WO2021153423A1 - Antiglare film, and film having antiglare properties and low reflectivity - Google Patents

Antiglare film, and film having antiglare properties and low reflectivity Download PDF

Info

Publication number
WO2021153423A1
WO2021153423A1 PCT/JP2021/002092 JP2021002092W WO2021153423A1 WO 2021153423 A1 WO2021153423 A1 WO 2021153423A1 JP 2021002092 W JP2021002092 W JP 2021002092W WO 2021153423 A1 WO2021153423 A1 WO 2021153423A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
antiglare
fine particles
film
Prior art date
Application number
PCT/JP2021/002092
Other languages
French (fr)
Japanese (ja)
Inventor
穂高 佐貫
知之 井上
竜太郎 國岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180010259.2A priority Critical patent/CN115038995A/en
Priority to JP2021573980A priority patent/JPWO2021153423A1/ja
Publication of WO2021153423A1 publication Critical patent/WO2021153423A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present disclosure relates to an antiglare film and a film having antiglare and low reflectivity. More specifically, an antiglare film having a transparent base material layer and an antiglare layer in which organic fine particles and inorganic fine particles are dispersed in a binder resin on at least one surface of the transparent base material layer, and the antiglare film.
  • the present invention relates to a film having antiglare property and low reflectivity using a film.
  • Patent Document 1 describes an antiglare film.
  • This antiglare film has an antiglare layer having an uneven shape on the surface on at least one surface of the light transmissive base material.
  • the antiglare layer contains an agglomerate in which two or more kinds of spherical fine particles are aggregated. A convex portion is formed on the surface of the antiglare layer by the aggregate, and an uneven shape on the surface of the antiglare layer is formed.
  • the two or more kinds of spherical fine particles include at least one kind or more organic fine particles and one or more kinds of inorganic fine particles.
  • the organic fine particles have an average particle size of 0.3 to 10.0 ⁇ m, and the inorganic fine particles have an average particle size of 500 nm to 5.0 ⁇ m.
  • the functional layer is a reflection reduction layer
  • the thickness of the functional layer tends to be non-uniform, and the light reflection suppression ability of the reflection reduction layer may decrease. there were.
  • An object of the present disclosure is to provide an antiglare film that easily forms a reflection reduction layer in which the light reflection suppression ability is less likely to decrease, and a film having antiglare and low reflection properties.
  • the antiglare film according to one aspect of the present disclosure includes a binder resin (A) and organic fine particles dispersed in the binder resin (A) on at least one surface of the transparent base material layer and the transparent base material layer.
  • An antiglare layer containing (B) and inorganic fine particles (C) is provided.
  • the absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is 0.005 or more and 0.25 or less.
  • the average primary particle size of the inorganic fine particles (C) is smaller than the average primary particle size of the organic fine particles (B).
  • the arithmetic mean roughness (Ra) of the antiglare layer surface is in the range of 0.080 ⁇ m or more and 0.210 ⁇ m or less, and the average interval (Sm) of the irregularities on the antiglare layer surface is 0.100 ⁇ m or more and 0.200 ⁇ m. It is as follows.
  • the film having antiglare property and low reflectivity includes a high refractive index layer, an ultrahigh refractive index layer, and a low refractive index layer on the antiglare layer in the antiglare film. Are prepared in this order.
  • the high refractive index layer has a refractive index of 1.60 or more and 1.70 or less.
  • the ultra-high refractive index layer has a refractive index of 1.75 or more and 1.90 or less.
  • the low refractive index layer has a refractive index of 1.30 or more and 1.40 or less.
  • FIG. 1 is a cross-sectional view showing an embodiment of the antiglare film according to the present disclosure.
  • FIG. 2 shows an embodiment of the antiglare film according to the present disclosure, and is a partially enlarged schematic view.
  • FIG. 3 is a cross-sectional view showing an embodiment of a film having antiglare and low reflectivity according to the present disclosure.
  • FIG. 4 shows an embodiment of a film having antiglare and low reflectivity according to the present disclosure, and is a partially enlarged schematic view.
  • FIG. 5 shows a comparative example with respect to the antiglare film according to the present disclosure, and is a partially enlarged schematic view.
  • FIG. 6 shows a comparative example with respect to the film having antiglare property and low reflection property according to the present disclosure, and is a partially enlarged schematic view.
  • FIG. 7 shows another comparative example with respect to the film having antiglare property and low reflection property according to the present disclosure, and is a partially enlarged schematic view.
  • FIG. 8 shows another comparative example with respect to the antiglare film according to the present disclosure, and is a partially enlarged schematic view.
  • FIG. 9 shows another comparative example with respect to the film having antiglare property and low reflection property according to the present disclosure, and is a partially enlarged schematic view.
  • the antiglare film 1 of the present embodiment is dispersed in a binder resin (A) and the binder resin (A) on at least one surface of the transparent base material layer 2 and the transparent base material layer 2.
  • the antiglare layer 3 containing the organic fine particles (B) and the inorganic fine particles (C) is provided (see FIG. 1).
  • the absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is 0.005 or more and 0.25 or less.
  • the average primary particle size of the inorganic fine particles (C) is smaller than the average primary particle size of the organic fine particles (B).
  • the arithmetic mean roughness (Ra) on the surface of the antiglare layer 3 is in the range of 0.080 ⁇ m or more and 0.210 ⁇ m or less, and the average interval (Sm) of the unevenness on the surface of the antiglare layer 3 is 0.100 ⁇ m or more and 0.200 ⁇ m or less. Is.
  • the antiglare film 1 has the antiglare layer 3 in which the organic fine particles (B) and the inorganic fine particles (C) are dispersed in the binder resin (A), the organic fine particles (B) of the binder resin (A) are present.
  • the portion of the binder resin (A) is likely to be convex, and the portion of the binder resin (A) in which the organic fine particles (B) are not present is likely to be concave. Can be formed.
  • the absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is 0.005 or more and 0.25 or less, it is prevented by the interaction with the unevenness of the surface of the antiglare layer 3.
  • the glare layer 3 has antiglare properties.
  • the "anti-glare property” is a property that suppresses a decrease in visibility caused by reflection of external light due to diffuse reflection of incident light on an uneven surface. Therefore, by providing the antiglare film 1 on the surface of the display or the like, it is possible to reduce the reflection of fluorescent lamps, external light, and the like, and it is possible to improve the visibility.
  • the arithmetic average roughness (Ra) of the surface of the antiglare layer 3 is in the range of 0.080 ⁇ m or more and 0.210 ⁇ m or less, and the average spacing (Sm) of the irregularities on the surface of the antiglare layer 3 is. Since it is 0.100 ⁇ m or more and 0.200 ⁇ m or less, the functional layer formed on the surface of the antiglare layer 3 is likely to be formed on the concave portion and the convex portion of the surface of the antiglare layer 3 with the same thickness. Therefore, when the functional layer is a reflection reduction layer, the thickness of the reflection reduction layer is uniformly formed, so that the function of the reflection reduction layer, that is, the function of suppressing the reflection of incident light is not easily impaired.
  • the average primary particle size of the inorganic fine particles (C) is smaller than the average primary particle size of the organic fine particles (B), the arithmetic mean roughness (Ra) of the surface of the antiglare layer 3 and the surface of the antiglare layer 3
  • the average spacing (Sm) of the unevenness can be easily formed in a desired range.
  • the hydroxyl group concentration of the binder resin (A) is larger than 0 mmol / g and 2.50 mmol / g or less.
  • the aggregated state of the organic fine particles (B) and the inorganic fine particles (C) can be easily controlled, and the arithmetic mean roughness (Ra) and the average spacing (Sm) of the irregularities on the surface of the antiglare layer 3 can be easily controlled.
  • the binder resin (A) preferably contains a hydroxyl group-containing acrylate. In this case, it is easy to adjust the hydroxyl group concentration of the binder resin (A).
  • the average primary particle diameter of the organic fine particles (B) is 2 ⁇ m or more and 7 ⁇ m or less. In this case, an appropriate uneven shape is likely to be formed on the surface of the antiglare layer, and the antiglare performance of the antiglare film is unlikely to be insufficient.
  • the average primary particle diameter of the inorganic fine particles (C) is preferably 1 nm or more and 200 nm or less.
  • aggregates of organic fine particles (B) are likely to be formed in the antiglare layer, and inorganic fine particles (C) are likely to enter between the organic fine particles (B) and the transparent base material layer 2, so that the antiglare film 1 However, it becomes easier to obtain anti-glare properties.
  • the inorganic fine particles (C) contain fumed silica.
  • the inorganic fine particles (C) can have a high affinity for the organic fine particles (B), and the inorganic fine particles (C) can easily enter between the organic fine particles (B) and the transparent base material layer 2. Become.
  • the film 10 having antiglare and low reflectance has a high refractive index layer having a refractive index of 1.60 or more and 1.70 or less and a refractive index of 1.75 on the antiglare layer of the antiglare film.
  • An ultra-high refractive index layer having a refractive index of 1.90 or less and a low refractive index layer having a refractive index of 1.30 or more and 1.40 or less are provided in this order. In this case, the film 10 can easily obtain antiglare property and low reflectivity.
  • the antiglare film 1 has an antiglare layer 3 in which organic fine particles (B) and inorganic fine particles (C) are dispersed in a binder resin (A) on at least one surface of the transparent base material layer 2 (FIG. 1). reference).
  • the antiglare layer 3 may be formed on only one of the two surfaces of the transparent base material layer 2 facing each other in the thickness direction, or may be formed on both surfaces.
  • the antiglare layer 3 is formed by containing organic fine particles (B) and inorganic fine particles (C) in a binder resin (A).
  • the film having antiglare and low reflectance (hereinafter, may be simply referred to as “antiglare low reflection film”) 10 has a high refractive index layer 41 and a super-refractive index layer 41 on the antiglare layer 3 of the antiglare film 1.
  • the high refractive index layer 42 and the low refractive index layer 43 are provided in this order.
  • the transparent base material layer 2 is a transparent film that supports the antiglare layer 3 and the reflection reduction layer 4.
  • the term "transparent” includes translucency, and the light transmittance is 80% or more and 100% or less, preferably 85% or more and 100% or less, and more preferably 90% or more and 100% or less.
  • the light transmittance of the transparent base material layer 2 is 90% or more, there is an advantage that it can be suitably used as an optical film.
  • the transparent base material layer 2 can be formed of a material containing a synthetic resin.
  • a synthetic resin for example, polyester (PET), cellulose triacetate (TAC), or the like is preferable, whereby the transparent base material layer 2 is excellent in mechanical strength and also excellent in optical properties.
  • synthetic resins include cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyether sulphon, poly sulphon, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyetherketone, and poly. Examples thereof include thermoplastic resins such as methyl methacrylate, polycarbonate, and polyurethane.
  • polyester films polyethylene terephthalate (PET) and polyethylene naphthalate biaxially stretched films have excellent mechanical properties, heat resistance, chemical resistance, etc., and therefore are used for magnetic tapes, ferromagnetic thin film tapes, and packaging.
  • PET polyethylene terephthalate
  • polyethylene naphthalate biaxially stretched films have excellent mechanical properties, heat resistance, chemical resistance, etc., and therefore are used for magnetic tapes, ferromagnetic thin film tapes, and packaging.
  • It is suitable as a material for films, films for electronic parts, electrically insulating films, laminating films, films to be attached to the surface of displays, and protective films for various members.
  • base films such as prism lens sheets, touch panels, and backlights, which are members of liquid crystal display devices, base films for antiglare film 1 and antiglare low reflection film 10 for televisions, and front optical filters for plasma televisions.
  • an antiglare film 1 and an antiglare low reflection film 10 a near infrared cut film, a
  • polyesters examples include aromatic dicarboxylic acid components such as terephthalic acid, isophthalic acid, 2,6-naphthalindicarboxylic acid, and 4,4'-diphenyldicarboxylic acid, and ethylene glycol, 1,4-butanediol, 1,4-.
  • Aromatic polyesters produced by reacting with glycol components such as cyclohexanedimethanol and 1,6-hexanediol are preferable, and polyethylene terephthalate, polyethylene-2,6-naphthalindicarboxylate and the like are particularly preferable.
  • the polyester may be a copolymerized polyester containing a plurality of the above-exemplified components.
  • the transparent base material layer 2 may contain organic or inorganic particles. In this case, the takeability, transportability, etc. of the transparent base material layer 2 are improved. Examples of such particles include calcium carbonate particles, calcium oxide particles, aluminum oxide particles, kaolin, silicon oxide particles, zinc oxide particles, crosslinked acrylic resin particles, crosslinked polystyrene resin particles, urea resin particles, melamine resin particles, and crosslinked silicone resin particles. And so on.
  • the transparent base material layer 2 may also contain a colorant, an antistatic agent, an ultraviolet absorber, an antioxidant, a lubricant, a catalyst, another resin and the like as long as the transparency is not impaired.
  • the haze of the transparent base material layer 2 is preferably 3% or less. In this case, the visibility of the image or the like passed through the antiglare film 1 and the antiglare low reflection film 10 is improved, and the antiglare film 1 and the antiglare film 1 and the antiglare film 10 are improved in visibility.
  • the low-reflection film 10 is particularly suitable as a film for optical applications. It is more preferable that the haze is 1.5% or less.
  • the thickness of the transparent base material layer 2 is not particularly limited, but is preferably in the range of 20 ⁇ m or more and 200 ⁇ m or less. In particular, when the thickness of the transparent base material layer 2 is 25 ⁇ m or more and 100 ⁇ m or less, the antiglare film 1 and the antiglare low reflection film 10 can be made thinner and lighter, and the antiglare film 1 and the antiglare low reflection film 10 can be made thinner and lighter. The occurrence of interference on both surfaces (front and back) is suppressed, and the heat shrinkage when the transparent base material layer 2 is heated is suppressed, and problems such as deterioration of workability due to the heat shrinkage of the transparent base material layer 2 are suppressed. Will be done.
  • the surface reflectance of the transparent base material layer 2 is preferably in the range of 4% or more and 6% or less. When the surface reflectance of the transparent base material layer 2 is within this range, the occurrence of interference on both surfaces (front and back surfaces) of the transparent base material layer 2 is suppressed, and it becomes easy to secure low reflectance characteristics.
  • the surface of the transparent base material layer 2 is subjected to an easy-adhesion treatment.
  • the easy-adhesion treatment include plasma treatment, dry treatment such as corona treatment, chemical treatment such as alkali treatment, and coating treatment for forming an easy-adhesion layer.
  • the easy-adhesion treatment suppresses the occurrence of blocking when the single film of the transparent base material layer 2 which is the material of the antiglare film 1 and the antiglare low-reflection film 10 is wound in a roll shape and is laminated. It is applied to improve slipperiness.
  • the easy-adhesion layer on the surface (on the first main surface) of the transparent base material layer 2.
  • an easy-adhesion layer is interposed between the transparent base material layer 2 and the high refractive index layer 41.
  • the easy-adhesion treatment can be used to improve the adhesiveness between the transparent base material layer 2 and the antiglare layer 3.
  • the material of the easy-adhesion layer is not limited, but it is particularly preferable that the layer is formed of a polyester resin, an acrylic resin, or the like.
  • the refractive index of the easy-adhesion layer is the refractive index of the transparent base material layer 2. It is desirable that the refractive index is close to that of the antiglare layer 3, and particularly preferably in the range of 1.58 to 1.75.
  • the optical film thickness of the easy-adhesion layer is preferably in the range of 120 to 160 nm. In this case, while ensuring high adhesion between the transparent base material layer 2 and the high refractive index layer 41, an increase in reflectance and occurrence of interference unevenness due to the presence of the easy-adhesion layer are suppressed.
  • the antiglare layer 3 is formed by dispersing organic fine particles (B) and inorganic fine particles (C) in a binder resin (A).
  • the organic fine particles (B) and the inorganic fine particles (C) are not uniformly dispersed in the binder resin (A), and the plurality of organic fine particles (B) and the plurality of inorganic fine particles (C) are appropriately contained in each. It is unevenly distributed.
  • the plurality of organic fine particles (B) form secondary particles, and the secondary particles form the surface of the antiglare layer 3 (the surface not facing the transparent base material layer 2) in an uneven shape. There is.
  • the surface convexity of the antiglare layer 3 is likely to be formed corresponding to the portion where the secondary particles of the plurality of organic fine particles (B) are present, and the portion where the secondary particles of the plurality of organic fine particles (B) are not present.
  • recesses on the surface of the antiglare layer 3 are likely to be formed.
  • the arithmetic mean roughness (Ra) on the surface of the antiglare layer 3 is in the range of 0.080 ⁇ m or more and 0.210 ⁇ m or less, and the average interval (Sm) of the unevenness on the surface of the antiglare layer 3 is 0.100 ⁇ m or more and 0. It is 200 ⁇ m or less.
  • the arithmetic average roughness (Ra) and the average spacing (Sm) of the unevenness are measured by a method according to JIS B 0601-1994.
  • the arithmetic average roughness (Ra) on the surface of the antiglare layer 3 and the average spacing (Sm) of the irregularities on the surface of the antiglare layer 3 are each within the above-mentioned predetermined ranges, it is easy to uniformly form the thickness of the reflection reduction layer. Therefore, the function of the reflection reduction layer 4 that suppresses the reflection of the incident light is not easily impaired.
  • the arithmetic mean roughness (Ra) of the surface of the antiglare layer 3 is more preferably in the range of 0.080 ⁇ m or more and 0.200 ⁇ m or less, and further preferably in the range of 0.080 ⁇ m or more and 0.130 ⁇ m or less.
  • the arithmetic mean roughness (Ra) is smaller than 0.080 ⁇ m, when the reflection reduction layer 4 is laminated on the antiglare layer 3, the unevenness formed on the surface of the antiglare layer 3 is formed by the reflection reduction layer 4. It is easy to be buried and it may be difficult to develop antiglare property.
  • the arithmetic mean roughness (Ra) is larger than 0.210 ⁇ m, the surface roughness of the antiglare layer 3 becomes too large to prevent glare.
  • the reflection reduction layer 4 is laminated on the layer 3, the thickness of the reflection reduction layer 4 tends to be uneven.
  • the average spacing (Sm) of the irregularities on the surface of the antiglare layer 3 is more preferably 0.100 ⁇ m or more and 0.150 ⁇ m or less, and further preferably 0.100 ⁇ m or more and 0.140 ⁇ m or less.
  • the average spacing (Sm) of the unevenness is smaller than 0.100 ⁇ m, it is possible that the organic fine particles (B) do not form aggregates of an appropriate size in the antiglare layer 3, and at the same time, the arithmetic mean. Roughness (Ra) may be too small.
  • the average spacing (Sm) of the unevenness is larger than 0.200 ⁇ m, the spacing between the irregularities on the surface of the antiglare layer 3 becomes too large, and the reflection is reduced when the reflection reducing layer 4 is laminated on the antiglare layer 3.
  • the thickness of the layer 4 tends to be uneven.
  • FIG. 2 schematically shows the antiglare layer 3.
  • the antiglare layer 3 is formed on one surface of the transparent base material layer 2, and a plurality of organic fine particles (B) and a plurality of inorganic fine particles (C) are dispersed in a layered binder resin (A). ..
  • the average primary particle size of the inorganic fine particles (C) is smaller than the average primary particle size of the organic fine particles (B). Since the inorganic fine particles (C) are much finer particles than the organic fine particles (B), they are not clearly shown.
  • the surface of the antiglare layer 3 (the surface not facing the transparent base material layer 2) is formed in an uneven shape (see FIG. 2).
  • a plurality of organic fine particles (B) are aggregated in the binder resin (A) to form secondary particles. That is, the binder resin (A) is raised by the secondary particles of the plurality of organic fine particles (B) to form protrusions.
  • a plurality of organic fine particles (B) are not aggregated in the binder resin (A), or the organic fine particles (B) are not present. That is, in the portion where the plurality of organic fine particles (B) are not aggregated or in the portion where the organic fine particles (B) do not exist, the binder resin (A) is lower than the convex and the concave is formed.
  • the unevenness of the surface of the antiglare layer 3 is relatively gentle. That is, the height difference between the concave and convex surfaces of the antiglare layer 3 is relatively small. Therefore, as shown in FIGS. 3 and 4, when the reflection reduction layer 4 is formed (laminated) on the antiglare layer 3 by wet coating, when the reflection reduction layer 4 is formed on the surface of the antiglare layer 3, the reflection reduction layer 4 is formed. , Easy to form to a uniform thickness. That is, when the surface of the antiglare layer 3 has an appropriate uneven shape, the film thickness unevenness of the reflection reduction layer 4 formed on the surface of the antiglare layer 3 is small, and the expected optical characteristics (low reflection, etc.) are exhibited. It's easy to do. Moreover, since the unevenness can be maintained, both anti-glare property and low reflection property can be achieved at the same time.
  • the arithmetic average roughness (Ra) of the surface is larger than 0.210 ⁇ m, and the average interval (Sm) of the unevenness is smaller than 0.100 ⁇ m.
  • the aggregated particle size of the organic fine particles (B) aggregated in the binder resin (A) is larger on average and the number is larger than in the case of FIG.
  • the binder resin (A) in which the organic fine particles (B) do not exist there are many parts of the binder resin (A) in which the organic fine particles (B) do not exist. Therefore, the height difference between the concave and convex surfaces of the antiglare layer 3 is larger than that in FIG. 2.
  • the thickness of the reflection reduction layer 4 is unlikely to be uniform as shown in FIG. That is, the reflection reduction layer 4 is often thickened at the concave portion of the antiglare layer 3 and thinned at the convex portion, and liquid pools occur in the concave portion, resulting in uneven film thickness. Therefore, the expected optical characteristics (low). (Reflection, etc.) is unlikely to occur. Further, as shown in FIG.
  • the dry coating means a PVD (physical vapor deposition) method or a CVD (chemical vapor deposition) method
  • the wet coating means a liquid substance such as a coating method or a spray method. It means a method of supplying and coating.
  • the arithmetic average roughness (Ra) of the surface is smaller than 0.080 ⁇ m, and the average interval (Sm) of the unevenness is larger than 0.200 ⁇ m.
  • the aggregated particle size of the organic fine particles (B) aggregated in the binder resin (A) is smaller and smaller on average than in the case of FIG. 2, and the organic fine particles (B) Is hardly agglomerated, and there are few portions of the binder resin (A) in which the organic fine particles (B) are not present. Therefore, the height difference between the concave and convex surfaces of the antiglare layer 3 is smaller than in the case of FIG. Therefore, as shown in FIG.
  • the thickness of the reflection reduction layer 4 tends to be uniform.
  • the anti-glare performance due to the uneven shape of the anti-glare layer 3 is lowered, and it becomes difficult to obtain the anti-glare low-reflection film 10 having both excellent anti-glare and reflective properties.
  • the organic fine particles (B) are the transparent base material layer of the antiglare layer 3. It is preferable that the inorganic fine particles (C) are mainly dispersed on the surface side opposite to the second, and the inorganic fine particles (C) are dispersed between the organic fine particles (B) of the antiglare layer 3 and the transparent base material layer 2. Is preferable.
  • the average primary particle size of the inorganic fine particles (C) is smaller than the average primary particle size of the organic fine particles (B), the arithmetic mean roughness (Ra) of the surface of the antiglare layer 3 and the surface of the antiglare layer 3
  • the average spacing (Sm) of the unevenness can be easily formed in a desired range.
  • the inorganic fine particles (C) that have entered between the organic fine particles (B) and the transparent base material layer 2 unevenly distribute the organic fine particles (B) on the surface side of the transparent base material layer 2.
  • the antiglare layer 3 is a composition for an antiglare layer containing, for example, organic fine particles (B), inorganic fine particles (C), an uncured binder resin such as an ionizing radiation curable resin, a photopolymerization initiator, and a solvent. It can be formed by applying an object to a transparent base film, drying the coating film, and curing the coating film by ionizing radiation irradiation or the like.
  • the thickness of the antiglare layer 3 is preferably 2 ⁇ m or more and 10 ⁇ m or less. If the thickness of the antiglare layer 3 is less than 2 ⁇ m, the surface of the antiglare layer 3 may be easily scratched, and if the thickness of the antiglare layer 3 exceeds 10 ⁇ m, the antiglare layer 3 is easily cracked. Sometimes.
  • the thickness of the antiglare layer 3 is more preferably 3 ⁇ m or more and 8 ⁇ m or less, and the thickness of the antiglare layer 3 is more preferably 3 ⁇ m or more and 6 ⁇ m or less.
  • the binder resin (A) is preferably transparent, and is preferably an ionizing radiation curable resin that is cured by ultraviolet rays or electron beams, for example.
  • the "resin” includes a monomer, an oligomer, and the like.
  • Examples of the ionizing radiation curable resin include compounds having one or two or more unsaturated bonds such as compounds having a functional group such as an acrylate-based resin.
  • Examples of the compound having an unsaturated bond of 1 include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone and the like.
  • Examples of the compound having two or more unsaturated bonds include polymethylol propantri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and pentaerythritol tri ().
  • Polyfunctional compounds such as meta) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, or the above polyfunctional compound and (meth) acrylate.
  • reaction products such as (for example, poly (meth) acrylate ester of polyhydric alcohol), and the like can be mentioned.
  • (meth) acrylate refers to methacrylate and acrylate.
  • the ionizing radiation curable resin the above-mentioned compound modified with PO, EO or the like can also be used.
  • polyester resins In addition to the above compounds, relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins and the like having unsaturated double bonds are also mentioned above. It can be used as an ionizing radiation curable resin.
  • the above-mentioned ionizing radiation curable resin is used in combination with a solvent-drying resin (a resin such as a thermoplastic resin that forms a film simply by drying a solvent added to adjust the solid content at the time of coating). You can also do it.
  • a solvent-drying resin a resin such as a thermoplastic resin that forms a film simply by drying a solvent added to adjust the solid content at the time of coating.
  • the solvent-drying resin that can be used in combination with the ionizing radiation curable resin is not particularly limited, and in general, a thermoplastic resin can be used.
  • the thermoplastic resin is not particularly limited, and for example, a styrene resin, a (meth) acrylic resin, a vinyl acetate resin, a vinyl ether resin, a halogen-containing resin, an alicyclic olefin resin, a polycarbonate resin, and a polyester resin. Examples thereof include resins, polyamide resins, cellulose derivatives, silicone resins and rubbers or elastomers.
  • the thermoplastic resin is preferably amorphous and soluble in an organic solvent (particularly a common solvent capable of dissolving a plurality of polymers and curable compounds).
  • styrene resin (meth) acrylic resin, alicyclic olefin resin, polyester resin, cellulose derivative (cellulose ester, etc.) and the like are preferable.
  • the antiglare layer may contain a thermosetting resin.
  • the thermosetting resin is not particularly limited, and for example, phenol resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation resin. , Silicon resin, polysiloxane resin and the like.
  • the binder resin (A) preferably contains a hydroxyl group-containing polyfunctional acrylate. This makes it easy to adjust the hydroxyl group concentration of the binder resin (A).
  • the hydroxyl group-containing polyfunctional acrylate include those in Table 1.
  • PE2A is pentaerythritol diacrylate
  • PE3A is pentaerythritol triacrylate
  • PE4A is pentaerythritol tetraacrylate.
  • DP5A is dipentaerythritol pentaacrylate
  • DP6A dipentaerythritol hexaacrylate.
  • GR2A is a glycerin diacrylate
  • GR3A is a glycerin triacrylate.
  • the hydroxyl group concentration of the binder resin (A) is preferably greater than 0 mmol / g and less than 2.50 mmol / g.
  • the hydroxyl group concentration of the binder resin (A) is represented by the following formula 1 as the number of hydroxyl groups contained in one molecule of the resin when the binder resin (A) is composed of a single resin.
  • Hydroxy group concentration (mmol / g) (number of hydroxyl groups in one molecule) / (molecular weight) x 1000 (Equation 1)
  • the weighted average value can be calculated and obtained from the hydroxyl group concentration calculated from the formula 1 of each binder resin.
  • the hydroxyl group concentration of the binder resin (A) is more preferably greater than 0 mmol / g and 1.50 mmol / g or less, and further preferably greater than 0 mmol / g and 1.00 mmol / g or less.
  • the organic fine particles (B) are particles made of a copolymer having generally low polarity, such as acrylic-styrene copolymer particles
  • the polarity of the binder resin (A) which is a matrix (dispersion medium) is low. That is, the lower the hydroxyl group concentration of the binder resin (A), the higher the dispersibility of the dispersoid organic fine particles (B), the less likely it is to form aggregates, and the closer the primary particles are dispersed alone.
  • the hydroxyl group concentration of the binder resin (A) is larger than 2.50 mmol / g, the aggregates of the organic fine particles (B) may become too large, and the average interval (Sm) may become too large. There is sex.
  • the hydroxyl group concentration of the binder resin (A) can be adjusted by mixing a plurality of types of resin components having different hydroxyl group concentrations.
  • 40% is a high-viscosity urethane acrylate (hydroxyl concentration 0 mmol / g)
  • the remaining 60% is a hydroxyl group such as a combination of PE2A / PE3A / PE4A.
  • the hydroxyl group concentration can be controlled as a mixture of pentaerythritol polyacrylates having different concentrations.
  • a mixture of dipentaerythritol polyacrylate may be used instead of the mixture of pentaerythritol polyacrylate.
  • the organic fine particles (B) are also called diffusion particles, and are mainly fine particles for forming the surface uneven shape of the antiglare layer 3.
  • the organic fine particles (B) are preferably transparent.
  • the organic fine particles (B) at least one material selected from the group consisting of acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride resin and polyfluorinated ethylene resin. It is preferably a fine particle composed of. Of these, fine particles of a styrene-acrylic copolymer are preferable because the refractive index can be easily controlled.
  • the absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is 0.005 or more and 0.25 or less. Therefore, the antiglare layer 3 has antiglare properties due to the interaction with the unevenness of the surface of the antiglare layer 3.
  • the absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is more preferably 0.005 or more and 0.15 or less, and further preferably 0.005 or more and 0.10 or less. be.
  • the organic fine particles (B) are preferably contained in the antiglare layer 3 in an amount of 5% by mass or more and 20% by mass or less. If the content of the organic fine particles (B) is less than 5% by mass, the aggregates of the organic fine particles (B) may decrease, and the antiglare performance of the antiglare layer 3 may deteriorate. If the content of the organic fine particles (B) exceeds 20% by mass, the number of aggregates may increase or the aggregates may become too large, and the antiglare performance of the antiglare layer 3 may deteriorate.
  • the organic fine particles (B) are more preferably contained in the antiglare layer 3 in an amount of 6% by mass or more and 15% by mass or less, and are contained in the antiglare layer 3 in an amount of 8% by mass or more and 12% by mass or less. Is even more preferable. Further, the organic fine particles (B) are preferably contained in the antiglare layer 3 in an amount of 5% by volume or more and 20% by volume or less. It is more preferably 6.0% by volume or more and 15.0% by volume or less, and further preferably 8.0% by volume or more and 12.0% by volume or less.
  • the average primary particle size of the organic fine particles (B) is preferably 2 ⁇ m or more and 7 ⁇ m or less. If the average primary particle size of the organic fine particles (B) is less than 2 ⁇ m, it becomes difficult to form a sufficient uneven shape on the surface of the antiglare layer 3, and the antiglare performance of the antiglare film 1 may be insufficient. If the average primary particle size of the organic fine particles (B) exceeds 7 ⁇ m, the uneven shape on the surface of the antiglare layer 3 becomes too large, and the antiglare performance of the antiglare film 1 may be insufficient.
  • the average primary particle size of the organic fine particles (B) is more preferably 3 ⁇ m or more and 6 ⁇ m or less, and the average primary particle size of the organic fine particles (B) is more preferably 3 ⁇ m or more and 5 ⁇ m or less.
  • the "average primary particle size" may be any method as long as the average particle size of the primary particles can be calculated, and examples thereof include an image analysis method, a Coulter method, a centrifugal sedimentation method, and a laser diffraction / scattering method. Can be mentioned.
  • Inorganic fine particles are also called binder particles, and are contained in the antiglare layer 3 so as to enter between adjacent organic fine particles (B) and above and below the organic fine particles (B).
  • the arithmetic average roughness is caused by the inclusion of the inorganic fine particles (C) between the adjacent organic fine particles (B) and the inclusion of the inorganic fine particles (C) between the organic fine particles (B) and the transparent base material layer 2.
  • the roughness (Ra) and the average spacing (Sm) of the unevenness can be maintained appropriately.
  • the density of the inorganic fine particles (C) is preferably higher than the density of the organic fine particles (B).
  • the inorganic fine particles (C) are more organic fine particles. It becomes easier to settle before (B), and as a result, the inorganic fine particles (C) easily enter between the organic fine particles (B) and the transparent base material layer 2.
  • the density of the organic fine particles (B) is preferably in the range of 0.8 to 1.5 g / cm 3
  • the density of the inorganic fine particles (C) is in the range of 1.8 to 3.0 g / cm 3. Is preferable.
  • Such inorganic fine particles (C) are preferably at least one kind of fine particles selected from the group consisting of, for example, aluminosilicate, talc, mica and silica.
  • the inorganic fine particles (C) preferably contain fumed silica.
  • the inorganic fine particles (C) can have a high affinity for the organic fine particles (B).
  • Fused silica refers to amorphous silica having a particle size of 200 nm or less produced by a dry method, and is obtained by reacting a volatile compound containing silicon in a gas phase.
  • Silanol groups are present on the surface of fumed silica, but fumed silica is preferably surface-treated, and the surface treatment is preferably hydrophobized.
  • the fumed silica can be suitably unevenly distributed on the surface of the organic fine particles, and the agglomerates of the organic fine particles (B) are formed by the cohesive force of the fumed silica itself. be able to.
  • the chemical resistance and saponification resistance of the fumed silica itself can be improved.
  • fumed silica may be excessively present on the surface of the organic fine particles and the cohesive force may increase, so that a suitable uneven shape may not be formed.
  • the hydrophobizing treatment for example, methyl treatment, octylsilane treatment, dimethyl silicone oil treatment and the like are suitable.
  • the average primary particle size of the inorganic fine particles (C) is preferably 1 nm or more and 200 nm or less. If the average primary particle size of the inorganic fine particles (C) is less than 1 nm, agglomerates of the organic fine particles (B) may not be sufficiently formed in the antiglare layer 3, and the average primary particle size of the inorganic fine particles (C) may not be sufficiently formed. If it exceeds 200 nm, it becomes difficult for the inorganic fine particles (C) to enter between the organic fine particles (B) and the transparent base material layer 2, and the arithmetic mean roughness (Ra) of the surface of the antiglare layer 3 becomes too small. It may be difficult to obtain anti-glare properties.
  • the average primary particle size of the inorganic fine particles (C) is more preferably 10 nm or more and 200 nm or less, and the average primary particle size of the inorganic fine particles (C) is more preferably 12 nm or more and 40 nm or less.
  • the content of the inorganic fine particles (C) is preferably 1% by mass or more and 10% by mass or less in the antiglare layer 3.
  • the content of the inorganic fine particles (C) is less than 1% by mass, the inorganic fine particles (C) are difficult to enter between the organic fine particles (B) and it is difficult to form an agglomerate, and the antiglare layer 3 having an uneven shape is formed. It is hard to be done. If the content of the inorganic fine particles (C) exceeds 10% by mass, the arithmetic mean roughness (Ra) of the surface of the antiglare layer 3 may become too large, making it difficult to obtain antiglare properties.
  • the inorganic fine particles (C) are more preferably contained in the antiglare layer 3 in an amount of 1% by mass or more and 5% by mass or less, and are contained in the antiglare layer 3 in an amount of 1% by mass or more and 3% by mass or less. Is even more preferable. Further, the content of the inorganic fine particles (C) is preferably 0.5% by volume or more and 5% by volume or less in the antiglare layer 3. It is more preferably 0.5% by volume or more and 2.5% by volume or less, and further preferably 0.5% by volume or more and 1.5% by volume or less.
  • the reflection reduction layer 4 is formed by including a high refractive index layer 41, an ultrahigh refractive index layer 42, and a low refractive index layer 43 (see FIG. 3).
  • the reflection reduction layer 4 is formed on the antiglare layer 3.
  • a high refractive index layer 41 is formed on the surface of the antiglare layer 3
  • an ultrahigh refractive index layer 42 is formed on the surface of the high refractive index layer 41
  • a low refractive index layer 43 is formed on the surface of the ultrahigh refractive index layer 42. Is formed.
  • the high refractive index layer 41 is formed as a high refractive index layer having a higher refractive index than the antiglare layer 3.
  • the refractive index of the high refractive index layer 41 is preferably in the range of 1.60 or more and 1.70 or less, and the thickness (actual film thickness) is preferably in the range of 50 nm or more and 80 nm or less.
  • the color of the light reflected from the film 10 is adjusted to an appropriate color.
  • the refractive index of the high refractive index layer 41 becomes larger than the above range, the light reflectivity of the antiglare film 1 and the antiglare low reflection film 10 is further reduced, but the color of the reflected light becomes too strong, which is not preferable.
  • the thickness of the high refractive index layer 41 is larger than the above range, the color of the reflected light from the antiglare film 1 and the antiglare low reflection film 10 becomes bluish, and when the thickness is further increased, the antiglare film 1 and the antiglare low reflection film 10 become bluish. This is not preferable because the reflectances of the glare film 1 and the antiglare low-reflection film 10 are significantly increased.
  • the thickness of the high refractive index layer 41 is smaller than the above range, the reflected color becomes a strong purple-tinged color, which is not preferable.
  • the thickness of the high refractive index layer 41 is increased, the reflected light tends to be bluish, but if the thickness of the high refractive index layer 41 is in the range of 40 nm or more and 110 nm or less, the reflected light tends to be bluish.
  • the color of is close enough to white.
  • the thickness of the high refractive index layer 41 is preferably in the range of 50 nm or more and 80 nm or less as described above. It is more preferable if this thickness is in the range of more than 60 nm and 70 nm or less.
  • the high refractive index layer 41 is preferably formed from a reactive curable resin composition, for example, preferably formed from at least one of a thermosetting resin composition and an ionizing radiation curable resin composition.
  • the thermosetting resin composition contains a thermosetting resin such as a phenol resin, a urea resin, a diallyl phthalate resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, an epoxy resin, an aminoalkyd resin, a silicon resin, and a polysiloxane resin. do.
  • a cross-linking agent, a polymerization initiator, a curing agent, a curing accelerator, a solvent and the like may be used together with the thermosetting resin, if necessary.
  • thermosetting resin composition By applying such a thermosetting resin composition on, for example, the transparent base material layer 2 (the surface of the easy-adhesion layer, if any), and then the thermosetting resin composition is heated and heat-cured. , High refractive index layer 41 can be formed.
  • the ionizing radiation curable resin composition preferably contains a resin having an acrylate-based functional group.
  • the resin having an acrylate-based functional group include oligomers such as (meth) acrylates, which are polyfunctional compounds having a relatively low molecular weight, and prepolymers.
  • the polyfunctional compound include polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, polybutadiene resin, polythiol polyene resin, polyhydric alcohol and the like. It is also preferable that the ionizing radiation curable resin composition further contains a reactive diluent.
  • Examples of the reactive diluent include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, and N-vinylpyrrolidone, and trimethylpropantri (meth) acrylate and hexanediol (meth) acrylate.
  • Tripropylene glycol di (meth) acrylate diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di Examples include polyfunctional monomers of (meth) acrylates.
  • the photocurable resin composition contains a photopolymerization initiator.
  • the photopolymerization initiator include acetophenones, benzophenones, ⁇ -amyloxime esters, thioxanthones and the like.
  • the photocurable resin composition may contain a photosensitizer in addition to the photopolymerization initiator or in place of the photopolymerization initiator.
  • the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, thioxanthone and the like.
  • Such a photocurable resin composition is applied onto, for example, the transparent base material layer 2, and then the photocurable resin composition is irradiated with light such as ultraviolet rays to be photocured, whereby the high refractive index layer 41 is formed. Can be formed.
  • the refractive index of the high refractive index layer 41 can be easily adjusted by the composition of the resin composition for forming the high refractive index layer 41. It is also preferable that the refractive index of the high refractive index layer 41 is adjusted by containing the particles for adjusting the refractive index and adjusting the ratio thereof.
  • the particle size of the particles for adjusting the refractive index is sufficiently small, that is, the particles for adjusting the refractive index are preferably so-called ultrafine particles, and in this case, the light transmittance of the high refractive index layer 41 is sufficiently maintained. become.
  • the particle size of the particles for adjusting the refractive index is particularly preferably in the range of 0.5 nm or more and 200 nm or less.
  • the particle size of the particles for adjusting the refractive index is the diameter of a circle (circle equivalent to the area) having the same area as the projected area calculated from the electron micrograph image of the particles.
  • the particles for adjusting the refractive index are preferably particles having a relatively high refractive index, and particularly preferably particles having a refractive index of 1.6 or more.
  • the particles are preferably metal or metal oxide particles.
  • the content of the particles for adjusting the refractive index in the high refractive index layer 41 is appropriately adjusted so that the refractive index of the high refractive index layer 41 becomes an appropriate value, and the refractive index in the high refractive index layer 41 is particularly adjusted. It is preferable that the proportion of the particles for adjustment is adjusted to be 5% by volume or more and 70% by volume or less.
  • Specific examples of the particles for adjusting the refractive index include particles containing one or more oxides selected from titanium, aluminum, cerium, yttrium, zirconium, niobium, and antimony.
  • the oxide examples include ZnO (refractive index 1.90), TiO 2 (refractive index 2.3 to 2.7), CeO 2 (refractive index 1.95), and Sb 2 O 5 (refractive index 1. 71), SnO 2 (refractive index 1.8-2.0), ITO (refractive index 1.95), Y 2 O 3 (refractive index 1.87), La 2 O 3 (refractive index 1.95), Examples thereof include ZrO 2 (refractive index 2.05) and Al 2 O 3 (refractive index 1.63). It is also preferable that the high refractive index layer 41 is provided with antistatic performance.
  • the high refractive index layer 41 contains conductive particles.
  • the conductive particles may also function as particles for adjusting the refractive index at the same time.
  • the conductive particles are preferably nanoparticles, and particularly preferably ultrafine particles having a particle size of 0.5 nm or more and 200 nm or less.
  • the particle size of the conductive particles is also the diameter of the circle corresponding to the area.
  • Examples of the material of the conductive particles include appropriate metals having conductivity, metal oxides, and the like, and specific examples thereof include oxides of one or more kinds of metals selected from indium, zinc, tin, and antimony.
  • the sheet resistance of the high refractive index layer 41 is 10 15 ⁇ / ⁇ or less by containing conductive particles. Since the antistatic property is improved as the sheet resistance of the high refractive index layer 41 is small, a lower limit is not set in particular, but since there is a limit to reducing the sheet resistance, the sheet resistance of the high refractive index layer 41 is substantially reduced.
  • a lower limit is 10 6 ⁇ / ⁇ .
  • the content of the conductive particles in the high-refractive-index layer 41 is appropriately adjusted so that the antistatic performance of the high-refractive-index layer 41 becomes an appropriate degree, and in particular, the conductive particles in the high-refractive-index layer 41 It is preferable that the ratio is adjusted to be 5% by mass or more and 70% by mass or less.
  • the high refractive index layer 41 may contain a cured product of the first ultraviolet curable resin containing at least one of an alkoxysilane having a reactive organic functional group and a partially hydrolyzed polymer thereof. ..
  • the ultraviolet curable resin composition contains the first ultraviolet curable resin.
  • Examples of the reactive organic functional group in the alkoxysilane having a reactive organic functional group include an acryloyl group, a methacryloyl group, a glycidyl group, an isocyanate group and the like.
  • Examples of the alkoxysilane having a reactive organic functional group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, and 3-.
  • Examples thereof include acryloxipropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-isocyanuppropyltriethoxysilane, and 3-isocyanuppropyltriethoxysilane.
  • the high refractive index layer 41 contains a cured product of the first ultraviolet curable resin
  • the alkoxysilane in the first ultraviolet curable resin and its partially hydrolyzed polymer with respect to the high refractive index layer 41 Is preferably 3% by mass or more. This ratio is further preferably in the range of 5 to 10% by mass.
  • the scratch resistance of the antiglare film 1 and the antiglare low-reflection film 10 is further improved, and the adhesion between the layers is further improved.
  • the ultra-high refractive index layer 42 is formed as a high refractive index layer having a higher refractive index than the low refractive index layer 43.
  • the refractive index of the ultra-high refractive index layer 42 is preferably in the range of 1.75 or more and 1.90 or less, and the thickness (actual film thickness) is preferably in the range of 100 nm or more and 160 nm or less.
  • the refractive index and thickness of the ultrahigh refractive index layer 42 are in the above ranges, the light reflectivity of the antiglare film 1 and the antiglare low reflection film 10 is suppressed, and the antiglare film 1 and the antiglare low The color of the light reflected from the reflective film 10 is adjusted to an appropriate color.
  • the refractive index of the ultrahigh refractive index layer 42 becomes larger than the above range, the light reflectivity of the antiglare film 1 and the antiglare low reflection film 10 is further reduced, but the color of the reflected light becomes too strong, which is not preferable. ..
  • the thickness of the ultrahigh reflectance layer 42 when the thickness of the ultrahigh reflectance layer 42 is larger than the above range, the color of the reflected light from the antiglare film 1 and the antiglare low reflection film 10 becomes bluish, and when this thickness is further increased. This is not preferable because the reflectances of the antiglare film 1 and the antiglare low reflection film 10 are significantly increased. Further, if the thickness of the ultra-high refractive index layer 42 is smaller than the above range, the reflected color becomes a strong purple-tinged color, which is not preferable.
  • the thickness of the ultra-high refractive index layer 42 is increased, the reflected light tends to be bluish, but if the thickness of the ultra-high refractive index layer 42 is in the range of 100 nm or more and 180 nm or less, The color of the reflected light is sufficiently close to white. However, in order to bring the color of the reflected light closer to white, the thickness of the ultrahigh refractive index layer 42 is preferably in the range of 100 nm or more and 160 nm or less as described above. It is more preferable if this thickness is larger than 130 nm and is in the range of 160 or less.
  • the ultra-high refractive index layer 42 is preferably formed from a reactive curable resin composition, for example, preferably formed from at least one of a thermosetting resin composition and an ionizing radiation curable resin composition.
  • a reactive curable resin composition for example, preferably formed from at least one of a thermosetting resin composition and an ionizing radiation curable resin composition.
  • thermosetting resin composition, the ionizing radiation curable resin composition, and the photopolymerization initiator are the same as those of the resin mentioned in the description of the high refractive index layer 41.
  • the refractive index of the ultra-high refractive index layer 42 can be easily adjusted by the composition of the resin composition for forming the ultra-high refractive index layer 42. It is also preferable that the refractive index of the ultra-high refractive index layer 42 is adjusted by containing the particles for adjusting the refractive index and adjusting the ratio thereof.
  • the particle size of the particles for adjusting the refractive index is sufficiently small, that is, the particles for adjusting the refractive index are preferably so-called ultrafine particles, and in this case, the light transmittance of the ultrahigh refractive index layer 42 is sufficiently maintained. Will be.
  • the particle size of the particles for adjusting the refractive index is particularly preferably in the range of 0.5 nm or more and 200 nm or less.
  • the particle size of the particles for adjusting the refractive index is the diameter of a circle (circle equivalent to the area) having the same area as the projected area calculated from the electron micrograph image of the particles.
  • the particles for adjusting the refractive index are preferably particles having a relatively high refractive index, and particularly preferably particles having a refractive index of 1.6 or more.
  • the particles are preferably metal or metal oxide particles.
  • the content of the particles for adjusting the refractive index in the ultra-high refractive index layer 42 is appropriately adjusted so that the refractive index of the ultra-high refractive index layer 42 becomes an appropriate value, but particularly in the ultra-high refractive index layer 42. It is preferable that the proportion of the particles for adjusting the refractive index of the above is adjusted to be 5% by volume or more and 70% by volume or less.
  • the particles for adjusting the refractive index include particles containing one or more oxides selected from titanium, aluminum, cerium, yttrium, zirconium, niobium, and antimony.
  • the oxide include ZnO (refractive index 1.90), TiO 2 (refractive index 2.3 to 2.7), CeO 2 (refractive index 1.95), and Sb 2 O 5 (refractive index 1. 71), SnO 2 (refractive index 1.8-2.0), ITO (refractive index 1.95), Y 2 O 3 (refractive index 1.87), La 2 O 3 (refractive index 1.95), Examples thereof include ZrO 2 (refractive index 2.05) and Al 2 O 3 (refractive index 1.63).
  • the ultra-high refractive index layer 42 contains particles containing one or more oxides selected from titanium, aluminum, cerium, yttrium, zirconium, niobium, and antimony, as well as methacryl-functional silane and acrylic-functional silane. It is also preferable to contain at least one of them. In this case, the adhesion between the ultra-high refractive index layer 42 and the low refractive index layer 43 is improved.
  • the methacryl-functional silane include 3-methacryloxypropyltrimethoxysilane and 3-methacryloxypropylmethyldimethoxysilane.
  • the acrylic functional silane include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropylmethyldimethoxysilane.
  • the contents of the methacryl-functional silane and the acrylic-functional silane in the ultra-high refractive index layer 42 are not particularly limited, but the ratio of the total amount of the methacryl-functional silane and the acrylic-functional silane in the ultra-high refractive index layer 42 is 5 mass. It is preferably in the range of% or more and 30% by mass or less. When the ratio is 5% by mass or more, the adhesion between the ultra-high refractive index layer 42 and the low refractive index layer 43 is sufficiently high, and when the ratio is 30% by mass or less, the ultra-high refractive index layer 42 is contained. The cross-linking density of the ultra-high refractive index layer 42 is sufficiently improved, and the hardness of the ultra-high refractive index layer 42 is sufficiently high.
  • the main surface of the ultra-high refractive index layer 42 opposite to the high refractive index layer 41 is surface-treated before the low refractive index layer 43 is formed.
  • the surface treatment method include physical surface treatment such as plasma treatment, corona discharge treatment and frame treatment, and chemical surface treatment with a coupling agent, acid and alkali.
  • the ultrahigh refractive index layer 42 contains a cured product of a second ultraviolet curable resin containing at least one of an alkoxysilane having a reactive organic functional group and a partially hydrolyzed polymer thereof. good.
  • the ultraviolet curable resin composition contains a second ultraviolet curable resin.
  • Examples of the reactive organic functional group in the alkoxysilane having a reactive organic functional group include an acryloyl group, a methacryloyl group, a glycidyl group, an isocyanate group and the like.
  • Examples of the alkoxysilane having a reactive organic functional group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, and 3-.
  • Examples thereof include acryloxipropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-isocyanuppropyltriethoxysilane, and 3-isocyanuppropyltriethoxysilane.
  • the ultra-high refractive index layer 42 contains a cured product of the second ultraviolet curable resin
  • the alkoxysilane and its partial hydrolysis in the second ultraviolet curable resin with respect to the ultra-high refractive index layer 42 is preferably 3% by mass or more. This ratio is further preferably in the range of 5 to 10% by mass.
  • the scratch resistance of the antiglare film 1 and the antiglare low-reflection film 10 is further improved, and the adhesion between the layers is further improved.
  • the refractive index of the low refractive index layer 43 is lower than that of any of the transparent base material layer 2, the high refractive index layer 41, and the ultra-high refractive index layer 42.
  • the refractive index of the low refractive index layer 43 is preferably in the range of 1.30 or more and 1.40 or less, and the thickness (actual film thickness) thereof is preferably in the range of 70 nm or more and 110 nm or less.
  • the refractive index of the low refractive index layer 43 When the refractive index of the low refractive index layer 43 is in the above range, the reflectances of the antiglare film 1 and the antiglare low reflection film 10 due to the interference action between the high refractive index layer 41 and the ultrahigh refractive index layer 42. And further, when the thickness of the low refractive index layer 43 is in the above range, the color of the reflected light from the antiglare film 1 and the antiglare low reflection film 10 is appropriately adjusted.
  • the thickness of the low refractive index layer 43 is in the range of 70 nm or more and 130 nm or less, the color of the reflected light is sufficiently close to white.
  • the thickness of the low refractive index layer 43 is preferably in the range of 70 nm or more and 110 nm or less as described above. It is more preferable that the thickness is in the range of 70 nm or more and less than 80 nm.
  • the thickness of the low refractive index layer 43 is preferably in the range of 80 nm or more and 130 nm or less. It is more preferable if this thickness is in the range of more than 110 nm and 130 nm or less.
  • the low refractive index layer 43 is formed from, for example, a composition containing a binder material and particles for adjusting the refractive index used as needed.
  • the refractive index of the low refractive index layer 43 is appropriately adjusted depending on the combination of both, the compounding ratio, and the like.
  • a polymer having at least one of a silicon alkoxide resin, a saturated hydrocarbon and a polyether as a main chain for example, a UV curable resin composition, a thermosetting resin composition, etc.
  • a fluorine atom in the polymer chain examples thereof include a resin containing a unit containing.
  • examples thereof include oligomers and polymers which are condensates.
  • Specific examples of the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, tetra-iso-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, and tetra-tert-butoxysilane.
  • a reactive organic silicon compound having a plurality of groups (polymerizable double bond groups, etc.) that are reactively crosslinked by heat or ionizing radiation may be used as the binder material.
  • the molecular weight of this organic silicon compound is preferably 5000 or less.
  • Such reactive organic silicon compounds are obtained by reacting one-terminal vinyl-functional polysilane, both-terminal vinyl-functional polysilane, one-terminal vinyl-functional polysiloxane, both-terminal vinyl-functional polysiloxane, and these compounds. Examples thereof include vinyl-functional polysilane and vinyl-functional polysiloxane.
  • examples of the reactive organic silicon compound include (meth) acryloxysilane compounds such as 3- (meth) acryloxypropyltrimethoxysilane and 3- (meth) acryloxipropylmethyldimethoxysilane.
  • the particles for adjusting the refractive index it is preferable to use particles having a relatively low refractive index.
  • the material of the particles for adjusting the refractive index include silica, magnesium fluoride, lithium fluoride, aluminum fluoride, calcium fluoride, and sodium fluoride.
  • the particles for adjusting the refractive index include hollow particles. Hollow particles are particles having cavities surrounded by an outer shell. The refractive index of the hollow particles is preferably 1.20 to 1.45. If necessary, the particles for adjusting the refractive index are preferably surface-treated to improve the wettability with the binder material.
  • the particle size of the particles for adjusting the refractive index is sufficiently small, that is, the particles for adjusting the refractive index are so-called ultrafine particles, and in this case, the light transmittance of the low refractive index layer 43 is sufficiently maintained. Will be.
  • the particle size of the particles for adjusting the refractive index is particularly preferably in the range of 0.5 nm to 200 nm.
  • the particle size of the particles for adjusting the refractive index is the diameter of a circle (circle equivalent to the area) having the same area as the projected area calculated from the electron micrograph image of the particles.
  • the content of the particles for adjusting the refractive index in the low refractive index layer 43 is appropriately adjusted so that the value of the refractive index of the low refractive index layer 43 becomes an appropriate value, but particularly in the low refractive index layer 43. It is preferable that the proportion of the particles for adjusting the refractive index is adjusted to be 20 to 99% by volume.
  • the composition may further contain a water-repellent and oil-repellent material.
  • a water-repellent and oil-repellent material In this case, antifouling property can be imparted to the low refractive index layer 43.
  • a general wax-based material or the like can be used as the water-repellent and oil-repellent material.
  • a fluorine-containing compound when used, the removability of stains, fingerprints, etc. of the low refractive index layer 43 is particularly improved, and the frictional resistance on the surface of the low refractive index layer 43 is reduced to reduce the resistance of the low refractive index layer 43. Abrasion is improved.
  • a preferred embodiment of the low refractive index layer 43 is a polymer composed of a polymer of a mixture of alkoxysilane and alkoxysilane having a fluorocarbon skeleton, and containing hollow silica particles.
  • the effects of ensuring a low refractive index, imparting an antifouling function, and imparting chemical resistance are obtained, which is preferable.
  • the above-mentioned alkoxysilane include polymethoxysilane.
  • trimethoxysilyld decafluorohexane and the like can be exemplified.
  • a mixture of an alkoxysilane and an alkoxysilane having a fluorocarbon skeleton can be prepared by mixing an alkoxysilane having a fluorocarbon skeleton in a ratio of 5 to 1900 parts by mass with respect to 100 parts by mass of the alkoxysilane.
  • a polymer of a mixture of an alkoxysilane and an alkoxysilane having a fluorocarbon skeleton can be produced by, for example, a polymerization method such as a sol-gel method.
  • the molecular weight of the polymer of the mixture of alkoxysilane and alkoxysilane having a fluorocarbon skeleton is preferably 500 to 3000.
  • the hollow silica particles preferably have a refractive index of 1.20 to 1.45 and a particle size in the range of 0.5 nm to 200 nm, as described above.
  • the low refractive index layer 43 preferably contains hollow silica particles in a ratio of 5 to 233 parts by mass with respect to 100 parts by mass of a polymer of a mixture of alkoxysilane and an alkoxysilane having a fluorocarbon skeleton. ..
  • the composition as described above is applied on the ultrahigh refractive index layer 42, and the composition is further heated, humidified, irradiated with ultraviolet rays, irradiated with electron beams, etc. according to the properties of the binder material. It can be formed by being cured by being treated.
  • the antiglare film 1 and the antiglare low reflection film 10 can be provided with an unevenness adjusting layer.
  • the unevenness adjusting layer adjusts the degree of unevenness on the surface of the antiglare layer 3 to adjust the antiglare property and the reflectivity of the antiglare film 1 and the antiglare low reflection film 10.
  • Example 1 A light-transmitting transparent base material layer (thickness 80 ⁇ m triacetyl cellulose resin film, manufactured by Fuji Film Co., Ltd., TD80UL) is prepared, and a composition for an antiglare layer having the composition shown below is applied to one side of the transparent base material film. It was applied to form a coating film. Next, the formed coating film is dried in a circulating air dryer at 80 ° C. for 1 minute to evaporate the solvent in the coating film, and the coating film is irradiated with ultraviolet rays so that the integrated light amount becomes 150 mJ / cm 2. By curing, an antiglare layer having a thickness of 5 ⁇ m (when cured) was formed, and an antiglare film according to Example 1 was produced.
  • Organic fine particles (acrylic-styrene copolymer particles, average primary particle diameter 3.5 ⁇ m, refractive index 1.555, manufactured by Sekisui Kasei Kogyo Co., Ltd.): 10 parts by mass Inorganic fine particles (fumed silica, octylsilane treatment; average primary particles Diameter 12 nm, Density: 2.2 g / cm 3 , manufactured by Nippon Aerodil Co., Ltd.): 2 parts by mass Pentaerythritol polyacrylate mixture with hydroxyl group concentration of 0.001 mmol / g or more and 0.15 mmol / g or less: 60 parts by mass Urethane acrylate (product name) : Luxidia V-4000BA, manufactured by DIC Co., Ltd.): 40 parts by mass Irgacure 184 (manufactured by BASF Japan, photopolymerization initiator): 5 parts by mass Branched
  • the hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 0.0004 mmol / g or more and 0.06 mmol / g or less.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
  • urethane acrylate product name: Luxidia V-4000BA, manufactured by DIC Corporation
  • Irgacure 184 manufactured by BASF Japan, photopolymerization initiator
  • Propylene glycol monomethyl ether was diluted to 10% of the active ingredient (vehicle) to obtain an unevenness adjusting layer material.
  • the unevenness adjusting layer material was applied to the surface of the antiglare layer with a wire bar coater # 6 to form a coating film.
  • the formed coating film is dried in a circulating air dryer at 80 ° C. for 1 minute to evaporate the solvent in the coating film, and the coating film is irradiated with ultraviolet rays so that the integrated light amount becomes 150 mJ / cm 2. It was cured to form a 0.9 ⁇ m unevenness adjusting layer.
  • a high refractive index layer was formed as a third layer on the surface of the unevenness adjusting layer.
  • the acrylic ultraviolet curable resin (“Seika Beam MD-2 Clear” manufactured by Dainichi Seika Kogyo Co., Ltd.) is used for the total amount of the acrylic ultraviolet curable resin and the high refractive index particles.
  • the active ingredient (solid content) 60% by mass) is mixed with titanium oxide particles (“760T” manufactured by Teika Co., Ltd., dispersion solvent: toluene, solid content 48% by mass) as high refractive index particles so as to be 40% by mass.
  • the high refractive index layer has a refractive index of 1.63 and a film thickness of 60 nm.
  • an ultra-high refractive index layer was formed as a fourth layer on the surface of the high refractive index layer.
  • the acrylic ultraviolet curable resin (“Seika Beam MD-2 Clear” manufactured by Dainichi Seika Kogyo Co., Ltd.) is used for the total amount of the acrylic ultraviolet curable resin and the high refractive index particles.
  • Active ingredient solid content 60% by mass
  • titanium oxide particles (“760T” manufactured by Teika Co., Ltd., dispersion solvent: toluene, solid content 48% by mass) as high refractive index particles so as to be 70% by mass.
  • the high refractive index layer has a refractive index of 1.76 and a film thickness of 130 nm.
  • a low refractive index layer was formed as a fifth layer on the ultrahigh refractive index layer.
  • 58% by mass of hollow silica fine particle sol (“Thruria 4320” manufactured by JGC Catalysts and Chemicals Co., Ltd., solvent-dispersed sol, solid content 20%) was added to the total amount of the low refractive index layer material.
  • This low refractive index layer material is applied with a wire bar coater # 3 to form a coating film having a thickness of 90 nm, left at 120 ° C. for 1 minute to dry, and then the coating film is dried at 120 ° C. for 5 minutes under a nitrogen atmosphere. It was formed by curing by UV irradiation (500 mJ / cm 2).
  • the high refractive index layer has a refractive index of 1.37 and a film thickness of 90 nm.
  • an antireflection member having a structure in which a transparent base material layer, an antiglare layer, an unevenness adjusting layer, a high refractive index layer, an ultrahigh refractive index layer, and a low refractive index layer are laminated in this order was obtained.
  • Example 2 Prevention in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the pentaerythritol polyacrylate mixture having a hydroxyl group concentration of 1.05 mmol / g.
  • a glare film was created.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
  • Example 3 Prevention in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the pentaerythritol polyacrylate mixture having a hydroxyl group concentration of 2.80 mmol / g. A glare film was created.
  • the hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 1.68 mmol / g.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
  • Example 4 Prevention in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the pentaerythritol polyacrylate mixture having a hydroxyl group concentration of 3.85 mmol / g. A glare film was created.
  • the hydroxyl group concentration of the binder resin of this antiglare layer composition is 2.31 mmol / g as a calculated value.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
  • Example 5 The same as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 0.63 mmol / g. An antiglare film was created.
  • the hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 0.38 mmol / g.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
  • Example 6 The same as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 1.00 mmol / g. An antiglare film was created.
  • the hydroxyl group concentration of the binder resin of this antiglare layer composition is a calculated value of 0.60 mmol / g.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
  • Example 7 The same as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 2.10 mmol / g.
  • An antiglare film was created.
  • the hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 1.26 mmol / g.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
  • the pentaerythritol polyacrylate mixture was a dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 0.27 mmol / g, and the organic fine particles were organic fine particles (acrylic-styrene copolymer particles, average primary particle diameter 3.5 ⁇ m, refractive index 1.525).
  • An antiglare film was prepared in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the composition was replaced with (manufactured by Sekisui Kasei Kogyo Co., Ltd.).
  • the hydroxyl group concentration of the binder resin of this antiglare layer composition is a calculated value of 0.16 mmol / g.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
  • the refractive index of the organic fine particles is lowered by making the ratio of the acrylic component of the acrylic-styrene copolymer particles higher than that of Examples 1 to 7, whereby the density of the acrylic component is higher than the density of the styrene component. Because of the larger size, the density of organic fine particles is also higher. It is considered that the polarity of the organic fine particles is higher than that of Example 1 due to the increase in the components of the acrylic resin, but the hydroxyl group concentration of the binder resin (A) is also higher than that of Example 1.
  • the pentaerythritol polyacrylate mixture was a dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 0.63 mmol / g, and the organic fine particles were organic fine particles (acrylic-styrene copolymer particles, average primary particle diameter 3.5 ⁇ m, refractive index 1.525).
  • An antiglare film was prepared in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the composition was replaced with (manufactured by Sekisui Kasei Kogyo Co., Ltd.).
  • the hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 0.38 mmol / g.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.025.
  • Example 1 Anti-glare as in Example 1 except that the organic fine particles were replaced with organic fine particles (acrylic-styrene copolymer particles, average primary particle diameter 3.5 ⁇ m, refractive index 1.525, manufactured by Sekisui Plastics Co., Ltd.).
  • An antiglare film was prepared in the same manner as in Example 1 except that the layer composition was prepared.
  • the binder hydroxyl group concentration of this antiglare composition is calculated to be 0.0004 mmol / g or more and 0.06 mmol / g or less.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.025.
  • the refractive index of the organic fine particles is lowered by making the ratio of the acrylic component of the acrylic-styrene copolymer particles higher than that of Examples 1 to 7.
  • the density of the acrylic component is higher than that of the styrene component, so that the density of the organic fine particles is also higher.
  • the polarity of the organic fine particles is higher than that of Example 1 due to the increase in the components of the acrylic resin, but since the hydroxyl group concentration of the binder resin (A) is the same as that of Example 1, the organic fine particles are considered to be higher.
  • Example 2 The same as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the pentaerythritol polyacrylate mixture having a hydroxyl group concentration of 4.9 mmol / g. An antiglare film was created.
  • the hydroxyl group concentration of the binder resin of this antiglare layer composition is 2.94 mmol / g as a calculated value.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
  • the pentaerythritol polyacrylate mixture was a dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 2.1 mmol / g, and the organic fine particles were organic fine particles (acrylic-styrene copolymer particles, average primary particle diameter 3.5 ⁇ m, refractive index 1.525).
  • An antiglare film was prepared in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the composition was replaced with (manufactured by Sekisui Kasei Kogyo Co., Ltd.).
  • the hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 1.26 mmol / g.
  • the absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.025.
  • Ra Arithmetic mean roughness of the surface of the antiglare layer, which is a value obtained by a method conforming to JIS B 0601-1994, and was measured by a surface roughness measuring instrument: ET3000i / manufactured by Kosaka Laboratory Co., Ltd. ..
  • Sm The average interval of the unevenness on the surface of the antiglare layer, which is a value obtained by a method conforming to JIS B 0601-1994, and was measured by a surface roughness measuring instrument: ET3000i / manufactured by Kosaka Laboratory Co., Ltd. ..
  • T% Transmittance, preferably 90% or more and 100% or less.
  • the measurement was performed using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model number NDH2000) in accordance with JIS K 7361-1: 1997.
  • the ratio of the parallel light transmittance to the diffuse light transmittance preferably 1% or more and 20% or less.
  • the measurement was performed using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model number NDH2000) in accordance with JIS K 7361-1: 1997.
  • Visual reflectance SCI (Y) The visual sensitivity reflectance including the specular reflected light and the scattered reflected light, preferably 0.7 or less.
  • a spectrophotometer manufactured by Konica Minolta Japan Co., Ltd., product number
  • a black vinyl tape (Nitto Denko, No. 21) attached after painting the back surface of the transparent base material with black magic ink (registered trademark).
  • CM-3600d the visual reflectance SCI (Y) was measured under the conditions of a C light source, a 10 ° field, a measurement diameter of 4 mm ⁇ , and SCI.
  • Reflective chromaticity (a * , b * ) The back side of the surface coated with the antiglare layer composition of the transparent base material is painted with black magic ink (registered trademark), and black vinyl tape (Nitto Denko, No. 21) is attached to the spectrophotometer. Reflected chromaticity (a * , b * ) was measured using a colorimeter (manufactured by Konica Minolta Japan Co., Ltd., product number CM-3600d) under the conditions of C light source, 10 ° field, measurement diameter 4 mm ⁇ , and SCI. ..
  • SCI (a * ) is a red-green tint index including specularly reflected light and scattered reflected light, and is preferably in the range of -5 or more and 5 or less.
  • SCI (b * ) is a yellow-blue tint index including specularly reflected light and scattered reflected light, and is preferably in the range of -5 or more and 5 or less.
  • Anti-glare film 10 Anti-glare and low-reflection film 2 Transparent base material layer 3 Anti-glare layer 41 High refractive index layer 42 Ultra-high refractive index layer 43 Low refractive index layer A Binder resin B Organic fine particles C Inorganic fine particles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an antiglare film in which a reflection reducing layer that is less likely to reduce light reflection performance can be formed. This antiglare film 1 comprises, on at least one surface of a transparent base material layer 2, an antiglare layer 3 which contains a binder resin (A), and organic fine particles (B) and inorganic fine particles (C) dispersed in the binder resin (A). The absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is 0.005-0.25. The average primary particle diameter of the inorganic fine particles (C) is smaller than the average primary particle diameter of the organic fine particles (B). The arithmetic average roughness (Ra) of the surface of the antiglare layer 3 is in the range of 0.080-0.210 μm. The average interval (Sm) of the irregularities on the surface of the antiglare layer 3 is 0.100-0.200 μm.

Description

防眩フィルム及び防眩性且つ低反射性を有するフィルムAnti-glare film and anti-glare and low-reflection film
 本開示は、防眩フィルム及び防眩性且つ低反射性を有するフィルムに関する。より詳細には、透明基材層と、この透明基材層の少なくとも一方の面上に、バインダー樹脂に有機微粒子と無機微粒子とが分散された防眩層を有する防眩フィルムと、この防眩フィルムを用いた防眩性且つ低反射性を有するフィルムに関する。 The present disclosure relates to an antiglare film and a film having antiglare and low reflectivity. More specifically, an antiglare film having a transparent base material layer and an antiglare layer in which organic fine particles and inorganic fine particles are dispersed in a binder resin on at least one surface of the transparent base material layer, and the antiglare film. The present invention relates to a film having antiglare property and low reflectivity using a film.
 特許文献1には、防眩性フィルムが記載されている。この防眩性フィルムは、光透過性基材の少なくとも一方の面上に、表面に凹凸形状を有する防眩層を有している。前記防眩層は、2種以上の球状の微粒子が凝集した凝集体を含有している。防眩層の表面に前記凝集体により凸部が形成されて、前記防眩層の表面の凹凸形状が形成されている。また前記2種以上の球状の微粒子は、1種以上の有機微粒子及び1種以上の無機微粒子を少なくとも含んでいる。前記有機微粒子は、平均粒径が0.3~10.0μm、前記無機微粒子は、平均粒径が500nm~5.0μmである。 Patent Document 1 describes an antiglare film. This antiglare film has an antiglare layer having an uneven shape on the surface on at least one surface of the light transmissive base material. The antiglare layer contains an agglomerate in which two or more kinds of spherical fine particles are aggregated. A convex portion is formed on the surface of the antiglare layer by the aggregate, and an uneven shape on the surface of the antiglare layer is formed. Further, the two or more kinds of spherical fine particles include at least one kind or more organic fine particles and one or more kinds of inorganic fine particles. The organic fine particles have an average particle size of 0.3 to 10.0 μm, and the inorganic fine particles have an average particle size of 500 nm to 5.0 μm.
 特許文献1に記載の防眩性フィルムにおいて、防眩層の凹凸形状の表面上に反射低減層などの機能層を形成しようとした場合、防眩層の表面の凹凸形状の影響で、機能層がその機能を発揮しにくくなることがあった。 In the antiglare film described in Patent Document 1, when an attempt is made to form a functional layer such as a reflection reduction layer on the uneven surface of the antiglare layer, the functional layer is affected by the uneven shape of the surface of the antiglare layer. Sometimes it became difficult to perform its function.
 例えば、機能層が反射低減層である場合、防眩層の表面に反射低減層を形成すると、機能層の厚みが不均一になりやすく、反射低減層による光の反射抑制能が低下する場合があった。 For example, when the functional layer is a reflection reduction layer, if the reflection reduction layer is formed on the surface of the antiglare layer, the thickness of the functional layer tends to be non-uniform, and the light reflection suppression ability of the reflection reduction layer may decrease. there were.
特許第5974894号公報Japanese Patent No. 5974894
 本開示は、光の反射抑制能が低下しにくい反射低減層を形成しやすい防眩フィルム及び防眩性且つ低反射性を有するフィルムを提供することを目的とする。 An object of the present disclosure is to provide an antiglare film that easily forms a reflection reduction layer in which the light reflection suppression ability is less likely to decrease, and a film having antiglare and low reflection properties.
 本開示の一態様に係る防眩フィルムは、透明基材層と、この透明基材層の少なくとも一方の面上に、バインダー樹脂(A)と、このバインダー樹脂(A)に分散された有機微粒子(B)と無機微粒子(C)とを含有する防眩層を備える。前記バインダー樹脂(A)と前記有機微粒子(B)との屈折率の差の絶対値が0.005以上0.25以下である。前記無機微粒子(C)の平均一次粒子径が、前記有機微粒子(B)の平均一次粒子径よりも小さい。前記防眩層表面の算術平均粗さ(Ra)が0.080μm以上0.210μm以下の範囲であり、且つ、該防眩層表面の凹凸の平均間隔(Sm)が0.100μm以上0.200μm以下である。 The antiglare film according to one aspect of the present disclosure includes a binder resin (A) and organic fine particles dispersed in the binder resin (A) on at least one surface of the transparent base material layer and the transparent base material layer. An antiglare layer containing (B) and inorganic fine particles (C) is provided. The absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is 0.005 or more and 0.25 or less. The average primary particle size of the inorganic fine particles (C) is smaller than the average primary particle size of the organic fine particles (B). The arithmetic mean roughness (Ra) of the antiglare layer surface is in the range of 0.080 μm or more and 0.210 μm or less, and the average interval (Sm) of the irregularities on the antiglare layer surface is 0.100 μm or more and 0.200 μm. It is as follows.
 本開示の一態様に係る防眩性且つ低反射性を有するフィルムは、前記防眩フィルムにおける前記防眩層上に、高屈折率層と、超高屈折率層と、低屈折率層と、をこの順で備えている。高屈折率層は、屈折率が1.60以上1.70以下である。超高屈折率層は、屈折率が1.75以上1.90以下である。低屈折率層は、屈折率が1.30以上1.40以下である。 The film having antiglare property and low reflectivity according to one aspect of the present disclosure includes a high refractive index layer, an ultrahigh refractive index layer, and a low refractive index layer on the antiglare layer in the antiglare film. Are prepared in this order. The high refractive index layer has a refractive index of 1.60 or more and 1.70 or less. The ultra-high refractive index layer has a refractive index of 1.75 or more and 1.90 or less. The low refractive index layer has a refractive index of 1.30 or more and 1.40 or less.
図1は、本開示に係る防眩フィルムの一実施形態を示す断面図である。FIG. 1 is a cross-sectional view showing an embodiment of the antiglare film according to the present disclosure. 図2は、本開示に係る防眩フィルムの一実施形態を示し、一部を拡大した模式図である。FIG. 2 shows an embodiment of the antiglare film according to the present disclosure, and is a partially enlarged schematic view. 図3は、本開示に係る防眩性且つ低反射性を有するフィルムの一実施形態を示す断面図である。FIG. 3 is a cross-sectional view showing an embodiment of a film having antiglare and low reflectivity according to the present disclosure. 図4は、本開示に係る防眩性且つ低反射性を有するフィルムの一実施形態を示し、一部を拡大した模式図である。FIG. 4 shows an embodiment of a film having antiglare and low reflectivity according to the present disclosure, and is a partially enlarged schematic view. 図5は、本開示に係る防眩フィルムに対する比較例を示し、一部を拡大した模式図である。FIG. 5 shows a comparative example with respect to the antiglare film according to the present disclosure, and is a partially enlarged schematic view. 図6は、本開示に係る防眩性且つ低反射性を有するフィルムに対する比較例を示し、一部を拡大した模式図である。FIG. 6 shows a comparative example with respect to the film having antiglare property and low reflection property according to the present disclosure, and is a partially enlarged schematic view. 図7は、本開示に係る防眩性且つ低反射性を有するフィルムに対する他の比較例を示し、一部を拡大した模式図である。FIG. 7 shows another comparative example with respect to the film having antiglare property and low reflection property according to the present disclosure, and is a partially enlarged schematic view. 図8は、本開示に係る防眩フィルムに対する他の比較例を示し、一部を拡大した模式図である。FIG. 8 shows another comparative example with respect to the antiglare film according to the present disclosure, and is a partially enlarged schematic view. 図9は、本開示に係る防眩性且つ低反射性を有するフィルムに対する他の比較例を示し、一部を拡大した模式図である。FIG. 9 shows another comparative example with respect to the film having antiglare property and low reflection property according to the present disclosure, and is a partially enlarged schematic view.
 (1)概要
 本実施形態の防眩フィルム1は、透明基材層2と、透明基材層2の少なくとも一方の面上に、バインダー樹脂(A)と、このバインダー樹脂(A)に分散された有機微粒子(B)と無機微粒子(C)とを含有する防眩層3を備える(図1参照)。バインダー樹脂(A)と前記有機微粒子(B)との屈折率の差の絶対値が0.005以上0.25以下である。無機微粒子(C)の平均一次粒子径が、有機微粒子(B)の平均一次粒子径よりも小さい。防眩層3表面の算術平均粗さ(Ra)が0.080μm以上0.210μm以下の範囲であり、且つ防眩層3表面の凹凸の平均間隔(Sm)が0.100μm以上0.200μm以下である。
(1) Outline The antiglare film 1 of the present embodiment is dispersed in a binder resin (A) and the binder resin (A) on at least one surface of the transparent base material layer 2 and the transparent base material layer 2. The antiglare layer 3 containing the organic fine particles (B) and the inorganic fine particles (C) is provided (see FIG. 1). The absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is 0.005 or more and 0.25 or less. The average primary particle size of the inorganic fine particles (C) is smaller than the average primary particle size of the organic fine particles (B). The arithmetic mean roughness (Ra) on the surface of the antiglare layer 3 is in the range of 0.080 μm or more and 0.210 μm or less, and the average interval (Sm) of the unevenness on the surface of the antiglare layer 3 is 0.100 μm or more and 0.200 μm or less. Is.
 防眩フィルム1は、バインダー樹脂(A)に有機微粒子(B)と無機微粒子(C)とが分散された防眩層3を有するため、バインダー樹脂(A)の有機微粒子(B)が存在する部分が凸となりやすく、バインダー樹脂(A)の有機微粒子(B)が存在しない部分が凹となりやすく、有機微粒子(B)と無機微粒子(C)とにより、防眩層3の表面を凹凸形状に形成することができる。またバインダー樹脂(A)と前記有機微粒子(B)との屈折率の差の絶対値が0.005以上0.25以下であるため、防眩層3の表面の凹凸との相互作用で、防眩層3が防眩性を有することになる。「防眩性」とは、入射光が凹凸のある面に乱反射することにより、外光が映り込むために生じる視認性の低下を抑制する性質である。したがって、防眩フィルム1は、ディスプレイの表面などに設けることにより、蛍光灯や外光などの映りこみを軽減させることができ、視認性を向上させることができる。 Since the antiglare film 1 has the antiglare layer 3 in which the organic fine particles (B) and the inorganic fine particles (C) are dispersed in the binder resin (A), the organic fine particles (B) of the binder resin (A) are present. The portion of the binder resin (A) is likely to be convex, and the portion of the binder resin (A) in which the organic fine particles (B) are not present is likely to be concave. Can be formed. Further, since the absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is 0.005 or more and 0.25 or less, it is prevented by the interaction with the unevenness of the surface of the antiglare layer 3. The glare layer 3 has antiglare properties. The "anti-glare property" is a property that suppresses a decrease in visibility caused by reflection of external light due to diffuse reflection of incident light on an uneven surface. Therefore, by providing the antiglare film 1 on the surface of the display or the like, it is possible to reduce the reflection of fluorescent lamps, external light, and the like, and it is possible to improve the visibility.
 また防眩フィルム1は、防眩層3の表面の算術平均粗さ(Ra)が0.080μm以上0.210μm以下の範囲であり、且つ防眩層3表面の凹凸の平均間隔(Sm)が0.100μm以上0.200μm以下であるため、防眩層3の表面に形成される機能層が、防眩層3の表面の凹の部分と凸の部分とに同じ厚みで形成されやすくなる。したがって、機能層が反射低減層である場合には、反射低減層の厚みが均一に形成されているので、反射低減層の機能、すなわち、入射光の反射を抑えるという機能が損なわれにくい。 Further, in the antiglare film 1, the arithmetic average roughness (Ra) of the surface of the antiglare layer 3 is in the range of 0.080 μm or more and 0.210 μm or less, and the average spacing (Sm) of the irregularities on the surface of the antiglare layer 3 is. Since it is 0.100 μm or more and 0.200 μm or less, the functional layer formed on the surface of the antiglare layer 3 is likely to be formed on the concave portion and the convex portion of the surface of the antiglare layer 3 with the same thickness. Therefore, when the functional layer is a reflection reduction layer, the thickness of the reflection reduction layer is uniformly formed, so that the function of the reflection reduction layer, that is, the function of suppressing the reflection of incident light is not easily impaired.
 さらに、無機微粒子(C)の平均一次粒子径が、有機微粒子(B)の平均一次粒子径よりも小さいことによって、防眩層3表面の算術平均粗さ(Ra)及び防眩層3表面の凹凸の平均間隔(Sm)が所望の範囲に形成しやすくなる。 Further, since the average primary particle size of the inorganic fine particles (C) is smaller than the average primary particle size of the organic fine particles (B), the arithmetic mean roughness (Ra) of the surface of the antiglare layer 3 and the surface of the antiglare layer 3 The average spacing (Sm) of the unevenness can be easily formed in a desired range.
 防眩フィルム1において、前記バインダー樹脂(A)の水酸基濃度が0mmol/gより大きく2.50mmol/g以下であることが好ましい。この場合、有機微粒子(B)及び無機微粒子(C)の凝集状態が制御されやすくなり、防眩層3の表面の算術平均粗さ(Ra)及び凹凸の平均間隔(Sm)がコントロールしやすい。 In the antiglare film 1, it is preferable that the hydroxyl group concentration of the binder resin (A) is larger than 0 mmol / g and 2.50 mmol / g or less. In this case, the aggregated state of the organic fine particles (B) and the inorganic fine particles (C) can be easily controlled, and the arithmetic mean roughness (Ra) and the average spacing (Sm) of the irregularities on the surface of the antiglare layer 3 can be easily controlled.
 防眩フィルム1において、前記バインダー樹脂(A)は水酸基含有アクリレートを含有することが好ましい。この場合、前記バインダー樹脂(A)の水酸基濃度を調整しやすい。 In the antiglare film 1, the binder resin (A) preferably contains a hydroxyl group-containing acrylate. In this case, it is easy to adjust the hydroxyl group concentration of the binder resin (A).
 防眩フィルム1において、前記有機微粒子(B)の平均一次粒子径が2μm以上7μm以下であることが好ましい。この場合、適度な凹凸形状が防眩層表面に形成されやすくなり、防眩フィルムの防眩性能が不充分になりにくい。 In the antiglare film 1, it is preferable that the average primary particle diameter of the organic fine particles (B) is 2 μm or more and 7 μm or less. In this case, an appropriate uneven shape is likely to be formed on the surface of the antiglare layer, and the antiglare performance of the antiglare film is unlikely to be insufficient.
 防眩フィルム1において、前記無機微粒子(C)の平均一次粒子径が1nm以上200nm以下であることが好ましい。この場合、防眩層中で有機微粒子(B)の凝集体が形成されやすく、また有機微粒子(B)と透明基材層2との間に無機微粒子(C)が入り込みやすく、防眩フィルム1が防眩性を得やすくなる。 In the antiglare film 1, the average primary particle diameter of the inorganic fine particles (C) is preferably 1 nm or more and 200 nm or less. In this case, aggregates of organic fine particles (B) are likely to be formed in the antiglare layer, and inorganic fine particles (C) are likely to enter between the organic fine particles (B) and the transparent base material layer 2, so that the antiglare film 1 However, it becomes easier to obtain anti-glare properties.
 防眩フィルム1において、前記無機微粒子(C)がフュームドシリカを含んでいることが好ましい。この場合、無機微粒子(C)は、有機微粒子(B)に対して親和性が高くすることができ、有機微粒子(B)と透明基材層2との間に無機微粒子(C)が入り込みやすくなる。 In the antiglare film 1, it is preferable that the inorganic fine particles (C) contain fumed silica. In this case, the inorganic fine particles (C) can have a high affinity for the organic fine particles (B), and the inorganic fine particles (C) can easily enter between the organic fine particles (B) and the transparent base material layer 2. Become.
 防眩性且つ低反射性を有するフィルム10は、前記防眩フィルムにおける前記防眩層上に、屈折率が1.60以上1.70以下である高屈折率層と、屈折率が1.75以上1.90以下である超高屈折率層と、屈折率が1.30以上1.40以下である低屈折率層と、をこの順で備えている。この場合、フィルム10が防眩性と低反射性とを得やすい。 The film 10 having antiglare and low reflectance has a high refractive index layer having a refractive index of 1.60 or more and 1.70 or less and a refractive index of 1.75 on the antiglare layer of the antiglare film. An ultra-high refractive index layer having a refractive index of 1.90 or less and a low refractive index layer having a refractive index of 1.30 or more and 1.40 or less are provided in this order. In this case, the film 10 can easily obtain antiglare property and low reflectivity.
 (2)詳細
 (防眩フィルム)
 防眩フィルム1は、透明基材層2の少なくとも一方の面上に、バインダー樹脂(A)に有機微粒子(B)と無機微粒子(C)とが分散された防眩層3を有する(図1参照)。防眩層3は、透明基材層2の厚み方向に対向する二面のうち、片方の面のみに形成されていてもよいし、両方の面に形成されていてもよい。防眩層3は、バインダー樹脂(A)中に有機微粒子(B)と無機微粒子(C)とを含有して形成されている。
(2) Details (anti-glare film)
The antiglare film 1 has an antiglare layer 3 in which organic fine particles (B) and inorganic fine particles (C) are dispersed in a binder resin (A) on at least one surface of the transparent base material layer 2 (FIG. 1). reference). The antiglare layer 3 may be formed on only one of the two surfaces of the transparent base material layer 2 facing each other in the thickness direction, or may be formed on both surfaces. The antiglare layer 3 is formed by containing organic fine particles (B) and inorganic fine particles (C) in a binder resin (A).
 (防眩性且つ低反射性を有するフィルム)
 防眩性且つ低反射性を有するフィルム(以下、単に「防眩低反射フィルム」という場合がある)10は、防眩フィルム1が有する防眩層3上に、高屈折率層41と、超高屈折率層42と、低屈折率層43と、をこの順で備えている。
(Film with anti-glare and low reflectivity)
The film having antiglare and low reflectance (hereinafter, may be simply referred to as “antiglare low reflection film”) 10 has a high refractive index layer 41 and a super-refractive index layer 41 on the antiglare layer 3 of the antiglare film 1. The high refractive index layer 42 and the low refractive index layer 43 are provided in this order.
 (透明基材層)
 透明基材層2は、透明で、防眩層3及び反射低減層4を支持するフィルムである。ここで、透明とは半透明を含み、光透過率が80%以上100%以下であり、好ましくは85%以上100%以下であり、より好ましくは90%以上100%以下である。透明基材層2の光透過率が90%以上であると、光学フィルムとして好適に使用できるという利点がある。
(Transparent base material layer)
The transparent base material layer 2 is a transparent film that supports the antiglare layer 3 and the reflection reduction layer 4. Here, the term "transparent" includes translucency, and the light transmittance is 80% or more and 100% or less, preferably 85% or more and 100% or less, and more preferably 90% or more and 100% or less. When the light transmittance of the transparent base material layer 2 is 90% or more, there is an advantage that it can be suitably used as an optical film.
 透明基材層2は、合成樹脂を含む材料で形成することができる。合成樹脂としては、例えば、ポリエステル(PET)、セルローストリアセテート(TAC)などが好ましく、これにより、透明基材層2は機械的強度に優れ、また光学的特性にも優れる。合成樹脂としては、PET及びTACの他に、セルロースジアセテート、セルロースアセテートブチレート、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリメタクリル酸メチル、ポリカーボネート、又は、ポリウレタン等の熱可塑性樹脂が挙げられる。 The transparent base material layer 2 can be formed of a material containing a synthetic resin. As the synthetic resin, for example, polyester (PET), cellulose triacetate (TAC), or the like is preferable, whereby the transparent base material layer 2 is excellent in mechanical strength and also excellent in optical properties. In addition to PET and TAC, synthetic resins include cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyether sulphon, poly sulphon, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyetherketone, and poly. Examples thereof include thermoplastic resins such as methyl methacrylate, polycarbonate, and polyurethane.
 ポリエステルフィルムのうち、特に、ポリエチレンテレフタレート(PET)やポリエチレンナフタレートの2軸延伸フィルムは、優れた機械的特性、耐熱性、耐薬品性等を有するため、磁気テープ、強磁性薄膜テープ、包装用フィルム、電子部品用フィルム、電気絶縁フィルム、ラミネート用フィルム、ディスプレイ等の表面に貼るフィルム、各種部材の保護用フィルム等の素材として好適である。特に、ディスプレイ用途に関しては液晶表示装置の部材であるプリズムレンズシート、タッチパネル、バックライト等のベースフィルムや、テレビの防眩フィルム1及び防眩低反射フィルム10のベースフィルム、プラズマテレビの前面光学フィルターに用いられる防眩フィルム1及び防眩低反射フィルム10、近赤外線カットフィルム、電磁波シールドフィルムのベースフィルム等として好適である。 Among polyester films, polyethylene terephthalate (PET) and polyethylene naphthalate biaxially stretched films have excellent mechanical properties, heat resistance, chemical resistance, etc., and therefore are used for magnetic tapes, ferromagnetic thin film tapes, and packaging. It is suitable as a material for films, films for electronic parts, electrically insulating films, laminating films, films to be attached to the surface of displays, and protective films for various members. In particular, for display applications, base films such as prism lens sheets, touch panels, and backlights, which are members of liquid crystal display devices, base films for antiglare film 1 and antiglare low reflection film 10 for televisions, and front optical filters for plasma televisions. It is suitable as an antiglare film 1 and an antiglare low reflection film 10, a near infrared cut film, a base film of an electromagnetic wave shielding film, and the like.
 ポリエステルとして、例えば、テレフタル酸、イソフタル酸、2,6-ナフタリンジカルボン酸、4,4′-ジフェニルジカルボン酸等の芳香族ジカルボン酸成分と、エチレングリコール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール等のグリコール成分とが反応することで生成する芳香族ポリエステルが好ましく、特に、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタリンジカルボキシレートなどが好ましい。またポリエステルは、前記例示した複数の成分等の共重合ポリエステルであってもよい。 Examples of the polyester include aromatic dicarboxylic acid components such as terephthalic acid, isophthalic acid, 2,6-naphthalindicarboxylic acid, and 4,4'-diphenyldicarboxylic acid, and ethylene glycol, 1,4-butanediol, 1,4-. Aromatic polyesters produced by reacting with glycol components such as cyclohexanedimethanol and 1,6-hexanediol are preferable, and polyethylene terephthalate, polyethylene-2,6-naphthalindicarboxylate and the like are particularly preferable. Further, the polyester may be a copolymerized polyester containing a plurality of the above-exemplified components.
 透明基材層2は有機または無機の粒子を含有してもよい。この場合、透明基材層2の巻き取り性、搬送性等が向上する。このような粒子として、炭酸カルシウム粒子、酸化カルシウム粒子、酸化アルミニウム粒子、カオリン、酸化珪素粒子、酸化亜鉛粒子、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、尿素樹脂粒子、メラミン樹脂粒子、架橋シリコーン樹脂粒子等が挙げられる。透明基材層2は、着色剤、帯電防止剤、紫外線吸収剤、酸化防止剤、潤滑剤、触媒、他の樹脂等も、透明性を損なわない範囲で含有してもよい。 The transparent base material layer 2 may contain organic or inorganic particles. In this case, the takeability, transportability, etc. of the transparent base material layer 2 are improved. Examples of such particles include calcium carbonate particles, calcium oxide particles, aluminum oxide particles, kaolin, silicon oxide particles, zinc oxide particles, crosslinked acrylic resin particles, crosslinked polystyrene resin particles, urea resin particles, melamine resin particles, and crosslinked silicone resin particles. And so on. The transparent base material layer 2 may also contain a colorant, an antistatic agent, an ultraviolet absorber, an antioxidant, a lubricant, a catalyst, another resin and the like as long as the transparency is not impaired.
 透明基材層2のヘイズは3%以下であることが好ましく、この場合、防眩フィルム1及び防眩低反射フィルム10を通した映像等の視認性が向上し、防眩フィルム1及び防眩低反射フィルム10が光学的用途のフィルムとして特に適したものとなる。ヘイズが1.5%以下であれば更に好ましい。 The haze of the transparent base material layer 2 is preferably 3% or less. In this case, the visibility of the image or the like passed through the antiglare film 1 and the antiglare low reflection film 10 is improved, and the antiglare film 1 and the antiglare film 1 and the antiglare film 10 are improved in visibility. The low-reflection film 10 is particularly suitable as a film for optical applications. It is more preferable that the haze is 1.5% or less.
 透明基材層2の厚みは特に制限されないが、20μm以上200μm以下の範囲であることが好ましい。特に透明基材層2の厚みが25μm以上100μm以下であると、防眩フィルム1及び防眩低反射フィルム10の薄型化、軽量化が可能となり、また防眩フィルム1及び防眩低反射フィルム10の両表面(表裏)における干渉の発生が抑制され、更に透明基材層2が加熱される際の熱収縮が抑制されて透明基材層2の熱収縮による加工性の悪化等の不具合が抑制される。 The thickness of the transparent base material layer 2 is not particularly limited, but is preferably in the range of 20 μm or more and 200 μm or less. In particular, when the thickness of the transparent base material layer 2 is 25 μm or more and 100 μm or less, the antiglare film 1 and the antiglare low reflection film 10 can be made thinner and lighter, and the antiglare film 1 and the antiglare low reflection film 10 can be made thinner and lighter. The occurrence of interference on both surfaces (front and back) is suppressed, and the heat shrinkage when the transparent base material layer 2 is heated is suppressed, and problems such as deterioration of workability due to the heat shrinkage of the transparent base material layer 2 are suppressed. Will be done.
 透明基材層2の表面反射率は4%以上6%以下の範囲であることが好ましい。透明基材層2の表面反射率がこの範囲であると、透明基材層2の両表面(表裏)における干渉の発生が抑制されて低反射率特性を確保しやすくなるものである。 The surface reflectance of the transparent base material layer 2 is preferably in the range of 4% or more and 6% or less. When the surface reflectance of the transparent base material layer 2 is within this range, the occurrence of interference on both surfaces (front and back surfaces) of the transparent base material layer 2 is suppressed, and it becomes easy to secure low reflectance characteristics.
 本実施形態において、透明基材層2の表面には易接着処理が施されていることが好ましい。易接着処理としては、プラズマ処理、コロナ処理等のドライ処理、アルカリ処理等の化学処理、易接着層を形成するコーティング処理等があげられる。易接着処理は、防眩フィルム1及び防眩低反射フィルム10の材料である透明基材層2の単独膜がロール状に巻き回されるなどして重ねられる場合のブロッキングの発生を抑制したり滑性を向上したりするために施される。上記の易接着処理の中でも、透明基材層2の表面(第一の主面上)に易接着層を積層することが好ましい。この場合、透明基材層2と高屈折率層41との間に易接着層が介在していることが好ましい。更に易接着処理は、透明基材層2と防眩層3との間の接着性向上のためにも利用され得る。易接着層の材質に制限はないが、特に、ポリエステル系樹脂、アクリル系樹脂等から形成されることが好ましい。易接着層の表面での界面反射によって防眩フィルム1及び防眩低反射フィルム10の反射率が増大することを抑制するためには、易接着層の屈折率が透明基材層2の屈折率及び防眩層3の屈折率に近いことが望ましく、特に、1.58~1.75の範囲であることが好ましい。易接着層の光学膜厚が120~160nmの範囲であることが好ましい。この場合、透明基材層2と高屈折率層41との間の高い密着性を確保しつつ、易接着層が存在することによる反射率の増大や干渉ムラの発生が抑制される。 In the present embodiment, it is preferable that the surface of the transparent base material layer 2 is subjected to an easy-adhesion treatment. Examples of the easy-adhesion treatment include plasma treatment, dry treatment such as corona treatment, chemical treatment such as alkali treatment, and coating treatment for forming an easy-adhesion layer. The easy-adhesion treatment suppresses the occurrence of blocking when the single film of the transparent base material layer 2 which is the material of the antiglare film 1 and the antiglare low-reflection film 10 is wound in a roll shape and is laminated. It is applied to improve slipperiness. Among the above-mentioned easy-adhesion treatments, it is preferable to laminate the easy-adhesion layer on the surface (on the first main surface) of the transparent base material layer 2. In this case, it is preferable that an easy-adhesion layer is interposed between the transparent base material layer 2 and the high refractive index layer 41. Further, the easy-adhesion treatment can be used to improve the adhesiveness between the transparent base material layer 2 and the antiglare layer 3. The material of the easy-adhesion layer is not limited, but it is particularly preferable that the layer is formed of a polyester resin, an acrylic resin, or the like. In order to suppress the increase in the reflectance of the antiglare film 1 and the antiglare low reflection film 10 due to interfacial reflection on the surface of the easy-adhesion layer, the refractive index of the easy-adhesion layer is the refractive index of the transparent base material layer 2. It is desirable that the refractive index is close to that of the antiglare layer 3, and particularly preferably in the range of 1.58 to 1.75. The optical film thickness of the easy-adhesion layer is preferably in the range of 120 to 160 nm. In this case, while ensuring high adhesion between the transparent base material layer 2 and the high refractive index layer 41, an increase in reflectance and occurrence of interference unevenness due to the presence of the easy-adhesion layer are suppressed.
 (防眩層)
 防眩層3は、バインダー樹脂(A)中に有機微粒子(B)と無機微粒子(C)とを分散して形成されている。有機微粒子(B)と無機微粒子(C)とは、バインダー樹脂(A)中に均一に分散されておらず、複数の有機微粒子(B)と複数の無機微粒子(C)とが、各々、適度に偏って分散している。特に、複数の有機微粒子(B)は二次粒子を形成しており、この二次粒子により、防眩層3の表面(透明基材層2と向き合っていない面)が凹凸形状に形成されている。すなわち、複数の有機微粒子(B)の二次粒子が存在する部分に対応して防眩層3の表面の凸が形成されやすく、複数の有機微粒子(B)の二次粒子が存在しない部分に対応して防眩層3の表面の凹が形成されやすい。
(Anti-glare layer)
The antiglare layer 3 is formed by dispersing organic fine particles (B) and inorganic fine particles (C) in a binder resin (A). The organic fine particles (B) and the inorganic fine particles (C) are not uniformly dispersed in the binder resin (A), and the plurality of organic fine particles (B) and the plurality of inorganic fine particles (C) are appropriately contained in each. It is unevenly distributed. In particular, the plurality of organic fine particles (B) form secondary particles, and the secondary particles form the surface of the antiglare layer 3 (the surface not facing the transparent base material layer 2) in an uneven shape. There is. That is, the surface convexity of the antiglare layer 3 is likely to be formed corresponding to the portion where the secondary particles of the plurality of organic fine particles (B) are present, and the portion where the secondary particles of the plurality of organic fine particles (B) are not present. Correspondingly, recesses on the surface of the antiglare layer 3 are likely to be formed.
 防眩層3表面の算術平均粗さ(Ra)は、0.080μm以上0.210μm以下の範囲であり、且つ防眩層3表面の凹凸の平均間隔(Sm)は、0.100μm以上0.200μm以下である。算術平均粗さ(Ra)及び凹凸の平均間隔(Sm)は、JIS B 0601-1994に準拠する方法で測定される。防眩層3表面の算術平均粗さ(Ra)及び防眩層3表面の凹凸の平均間隔(Sm)が、各々、上記所定の範囲であれば、反射低減層の厚みを均一に形成しやすくなって、入射光の反射を抑えるという反射低減層4の機能が損なわれにくい。 The arithmetic mean roughness (Ra) on the surface of the antiglare layer 3 is in the range of 0.080 μm or more and 0.210 μm or less, and the average interval (Sm) of the unevenness on the surface of the antiglare layer 3 is 0.100 μm or more and 0. It is 200 μm or less. The arithmetic average roughness (Ra) and the average spacing (Sm) of the unevenness are measured by a method according to JIS B 0601-1994. If the arithmetic average roughness (Ra) on the surface of the antiglare layer 3 and the average spacing (Sm) of the irregularities on the surface of the antiglare layer 3 are each within the above-mentioned predetermined ranges, it is easy to uniformly form the thickness of the reflection reduction layer. Therefore, the function of the reflection reduction layer 4 that suppresses the reflection of the incident light is not easily impaired.
 防眩層3表面の算術平均粗さ(Ra)は、0.080μm以上0.200μm以下の範囲であることがより好ましく、0.080μm以上0.130μm以下の範囲であることがさらに好ましい。前記算術平均粗さ(Ra)が、0.080μmより小さい場合には、防眩層3に反射低減層4を積層した場合に、防眩層3の表面に形成した凹凸が反射低減層4によって埋まりやすく、防眩性が発現しにくくなる可能性があり、前記算術平均粗さ(Ra)が0.210μmより大きい場合には、防眩層3表面の粗さが大きくなりすぎて、防眩層3に反射低減層4を積層した場合に反射低減層4の厚みにムラが生じやすい。 The arithmetic mean roughness (Ra) of the surface of the antiglare layer 3 is more preferably in the range of 0.080 μm or more and 0.200 μm or less, and further preferably in the range of 0.080 μm or more and 0.130 μm or less. When the arithmetic mean roughness (Ra) is smaller than 0.080 μm, when the reflection reduction layer 4 is laminated on the antiglare layer 3, the unevenness formed on the surface of the antiglare layer 3 is formed by the reflection reduction layer 4. It is easy to be buried and it may be difficult to develop antiglare property. When the arithmetic mean roughness (Ra) is larger than 0.210 μm, the surface roughness of the antiglare layer 3 becomes too large to prevent glare. When the reflection reduction layer 4 is laminated on the layer 3, the thickness of the reflection reduction layer 4 tends to be uneven.
 防眩層3表面の凹凸の平均間隔(Sm)は、0.100μm以上0.150μm以下であることがより好ましく、0.100μm以上0.140μm以下の範囲であることがさらに好ましい。前記凹凸の平均間隔(Sm)が、0.100μmより小さい場合には、有機微粒子(B)が防眩層3において適度な大きさの凝集体を形成していない可能性があり、同時に算術平均粗さ(Ra)が小さくなりすぎる可能性がある。前記凹凸の平均間隔(Sm)が、0.200μmより大きい場合には、防眩層3表面の凹凸の間隔が大きくなりすぎて、防眩層3に反射低減層4を積層した場合に反射低減層4の厚みにムラが生じやすい。 The average spacing (Sm) of the irregularities on the surface of the antiglare layer 3 is more preferably 0.100 μm or more and 0.150 μm or less, and further preferably 0.100 μm or more and 0.140 μm or less. When the average spacing (Sm) of the unevenness is smaller than 0.100 μm, it is possible that the organic fine particles (B) do not form aggregates of an appropriate size in the antiglare layer 3, and at the same time, the arithmetic mean. Roughness (Ra) may be too small. When the average spacing (Sm) of the unevenness is larger than 0.200 μm, the spacing between the irregularities on the surface of the antiglare layer 3 becomes too large, and the reflection is reduced when the reflection reducing layer 4 is laminated on the antiglare layer 3. The thickness of the layer 4 tends to be uneven.
 図2は防眩層3を模式的に示している。防眩層3は、透明基材層2の一面上に形成されており、層状のバインダー樹脂(A)中に複数の有機微粒子(B)と複数の無機微粒子(C)とが分散している。無機微粒子(C)の平均一次粒子径は、有機微粒子(B)の平均一次粒子径よりも小さい。無機微粒子(C)は有機微粒子(B)よりも非常に細かい粒子であるため、明確には図示していない。 FIG. 2 schematically shows the antiglare layer 3. The antiglare layer 3 is formed on one surface of the transparent base material layer 2, and a plurality of organic fine particles (B) and a plurality of inorganic fine particles (C) are dispersed in a layered binder resin (A). .. The average primary particle size of the inorganic fine particles (C) is smaller than the average primary particle size of the organic fine particles (B). Since the inorganic fine particles (C) are much finer particles than the organic fine particles (B), they are not clearly shown.
 防眩層3の表面(透明基材層2と対向していない方の面)は、凹凸形状に形成されている(図2参照)。防眩層3の表面の凸の部分ではバインダー樹脂(A)中で複数の有機微粒子(B)が凝集して二次粒子を形成している。つまり、複数の有機微粒子(B)の二次粒子によりバインダー樹脂(A)が盛り上がって凸が形成されている。一方、防眩層3の表面の凹の部分ではバインダー樹脂(A)中で複数の有機微粒子(B)が凝集していないか、有機微粒子(B)が存在していない。つまり、複数の有機微粒子(B)が凝集していない部分か、有機微粒子(B)が存在していない部分において、バインダー樹脂(A)が凸よりも低くなって凹が形成されている。 The surface of the antiglare layer 3 (the surface not facing the transparent base material layer 2) is formed in an uneven shape (see FIG. 2). At the convex portion of the surface of the antiglare layer 3, a plurality of organic fine particles (B) are aggregated in the binder resin (A) to form secondary particles. That is, the binder resin (A) is raised by the secondary particles of the plurality of organic fine particles (B) to form protrusions. On the other hand, in the concave portion on the surface of the antiglare layer 3, a plurality of organic fine particles (B) are not aggregated in the binder resin (A), or the organic fine particles (B) are not present. That is, in the portion where the plurality of organic fine particles (B) are not aggregated or in the portion where the organic fine particles (B) do not exist, the binder resin (A) is lower than the convex and the concave is formed.
 本実施形態においては、防眩層3の表面の凹凸が比較的緩やかである。すなわち、防眩層3の表面の凹と凸との高低差が比較的小さい。したがって、図3及び図4に示すように、ウェットコーティングで防眩層3に反射低減層4を形成(積層)した場合は、防眩層3の表面に反射低減層4を形成した場合には、均一な厚みに形成しやすい。すなわち、防眩層3の表面に、程よい凹凸形状がついていると、防眩層3の表面に形成した反射低減層4の膜厚ムラが小さく、期待された光学特性(低反射など)が発現しやすい。また、凹凸も維持できているので防眩性と低反射性も両立できる。 In the present embodiment, the unevenness of the surface of the antiglare layer 3 is relatively gentle. That is, the height difference between the concave and convex surfaces of the antiglare layer 3 is relatively small. Therefore, as shown in FIGS. 3 and 4, when the reflection reduction layer 4 is formed (laminated) on the antiglare layer 3 by wet coating, when the reflection reduction layer 4 is formed on the surface of the antiglare layer 3, the reflection reduction layer 4 is formed. , Easy to form to a uniform thickness. That is, when the surface of the antiglare layer 3 has an appropriate uneven shape, the film thickness unevenness of the reflection reduction layer 4 formed on the surface of the antiglare layer 3 is small, and the expected optical characteristics (low reflection, etc.) are exhibited. It's easy to do. Moreover, since the unevenness can be maintained, both anti-glare property and low reflection property can be achieved at the same time.
 一方、図5に示す防眩層3では、表面の算術平均粗さ(Ra)が0.210μmよりも大きく、凹凸の平均間隔(Sm)が0.100μmよりも小さい場合を示している。この防眩層3では、図2の場合よりも、バインダー樹脂(A)中で凝集している有機微粒子(B)の凝集粒子径が平均的に大きく、また数が多い。また、バインダー樹脂(A)中で有機微粒子(B)が存在していない部分も多い。したがって、防眩層3の表面の凹と凸との高低差が、図2の場合よりも大きくなる。よって、ウェットコーティングで防眩層3に反射低減層4を形成(積層)した場合は、図6に示すように、反射低減層4の厚みが均一になりにくい。すなわち、防眩層3の凹の部分で反射低減層4が厚くなり、凸の部分で薄くなることが多く、凹に液溜まりが生じ、膜厚ムラができるため、期待された光学特性(低反射など)が発現しにくい。また図7に示すように、ドライコーティングで防眩層3に反射低減層4を積層した場合、厚みの均一性の高い反射低減層4を形成することが可能であるが、反射低減層4の表面に防眩層3の表面の凹凸が現れて、所望の反射性能が得られなくなる場合がある。ここで、ドライコーティングとは、PVD(physical vapor deposition:物理蒸着)法又はCVD(chemical vapor deposition:化学蒸着)法のことを意味し、ウェットコーティングとは、塗布法、スプレー法などの液状物を供給してコーティングする方法を意味する。 On the other hand, in the antiglare layer 3 shown in FIG. 5, the arithmetic average roughness (Ra) of the surface is larger than 0.210 μm, and the average interval (Sm) of the unevenness is smaller than 0.100 μm. In the antiglare layer 3, the aggregated particle size of the organic fine particles (B) aggregated in the binder resin (A) is larger on average and the number is larger than in the case of FIG. In addition, there are many parts of the binder resin (A) in which the organic fine particles (B) do not exist. Therefore, the height difference between the concave and convex surfaces of the antiglare layer 3 is larger than that in FIG. 2. Therefore, when the reflection reduction layer 4 is formed (laminated) on the antiglare layer 3 by wet coating, the thickness of the reflection reduction layer 4 is unlikely to be uniform as shown in FIG. That is, the reflection reduction layer 4 is often thickened at the concave portion of the antiglare layer 3 and thinned at the convex portion, and liquid pools occur in the concave portion, resulting in uneven film thickness. Therefore, the expected optical characteristics (low). (Reflection, etc.) is unlikely to occur. Further, as shown in FIG. 7, when the reflection reduction layer 4 is laminated on the antiglare layer 3 by dry coating, it is possible to form the reflection reduction layer 4 having high thickness uniformity, but the reflection reduction layer 4 Unevenness on the surface of the antiglare layer 3 may appear on the surface, and the desired reflection performance may not be obtained. Here, the dry coating means a PVD (physical vapor deposition) method or a CVD (chemical vapor deposition) method, and the wet coating means a liquid substance such as a coating method or a spray method. It means a method of supplying and coating.
 また、図8に示す防眩層3では、表面の算術平均粗さ(Ra)が0.080μmよりも小さく、凹凸の平均間隔(Sm)が0.200μmよりも大きい場合を示している。この防眩層3では、図2の場合よりも、バインダー樹脂(A)中で凝集している有機微粒子(B)の凝集粒子径が平均的に小さく、また数が少なく、有機微粒子(B)は、ほとんど凝集しておらず、また、バインダー樹脂(A)中で有機微粒子(B)が存在していない部分が少ない。したがって、防眩層3の表面の凹と凸との高低差が、図2の場合よりも小さくなる。よって、図9に示すように、反射低減層4の厚みが均一になりやすいが。防眩層3の凹凸形状による防眩性能が低下し、防眩性と反射性の両方に優れる防眩低反射フィルム10が得にくくなる。 Further, in the antiglare layer 3 shown in FIG. 8, the arithmetic average roughness (Ra) of the surface is smaller than 0.080 μm, and the average interval (Sm) of the unevenness is larger than 0.200 μm. In the antiglare layer 3, the aggregated particle size of the organic fine particles (B) aggregated in the binder resin (A) is smaller and smaller on average than in the case of FIG. 2, and the organic fine particles (B) Is hardly agglomerated, and there are few portions of the binder resin (A) in which the organic fine particles (B) are not present. Therefore, the height difference between the concave and convex surfaces of the antiglare layer 3 is smaller than in the case of FIG. Therefore, as shown in FIG. 9, the thickness of the reflection reduction layer 4 tends to be uniform. The anti-glare performance due to the uneven shape of the anti-glare layer 3 is lowered, and it becomes difficult to obtain the anti-glare low-reflection film 10 having both excellent anti-glare and reflective properties.
 防眩層3の凹凸の状態は、主に有機微粒子(B)の一次粒子径、凝集粒子径及び分散状態に影響を受けるため、有機微粒子(B)は、防眩層3の透明基材層2の反対側の表面側に、主に分散されていることが好ましく、無機微粒子(C)は、防眩層3の有機微粒子(B)と透明基材層2との間に分散されていることが好ましい。 Since the uneven state of the antiglare layer 3 is mainly affected by the primary particle size, the aggregated particle size, and the dispersed state of the organic fine particles (B), the organic fine particles (B) are the transparent base material layer of the antiglare layer 3. It is preferable that the inorganic fine particles (C) are mainly dispersed on the surface side opposite to the second, and the inorganic fine particles (C) are dispersed between the organic fine particles (B) of the antiglare layer 3 and the transparent base material layer 2. Is preferable.
 さらに、無機微粒子(C)の平均一次粒子径が、有機微粒子(B)の平均一次粒子径よりも小さいことによって、防眩層3表面の算術平均粗さ(Ra)及び防眩層3表面の凹凸の平均間隔(Sm)が所望の範囲に形成しやすくなる。これは、詳細は定かでは無いが、有機微粒子(B)と透明基材層2との間に入り込んだ無機微粒子(C)が、有機微粒子(B)を透明基材層2の表面側に偏在させる役割を果たしていると発明者は考えており、さらに無機微粒子(C)が有機微粒子(B)よりも小さいことによって、有機微粒子(B)が防眩層3の表面の凹凸に与える影響を微細に制御可能であると発明者は考えている。 Further, since the average primary particle size of the inorganic fine particles (C) is smaller than the average primary particle size of the organic fine particles (B), the arithmetic mean roughness (Ra) of the surface of the antiglare layer 3 and the surface of the antiglare layer 3 The average spacing (Sm) of the unevenness can be easily formed in a desired range. Although the details are not clear, the inorganic fine particles (C) that have entered between the organic fine particles (B) and the transparent base material layer 2 unevenly distribute the organic fine particles (B) on the surface side of the transparent base material layer 2. The inventor thinks that the inorganic fine particles (C) are smaller than the organic fine particles (B), so that the effect of the organic fine particles (B) on the unevenness of the surface of the antiglare layer 3 is fine. The inventor believes that it is controllable.
 防眩層3は、例えば、有機微粒子(B)と、無機微粒子(C)と、電離放射線硬化型樹脂等の未硬化のバインダー樹脂、光重合開始剤及び溶剤等を含有する防眩層用組成物を、透明基材フィルムに塗布し、乾燥させて形成した塗膜を電離放射線照射等により硬化させることで形成することができる。 The antiglare layer 3 is a composition for an antiglare layer containing, for example, organic fine particles (B), inorganic fine particles (C), an uncured binder resin such as an ionizing radiation curable resin, a photopolymerization initiator, and a solvent. It can be formed by applying an object to a transparent base film, drying the coating film, and curing the coating film by ionizing radiation irradiation or the like.
 また、防眩層3の厚さは、2μm以上10μm以下であることが好ましい。防眩層3の厚さが2μm未満であると、防眩層3の表面が傷付きやすくなることがあり、防眩層3の厚さが10μmを超えると、防眩層3が割れやすくなることがある。防眩層3の厚さは、3μm以上8μm以下であることがより好ましく、防眩層3の厚さは、3μm以上6μm以下であることがさらに好ましい。 Further, the thickness of the antiglare layer 3 is preferably 2 μm or more and 10 μm or less. If the thickness of the antiglare layer 3 is less than 2 μm, the surface of the antiglare layer 3 may be easily scratched, and if the thickness of the antiglare layer 3 exceeds 10 μm, the antiglare layer 3 is easily cracked. Sometimes. The thickness of the antiglare layer 3 is more preferably 3 μm or more and 8 μm or less, and the thickness of the antiglare layer 3 is more preferably 3 μm or more and 6 μm or less.
 (バインダー樹脂)
 バインダー樹脂(A)は、透明性のものが好ましく、例えば、紫外線又は電子線により硬化する樹脂である電離放射線硬化型樹脂であることが好ましい。「樹脂」とは、モノマー、オリゴマー等を含む。
(Binder resin)
The binder resin (A) is preferably transparent, and is preferably an ionizing radiation curable resin that is cured by ultraviolet rays or electron beams, for example. The "resin" includes a monomer, an oligomer, and the like.
 上記電離放射線硬化型樹脂としては、例えば、アクリレート系等の官能基を有する化合物等の1又は2以上の不飽和結合を有する化合物が挙げられる。1の不飽和結合を有する化合物としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等を挙げることができる。2以上の不飽和結合を有する化合物としては、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の多官能化合物、又は、上記多官能化合物と(メタ)アクリレート等の反応生成物(例えば多価アルコールのポリ(メタ)アクリレートエステル)、等を挙げることができる。なお、「(メタ)アクリレート」は、メタクリレート及びアクリレートを指すものである。また、本発明では、上記電離放射線硬化型樹脂として、上述した化合物をPO、EO等で変性したものも使用できる。 Examples of the ionizing radiation curable resin include compounds having one or two or more unsaturated bonds such as compounds having a functional group such as an acrylate-based resin. Examples of the compound having an unsaturated bond of 1 include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone and the like. Examples of the compound having two or more unsaturated bonds include polymethylol propantri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and pentaerythritol tri (). Polyfunctional compounds such as meta) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, or the above polyfunctional compound and (meth) acrylate. Reaction products such as (for example, poly (meth) acrylate ester of polyhydric alcohol), and the like can be mentioned. In addition, "(meth) acrylate" refers to methacrylate and acrylate. Further, in the present invention, as the ionizing radiation curable resin, the above-mentioned compound modified with PO, EO or the like can also be used.
 上記化合物のほかに、不飽和二重結合を有する比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も上記電離放射線硬化型樹脂として使用することができる。 In addition to the above compounds, relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins and the like having unsaturated double bonds are also mentioned above. It can be used as an ionizing radiation curable resin.
 上記電離放射線硬化型樹脂は、溶剤乾燥型樹脂(熱可塑性樹脂等、塗工時に固形分を調整するために添加した溶剤を乾燥させるだけで、被膜となるような樹脂)と併用して使用することもできる。溶剤乾燥型樹脂を併用することによって、防眩層3を形成する際に、塗液の粘度の調整が容易で塗液の塗布面の被膜欠陥を有効に防止することができる。上記電離放射線硬化型樹脂と併用して使用することができる溶剤乾燥型樹脂としては特に限定されず、一般に、熱可塑性樹脂を使用することができる。 The above-mentioned ionizing radiation curable resin is used in combination with a solvent-drying resin (a resin such as a thermoplastic resin that forms a film simply by drying a solvent added to adjust the solid content at the time of coating). You can also do it. By using the solvent-drying resin in combination, the viscosity of the coating liquid can be easily adjusted when the antiglare layer 3 is formed, and film defects on the coating surface of the coating liquid can be effectively prevented. The solvent-drying resin that can be used in combination with the ionizing radiation curable resin is not particularly limited, and in general, a thermoplastic resin can be used.
 上記熱可塑性樹脂としては特に限定されず、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂及びゴム又はエラストマー等を挙げることができる。上記熱可塑性樹脂は、非結晶性で、かつ有機溶媒(特に複数のポリマーや硬化性化合物を溶解可能な共通溶媒)に可溶であることが好ましい。特に、製膜性、透明性や耐候性という観点から、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類等)等が好ましい。 The thermoplastic resin is not particularly limited, and for example, a styrene resin, a (meth) acrylic resin, a vinyl acetate resin, a vinyl ether resin, a halogen-containing resin, an alicyclic olefin resin, a polycarbonate resin, and a polyester resin. Examples thereof include resins, polyamide resins, cellulose derivatives, silicone resins and rubbers or elastomers. The thermoplastic resin is preferably amorphous and soluble in an organic solvent (particularly a common solvent capable of dissolving a plurality of polymers and curable compounds). In particular, from the viewpoint of film forming property, transparency and weather resistance, styrene resin, (meth) acrylic resin, alicyclic olefin resin, polyester resin, cellulose derivative (cellulose ester, etc.) and the like are preferable.
 また、上記防眩層は、熱硬化性樹脂を含有していてもよい。熱硬化性樹脂としては特に限定されず、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等を挙げることができる。 Further, the antiglare layer may contain a thermosetting resin. The thermosetting resin is not particularly limited, and for example, phenol resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation resin. , Silicon resin, polysiloxane resin and the like.
 バインダー樹脂(A)は、水酸基含有多官能アクリレートを含むことが好ましい。これにより、バインダー樹脂(A)の水酸基濃度を調整しやすい。水酸基含有多官能アクリレートとしては、表1のものを例示することができる。ここで、PE2Aとはペンタエリスリトールジアクリレートであり、PE3Aとはペンタエリスリトールトリアクリレートであり、PE4Aとはペンタエリスリトールテトラアクリレートである。また、DP5Aとは、ジペンタエリスリトールペンタアクリレートであり、DP6Aとはジペンタエリスリトールヘキサアクリレートである。さらに、GR2Aとは、グリセリンジアクリレートであり、GR3Aとは、グリセリントリアクリレートである。 The binder resin (A) preferably contains a hydroxyl group-containing polyfunctional acrylate. This makes it easy to adjust the hydroxyl group concentration of the binder resin (A). Examples of the hydroxyl group-containing polyfunctional acrylate include those in Table 1. Here, PE2A is pentaerythritol diacrylate, PE3A is pentaerythritol triacrylate, and PE4A is pentaerythritol tetraacrylate. Further, DP5A is dipentaerythritol pentaacrylate, and DP6A is dipentaerythritol hexaacrylate. Further, GR2A is a glycerin diacrylate, and GR3A is a glycerin triacrylate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 バインダー樹脂(A)の水酸基濃度は、0mmol/gより大きく2.50mmol/g以下であることが好ましい。これにより、有機微粒子(B)及び無機微粒子(C)の凝集状態を制御することができ、防眩層3の表面の算術平均粗さ(Ra)及び凹凸の平均間隔(Sm)をコントロールしやすくなる。 The hydroxyl group concentration of the binder resin (A) is preferably greater than 0 mmol / g and less than 2.50 mmol / g. Thereby, the aggregated state of the organic fine particles (B) and the inorganic fine particles (C) can be controlled, and the arithmetic average roughness (Ra) of the surface of the antiglare layer 3 and the average spacing (Sm) of the irregularities can be easily controlled. Become.
 バインダー樹脂(A)の水酸基濃度は、バインダー樹脂(A)が単数の樹脂から成る場合には、樹脂1分子に含まれる水酸基の数として、以下の式1で表される。
水酸基濃度(mmol/g)=(1分子中の水酸基数)/(分子量)×1000(式1)
 バインダー樹脂(A)が複数の樹脂から成る場合には、各バインダー樹脂それぞれの式1より算出される水酸基濃度より、加重平均値を算出して得ることができる。
The hydroxyl group concentration of the binder resin (A) is represented by the following formula 1 as the number of hydroxyl groups contained in one molecule of the resin when the binder resin (A) is composed of a single resin.
Hydroxy group concentration (mmol / g) = (number of hydroxyl groups in one molecule) / (molecular weight) x 1000 (Equation 1)
When the binder resin (A) is composed of a plurality of resins, the weighted average value can be calculated and obtained from the hydroxyl group concentration calculated from the formula 1 of each binder resin.
 バインダー樹脂(A)の水酸基濃度は、0mmol/gより大きく1.50mmol/g以下であることがより好ましく、0mmol/gより大きく1.00mmol/g以下であることがさらに好ましい。 The hydroxyl group concentration of the binder resin (A) is more preferably greater than 0 mmol / g and 1.50 mmol / g or less, and further preferably greater than 0 mmol / g and 1.00 mmol / g or less.
 特に有機微粒子(B)が、アクリル-スチレン共重合体粒子のように、一般的に極性が低い共重合体からなる粒子の場合、マトリックス(分散媒)であるバインダー樹脂(A)の極性が低い、すなわちバインダー樹脂(A)の水酸基濃度が低いほど、分散質である有機微粒子(B)の分散性も高くなりやすく、凝集体を形成しにくく、一次粒子単独で分散した状態に近くなりやすい。一方、バインダー樹脂(A)の極性が高い、すなわちバインダー樹脂(A)の水酸基濃度が高いほど、分散質である有機微粒子(B)の分散性も低くなりやすく、凝集体を形成しやすく、有機微粒子(B)の凝集体も大きくなりやすい。 In particular, when the organic fine particles (B) are particles made of a copolymer having generally low polarity, such as acrylic-styrene copolymer particles, the polarity of the binder resin (A), which is a matrix (dispersion medium), is low. That is, the lower the hydroxyl group concentration of the binder resin (A), the higher the dispersibility of the dispersoid organic fine particles (B), the less likely it is to form aggregates, and the closer the primary particles are dispersed alone. On the other hand, the higher the polarity of the binder resin (A), that is, the higher the hydroxyl group concentration of the binder resin (A), the lower the dispersibility of the dispersible organic fine particles (B), the easier it is to form aggregates, and the more organic the binder resin (A) is. Aggregates of fine particles (B) also tend to grow large.
 本発明において、バインダー樹脂(A)の水酸基濃度が、2.50mmol/gより大きい場合には、有機微粒子(B)の凝集体が大きくなりすぎて、特に平均間隔(Sm)が大きくなり過ぎる可能性がある。 In the present invention, when the hydroxyl group concentration of the binder resin (A) is larger than 2.50 mmol / g, the aggregates of the organic fine particles (B) may become too large, and the average interval (Sm) may become too large. There is sex.
 バインダー樹脂(A)の水酸基濃度は、水酸基濃度の異なる複数種の樹脂成分を混合することにより調整することが可能である。例えば、バインダー樹脂(A)の樹脂成分100%のうち、40%は高粘度のウレタンアクリレート(水酸基濃度0mmol/g)とし、残りの60%は、PE2A/PE3A/PE4Aの組み合わせのように、水酸基濃度の異なるペンタエリスリトールポリアクリレートの混合物として水酸基濃度を制御することができる。特に、PE3A/PE4A=70/30~10/90の質量比の範囲で、防眩層3の性能が発現しやすい。上記ペンタエリスリトールポリアクリレートの混合物の代わりにジペンタエリスリトールポリアクリレートの混合物を用いてもよい。 The hydroxyl group concentration of the binder resin (A) can be adjusted by mixing a plurality of types of resin components having different hydroxyl group concentrations. For example, of the 100% resin component of the binder resin (A), 40% is a high-viscosity urethane acrylate (hydroxyl concentration 0 mmol / g), and the remaining 60% is a hydroxyl group such as a combination of PE2A / PE3A / PE4A. The hydroxyl group concentration can be controlled as a mixture of pentaerythritol polyacrylates having different concentrations. In particular, the performance of the antiglare layer 3 is likely to be exhibited in the range of mass ratio of PE3A / PE4A = 70/30 to 10/90. A mixture of dipentaerythritol polyacrylate may be used instead of the mixture of pentaerythritol polyacrylate.
 (有機微粒子)
 有機微粒子(B)は拡散粒子とも呼ばれ、主に、防眩層3の表面凹凸形状を形成するための微粒子である。上記凝集体がこのような有機微粒子(B)を含むことで、防眩層3に形成される凹凸形状の大きさや防眩層3の屈折率の制御が容易となり、防眩性の制御と低反射性を抑制することができる。有機微粒子(B)は透明であることが好ましい。
(Organic fine particles)
The organic fine particles (B) are also called diffusion particles, and are mainly fine particles for forming the surface uneven shape of the antiglare layer 3. When the aggregate contains such organic fine particles (B), it becomes easy to control the size of the uneven shape formed on the antiglare layer 3 and the refractive index of the antiglare layer 3, and the antiglare property is controlled and low. Reflectivity can be suppressed. The organic fine particles (B) are preferably transparent.
 有機微粒子(B)としては、アクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合樹脂、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン樹脂及びポリフッ化エチレン樹脂からなる群より選択される少なくとも一種の材料からなる微粒子であることが好ましい。なかでも、屈折率の制御が容易なことからスチレン-アクリル共重合体の微粒子が好ましい。 As the organic fine particles (B), at least one material selected from the group consisting of acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride resin and polyfluorinated ethylene resin. It is preferably a fine particle composed of. Of these, fine particles of a styrene-acrylic copolymer are preferable because the refractive index can be easily controlled.
 バインダー樹脂(A)と有機微粒子(B)との屈折率の差の絶対値が0.005以上0.25以下である。このため、防眩層3の表面の凹凸との相互作用で、防眩層3が防眩性を有することになる。バインダー樹脂(A)と有機微粒子(B)との屈折率の差の絶対値は、0.005以上0.15以下であることがより好ましく、更に好ましくは、0.005以上0.10以下である。 The absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is 0.005 or more and 0.25 or less. Therefore, the antiglare layer 3 has antiglare properties due to the interaction with the unevenness of the surface of the antiglare layer 3. The absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is more preferably 0.005 or more and 0.15 or less, and further preferably 0.005 or more and 0.10 or less. be.
 有機微粒子(B)は、防眩層3中に5質量%以上20質量%以下で含まれていることが好ましい。有機微粒子(B)の含有量が5質量%未満であると、有機微粒子(B)の凝集体が少なくなって、防眩層3の防眩性能が低下することがある。有機微粒子(B)の含有量が20質量%を超えると、凝集体が多くなる或いは凝集体が大きくなり過ぎて防眩層3の防眩性能が低下することがある。有機微粒子(B)は、防眩層3中に6質量%以上15質量%以下で含まれていることがより好ましく、防眩層3中に8質量%以上12質量%以下で含まれていることがさらに好ましい。さらに有機微粒子(B)は、防眩層3中に5体積%以上20体積%以下で含まれていることが好ましい。より好ましくは6.0体積%以上15.0体積%以下、さらに好ましくは8.0体積%以上12.0体積%以下である。 The organic fine particles (B) are preferably contained in the antiglare layer 3 in an amount of 5% by mass or more and 20% by mass or less. If the content of the organic fine particles (B) is less than 5% by mass, the aggregates of the organic fine particles (B) may decrease, and the antiglare performance of the antiglare layer 3 may deteriorate. If the content of the organic fine particles (B) exceeds 20% by mass, the number of aggregates may increase or the aggregates may become too large, and the antiglare performance of the antiglare layer 3 may deteriorate. The organic fine particles (B) are more preferably contained in the antiglare layer 3 in an amount of 6% by mass or more and 15% by mass or less, and are contained in the antiglare layer 3 in an amount of 8% by mass or more and 12% by mass or less. Is even more preferable. Further, the organic fine particles (B) are preferably contained in the antiglare layer 3 in an amount of 5% by volume or more and 20% by volume or less. It is more preferably 6.0% by volume or more and 15.0% by volume or less, and further preferably 8.0% by volume or more and 12.0% by volume or less.
 有機微粒子(B)の平均一次粒子径が2μm以上7μm以下であることが好ましい。有機微粒子(B)の平均一次粒子径が2μm未満であると、充分な凹凸形状を防眩層3表面に形成しにくくなり、防眩フィルム1の防眩性能が不充分となる場合がある。有機微粒子(B)の平均一次粒子径が7μmを超えると、防眩層3表面の凹凸形状が大きくなり過ぎて、防眩フィルム1の防眩性能が不充分となる場合がある。有機微粒子(B)の平均一次粒子径は3μm以上6μm以下であることがより好ましく、有機微粒子(B)の平均一次粒子径は3μm以上5μm以下であることがさらに好ましい。 The average primary particle size of the organic fine particles (B) is preferably 2 μm or more and 7 μm or less. If the average primary particle size of the organic fine particles (B) is less than 2 μm, it becomes difficult to form a sufficient uneven shape on the surface of the antiglare layer 3, and the antiglare performance of the antiglare film 1 may be insufficient. If the average primary particle size of the organic fine particles (B) exceeds 7 μm, the uneven shape on the surface of the antiglare layer 3 becomes too large, and the antiglare performance of the antiglare film 1 may be insufficient. The average primary particle size of the organic fine particles (B) is more preferably 3 μm or more and 6 μm or less, and the average primary particle size of the organic fine particles (B) is more preferably 3 μm or more and 5 μm or less.
 なお、本開示において「平均一次粒子径」は、一次粒子の粒径の平均が算出できれば、いずれの方法でもよいが、例えば、画像解析法、コールター法、遠心沈降法、レーザー回折散乱法などが挙げられる。 In the present disclosure, the "average primary particle size" may be any method as long as the average particle size of the primary particles can be calculated, and examples thereof include an image analysis method, a Coulter method, a centrifugal sedimentation method, and a laser diffraction / scattering method. Can be mentioned.
 (無機微粒子)
 無機微粒子はバインダー粒子とも呼ばれ、隣接する有機微粒子(B)の間や、有機微粒子(B)の上方部、下方部に入り込むようにして防眩層3中に含まれる。特に、隣接する有機微粒子(B)の間に無機微粒子(C)が入り込むこと、および有機微粒子(B)と透明基材層2との間に無機微粒子(C)が入り込むことにより、算術平均粗さ(Ra)や凹凸の平均間隔(Sm)を適度に保つことができる。
(Inorganic fine particles)
Inorganic fine particles are also called binder particles, and are contained in the antiglare layer 3 so as to enter between adjacent organic fine particles (B) and above and below the organic fine particles (B). In particular, the arithmetic average roughness is caused by the inclusion of the inorganic fine particles (C) between the adjacent organic fine particles (B) and the inclusion of the inorganic fine particles (C) between the organic fine particles (B) and the transparent base material layer 2. The roughness (Ra) and the average spacing (Sm) of the unevenness can be maintained appropriately.
 無機微粒子(C)の密度は、有機微粒子(B)密度よりも大きいことが好ましい。これによって、バインダー樹脂(A)、有機微粒子(B)及び無機微粒子(C)を含む防眩層用組成物を透明基材層2に塗布した際に、無機微粒子(C)の方が有機微粒子(B)よりも先に沈降しやすくなり、結果として有機微粒子(B)と透明基材層2との間に無機微粒子(C)が入り込みやすくなる。 The density of the inorganic fine particles (C) is preferably higher than the density of the organic fine particles (B). As a result, when the composition for the antiglare layer containing the binder resin (A), the organic fine particles (B) and the inorganic fine particles (C) is applied to the transparent base material layer 2, the inorganic fine particles (C) are more organic fine particles. It becomes easier to settle before (B), and as a result, the inorganic fine particles (C) easily enter between the organic fine particles (B) and the transparent base material layer 2.
 有機微粒子(B)の密度は、0.8~1.5g/cmの範囲であることが好ましく、無機微粒子(C)の密度は、1.8~3.0g/cmの範囲であることが好ましい。 The density of the organic fine particles (B) is preferably in the range of 0.8 to 1.5 g / cm 3 , and the density of the inorganic fine particles (C) is in the range of 1.8 to 3.0 g / cm 3. Is preferable.
 このような無機微粒子(C)としては、例えば、アルミノシリケート、タルク、マイカ及びシリカからなる群より選択される少なくとも一種の微粒子であることが好ましい。無機微粒子(C)はフュームドシリカを含んでいることが好ましい。これにより、無機微粒子(C)は、有機微粒子(B)に対して親和性が高くすることができる。フュームドシリカとは、乾式法で作成された200nm以下の粒径を有する非晶質のシリカをいい、ケイ素を含む揮発性化合物を気相で反応させることにより得られる。 Such inorganic fine particles (C) are preferably at least one kind of fine particles selected from the group consisting of, for example, aluminosilicate, talc, mica and silica. The inorganic fine particles (C) preferably contain fumed silica. As a result, the inorganic fine particles (C) can have a high affinity for the organic fine particles (B). Fused silica refers to amorphous silica having a particle size of 200 nm or less produced by a dry method, and is obtained by reacting a volatile compound containing silicon in a gas phase.
 フュームドシリカの表面にはシラノール基が存在するが、フュームドシリカは、表面処理されていることが好ましく、該表面処理としては、疎水化処理であることが好ましい。上記フュームドシリカが表面処理されていることで、フュームドシリカを有機微粒子の表面に好適に偏在させることができ、フュームドシリカ自体の凝集力によって、有機微粒子(B)による凝集体を形成することができる。また、フュームドシリカ自体の耐薬品性及び耐ケン化性の向上を図ることもできる。表面処理(疎水化処理)をしていない場合は、フュームドシリカが有機微粒子の表面に過剰に存在し、凝集力が増すことで、好適な凹凸形状を形成することができない場合がある。上記疎水化処理としては、例えば、メチル処理、オクチルシラン処理、又は、ジメチルシリコーンオイル処理等が好適である。 Silanol groups are present on the surface of fumed silica, but fumed silica is preferably surface-treated, and the surface treatment is preferably hydrophobized. By surface-treating the fumed silica, the fumed silica can be suitably unevenly distributed on the surface of the organic fine particles, and the agglomerates of the organic fine particles (B) are formed by the cohesive force of the fumed silica itself. be able to. In addition, the chemical resistance and saponification resistance of the fumed silica itself can be improved. When the surface treatment (hydrophobic treatment) is not performed, fumed silica may be excessively present on the surface of the organic fine particles and the cohesive force may increase, so that a suitable uneven shape may not be formed. As the hydrophobizing treatment, for example, methyl treatment, octylsilane treatment, dimethyl silicone oil treatment and the like are suitable.
 無機微粒子(C)の平均一次粒子径が1nm以上200nm以下であることが好ましい。無機微粒子(C)の平均一次粒子径が1nm未満であると、防眩層3中で有機微粒子(B)の凝集体を充分に形成できないことがあり、無機微粒子(C)の平均一次粒子径が200nmを超えると、有機微粒子(B)と透明基材層2との間に無機微粒子(C)が入り込みにくくなり、防眩層3の表面の算術平均粗さ(Ra)が小さくなりすぎて防眩性を得にくくなることがある。無機微粒子(C)の平均一次粒子径は10nm以上200nm以下であることがより好ましく、無機微粒子(C)の平均一次粒子径は12nm以上40nm以下であることがさらに好ましい。 The average primary particle size of the inorganic fine particles (C) is preferably 1 nm or more and 200 nm or less. If the average primary particle size of the inorganic fine particles (C) is less than 1 nm, agglomerates of the organic fine particles (B) may not be sufficiently formed in the antiglare layer 3, and the average primary particle size of the inorganic fine particles (C) may not be sufficiently formed. If it exceeds 200 nm, it becomes difficult for the inorganic fine particles (C) to enter between the organic fine particles (B) and the transparent base material layer 2, and the arithmetic mean roughness (Ra) of the surface of the antiglare layer 3 becomes too small. It may be difficult to obtain anti-glare properties. The average primary particle size of the inorganic fine particles (C) is more preferably 10 nm or more and 200 nm or less, and the average primary particle size of the inorganic fine particles (C) is more preferably 12 nm or more and 40 nm or less.
 無機微粒子(C)の含有量は、防眩層3中に1質量%以上10質量%以下であることが好ましい。無機微粒子(C)の含有量が1質量%未満であると、有機微粒子(B)の間に無機微粒子(C)が入り込みにくく凝集体を構成しにくく、凹凸形状を有する防眩層3が形成されにくい。無機微粒子(C)の含有量が10質量%を超えると、防眩層3の表面の算術平均粗さ(Ra)が大きくなりすぎて防眩性を得にくくなることがある。無機微粒子(C)は、防眩層3中に1質量%以上5質量%以下で含まれていることがより好ましく、防眩層3中に1質量%以上3質量%以下で含まれていることがさらに好ましい。さらに無機微粒子(C)の含有量は、防眩層3中に0.5体積%以上5体積%以下であることが好ましい。より好ましくは0.5体積%以上2.5体積%以下であり、さらに好ましくは0.5体積%以上1.5体積%以下である。 The content of the inorganic fine particles (C) is preferably 1% by mass or more and 10% by mass or less in the antiglare layer 3. When the content of the inorganic fine particles (C) is less than 1% by mass, the inorganic fine particles (C) are difficult to enter between the organic fine particles (B) and it is difficult to form an agglomerate, and the antiglare layer 3 having an uneven shape is formed. It is hard to be done. If the content of the inorganic fine particles (C) exceeds 10% by mass, the arithmetic mean roughness (Ra) of the surface of the antiglare layer 3 may become too large, making it difficult to obtain antiglare properties. The inorganic fine particles (C) are more preferably contained in the antiglare layer 3 in an amount of 1% by mass or more and 5% by mass or less, and are contained in the antiglare layer 3 in an amount of 1% by mass or more and 3% by mass or less. Is even more preferable. Further, the content of the inorganic fine particles (C) is preferably 0.5% by volume or more and 5% by volume or less in the antiglare layer 3. It is more preferably 0.5% by volume or more and 2.5% by volume or less, and further preferably 0.5% by volume or more and 1.5% by volume or less.
 (反射低減層)
 反射低減層4は、高屈折率層41と、超高屈折率層42と、低屈折率層43とを備えて形成されている(図3参照)。反射低減層4は、防眩層3上に形成される。防眩層3の表面には高屈折率層41が形成され、高屈折率層41の表面には超高屈折率層42が形成され、超高屈折率層42の表面に低屈折率層43が形成されている。
(Reflection reduction layer)
The reflection reduction layer 4 is formed by including a high refractive index layer 41, an ultrahigh refractive index layer 42, and a low refractive index layer 43 (see FIG. 3). The reflection reduction layer 4 is formed on the antiglare layer 3. A high refractive index layer 41 is formed on the surface of the antiglare layer 3, an ultrahigh refractive index layer 42 is formed on the surface of the high refractive index layer 41, and a low refractive index layer 43 is formed on the surface of the ultrahigh refractive index layer 42. Is formed.
 (高屈折率層)
 高屈折率層41は防眩層3よりも屈折率の高い高屈折率層として形成される。高屈折率層41の屈折率は1.60以上1.70以下の範囲であることが好ましく、かつ厚み(実膜厚)は50nm以上80nm以下の範囲であることが好ましい。高屈折率層41の屈折率及び厚みが前記のような範囲であることで防眩フィルム1及び防眩低反射フィルム10の光反射性が抑制され、且つこの防眩フィルム1及び防眩低反射フィルム10からの反射光の色が適度な色目に調整される。この高屈折率層41の屈折率が前記範囲より大きくなると防眩フィルム1及び防眩低反射フィルム10の光反射性は更に低減するものの、反射光の色が強くなりすぎてしまい、好ましくない。また、高屈折率層41の厚みが前記範囲より大きくなると、防眩フィルム1及び防眩低反射フィルム10からの反射光の色が青みを帯びるようになってしまい、この厚みがさらに大きくなると防眩フィルム1及び防眩低反射フィルム10の反射率が著しく増大してしまうため、好ましくない。また、高屈折率層41の厚みが前記範囲より小さくなると反射色が強い紫色をおびた色になってしまうため、好ましくない。
(High refractive index layer)
The high refractive index layer 41 is formed as a high refractive index layer having a higher refractive index than the antiglare layer 3. The refractive index of the high refractive index layer 41 is preferably in the range of 1.60 or more and 1.70 or less, and the thickness (actual film thickness) is preferably in the range of 50 nm or more and 80 nm or less. When the refractive index and thickness of the high refractive index layer 41 are in the above ranges, the light reflectivity of the antiglare film 1 and the antiglare low reflection film 10 is suppressed, and the antiglare film 1 and the antiglare low reflection film 1 and the antiglare low reflection film 10 are suppressed. The color of the light reflected from the film 10 is adjusted to an appropriate color. When the refractive index of the high refractive index layer 41 becomes larger than the above range, the light reflectivity of the antiglare film 1 and the antiglare low reflection film 10 is further reduced, but the color of the reflected light becomes too strong, which is not preferable. Further, when the thickness of the high refractive index layer 41 is larger than the above range, the color of the reflected light from the antiglare film 1 and the antiglare low reflection film 10 becomes bluish, and when the thickness is further increased, the antiglare film 1 and the antiglare low reflection film 10 become bluish. This is not preferable because the reflectances of the glare film 1 and the antiglare low-reflection film 10 are significantly increased. Further, if the thickness of the high refractive index layer 41 is smaller than the above range, the reflected color becomes a strong purple-tinged color, which is not preferable.
 上記の通り、高屈折率層41の厚みが大きくなると、反射光の光が青みを帯びてくる傾向が生じるが、高屈折率層41の厚みが40nm以上110nm以下の範囲であれば、反射光の色は白色に充分に近い色となる。但し、反射光の色を特に白色に近づけるためには、この高屈折率層41の厚みが上記のように50nm以上80nm以下の範囲であることが好ましい。この厚みが60nmより大きく70nm以下の範囲であれば更に好ましい。 As described above, when the thickness of the high refractive index layer 41 is increased, the reflected light tends to be bluish, but if the thickness of the high refractive index layer 41 is in the range of 40 nm or more and 110 nm or less, the reflected light tends to be bluish. The color of is close enough to white. However, in order to bring the color of the reflected light closer to white, the thickness of the high refractive index layer 41 is preferably in the range of 50 nm or more and 80 nm or less as described above. It is more preferable if this thickness is in the range of more than 60 nm and 70 nm or less.
 高屈折率層41は、反応性硬化型樹脂組成物から形成されることが好ましく、例えば熱硬化型樹脂組成物と電離放射線硬化型樹脂組成物の少なくとも一方から形成されることが好ましい。熱硬化型樹脂組成物は、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、珪素樹脂、ポリシロキサン樹脂等の熱硬化性樹脂を含有する。熱硬化性樹脂と共に、必要に応じて架橋剤、重合開始剤、硬化剤、硬化促進剤、溶剤等が使用されてもよい。このような熱硬化型樹脂組成物が例えば透明基材層2(易接着層が有る場合はその表面)上に塗布され、続いてこの熱硬化型樹脂組成物が加熱されて熱硬化することで、高屈折率層41が形成され得る。 The high refractive index layer 41 is preferably formed from a reactive curable resin composition, for example, preferably formed from at least one of a thermosetting resin composition and an ionizing radiation curable resin composition. The thermosetting resin composition contains a thermosetting resin such as a phenol resin, a urea resin, a diallyl phthalate resin, a melamine resin, an unsaturated polyester resin, a polyurethane resin, an epoxy resin, an aminoalkyd resin, a silicon resin, and a polysiloxane resin. do. A cross-linking agent, a polymerization initiator, a curing agent, a curing accelerator, a solvent and the like may be used together with the thermosetting resin, if necessary. By applying such a thermosetting resin composition on, for example, the transparent base material layer 2 (the surface of the easy-adhesion layer, if any), and then the thermosetting resin composition is heated and heat-cured. , High refractive index layer 41 can be formed.
 電離放射線硬化型樹脂組成物は、アクリレート系の官能基を有する樹脂を含むことが好ましい。アクリレート系の官能基を有する樹脂としては、例えば比較的低分子量の多官能化合物の(メタ)アクリレート等のオリゴマー、プレポリマーなどが挙げられる。前記の多官能化合物としては、ポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等が挙げられる。電離放射線硬化型樹脂組成物は更に反応性希釈剤を含有することも好ましい。反応性希釈剤としては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー、並びにトリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートの多官能モノマーが挙げられる。 The ionizing radiation curable resin composition preferably contains a resin having an acrylate-based functional group. Examples of the resin having an acrylate-based functional group include oligomers such as (meth) acrylates, which are polyfunctional compounds having a relatively low molecular weight, and prepolymers. Examples of the polyfunctional compound include polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, polybutadiene resin, polythiol polyene resin, polyhydric alcohol and the like. It is also preferable that the ionizing radiation curable resin composition further contains a reactive diluent. Examples of the reactive diluent include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, and N-vinylpyrrolidone, and trimethylpropantri (meth) acrylate and hexanediol (meth) acrylate. , Tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di Examples include polyfunctional monomers of (meth) acrylates.
 電離放射線硬化型樹脂組成物が紫外線硬化型樹脂組成物などの光硬化型樹脂組成物である場合には、光硬化型樹脂組成物が光重合開始剤を含有することが好ましい。光重合開始剤としてはアセトフェノン類、ベンゾフェノン類、α-アミロキシムエステル、チオキサントン類などが挙げられる。光硬化型樹脂組成物が光重合開始剤に加えて、或いは光重合開始剤に代えて、光増感剤を含有してもよい。光増感剤としては、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン、チオキサントンなどが挙げられる。このような光硬化型樹脂組成物が例えば透明基材層2上に塗布され、続いてこの光硬化型樹脂組成物に紫外線などの光が照射されて光硬化することで、高屈折率層41が形成され得る。 When the ionizing radiation curable resin composition is a photocurable resin composition such as an ultraviolet curable resin composition, it is preferable that the photocurable resin composition contains a photopolymerization initiator. Examples of the photopolymerization initiator include acetophenones, benzophenones, α-amyloxime esters, thioxanthones and the like. The photocurable resin composition may contain a photosensitizer in addition to the photopolymerization initiator or in place of the photopolymerization initiator. Examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, thioxanthone and the like. Such a photocurable resin composition is applied onto, for example, the transparent base material layer 2, and then the photocurable resin composition is irradiated with light such as ultraviolet rays to be photocured, whereby the high refractive index layer 41 is formed. Can be formed.
 高屈折率層41の屈折率は、高屈折率層41を形成するための樹脂組成物の組成によって容易に調整され得る。高屈折率層41が屈折率調整用の粒子を含有すると共にその割合が調整されることで、高屈折率層41の屈折率が調整されることも好ましい。 The refractive index of the high refractive index layer 41 can be easily adjusted by the composition of the resin composition for forming the high refractive index layer 41. It is also preferable that the refractive index of the high refractive index layer 41 is adjusted by containing the particles for adjusting the refractive index and adjusting the ratio thereof.
 屈折率調整用の粒子の粒径は十分に小さいこと、すなわち屈折率調整用の粒子がいわゆる超微粒子であるが好ましく、この場合、高屈折率層41の光透過性が十分に維持されるようになる。屈折率調整用の粒子の粒径は特に、0.5nm以上200nm以下の範囲であることが好ましい。この屈折率調整用の粒子の粒径とは、粒子の電子顕微鏡写真画像から算出される投影面積と同一の面積を有する円(面積相当円)の径のことである。屈折率調整用の粒子は、比較的屈折率の高い粒子であることが好ましく、特に屈折率が1.6以上の粒子であることが好ましい。この粒子は、金属や金属酸化物の粒子であることが好ましい。 The particle size of the particles for adjusting the refractive index is sufficiently small, that is, the particles for adjusting the refractive index are preferably so-called ultrafine particles, and in this case, the light transmittance of the high refractive index layer 41 is sufficiently maintained. become. The particle size of the particles for adjusting the refractive index is particularly preferably in the range of 0.5 nm or more and 200 nm or less. The particle size of the particles for adjusting the refractive index is the diameter of a circle (circle equivalent to the area) having the same area as the projected area calculated from the electron micrograph image of the particles. The particles for adjusting the refractive index are preferably particles having a relatively high refractive index, and particularly preferably particles having a refractive index of 1.6 or more. The particles are preferably metal or metal oxide particles.
 高屈折率層41中の屈折率調整用の粒子の含有量は、高屈折率層41の屈折率が適切な値となるように適宜調整されるが、特に高屈折率層41中の屈折率調整用の粒子の割合が5体積%以上70体積%以下となるように調整されることが好ましい。屈折率調整用の粒子の具体例としては、チタン、アルミニウム、セリウム、イットリウム、ジルコニウム、ニオブ、アンチモンから選ばれる一種あるいは二種以上の酸化物を含有する粒子が挙げられる。酸化物の具体例としては、ZnO(屈折率1.90)、TiO(屈折率2.3~2.7)、CeO(屈折率1.95)、Sb(屈折率1.71)、SnO(屈折率1.8~2.0)、ITO(屈折率1.95)、Y(屈折率1.87)、La(屈折率1.95)、ZrO(屈折率2.05)、Al(屈折率1.63)等が挙げられる。高屈折率層41には帯電防止性能が付与されていることも好ましい。この場合、防眩フィルム1及び防眩低反射フィルム10の帯電が抑制され、また防眩フィルム1及び防眩低反射フィルム10へ埃の付着が抑制される。そのためには、高屈折率層41が導電性粒子を含有することが好ましい。 The content of the particles for adjusting the refractive index in the high refractive index layer 41 is appropriately adjusted so that the refractive index of the high refractive index layer 41 becomes an appropriate value, and the refractive index in the high refractive index layer 41 is particularly adjusted. It is preferable that the proportion of the particles for adjustment is adjusted to be 5% by volume or more and 70% by volume or less. Specific examples of the particles for adjusting the refractive index include particles containing one or more oxides selected from titanium, aluminum, cerium, yttrium, zirconium, niobium, and antimony. Specific examples of the oxide include ZnO (refractive index 1.90), TiO 2 (refractive index 2.3 to 2.7), CeO 2 (refractive index 1.95), and Sb 2 O 5 (refractive index 1. 71), SnO 2 (refractive index 1.8-2.0), ITO (refractive index 1.95), Y 2 O 3 (refractive index 1.87), La 2 O 3 (refractive index 1.95), Examples thereof include ZrO 2 (refractive index 2.05) and Al 2 O 3 (refractive index 1.63). It is also preferable that the high refractive index layer 41 is provided with antistatic performance. In this case, the charging of the antiglare film 1 and the antiglare low reflection film 10 is suppressed, and the adhesion of dust to the antiglare film 1 and the antiglare low reflection film 10 is suppressed. For that purpose, it is preferable that the high refractive index layer 41 contains conductive particles.
 導電性粒子は同時に屈折率調整用の粒子としても機能してもよい。導電性粒子はナノ粒子であることが好ましく、特に粒径が0.5nm以上200nm以下の超微粒子であることが好ましい。導電性粒子の粒径も面積相当円の径である。導電性粒子の材質としては導電性を有する適宜の金属、金属酸化物等が挙げられ、具体的にはインジウム、亜鉛、錫、アンチモンから選ばれる一種又は二種以上の金属の酸化物が挙げられ、更に具体的には酸化インジウム(ITO)、酸化錫(SnO)、アンチモン/錫酸化物(ATO)、鉛/チタン酸化物(PTO)、アンチモン酸化物(Sb)等が挙げられる。高屈折率層41に十分な帯電防止性能が付与されるためには、導電性粒子を含有することで高屈折率層41のシート抵抗が1015Ω/□以下となることが好ましい。高屈折率層41のシート抵抗は小さいほど帯電防止性が向上するので、下限は特に設定されないが、シート抵抗を小さくするのには限界があるため、高屈折率層41のシート抵抗の実質的な下限は10Ω/□である。高屈折率層41中の導電性粒子の含有量は、高屈折率層41の帯電防止性能が適切な程度となるように適宜調整されるが、特に高屈折率層41中の導電性粒子の割合が5質量%以上70質量%以下となるように調整されることが好ましい。 The conductive particles may also function as particles for adjusting the refractive index at the same time. The conductive particles are preferably nanoparticles, and particularly preferably ultrafine particles having a particle size of 0.5 nm or more and 200 nm or less. The particle size of the conductive particles is also the diameter of the circle corresponding to the area. Examples of the material of the conductive particles include appropriate metals having conductivity, metal oxides, and the like, and specific examples thereof include oxides of one or more kinds of metals selected from indium, zinc, tin, and antimony. More specifically, indium oxide (ITO), tin oxide (SnO 2 ), antimon / tin oxide (ATO), lead / titanium oxide (PTO), antimon oxide (Sb 2 O 5 ) and the like can be mentioned. .. In order to impart sufficient antistatic performance to the high refractive index layer 41, it is preferable that the sheet resistance of the high refractive index layer 41 is 10 15 Ω / □ or less by containing conductive particles. Since the antistatic property is improved as the sheet resistance of the high refractive index layer 41 is small, a lower limit is not set in particular, but since there is a limit to reducing the sheet resistance, the sheet resistance of the high refractive index layer 41 is substantially reduced. a lower limit is 10 6 Ω / □. The content of the conductive particles in the high-refractive-index layer 41 is appropriately adjusted so that the antistatic performance of the high-refractive-index layer 41 becomes an appropriate degree, and in particular, the conductive particles in the high-refractive-index layer 41 It is preferable that the ratio is adjusted to be 5% by mass or more and 70% by mass or less.
 既述の通り、高屈折率層41が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第一の紫外線硬化型樹脂の硬化物を含有してもよい。そのためには、例えば、紫外線硬化型樹脂組成物から高屈折率層41が形成される場合に、この紫外線硬化型樹脂組成物が、第一の紫外線硬化型樹脂を含有することが、好ましい。 As described above, the high refractive index layer 41 may contain a cured product of the first ultraviolet curable resin containing at least one of an alkoxysilane having a reactive organic functional group and a partially hydrolyzed polymer thereof. .. For that purpose, for example, when the high refractive index layer 41 is formed from the ultraviolet curable resin composition, it is preferable that the ultraviolet curable resin composition contains the first ultraviolet curable resin.
 反応性有機官能基を有するアルコキシシランにおける反応性有機官能基としては、アクリロイル基、メタクリロイル基、グリシジル基、イソシアネート基等が、挙げられる。反応性有機官能基を有するアルコキシシランとしては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。 Examples of the reactive organic functional group in the alkoxysilane having a reactive organic functional group include an acryloyl group, a methacryloyl group, a glycidyl group, an isocyanate group and the like. Examples of the alkoxysilane having a reactive organic functional group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, and 3-. Examples thereof include acryloxipropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-isocyanuppropyltriethoxysilane, and 3-isocyanuppropyltriethoxysilane.
 既述の通り、高屈折率層41が第一の紫外線硬化型樹脂の硬化物を含有する場合、高屈折率層41に対する、第一の紫外線硬化型樹脂におけるアルコキシシラン及びその部分加水分解重合物の割合が、3質量%以上であることが、好ましい。この割合は、更に5~10質量%の範囲であることが好ましい。この場合、防眩フィルム1及び防眩低反射フィルム10の耐擦傷性が更に向上し、また層間の密着性も更に向上する。 As described above, when the high refractive index layer 41 contains a cured product of the first ultraviolet curable resin, the alkoxysilane in the first ultraviolet curable resin and its partially hydrolyzed polymer with respect to the high refractive index layer 41. Is preferably 3% by mass or more. This ratio is further preferably in the range of 5 to 10% by mass. In this case, the scratch resistance of the antiglare film 1 and the antiglare low-reflection film 10 is further improved, and the adhesion between the layers is further improved.
 (超高屈折率層)
 超高屈折率層42は低屈折率層43よりも屈折率の高い高屈折率層として形成される。超高屈折率層42の屈折率は1.75以上1.90以下の範囲であることが好ましく、かつ厚み(実膜厚)は100nm以上160nm以下の範囲であることが好ましい。超高屈折率層42の屈折率及び厚みが前記のような範囲であることで防眩フィルム1及び防眩低反射フィルム10の光反射性が抑制され、且つこの防眩フィルム1及び防眩低反射フィルム10からの反射光の色が適度な色目に調整される。この超高屈折率層42の屈折率が前記範囲より大きくなると防眩フィルム1及び防眩低反射フィルム10の光反射性は更に低減するものの、反射光の色が強くなりすぎてしまい、好ましくない。また、超高屈折率層42の厚みが前記範囲より大きくなると、防眩フィルム1及び防眩低反射フィルム10からの反射光の色が青みを帯びるようになってしまい、この厚みがさらに大きくなると防眩フィルム1及び防眩低反射フィルム10の反射率が著しく増大してしまうため、好ましくない。また、超高屈折率層42の厚みが前記範囲より小さくなると反射色が強い紫色をおびた色になってしまうため、好ましくない。
(Ultra-high refractive index layer)
The ultra-high refractive index layer 42 is formed as a high refractive index layer having a higher refractive index than the low refractive index layer 43. The refractive index of the ultra-high refractive index layer 42 is preferably in the range of 1.75 or more and 1.90 or less, and the thickness (actual film thickness) is preferably in the range of 100 nm or more and 160 nm or less. When the refractive index and thickness of the ultrahigh refractive index layer 42 are in the above ranges, the light reflectivity of the antiglare film 1 and the antiglare low reflection film 10 is suppressed, and the antiglare film 1 and the antiglare low The color of the light reflected from the reflective film 10 is adjusted to an appropriate color. When the refractive index of the ultrahigh refractive index layer 42 becomes larger than the above range, the light reflectivity of the antiglare film 1 and the antiglare low reflection film 10 is further reduced, but the color of the reflected light becomes too strong, which is not preferable. .. Further, when the thickness of the ultrahigh reflectance layer 42 is larger than the above range, the color of the reflected light from the antiglare film 1 and the antiglare low reflection film 10 becomes bluish, and when this thickness is further increased. This is not preferable because the reflectances of the antiglare film 1 and the antiglare low reflection film 10 are significantly increased. Further, if the thickness of the ultra-high refractive index layer 42 is smaller than the above range, the reflected color becomes a strong purple-tinged color, which is not preferable.
 上記の通り、超高屈折率層42の厚みが大きくなると、反射光の光が青みを帯びてくる傾向が生じるが、超高屈折率層42の厚みが100nm以上180nm以下の範囲であれば、反射光の色は白色に充分に近い色となる。但し、反射光の色を特に白色に近づけるためには、この超高屈折率層42の厚みが上記のように100nm以上160nm以下の範囲であることが好ましい。この厚みが130nmより大きく160以下の範囲であれば更に好ましい。 As described above, when the thickness of the ultra-high refractive index layer 42 is increased, the reflected light tends to be bluish, but if the thickness of the ultra-high refractive index layer 42 is in the range of 100 nm or more and 180 nm or less, The color of the reflected light is sufficiently close to white. However, in order to bring the color of the reflected light closer to white, the thickness of the ultrahigh refractive index layer 42 is preferably in the range of 100 nm or more and 160 nm or less as described above. It is more preferable if this thickness is larger than 130 nm and is in the range of 160 or less.
 超高屈折率層42は、反応性硬化型樹脂組成物から形成されることが好ましく、例えば熱硬化型樹脂組成物と電離放射線硬化型樹脂組成物の少なくとも一方から形成されることが好ましい。熱硬化型樹脂組成物、電離放射線硬化型樹脂組成物及び光重合開始剤は、高屈折率層41の説明で挙げられた樹脂と同様のものが挙げられる。 The ultra-high refractive index layer 42 is preferably formed from a reactive curable resin composition, for example, preferably formed from at least one of a thermosetting resin composition and an ionizing radiation curable resin composition. Examples of the thermosetting resin composition, the ionizing radiation curable resin composition, and the photopolymerization initiator are the same as those of the resin mentioned in the description of the high refractive index layer 41.
 超高屈折率層42の屈折率は、超高屈折率層42を形成するための樹脂組成物の組成によって容易に調整され得る。超高屈折率層42が屈折率調整用の粒子を含有すると共にその割合が調整されることで、超高屈折率層42の屈折率が調整されることも好ましい。 The refractive index of the ultra-high refractive index layer 42 can be easily adjusted by the composition of the resin composition for forming the ultra-high refractive index layer 42. It is also preferable that the refractive index of the ultra-high refractive index layer 42 is adjusted by containing the particles for adjusting the refractive index and adjusting the ratio thereof.
 屈折率調整用の粒子の粒径は十分に小さいこと、すなわち屈折率調整用の粒子がいわゆる超微粒子であるが好ましく、この場合、超高屈折率層42の光透過性が十分に維持されるようになる。屈折率調整用の粒子の粒径は特に、0.5nm以上200nm以下の範囲であることが好ましい。この屈折率調整用の粒子の粒径とは、粒子の電子顕微鏡写真画像から算出される投影面積と同一の面積を有する円(面積相当円)の径のことである。 The particle size of the particles for adjusting the refractive index is sufficiently small, that is, the particles for adjusting the refractive index are preferably so-called ultrafine particles, and in this case, the light transmittance of the ultrahigh refractive index layer 42 is sufficiently maintained. Will be. The particle size of the particles for adjusting the refractive index is particularly preferably in the range of 0.5 nm or more and 200 nm or less. The particle size of the particles for adjusting the refractive index is the diameter of a circle (circle equivalent to the area) having the same area as the projected area calculated from the electron micrograph image of the particles.
 屈折率調整用の粒子は、比較的屈折率の高い粒子であることが好ましく、特に屈折率が1.6以上の粒子であることが好ましい。この粒子は、金属や金属酸化物の粒子であることが好ましい。 The particles for adjusting the refractive index are preferably particles having a relatively high refractive index, and particularly preferably particles having a refractive index of 1.6 or more. The particles are preferably metal or metal oxide particles.
 超高屈折率層42中の屈折率調整用の粒子の含有量は、超高屈折率層42の屈折率が適切な値となるように適宜調整されるが、特に超高屈折率層42中の屈折率調整用の粒子の割合が5体積%以上70体積%以下となるように調整されることが好ましい。 The content of the particles for adjusting the refractive index in the ultra-high refractive index layer 42 is appropriately adjusted so that the refractive index of the ultra-high refractive index layer 42 becomes an appropriate value, but particularly in the ultra-high refractive index layer 42. It is preferable that the proportion of the particles for adjusting the refractive index of the above is adjusted to be 5% by volume or more and 70% by volume or less.
 屈折率調整用の粒子の具体例としては、チタン、アルミニウム、セリウム、イットリウム、ジルコニウム、ニオブ、アンチモンから選ばれる一種あるいは二種以上の酸化物を含有する粒子が挙げられる。酸化物の具体例としては、ZnO(屈折率1.90)、TiO(屈折率2.3~2.7)、CeO(屈折率1.95)、Sb(屈折率1.71)、SnO(屈折率1.8~2.0)、ITO(屈折率1.95)、Y(屈折率1.87)、La(屈折率1.95)、ZrO(屈折率2.05)、Al(屈折率1.63)等が挙げられる。 Specific examples of the particles for adjusting the refractive index include particles containing one or more oxides selected from titanium, aluminum, cerium, yttrium, zirconium, niobium, and antimony. Specific examples of the oxide include ZnO (refractive index 1.90), TiO 2 (refractive index 2.3 to 2.7), CeO 2 (refractive index 1.95), and Sb 2 O 5 (refractive index 1. 71), SnO 2 (refractive index 1.8-2.0), ITO (refractive index 1.95), Y 2 O 3 (refractive index 1.87), La 2 O 3 (refractive index 1.95), Examples thereof include ZrO 2 (refractive index 2.05) and Al 2 O 3 (refractive index 1.63).
 超高屈折率層42は、チタン、アルミニウム、セリウム、イットリウム、ジルコニウム、ニオブ、アンチモンから選ばれる一種あるいは二種以上の酸化物を含有する粒子と共に、メタクリル官能性シランと、アクリル官能性シランとのうち少なくとも一方を含有することも好ましい。この場合、超高屈折率層42と低屈折率層43との密着性が向上する。メタクリル官能性シランとしては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン等が挙げられる。アクリル官能性シランとしては3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン等が挙げられる。 The ultra-high refractive index layer 42 contains particles containing one or more oxides selected from titanium, aluminum, cerium, yttrium, zirconium, niobium, and antimony, as well as methacryl-functional silane and acrylic-functional silane. It is also preferable to contain at least one of them. In this case, the adhesion between the ultra-high refractive index layer 42 and the low refractive index layer 43 is improved. Examples of the methacryl-functional silane include 3-methacryloxypropyltrimethoxysilane and 3-methacryloxypropylmethyldimethoxysilane. Examples of the acrylic functional silane include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropylmethyldimethoxysilane.
 超高屈折率層42中のメタクリル官能性シランとアクリル官能性シランの含有量は特に制限されないが、超高屈折率層42中のメタクリル官能性シランとアクリル官能性シランの総量の割合が5質量%以上30質量%以下の範囲であることが好ましい。前記割合が5質量%以上であると超高屈折率層42と低屈折率層43との密着性が十分に高くなり、また前記割合が30質量%以下であると超高屈折率層42中の架橋密度が十分に向上して超高屈折率層42の硬度が十分に高くなる。 The contents of the methacryl-functional silane and the acrylic-functional silane in the ultra-high refractive index layer 42 are not particularly limited, but the ratio of the total amount of the methacryl-functional silane and the acrylic-functional silane in the ultra-high refractive index layer 42 is 5 mass. It is preferably in the range of% or more and 30% by mass or less. When the ratio is 5% by mass or more, the adhesion between the ultra-high refractive index layer 42 and the low refractive index layer 43 is sufficiently high, and when the ratio is 30% by mass or less, the ultra-high refractive index layer 42 is contained. The cross-linking density of the ultra-high refractive index layer 42 is sufficiently improved, and the hardness of the ultra-high refractive index layer 42 is sufficiently high.
 超高屈折率層42の、高屈折率層41とは反対側の主面には、低屈折率層43が形成される前に表面処理が施されることが好ましい。この場合、超高屈折率層42と低屈折率層43との間の濡れ性、密着性等の向上が可能となる。表面処理の方法としては、プラズマ処理、コロナ放電処理、フレーム処理などの物理的表面処理、カップリング剤、酸、アルカリによる化学的表面処理などが挙げられる。 It is preferable that the main surface of the ultra-high refractive index layer 42 opposite to the high refractive index layer 41 is surface-treated before the low refractive index layer 43 is formed. In this case, it is possible to improve the wettability, adhesion, and the like between the ultra-high refractive index layer 42 and the low refractive index layer 43. Examples of the surface treatment method include physical surface treatment such as plasma treatment, corona discharge treatment and frame treatment, and chemical surface treatment with a coupling agent, acid and alkali.
 既述の通り、超高屈折率層42が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第二の紫外線硬化型樹脂の硬化物を含有してもよい。そのためには、例えば、紫外線硬化型樹脂組成物から超高屈折率層42が形成される場合に、この紫外線硬化型樹脂組成物が、第二の紫外線硬化型樹脂を含有することが、好ましい。 As described above, even if the ultrahigh refractive index layer 42 contains a cured product of a second ultraviolet curable resin containing at least one of an alkoxysilane having a reactive organic functional group and a partially hydrolyzed polymer thereof. good. For that purpose, for example, when the ultrahigh refractive index layer 42 is formed from the ultraviolet curable resin composition, it is preferable that the ultraviolet curable resin composition contains a second ultraviolet curable resin.
 反応性有機官能基を有するアルコキシシランにおける反応性有機官能基としては、アクリロイル基、メタクリロイル基、グリシジル基、イソシアネート基等が挙げられる。反応性有機官能基を有するアルコキシシランとしては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。 Examples of the reactive organic functional group in the alkoxysilane having a reactive organic functional group include an acryloyl group, a methacryloyl group, a glycidyl group, an isocyanate group and the like. Examples of the alkoxysilane having a reactive organic functional group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, and 3-. Examples thereof include acryloxipropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-isocyanuppropyltriethoxysilane, and 3-isocyanuppropyltriethoxysilane.
 既述の通り、超高屈折率層42が第二の紫外線硬化型樹脂の硬化物を含有する場合、超高屈折率層42に対する、第二の紫外線硬化型樹脂におけるアルコキシシラン及びその部分加水分解重合物の割合が、3質量%以上であることが、好ましい。この割合は、更に5~10質量%の範囲であることが好ましい。この場合、防眩フィルム1及び防眩低反射フィルム10の耐擦傷性が更に向上し、また層間の密着性も更に向上する。 As described above, when the ultra-high refractive index layer 42 contains a cured product of the second ultraviolet curable resin, the alkoxysilane and its partial hydrolysis in the second ultraviolet curable resin with respect to the ultra-high refractive index layer 42. The proportion of the polymer is preferably 3% by mass or more. This ratio is further preferably in the range of 5 to 10% by mass. In this case, the scratch resistance of the antiglare film 1 and the antiglare low-reflection film 10 is further improved, and the adhesion between the layers is further improved.
 (低屈折率層)
 低屈折率層43の屈折率は、透明基材層2、高屈折率層41及び超高屈折率層42のいずれの屈折率よりも低い。低屈折率層43の屈折率は1.30以上1.40以下の範囲であることが好ましく、その厚み(実膜厚)は70nm以上110nm以下の範囲であることが好ましい。
(Low refractive index layer)
The refractive index of the low refractive index layer 43 is lower than that of any of the transparent base material layer 2, the high refractive index layer 41, and the ultra-high refractive index layer 42. The refractive index of the low refractive index layer 43 is preferably in the range of 1.30 or more and 1.40 or less, and the thickness (actual film thickness) thereof is preferably in the range of 70 nm or more and 110 nm or less.
 低屈折率層43の屈折率が前記のような範囲であることで、高屈折率層41と超高屈折率層42との干渉作用により防眩フィルム1及び防眩低反射フィルム10の反射率が低減し、更に低屈折率層43の厚みが前記のような範囲にあることで、防眩フィルム1及び防眩低反射フィルム10からの反射光の色が適度に調整される。 When the refractive index of the low refractive index layer 43 is in the above range, the reflectances of the antiglare film 1 and the antiglare low reflection film 10 due to the interference action between the high refractive index layer 41 and the ultrahigh refractive index layer 42. And further, when the thickness of the low refractive index layer 43 is in the above range, the color of the reflected light from the antiglare film 1 and the antiglare low reflection film 10 is appropriately adjusted.
 低屈折率層43の厚みが70nm以上130nm以下の範囲であれば、反射光の色は白色に充分に近い色となる。但し、反射光の色を特に白色に近づけるためには、この低屈折率層43の厚みが上記のように70nm以上110nm以下の範囲であることが好ましい。この厚みが70nm以上80nm未満の範囲であれば更に好ましい。 If the thickness of the low refractive index layer 43 is in the range of 70 nm or more and 130 nm or less, the color of the reflected light is sufficiently close to white. However, in order to bring the color of the reflected light closer to white, the thickness of the low refractive index layer 43 is preferably in the range of 70 nm or more and 110 nm or less as described above. It is more preferable that the thickness is in the range of 70 nm or more and less than 80 nm.
 また、既述の通り、防眩フィルム1及び防眩低反射フィルム10がITO膜と併用される場合において、防眩フィルム1及び防眩低反射フィルム10からの反射光とITO膜からの反射光とが重なって成る光の色を白色に近づけるためには、低屈折率層43の厚みが80nm以上130nm以下の範囲であることが好ましい。この厚みが110nmより大きく130nm以下の範囲であれば更に好ましい。 Further, as described above, when the antiglare film 1 and the antiglare low reflection film 10 are used in combination with the ITO film, the reflected light from the antiglare film 1 and the antiglare low reflection film 10 and the reflected light from the ITO film are used. In order to bring the color of the light overlapping with the light closer to white, the thickness of the low refractive index layer 43 is preferably in the range of 80 nm or more and 130 nm or less. It is more preferable if this thickness is in the range of more than 110 nm and 130 nm or less.
 低屈折率層43は、例えばバインダー材料及び必要に応じて使用される屈折率調整用の粒子を含有する組成物から形成される。バインダー材料と屈折率調整用の粒子とが併用される場合、両者の組み合わせ、配合比等により低屈折率層43の屈折率が適宜調整される。 The low refractive index layer 43 is formed from, for example, a composition containing a binder material and particles for adjusting the refractive index used as needed. When the binder material and the particles for adjusting the refractive index are used in combination, the refractive index of the low refractive index layer 43 is appropriately adjusted depending on the combination of both, the compounding ratio, and the like.
 バインダー材料としては、シリコンアルコキシド系樹脂、飽和炭化水素及びポリエーテルの少なくともいずれかを主鎖とするポリマー(例えばUV硬化型樹脂組成物、熱硬化型樹脂組成物等)、ポリマー鎖中にフッ素原子を含む単位を含む樹脂などが挙げられる。 As the binder material, a polymer having at least one of a silicon alkoxide resin, a saturated hydrocarbon and a polyether as a main chain (for example, a UV curable resin composition, a thermosetting resin composition, etc.), and a fluorine atom in the polymer chain. Examples thereof include a resin containing a unit containing.
 シリコンアルコキシド系樹脂としては、RmSi(OR’)nで表されるシリコンアルコキシド(R、R’は炭素数1~10のアルキル基、m+n=4、m及びnはそれぞれ整数。)の部分加水分解縮合物であるオリゴマー及びポリマーが、挙げられる。シリコンアルコキシドとしては、具体的にはテトラメトキシシラン、テトラエトキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テトラペンタエトキシシラン、テトラペンタ-iso-プロポキシシラン、テトラペンタ-n-プロポキシシラン、テトラペンタ-n-ブトキシシラン、テトラペンタ-sec-ブトキシシラン、テトラペンタ-tert-ブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルエトキシシラン、ジメチルメトキシシラン、ジメチルプロポキシシラン、ジメチルブトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ヘキシルトリメトキシシラン等が例示される。 As the silicon alkoxide-based resin, partial hydrolysis of the silicon alkoxide represented by RmSi (OR') n (R and R'are alkyl groups having 1 to 10 carbon atoms, m + n = 4, m and n are integers, respectively). Examples thereof include oligomers and polymers which are condensates. Specific examples of the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, tetra-iso-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, and tetra-tert-butoxysilane. Silane, tetrapentaethoxysilane, tetrapenta-iso-propoxysilane, tetrapenta-n-propoxysilane, tetrapenta-n-butoxysilane, tetrapenta-sec-butoxysilane, tetrapenta-tert-butoxysilane, methyltrimethoxysilane, methyltriethoxy Silane, methyltripropoxysilane, methyltributoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethylethoxysilane, dimethylmethoxysilane, dimethylpropoxysilane, dimethylbutoxysilane, methyldimethoxysilane, methyldiethoxysilane, hexyltrimethoxysilane Etc. are exemplified.
 バインダー材料として、熱又は電離放射線によって反応架橋する複数の基(重合性二重結合基等)を有する反応性有機珪素化合物が用いられてもよい。この有機珪素化合物の分子量は5000以下であることが好ましい。このような反応性有機珪素化合物としては、片末端ビニル官能性ポリシラン、両末端ビニル官能性ポリシラン、片末端ビニル官能ポリシロキサン、両末端ビニル官能性ポリシロキサン、並びにこれらの化合物を反応させて得られるビニル官能性ポリシラン及びビニル官能性ポリシロキサン等が挙げられる。これら以外にも、反応性有機珪素化合物としては、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン等の(メタ)アクリロキシシラン化合物が挙げられる。 As the binder material, a reactive organic silicon compound having a plurality of groups (polymerizable double bond groups, etc.) that are reactively crosslinked by heat or ionizing radiation may be used. The molecular weight of this organic silicon compound is preferably 5000 or less. Such reactive organic silicon compounds are obtained by reacting one-terminal vinyl-functional polysilane, both-terminal vinyl-functional polysilane, one-terminal vinyl-functional polysiloxane, both-terminal vinyl-functional polysiloxane, and these compounds. Examples thereof include vinyl-functional polysilane and vinyl-functional polysiloxane. In addition to these, examples of the reactive organic silicon compound include (meth) acryloxysilane compounds such as 3- (meth) acryloxypropyltrimethoxysilane and 3- (meth) acryloxipropylmethyldimethoxysilane.
 屈折率調整用の粒子としては、比較的低屈折率の粒子が使用されることが好ましい。屈折率調整用の粒子の材質としては、シリカ、フッ化マグネシウム、フッ化リチウム、フッ化アルミニウム、フッ化カルシウム、フッ化ナトリウム等が挙げられる。屈折率調整用の粒子が中空粒子を含むことが好ましい。中空粒子とは外殻によって包囲された空洞を有する粒子である。中空粒子の屈折率は1.20~1.45であることが好ましい。屈折率調整用の粒子には、必要に応じて、バインダー材料との濡れ性を向上するための表面処理が施されていることが好ましい。 As the particles for adjusting the refractive index, it is preferable to use particles having a relatively low refractive index. Examples of the material of the particles for adjusting the refractive index include silica, magnesium fluoride, lithium fluoride, aluminum fluoride, calcium fluoride, and sodium fluoride. It is preferable that the particles for adjusting the refractive index include hollow particles. Hollow particles are particles having cavities surrounded by an outer shell. The refractive index of the hollow particles is preferably 1.20 to 1.45. If necessary, the particles for adjusting the refractive index are preferably surface-treated to improve the wettability with the binder material.
 屈折率調整用の粒子の粒径は十分に小さいこと、すなわち屈折率調整用の粒子がいわゆる超微粒子であることが好ましく、この場合、低屈折率層43の光透過性が十分に維持されるようになる。屈折率調整用の粒子の粒径は特に、0.5nm~200nmの範囲であることが好ましい。この屈折率調整用の粒子の粒径とは、粒子の電子顕微鏡写真画像から算出される投影面積と同一の面積を有する円(面積相当円)の径のことである。 It is preferable that the particle size of the particles for adjusting the refractive index is sufficiently small, that is, the particles for adjusting the refractive index are so-called ultrafine particles, and in this case, the light transmittance of the low refractive index layer 43 is sufficiently maintained. Will be. The particle size of the particles for adjusting the refractive index is particularly preferably in the range of 0.5 nm to 200 nm. The particle size of the particles for adjusting the refractive index is the diameter of a circle (circle equivalent to the area) having the same area as the projected area calculated from the electron micrograph image of the particles.
 低屈折率層43中の屈折率調整用の粒子の含有量は、低屈折率層43の屈折率の値が適切な値となるように適宜調整されるが、特に低屈折率層43中の屈折率調整用の粒子の割合が20~99体積%となるように調整されることが好ましい。 The content of the particles for adjusting the refractive index in the low refractive index layer 43 is appropriately adjusted so that the value of the refractive index of the low refractive index layer 43 becomes an appropriate value, but particularly in the low refractive index layer 43. It is preferable that the proportion of the particles for adjusting the refractive index is adjusted to be 20 to 99% by volume.
 組成物は、更に撥水、撥油性材料を含有してもよい。この場合、低屈折率層43に防汚性が付与され得る。撥水、撥油性材料としては、一般的なワックス系の材料等が使用され得る。特に含フッ素化合物が使用されると、低屈折率層43の汚れ、指紋等の除去性が特に向上すると共に、低屈折率層43の表面の摩擦抵抗が低減して低屈折率層43の耐摩耗性が向上する。 The composition may further contain a water-repellent and oil-repellent material. In this case, antifouling property can be imparted to the low refractive index layer 43. As the water-repellent and oil-repellent material, a general wax-based material or the like can be used. In particular, when a fluorine-containing compound is used, the removability of stains, fingerprints, etc. of the low refractive index layer 43 is particularly improved, and the frictional resistance on the surface of the low refractive index layer 43 is reduced to reduce the resistance of the low refractive index layer 43. Abrasion is improved.
 低屈折率層43として好ましい態様は、アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体からなり、かつ中空シリカ粒子を含有するものを例示することができる。この場合、低屈折率の確保や防汚性機能付与、耐薬品性付与という効果が得られて好ましい。上記のアルコキシシランとしては、ポリメトキシシランなどを例示することができる。また、フルオロカーボン骨格を有するアルコキシシランとしては、トリメトキシシリルドデカフルオロヘキサンなどを例示することができる。アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物は、アルコキシシラン100質量部に対してフルオロカーボン骨格を有するアルコキシシランを5~1900質量部の割合で混合することにより調製することができる。また、アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体は、例えば、ゾルゲル法などの重合法により生成することができる。アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体の分子量は、500~3000であることが好ましい。また、中空シリカ粒子は上記と同様に、屈折率が1.20~1.45であることが好ましく、粒径が0.5nm~200nmの範囲であることが好ましい。また、低屈折率層43には、アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体100質量部に対して、中空シリカ粒子を5~233質量部の割合で含有されることが好ましい。 A preferred embodiment of the low refractive index layer 43 is a polymer composed of a polymer of a mixture of alkoxysilane and alkoxysilane having a fluorocarbon skeleton, and containing hollow silica particles. In this case, the effects of ensuring a low refractive index, imparting an antifouling function, and imparting chemical resistance are obtained, which is preferable. Examples of the above-mentioned alkoxysilane include polymethoxysilane. Further, as the alkoxysilane having a fluorocarbon skeleton, trimethoxysilyld decafluorohexane and the like can be exemplified. A mixture of an alkoxysilane and an alkoxysilane having a fluorocarbon skeleton can be prepared by mixing an alkoxysilane having a fluorocarbon skeleton in a ratio of 5 to 1900 parts by mass with respect to 100 parts by mass of the alkoxysilane. Further, a polymer of a mixture of an alkoxysilane and an alkoxysilane having a fluorocarbon skeleton can be produced by, for example, a polymerization method such as a sol-gel method. The molecular weight of the polymer of the mixture of alkoxysilane and alkoxysilane having a fluorocarbon skeleton is preferably 500 to 3000. Further, the hollow silica particles preferably have a refractive index of 1.20 to 1.45 and a particle size in the range of 0.5 nm to 200 nm, as described above. Further, the low refractive index layer 43 preferably contains hollow silica particles in a ratio of 5 to 233 parts by mass with respect to 100 parts by mass of a polymer of a mixture of alkoxysilane and an alkoxysilane having a fluorocarbon skeleton. ..
 低屈折率層43は、上記のような組成物が超高屈折率層42の上に塗布され、更にこの組成物がバインダー材料の性状に応じて加熱、加湿、紫外線照射、電子線照射等の処理が施されることで硬化することにより、形成され得る。 In the low refractive index layer 43, the composition as described above is applied on the ultrahigh refractive index layer 42, and the composition is further heated, humidified, irradiated with ultraviolet rays, irradiated with electron beams, etc. according to the properties of the binder material. It can be formed by being cured by being treated.
 (3)変形例
 実施形態は、本開示の様々な実施形態の一つに過ぎない。実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
(3) Modified Example The embodiment is only one of the various embodiments of the present disclosure. The embodiment can be changed in various ways depending on the design and the like as long as the object of the present disclosure can be achieved.
 防眩フィルム1及び防眩低反射フィルム10は、凹凸調整層を備えることができる。凹凸調整層は、防眩層3の表面の凹凸の度合いを調整し、防眩フィルム1及び防眩低反射フィルム10の防眩性や反射性を調整するものである。 The antiglare film 1 and the antiglare low reflection film 10 can be provided with an unevenness adjusting layer. The unevenness adjusting layer adjusts the degree of unevenness on the surface of the antiglare layer 3 to adjust the antiglare property and the reflectivity of the antiglare film 1 and the antiglare low reflection film 10.
 (実施例1)
 光透過性の透明基材層(厚み80μmトリアセチルセルロース樹脂フィルム、富士フィルム社製、TD80UL)を準備し、該透明基材フィルムの片面に、下記に示した組成の防眩層用組成物を塗布し、塗膜を形成した。次いで、形成した塗膜を80℃の循風乾燥機中で1分間乾燥させることにより塗膜中の溶剤を蒸発させ、紫外線を積算光量が150mJ/cmになるように照射して塗膜を硬化させることにより、5μm厚み(硬化時)の防眩層を形成し、実施例1に係る防眩性フィルムを作製した。
(Example 1)
A light-transmitting transparent base material layer (thickness 80 μm triacetyl cellulose resin film, manufactured by Fuji Film Co., Ltd., TD80UL) is prepared, and a composition for an antiglare layer having the composition shown below is applied to one side of the transparent base material film. It was applied to form a coating film. Next, the formed coating film is dried in a circulating air dryer at 80 ° C. for 1 minute to evaporate the solvent in the coating film, and the coating film is irradiated with ultraviolet rays so that the integrated light amount becomes 150 mJ / cm 2. By curing, an antiglare layer having a thickness of 5 μm (when cured) was formed, and an antiglare film according to Example 1 was produced.
 (防眩層用組成物)
 有機微粒子(アクリル-スチレン共重合体粒子、平均一次粒子径3.5μm、屈折率1.555、積水化成品工業社製):10質量部
 無機微粒子(フュームドシリカ、オクチルシラン処理;平均一次粒子径12nm、密度:2.2g/cm、日本アエロジル社製):2質量部
 水酸基濃度0.001mmol/g以上0.15mmol/g以下のペンタエリスリトールポリアクリレート混合物:60質量部
 ウレタンアクリレート(製品名:ルクシディア V-4000BA、DIC株式会社製):40質量部
 イルガキュア184(BASFジャパン社製、光重合開始剤):5質量部
 分岐状フッ素系界面活性剤(フタージェント681、株式会社ネオス製):3.3質量部
 上記有機微粒子、無機微粒子、ペンタエリスリトールポリアクリレート混合物、ウレタンアクリレート、イルガキュア184及び分岐状フッ素系界面活性剤の混合物に対し、トルエン/シクロヘキサノン=70質量部/30質量部の混合溶剤で有効成分(ビヒクル)30%となるように希釈した。
(Composition for antiglare layer)
Organic fine particles (acrylic-styrene copolymer particles, average primary particle diameter 3.5 μm, refractive index 1.555, manufactured by Sekisui Kasei Kogyo Co., Ltd.): 10 parts by mass Inorganic fine particles (fumed silica, octylsilane treatment; average primary particles Diameter 12 nm, Density: 2.2 g / cm 3 , manufactured by Nippon Aerodil Co., Ltd.): 2 parts by mass Pentaerythritol polyacrylate mixture with hydroxyl group concentration of 0.001 mmol / g or more and 0.15 mmol / g or less: 60 parts by mass Urethane acrylate (product name) : Luxidia V-4000BA, manufactured by DIC Co., Ltd.): 40 parts by mass Irgacure 184 (manufactured by BASF Japan, photopolymerization initiator): 5 parts by mass Branched fluorine-based surfactant (Futagent 681, manufactured by Neos Co., Ltd.): 3.3 parts by mass To a mixture of the above organic fine particles, inorganic fine particles, pentaerythritol polyacrylate mixture, urethane acrylate, Irgacure 184 and branched fluorine-based surfactant, toluene / cyclohexanone = 70 parts by mass / 30 parts by mass of a mixed solvent. Diluted to 30% of the active ingredient (vehicle).
 なお、この防眩層用組成物のバインダー樹脂の水酸基濃度は、計算値で0.0004mmol/g以上0.06mmol/g以下である。またバインダー樹脂と有機微粒子との屈折率の差の絶対値が0.05であった。 The hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 0.0004 mmol / g or more and 0.06 mmol / g or less. The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
 続いて、防眩層の上に第二層として凹凸調整層を形成した。凹凸調整層の形成にあたっては、ウレタンアクリレート(製品名:ルクシディア V-4000BA、DIC株式会社製)95質量部にイルガキュア184(BASFジャパン社製、光重合開始剤)5質量部となるように混合し、プロピレングリコールモノメチルエーテルで有効成分(ビヒクル)10%となるよう希釈し、凹凸調整層材料を得た。凹凸調整層材料をワイヤーバーコーター#6で防眩層表面に塗布し、塗膜を形成した。次いで、形成した塗膜を80℃の循風乾燥機中で1分間乾燥させることにより塗膜中の溶剤を蒸発させ、紫外線を積算光量が150mJ/cmになるように照射して塗膜を硬化させ、0.9μmの凹凸調整層を形成した。 Subsequently, a concavo-convex adjustment layer was formed as a second layer on the antiglare layer. In forming the unevenness adjusting layer, urethane acrylate (product name: Luxidia V-4000BA, manufactured by DIC Corporation) is mixed with 95 parts by mass of Irgacure 184 (manufactured by BASF Japan, photopolymerization initiator) so as to be 5 parts by mass. , Propylene glycol monomethyl ether was diluted to 10% of the active ingredient (vehicle) to obtain an unevenness adjusting layer material. The unevenness adjusting layer material was applied to the surface of the antiglare layer with a wire bar coater # 6 to form a coating film. Next, the formed coating film is dried in a circulating air dryer at 80 ° C. for 1 minute to evaporate the solvent in the coating film, and the coating film is irradiated with ultraviolet rays so that the integrated light amount becomes 150 mJ / cm 2. It was cured to form a 0.9 μm unevenness adjusting layer.
 続いて凹凸調整層の表面に第三層として高屈折率層を形成した。高屈折率層の形成にあたっては、アクリル系紫外線硬化型樹脂と高屈折率粒子の合計量に対して、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームMD-2クリヤー」、有効成分(固形分)60質量%)に、高屈折率粒子として酸化チタン粒子(テイカ(株)製「760T」、分散溶剤:トルエン、固形分48質量%)を40質量%となるように混合し(アクリル系紫外線硬化型樹脂、60質量%)、トルエン溶媒で固形分2質量%に希釈し、高屈折率層材料を得た。高屈折率材料をワイヤーバーコーター#3番でハードコート層の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm)により硬化させて形成した。この高屈折率層の屈折率は1.63、膜厚は60nmとなる。 Subsequently, a high refractive index layer was formed as a third layer on the surface of the unevenness adjusting layer. In forming the high refractive index layer, the acrylic ultraviolet curable resin (“Seika Beam MD-2 Clear” manufactured by Dainichi Seika Kogyo Co., Ltd.) is used for the total amount of the acrylic ultraviolet curable resin and the high refractive index particles. The active ingredient (solid content) 60% by mass) is mixed with titanium oxide particles (“760T” manufactured by Teika Co., Ltd., dispersion solvent: toluene, solid content 48% by mass) as high refractive index particles so as to be 40% by mass. (Acrylic ultraviolet curable resin, 60% by mass) was diluted with a toluene solvent to a solid content of 2% by mass to obtain a high refractive index layer material. The high refractive index material was applied onto the hard coat layer with a wire bar coater # 3, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ) to form the material. The high refractive index layer has a refractive index of 1.63 and a film thickness of 60 nm.
 続いて高屈折率層の表面に第四層として超高屈折率層を形成した。超高屈折率層の形成にあたっては、アクリル系紫外線硬化型樹脂と高屈折率粒子の合計量に対して、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームMD-2クリヤー」、有効成分(固形分)60質量%)に、高屈折率粒子として酸化チタン粒子(テイカ(株)製「760T」、分散溶剤:トルエン、固形分48質量%)を70質量%となるように混合し(アクリル系紫外線硬化型樹脂、30質量%)、トルエン溶媒で固形分12質量%に希釈し、高屈折率層材料を得た。高屈折率材料をワイヤーバーコーター#3番でハードコート層の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm)により硬化させて形成した。この高屈折率層の屈折率は1.76、膜厚は130nmとなる。 Subsequently, an ultra-high refractive index layer was formed as a fourth layer on the surface of the high refractive index layer. In forming the ultra-high refractive index layer, the acrylic ultraviolet curable resin (“Seika Beam MD-2 Clear” manufactured by Dainichi Seika Kogyo Co., Ltd.) is used for the total amount of the acrylic ultraviolet curable resin and the high refractive index particles. , Active ingredient (solid content) 60% by mass), titanium oxide particles (“760T” manufactured by Teika Co., Ltd., dispersion solvent: toluene, solid content 48% by mass) as high refractive index particles so as to be 70% by mass. It was mixed (acrylic ultraviolet curable resin, 30% by mass) and diluted with a toluene solvent to a solid content of 12% by mass to obtain a high refractive index layer material. The high refractive index material was applied onto the hard coat layer with a wire bar coater # 3, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ) to form the material. The high refractive index layer has a refractive index of 1.76 and a film thickness of 130 nm.
 続いて、超高屈折率層の上に第五層として低屈折率層を形成した。低屈折率層の形成にあたっては、低屈折層材料の全量に対して、中空シリカ微粒子ゾル(日揮触媒化成株式会社製「スルーリア4320」、溶媒分散ゾル、固形分20%)を58質量%、ジペンタエリスリトールポリアクリレート(東亜合成株式会社製「アロニックスM-402」)を40質量%、光重合開始剤Omnirad127(BASF製)2質量%を混合し、メチルイソブチルケトンで有効成分(ビヒクル)2.4%に希釈して低屈折層材料を得た。 Subsequently, a low refractive index layer was formed as a fifth layer on the ultrahigh refractive index layer. In forming the low refractive index layer, 58% by mass of hollow silica fine particle sol (“Thruria 4320” manufactured by JGC Catalysts and Chemicals Co., Ltd., solvent-dispersed sol, solid content 20%) was added to the total amount of the low refractive index layer material. 40% by mass of pentaerythritol polyacrylate (“Aronix M-402” manufactured by Toa Synthetic Co., Ltd.) and 2% by mass of photopolymerization initiator Omnirad 127 (manufactured by BASF) are mixed, and the active ingredient (vehicle) is 2.4 with methylisobutylketone. The low refractive index layer material was obtained by diluting to%.
 この低屈折率層材料をワイヤーバーコーター#3により塗布して厚み90nmのコーティング膜を形成し、さらに120℃で1分間放置して乾燥した後、コーティング膜を120℃で5分間、窒素雰囲気下でUV照射(500mJ/cm)により硬化させて形成した。この高屈折率層の屈折率は1.37、膜厚は90nmとなる。 This low refractive index layer material is applied with a wire bar coater # 3 to form a coating film having a thickness of 90 nm, left at 120 ° C. for 1 minute to dry, and then the coating film is dried at 120 ° C. for 5 minutes under a nitrogen atmosphere. It was formed by curing by UV irradiation (500 mJ / cm 2). The high refractive index layer has a refractive index of 1.37 and a film thickness of 90 nm.
 以上により、透明基材層、防眩層、凹凸調整層、高屈折率層、超高屈折率層及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。 From the above, an antireflection member having a structure in which a transparent base material layer, an antiglare layer, an unevenness adjusting layer, a high refractive index layer, an ultrahigh refractive index layer, and a low refractive index layer are laminated in this order was obtained.
 (実施例2)
 ペンタエリスリトールポリアクリレート混合物を水酸基濃度1.05mmol/gのペンタエリスリトールポリアクリレート混合物に代えた以外は実施例1と同様にして防眩層用組成物を調製した以外は実施例1と同様にして防眩フィルムを作成した。なお、この防眩層用組成物のバインダー樹脂の水酸基濃度は、計算値で0.63mmol/gである((1.05×60+0×40)/(60+40)=0.63)。またバインダー樹脂と有機微粒子との屈折率の差の絶対値が0.05であった。
(Example 2)
Prevention in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the pentaerythritol polyacrylate mixture having a hydroxyl group concentration of 1.05 mmol / g. A glare film was created. The hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 0.63 mmol / g ((1.05 × 60 + 0 × 40) / (60 + 40) = 0.63). The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
 (実施例3)
 ペンタエリスリトールポリアクリレート混合物を水酸基濃度2.80mmol/gのペンタエリスリトールポリアクリレート混合物に代えた以外は実施例1と同様にして防眩層用組成物を調製した以外は実施例1と同様にして防眩フィルムを作成した。なお、この防眩層用組成物のバインダー樹脂の水酸基濃度は、計算値で1.68mmol/gである。またバインダー樹脂と有機微粒子との屈折率の差の絶対値0.05であった。
(Example 3)
Prevention in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the pentaerythritol polyacrylate mixture having a hydroxyl group concentration of 2.80 mmol / g. A glare film was created. The hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 1.68 mmol / g. The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
 (実施例4)
 ペンタエリスリトールポリアクリレート混合物を水酸基濃度3.85mmol/gのペンタエリスリトールポリアクリレート混合物に代えた以外は実施例1と同様にして防眩層用組成物を調製した以外は実施例1と同様にして防眩フィルムを作成した。なお、この防眩層用組成物のバインダー樹脂の水酸基濃度は、計算値で2.31mmol/gである。またバインダー樹脂と有機微粒子との屈折率の差の絶対値が0.05であった。
(Example 4)
Prevention in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the pentaerythritol polyacrylate mixture having a hydroxyl group concentration of 3.85 mmol / g. A glare film was created. The hydroxyl group concentration of the binder resin of this antiglare layer composition is 2.31 mmol / g as a calculated value. The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
 (実施例5)
 ペンタエリスリトールポリアクリレート混合物を水酸基濃度0.63mmol/gのジペンタエリスリトールポリアクリレート混合物に代えた以外は実施例1と同様にして防眩層用組成物を調製した以外は実施例1と同様にして防眩フィルムを作成した。なお、この防眩層用組成物のバインダー樹脂の水酸基濃度は、計算値で0.38mmol/gである。またバインダー樹脂と有機微粒子との屈折率の差の絶対値が0.05であった。
(Example 5)
The same as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 0.63 mmol / g. An antiglare film was created. The hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 0.38 mmol / g. The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
 (実施例6)
 ペンタエリスリトールポリアクリレート混合物を水酸基濃度1.00mmol/gのジペンタエリスリトールポリアクリレート混合物に代えた以外は実施例1と同様にして防眩層用組成物を調製した以外は実施例1と同様にして防眩フィルムを作成した。なお、この防眩層用組成物のバインダー樹脂の水酸基濃度は、計算値で0.60mmol/gである。またバインダー樹脂と有機微粒子との屈折率の差の絶対値が0.05であった。
(Example 6)
The same as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 1.00 mmol / g. An antiglare film was created. The hydroxyl group concentration of the binder resin of this antiglare layer composition is a calculated value of 0.60 mmol / g. The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
 (実施例7)
 ペンタエリスリトールポリアクリレート混合物を水酸基濃度2.10mmol/gのジペンタエリスリトールポリアクリレート混合物に代えた以外は実施例1と同様にして防眩層用組成物を調製した以外は実施例1と同様にして防眩フィルムを作成した。なお、この防眩層用組成物のバインダー樹脂の水酸基濃度は、計算値で1.26mmol/gである。またバインダー樹脂と有機微粒子との屈折率の差の絶対値が0.05であった。
(Example 7)
The same as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 2.10 mmol / g. An antiglare film was created. The hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 1.26 mmol / g. The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
 (実施例8)
 ペンタエリスリトールポリアクリレート混合物を水酸基濃度0.27mmol/gのジペンタエリスリトールポリアクリレート混合物とし、有機微粒子を、有機微粒子(アクリル-スチレン共重合体粒子、平均一次粒子径3.5μm、屈折率1.525、積水化成品工業社製)に代えた以外は実施例1と同様にして防眩層用組成物を調製した以外は実施例1と同様にして防眩フィルムを作成した。なお、この防眩層用組成物のバインダー樹脂の水酸基濃度は、計算値で0.16mmol/gである。またバインダー樹脂と有機微粒子との屈折率の差の絶対値が0.05であった。
(Example 8)
The pentaerythritol polyacrylate mixture was a dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 0.27 mmol / g, and the organic fine particles were organic fine particles (acrylic-styrene copolymer particles, average primary particle diameter 3.5 μm, refractive index 1.525). An antiglare film was prepared in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the composition was replaced with (manufactured by Sekisui Kasei Kogyo Co., Ltd.). The hydroxyl group concentration of the binder resin of this antiglare layer composition is a calculated value of 0.16 mmol / g. The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
 ここで、アクリル-スチレン共重合体粒子のアクリル成分の比率を実施例1~7よりも高くすることによって、有機微粒子の屈折率を下げており、それによってスチレン成分の密度よりもアクリル成分の密度の方が大きいために有機微粒子の密度も大きくなっている。アクリル樹脂の成分が増加することによって、有機微粒子の極性も実施例1に比べて高くなっていると考えられるが、バインダー樹脂(A)の水酸基濃度も実施例1に比べて高くなっているため、分散媒と分散質の極性の類似性がある程度確保されることによって、有機微粒子の分散性が確保され、有機微粒子の凝集体が防眩層の表面の凹凸に影響を与えることによって、本願発明に適したRa及びSmが得られたものと考えられる。 Here, the refractive index of the organic fine particles is lowered by making the ratio of the acrylic component of the acrylic-styrene copolymer particles higher than that of Examples 1 to 7, whereby the density of the acrylic component is higher than the density of the styrene component. Because of the larger size, the density of organic fine particles is also higher. It is considered that the polarity of the organic fine particles is higher than that of Example 1 due to the increase in the components of the acrylic resin, but the hydroxyl group concentration of the binder resin (A) is also higher than that of Example 1. By ensuring the polarity similarity between the dispersion medium and the dispersoid to some extent, the dispersibility of the organic fine particles is ensured, and the aggregates of the organic fine particles affect the unevenness of the surface of the antiglare layer. It is considered that Ra and Sm suitable for the above were obtained.
 (実施例9)
 ペンタエリスリトールポリアクリレート混合物を水酸基濃度0.63mmol/gのジペンタエリスリトールポリアクリレート混合物とし、有機微粒子を、有機微粒子(アクリル-スチレン共重合体粒子、平均一次粒子径3.5μm、屈折率1.525、積水化成品工業社製)に代えた以外は実施例1と同様にして防眩層用組成物を調製した以外は実施例1と同様にして防眩フィルムを作成した。なお、この防眩層用組成物のバインダー樹脂の水酸基濃度は、計算値で0.38mmol/gである。またバインダー樹脂と有機微粒子との屈折率の差の絶対値が0.025であった。
(Example 9)
The pentaerythritol polyacrylate mixture was a dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 0.63 mmol / g, and the organic fine particles were organic fine particles (acrylic-styrene copolymer particles, average primary particle diameter 3.5 μm, refractive index 1.525). An antiglare film was prepared in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the composition was replaced with (manufactured by Sekisui Kasei Kogyo Co., Ltd.). The hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 0.38 mmol / g. The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.025.
 (比較例1)
 有機微粒子を、有機微粒子(アクリル-スチレン共重合体粒子、平均一次粒子径3.5μm、屈折率1.525、積水化成品工業社製)に代えた以外は実施例1と同様にして防眩層用組成物を調製した以外は実施例1と同様にして防眩フィルムを作成した。なお、この防眩性組成物のバインダー水酸基濃度は、計算値で0.0004mmol/g以上0.06mmol/g以下である。またバインダー樹脂と有機微粒子との屈折率の差の絶対値が0.025であった。
(Comparative Example 1)
Anti-glare as in Example 1 except that the organic fine particles were replaced with organic fine particles (acrylic-styrene copolymer particles, average primary particle diameter 3.5 μm, refractive index 1.525, manufactured by Sekisui Plastics Co., Ltd.). An antiglare film was prepared in the same manner as in Example 1 except that the layer composition was prepared. The binder hydroxyl group concentration of this antiglare composition is calculated to be 0.0004 mmol / g or more and 0.06 mmol / g or less. The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.025.
 ここで、実施例8及び実施例9と同様に、アクリル-スチレン共重合体粒子のアクリル成分の比率を実施例1~7よりも高くすることによって、有機微粒子の屈折率を下げており、それによってスチレン成分よりもアクリル成分の方が密度が大きいために有機微粒子の密度も大きくなっている。アクリル樹脂の成分が増加することによって、有機微粒子の極性も実施例1に比べて高くなっていると考えられるが、バインダー樹脂(A)の水酸基濃度は実施例1と同じであるため、有機微粒子とバインダー樹脂との極性の差が大きくなり、そのために有機微粒子が実施例1よりも大きく凝集してしまったことや、有機微粒子の密度が大きくなったことによって沈みやすくなったことなどから、有機微粒子の防眩層表面の凹凸に与える影響が低下した結果、RaおよびSmが実施例1に比べて小さくなり、本願発明に適したRa及びSmが得られなかったものと考えられる。 Here, similarly to Examples 8 and 9, the refractive index of the organic fine particles is lowered by making the ratio of the acrylic component of the acrylic-styrene copolymer particles higher than that of Examples 1 to 7. As a result, the density of the acrylic component is higher than that of the styrene component, so that the density of the organic fine particles is also higher. It is considered that the polarity of the organic fine particles is higher than that of Example 1 due to the increase in the components of the acrylic resin, but since the hydroxyl group concentration of the binder resin (A) is the same as that of Example 1, the organic fine particles are considered to be higher. The difference in polarity between the resin and the binder resin became large, and as a result, the organic fine particles aggregated larger than in Example 1, and the density of the organic fine particles increased, which made it easier to sink. It is probable that as a result of reducing the influence of the fine particles on the unevenness of the surface of the antiglare layer, Ra and Sm became smaller than in Example 1, and Ra and Sm suitable for the present invention could not be obtained.
 (比較例2)
 ペンタエリスリトールポリアクリレート混合物を水酸基濃度4.9mmol/gのぺンタエリスリトールポリアクリレート混合物に代えた以外は実施例1と同様にして防眩層用組成物を調製した以外は実施例1と同様にして防眩フィルムを作成した。なお、この防眩層用組成物のバインダー樹脂の水酸基濃度は、計算値で2.94mmol/gである。またバインダー樹脂と有機微粒子との屈折率の差の絶対値が0.05であった。
(Comparative Example 2)
The same as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the pentaerythritol polyacrylate mixture was replaced with the pentaerythritol polyacrylate mixture having a hydroxyl group concentration of 4.9 mmol / g. An antiglare film was created. The hydroxyl group concentration of the binder resin of this antiglare layer composition is 2.94 mmol / g as a calculated value. The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.05.
 (比較例3)
 ペンタエリスリトールポリアクリレート混合物を水酸基濃度2.1mmol/gのジペンタエリスリトールポリアクリレート混合物とし、有機微粒子を、有機微粒子(アクリル-スチレン共重合体粒子、平均一次粒子径3.5μm、屈折率1.525、積水化成品工業社製)に代えた以外は実施例1と同様にして防眩層用組成物を調製した以外は実施例1と同様にして防眩フィルムを作成した。なお、この防眩層用組成物のバインダー樹脂の水酸基濃度は、計算値で1.26mmol/gである。またバインダー樹脂と有機微粒子との屈折率の差の絶対値が0.025であった。
(Comparative Example 3)
The pentaerythritol polyacrylate mixture was a dipentaerythritol polyacrylate mixture having a hydroxyl group concentration of 2.1 mmol / g, and the organic fine particles were organic fine particles (acrylic-styrene copolymer particles, average primary particle diameter 3.5 μm, refractive index 1.525). An antiglare film was prepared in the same manner as in Example 1 except that the composition for the antiglare layer was prepared in the same manner as in Example 1 except that the composition was replaced with (manufactured by Sekisui Kasei Kogyo Co., Ltd.). The hydroxyl group concentration of the binder resin of this antiglare layer composition is calculated to be 1.26 mmol / g. The absolute value of the difference in refractive index between the binder resin and the organic fine particles was 0.025.
 (測定方法及び評価)
 (1)Ra:防眩層表面の算術平均粗さであり、JIS B 0601-1994に準拠する方法で得られる値であり、表面粗さ測定器:ET3000i/株式会社小坂研究所製で測定した。
(Measurement method and evaluation)
(1) Ra: Arithmetic mean roughness of the surface of the antiglare layer, which is a value obtained by a method conforming to JIS B 0601-1994, and was measured by a surface roughness measuring instrument: ET3000i / manufactured by Kosaka Laboratory Co., Ltd. ..
 (2)Sm:防眩層表面の凹凸の平均間隔であり、JIS B 0601-1994に準拠する方法で得られる値であり、表面粗さ測定器:ET3000i/株式会社小坂研究所製で測定した。 (2) Sm: The average interval of the unevenness on the surface of the antiglare layer, which is a value obtained by a method conforming to JIS B 0601-1994, and was measured by a surface roughness measuring instrument: ET3000i / manufactured by Kosaka Laboratory Co., Ltd. ..
 (3)T%:透過率であり、90%以上100%以下が好ましい。JIS K 7361-1:1997に準拠して、ヘイズメータ(日本電色工業株式会社製、型番NDH2000)を使用して測定した。 (3) T%: Transmittance, preferably 90% or more and 100% or less. The measurement was performed using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model number NDH2000) in accordance with JIS K 7361-1: 1997.
 (4)Haze:入射光のうち、平行光線透過率と拡散光線透過率の比であり、1%以上20%以下が好ましい。JIS K 7361-1:1997に準拠して、ヘイズメータ(日本電色工業株式会社製、型番NDH2000)を使用して測定した。 (4) Haze: Of the incident light, the ratio of the parallel light transmittance to the diffuse light transmittance, preferably 1% or more and 20% or less. The measurement was performed using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model number NDH2000) in accordance with JIS K 7361-1: 1997.
 (5)視感反射率:SCI(Y)
 正反射光及び散乱反射光を含んだ視感度反射率であり、0.7以下が好ましい。透明基材の裏面を黒色マジックインキ(登録商標)で塗装した上で黒色のビニールテープ(日東電工、No.21)を張り付けた状態で、分光測色計(コニカミノルタジャパン(株)製、品番CM-3600d)を用いて、C光源、10°視野、測定径4mmΦ、SCIの条件で視感反射率SCI(Y)を測定した。
(5) Visual reflectance: SCI (Y)
The visual sensitivity reflectance including the specular reflected light and the scattered reflected light, preferably 0.7 or less. A spectrophotometer (manufactured by Konica Minolta Japan Co., Ltd., product number) with a black vinyl tape (Nitto Denko, No. 21) attached after painting the back surface of the transparent base material with black magic ink (registered trademark). Using CM-3600d), the visual reflectance SCI (Y) was measured under the conditions of a C light source, a 10 ° field, a measurement diameter of 4 mmΦ, and SCI.
 (6)反射色度(a,b
 透明基材の防眩層用組成物を塗布した面の裏側の面を黒色マジックインキ(登録商標)で塗装した上に黒色のビニールテープ(日東電工、No.21)を張り付けた状態で、分光測色計(コニカミノルタジャパン(株)製、品番CM-3600d)を用いて、C光源、10°視野、測定径4mmΦ、SCIの条件で、反射色度(a,b)を測定した。SCI(a)は正反射光及び散乱反射光を含んだ赤-緑の色味指標であり、-5以上5以下の範囲が好ましい。SCI(b)は正反射光及び散乱反射光を含んだ黄-青の色味指標であり、-5以上5以下の範囲が好ましい。
(6) Reflective chromaticity (a * , b * )
The back side of the surface coated with the antiglare layer composition of the transparent base material is painted with black magic ink (registered trademark), and black vinyl tape (Nitto Denko, No. 21) is attached to the spectrophotometer. Reflected chromaticity (a * , b * ) was measured using a colorimeter (manufactured by Konica Minolta Japan Co., Ltd., product number CM-3600d) under the conditions of C light source, 10 ° field, measurement diameter 4 mmΦ, and SCI. .. SCI (a * ) is a red-green tint index including specularly reflected light and scattered reflected light, and is preferably in the range of -5 or more and 5 or less. SCI (b * ) is a yellow-blue tint index including specularly reflected light and scattered reflected light, and is preferably in the range of -5 or more and 5 or less.
 (7)防眩性
 透明基材の防眩層用組成物を塗布した面の裏側の面を黒色マジックインキ(登録商標)で塗装した上に黒色のビニールテープ(日東電工、No.21)を張り付けた状態で、防眩層側における蛍光灯の映り込みを評価した。「A」は映り込みなく良好であり、「C」は映り込みが目立って見える。
(7) Anti-glare The surface on the back side of the surface coated with the anti-glare layer composition of the transparent base material is painted with black magic ink (registered trademark), and then black vinyl tape (Nitto Denko, No. 21) is applied. The reflection of the fluorescent lamp on the antiglare layer side was evaluated in the attached state. "A" is good without reflection, and "C" has conspicuous reflection.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1 防眩フィルム
 10 防眩性及び低反射性を有するフィルム
 2 透明基材層
 3 防眩層
 41 高屈折率層
 42 超高屈折率層
 43 低屈折率層
 A バインダー樹脂
 B 有機微粒子
 C 無機微粒子
1 Anti-glare film 10 Anti-glare and low-reflection film 2 Transparent base material layer 3 Anti-glare layer 41 High refractive index layer 42 Ultra-high refractive index layer 43 Low refractive index layer A Binder resin B Organic fine particles C Inorganic fine particles

Claims (7)

  1.  透明基材層と、この透明基材層の少なくとも一方の面上に、バインダー樹脂(A)と、このバインダー樹脂(A)に分散された有機微粒子(B)と無機微粒子(C)とを含有する防眩層を備え、
     前記バインダー樹脂(A)と前記有機微粒子(B)との屈折率の差の絶対値が0.005以上0.25以下であり、
     前記無機微粒子(C)の平均一次粒子径が、前記有機微粒子(B)の平均一次粒子径よりも小さく、
     前記防眩層表面の算術平均粗さ(Ra)が0.080μm以上0.210μm以下の範囲であり、且つ、該防眩層表面の凹凸の平均間隔(Sm)が0.100μm以上0.200μm以下である、
     防眩フィルム。
    A binder resin (A), organic fine particles (B) and inorganic fine particles (C) dispersed in the binder resin (A) are contained on the transparent base material layer and at least one surface of the transparent base material layer. Equipped with an anti-glare layer
    The absolute value of the difference in refractive index between the binder resin (A) and the organic fine particles (B) is 0.005 or more and 0.25 or less.
    The average primary particle size of the inorganic fine particles (C) is smaller than the average primary particle size of the organic fine particles (B).
    The arithmetic mean roughness (Ra) of the antiglare layer surface is in the range of 0.080 μm or more and 0.210 μm or less, and the average interval (Sm) of the irregularities on the antiglare layer surface is 0.100 μm or more and 0.200 μm. Is below,
    Anti-glare film.
  2.  前記バインダー樹脂(A)の水酸基濃度が0mmol/gより大きく2.50mmol/g以下である、
     請求項1に記載の防眩フィルム。
    The hydroxyl group concentration of the binder resin (A) is larger than 0 mmol / g and 2.50 mmol / g or less.
    The antiglare film according to claim 1.
  3.  前記バインダー樹脂(A)は水酸基含有アクリレートを含有する、
     請求項2に記載の防眩フィルム。
    The binder resin (A) contains a hydroxyl group-containing acrylate.
    The antiglare film according to claim 2.
  4.  前記有機微粒子(B)の平均一次粒子径が2μm以上7μm以下である、
    請求項1~3のいずれか1項に記載の防眩フィルム。
    The average primary particle size of the organic fine particles (B) is 2 μm or more and 7 μm or less.
    The antiglare film according to any one of claims 1 to 3.
  5.  前記無機微粒子(C)の平均一次粒子径が1nm以上200nm以下である、
     請求項1~4のいずれか1項に記載の防眩フィルム。
    The average primary particle diameter of the inorganic fine particles (C) is 1 nm or more and 200 nm or less.
    The antiglare film according to any one of claims 1 to 4.
  6.  前記無機微粒子(C)がフュームドシリカを含んでいる、
     請求項1~5のいずれか1項に記載の防眩フィルム。
    The inorganic fine particles (C) contain fumed silica.
    The antiglare film according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか1項に記載の防眩フィルムにおける前記防眩層上に、
     屈折率が1.60以上1.70以下である高屈折率層と、
     屈折率が1.75以上1.90以下である超高屈折率層と、
     屈折率が1.30以上1.40以下である低屈折率層と、
     をこの順で備えている、
     防眩性且つ低反射性を有するフィルム。
    On the antiglare layer in the antiglare film according to any one of claims 1 to 6,
    A high-refractive index layer having a refractive index of 1.60 or more and 1.70 or less,
    An ultra-high refractive index layer having a refractive index of 1.75 or more and 1.90 or less,
    A low refractive index layer having a refractive index of 1.30 or more and 1.40 or less,
    Are prepared in this order,
    A film with anti-glare and low reflectivity.
PCT/JP2021/002092 2020-01-27 2021-01-21 Antiglare film, and film having antiglare properties and low reflectivity WO2021153423A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180010259.2A CN115038995A (en) 2020-01-27 2021-01-21 Anti-glare film and film having anti-glare property and low reflection property
JP2021573980A JPWO2021153423A1 (en) 2020-01-27 2021-01-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020011037 2020-01-27
JP2020-011037 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021153423A1 true WO2021153423A1 (en) 2021-08-05

Family

ID=77078561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002092 WO2021153423A1 (en) 2020-01-27 2021-01-21 Antiglare film, and film having antiglare properties and low reflectivity

Country Status (4)

Country Link
JP (1) JPWO2021153423A1 (en)
CN (1) CN115038995A (en)
TW (1) TW202132093A (en)
WO (1) WO2021153423A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041533A (en) * 2005-06-28 2007-02-15 Nitto Denko Corp Antiglare hardcoat film
JP2008040064A (en) * 2006-08-04 2008-02-21 Toppan Printing Co Ltd Anti-glare light diffusing member and display having anti-glare light diffusing member
JP2008040063A (en) * 2006-08-04 2008-02-21 Toppan Printing Co Ltd Anti-glare light diffusing member
JP2010079101A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Optical film, polarizer plate, and image display device
JP2015210273A (en) * 2014-04-23 2015-11-24 大日本印刷株式会社 Method for manufacturing laminate, laminate, polarizer, and image display device
JP2017109350A (en) * 2015-12-15 2017-06-22 大日本印刷株式会社 Optical laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041533A (en) * 2005-06-28 2007-02-15 Nitto Denko Corp Antiglare hardcoat film
JP2008040064A (en) * 2006-08-04 2008-02-21 Toppan Printing Co Ltd Anti-glare light diffusing member and display having anti-glare light diffusing member
JP2008040063A (en) * 2006-08-04 2008-02-21 Toppan Printing Co Ltd Anti-glare light diffusing member
JP2010079101A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Optical film, polarizer plate, and image display device
JP2015210273A (en) * 2014-04-23 2015-11-24 大日本印刷株式会社 Method for manufacturing laminate, laminate, polarizer, and image display device
JP2017109350A (en) * 2015-12-15 2017-06-22 大日本印刷株式会社 Optical laminate

Also Published As

Publication number Publication date
JPWO2021153423A1 (en) 2021-08-05
CN115038995A (en) 2022-09-09
TW202132093A (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US7014912B2 (en) Low reflective antistatic hardcoat film
JP5175672B2 (en) Antiglare film, antireflection film, polarizing plate and image display device
WO2010114056A1 (en) Transparent conductive laminate and transparent touch panel
JP5372417B2 (en) Antireflection film
JP6825198B2 (en) Anti-glare optical laminate and image display device
JP2010277059A (en) Antireflection film and polarizing plate including the same
US20110194055A1 (en) Optical sheet
JP4923754B2 (en) Optical laminate
TW201732396A (en) Optical laminate, polarizing plate, and display device
US20090233048A1 (en) Anti-glare material and optical layered product
WO2016103685A1 (en) Optical laminate, polarizing plate, and display device
JP2006126808A (en) Optical laminate
TWI652167B (en) Optical laminated body, polarizing plate and display device
JP4712236B2 (en) Antireflection film, antireflection film, image display device, and manufacturing method thereof
JP2003027003A (en) Coating composition, coating film using the same, anti- reflection coating film, and anti-reflection film
JP2009080256A (en) Antiglare film
US7585560B2 (en) Optical laminate
WO2016152691A1 (en) Antireflection film, display device in which said antireflection film is used, and method for selecting antireflection film
US8263219B2 (en) Optical film, polarizing plate, and image display
JP2008122837A (en) Antiglare antireflection film
JP5861089B2 (en) Antireflection member and image display device
JP2004341541A (en) Optical functional membrane, optical functional film, antiglare- antireflection film, manufacturing method therefor, polarizing plate, and liquid crystal display device
JP2009258602A (en) Optical film, polarizing plate and image display device
JP2007322877A (en) Optical laminated body
JP2003294904A (en) Antireflection layer and antireflection material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748124

Country of ref document: EP

Kind code of ref document: A1