WO2022239151A1 - 前照灯装置 - Google Patents

前照灯装置 Download PDF

Info

Publication number
WO2022239151A1
WO2022239151A1 PCT/JP2021/018063 JP2021018063W WO2022239151A1 WO 2022239151 A1 WO2022239151 A1 WO 2022239151A1 JP 2021018063 W JP2021018063 W JP 2021018063W WO 2022239151 A1 WO2022239151 A1 WO 2022239151A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
headlight
unit
glare
control unit
Prior art date
Application number
PCT/JP2021/018063
Other languages
English (en)
French (fr)
Inventor
勝重 諏訪
啓輔 五十嵐
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/018063 priority Critical patent/WO2022239151A1/ja
Priority to JP2022546366A priority patent/JP7170950B1/ja
Priority to CN202180097877.5A priority patent/CN117279800A/zh
Priority to DE112021007652.3T priority patent/DE112021007652T5/de
Publication of WO2022239151A1 publication Critical patent/WO2022239151A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • B60Q1/1415Dimming circuits
    • B60Q1/1423Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic
    • B60Q1/143Automatic dimming circuits, i.e. switching between high beam and low beam due to change of ambient light or light level in road traffic combined with another condition, e.g. using vehicle recognition from camera images or activation of wipers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/125Coloured light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • B60Q2300/31Atmospheric conditions
    • B60Q2300/312Adverse weather
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • B60Q2300/31Atmospheric conditions
    • B60Q2300/314Ambient light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/40Indexing codes relating to other road users or special conditions

Definitions

  • the present disclosure relates to a vehicle headlight device.
  • LEDs Light Emitting Diodes
  • white light when white light is emitted from the headlight device, the white light is generated by combining a blue LED and a yellow phosphor. This produces white light with an inexpensive configuration and high efficiency.
  • the configuration for generating white light is not limited to the combination of a blue LED and a yellow phosphor, and other configurations are also known. See, for example, US Pat. There is also known a technique for improving the driver's visibility by controlling the spectral distribution of light of a color other than white light in a vehicle headlight device.
  • the headlight device of Patent Document 1 includes a first LED unit configured by covering a blue LED with a phosphor, and a second LED unit configured by combining LEDs of three colors (red, green, and blue). and an LED unit.
  • the headlight device of Patent Document 1 changes at least one of the brightness and color temperature of each of the first LED unit and the second LED unit according to the surrounding environment of the lighting environment of the headlight device. It has a controller that controls one.
  • each of the first and second LED units is provided with a blue LED, so the generated white light contains many blue components with short wavelengths.
  • the white light emitted from the headlight device contains many short-wavelength blue components
  • the white light is scattered by raindrops or the like in bad weather such as rain or fog, and operates as return light. incident on a person's eyes. If there is a lot of returned light, there is a risk that the driver will be dazzled (hereinafter also referred to as "glare") and visibility will be reduced.
  • An object of the present disclosure is to provide a headlamp device that improves visibility for a driver.
  • a headlight device is a vehicle headlight device including a plurality of light emitting units that emit light with spectral distributions different from each other, wherein each of the plurality of light emitting units A light source unit that emits illumination light with a combined spectral distribution obtained by synthesizing spectral distributions; an acquisition unit that acquires environment information indicating a surrounding environment of an area illuminated by the headlight device; and the environment information acquired by the acquisition unit. and a control unit for controlling the spectral distribution of each of the plurality of light emitting units based on the above.
  • FIG. 2A is a side view showing the configuration of the light source section shown in FIG. 1;
  • FIG. 2B is a plan view showing the configuration of the light source unit shown in FIG. 1;
  • FIG. (A) is a diagram schematically showing an example of a hardware configuration of a control unit of the headlamp device according to the embodiment.
  • (B) is a diagram schematically showing another example of the hardware configuration of the control unit of the headlamp device according to the embodiment.
  • FIG. 3 is a graph showing a relative luminosity curve for a photopic environment and a relative luminosity curve for a scotopic environment; 5 is a graph obtained by adding a relative luminosity curve for a mesopic environment to the graph shown in FIG. 4; It is a flow chart which shows operation of a headlamp device concerning an embodiment.
  • (A) to (D) are graphs showing spectral distributions of light emitted from each of the plurality of LEDs shown in FIGS. 1 and 2(A).
  • 4 is a graph showing an example of a spectral distribution of illumination light before being controlled by a control unit; It is a graph which shows an example of the spectral distribution of the illumination light after control by a control part.
  • the X-axis is a coordinate axis parallel to the left-right direction of the vehicle.
  • the right direction is the +X-axis direction and the left direction is the -X-axis direction.
  • "forward” is the traveling direction of the vehicle.
  • “forward” is the direction in which the headlamp device emits light (hereinafter also referred to as “illumination light L1”).
  • the Y-axis is a coordinate axis parallel to the vertical direction of the vehicle.
  • the upward direction of the vehicle is the +Y-axis direction
  • the downward direction of the vehicle is the -Y-axis direction. That is, the +Y axis side of the vehicle is the sky side, and the -Y axis side is the ground (ie road) side.
  • the +Z-axis direction is the traveling direction of the vehicle, and the -Z-axis direction is the direction opposite to the traveling direction. In the following description, the "+Z-axis direction" is called “forward” and the -Z-axis direction is called “backward.”
  • the +Z-axis direction is the direction in which the headlight device emits light.
  • the ZX plane is a plane parallel to the road surface. This is because the road surface is generally considered to be a "horizontal plane”. Therefore, the ZX plane is considered as the "horizontal plane”.
  • a “horizontal plane” is a plane perpendicular to the direction of gravity. However, the road surface may incline with respect to the traveling direction of the vehicle. That is, this is the case when the road surface is uphill or downhill. In these cases, the "horizontal plane” is considered as a plane parallel to the road surface. That is, the "horizontal plane” is not a plane perpendicular to the direction of gravity.
  • the “left-right direction” is the width direction of the road (that is, the road surface).
  • the “horizontal plane” is considered as the plane perpendicular to the direction of gravity. For example, even if the road surface is tilted in the left-right direction and the vehicle is perpendicular to the road surface in the left-right direction, it is considered equivalent to the state in which the vehicle is tilted in the left-right direction with respect to the "horizontal plane".
  • the "horizontal plane” will be explained as a plane perpendicular to the direction of gravity. That is, the ZX plane will be described as a plane perpendicular to the direction of gravity.
  • a tube light source such as an incandescent lamp, a halogen lamp, or a fluorescent lamp, for example, may be used as the light source of the present disclosure (hereinafter also referred to as a "light emitting unit").
  • a semiconductor light source such as an LED or a laser diode may be used. That is, the light source of the present disclosure is not particularly limited, and any light source may be used.
  • the spectral distribution of light emitted from the light source it is desirable to employ a semiconductor light source as the light source of the headlamp device of the present disclosure.
  • the spectral distribution is easier to adjust when a semiconductor light source is used than when a conventional halogen bulb (lamp light source) is used.
  • the light source is an LED, which is one of semiconductor light sources.
  • the present disclosure applies to low beams or high beams of headlight devices. Also, the present disclosure is applied to low beams or high beams of headlight devices for motorcycles. The present disclosure also applies to other headlight devices such as three-wheeled vehicles or four-wheeled vehicles.
  • FIG. 1 is a block diagram showing the configuration of a headlight device 100 according to an embodiment.
  • the headlight device 100 has a light source section 10 as a headlight optical system, a surrounding environment information acquisition section 20 as an acquisition section, and a control section 30 .
  • the light source unit 10 has first, second, third and fourth LEDs 11, 12, 13 and 14 as a plurality of light emitting units.
  • the first, second, third and fourth LEDs 11, 12, 13, 14 emit light with different spectral distributions.
  • the light source unit 10 has two or more light emitting surfaces that emit light with different spectral distributions.
  • the light source unit 10 generates a synthetic spectral distribution obtained by synthesizing the spectral distributions of the first, second, third, and fourth LEDs 11, 12, 13, and 14 (for example, synthetic spectral distributions shown in FIGS. 8 and 9 to be described later).
  • S1, S2) illumination light is emitted.
  • the light source unit 10 emits, for example, white light as illumination light.
  • the output of each of the first, second, third, and fourth LEDs 11, 12, 13, and 14 is controlled by the control unit 30, which will be described later, so that the light source unit 10 maintains the same color temperature before and after control. Or it can produce white light that is considered to be of the same chromaticity.
  • FIG. 2(A) is a side view showing the configuration of the light source section 10.
  • FIG. 2B is a plan view showing the configuration of the light source section 10.
  • the light source section 10 further has a light guide 15 .
  • the light guide 15 uniformly mixes the lights emitted from the first, second, third and fourth LEDs 11 , 12 , 13 , 14 .
  • each of the first, second, third and fourth LEDs 11 , 12 , 13 , 14 is totally reflected inside the light guide 15 after entering the incident surface 15 a of the light guide 15 . is repeated to produce uniform white light.
  • the white light is emitted from the exit surface 15b.
  • the illumination light L1 emitted from the headlight device 100 can be emitted forward as uniform white light without color unevenness.
  • the headlamp device 100 can be made smaller.
  • the light guide 15 is made of, for example, transparent resin, glass, or silicone material.
  • the light guide 15 may be made of any material as long as it has transparency, such as a transparent resin. However, from the viewpoint of light utilization efficiency, a highly transparent material is suitable for the material of the light guide 15 .
  • the material of the light guide 15 is a material having excellent heat resistance. is preferred.
  • the light source section 10 can be realized without the light guide 15 .
  • the light source unit 10 may generate white light with a uniform light color by using another optical member different from the light guide 15, for example.
  • the surrounding environment information acquisition unit 20 acquires environment information indicating the surrounding environment of the area illuminated by the headlight device 100 (hereinafter also referred to as “surrounding environment information”).
  • the surrounding environment information acquisition unit 20 quantitatively evaluates the amount of glare indicating the degree of glare given to the driver of the vehicle equipped with the headlight device 100 when the illumination light L1 is emitted from the headlight device 100. Acquire the information for doing so as the surrounding environment information.
  • the surrounding environment information has, for example, weather information indicating the weather. Weather information includes at least one of rain, snow and fog.
  • the surrounding environment information is not limited to weather information, and may include brightness information indicating the brightness of the surrounding environment of the area illuminated by the headlight device 100 .
  • the surrounding environment information may also include traffic information indicating the traffic volume of other vehicles.
  • the ambient environment information may include ambient environment light information indicating information about return light reflected or scattered by the illumination area of the illumination light L1 emitted from the headlight device 100. .
  • the surrounding environment information acquisition unit 20 is an information input unit to which sensor information such as weather information, brightness information, traffic information, and surrounding environment light information is input.
  • the surrounding environment information acquisition unit 20 may acquire the sensor information from a sensor attached to the vehicle, or may acquire the information by communicating with an information source outside the vehicle.
  • control unit 30 Based on the surrounding environment information acquired by the surrounding environment information acquiring unit 20, the control unit 30 determines the spectral distributions (for example, after-mentioned The spectral distributions S11, S12, S13, S14 shown in FIG.
  • the controller 30 has a headlight control module 31 and a light source controller 32 .
  • the headlight control module 31 calculates a glare amount for evaluating the glare given to the driver when the illumination light L1 is irradiated, and the calculated glare amount satisfies a predetermined condition. Determine whether or not The headlight control module 31, for example, determines whether or not the calculated amount of glare is greater than or equal to a predetermined glare threshold.
  • the headlight control module 31 outputs light L11, L12, L13, and L14 emitted from each of the first, second, third, and fourth LEDs 11, 12, 13, and 14 based on the determination result. generate a control signal to control (i.e., intensity);
  • the headlight control module 31 outputs the generated control signal to the light source control section 32 .
  • the headlight control module 31 is a control signal generator that generates control signals.
  • the light source control section 32 is a light source driving section that drives the light source section 10 .
  • the light source controller 32 drives each of the first, second, third and fourth LEDs 11 , 12 , 13 , 14 based on the control signal generated by the headlight control module 31 .
  • the light source control section 32 and the light source section 10 are provided in the headlight module 50 of the headlight device 100 .
  • FIG. 3A is a diagram schematically showing the hardware configuration of the control unit 30.
  • the control unit 30 includes, for example, a memory 30a as a storage device that stores a program as software, and a processor 30b as an information processing unit that implements the program stored in the memory 30a. and (eg, by a computer).
  • a part of the control unit 30, that is, a part of the headlight control module 31 and the light source control unit 32 is realized by a memory 30a shown in FIG. 3A and a processor 30b that executes a program. good too.
  • the control unit 30 may be realized by an electric circuit.
  • FIG. 3B is a diagram schematically showing another example of the hardware configuration of the control unit 30.
  • the control unit 30 may be implemented using a processing circuit 30c as dedicated hardware such as a single circuit or a composite circuit. In this case, the functions of the control unit 30 are realized by the processing circuit 30c.
  • the Purkinje phenomenon is known as a cause of giving glare to the driver of a vehicle equipped with a headlight device.
  • the Purkinje phenomenon is the shift of the peak of the spectral luminosity curve to the shorter wavelength side in scotopic environments with respect to photopic environments.
  • FIG. 4 is a graph showing a relative luminosity curve V1 for a photopic environment and a relative luminosity curve V2 for a scotopic environment.
  • the horizontal axis is the wavelength ⁇ (nm) and the vertical axis is the relative luminous efficiency.
  • the solid line is the relative luminosity curve V1 for the photopic environment, and the dashed line is the relative luminosity curve V2 for the scotopic environment.
  • the wavelength at the peak of the relative luminosity curve V2 is shifted to the short wavelength side (that is, the direction of the arrow shown in FIG . 4 ) from the wavelength at the peak of the relative luminosity curve V1.
  • the human eye perceives light with a wavelength of approximately 555 nm to be the brightest.
  • a scotopic environment the human eye perceives light with a wavelength of approximately 507 nm to be the brightest.
  • the lighting environment by the headlight device at nighttime is a brightness environment called a "mesopic environment" between the photopic environment and the scotopic environment.
  • FIG. 5 is a graph obtained by adding a relative luminosity curve V3 for a mesopic environment to the graph shown in FIG.
  • the wavelength at the peak of the relative luminosity curve V3 is between 507 nm and 555 nm. Therefore, when illumination light with a wavelength between 507 nm and 555 nm is emitted from the headlight device, the driver's eyes can feel the illumination light brightest. On the other hand, if the amount of illumination light with a wavelength between 507 nm and 555 nm increases more than necessary, the driver is likely to feel glare.
  • the illumination light when illumination light is emitted from the headlight device during bad weather such as rain or snow, the illumination light may be scattered by raindrops or snow and enter the driver's eyes as return light. In this case, the driver perceives glare. Further, as described above, the more short wavelength components of 555 nm or less in the illumination light, the stronger the glare the driver feels.
  • FIG. 6 is a flow chart showing the operation of the headlamp device 100. As shown in FIG.
  • step ST1 the control unit 30 starts loop processing that repeats the processing of steps ST2 to ST6 after startup.
  • step ST2 the headlight control module 31 of the control unit 30 receives a signal indicating the surrounding environment information acquired by the surrounding environment information acquisition unit 20.
  • step ST3 the headlight control module 31 determines whether or not the surrounding environment information satisfies a condition for increasing the glare given to the driver (hereinafter also referred to as "condition for increasing glare"), and determines whether or not the surrounding environment information If the information satisfies the glare increase condition (that is, if the determination is Yes in step ST3), the process proceeds to step ST4. For example, the headlight control module 31 advances the process to step ST4 when the weather is rain, snow or fog.
  • condition for increasing glare a condition for increasing the glare given to the driver
  • step ST3 when the headlight control module 31 determines that the surrounding environment information does not satisfy the glare increase condition (that is, when the determination is NO in step ST3), the process proceeds to step ST5.
  • step ST4 the headlight control module 31 generates a control signal that relatively reduces short wavelength components, which are shorter wavelength components than the wavelength at the representative point, in the spectral distribution of the illumination light L1.
  • the light source control unit 32 shown in FIG. 1 controls the light L11, L12, L13, and The intensity of light with a short center wavelength in L14 is weakened. This suppresses the glare given to the driver. Therefore, the headlight device 100 can improve the driver's visibility.
  • step ST5 the headlight control module 31 determines whether or not the surrounding environment information satisfies a condition for reducing the glare given to the driver (hereinafter also referred to as a "condition for reducing glare"), and determines whether or not the surrounding environment information If the information satisfies the glare reduction condition (that is, if the determination is Yes in step ST5), the process proceeds to step ST6.
  • a condition for reducing glare a condition for reducing the glare given to the driver
  • step ST6 the headlight control module 31 generates a control signal that relatively increases short wavelength components in the spectral distribution of the illumination light L1.
  • the light source control unit 32 shown in FIG. 1 controls the light L11, L12, L13, and The intensity of light with a short center wavelength in L14 is increased.
  • illumination light L1 having a spectral distribution in which short wavelength components are increased is emitted from the headlight device 100 in a mesopic environment, so that the driver can feel the illumination light L1 bright. Therefore, the headlight device 100 can improve the driver's visibility.
  • step ST5 If the determination in step ST5 is No, or after the processing in step ST6 is completed, steps ST2 to ST6 are repeated until the conditions for terminating the loop processing are satisfied.
  • the center wavelengths of the first LED 11 and the second LED 12 are shorter than the center wavelengths of the third LED 13 and the fourth LED 14 .
  • the third and fourth LEDs 13 and 14 are also called “first light emitting units”, and the first and second LEDs 11 and 12 are also called “second light emitting units”.
  • the second light emitting unit emits light having a center wavelength shorter than that of the first light emitted from the first light emitting unit (that is, the light L13 and L14 shown in FIG. 2A) (that is, light of FIG. 2 ( A) emits light L11, L12) shown in FIG.
  • FIGS. 7A to 7D show light L11 emitted from each of the first, second, third and fourth LEDs 11, 12, 13, and 14 shown in FIGS. 1 and 2A. It is a graph which shows spectral distribution S11, S12, S13, and S14 of L12, L13, and L14.
  • the horizontal axis is wavelength ⁇ (nm) and the vertical axis is specific energy (au).
  • each of the spectral distributions S11, S12, S13, and S14 has a peak at the center wavelength shown in Table 1.
  • the synthetic spectral distribution that is the spectral distribution of the illumination light L1 before control is S1
  • the synthetic spectral distribution that is the spectral distribution of the illumination light L1 after control is S2.
  • the headlight control module 31 controls the short wavelength component of the spectral distribution of the illumination light L1 (for example, the wavelength is 450 nm in the spectral distribution). 550 nm) is controlled to relatively decrease. That is, the headlight control module 31 generates a control signal such that the synthetic spectral distribution S1 and the synthetic spectral distribution S2 satisfy the following formula (1).
  • the headlight control module 31 adjusts the intensity of the second light emitted by the second light emitting unit (that is, at least one of the first and second LEDs 11 and 12) to satisfy the formula (1). Weaken.
  • the synthetic spectral distribution S1 and the synthetic spectral distribution S2 satisfy the formula (1), the components with wavelengths of 550 nm or less in the spectral distribution of the illumination light L1 emitted from the light source unit 10 are reduced. That is, the spectral distribution of the illumination light L1 is suppressed from having a peak at a wavelength of 550 nm or less. This can suppress an increase in glare due to the Purkinje phenomenon.
  • FIG. 8 is a graph showing an example of the synthetic spectral distribution S1 of the illumination light L1 before control.
  • FIG. 9 is a graph showing an example of the synthesized spectral distribution S2 of the illumination light L1 after control.
  • the horizontal axis is the wavelength ⁇ (nm) and the vertical axis is the specific energy (au).
  • the composite spectral distribution S1 shown in FIG. 8 is a spectral distribution obtained by controlling the outputs of the first LED 11, the second LED 12, and the fourth LED 14 shown in FIGS. be.
  • the composite spectral distribution S2 shown in FIG. 9 is a spectral distribution obtained by controlling the outputs of the first LED 11, the third LED 13, and the fourth LED 14 shown in FIGS. be.
  • Equation (1) The value of the left side of Equation (1) is 0.467, and the value of the right side of Equation (1) is 0.377. In this case, since the formula (1) is satisfied, the glare given to the driver can be suppressed.
  • the color of the illumination light L1 of the synthetic spectral distribution S1 and the color of the illumination light L1 of the synthetic spectral distribution S2 are the same.
  • the control unit 30 controls the spectral distributions S11, S12, S13, and S14 so that the color temperature of the illumination light L1 of the combined spectral distribution S2 is within a predetermined range.
  • the color of the illumination light L1 emitted from the headlamp device 100 it is possible to prevent the driver from erroneously recognizing the sense of distance.
  • the color of illumination light L1 is white.
  • the color temperature of the illumination light L1 of the synthetic spectral distribution S1 is K1 (unit: K) and the color temperature of the illumination light L1 of the synthetic spectral distribution S2 is K2 (unit: K)
  • the color temperature K1 and the color temperature K2 preferably satisfies the following formula (2). K1-500 ⁇ K2 ⁇ K1+500 (2)
  • the color temperature K1 is 5579K and the color temperature K2 is 5511K.
  • the color temperature K1 and the color temperature K2 satisfy Expression (2), the color of the illumination light L1 of the combined spectral distribution S1 can be regarded as the same color as the color of the illumination light L2 of the combined spectral distribution S2.
  • the driver since the color of the illumination light L1 emitted from the light source unit 10 does not change before and after the control unit 30 controls the spectral distributions S11, S12, S13, and S14, the driver may misunderstand the sense of distance. can be prevented, and glare can be suppressed.
  • the control unit 30 controls the first, second, third and fourth LEDs 11, 12, 13 based on the surrounding environment information acquired by the surrounding environment information acquiring unit 20. , 14 are controlled.
  • the spectral distribution of the illumination light L1 emitted from the headlamp device 100 is appropriately adjusted according to the surrounding environment information, so that the glare given to the driver can be suppressed. Therefore, the driver's visibility can be improved.
  • the control unit 30 controls the spectral distributions S11, S12, S13, and S14 of the first, second, third, and fourth LEDs 11, 12, 13, and 14, respectively, before and after controlling the , the spectral distributions S11, S12, S13, and S14 are controlled so that the color temperature of the illumination light L1 is within a predetermined range.
  • the color of the illumination light L1 emitted from the light source unit 10 does not change before and after the spectral distributions S11, S12, S13, and S14 are controlled by the control unit 30, thereby preventing the driver from misrecognising the sense of distance. .
  • FIG. 10 is a block diagram showing the configuration of a headlamp device 100A according to a modification of the embodiment. 10, the same or corresponding components as those shown in FIG. 1 are given the same reference numerals as those shown in FIG.
  • a headlight device 100A according to a modification of the embodiment differs from the headlight device 100 according to the embodiment in that a light receiving unit 21 is provided in a surrounding environment information acquisition unit 20A. Except for this point, the headlight device 100A according to the modification of the embodiment is the same as the headlight device 100 according to the embodiment. Therefore, FIG. 2A will be referred to in the following description.
  • the headlight device 100A has a light source section 10, a surrounding environment information acquisition section 20A, and a control section 30.
  • the surrounding environment information acquisition unit 20A has a light receiving unit 21.
  • the light receiving unit 21 receives return light when the illumination light L1 (see FIG. 2A) emitted from the headlight device 100A is reflected or scattered in the illumination area.
  • the returned light is, for example, reflected light, scattered light, or the like.
  • the returned light is ambient ambient light generated in the ambient environment of the illumination area of the headlamp device 100A.
  • the headlight control module 31 of the control section 30 generates a control signal to be output to the light source control section 32 based on the detection signal corresponding to the return light received by the light receiving section 21 .
  • the detection signal output from the light receiving section 21 is, for example, a signal corresponding to the amount of received return light detected by the light receiving section 21 .
  • the headlight control module 31 generates a control signal for reducing the glare given to the driver when the illumination light L1 is irradiated, for example, based on a signal corresponding to the amount of received return light. Accordingly, glare given to the driver when the illumination light L1 is emitted from the headlight device 100A can be suppressed.
  • FIG. 11 is a flow chart showing the operation of the headlamp device 100A according to the modification of the embodiment.
  • step ST11 the control unit 30 starts loop processing that repeats the processing from steps ST12 to ST16 after startup.
  • step ST12 the headlight control module 31 of the control section 30 receives a signal corresponding to the amount of received return light acquired by the surrounding environment information acquisition section 20A.
  • step ST13 the headlight control module 31 determines whether or not the received light amount of the returned light satisfies the glare increase condition. If yes), the process proceeds to step ST14. Specifically, in step ST13, the headlight control module 31 determines whether or not the amount of received return light is greater than or equal to a predetermined first threshold value Th1. Proceed to ST14.
  • step ST13 the headlight control module 31 determines that the received light amount of the returned light does not satisfy the glare increase condition (that is, in step ST13, the received light amount is smaller than the first threshold value Th1, so the determination is NO). case), the process proceeds to step ST15.
  • step ST14 the headlight control module 31 performs control to relatively reduce short wavelength components in the spectral distribution of the illumination light L1 emitted from the light source section 10.
  • Step ST14 is the same as step ST4 shown in FIG.
  • the headlight control module 31 generates a control signal that makes the value t shown in Equation (3) below less than a predetermined threshold.
  • step ST15 the headlight control module 31 determines whether or not the amount of received light of the returned light satisfies the conditions for reducing glare. If Yes), the process proceeds to step ST16. Specifically, in step ST15, the headlight control module 31 determines whether or not the amount of received return light is smaller than the second threshold Th2, which is smaller than the first threshold Th1. to step ST14.
  • Step ST16 is the same as step ST6 shown in FIG.
  • the headlight control module 31 generates a control signal that makes the value t shown in equation (3) above greater than the threshold.
  • step ST15 If the determination in step ST15 is No, or after the process in step ST16 ends, steps ST12 to ST16 are repeated until the condition for ending the loop process is satisfied.
  • the surrounding environment information acquisition unit 20A has the light receiving unit 21 that receives the return light that is the light reflected or scattered in the illumination area from the illumination light L1. Control to weaken the intensity of light emitted from a second light emitting unit (for example, a second LED 12) having a short center wavelength when it is determined that the amount of light received is equal to or greater than a predetermined first threshold value Th1. I do. As a result, illumination light L1 having an appropriate spectral distribution corresponding to the amount of received return light is emitted. Therefore, since the glare given to the driver is suppressed, the headlight device 100A can improve the visibility of the driver.
  • a second light emitting unit for example, a second LED 12
  • 10 light source unit 11 first LED, 12 second LED, 13 third LED, 14 fourth LED, 15 light guide, 20, 20A surrounding environment information acquisition unit, 21 light receiving unit, 30 control unit, 30a memory, 30b processor, 30c processing circuit, 31 headlight control module, 32 light source control unit, 50 headlight module, 100, 100A headlight device, L1 illumination light, L11, L12, L13, L14 light, S1, S2 Combined spectral distribution, S11, S12, S13, S14 spectral distribution, Th1 first threshold, Th2 second threshold.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

前照灯装置(100)は、車両用の前照灯装置であって、互いに異なる分光分布(S11、S12、S13、S14)の光を出射する複数の発光部(11、12、13、14)を有し、複数の発光部(11、12、13、14)の各々の分光分布(S11、S12、S13、S14)を合成した合成分光分布(S1、S2)の照明光(L1)を出射する光源部(10)と、前照灯装置(100)による照明領域の周辺環境を示す環境情報を取得する取得部(20)と、取得部(20)によって取得された環境情報に基づいて、複数の発光部(11、12、13、14)の各々の分光分布(S11、S12、S13、S14)を制御する制御部(30)とを有する。

Description

前照灯装置
 本開示は、車両用の前照灯装置に関する。
 車両用の前照灯装置の光源として、近年普及している発光ダイオード(以下、LED(Light Emitting Diode)と呼ぶ。)を採用する構成が増加している。例えば、前照灯装置から白色光が照射される場合、当該白色光は青色LEDと黄色蛍光体とを組み合わせることによって生成される。これにより、安価な構成で、且つ高効率で白色光が生成される。
 白色光を生成するための構成は青色LEDと黄色蛍光体との組み合わせに限らず、他の構成も知られている。例えば、特許文献1を参照。また、車両用の前照灯装置において、白色光とは異なる他の色の光の分光分布を制御することによって、運転者の視認性を向上させる技術も知られている。
 特許文献1の前照灯装置は、青色LEDを蛍光体によって覆うことで構成された第1のLEDユニットと、3色(赤色、緑色、青色)のLEDを組み合わせることによって構成された第2のLEDユニットとを有する。また、特許文献1の前照灯装置は、当該前照灯装置の照明環境の周辺の環境に応じて、第1のLEDユニット及び第2のLEDユニットの各々の輝度及び色温度のうちの少なくとも一方を制御する制御部を有する。
 ここで、人の視覚特性として、夜間の道路などの薄明視環境又は暗所視環境では、人の目の明るさの感度が短波長にシフトするプルキンエ現象が発生することが一般的に知られている。そのため、夜間の道路に照射される照明光の分光分布に多くの短波長成分を含ませることによって、人(すなわち、運転者)は明るく感じる。特許文献1の前照灯装置では、第1及び第2のLEDユニットのそれぞれに青色LEDが備えられているため、生成される白色光には、短波長の青色成分が多く含まれる。
特開2020-32803号公報
 しかしながら、前照灯装置から照射される白色光に短波長の青色成分が多く含まれる構成では、雨又は霧などの悪天候時において、当該白色光は雨滴等によって散乱等して、戻り光として運転者の目に入射する。戻り光が多い場合、運転者に眩惑(以下、「グレア」とも呼ぶ。)を与えて視認性を低下させるおそれがある。
 本開示は、運転者の視認性を向上させる前照灯装置を提供することを目的とする。
 本開示の一態様に係る前照灯装置は、車両用の前照灯装置であって、互いに異なる分光分布の光を出射する複数の発光部を有し、前記複数の発光部の各々の前記分光分布を合成した合成分光分布の照明光を出射する光源部と、前記前照灯装置による照明領域の周辺環境を示す環境情報を取得する取得部と、前記取得部によって取得された前記環境情報に基づいて、前記複数の発光部の各々の前記分光分布を制御する制御部とを有する、ことを特徴とする。
 本開示によれば、運転者の視認性を向上させる前照灯装置を提供することができる。
実施の形態に係る前照灯装置の構成を示すブロック図である。 (A)は、図1に示される光源部の構成を示す側面図である。(B)は、図1に示される光源部の構成を示す平面図である。 (A)は、実施の形態に係る前照灯装置の制御部のハードウェア構成の一例を概略的に示す図である。(B)は、実施の形態に係る前照灯装置の制御部のハードウェア構成の他の例を概略的に示す図である。 明所視環境の比視感度曲線及び暗所視環境の比視感度曲線を示すグラフである。 図4に示されるグラフに薄明視環境の比視感度曲線を追加したグラフである。 実施の形態に係る前照灯装置の動作を示すフローチャートである。 (A)~(D)は、図1及び図2(A)に示される複数のLEDの各々から出射される光の分光分布を示すグラフである。 制御部による制御前の照明光の分光分布の一例を示すグラフである。 制御部による制御後の照明光の分光分布の一例を示すグラフである。 実施の形態の変形例に係る前照灯装置の構成を示すブロック図である。 実施の形態の変形例に係る前照灯装置の動作を示すフローチャートである。
 以下に、本開示の実施の形態に係る前照灯装置について、図面を参照しながら説明する。図面には、必要に応じて説明の理解を容易にするためにXYZ直交座標系の座標軸が示されている。X軸は、車両の左右方向に平行な座標軸である。車両の前方を向いたときに、右方向が+X軸方向、左方向が-X軸方向である。ここで、「前方」とは、車両の進行方向である。言い換えれば、「前方」とは、前照灯装置が光(以下、「照明光L1」とも呼ぶ。)を照射する方向である。Y軸は、車両の上下方向に平行な座標軸である。車両の上方向が+Y軸方向であり、車両の下方向が-Y軸方向である。すなわち、車両の+Y軸側は空側であり、-Y軸側は地面(すなわち、路面)側である。+Z軸方向は、車両の進行方向であり、-Z軸方向は進行方向と反対の方向である。以下の説明では、「+Z軸方向」を「前方」と呼び、-Z軸方向を「後方」と呼ぶ。+Z軸方向は、前照灯装置が光を照射する方向である。
 以下の説明では、Z-X平面は、路面に平行な面である。これは、通常考える場合には、路面は「水平面」であるからである。このため、Z-X平面は、「水平面」として考えている。「水平面」とは、重力方向に直交する平面である。しかしながら、路面は、車両の進行方向に対しては傾くことがある。すなわち、路面が登り坂又は下り坂などの場合である。これらの場合には、「水平面」は、路面に平行な面として考える。すなわち、「水平面」は、重力方向に対して垂直な平面ではない。
 一方、一般的な路面が車両の進行方向に対して左右方向に傾いていることは稀である。「左右方向」とは、走路(すなわち、路面)の幅方向である。これらの場合には、「水平面」は、重力方向に対して垂直な面として考える。例えば、路面が左右方向に傾くことによって、車両が路面の左右方向に垂直であったとしても、車両が「水平面」に対して左右方向に傾いた状態と同等として考える。
 なお、以下の説明を簡単にするために、「水平面」は、重力方向に垂直は平面として説明する。つまり、Z-X平面は、重力方向に垂直な平面として説明する。
 本開示の光源(以下、「発光部」とも呼ぶ。)として、例えば、白熱電球、ハロゲンランプ又は蛍光ランプ等の管球光源を用いてもよい。また、本開示の光源として、例えば、LED又はレーザーダイオード等の半導体光源を用いてもよい。つまり、本開示の光源は、特に限定されることなく、いかなる光源を用いてもよい。
 ただし、光源から出射される光の分光分布の調整の容易さの観点から、本開示の前照灯装置の光源としては、半導体光源の採用が望ましい。従来のハロゲンバルブ(ランプ光源)が採用される場合と比較して、半導体光源が採用された場合、分光分布が調整され易い。
 したがって、本開示の以下の説明では、光源は、半導体光源の1つであるLEDであるとして説明する。
 本開示は、前照灯装置のロービーム又はハイビームなどに適用される。また、本開示は、自動二輪車用の前照灯装置のロービーム又はハイビームなどに適用される。また、本開示は、三輪の車両又は四輪の車両等のその他の前照灯装置についても適用される。
 〈前照灯装置の構成〉
 図1は、実施の形態に係る前照灯装置100の構成を示すブロック図である。図1に示されるように、前照灯装置100は、前照灯光学系としての光源部10と、取得部としての周辺環境情報取得部20と、制御部30とを有する。
 〈光源部〉
 光源部10は、複数の発光部としての第1、第2、第3及び第4のLED11、12、13、14を有する。第1、第2、第3及び第4のLED11、12、13、14は、互いに異なる分光分布の光を発する。このように、光源部10は、互いに異なる分光分布の光を発する2つ以上の発光面を有する。
 光源部10は、第1、第2、第3及び第4のLED11、12、13、14の各々の分光分布を合成した合成分光分布(例えば、後述する図8及び9に示される合成分光分布S1、S2)の照明光を出射する。光源部10は、例えば、照明光として白色光を出射する。後述する制御部30によって、第1、第2、第3及び第4のLED11、12、13、14の各々の出力が制御されることによって、光源部10は、制御の前後で同一の色温度又は同一の色度とみなされる白色光を生成することができる。
 図2(A)は、光源部10の構成を示す側面図である。図2(B)は、光源部10の構成を示す平面図である。図2(A)及び(B)に示されるように、光源部10は、導光体15を更に有する。導光体15は、第1、第2、第3及び第4のLED11、12、13、14の各々から出射された光を均一に混色する。
 第1、第2、第3及び第4のLED11、12、13、14の各々から出射された光は、導光体15の入射面15aに入射した後に、導光体15の内部で全反射を繰り返すことで、均一な白色光となる。当該白色光は、出射面15bから照射される。これにより、前照灯装置100から照射される照明光L1は、色ムラのない均一な白色光として前方に照射することができる。
 また、光源部10が導光体15を有することにより、前照灯装置100を小型化することができる。
 なお、導光体15は、例えば、透明樹脂、硝子又はシリコーン材で製作されている。導光体15の材料は、透過性を有すれば材質を問わず、透明な樹脂等でも構わない。ただし、光の利用効率の観点から、導光体15の材料は、透過性の高い材料が適している。また、導光体15が、第1、第2、第3及び第4のLED11、12、13、14の直後に配置されることから、導光体15の材料は、耐熱性に優れた材料が好ましい。
 図1、図2(A)及び(B)に示す例では、光源部10が4つのLEDを有する構成について示したが、これに限られず、光源部10は、互いに分光分布が異なる2つ以上のLEDを有していればよい。
 また、光源部10は導光体15を備えていなくても実現することができる。光源部10は、例えば、導光体15とは異なる他の光学部材によって、光色が均一である白色光を生成してもよい。
 〈周辺環境情報取得部〉
 図1に戻って、周辺環境情報取得部20及び制御部30について説明する。周辺環境情報取得部20は、前照灯装置100による照明領域の周辺環境を示す環境情報(以下、「周辺環境情報」とも呼ぶ。)を取得する。周辺環境情報取得部20は、前照灯装置100から照明光L1が照射されたときに、当該前照灯装置100を備える車両の運転者に与えるグレアの程度を示すグレア量を定量的に評価するための情報を周辺環境情報として取得する。周辺環境情報は、例えば、天候を示す天候情報を有する。天候情報は、雨、雪及び霧のうち少なくとも1つを含む。なお、周辺環境情報は、天候情報に限らず、前照灯装置100による照明領域の周辺環境の明るさを示す明るさ情報を有していてもよい。また、周辺環境情報は、他の車両の交通量を示す交通情報を有していてもよい。更に、後述するように、周辺環境情報は、前照灯装置100から照射された照明光L1が照明領域で反射又は散乱した戻り光についての情報を示す周囲環境光情報を有していてもよい。
 このように、周辺環境情報取得部20は、天候情報、明るさ情報、交通情報及び周囲環境光情報などのセンサ情報が入力される情報入力部である。周辺環境情報取得部20は、当該センサ情報を、車両に取り付けられたセンサから取得してもよく、車外の情報源と通信することによって取得してもよい。
 〈制御部〉
 制御部30は、周辺環境情報取得部20によって取得された周辺環境情報に基づいて、第1、第2、第3及び第4のLED11、12、13、14の各々の分光分布(例えば、後述する図7に示される分光分布S11、S12、S13、S14)を制御する。制御部30は、ヘッドライトコントロールモジュール31と、光源制御部32とを有する。
 ヘッドライトコントロールモジュール31は、周辺環境情報に基づいて、照明光L1が照射されたときに運転者に与えるグレアを評価するグレア量を算出し、算出されたグレア量が予め決められた条件を満たすか否かを判定する。ヘッドライトコントロールモジュール31は、例えば、算出されたグレア量が予め決められたグレア閾値以上であるか否かを判定する。ヘッドライトコントロールモジュール31は、その判定の結果に基づいて、第1、第2、第3及び第4のLED11、12、13、14の各々から出射される光L11、L12、L13、L14の出力(すなわち、強度)を制御するための制御信号を生成する。ヘッドライトコントロールモジュール31は、生成した制御信号を光源制御部32に出力する。このように、ヘッドライトコントロールモジュール31は、制御信号を生成する制御信号生成部である。
 光源制御部32は、光源部10を駆動する光源駆動部である。光源制御部32は、ヘッドライトコントロールモジュール31によって生成された制御信号に基づいて、第1、第2、第3及び第4のLED11、12、13、14の各々を駆動する。図1に示す例では、光源制御部32及び光源部10は、前照灯装置100の前照灯モジュール50に備えられている。
 図3(A)は、制御部30のハードウェア構成を概略的に示す図である。図3(A)に示されるように、制御部30は、例えば、ソフトウェアとしてのプログラムを格納する記憶装置としてのメモリ30aと、メモリ30aに格納されたプログラムを実現する情報処理部としてのプロセッサ30bとを用いて(例えば、コンピュータによって)実現することができる。なお、制御部30の一部、つまり、ヘッドライトコントロールモジュール31及び光源制御部32の一部が、図3(A)に示されるメモリ30aと、プログラムを実行するプロセッサ30bとによって実現されていてもよい。また、制御部30は、電気回路によって実現されていてもよい。
 図3(B)は、制御部30のハードウェア構成の他の例を概略的に示す図である。図3(B)に示されるように、制御部30は、単一回路又は複合回路等の専用のハードウェアとしての処理回路30cを用いて実現されていてもよい。この場合、制御部30の機能は、処理回路30cで実現される。
 〈プルキンエ現象とグレアとの関係〉
 ここで、前照灯装置を備えた車両の運転者にグレアを与える原因として、プルキンエ現象が知られている。プルキンエ現象とは、暗所視環境では、比視感度曲線のピークが明所視環境に対して短波長側にシフトすることである。
 図4は、明所視環境の比視感度曲線Vと暗所視環境の比視感度曲線Vとを示すグラフである。図4に示されるグラフにおいて、横軸は波長λ(nm)、縦軸は比視感度である。また、図4において、実線は明所視環境の比視感度曲線Vであり、破線は暗所視環境の比視感度曲線Vを示す。図4に示されるように、比視感度曲線Vのピークにおける波長は、比視感度曲線Vのピークにおける波長より短波長側(すなわち、図4に示される矢印の向き)にシフトしている。例えば、日中のような周辺環境が明るい明所視環境では、人の目は、波長が約555nmである光を最も明るく感じる。一方、暗所視環境では、人の目は、波長が約507nmである光を最も明るく感じる。ここで、夜間における前照灯装置による照明環境は、明所視環境と暗所視環境との間の「薄明視環境」と呼ばれる明るさの環境である。
 図5は、図4に示されるグラフに薄明視環境の比視感度曲線Vを追加したグラフである。図5に示されるように、比視感度曲線Vのピークにおける波長は、507nmと555nmとの間である。したがって、波長が507nmと555nmとの間である照明光が前照灯装置から照射された場合、運転者の目は当該照明光を最も明るく感じることができる。一方で、波長が507nmと555nmとの間である照明光の光量が必要以上に増加した場合、運転者はグレアを感じ易くなる。
 例えば、雨又は雪などの悪天候時に、前照灯装置から照明光が照射された場合、当該照明光は、雨滴又は雪によって散乱して運転者の目に戻り光として入射する場合がある。この場合、運転者はグレアを感じる。また、上述した通り、照明光に波長555nm以下の短波長成分が多く含まれるほど、運転者はグレアを強く感じる。
 〈前照灯装置の動作〉
 実施の形態に係る前照灯装置100では、周辺環境情報取得部20によって取得された周辺環境情報に基づいて光源部10から出射される照明光L1の分光分布が調整されることで、運転者に与えるグレアを抑制することができる。図6は、前照灯装置100の動作を示すフローチャートである。
 まず、ステップST1において、制御部30は、起動後にステップST2~ST6の処理を繰り返すループ処理を開始する。
 ステップST2において、制御部30のヘッドライトコントロールモジュール31に、周辺環境情報取得部20によって取得された周辺環境情報を示す信号が入力される。
 ステップST3において、ヘッドライトコントロールモジュール31は、周辺環境情報が、運転者に与えるグレアを増加させる条件(以下、「グレア増加の条件」とも呼ぶ。)を満たすか否かを判定し、当該周辺環境情報がグレア増加の条件を満たす場合(すなわち、ステップST3において、判定がYesの場合)、処理をステップST4へ進める。例えば、ヘッドライトコントロールモジュール31は、天候が雨、雪又は霧であるとき、処理をステップST4へ進める。
 一方、ヘッドライトコントロールモジュール31は、周辺環境情報がグレア増加の条件を満たさないと判定した場合(すなわち、ステップST3において、判定がNоの場合)、処理をステップST5へ進める。
 ステップST4において、ヘッドライトコントロールモジュール31は、照明光L1の分光分布において、代表点における波長より短い波長の成分である短波長成分を相対的に減少させる制御信号を生成する。図1に示される光源制御部32は、当該制御信号に基づいて、第1、第2、第3及び第4のLED11、12、13、14の各々から出射される光L11、L12、L13、L14のうち中心波長の短い光の強度を弱める。これにより、運転者に与えるグレアが抑制される。よって、前照灯装置100は、運転者の視認性を向上させることができる。
 ステップST5において、ヘッドライトコントロールモジュール31は、周辺環境情報が、運転者に与えるグレアを減少させる条件(以下、「グレア減少の条件」とも呼ぶ。)を満たすか否かを判定し、当該周辺環境情報がグレア減少の条件を満たす場合(すなわち、ステップST5において、判定がYesの場合)、処理をステップST6へ進める。
 ステップST6において、ヘッドライトコントロールモジュール31は、照明光L1の分光分布において、短波長成分を相対的に増加させる制御信号を生成する。図1に示される光源制御部32は、当該制御信号に基づいて、第1、第2、第3及び第4のLED11、12、13、14の各々から出射される光L11、L12、L13、L14のうち中心波長の短い光の強度を強める。これにより、短波長成分が増加した分光分布の照明光L1が、薄明視環境において、前照灯装置100から照射されるため、運転者は当該照明光L1を明るく感じることができる。よって、前照灯装置100は、運転者の視認性を向上させることができる。
 ステップST5において判定がNoの場合又はステップST6における処理が終了した後、ループ処理が終了する条件を満たすまでステップST2~ST6を繰り返す。
 〈設計例〉
 次に、具体的な数値例を用いた場合の照明光L1の分光分布の設計例について説明する。以下では、図1及び図2(A)に示される第1、第2、第3及び第4のLED11、12、13、14の各々の中心波長(「主波長」とも呼ぶ。)が、表1に示される値である場合を例にして説明する。表1に示す例では、第3のLED13及び第4のLED14の中心波長に比べて、第1のLED11及び第2のLED12の中心波長は短い。以下の説明では、第3及び第4のLED13、14を「第1の発光部」、第1及び第2のLED11、12を「第2の発光部」とも呼ぶ。第2の発光部は、第1の発光部が出射する第1の光(すなわち、図2(A)に示される光L13、L14)の中心波長より短い中心波長の光(すなわち、図2(A)に示される光L11、L12)を出射する。
Figure JPOXMLDOC01-appb-T000001
 図7(A)~(D)は、図1及び図2(A)に示される第1、第2、第3及び第4のLED11、12、13、14の各々から出射される光L11、L12、L13、L14の分光分布S11、S12、S13、S14を示すグラフである。図7(A)~(D)に示されるグラフにおいて、横軸は波長λ(nm)であり、縦軸は比エネルギー(a.u.)である。図7(A)~(D)に示されるように、分光分布S11、S12、S13、S14の各々は、表1に示される中心波長においてピークを有する。
 ここで、制御前の照明光L1の分光分布である合成分光分布をS1、制御後の照明光L1の分光分布である合成分光分布をS2とする。上述したように、周辺環境情報がグレア増加の条件を満たす場合、ヘッドライトコントロールモジュール31(図1参照)は、照明光L1の分光分布の短波長成分(例えば、分光分布において、波長が450nmと550nmとの間である部分)が相対的に減少するように制御する。すなわち、ヘッドライトコントロールモジュール31は、合成分光分布S1及び合成分光分布S2が以下の式(1)を満たすような制御信号を生成する。ヘッドライトコントロールモジュール31は、式(1)を満たすために、第2の発光部(すなわち、第1及び第2のLED11、12のうち少なくとも1つのLED)が出射する第2の光の強度を弱める。
Figure JPOXMLDOC01-appb-M000002
 合成分光分布S1及び合成分光分布S2が式(1)を満たすとき、光源部10から出射される照明光L1の分光分布のうち波長が550nm以下である成分が減少する。すなわち、照明光L1の分光分布において、波長が550nm以下でピークを有することが抑制される。これにより、プルキンエ現象によるグレアの増加を抑制することができる。
 図8は、制御前の照明光L1の合成分光分布S1の一例を示すグラフである。図9は、制御後の照明光L1の合成分光分布S2の一例を示すグラフである。図8及び図9に示されるグラフにおいて、横軸は波長λ(nm)であり、縦軸は比エネルギー(a.u.)である。図8に示される合成分光分布S1は、図1及び図2(A)に示される第1のLED11、第2のLED12及び第4のLED14の出力が制御されることによって得られた分光分布である。
 図9に示される合成分光分布S2は、図1及び図2(A)に示される第1のLED11、第3のLED13及び第4のLED14の出力が制御されることによって得られた分光分布である。
 式(1)の左辺の値は、0.467であり、式(1)の右辺の値は、0.377である。この場合、式(1)が満たされるため、運転者に与えるグレアを抑制することができる。
 実施の形態では、合成分光分布S1の照明光L1の色と合成分光分布S2の照明光L1の色とは同じである。言い換えれば、合成分光分布S2の照明光L1の色温度は、予め決められた範囲内の値になるように、制御部30によって、分光分布S11、S12、S13、S14が制御される。また、前照灯装置100から照射される照明光L1の色が変更されることによって、運転者が距離感を誤認することを防止できる。
 実施の形態では、照明光L1の色は、白色である。ここで、合成分光分布S1の照明光L1の色温度をK1(単位:K)、合成分光分布S2の照明光L1の色温度をK2(単位:K)としたとき、色温度K1及び色温度K2は、以下の式(2)を満たすことが望ましい。
 K1-500≦K2≦K1+500     (2)
 第1、第2、第3及び第4のLED11、12、13、14の各々の中心波長が表1に示される値である場合、色温度K1は5579K、色温度K2は5511Kである。この場合、色温度K1及び色温度K2は式(2)を満たすため、合成分光分布S1の照明光L1の色は、合成分光分布S2の照明光L2の色と同じ色とみなすことができる。
 したがって、実施の形態では、制御部30が分光分布S11、S12、S13、S14を制御する前後で、光源部10から出射される照明光L1の色が変化しないため、運転者が距離感を誤認することを防止でき、且つグレアを抑制できる。なお、前照灯装置100から照射される照明光L1の色を変化させないことは法規において定められている。
 〈効果〉
 以上に説明した実施の形態によれば、制御部30は、周辺環境情報取得部20によって取得された周辺環境情報に基づいて、第1、第2、第3及び第4のLED11、12、13、14の各分光分布S11、S12、S13、S14を制御する。これにより、周辺環境情報に応じて、前照灯装置100から出射される照明光L1の分光分布が適切に調整されるため、運転者に与えるグレアを抑制することができる。よって、運転者の視認性を向上させることができる。
 また、実施の形態によれば、制御部30は、第1、第2、第3及び第4のLED11、12、13、14の各々の分光分布S11、S12、S13、S14を制御する前後で、照明光L1の色温度が予め決められた範囲内の値になるように、分光分布S11、S12、S13、S14を制御する。これにより、制御部30による分光分布S11、S12、S13、S14の制御の前後で光源部10から出射される照明光L1の色が変化しないため、運転者が距離感を誤認することを防止できる。
 《実施の形態の変形例》
 図10は、実施の形態の変形例に係る前照灯装置100Aの構成を示すブロック図である。図10において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。実施の形態の変形例に係る前照灯装置100Aは、周辺環境情報取得部20Aに受光部21が備えられている点で、実施の形態に係る前照灯装置100と相違する。これ以外の点については、実施の形態の変形例に係る前照灯装置100Aは、実施の形態に係る前照灯装置100と同じである。そのため、以下の説明では、図2(A)を参照する。
 図10に示されるように、前照灯装置100Aは、光源部10と、周辺環境情報取得部20Aと、制御部30とを有する。
 周辺環境情報取得部20Aは、受光部21を有する。受光部21は、前照灯装置100Aから照射される照明光L1(図2(A)参照)が照明領域で反射又は散乱したときの戻り光を受光する。このように、戻り光は、例えば、反射光、散乱光などである。戻り光は、前照灯装置100Aの照明領域の周辺環境で発生する周辺環境光である。
 制御部30のヘッドライトコントロールモジュール31は、受光部21において受光された戻り光に対応する検出信号に基づいて、光源制御部32に出力する制御信号を生成する。
 受光部21から出力される検出信号は、例えば、受光部21において検出された戻り光の受光量に対応する信号である。ヘッドライトコントロールモジュール31は、例えば、戻り光の受光量に対応する信号に基づいて、照明光L1が照射されたときに運転者に与えるグレアを減少させるための制御信号を生成する。これにより、前照灯装置100Aから照明光L1が照射されたときに運転者に与えるグレアを抑制することができる。
 〈変形例に係る前照灯装置の動作〉
 次に、実施の形態の変形例に係る前照灯装置100Aの動作について説明する。図11は、実施の形態の変形例に係る前照灯装置100Aの動作を示すフローチャートである。
 まず、ステップST11において、制御部30は、起動後にステップST12~ST16までの処理を繰り返すループ処理を開始する。
 ステップST12において、制御部30のヘッドライトコントロールモジュール31に、周辺環境情報取得部20Aによって取得された戻り光の受光量に対応する信号が入力される。
 ステップST13において、ヘッドライトコントロールモジュール31は、戻り光の受光量がグレア増加の条件を満たすか否かを判定し、当該受光量がグレア増加の条件を満たす場合(すなわち、ステップST13において、判定がYesの場合)、処理をステップST14へ進める。具体的には、ステップST13において、ヘッドライトコントロールモジュール31は、戻り光の受光量が予め決められた第1の閾値Th1以上であるか否かを判定し、判定がYesの場合、処理をステップST14へ進める。
 一方、ヘッドライトコントロールモジュール31は、戻り光の受光量がグレア増加の条件を満たさないと判定した場合(すなわち、ステップST13において、当該受光量が第1の閾値Th1より小さいため、判定がNоの場合)、処理をステップST15へ進める。
 ステップST14において、ヘッドライトコントロールモジュール31は、光源部10から出射される照明光L1の分光分布における短波長成分を相対的に減少させる制御を行う。ステップST14は、図6に示されるステップST4と同一である。例えば、ヘッドライトコントロールモジュール31は、下記の式(3)に示される値tを予め決められた閾値より小さくする制御信号を生成する。
Figure JPOXMLDOC01-appb-M000003
 ステップST15において、ヘッドライトコントロールモジュール31は、戻り光の受光量がグレア減少の条件を満たすか否かを判定し、当該受光量がグレア減少の条件を満たす場合(すなわち、ステップST15において、判定がYesの場合)、処理をステップST16へ進める。具体的には、ステップST15において、ヘッドライトコントロールモジュール31は、戻り光の受光量が第1の閾値Th1より小さい第2の閾値Th2より小さいか否かを判定し、判定がYesの場合、処理をステップST14へ進める。
 ステップST16は、図6に示されるステップST6と同一である。例えば、ヘッドライトコントロールモジュール31は、上述した式(3)に示される値tを閾値より大きくする制御信号を生成する。
 ステップST15において判定がNoの場合又はステップST16における処理が終了した後、ループ処理が終了する条件を満たすまでステップST12~ST16を繰り返す。
 〈変形例の効果〉
 以上に説明した実施の形態の変形例によれば、周辺環境情報取得部20Aは、照明光L1が照明領域で反射又は散乱した光である戻り光を受光する受光部21を有し、当該戻り光の受光量が予め決められた第1の閾値Th1以上であると判定した場合に、中心波長の短い第2の発光部(例えば、第2のLED12)から出射される光の強度を弱める制御を行う。これにより、戻り光の受光量に応じた適切な分光分布の照明光L1が照射される。よって、運転者に与えるグレアが抑制されるため、前照灯装置100Aは、運転者の視認性を向上させることができる。
 なお、上述の実施の形態においては、「平行」及び「垂直」などの部品間の位置関係又は部品の形状を示す用語を用いている場合がある。これらは、製造上の公差及び組立て上のばらつきなどを考慮した範囲を含むことを表している。このため、請求の範囲に部品間の位置関係又は部品の形状を示す記載した場合には、製造上の公差又は組立て上のばらつき等を考慮した範囲を含むことを示している。
 また、上述した実施の形態は、例にすぎず、本開示の範囲内で種々の変更が可能である。
 10 光源部、 11 第1のLED、 12 第2のLED、 13 第3のLED、 14 第4のLED、 15 導光体、 20、20A 周辺環境情報取得部、 21 受光部、 30 制御部、 30a メモリ、 30b プロセッサ、 30c 処理回路、 31 ヘッドライトコントロールモジュール、 32 光源制御部、 50 前照灯モジュール、 100、100A 前照灯装置、 L1 照明光、 L11、L12、L13、L14 光、 S1、S2 合成分光分布、 S11、S12、S13、S14 分光分布、 Th1 第1の閾値、 Th2 第2の閾値。

Claims (7)

  1.  車両用の前照灯装置であって、
     互いに異なる分光分布の光を出射する複数の発光部を有し、前記複数の発光部の各々の前記分光分布を合成した合成分光分布の照明光を出射する光源部と、
     前記前照灯装置による照明領域の周辺環境を示す環境情報を取得する取得部と、
     前記取得部によって取得された前記環境情報に基づいて、前記複数の発光部の各々の前記分光分布を制御する制御部と
     を有する、ことを特徴とする前照灯装置。
  2.  前記複数の発光部は、
     第1の光を出射する第1の発光部と、
     前記第1の光の中心波長より中心波長が短い第2の光を出射する第2の発光部と
     を有し、
     前記制御部は、前記環境情報に基づいて、前記第2の光の強度を制御する、
     ことを特徴とする請求項1に記載の前照灯装置。
  3.  前記制御部は、
     前記環境情報に基づいて、前記照明光が出射されたときに前記車両の運転者に与えるグレアを評価するグレア量を算出し、
     前記グレア量が予め決められたグレア閾値以上であると判定した場合に、前記第2の光の強度を弱める、
     ことを特徴とする請求項2に記載の前照灯装置。
  4.  前記取得部は、前記照明光が前記照明領域で反射又は散乱した光である戻り光を受光する受光部を有し、
     前記制御部は、前記グレア量としての前記戻り光の受光量が予め決められた第1の閾値以上であると判定した場合に、前記第2の光の強度を弱める、
     ことを特徴とする請求項3に記載の前照灯装置。
  5.  前記制御部は、前記戻り光の前記受光量が前記第1の閾値より小さい第2の閾値以下であると判定した場合に、前記第2の光の強度を強める、
     ことを特徴とする請求項4に記載の前照灯装置。
  6.  前記制御部は、前記複数の発光部の各々の前記分光分布を制御する前後で、前記照明光の色温度が予め決められた範囲内の値になるように前記分光分布を制御する、
     ことを特徴とする請求項1から5のいずれか1項に記載の前照灯装置。
  7.  前記環境情報は、天候を示す天候情報を有する、
     ことを特徴とする請求項1から6のいずれか1項に記載の前照灯装置。
PCT/JP2021/018063 2021-05-12 2021-05-12 前照灯装置 WO2022239151A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/018063 WO2022239151A1 (ja) 2021-05-12 2021-05-12 前照灯装置
JP2022546366A JP7170950B1 (ja) 2021-05-12 2021-05-12 前照灯装置
CN202180097877.5A CN117279800A (zh) 2021-05-12 2021-05-12 前照灯装置
DE112021007652.3T DE112021007652T5 (de) 2021-05-12 2021-05-12 Scheinwerfereinrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018063 WO2022239151A1 (ja) 2021-05-12 2021-05-12 前照灯装置

Publications (1)

Publication Number Publication Date
WO2022239151A1 true WO2022239151A1 (ja) 2022-11-17

Family

ID=84027176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018063 WO2022239151A1 (ja) 2021-05-12 2021-05-12 前照灯装置

Country Status (4)

Country Link
JP (1) JP7170950B1 (ja)
CN (1) CN117279800A (ja)
DE (1) DE112021007652T5 (ja)
WO (1) WO2022239151A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069382A (ja) * 2004-09-02 2006-03-16 Fuji Heavy Ind Ltd 車両用ヘッドライト装置
JP2006351369A (ja) * 2005-06-16 2006-12-28 Stanley Electric Co Ltd 車両用灯具及びそのled光源

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020032803A (ja) 2018-08-28 2020-03-05 三菱自動車工業株式会社 車両のヘッドライト装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069382A (ja) * 2004-09-02 2006-03-16 Fuji Heavy Ind Ltd 車両用ヘッドライト装置
JP2006351369A (ja) * 2005-06-16 2006-12-28 Stanley Electric Co Ltd 車両用灯具及びそのled光源

Also Published As

Publication number Publication date
DE112021007652T5 (de) 2024-03-14
JP7170950B1 (ja) 2022-11-14
JPWO2022239151A1 (ja) 2022-11-17
CN117279800A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
JP4771055B2 (ja) 車両用灯具及びそのled光源
US9644811B2 (en) Vehicular headlamp
US7959337B2 (en) Vehicle light and method
US10890304B2 (en) Hybrid headlamp systems and methods
JP2003503815A (ja) 車両ヘッドランプ及び車両
US10343590B2 (en) Active headlight system and method
WO2016064733A2 (en) Vehicular lighting system
US20060203505A1 (en) Wideband illumination device
WO2022239151A1 (ja) 前照灯装置
JP2010153270A (ja) 発光装置
KR20220039580A (ko) 표지광을 포함한 기본 광 분포를 생성하기 위한 자동차 헤드램프용 조명 장치
US11629827B2 (en) Illumination device and light-emitting module
JP6992296B2 (ja) 車両用灯具
KR102642452B1 (ko) 차량용 램프
WO2022270413A1 (ja) 配光制御装置、車両用灯具システムおよび配光制御方法
KR101596597B1 (ko) 자동차용 헤드램프 시스템
JP2023066963A (ja) ヘッドライト、投射レンズ、およびヘッドライト制御方法
KR20220153803A (ko) 차량용 헤드램프 모듈 및 이를 이용한 지능형 헤드램프
KR20230151651A (ko) 차량의 색도 가변타입 로드 프로젝션 램프 시스템 및 로드 프로젝션 제어 방법
CN109488993A (zh) 光纤面板系统和方法
KR20200139367A (ko) 차량용 램프
KR20170079457A (ko) 차량용 램프
JP2018125131A (ja) 車両用灯具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022546366

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941885

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18288996

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180097877.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021007652

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941885

Country of ref document: EP

Kind code of ref document: A1