the reflection of the incident light Li from a direction oblique to the normal line of the display surface of the in-vehicle display device by 30°, Diffuse appropriately.
  • the driver can visually recognize the image of the incident light Li as an image that is neither too clear nor too blurry. Therefore, the image of the incident light Li can be easily distinguished from the display image, it is possible to easily grasp what the image is, and the identifiability of the reflected image can be improved.
  • the light amounts of the reflected light Lr' and Lr'' are parameters mainly related to the blurring of the reflected image.
  • the amount of reflected light Lr' and Lr'' exceeds 2.0% of the reference amount of light, the reflected image becomes too blurry, making it difficult to recognize what the reflected image is.
  • the amount of reflected light Lr′ and Lr′′ is less than 0.3% of the reference amount of light, the reflected image becomes clear, which may make it difficult to distinguish between the displayed image and the reflected image.
  • the amount of reflected light Lr′ and Lr′′ is less than 0.3% of the reference amount of light, and the amount of specularly reflected light Lr exceeds 25% of the reference amount of light, the reflected image becomes too clear.
  • haze is a parameter related to any of the amounts of specularly reflected light Lr and reflected lights Lr' and Lr''.
  • the haze of the reflection control film 10 is less than 3%, the light diffusibility is reduced, and the amount of the reflected light Lr′ and Lr′′ is less than the above lower limit, so that the reflected image can be blurred appropriately. tend to disappear.
  • the haze of the reflection control film 10 exceeds 11%, the diffusion of light becomes strong, and the amount of the reflected light Lr′ and Lr′′ becomes greater than the above upper limit value, resulting in strong blurring of the reflected image. , the reflected image tends to be difficult to recognize.
  • the reflection control film 10 according to the present invention is intended to utilize the image of external light reflected on the display surface of the image display device as a kind of information representing the situation around the vehicle.
  • the optical characteristics of the above items (1) to (3) it is possible to achieve both the visibility of the displayed image and the distinguishability of the image of the external light reflected on the display surface.
  • the reflection control film 10 according to the present invention is excellent in the identification of the reflected image, it is extremely effective as an optical film that realizes an unprecedented idea.
  • the reflection control film 10 according to the present invention is typically used as an optical film provided on the outermost surface of an image display device. It is not particularly limited as long as it can exhibit optical properties.
  • One or more optical function layers such as an antistatic layer, an antifouling layer, an infrared absorption layer, an ultraviolet absorption layer, and a color correction layer may be provided on the reflection control layer 5 of the reflection control film 10 .
  • a reflection control film was prepared by laminating an antiglare layer and a low reflection layer in this order on a substrate as an antireflection layer.
  • a 40 ⁇ m thick triacetyl cellulose film was used as the substrate.
  • An antiglare layer-forming coating solution was applied onto a substrate, dried, and then polymerized and cured to form an antiglare layer. After that, a coating solution for forming a low-reflection layer was applied onto the antiglare layer, dried, and then the coating film was polymerized and cured to form a low-reflection layer.
  • a reflection control film was prepared by laminating an antiglare layer as an antireflection layer on a substrate.
  • a 40 ⁇ m thick triacetyl cellulose film was used as the substrate.
  • An antiglare layer-forming coating solution was applied onto a substrate, dried, and then polymerized and cured to form an antiglare layer.
  • a reflection control film was prepared by laminating an antiglare layer as an antireflection layer on a substrate.
  • a 40 ⁇ m thick triacetyl cellulose film was used as the substrate.
  • An antiglare layer-forming coating solution was applied onto a substrate, dried, and then polymerized and cured to form an antiglare layer.
  • a reflection control film was prepared by laminating a hard coat layer and a low reflection layer as antireflection layers on a substrate.
  • a 40 ⁇ m thick triacetyl cellulose film was used as the substrate.
  • a coating solution for forming a hard coat layer was applied onto a substrate, dried, and then polymerized and cured to form a hard coat layer. After that, a coating solution for forming a low-reflection layer was applied onto the hard coat layer, dried, and then the coating film was polymerized and cured to form a low-reflection layer.
  • Tables 1 to 3 show the compositions of the antiglare layer-forming coating liquid, the low-reflection layer-forming coating liquid, and the hard coat layer-forming coating liquid used in Examples and Comparative Examples. Each coating liquid was diluted to a concentration suitable for coating using the solvents shown in Tables 1 to 3.
  • Haze value Haze was measured using a haze meter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K7105.
  • the evaluation criteria in Table 4 are as follows, and the average score of the 3 conditions of the 15 evaluators is 4 or more and 5 or less (O), 3 or more and less than 4 ( ⁇ ), 1 or more. Less than 3 points (x) was given, and an evaluation of “ ⁇ ” was regarded as a pass.
  • Table 4 shows the layer structure, haze, amount of reflected light (amount of reflected light at reflection angles of 30°, 25° and 35°), and image distinguishability of the reflection control films according to Examples 1 to 5 and Comparative Examples 1 to 12. A summary of the evaluation is shown.
  • "AGLR” in the layer structure of Table 3 indicates that the antireflection layer is composed of an antiglare layer and a low-reflection layer, and "AG” indicates that the antireflection layer is composed of an antiglare layer. and "HCLR” indicates that the antireflection layer is composed of a low-reflection layer on the hard coat layer.
  • the unit of the amount of reflected light is "%", and the value of the amount of reflected light is the intensity of specularly reflected light when D65 light source approximating light is incident at an incident angle of 30° on a base material on which no antireflection layer is laminated. Values expressed as %.
  • the reflection control films according to Examples 1 to 5 have a haze of 3 to 11%, so that incident light is moderately diffused, surface reflection is suppressed by the low-reflection layer, and the amount of specularly reflected light is 25% or less.
  • the intensity of reflected light at reflection angles of 25° and 35° was within the range of 0.3 to 2.0%. It was confirmed that the reflection control film that satisfies these conditions can distinguish between the displayed image and the reflected image of the fluorescent lamp, and can recognize what the reflected image is.
  • the reflection control films according to Comparative Examples 1 to 5 have a haze within the range of 3 to 11%, but since no low-reflection layer is provided, the amount of specularly reflected light exceeds 25% and the reflection angle is 25°. The amount of reflected light and the amount of reflected light at a reflection angle of 35° also exceeded 2.0%. Because of the high amount of specular reflection, it was possible to recognize the image of the reflected fluorescent light, but the high amount of specular reflection made it difficult to distinguish between the displayed image and the reflected image. Therefore, the evaluation was lower than that of Examples 1-5.
  • the reflection control films according to Comparative Examples 6 and 7 were not provided with a low-reflection layer, their high haze increased the diffusivity of incident light, and the amount of specularly reflected light was suppressed to a level lower than that of Comparative Examples 1-5. ing. Therefore, it was possible to distinguish between the displayed image and the reflected image. However, while the amount of specularly reflected light was suppressed to some extent, the reflected light amount at a reflection angle of 25° and the reflection light amount at a reflection angle of 35° were close to 5.0%. It was relatively dark and blurred, and it was not possible to recognize what the reflected image was.
  • the reflection control layer is composed of the antiglare layer and the low reflection layer in the same manner as in Examples 1 to 5, but the haze is high and the diffusion of incident light is high.
  • the amount of reflected light at a reflection angle of 25° and the amount of reflected light at a reflection angle of 35° exceeded 2.0%.
  • the amount of specularly reflected light was suppressed to 25% or less, the amount of reflected light at a reflection angle of 25° and the reflection light amount at a reflection angle of 35° increased, so the reflected image was relatively dark and blurred. I could not recognize what the reflected image was.
  • the amount of reflected light at a reflection angle of 25° and the amount of reflected light at a reflection angle of 35° were less than 0.3% due to the small haze. As a result, the reflected image becomes clear, and the displayed image cannot be distinguished from the reflected image of the fluorescent lamp.
  • the reflection control film according to the present invention can distinguish between an image displayed on an image display device and a reflected image when incident at an angle of 30° to the normal line of the display surface of the image display device, and It was confirmed that it is possible to recognize what the image is.
  • Tables 5 to 8 show the haze and reflected light amount of the reflection control films according to Examples 1 to 5 and Comparative Examples 1 to 12 (reflection angles 23°, 24°, 25°, 26°, 27°, 30°, 33° , 34°, 35°, 36°, and 37°), the sum of the reflected light amounts at the reflection angles of 23° and 24°, the sum of the reflected light amounts at the reflection angles of 26° and 27°, the reflection angle of 23° and The value obtained by dividing the sum of the reflected light amount at 24° by the reflected light amount at the reflection angle of 25°, the value obtained by dividing the sum of the reflected light amount at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25°, sum of reflected light amounts at 34°, sum of reflected light amounts at reflection angles of 36° and 37°, sum of reflected light amounts at reflection angles of 33° and 34° divided by reflected light amount at reflection angles of 35°, reflection angle of 36° and 37° divided by the reflected
  • the unit of the amount of reflected light is "%", and the value of the amount of reflected light is the intensity of specularly reflected light when D65 light source approximating light is incident at an incident angle of 30° on a base material on which no antireflection layer is laminated. Values expressed as %.
  • the reflection control films according to Examples 1 to 5 have a haze of 3 to 11%, so that incident light is moderately diffused, surface reflection is suppressed by the low-reflection layer, and the amount of specularly reflected light is 25% or less.
  • the intensity of reflected light at reflection angles of 25° and 35° was within the range of 0.3 to 2.0%. Furthermore, the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° was within the range of 8.30 to 9.50. The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° was within the range of 6.89 to 7.87. It was confirmed that the reflection control film that satisfies these conditions can distinguish between the displayed image and the reflected image of the fluorescent lamp, and can recognize what the reflected image is.
  • the reflection control films according to Comparative Examples 1 to 5 had a haze within the range of 3 to 11%, but since no low refractive index layer was provided, the amount of specularly reflected light exceeded 25% and the reflection angle was 25°. and the reflected light amount at a reflection angle of 35° also exceeded 2.0%. Furthermore, the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° was within the range of 5.77 to 6.20. The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° was within the range of 5.36 to 5.62. We were able to recognize what the reflected image was because the amount of specular reflection was high. The evaluation was low compared to Examples 1-5.
  • the reflection control films according to Comparative Examples 6 and 7 were not provided with a low refractive index layer, their high haze increased the diffusivity of incident light, and the amount of specularly reflected light was kept smaller than in Comparative Examples 1-5. It is Therefore, it was possible to distinguish between the displayed image and the reflected image. However, while the amount of specularly reflected light was suppressed to some extent, the reflected light amount at a reflection angle of 25° and the reflection light amount at a reflection angle of 35° were close to 5.0%, so the reflected image was relatively dark. Moreover, it was visually recognized in a blurred state, and it was not possible to recognize what the reflected image was.
  • the reflection control film according to Comparative Example 8 since the low refractive index layer was not provided and the amount of reflected light was not suppressed, the amount of specularly reflected light was too high, and the displayed image and the reflected image could not be distinguished. rice field. Furthermore, the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° was 17.12. The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° was 11.91.
  • the reflection control layer is composed of an antiglare layer and a low refractive index layer in the same manner as in Examples 1 to 5, but the high haze makes it difficult to diffuse incident light.
  • the reflected light amount at a reflection angle of 25° and the reflected light amount at a reflection angle of 35° exceeded 2.0%. While the amount of specularly reflected light was suppressed to 25% or less, the amount of reflected light at a reflection angle of 25° and the reflection light amount at a reflection angle of 35° increased, so the reflected image was relatively dark and blurred. I could not recognize what the reflected image was.
  • the reflected light amount at a reflection angle of 25° and the reflection light amount at a reflection angle of 35° were less than 0.3% due to the small haze.
  • the reflected image becomes clear, and the displayed image and the reflected image cannot be distinguished.
  • the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° was 18.19 in Comparative Example 11 and 97.00 in Comparative Example 12.
  • the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° was 13.65 in Comparative Example 11 and 5.00 in Comparative Example 12.
  • the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° is the sum of the reflected light amounts at the reflection angles of 33° and 34° divided by the reflected light amount at the reflection angle of 35°. larger than the value This is because the closer the reflection angle is to 0°, the more susceptible it is to the incident light. Further, in Examples 1 to 5, the smaller the haze, the sum of the reflected light amounts at the reflection angles of 23° and 24° divided by the reflected light amount at the reflection angle of 25°.
  • the value obtained by dividing the sum by the amount of reflected light at a reflection angle of 25°, the value obtained by dividing the sum of the amounts of reflected light at reflection angles of 33° and 34° by the amount of reflected light at a reflection angle of 35°, and the sum of the amounts of reflected light at reflection angles of 36° and 37° A value obtained by dividing the sum by the amount of reflected light at a reflection angle of 35° becomes smaller. Further, when comparing Examples 1 to 5 with Comparative Examples 1 to 5 in which no low refractive index layer was formed, the lower the reflectance, the more the sum of the reflected light amounts at the reflection angles of 23° and 24°.
  • the value obtained by dividing the amount of reflected light by the amount of reflected light, the sum of the amounts of reflected light at reflection angles of 26° and 27° divided by the amount of reflected light at reflection angles of 25°, and the sum of the amounts of reflected light at reflection angles of 33° and 34° The value obtained by dividing by the reflected light amount and the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 36° and 37° by the reflected light amount at the reflection angle of 35° become smaller. Therefore, lowering the haze and lowering the reflectance contribute to lowering the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25°.
  • the reflection control film according to the present invention when incident at an angle of 30° with respect to the normal line of the display surface of the image display device, produces a display image and a reflected image on the image display device. and can recognize what the reflected image is.
  • the reflection control film according to the present invention can be used as an optical film for use in image display devices, and is particularly suitable for in-vehicle display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The present invention provides an in-vehicle reflection control film having an optical property suited for in-vehicle use. An in-vehicle reflection control film 10 comprises a base material 1, and a reflection control layer 5 stacked on the base material 1. When the light amount of specularly reflected light of light incident from an oblique direction of 30° with respect to the normal line of the base material 1 on the base material 1 on which the reflection control layer 5 is not stacked is defined as 100%, the light amount of specularly reflected light of light incident from an oblique direction of 30° with respect to the normal line of the reflection control film 10 on the reflection control layer 5 of the in-vehicle reflection control film 10 is 0-25%, the light amount of reflected light in the direction of the reflection angle plus or minus 5° of the specularly reflected light is 0.3-2.0%, and the haze is 3-11%.

Description

車載用反射制御フィルムIn-vehicle reflection control film
 本発明は、車載表示装置等に用いられる車載用反射制御フィルムに関する。 The present invention relates to an in-vehicle reflection control film used for in-vehicle display devices and the like.
 従来、車両に搭載される車載表示装置として、センターインフォーメーションディスプレイやセンターコンソールディスプレイが、カーナビゲーションシステム等に利用されてきた。近年、車載表示装置は増加傾向にあり、デジタルアウターモニターやデジタルインナーモニター、デジタルメータークラスターといった新たな車載表示装置の利用が見込まれている。車内には窓を通じて様々な方向から光が入射するため、車載表示装置に反射防止機能を有する光学フィルムを設けることにより車載表示装置の視認性確保が図られる。 Conventionally, center information displays and center console displays have been used as in-vehicle display devices for car navigation systems. In recent years, the number of in-vehicle display devices has been increasing, and the use of new in-vehicle display devices such as digital outer monitors, digital inner monitors, and digital meter clusters is expected. Since light enters the vehicle interior from various directions through the windows, visibility of the vehicle-mounted display device can be ensured by providing the vehicle-mounted display device with an optical film having an antireflection function.
 例えば、特許文献1には、光学基板上に複数の層を積層して構成され、300~660nmの波長域において、45度入射した光の反射率が0.1%以下である反射防止膜が記載されている。また、特許文献2には、透明基材の少なくとも一方の面に透光性無機粒子及び/又は透光性有機粒子を分散させた光学シートが記載されている。 For example, Patent Document 1 describes an antireflection film which is configured by laminating a plurality of layers on an optical substrate and has a reflectance of 0.1% or less for light incident at 45 degrees in a wavelength range of 300 to 660 nm. Have been described. Further, Patent Document 2 describes an optical sheet in which translucent inorganic particles and/or translucent organic particles are dispersed on at least one surface of a transparent substrate.
特開2001-74903号公報JP-A-2001-74903 特許第5725216号公報Japanese Patent No. 5725216
 車載表示装置の表示面には、表示画像が表示される他に、近接車両のライトや街灯の光などの像が映り込む場合がある。これまで、表示画像の視認性を確保するために表示面への映り込み(反射)を抑制することが一般的であったが、車載表示装置における好適な反射光の制御については十分検討されておらず、車載表示装置に用いる光学フィルムに必要な光学特性についても改善の余地があった。 In addition to displaying the display image on the display surface of the in-vehicle display device, images such as the lights of nearby vehicles and the light of streetlights may be reflected. Until now, it has been common practice to suppress reflections (reflections) on the display surface in order to ensure the visibility of displayed images. Furthermore, there is room for improvement in the optical properties required for optical films used in in-vehicle display devices.
 それ故に、本発明は、車載用途に好適な光学特性を有する車載用反射制御フィルムを提供することを目的とする。 Therefore, an object of the present invention is to provide a vehicle-mounted reflection control film having optical properties suitable for vehicle-mounted applications.
 本発明に係る車載用反射制御フィルムは、基材と、基材上に積層される反射制御層とを備え、反射制御層が積層されていない基材に対して、当該基材の法線に対して斜め30°の方向から入射した光の正反射光の光量を100%としたとき、車載用反射制御フィルムの反射制御層に対して、当該反射制御フィルムの法線に対して斜め30°の方向から入射した光の正反射光の光量が0~25%であり、かつ、正反射光の反射角±5°の方向の反射光の光量が0.3~2.0%であり、ヘイズが3~11%であることを特徴とするものである。 The vehicle-mounted reflection control film according to the present invention includes a base material and a reflection control layer laminated on the base material. On the other hand, when the light amount of the specularly reflected light of the light incident from the oblique direction of 30° is 100%, the reflection control layer of the reflection control film for vehicle use is obliquely 30° with respect to the normal line of the reflection control film. The light amount of the specularly reflected light of the light incident from the direction is 0 to 25%, and the light amount of the reflected light in the direction of the reflection angle of ±5° of the specularly reflected light is 0.3 to 2.0%, It is characterized by a haze of 3 to 11%.
 本発明によれば、車載用途に好適な光学特性を有する車載用反射制御フィルムを提供できる。 According to the present invention, it is possible to provide a vehicle-mounted reflection control film having optical properties suitable for vehicle-mounted applications.
図1は、実施形態に係る車載用反射制御フィルムの構成を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of an in-vehicle reflection control film according to an embodiment. 図2は、光の反射方向を説明するための図である。FIG. 2 is a diagram for explaining the reflection direction of light.
 図1は、実施形態に係る車載用反射制御フィルムの構成を示す断面図である。 FIG. 1 is a cross-sectional view showing the configuration of an in-vehicle reflection control film according to an embodiment.
 本実施形態に係る車載用反射制御フィルム10(以下、単に「反射制御フィルム」という)は、基材1と、基材1の一方面に積層される反射制御層5とを備える。 A vehicle-mounted reflection control film 10 (hereinafter simply referred to as a "reflection control film") according to the present embodiment includes a substrate 1 and a reflection control layer 5 laminated on one side of the substrate 1 .
 基材1は、反射制御フィルム10の基体となるフィルムであり、可視光線の透過性に優れた材料により形成される。基材1の形成材料としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリメチルメタクリレート等のポリアクリレート、ナイロン6、ナイロン66等のポリアミド、ポリイミド、ポリアリレート、ポリカーボネート、トリアセチルセルロース、ポリアクリレート、ポリビニルアルコール、ポリ塩化ビニル、シクロオレフィンコポリマー、含ノルボルネン樹脂、ポリエーテルサルフォン、ポリサルフォン等の透明樹脂や無機ガラスを利用できる。この中でも、ポリエチレンテレフタレートからなるフィルムを好適に利用できる。基材1の厚みは、特に限定されないが、10~200μmとすることが好ましい。 The base material 1 is a film that serves as the base of the reflection control film 10, and is made of a material with excellent visible light transmittance. Materials for forming the substrate 1 include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyacrylates such as polymethyl methacrylate; polyamides such as nylon 6 and nylon 66; Transparent resins such as arylate, polycarbonate, triacetylcellulose, polyacrylate, polyvinyl alcohol, polyvinyl chloride, cycloolefin copolymer, norbornene-containing resin, polyethersulfone, and polysulfone, and inorganic glass can be used. Among these, a film made of polyethylene terephthalate can be suitably used. Although the thickness of the substrate 1 is not particularly limited, it is preferably 10 to 200 μm.
 基材1の表面には、反射制御層5との密着性を向上させるために、表面改質処理を施しても良い。表面改質処理としては、アルカリ処理、コロナ処理、プラズマ処理、スパッタ処理、界面活性剤やシランカップリング剤等の塗布、Si蒸着等を例示できる。 The surface of the base material 1 may be subjected to surface modification treatment in order to improve adhesion with the reflection control layer 5 . Examples of surface modification treatment include alkali treatment, corona treatment, plasma treatment, sputtering treatment, application of surfactants, silane coupling agents, and the like, and Si vapor deposition.
 本実施形態において、反射制御層5は、基材1側から順に、防眩層2と低反射層3とを備える。 In this embodiment, the reflection control layer 5 includes an antiglare layer 2 and a low reflection layer 3 in order from the substrate 1 side.
 防眩層2は、表面に微細な凹凸を有し、この凹凸で外光を散乱させることにより外光の映り込みを低減する光学機能層である。防眩層2は、バインダー樹脂と、有機微粒子及び/または無機微粒子とを含有する塗工液を基材1に塗布し、塗膜を硬化させることによって形成される。 The anti-glare layer 2 is an optical function layer that has fine unevenness on the surface and reduces reflection of outside light by scattering outside light with the unevenness. The antiglare layer 2 is formed by applying a coating liquid containing a binder resin and organic fine particles and/or inorganic fine particles to the substrate 1 and curing the coating film.
 バインダー樹脂としては、電離放射線または紫外線の照射により硬化する活性エネルギー線硬化型樹脂を使用でき、例えば、単官能、2官能または3官能以上の(メタ)アクリレートモノマーを使用できる。尚、本明細書において、「(メタ)アクリレート」は、アクリレートとメタクリレートの両方の総称であり、「(メタ)アクリロイル」は、アクリロイルとメタクリロイルの両方の総称である。 As the binder resin, an active energy ray-curable resin that is cured by irradiation with ionizing radiation or ultraviolet rays can be used. For example, a monofunctional, difunctional, or trifunctional or higher (meth)acrylate monomer can be used. In this specification, "(meth)acrylate" is a generic term for both acrylate and methacrylate, and "(meth)acryloyl" is a generic term for both acryloyl and methacryloyl.
 単官能の(メタ)アクリレート化合物の例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N-ビニルピロリドン、テトラヒドロフルフリールアクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、リン酸(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド変性フェノキシ(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート、ジメチルアミノエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、2-アダマンタン、アダマンタンジオールから誘導される1価のモノ(メタ)アクリレートを有するアダマンチルアクリレート等のアダマンタン誘導体モノ(メタ)アクリレート等が挙げられる。 Examples of monofunctional (meth)acrylate compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl ( meth)acrylate, t-butyl (meth)acrylate, glycidyl (meth)acrylate, acryloylmorpholine, N-vinylpyrrolidone, tetrahydrofurfuryl acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isobornyl (meth)acrylate ) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3- Methoxybutyl (meth)acrylate, ethyl carbitol (meth)acrylate, phosphoric acid (meth)acrylate, ethylene oxide-modified phosphoric acid (meth)acrylate, phenoxy (meth)acrylate, ethylene oxide-modified phenoxy (meth)acrylate, propylene oxide-modified Phenoxy (meth)acrylate, nonylphenol (meth)acrylate, ethylene oxide-modified nonylphenol (meth)acrylate, propylene oxide-modified nonylphenol (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, methoxypropylene glycol ( meth) acrylate, 2-(meth) acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2-(meth) acryloyloxyethyl hydrogen phthalate, 2-(meth) acryloyloxy Propyl hydrogen phthalate, 2-(meth)acryloyloxypropyl hexahydrohydrogen phthalate, 2-(meth)acryloyloxypropyl tetrahydrohydrogen phthalate, dimethylaminoethyl (meth) acrylate, trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) ) acrylate, hexafluoropropyl (meth)acrylate, octafluoropropyl (meth)acrylate, 2-adamantane, adamantanediol and adamantane derivative mono(meth)acrylates such as adamantyl acrylate having a monovalent mono(meth)acrylate that can be used.
 2官能の(メタ)アクリレート化合物の例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、エトキシ化ヘキサンジオールジ(メタ)アクリレート、プロポキシ化ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコ-ルジ(メタ)アクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等のジ(メタ)アクリレート等が挙げられる。 Examples of bifunctional (meth)acrylate compounds include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, nonanediol di(meth) Acrylates, ethoxylated hexanediol di(meth)acrylate, propoxylated hexanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate Di(meth)acrylates such as meth)acrylate, neopentyl glycol di(meth)acrylate, ethoxylated neopentyl glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, neopentyl glycol hydroxypivalate di(meth)acrylate, etc. ) acrylates and the like.
 3官能以上の(メタ)アクリレート化合物の例としては、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、トリス2-ヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等のトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート等の3官能の(メタ)アクリレート化合物や、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレート化合物や、これら(メタ)アクリレートの一部をアルキル基やε-カプロラクトンで置換した多官能(メタ)アクリレート化合物等が挙げられる。 Examples of tri- or higher functional (meth)acrylate compounds include trimethylolpropane tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, and tris-2-hydroxyethyl. Tri(meth)acrylates such as isocyanurate tri(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, etc.) Functional (meth)acrylate compounds, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, ditrimethylolpropane penta(meth)acrylate ) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane hexa (meth) acrylate trifunctional or higher polyfunctional (meth) acrylate compounds, and some of these (meth) acrylates are alkyl groups and ε-caprolactone and polyfunctional (meth)acrylate compounds substituted with.
 また、活性エネルギー線硬化性樹脂として、ウレタン(メタ)アクリレートも使用できる。ウレタン(メタ)アクリレートとしては、例えば、ポリエステルポリオールにイソシアネートモノマー、もしくはプレポリマーを反応させて得られた生成物に水酸基を有する(メタ)アクリレートモノマーを反応させることによって得られるものを挙げることができる。 Urethane (meth)acrylate can also be used as an active energy ray-curable resin. Examples of urethane (meth)acrylates include those obtained by reacting a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer with a (meth)acrylate monomer having a hydroxyl group. .
 ウレタン(メタ)アクリレートの例としては、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートイソホロンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートイソホロンジイソシアネートウレタンプレポリマー等が挙げられる。 Examples of urethane (meth)acrylates include pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate toluene diisocyanate. Examples include urethane prepolymers, pentaerythritol triacrylate isophorone diisocyanate urethane prepolymers, and dipentaerythritol pentaacrylate isophorone diisocyanate urethane prepolymers.
 上述した活性エネルギー線硬化性樹脂は1種を用いても良いし、2種以上を組み合わせて用いても良い。また、上述した活性エネルギー線硬化性樹脂は、塗工液中でモノマーであっても良いし、一部が重合したオリゴマーであっても良い。 The above active energy ray-curable resins may be used alone, or two or more may be used in combination. Moreover, the active energy ray-curable resin described above may be a monomer in the coating liquid, or may be a partially polymerized oligomer.
 また、活性エネルギー線硬化型樹脂としては、上述したラジカル重合性官能基を有する化合物の他に、エポキシ基、ビニルエーテル基、オキセタン基等のカチオン重合性官能基を有するモノマー、オリゴマー、プレポリマーを単独でまたは混合して使用することができる。モノマーとしては、不飽和ポリエステル、エポキシアクリレート、テトラメチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルや各種脂環式エポキシ等のエポキシ系化合物、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、ジ[1-エチル(3-オキセタニル)]メチルエーテル等のオキセタン化合物を例示できる。 Further, as the active energy ray-curable resin, in addition to the above-described compounds having radically polymerizable functional groups, monomers, oligomers, and prepolymers having cationic polymerizable functional groups such as epoxy groups, vinyl ether groups, and oxetane groups can be used alone. can be used alone or mixed. Monomers include epoxy compounds such as unsaturated polyesters, epoxy acrylates, tetramethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether and various alicyclic epoxies; Oxetane compounds such as ethyl-3-hydroxymethyloxetane, 1,4-bis{[(3-ethyl-3-oxetanyl)methoxy]methyl}benzene, and di[1-ethyl(3-oxetanyl)]methyl ether can be exemplified. .
 上述した樹脂材料は、光重合開始剤の添加を条件として、紫外線の照射により硬化させることができる。光重合開始剤としては、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン、ベンゾインメチルエーテル等のラジカル重合開始剤、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物等のカチオン重合開始剤を単独でまたは混合して使用できる。 The above-mentioned resin material can be cured by irradiation with ultraviolet rays on the condition that a photopolymerization initiator is added. Photopolymerization initiators include radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, and benzoin methyl ether; cationic polymerization initiators such as aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, and metallocene compounds. Agents can be used alone or in admixture.
 有機微粒子は、主として防眩層2の表面に微細な凹凸を形成し、外光を拡散させる機能を付与する材料である。有機微粒子としては、アクリル樹脂、ポリスチレン樹脂、スチレン-(メタ)アクリル酸エステル共重合体、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン、ポリフッ化エチレン系樹脂等の透光性樹脂材料からなる樹脂粒子を使用できる。樹脂粒子の材料の屈折率は、1.40~1.75であることが好ましい。屈折率や樹脂粒子の分散を調整するために、材質(屈折率)の異なる2種類以上の樹脂粒子を混合して使用しても良い。 The organic fine particles are a material that mainly forms fine unevenness on the surface of the antiglare layer 2 and imparts the function of diffusing external light. As the organic fine particles, translucent resin materials such as acrylic resins, polystyrene resins, styrene-(meth)acrylic acid ester copolymers, polyethylene resins, epoxy resins, silicone resins, polyvinylidene fluoride, and polyethylene fluoride resins are used. Resin particles can be used. The refractive index of the resin particle material is preferably 1.40 to 1.75. In order to adjust the refractive index and the dispersion of the resin particles, two or more kinds of resin particles having different materials (refractive indexes) may be mixed and used.
 光学機能層の基材樹脂に添加する無機微粒子は、平均粒径が10~200nmのナノ粒子であることが好ましい。無機微粒子の添加量は、0.1~5.0%であることが好ましい。 The inorganic fine particles added to the base resin of the optical functional layer are preferably nanoparticles with an average particle size of 10 to 200 nm. The amount of inorganic fine particles added is preferably 0.1 to 5.0%.
 無機微粒子は、主として防眩層2中の有機微粒子の沈降や凝集を調整するための材料である。無機微粒子としては、シリカ微粒子や、金属酸化物微粒子、各種の鉱物微粒子等を使用することができる。シリカ微粒子としては、例えば、コロイダルシリカや(メタ)アクリロイル基等の反応性官能基で表面修飾されたシリカ微粒子等を使用することができる。金属酸化物微粒子としては、例えば、アルミナや酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、チタニア、ジルコニア等を使用することができる。鉱物微粒子としては、例えば、雲母、合成雲母、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、ベントナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、ノントロナイト、マガディアイト、アイラライト、カネマイト、層状チタン酸、スメクタイト、合成スメクタイト等を使用することができる。鉱物微粒子は、天然物及び合成物(置換体、誘導体を含む)のいずれであっても良く、両者の混合物を使用しても良い。鉱物微粒子の中でも、層状有機粘土がより好ましい。層状有機粘土とは、膨潤性粘土の層間に有機オニウムイオンを導入したものをいう。有機オニウムイオンは、膨潤性粘土の陽イオン交換性を利用して有機化することができるものであれば制限されない。鉱物微粒子として、層状有機粘土鉱物を用いる場合、上述した合成スメクタイトを好適に使用できる。合成スメクタイトは、防眩層形成用の塗工液の粘性を増加させ、樹脂粒子及び無機微粒子の沈降を抑制して、光学機能層の表面の凹凸形状を調整する機能を有する。 The inorganic fine particles are mainly a material for adjusting sedimentation and aggregation of organic fine particles in the antiglare layer 2 . As the inorganic fine particles, silica fine particles, metal oxide fine particles, various mineral fine particles, and the like can be used. Examples of silica fine particles that can be used include colloidal silica and silica fine particles surface-modified with reactive functional groups such as (meth)acryloyl groups. Examples of metal oxide fine particles that can be used include alumina, zinc oxide, tin oxide, antimony oxide, indium oxide, titania, and zirconia. Mineral fine particles include, for example, mica, synthetic mica, vermiculite, montmorillonite, iron montmorillonite, bentonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, islarite, kanemite, layered titanate, smectite, synthetic Smectite and the like can be used. Mineral fine particles may be either natural products or synthetic products (including substituted products and derivatives), and a mixture of the two may be used. Among the fine mineral particles, layered organoclays are more preferred. A layered organic clay is a swelling clay in which an organic onium ion is introduced between layers. The organic onium ion is not limited as long as it can be organized by utilizing the cation exchange property of the swelling clay. When layered organoclay minerals are used as fine mineral particles, the synthetic smectites described above can be suitably used. Synthetic smectite has the function of increasing the viscosity of the coating liquid for forming the antiglare layer, suppressing the sedimentation of resin particles and inorganic fine particles, and adjusting the irregular shape of the surface of the optical function layer.
 また、防眩層形成用の塗工液には、レベリング剤を添加しても良い。レベリング剤は、乾燥過程の塗膜の表面に配向して、塗膜の表面張力を均一化し、塗膜の表面欠陥を低減させる機能を有する。 In addition, a leveling agent may be added to the coating liquid for forming the antiglare layer. The leveling agent has the function of orienting on the surface of the coating film during the drying process, equalizing the surface tension of the coating film, and reducing surface defects of the coating film.
 更に、光学機能層形成用の樹脂組成物には、適宜有機溶剤を添加しても良い。有機溶剤としては、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、イソプロピルアルコール、イソブタノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン類、ジアセトンアルコール等のケトンアルコール類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセロソルブ、ジエチルカルビトール、プロピレングリコールモノメチルエーテル等のグリコールエーテル類、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸アミル等のエステル類、ジメチルエーテル、ジエチルエーテル等のエーテル類、N-メチルピロリドン、ジメチルフォルムアミド、水等のうち、1種類または2種類以上を混合して使用できる。 Furthermore, an organic solvent may be added as appropriate to the resin composition for forming the optical function layer. Examples of organic solvents include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, isopropyl alcohol and isobutanol; ketones such as acetone, methyl ethyl ketone, cyclohexanone and methyl isobutyl ketone; and ketone alcohols such as diacetone alcohol. aromatic hydrocarbons such as benzene, toluene and xylene, glycols such as ethylene glycol, propylene glycol and hexylene glycol, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol, propylene Among glycol ethers such as glycol monomethyl ether, esters such as methyl lactate, ethyl lactate, methyl acetate, ethyl acetate and amyl acetate, ethers such as dimethyl ether and diethyl ether, N-methylpyrrolidone, dimethylformamide, water, etc. , can be used singly or in combination of two or more.
 低反射層3は、低反射層3の表面で反射する光を、低反射層3及び防眩層2の界面で反射する光との干渉で打ち消すことにより、反射制御フィルム10の表面反射を低減する光学機能層である。低反射層3は、バインダー樹脂及び低屈折率微粒子を含有する塗工液を防眩層2の表面に塗布し、塗膜を硬化させることにより形成することができる。 The low-reflection layer 3 reduces the surface reflection of the reflection control film 10 by canceling the light reflected on the surface of the low-reflection layer 3 by interference with the light reflected on the interface between the low-reflection layer 3 and the antiglare layer 2. It is an optical function layer that The low reflection layer 3 can be formed by applying a coating liquid containing a binder resin and low refractive index fine particles to the surface of the antiglare layer 2 and curing the coating film.
 低反射層3の形成に用いるバインダー樹脂は、特に限定されず、防眩層2の材料として例示した化合物を使用することができる。 The binder resin used for forming the low-reflection layer 3 is not particularly limited, and the compounds exemplified as the material for the anti-glare layer 2 can be used.
 低屈折率微粒子としては、例えば、LiF、MgF、3NaF・AlFまたはAlF(いずれも、屈折率1.4)、もしくはNaAlF(氷晶石、屈折率1.33)等の微粒子や、内部に空隙を有するシリカ微粒子を好適に使用することができる。内部に空隙を有するシリカ微粒子は、空隙の部分を空気の屈折率(約1)とすることができるので、低反射層3の低屈折率化に遊離である。具体的には、多孔質シリカ粒子、シェル(殻)構造のシリカ粒子を用いることができる。 Examples of low refractive index fine particles include fine particles such as LiF, MgF, 3NaF·AlF, or AlF (all of which have a refractive index of 1.4), or Na 3 AlF 6 (cryolite, refractive index of 1.33), Silica fine particles having voids inside can be preferably used. Silica fine particles having voids inside can make the refractive index of the air (approximately 1) in the void portions, so that they are free to lower the refractive index of the low-reflection layer 3 . Specifically, porous silica particles and shell-structured silica particles can be used.
 低屈折率微粒子の平均粒子径は、1nm以上、100nm以下であることが好ましい。低屈折率微粒子の平均粒子径が100nmを超える場合、レイリー散乱によって光が著しく反射され、低反射層3が白化して反射制御フィルム10の透明性が低下する恐れがある。一方、低屈折率微粒子の平均粒子径が1nm未満の場合、粒子の凝集により、低反射層3における粒子の不均一性等の問題が生じる恐れがある。 The average particle size of the low refractive index fine particles is preferably 1 nm or more and 100 nm or less. If the average particle size of the low refractive index fine particles exceeds 100 nm, the light may be significantly reflected by Rayleigh scattering, causing the low reflection layer 3 to whiten and reduce the transparency of the reflection control film 10 . On the other hand, when the average particle size of the low refractive index fine particles is less than 1 nm, problems such as particle non-uniformity in the low reflection layer 3 may occur due to aggregation of the particles.
 尚、低反射層3を形成するための塗工液には、必要に応じて、溶媒や各種添加剤を加えることができる。溶媒としては、例えば、防眩層2の材料として例示したものを使用することができる。また、添加剤としては、例えば消泡剤、レベリング剤、酸化防止剤、紫外線吸収剤、光安定剤、重合禁止剤、光増感剤等が挙げられる。 A solvent and various additives can be added to the coating liquid for forming the low-reflection layer 3 as necessary. As the solvent, for example, those exemplified as the material of the antiglare layer 2 can be used. Examples of additives include antifoaming agents, leveling agents, antioxidants, ultraviolet absorbers, light stabilizers, polymerization inhibitors, and photosensitizers.
 また、低反射層形成用の塗工液の塗膜を紫外線照射により硬化させる場合は、塗工液に光重合開始剤が添加される。光重合開始剤としては、防眩層2の材料として例示した物を使用することができる。 Further, when the coating film of the coating liquid for forming the low-reflection layer is cured by ultraviolet irradiation, a photopolymerization initiator is added to the coating liquid. As the photopolymerization initiator, those exemplified as the material for the antiglare layer 2 can be used.
 低反射層3の屈折率は、防眩層2の屈折率より小さく、かつ、1.25~1.50までの範囲内であることが好ましい。屈折率層の屈折率は、できるだけ低い方が空気(屈折率=1)との屈折率と近づき、低反射率を実現しやすいものの、低屈折率材料を多量に添加する必要があるため、機械強度が低くなり傷がつきやすくなる可能性がある。一方、低反射層の屈折率が1.50を超えると、空気との屈折率差が大きくなることにより反射率が上昇する可能性がある。 The refractive index of the low-reflection layer 3 is preferably smaller than the refractive index of the antiglare layer 2 and within the range of 1.25 to 1.50. The lower the refractive index of the refractive index layer is, the closer it is to the refractive index of air (refractive index=1), making it easier to achieve a low reflectance. It may become weaker and more susceptible to scratches. On the other hand, if the refractive index of the low-reflection layer exceeds 1.50, the reflectance may increase due to an increase in the difference in refractive index from air.
 低反射層3の膜厚は、光学干渉層としての特性から、5nm~1μmの範囲内にあることが好ましいが、低反射層3の膜厚に低反射層3の屈折率を乗じた光学膜厚が可視光の波長(抑制すべき波長)の1/4とほぼ等しくなるように設計されることが、薄膜化及び反射率抑制の面でより好ましい。 The film thickness of the low-reflection layer 3 is preferably in the range of 5 nm to 1 μm from the characteristics as an optical interference layer. It is more preferable to design the thickness to be approximately equal to 1/4 of the wavelength of visible light (wavelength to be suppressed) in terms of thinning and suppression of reflectance.
 図2は、光の反射方向を説明するための図である。図2は、車載表示装置を上方から見たときの図である。 FIG. 2 is a diagram for explaining the reflection direction of light. FIG. 2 is a view of the in-vehicle display device viewed from above.
 車載表示装置の表示面には、近接車両のライトや街灯の光などの外光が入り込む場合がある。反射光による眩しさを低減し、車載表示装置の表示面の視認性を確保するため、車載表示装置の表示面における外光の反射を抑制することが好ましい。従来、画像表示装置に用いられる光学フィルムは、表示画像の視認性を向上させることを主目的としており、表示面への入射光の像の映り込みを可能な限り低減できるように設計されていた。その一方で、車載表示装置の表示面に映り込んだ外光の像は、車両周囲の状況を表す情報であると捉えることができる。特に、今後の利用拡大が見込まれるデジタルアウターモニターやデジタルインナーモニターは、従来光学ミラーが配置されていた位置またはその近傍に設置され、近接車両のライトや街灯の光などが入射しやすいため、映り込む像を周辺状況把握のための情報として活用できれば有意義である。しかしながら、表示面における反射像を一種の情報として利用できるように、反射像の視認性及び識別性を確保するという技術思想はこれまでなく、反射像の視認性及び識別性を確保するためにどのような属性が光学フィルムに必要であるかについて検討されていなかった。 Outside light such as the lights of nearby vehicles and the light of streetlights may enter the display surface of the in-vehicle display device. In order to reduce glare due to reflected light and ensure visibility of the display surface of the vehicle-mounted display device, it is preferable to suppress reflection of external light on the display surface of the vehicle-mounted display device. Conventionally, optical films used in image display devices have been mainly aimed at improving the visibility of displayed images, and have been designed to reduce reflection of images of incident light on the display surface as much as possible. . On the other hand, the image of external light reflected on the display surface of the in-vehicle display device can be regarded as information representing the situation around the vehicle. In particular, the use of digital outer monitors and digital inner monitors, whose use is expected to expand in the future, is installed at or near the position where optical mirrors were conventionally placed, and light from nearby vehicles and street lights easily enters, making it difficult to see the reflection. It would be meaningful if we could utilize the image of the surrounding area as information for grasping the surrounding situation. However, there is no technical idea to ensure the visibility and identifiability of the reflected image so that the reflected image on the display surface can be used as a kind of information. It has not been considered whether such attributes are necessary for optical films.
 車載表示装置の表示面に映り込んだ像を車両周辺の情報として活用するためには、像の識別性が重要である。ここで、像の識別性とは、乗員が画像表示装置に表示された表示画像と映り込んだ像とを区別することができ、かつ、映り込んだ像が何の像であるかを認識できることをいう。本願の発明者が検討したところ、車載表示装置の表示面に映り込んだ外光の像が鮮明すぎる場合、表示画像と外光の像とを見分けることが困難となるが、表示面に入射した外光の反射を抑制し過ぎると、表示画像の視認性は向上するものの、外光の像を車両周囲の状況把握に利用できなくなることが分かった。また、防眩性フィルムのように拡散により反射率を抑制する手法もあるが、車載表示装置の表示面における光の拡散性が強すぎると、外光の像がぼけてしまい、映り込んだ像が何の像であるかの判別が困難となることが分かった。 In order to utilize the image reflected on the display surface of the in-vehicle display device as information about the vehicle's surroundings, it is important that the image be identifiable. Here, the identifiability of the image means that the occupant can distinguish between the displayed image displayed on the image display device and the reflected image, and can recognize what the reflected image is. Say. As a result of studies by the inventors of the present application, when the image of the external light reflected on the display surface of the in-vehicle display device is too sharp, it becomes difficult to distinguish between the displayed image and the image of the external light. It was found that if the reflection of outside light is suppressed too much, the visibility of the displayed image is improved, but the image of outside light cannot be used to grasp the situation around the vehicle. There is also a method of suppressing the reflectance by diffusion, such as using an anti-glare film. It was found that it is difficult to determine what the image is.
 表示面に映り込んだ像の識別性を確保するために、車載用途の光学フィルムに必要な属性(光学特性)を詳細に検討したところ、車載表示装置の表示面の法線に対して30°斜め方向から入射する光Liの正反射光Lrの光量と、この正反射光の反射角±5°方向に反射する反射光Lr’及びLr’’の光量とを制御することが有効であるという知見を得た(図2参照)。より詳細には、車載表示装置として比較的外光が入射しやすい位置に設けられるデジタルアウターモニターやデジタルインナーミラーを想定し、車載表示装置の取付位置や、運転者に対向する表示面の向き、車両の前後方向に対する表示面の角度を考慮したところ、車載表示装置の表示面には、法線に対して30°斜め方向から光が入射しやすいことが分かった。また、車載表示装置の表示面の法線に対して30°斜め方向からの光Liが入射した場合、車載表示装置を視認した運転者の目に入射するのは、正反射光Lrを中心として約±5°の反射角を有する光であることが分かった。尚、図2は、運転席が左側にある車両を想定しているが、運転席が右側にある場合も同様である。 In order to ensure the identifiability of the image reflected on the display surface, we examined in detail the attributes (optical characteristics) required for optical films for in-vehicle use. It is said that it is effective to control the light amount of the specularly reflected light Lr of the light Li incident from an oblique direction and the light amount of the reflected lights Lr′ and Lr″ reflected in the direction of the reflection angle of ±5° of the specularly reflected light. Findings were obtained (see FIG. 2). In more detail, assuming a digital outer monitor and a digital inner mirror installed in a position where external light is relatively easy to enter as an in-vehicle display device, the installation position of the in-vehicle display device, the orientation of the display surface facing the driver, Considering the angle of the display surface with respect to the front-rear direction of the vehicle, it was found that light is likely to enter the display surface of the vehicle-mounted display device from a direction oblique to the normal line of 30°. Further, when light Li is incident from a direction oblique to the normal line of the display surface of the in-vehicle display device, the specularly reflected light Lr is incident on the eyes of the driver who visually recognizes the in-vehicle display device. It was found that the light had a reflection angle of about ±5°. Although FIG. 2 assumes a vehicle in which the driver's seat is on the left side, the same applies when the driver's seat is on the right side.
 そこで、正反射光Lr(反射角:30°)、反射光Lr’(反射角:25°)及び反射光Lr’’(反射角:35°)の光量に着目して種々検討したところ、映り込んだ像の識別性を確保するため、以下の項目(1)~(3)に示す光学特性が必要であることが判明した。以下において、反射制御層が積層されていない基材に対し、基材の法線に対して斜め30°の方向から入射した光の正反射光の光量を基準光量(=100%)とする。
(1)基材上に積層された反射制御層に対し、基材の法線に対して斜め30°の方向から入射した光Liが正反射した光である正反射光Lrの光量が、基準光量の0~25%であり、
(2)基材上に積層された反射制御層に対し、基材の法線に対して斜め30°の方向から入射した光Liの正反射光Lrの反射角±5°の方向に反射する光の光量、すなわち、基材の法線に対して斜め25°の方向に反射する反射光Lr’の光量と、法線に対して35°の方向に反射する反射光Lr’’の光量とが、いずれも基準光量の0.3~2.0%であり、
(3)反射制御フィルム10のヘイズが3~11%である。ヘイズは、JIS K7105に準拠して測定した値である。
Therefore, various studies were conducted focusing on the amounts of specularly reflected light Lr (reflection angle: 30°), reflected light Lr' (reflection angle: 25°), and reflected light Lr'' (reflection angle: 35°). It has been found that optical characteristics shown in the following items (1) to (3) are necessary in order to ensure the distinguishability of an intricate image. In the following description, the light amount of specularly reflected light incident on a substrate on which no reflection control layer is laminated from a direction oblique to the normal line of the substrate at an angle of 30° is taken as a reference light amount (=100%).
(1) The amount of specularly reflected light Lr, which is specularly reflected light Li incident on the reflection control layer laminated on the base from a direction oblique to the normal of the base at 30°, is the standard. 0 to 25% of the amount of light,
(2) The reflection control layer laminated on the substrate is reflected in the direction of the reflection angle of ±5° of the specularly reflected light Lr of the light Li incident from the direction of 30° with respect to the normal of the substrate. The amount of light, that is, the amount of reflected light Lr′ reflected in a direction oblique to the normal of the base material at 25° and the amount of reflected light Lr″ reflected in a direction at 35° to the normal are all 0.3 to 2.0% of the reference light intensity,
(3) The haze of the reflection control film 10 is 3-11%. Haze is a value measured according to JIS K7105.
 本発明に係る反射制御フィルム10は、これらの光学特性を有することにより、車載表示装置の表示面の法線に対して30°斜め方向からの入射光Liの反射を抑制し、入射光Liを適度に拡散させる。この結果、入射光Liの像を鮮明すぎず、かつ、ぼけすぎない像として運転者に視認させることができる。したがって、入射光Liの像を表示画像と区別しやすく、何の像であるかの把握を容易とすることができ、映り込んだ像の識別性を向上できる。 By having these optical properties, the reflection control film 10 according to the present invention suppresses the reflection of the incident light Li from a direction oblique to the normal line of the display surface of the in-vehicle display device by 30°, Diffuse appropriately. As a result, the driver can visually recognize the image of the incident light Li as an image that is neither too clear nor too blurry. Therefore, the image of the incident light Li can be easily distinguished from the display image, it is possible to easily grasp what the image is, and the identifiability of the reflected image can be improved.
 反射光Lr’及びLr’’の光量は、主に反射像のぼけに関与するパラメータである。反射光Lr’及びLr’’の光量が基準光量の2.0%を超える場合、反射像のボケが強くなりすぎ、映り込んだ像が何の像であるかの認識が困難となる。一方、反射光Lr’及びLr’’の光量が基準光量の0.3%未満の場合、反射像が鮮明となるため、表示画像と反射像との見分けが付きにくくなる可能性がある。特に、反射光Lr’及びLr’’の光量が基準光量の0.3%未満、かつ、正反射光Lrの光量が基準光量の25%を超える場合は、反射像が鮮明となり過ぎるため、表示画像と反射像との区別が困難となる。また、反射光Lr’及びLr’’の光量にかかわらず、正反射光Lrの光量が基準光量の25%を超えて多くなると、正反射光が明る過ぎることにより表示画像の視認性が低下する可能性がある。また、ヘイズは、正反射光Lr、反射光Lr’及びLr’’の光量のいずれにも関係するパラメータである。反射制御フィルム10のヘイズが3%未満の場合、光の拡散性が低下し、反射光Lr’及びLr’’の光量が上述の下限値より少なくなるため、反射像を適度にぼかすことができなくなる傾向にある。一方、反射制御フィルム10のヘイズが11%を超える場合、光の拡散性が強くなり、反射光Lr’及びLr’’の光量が上述の上限値より多くなるため、反射像のぼけが強くなり、反射像の認識が困難となる傾向にある。 The light amounts of the reflected light Lr' and Lr'' are parameters mainly related to the blurring of the reflected image. When the amount of reflected light Lr' and Lr'' exceeds 2.0% of the reference amount of light, the reflected image becomes too blurry, making it difficult to recognize what the reflected image is. On the other hand, when the amount of reflected light Lr′ and Lr″ is less than 0.3% of the reference amount of light, the reflected image becomes clear, which may make it difficult to distinguish between the displayed image and the reflected image. In particular, when the amount of reflected light Lr′ and Lr″ is less than 0.3% of the reference amount of light, and the amount of specularly reflected light Lr exceeds 25% of the reference amount of light, the reflected image becomes too clear. It becomes difficult to distinguish between the image and the reflected image. Further, regardless of the light amount of the reflected lights Lr′ and Lr″, when the light amount of the specularly reflected light Lr exceeds 25% of the reference light amount, the specularly reflected light is too bright, and the visibility of the displayed image deteriorates. there is a possibility. Also, haze is a parameter related to any of the amounts of specularly reflected light Lr and reflected lights Lr' and Lr''. When the haze of the reflection control film 10 is less than 3%, the light diffusibility is reduced, and the amount of the reflected light Lr′ and Lr″ is less than the above lower limit, so that the reflected image can be blurred appropriately. tend to disappear. On the other hand, when the haze of the reflection control film 10 exceeds 11%, the diffusion of light becomes strong, and the amount of the reflected light Lr′ and Lr″ becomes greater than the above upper limit value, resulting in strong blurring of the reflected image. , the reflected image tends to be difficult to recognize.
 以上説明したように、本発明に係る反射制御フィルム10は、画像表示装置の表示面に映り込んだ外光の像を車両周辺の状況を表す一種の情報として活用することを目的としたものであり、上記の項目(1)~(3)の光学特性を備えることにより、表示画像の視認性と、表示面に映り込んだ外光の像の識別性を両立することが可能である。従来、画像表示装置の表示面に映り込んだ外光の像も情報として活用しようとする発想はなかったため、外光の像を情報として活用するために光学フィルムに必要な要件も検討されていなかったが、本発明に係る反射制御フィルム10は、上述した反射像の識別性に優れるため、従来ない発想を実現した光学フィルムとして極めて有効である。 As described above, the reflection control film 10 according to the present invention is intended to utilize the image of external light reflected on the display surface of the image display device as a kind of information representing the situation around the vehicle. By providing the optical characteristics of the above items (1) to (3), it is possible to achieve both the visibility of the displayed image and the distinguishability of the image of the external light reflected on the display surface. In the past, there was no concept of using the image of external light reflected on the display surface of the image display device as information, so the requirements for the optical film to utilize the image of external light as information have not been studied. However, since the reflection control film 10 according to the present invention is excellent in the identification of the reflected image, it is extremely effective as an optical film that realizes an unprecedented idea.
 尚、本発明に係る反射制御フィルム10は、典型的には、画像表示装置の最表面に設けられる光学フィルムとして用いられるが、画像表示装置を構成する積層体中における積層位置については、所望の光学特性を発揮できる限り、特に限定されない。また、反射制御フィルム10の反射制御層5上に、帯電防止層、防汚層、赤外線吸収層、紫外線吸収層、色補正層等の光学機能層を1層以上設けても良い。 The reflection control film 10 according to the present invention is typically used as an optical film provided on the outermost surface of an image display device. It is not particularly limited as long as it can exhibit optical properties. One or more optical function layers such as an antistatic layer, an antifouling layer, an infrared absorption layer, an ultraviolet absorption layer, and a color correction layer may be provided on the reflection control layer 5 of the reflection control film 10 .
 以下、実施形態に係る反射制御フィルムを具体的に実施した実施例を説明する。 Examples in which the reflection control film according to the embodiment was specifically implemented will be described below.
 (実施例1~5、比較例9~11)
 基材上に、反射防止層として、防眩層及び低反射層をこの順に積層した反射制御フィルムを作製した。基材として、厚さ40μmのトリアセチルセルロースフィルムを使用した。基材上に、防眩層形成用塗工液を塗布し、乾燥させた後、塗膜を重合硬化させることによって防眩層を形成した。その後、防眩層上に、低反射層形成用塗工液を塗布し、乾燥させた後、塗膜を重合硬化させることによって低反射層を形成した。
(Examples 1-5, Comparative Examples 9-11)
A reflection control film was prepared by laminating an antiglare layer and a low reflection layer in this order on a substrate as an antireflection layer. A 40 μm thick triacetyl cellulose film was used as the substrate. An antiglare layer-forming coating solution was applied onto a substrate, dried, and then polymerized and cured to form an antiglare layer. After that, a coating solution for forming a low-reflection layer was applied onto the antiglare layer, dried, and then the coating film was polymerized and cured to form a low-reflection layer.
 基材上に、反射防止層として、防眩層を積層した反射制御フィルムを作製した。基材として、厚さ40μmのトリアセチルセルロースフィルムを使用した。基材上に、防眩層形成用塗工液を塗布し、乾燥させた後、塗膜を重合硬化させることによって防眩層を形成した。
 (比較例1~8)
 基材上に、反射防止層として、防眩層を積層した反射制御フィルムを作製した。基材として、厚さ40μmのトリアセチルセルロースフィルムを使用した。基材上に、防眩層形成用塗工液を塗布し、乾燥させた後、塗膜を重合硬化させることによって防眩層を形成した。
A reflection control film was prepared by laminating an antiglare layer as an antireflection layer on a substrate. A 40 μm thick triacetyl cellulose film was used as the substrate. An antiglare layer-forming coating solution was applied onto a substrate, dried, and then polymerized and cured to form an antiglare layer.
(Comparative Examples 1 to 8)
A reflection control film was prepared by laminating an antiglare layer as an antireflection layer on a substrate. A 40 μm thick triacetyl cellulose film was used as the substrate. An antiglare layer-forming coating solution was applied onto a substrate, dried, and then polymerized and cured to form an antiglare layer.
 (比較例12)
 基材上に、反射防止層として、ハードコート層及び低反射層を積層した反射制御フィルムを作製した。基材として、厚さ40μmのトリアセチルセルロースフィルムを使用した。基材上に、ハードコート層形成用塗工液を塗布し、乾燥させた後、塗膜を重合硬化させることによってハードコート層を形成した。その後、ハードコート層上に、低反射層形成用塗工液を塗布し、乾燥させた後、塗膜を重合硬化させることによって低反射層を形成した。
(Comparative Example 12)
A reflection control film was prepared by laminating a hard coat layer and a low reflection layer as antireflection layers on a substrate. A 40 μm thick triacetyl cellulose film was used as the substrate. A coating solution for forming a hard coat layer was applied onto a substrate, dried, and then polymerized and cured to form a hard coat layer. After that, a coating solution for forming a low-reflection layer was applied onto the hard coat layer, dried, and then the coating film was polymerized and cured to form a low-reflection layer.
 表1~3に、実施例及び比較例で用いた防眩層形成用塗工液、低反射層形成用塗工液及びハードコート層形成用塗工液の組成を示す。尚、各塗工液は、表1~3に記載の溶剤を用いて塗工に適した濃度に希釈した。 Tables 1 to 3 show the compositions of the antiglare layer-forming coating liquid, the low-reflection layer-forming coating liquid, and the hard coat layer-forming coating liquid used in Examples and Comparative Examples. Each coating liquid was diluted to a concentration suitable for coating using the solvents shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [ヘイズ値]
 ヘイズは、JIS K7105に従い、ヘイズメーター(NDH2000、日本電色工業株式会社製)を用いて測定した。
[Haze value]
Haze was measured using a haze meter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K7105.
 [反射光量]
 変角光度計ゴニオフォトメーター(GP-5、株式会社 村上色彩技術研究所)を用いて、反射防止層側から入射角30°でD65光源近似光を照射し、反射角が30°の正反射光、反射角が23°~37°の反射光の強度を測定した。
[Reflected light intensity]
Using a goniophotometer (GP-5, Murakami Color Research Laboratory Co., Ltd.), a goniophotometer (GP-5, Murakami Color Research Laboratory) is used to irradiate D65 light source approximate light at an incident angle of 30° from the antireflection layer side, and specular reflection with a reflection angle of 30° The intensity of light and reflected light with reflection angles of 23° to 37° was measured.
 [評価]
 液晶表示装置iPad(登録商標) Air(第4世代)の表面に実施例1~5、比較例1~12の反射制御フィルムを貼り合わせた状態で、暗室条件(周囲からの入射光のない状態)のもと、液晶表示装置の中心部を床面からの高さ100cmの位置とし、評価者の目視位置を表示画面の中心部からの水平直線距離50cmの位置として、表示画面に画像を表示させた。この状態で蛍光灯の光を入射角30°で入射させ、正反射方向、正反射方向±5°の3条件で評価を行った。
[evaluation]
In a state where the reflection control films of Examples 1 to 5 and Comparative Examples 1 to 12 are attached to the surface of the liquid crystal display iPad (registered trademark) Air (4th generation), darkroom conditions (state without incident light from the surroundings ), the center of the liquid crystal display device is positioned at a height of 100 cm from the floor, and the viewing position of the evaluator is positioned at a horizontal straight line distance of 50 cm from the center of the display screen, and an image is displayed on the display screen. let me In this state, light from a fluorescent lamp was made incident at an incident angle of 30°, and evaluation was performed under three conditions: the specular reflection direction and the specular reflection direction ±5°.
 表4における評価の基準は次の通りであり、評価者15人の3条件の評価点の平均点が4点以上5点以下(〇)、3点以上4点未満(△)、1点以上3点未満(×)とし、「〇」評価を合格とした。
 <評価基準>
 5点:表示画像と映り込んだ蛍光灯の像を明確に認識でき、かつ明確に識別できる。
 4点:表示画像と映り込んだ蛍光灯の像を認識でき、かつ識別できる。
 3点:表示画像と映り込んだ蛍光灯の像を認識でき、かつ識別できるが、表示画像または映り込んだ蛍光灯の像が一部ぼやける。
 2点:表示画像または映り込んだ蛍光灯の像のどちらかの認識ができない。または、表示画像と映り込んだ蛍光灯の像を識別できない。
 1点:表示画像および映り込んだ蛍光灯の像のどちらも認識も識別もできない。
The evaluation criteria in Table 4 are as follows, and the average score of the 3 conditions of the 15 evaluators is 4 or more and 5 or less (O), 3 or more and less than 4 (△), 1 or more. Less than 3 points (x) was given, and an evaluation of “◯” was regarded as a pass.
<Evaluation Criteria>
5 points: The displayed image and the image of the reflected fluorescent lamp can be clearly recognized and can be clearly distinguished.
4 points: The displayed image and the reflected image of the fluorescent lamp can be recognized and distinguished.
3 points: The displayed image and the reflected fluorescent lamp image can be recognized and distinguished, but the displayed image or the reflected fluorescent lamp image is partially blurred.
2 points: Either the displayed image or the reflected image of the fluorescent lamp cannot be recognized. Alternatively, the displayed image and the image of the reflected fluorescent light cannot be distinguished.
1 point: Neither the displayed image nor the reflected image of the fluorescent lamp can be recognized or identified.
 表4に、実施例1~5及び比較例1~12に係る反射制御フィルムの層構成、ヘイズ、反射光量(反射角30°、25°及び35°の反射光の光量)、画像識別性の評価をまとめて示す。尚、表3の層構成における「AGLR」は、反射防止層が防眩層及び低反射層で構成されることを表し、「AG」は、反射防止層が防眩層で構成されることを表し、「HCLR」は、反射防止層がハードコート層上の低反射層で構成されることを表す。反射光量の単位は、「%」であり、反射光量の値は、反射防止層が積層されていない基材にD65光源近似光が入射角30°で入射したときの正反射光の強度を100%として表した値である。 Table 4 shows the layer structure, haze, amount of reflected light (amount of reflected light at reflection angles of 30°, 25° and 35°), and image distinguishability of the reflection control films according to Examples 1 to 5 and Comparative Examples 1 to 12. A summary of the evaluation is shown. "AGLR" in the layer structure of Table 3 indicates that the antireflection layer is composed of an antiglare layer and a low-reflection layer, and "AG" indicates that the antireflection layer is composed of an antiglare layer. and "HCLR" indicates that the antireflection layer is composed of a low-reflection layer on the hard coat layer. The unit of the amount of reflected light is "%", and the value of the amount of reflected light is the intensity of specularly reflected light when D65 light source approximating light is incident at an incident angle of 30° on a base material on which no antireflection layer is laminated. Values expressed as %.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~5に係る反射制御フィルムは、ヘイズが3~11%であることにより入射光が適度に拡散されると共に、低反射層により表面反射も抑制され、正反射光量が25%以下かつ反射角25°及び35°の反射光の強度が0.3~2.0%の範囲内であった。これらの条件を満たす反射制御フィルムにより、表示画像と映り込んだ蛍光灯の像とを区別でき、かつ、映り込んだ像が何の像であるかを認識できることが確認された。 The reflection control films according to Examples 1 to 5 have a haze of 3 to 11%, so that incident light is moderately diffused, surface reflection is suppressed by the low-reflection layer, and the amount of specularly reflected light is 25% or less. The intensity of reflected light at reflection angles of 25° and 35° was within the range of 0.3 to 2.0%. It was confirmed that the reflection control film that satisfies these conditions can distinguish between the displayed image and the reflected image of the fluorescent lamp, and can recognize what the reflected image is.
 比較例1~5に係る反射制御フィルムは、ヘイズが3~11%の範囲内であるが、低反射層が設けられていないために、正反射光量は25%を超え、反射角25°の反射光量及び反射角35°の反射光量も2.0%を超えた。正反射光量が高いために映り込んだ蛍光灯の像が何の像であるかを認識することができたが、正反射光量の高さにより表示画像と映り込んだ像との識別がしにくくなり、実施例1~5と比べて低い評価となった。 The reflection control films according to Comparative Examples 1 to 5 have a haze within the range of 3 to 11%, but since no low-reflection layer is provided, the amount of specularly reflected light exceeds 25% and the reflection angle is 25°. The amount of reflected light and the amount of reflected light at a reflection angle of 35° also exceeded 2.0%. Because of the high amount of specular reflection, it was possible to recognize the image of the reflected fluorescent light, but the high amount of specular reflection made it difficult to distinguish between the displayed image and the reflected image. Therefore, the evaluation was lower than that of Examples 1-5.
 比較例6及び7に係る反射制御フィルムは、低反射層が設けられていないが、ヘイズが高いことにより入射光の拡散性が高くなり、正反射光量が比較例1~5よりも小さく抑えられている。このため、表示画像と映り込んだ像とを識別することができた。ただし、正反射光の光量がある程度抑制された一方で、反射角25°の反射光量及び反射角35°の反射光量が5.0%近くの値となったため、映り込んだ蛍光灯の像が比較的暗く、かつ、ぼけた状態で視認され、映り込んだ像が何の像であるかの認識ができなかった。 Although the reflection control films according to Comparative Examples 6 and 7 were not provided with a low-reflection layer, their high haze increased the diffusivity of incident light, and the amount of specularly reflected light was suppressed to a level lower than that of Comparative Examples 1-5. ing. Therefore, it was possible to distinguish between the displayed image and the reflected image. However, while the amount of specularly reflected light was suppressed to some extent, the reflected light amount at a reflection angle of 25° and the reflection light amount at a reflection angle of 35° were close to 5.0%. It was relatively dark and blurred, and it was not possible to recognize what the reflected image was.
 比較例8に係る反射制御フィルムは、低反射層が設けられておらず、反射光量が抑制されなかったため、正反射光量が高くなり過ぎ、表示画像と映り込んだ蛍光灯の像との区別ができなかった。 In the reflection control film according to Comparative Example 8, since the low-reflection layer was not provided and the amount of reflected light was not suppressed, the amount of specularly reflected light was too high, and it was difficult to distinguish between the displayed image and the image of the reflected fluorescent light. could not.
 比較例9及び10に係る反射制御フィルムは、実施例1~5と同様に反射制御層が防眩層及び低反射層で構成されているが、ヘイズが高いことにより入射光の拡散性が高くなり、反射角25°の反射光量及び反射角35°の反射光量が2.0%を超えた。正反射光の量が25%以下に抑制された一方で、反射角25°の反射光量及び反射角35°の反射光量が高くなったため、映り込んだ像が比較的暗く、かつ、ぼけた状態で視認され、映り込んだ像が何の像であるかの認識ができなかった。 In the reflection control films according to Comparative Examples 9 and 10, the reflection control layer is composed of the antiglare layer and the low reflection layer in the same manner as in Examples 1 to 5, but the haze is high and the diffusion of incident light is high. Thus, the amount of reflected light at a reflection angle of 25° and the amount of reflected light at a reflection angle of 35° exceeded 2.0%. While the amount of specularly reflected light was suppressed to 25% or less, the amount of reflected light at a reflection angle of 25° and the reflection light amount at a reflection angle of 35° increased, so the reflected image was relatively dark and blurred. I could not recognize what the reflected image was.
 比較例11及び12に係る反射制御フィルムは、ヘイズが小さいことにより、反射角25°の反射光量及び反射角35°の反射光量が0.3%より小さくなった。このため、映り込んだ像が鮮明となり、表示画像と映り込んだ蛍光灯の像とを区別することができなかった。 In the reflection control films according to Comparative Examples 11 and 12, the amount of reflected light at a reflection angle of 25° and the amount of reflected light at a reflection angle of 35° were less than 0.3% due to the small haze. As a result, the reflected image becomes clear, and the displayed image cannot be distinguished from the reflected image of the fluorescent lamp.
 以上より、本発明に係る反射制御フィルムは、画像表示装置の表示面の法線に対して斜め30°から入射した場合に、画像表示装置の表示画像と反射像とを区別でき、かつ、反射像が何の像であるかを認識できることが確認された。 As described above, the reflection control film according to the present invention can distinguish between an image displayed on an image display device and a reflected image when incident at an angle of 30° to the normal line of the display surface of the image display device, and It was confirmed that it is possible to recognize what the image is.
 表5~8に、実施例1~5及び比較例1~12に係る反射制御フィルムのヘイズ、反射光量(反射角23°、24°、25°、26°、27°、30°、33°、34°、35°、36°、37°の反射光の光量)、反射角23°と24°の反射光量の和、反射角26°と27°の反射光量の和、反射角23°と24°の反射光量の和を反射角25°の反射光量で割った値、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値、反射角33°と34°の反射光量の和、反射角36°と37°の反射光量の和、反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値、反射角36°と37°の反射光量の和を反射角35°の反射光量で割った値、画像識別性の評価をまとめて示す。反射光量の単位は、「%」であり、反射光量の値は、反射防止層が積層されていない基材にD65光源近似光が入射角30°で入射したときの正反射光の強度を100%として表した値である。反射角23°と24°の反射光量の和を反射角25°の反射光量で割った値、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値、反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値、反射角36°と37°の反射光量の和を反射角35°の反射光量で割った値の単位は無次元である。ヘイズ及び評価は表4について記載したものと同様である。 Tables 5 to 8 show the haze and reflected light amount of the reflection control films according to Examples 1 to 5 and Comparative Examples 1 to 12 (reflection angles 23°, 24°, 25°, 26°, 27°, 30°, 33° , 34°, 35°, 36°, and 37°), the sum of the reflected light amounts at the reflection angles of 23° and 24°, the sum of the reflected light amounts at the reflection angles of 26° and 27°, the reflection angle of 23° and The value obtained by dividing the sum of the reflected light amount at 24° by the reflected light amount at the reflection angle of 25°, the value obtained by dividing the sum of the reflected light amount at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25°, sum of reflected light amounts at 34°, sum of reflected light amounts at reflection angles of 36° and 37°, sum of reflected light amounts at reflection angles of 33° and 34° divided by reflected light amount at reflection angles of 35°, reflection angle of 36° and 37° divided by the reflected light amount at a reflection angle of 35°, and evaluation of image distinguishability. The unit of the amount of reflected light is "%", and the value of the amount of reflected light is the intensity of specularly reflected light when D65 light source approximating light is incident at an incident angle of 30° on a base material on which no antireflection layer is laminated. Values expressed as %. A value obtained by dividing the sum of the amounts of reflected light at reflection angles of 23° and 24° by the amount of reflected light at a reflection angle of 25°, a value obtained by dividing the sum of the amounts of reflected light at reflection angles of 26° and 27° by the amount of reflected light at a reflection angle of 25°, The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35°, and the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 36° and 37° by the reflected light amount at the reflection angle of 35° Units are dimensionless. Haze and ratings are the same as described for Table IV.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~5に係る反射制御フィルムは、ヘイズが3~11%であることにより入射光が適度に拡散されると共に、低反射層により表面反射も抑制され、正反射光量が25%以下かつ反射角25°及び35°の反射光の強度が0.3~2.0%の範囲内であった。さらに、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値が8.30~9.50の範囲内であった。反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値が6.89~7.87の範囲内であった。これらの条件を満たす反射制御フィルムにより、表示画像と映り込んだ蛍光灯の像とを区別でき、かつ、映り込んだ像が何の像であるかを認識できることが確認された。 The reflection control films according to Examples 1 to 5 have a haze of 3 to 11%, so that incident light is moderately diffused, surface reflection is suppressed by the low-reflection layer, and the amount of specularly reflected light is 25% or less. The intensity of reflected light at reflection angles of 25° and 35° was within the range of 0.3 to 2.0%. Furthermore, the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° was within the range of 8.30 to 9.50. The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° was within the range of 6.89 to 7.87. It was confirmed that the reflection control film that satisfies these conditions can distinguish between the displayed image and the reflected image of the fluorescent lamp, and can recognize what the reflected image is.
 比較例1~5に係る反射制御フィルムは、ヘイズが3~11%の範囲内であるが、低屈折率層が設けられていないために、正反射光量は25%を超え、反射角25°の反射光量及び反射角35°の反射光量も2.0%を超えた。さらに、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値が5.77~6.20の範囲内であった。反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値が5.36~5.62の範囲内であった。正反射光量が高いために映り込んだ像が何の像であるかを認識することができたが、正反射光量の高さにより表示画像と映り込んだ像との区別がしにくくなり、実施例1~5と比べて低い評価となった。 The reflection control films according to Comparative Examples 1 to 5 had a haze within the range of 3 to 11%, but since no low refractive index layer was provided, the amount of specularly reflected light exceeded 25% and the reflection angle was 25°. and the reflected light amount at a reflection angle of 35° also exceeded 2.0%. Furthermore, the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° was within the range of 5.77 to 6.20. The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° was within the range of 5.36 to 5.62. We were able to recognize what the reflected image was because the amount of specular reflection was high. The evaluation was low compared to Examples 1-5.
 比較例6及び7に係る反射制御フィルムは、低屈折率層が設けられていないが、ヘイズが高いことにより入射光の拡散性が高くなり、正反射光量が比較例1~5よりも小さく抑えられている。このため、表示画像と映り込んだ像とを区別することができた。ただし、正反射光の光量がある程度抑制された一方で、反射角25°の反射光量及び反射角35°の反射光量が5.0%近くの値となったため、映り込んだ像が比較的暗く、かつ、ぼけた状態で視認され、映り込んだ像が何の像であるかの認識ができなかった。さらに、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値が比較例6で4.74、比較例7で3.73であった。反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値が比較例6で4.78、比較例7で3.63であった。 Although the reflection control films according to Comparative Examples 6 and 7 were not provided with a low refractive index layer, their high haze increased the diffusivity of incident light, and the amount of specularly reflected light was kept smaller than in Comparative Examples 1-5. It is Therefore, it was possible to distinguish between the displayed image and the reflected image. However, while the amount of specularly reflected light was suppressed to some extent, the reflected light amount at a reflection angle of 25° and the reflection light amount at a reflection angle of 35° were close to 5.0%, so the reflected image was relatively dark. Moreover, it was visually recognized in a blurred state, and it was not possible to recognize what the reflected image was. Furthermore, the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° was 4.74 in Comparative Example 6 and 3.73 in Comparative Example 7. The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° was 4.78 in Comparative Example 6 and 3.63 in Comparative Example 7.
 比較例8に係る反射制御フィルムは、低屈折率層が設けられておらず、反射光量が抑制されなかったため、正反射光量が高くなり過ぎ、表示画像と映り込んだ像との区別ができなかった。さらに、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値が17.12であった。反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値が11.91であった。 In the reflection control film according to Comparative Example 8, since the low refractive index layer was not provided and the amount of reflected light was not suppressed, the amount of specularly reflected light was too high, and the displayed image and the reflected image could not be distinguished. rice field. Furthermore, the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° was 17.12. The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° was 11.91.
 比較例9及び10に係る反射制御フィルムは、実施例1~5と同様に反射制御層が防眩層及び低屈折率層で構成されているが、ヘイズが高いことにより入射光の拡散性が高くなり、反射角25°の反射光量及び反射角35°の反射光量が2.0%を超えた。正反射光の量が25%以下に抑制された一方で、反射角25°の反射光量及び反射角35°の反射光量が高くなったため、映り込んだ像が比較的暗く、かつ、ぼけた状態で視認され、映り込んだ像が何の像であるかの認識ができなかった。さらに、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値が比較例9で5.11、比較例10で4.41であった。反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値が比較例9で5.08、比較例10で4.30であった。 In the reflection control films according to Comparative Examples 9 and 10, the reflection control layer is composed of an antiglare layer and a low refractive index layer in the same manner as in Examples 1 to 5, but the high haze makes it difficult to diffuse incident light. The reflected light amount at a reflection angle of 25° and the reflected light amount at a reflection angle of 35° exceeded 2.0%. While the amount of specularly reflected light was suppressed to 25% or less, the amount of reflected light at a reflection angle of 25° and the reflection light amount at a reflection angle of 35° increased, so the reflected image was relatively dark and blurred. I could not recognize what the reflected image was. Furthermore, the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° was 5.11 in Comparative Example 9 and 4.41 in Comparative Example 10. The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° was 5.08 in Comparative Example 9 and 4.30 in Comparative Example 10.
比較例11及び12に係る反射制御フィルムは、ヘイズが小さいことにより、反射角25°の反射光量及び反射角35°の反射光量が0.3%より小さくなった。このため、映り込んだ像が鮮明となり、表示画像と映り込んだ像とを区別することができなかった。さらに、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値が比較例11で18.19、比較例12で97.00であった。反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値が比較例11で13.65、比較例12で5.00であった。 In the reflection control films according to Comparative Examples 11 and 12, the reflected light amount at a reflection angle of 25° and the reflection light amount at a reflection angle of 35° were less than 0.3% due to the small haze. As a result, the reflected image becomes clear, and the displayed image and the reflected image cannot be distinguished. Furthermore, the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° was 18.19 in Comparative Example 11 and 97.00 in Comparative Example 12. The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° was 13.65 in Comparative Example 11 and 5.00 in Comparative Example 12.
 反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値の方が、反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値よりも大きくなる。これは、反射角が0°に近づくほど入射光の影響を受けやすくなるためである。また、実施例1~5では、ヘイズが小さいほど、反射角23°と24°の反射光量の和を反射角25°の反射光量で割った値、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値と反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値、反射角36°と37°の反射光量の和を反射角35°の反射光量で割った値が小さくなる。また、実施例1~5と低屈折率層が形成されていない比較例1~5を比較すると、反射率が低いほど、反射角23°と24°の反射光量の和を反射角25°の反射光量で割った値、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値と反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値、反射角36°と37°の反射光量の和を反射角35°の反射光量で割った値が小さくなる。そのため、ヘイズを下げることと、反射率を下げることが反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値等を下げることに寄与している。 The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° is the sum of the reflected light amounts at the reflection angles of 33° and 34° divided by the reflected light amount at the reflection angle of 35°. larger than the value This is because the closer the reflection angle is to 0°, the more susceptible it is to the incident light. Further, in Examples 1 to 5, the smaller the haze, the sum of the reflected light amounts at the reflection angles of 23° and 24° divided by the reflected light amount at the reflection angle of 25°. The value obtained by dividing the sum by the amount of reflected light at a reflection angle of 25°, the value obtained by dividing the sum of the amounts of reflected light at reflection angles of 33° and 34° by the amount of reflected light at a reflection angle of 35°, and the sum of the amounts of reflected light at reflection angles of 36° and 37° A value obtained by dividing the sum by the amount of reflected light at a reflection angle of 35° becomes smaller. Further, when comparing Examples 1 to 5 with Comparative Examples 1 to 5 in which no low refractive index layer was formed, the lower the reflectance, the more the sum of the reflected light amounts at the reflection angles of 23° and 24°. The value obtained by dividing the amount of reflected light by the amount of reflected light, the sum of the amounts of reflected light at reflection angles of 26° and 27° divided by the amount of reflected light at reflection angles of 25°, and the sum of the amounts of reflected light at reflection angles of 33° and 34° The value obtained by dividing by the reflected light amount and the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 36° and 37° by the reflected light amount at the reflection angle of 35° become smaller. Therefore, lowering the haze and lowering the reflectance contribute to lowering the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25°.
 反射角23°と24°の反射光量の和を反射角25°の反射光量で割った値、反射角36°と37°の反射光量の和を反射角35°の反射光量で割った値は、実施例と比較例で大きな差は見られない。一方、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値と反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値は、実施例と比較例で顕著な差が見られる。特に、実施例1~5では、反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値と反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値とが、6.89~9.50であることにより、比較例1~12に対して評価の結果が優れていた。これは、反射角25°~7°の反射光量の関係と、反射角33°~35°の反射光量の関係とが上記条件を満たす場合、人の視覚で斜めから入射する光を見た際に、表示画像と映り込んだ蛍光灯の像とを区別し、かつ、映り込んだ像が何の像であるかを認識するのに有利であると考えられる。 The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 23° and 24° by the reflected light amount at the reflection angle of 25°, and the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 36° and 37° by the reflected light amount at the reflection angle of 35° , there is no significant difference between the working example and the comparative example. On the other hand, the sum of the reflected light amounts at the reflection angles of 26° and 27° was divided by the reflected light amount at the reflection angle of 25°, and the sum of the reflected light amounts at the reflection angles of 33° and 34° was divided by the reflected light amount at the reflection angle of 35°. There is a significant difference in the values between the examples and the comparative examples. In particular, in Examples 1 to 5, the sum of the reflected light amounts at the reflection angles of 26° and 27° divided by the reflected light amount at the reflection angle of 25° and the sum of the reflected light amounts at the reflection angles of 33° and 34° The evaluation results were superior to those of Comparative Examples 1 to 12 because the value obtained by dividing the degree by the amount of reflected light was 6.89 to 9.50. When the relationship between the amount of reflected light at a reflection angle of 25° to 7° and the relationship between the amount of reflected light at a reflection angle of 33° to 35° satisfies the above conditions, when the obliquely incident light is seen with human vision, In addition, it is considered advantageous to distinguish between the displayed image and the image of the reflected fluorescent light and to recognize what the reflected image is.
 反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値と反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値が、上記の範囲内であることにより、本発明に係る反射制御フィルムは、画像表示装置の表示面の法線に対して斜め30°から入射した場合に、画像表示装置の表示画像と反射像とを区別でき、かつ、反射像が何の像であるかを認識できることが確認された。 The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25° and the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° By being within the above range, the reflection control film according to the present invention, when incident at an angle of 30° with respect to the normal line of the display surface of the image display device, produces a display image and a reflected image on the image display device. and can recognize what the reflected image is.
 本発明に係る反射制御フィルムは、画像表示装置に用いられる光学フィルムとして利用でき、特に、車載表示装置に好適に利用できる。 The reflection control film according to the present invention can be used as an optical film for use in image display devices, and is particularly suitable for in-vehicle display devices.
1 基材
2 防眩層
3 低反射層
5 反射制御層
10 車載用反射制御フィルム
REFERENCE SIGNS LIST 1 base material 2 antiglare layer 3 low reflection layer 5 reflection control layer 10 vehicle reflection control film

Claims (3)

  1.  基材と、前記基材上に積層される反射制御層とを備える車載用反射制御フィルムであって、
     前記反射制御層が積層されていない前記基材に対して、当該基材の法線に対して斜め30°の方向から入射した光の正反射光の光量を100%としたとき、前記車載用反射制御フィルムの前記反射制御層に対して、当該反射制御フィルムの法線に対して斜め30°の方向から入射した光の正反射光の光量が0~25%であり、かつ、前記正反射光の反射角±5°の方向の反射光の光量が0.3~2.0%であり、
     ヘイズが3~11%であることを特徴とする、車載用反射制御フィルム。
    An in-vehicle reflection control film comprising a substrate and a reflection control layer laminated on the substrate,
    When the light amount of specularly reflected light of light incident on the base material on which the reflection control layer is not laminated from a direction oblique to the normal line of the base material is 100%, the vehicle-mounted Light incident on the reflection control layer of the reflection control film in an oblique direction of 30° with respect to the normal line of the reflection control film has a light amount of specularly reflected light of 0 to 25%, and the specular reflection is The amount of reflected light in the direction of the reflection angle of light of ±5° is 0.3 to 2.0%,
    An in-vehicle reflection control film characterized by having a haze of 3 to 11%.
  2.  反射角26°と27°の反射光量の和を反射角25°の反射光量で割った値と、反射角33°と34°の反射光量の和を反射角35°の反射光量で割った値とが、6.89~9.50であることを特徴とする、請求項1に記載の車載用反射制御フィルム。 The value obtained by dividing the sum of the reflected light amounts at the reflection angles of 26° and 27° by the reflected light amount at the reflection angle of 25°, and the value obtained by dividing the sum of the reflected light amounts at the reflection angles of 33° and 34° by the reflected light amount at the reflection angle of 35° 2. The reflection control film for vehicle use according to claim 1, wherein the value of the film is from 6.89 to 9.50.
  3.  前記反射制御層が、前記基材側から順に、防眩層及び低反射層を備える、請求項1または2に記載の車載用反射制御フィルム。
     
    The vehicle-mounted reflection control film according to claim 1 or 2, wherein the reflection control layer comprises an antiglare layer and a low reflection layer in order from the substrate side.
PCT/JP2022/020220 2021-05-14 2022-05-13 In-vehicle reflection control film WO2022239860A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237028067A KR20230129049A (en) 2021-05-14 2022-05-13 Reflection control film for vehicle mounting
CN202280018000.7A CN116997826A (en) 2021-05-14 2022-05-13 Reflection control film for vehicle
JP2023521261A JPWO2022239860A1 (en) 2021-05-14 2022-05-13
JP2024117917A JP2024144532A (en) 2021-05-14 2024-07-23 Reflection control film for automobiles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021082726 2021-05-14
JP2021-082726 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022239860A1 true WO2022239860A1 (en) 2022-11-17

Family

ID=84028375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020220 WO2022239860A1 (en) 2021-05-14 2022-05-13 In-vehicle reflection control film

Country Status (5)

Country Link
JP (2) JPWO2022239860A1 (en)
KR (1) KR20230129049A (en)
CN (1) CN116997826A (en)
TW (3) TW202349030A (en)
WO (1) WO2022239860A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281411A (en) * 2000-03-30 2001-10-10 Fuji Photo Film Co Ltd Glare proof antireflection film and image display device
JP2002036452A (en) * 2000-07-21 2002-02-05 Lintec Corp Highly minute antidazzle hard coating film
JP2007148383A (en) * 2005-10-31 2007-06-14 Toray Ind Inc Antireflection film and image display apparatus
JP2010078698A (en) * 2008-09-24 2010-04-08 Nof Corp Anti-glare anti-reflection film and image display including the same
JP2010186020A (en) * 2009-02-12 2010-08-26 Nof Corp Antiglare antireflection film
JP2012063504A (en) * 2010-09-15 2012-03-29 Nof Corp Anti-glare film
JP2019123652A (en) * 2018-01-18 2019-07-25 Agc株式会社 Glass plate and display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015946Y2 (en) 1980-07-21 1985-05-18 日立建機株式会社 Pin connection structure
JP2001074903A (en) 1999-09-03 2001-03-23 Nikon Corp Antireflection film and optical device
JP2019105692A (en) * 2017-12-11 2019-06-27 株式会社ダイセル Antiglare film and method for producing the same, and application
KR102566331B1 (en) * 2019-10-10 2023-08-22 주식회사 엘지화학 Transmission Variable Device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281411A (en) * 2000-03-30 2001-10-10 Fuji Photo Film Co Ltd Glare proof antireflection film and image display device
JP2002036452A (en) * 2000-07-21 2002-02-05 Lintec Corp Highly minute antidazzle hard coating film
JP2007148383A (en) * 2005-10-31 2007-06-14 Toray Ind Inc Antireflection film and image display apparatus
JP2010078698A (en) * 2008-09-24 2010-04-08 Nof Corp Anti-glare anti-reflection film and image display including the same
JP2010186020A (en) * 2009-02-12 2010-08-26 Nof Corp Antiglare antireflection film
JP2012063504A (en) * 2010-09-15 2012-03-29 Nof Corp Anti-glare film
JP2019123652A (en) * 2018-01-18 2019-07-25 Agc株式会社 Glass plate and display device

Also Published As

Publication number Publication date
TW202244543A (en) 2022-11-16
JPWO2022239860A1 (en) 2022-11-17
TW202349030A (en) 2023-12-16
CN116997826A (en) 2023-11-03
KR20230129049A (en) 2023-09-05
TW202349031A (en) 2023-12-16
JP2024144532A (en) 2024-10-11
TWI813288B (en) 2023-08-21

Similar Documents

Publication Publication Date Title
JP6221018B1 (en) Optical laminate, polarizing plate and display device
JP5175672B2 (en) Antiglare film, antireflection film, polarizing plate and image display device
US6949284B2 (en) Coating composition, it&#39;s coating layer, antireflection coating, antireflection film, image display and intermediate product
JP6698552B2 (en) Optical laminate, polarizing plate and display device
WO2011046149A1 (en) Optical film and display panel
JP4080756B2 (en) Antireflection film, method of manufacturing the same, and image display device
JP6221017B1 (en) Optical laminate, polarizing plate and display device
WO2014017396A1 (en) Photosensitive resin composition and antireflection film
JP2008286878A (en) Antiglare film and display using same
JP4712236B2 (en) Antireflection film, antireflection film, image display device, and manufacturing method thereof
JP2003027003A (en) Coating composition, coating film using the same, anti- reflection coating film, and anti-reflection film
JP4899263B2 (en) Coating composition and coating film thereof
JP2010085760A (en) Anti-glare film, polarizing plate, and image display device
JP5422150B2 (en) Anti-glare film, polarizing plate, and image display device
WO2022239860A1 (en) In-vehicle reflection control film
JP2010079100A (en) Glare-proof film, polarizing plate and image display apparatus
WO2021153423A1 (en) Antiglare film, and film having antiglare properties and low reflectivity
WO2018003763A1 (en) Optical laminate, polarizing plate, and display device
JP2013156643A (en) Optical laminate
JP2024073066A (en) On-vehicle antireflection film and display device using the same
WO2023224104A1 (en) Optical laminate and image display device using same
WO2023223785A1 (en) Optical laminate and image display device including same
WO2023090300A1 (en) Optical laminate and display device using same
JP2012141625A (en) Optical laminate
JP2010079111A (en) Optical layered product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237028067

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028067

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280018000.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023521261

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807558

Country of ref document: EP

Kind code of ref document: A1