WO2022237834A1 - 一种氨法脱硫脱碳一体化装置及方法 - Google Patents

一种氨法脱硫脱碳一体化装置及方法 Download PDF

Info

Publication number
WO2022237834A1
WO2022237834A1 PCT/CN2022/092214 CN2022092214W WO2022237834A1 WO 2022237834 A1 WO2022237834 A1 WO 2022237834A1 CN 2022092214 W CN2022092214 W CN 2022092214W WO 2022237834 A1 WO2022237834 A1 WO 2022237834A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization
ammonia
washing
functional area
gas
Prior art date
Application number
PCT/CN2022/092214
Other languages
English (en)
French (fr)
Inventor
张军
罗静
徐天奇
Original Assignee
江南环保集团股份有限公司
江苏新世纪江南环保股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南环保集团股份有限公司, 江苏新世纪江南环保股份有限公司 filed Critical 江南环保集团股份有限公司
Priority to KR1020227039362A priority Critical patent/KR20230004591A/ko
Priority to IL305518A priority patent/IL305518A/en
Priority to MX2023010153A priority patent/MX2023010153A/es
Priority to EP22798047.1A priority patent/EP4134154A1/en
Priority to CA3174110A priority patent/CA3174110A1/en
Priority to JP2022567767A priority patent/JP2023532173A/ja
Priority to AU2022256100A priority patent/AU2022256100A1/en
Publication of WO2022237834A1 publication Critical patent/WO2022237834A1/zh
Priority to ZA2023/08319A priority patent/ZA202308319B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • C05D9/02Other inorganic fertilisers containing trace elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • C01C1/242Preparation from ammonia and sulfuric acid or sulfur trioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/26Carbonates or bicarbonates of ammonium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C3/00Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C9/00Fertilisers containing urea or urea compounds
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D1/00Fertilisers containing potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the invention belongs to the technical field of environmental protection, and in particular relates to a device and method for removing sulfur oxides and CO2 by ammonia method.
  • CO 2 methane and other gases in the atmosphere can pass through the short-wave radiation of the sun, but can block the long-wave radiation from the earth's surface to space.
  • concentration of greenhouse gases such as CO 2
  • the incident energy is greater than the dissipated energy, resulting in
  • the increase in the temperature of the earth's atmosphere is called the greenhouse effect.
  • Carbon dioxide is the most important greenhouse gas, and the use of fossil energy is its main emission source. China's total CO2 emissions have ranked first in the world, and China's energy structure will continue to be dominated by coal for a period of time. Coal energy will still It will be the basis for new energy peak shaving and energy security. China has promised the world to reach its carbon peak in 2030 and achieve carbon neutrality in 2060. The capture, storage and resource utilization of CO 2 in exhaust flue gas is of great significance to control and reduce greenhouse gas emissions, and to deal with the greenhouse effect and global warming.
  • the carbon capture technology mainly used in the world is the organic amine method, but there are problems such as high operating costs, large discharge of three wastes in the system, and difficult treatment.
  • new decarbonization technologies have been actively explored.
  • the ammonia method has the advantages of easy regeneration, low operating cost, and the by-product of decarbonization is the important ammonium bicarbonate fertilizer.
  • CO 2 is obtained from regeneration, part of CO 2 is used in the production of downstream products such as urea, soda ash, polycarbonate, etc., part is used in oil flooding, beverage production, gas welding, and part is directly injected back into the ground or ocean.
  • Ammonium bicarbonate is a typical compound fertilizer, which can provide nitrogen fertilizer and CO 2 to plants at the same time. It is especially suitable for the needs of modern agriculture and greenhouse plant growth in soilless cultivation. It truly realizes the resource utilization of CO 2 and realizes carbon cycle. Secondary pollution and CO2 environmental accidents that may be caused by underground carbon storage can be avoided. Compared with organic amine decarburization products, ammonia has high CO2 absorption efficiency and ammonium bicarbonate is easier to regenerate, which can greatly reduce the cost of decarbonization.
  • Ammonia decarbonization technology has always been the focus of research, and it is also the best way to solve greenhouse gases; however, ammonia is volatile, and decarbonization needs to be carried out under alkaline conditions, resulting in an increase in ammonia escape. If it is not solved, a large amount of ammonia will escape, which will not only increase the cost of decarbonization, but also cause secondary pollution.
  • Patent CN104707451A reports a method for ammonia-based flue gas carbon capture and synthesis of chemical products. It operates in a flue gas absorption synthesis device.
  • the flue gas absorption synthesis device includes flue gas pipelines, parallel absorption towers and carbonization towers,
  • the ammonia removal tower and solid-liquid separation equipment use ammonia water as the absorbent to capture CO 2 in the flue gas, and use sodium sulfate as the conversion medium to produce chemical products such as sodium carbonate and sodium bicarbonate.
  • the ammonia-containing tail gas after decarburization is removed by a simple water washing method, causing a large amount of ammonia to escape.
  • CN201110039363.2 reported a system and process for capturing and absorbing sulfur dioxide and carbon dioxide under atmospheric pressure through ammonia method. It first desulfurized and then decarburized. Multiple heat exchangers were installed in the desulfurization and decarburization unit to control the absorption temperature. At the same time, high-concentration ammonia water is used for desulfurization and decarbonization first, and then dilute concentration ammonia water is used for desulfurization and decarbonization. After decarbonization, the gas is directly discharged. Only low-temperature and low-concentration ammonia water is used for absorption, which cannot solve the problem of ammonia escape. In addition, the concentration of ammonia water is still low. It should not be too low. Low concentration of ammonia water will bring in a large amount of water, causing the desulfurization product ammonium sulfate and decarburization product ammonium bicarbonate to fail to crystallize.
  • CN104874272A reports a device and method for integrated desulfurization and carbon dioxide capture.
  • the flue gas first passes through an ammonia desulfurization device to remove SO 2 , and then enters a direct contact cooling device for cooling and cooling, and then enters a decarbonization tower for decarbonization.
  • the carbonized gas is sent to the ammonia scrubber, washed with water, and the flue gas after washing enters the direct contact heating device, and some ammonia is simultaneously removed during the spray contact heating process.
  • the spray contact solution adopts the aqueous solution discharged from the contact cooling tower. After contact spraying, the solution is cooled by the cooling tower and then used for contact cooling spray.
  • the ammonia solution from the water washing tower enters the decarburization tower for decarburization, or enters the stripping tower for deammonization.
  • Acidic reagent sulfuric acid is added to the regeneration contact tower to strengthen ammonia washing.
  • This method has the following problems, directly using water washing, the water after washing is returned to decarbonization, and a large amount of water is brought into the decarbonization system to increase investment and operating costs; secondly, sulfuric acid is used to further wash ammonia, which will cause sulfuric acid consumption; the third process is complicated , it is necessary to set up a contact cooling device and a contact reheating device separately, and the investment and operation costs are high.
  • the present inventor has developed an integrated technology of ammonia desulfurization and decarburization in combination with experience in ammonia desulfurization.
  • the temperature of the absorption liquid and/or process gas is lowered to meet the temperature requirements for subsequent decarburization; the ammonia-containing process gas after decarburization is first absorbed by the desulfurization circulating liquid, and the absorbed circulating solution is returned to the desulfurization functional area for desulfurization , reduce the desulfurization and ammonia addition; further use fresh water to wash and decarbonize the exhaust gas, and return the ammonia-containing washing water to the desulfurization functional area after washing, and use it as desulfurization particulate matter removal washing water to replenish water; the condensed water generated in the desulfurization particulate matter washing area is purified by membrane separation Finally, the clean water is used for washing ammonia and replenishing water, and the excess discharge device is used for external use.
  • the washing effect is good.
  • the acidic desulfurization absorption liquid is used to wash the ammonia-containing process gas, and the washing effect is good;
  • ammonia-containing washing water after washing ammonia is directly used for washing and replenishing desulfurization particles, which reduces desulfurization and replenishing water;
  • the condensed water is recycled after being separated and purified by the membrane, and there is no waste water discharge.
  • Ammonium sulfate and ammonium bicarbonate fertilizers can be recovered, and part or all of the decarbonized circulating fluid can be analyzed to obtain CO 2 , part of the CO 2 is used for beverage production, oil flooding, and gas welding, and part of the CO 2 is used for the production of downstream products including urea, Soda ash, sodium bicarbonate, polycarbonate, polyurethane, food CO 2 , CO 2 gas fertilizer, potassium bicarbonate, etc. There is no need to reinject all CO 2 into underground storage, and carbon emission reduction is truly realized.
  • Figure 1 is a flow diagram of one embodiment of the process according to the invention.
  • Fig. 2 shows an integrated device for ammonia desulfurization and decarbonization according to an embodiment of the present invention.
  • Fig. 3 shows the carbon dioxide regeneration section of the ammonia desulfurization and decarbonization integrated device according to one embodiment of the present invention.
  • each symbol has the following meanings: 1-process gas; 2-desulfurization functional area; 3-desulfurization 1# circulation pump; 4-desulfurization heat exchanger-a; 5-desulfurization circulation pump-a; 6-ammonium sulfate discharge pump; 7-oxidizing air; 8-desulfurization system ammonia addition; 9-desulfurization circulating water tank; 10-desulfurization circulating pump-b; 11-desulfurization heat exchanger-b; 12-tail gas after desulfurization; 13 -Desulfurization circulation tank; 14-Flue gas condensed water; 15-Membrane separation device; 16-Membrane separation concentrated water; 17-Membrane separation and purified water; 18-Purified water in the ammonia washing functional area; 19-Decarbonization functional area ;20-particulate washing circulation pump; 21-decarbonization tower circulation pump; 22-decarbonization tower discharge pump; 23-decarbonization tail gas; Ammonia functional area circulating pump-
  • the invention provides an ammonia desulfurization and decarbonization integrated device and method, which uses ammonia to remove sulfur oxides and CO 2 to generate ammonium sulfate fertilizer and ammonium bicarbonate fertilizer.
  • the device is equipped with ammonia desulfurization functional area, ammonia decarbonization functional area, ammonia washing functional area, ammonium sulfate post-treatment system and ammonium bicarbonate post-treatment system.
  • the gas first enters the desulfurization functional area for desulfurization to generate ammonium sulfate fertilizer; the desulfurized gas enters the decarbonization functional area to remove carbon dioxide in the gas and generate ammonium bicarbonate fertilizer; after decarbonization
  • the gas containing free ammonia enters the ammonia washing functional area, is washed with desulfurized ammonium sulfate solution, and then washed with water. After washing, the ammonia-containing ammonium sulfate solution and aqueous solution are returned to the desulfurization tower for desulfurization absorbent.
  • the above functional areas can be combined into one tower or multiple towers. In the desulfurization functional area, it is divided into multiple sections, including cooling and concentration cooling section, absorption section, and particle removal section. Each section is provided with at least one spray layer, and equipment/components that allow gas to pass are provided between sections.
  • the particulate matter removal section is divided into two parts, wherein the first particulate matter removal section uses a high-concentration sulfur-containing ammonium solution for circular washing, and the second particulate matter removal section uses a sulfur-containing ammonium dilute solution for circular washing . Between the two parts there is a device/component that allows the passage of gas.
  • the concentration of the concentrated ammonium sulfate solution used in the first particle removal section is controlled at 5-40%, preferably 10-30%, and the pH is controlled at 3-7, preferably 3-5.5; the concentration of the dilute ammonium sulfate solution in the second particle removal section is controlled at 0.02 -10%, preferably 0.03-5%, pH is controlled at 3-7.
  • the apparatus of the present invention comprises a desulfurization circulation tank comprising an oxidation chamber and an ammoniation chamber in fluid communication with each other, wherein the oxidation chamber is constructed to allow reflux from the absorption section at least a portion of which contacts and reacts with an oxygen-containing gas and allows at least a portion of the liquid phase to be withdrawn therefrom for circulation to the first particulate removal section and the ammonia scrubbing functional area, and the ammoniation chamber is constructed to be in fluid communication with said oxidation chamber, At least a portion of the reflux from the absorption section is allowed to mix with the ammonia absorbent and a liquid stream is allowed to be withdrawn therefrom for recycling to the absorption section.
  • the desulfurization and decarbonization integrated method comprises the following steps in sequence:
  • step 3 the desulfurization circulating liquid from the oxidation chamber of the desulfurization circulating tank is used to remove part of the free ammonia in the process gas, and the desulfurization circulating liquid after absorbing the free ammonia is returned to the desulfurization device.
  • the products of step 1) and step 2) include ammonium sulfate fertilizer, ammonium bicarbonate fertilizer.
  • the CO 2 removal rate in step 2) is 30-98%.
  • part of the decarbonized circulating liquid is sent to an ammonium bicarbonate post-treatment device to produce ammonium bicarbonate fertilizer, or part of the decarbonized circulating liquid is sent to a CO2 regeneration device for regeneration to obtain gaseous CO2 , and part of the CO2 is used for beverage production, Oil flooding, gas welding, part of CO 2 is used to produce downstream products including urea, soda ash, sodium bicarbonate, polycarbonate, polyurethane, food CO 2 , CO 2 gas fertilizer, potassium bicarbonate, etc.
  • step 4) is also included between step 2) and step 3) using process water to remove part of the free ammonia and/or in the process gas
  • Step 5) is also included after step 3) using process water to further remove part of the free ammonia in the process gas.
  • the desulfurization circulating liquid used in the present invention includes concentrated circulating liquid and absorption circulating liquid.
  • the pH of the concentrated circulating solution is 1-6, preferably 2-4.5
  • the concentration of ammonium sulfite is 0-0.2%
  • the concentration of ammonium sulfate is 10-60%
  • the pH of the absorption circulating solution is 4.5-6.5, preferably 4.8-6.2, sub-
  • the concentration of ammonium sulfate is 0.1-3%
  • the concentration of ammonium sulfate is 10-38%.
  • the pH of the decarburization circulating liquid used in the present invention is 7-13, preferably 7.5-11, more preferably 8-9.5, the concentration of ammonium bicarbonate is 3-40%, preferably 10-22%, NH 3 / The molar ratio of CO2 is 0.6-4, preferably 1.2-3, more preferably 2-2.5.
  • the desulfurization absorption temperature is 5-55°C, preferably 15-50°C, more preferably 20-40°C; the decarburization absorption temperature is 0-45°C, preferably 5-40°C, more preferably 10-30°C.
  • Heat pump refrigeration technology can be used to provide cooling capacity required for decarburization circulating fluid and desulfurization circulating fluid cooling.
  • the temperature of the chilled water obtained by the heat pump may be 3-25°C, preferably 5-10°C.
  • Heat pump power can include one or more of hot water, steam and electricity.
  • the cold source can be circulating water/de-salinated water.
  • desalinated water When desalinated water is used, the desalinated water after heat exchange can be sent to a low-temperature economizer, saving tons of steam Coal consumption.
  • a cooling device is provided in the desulfurization functional area to control the flue gas temperature after desulfurization to 5-55°C, preferably 20-40°C, to meet the temperature requirements for subsequent decarburization; the cooling device can be set in the circulation On the desulfurization liquid circulation pipeline, cool and circulate the desulfurization liquid. After cooling down, the circulating desulfurization liquid further cools the desulfurization flue gas; multiple cooling devices can be installed, such as on the absorption section and the particulate matter removal section circulation absorption pipeline, preferably in the second particulate matter removal section.
  • the washing condensate can be purified by membrane separation, the concentrated solution can enter the desulfurization absorption area, and the clean water can be used as supplementary water for ammonia washing or for external use.
  • the cooling device can also be arranged on the process gas pipeline, which can be at the inlet, middle or outlet of the desulfurization functional area.
  • the coolant adopts circulating water or chilled water, which can be used alone or in combination.
  • the desulfurization circulating solution used for washing ammonia can be taken from the circulating washing solution of the desulfurization tower, and returned to the ammonia desulfurization functional area after washing ammonia for desulfurization.
  • the pH of the desulfurizing circulating solution used for ammonia washing is controlled at 2.5- 7.5, preferably 3-5.5.
  • the desulfurization circulating solution used for washing ammonia is taken from the oxidation chamber of the desulfurization circulation tank.
  • the pH of the washing process water used in the ammonia washing functional area is controlled at 3-7. At least a part of the aqueous solution produced after the ammonia is washed by the process water can enter the circulating liquid of the second particle removal part of the desulfurization tower to serve as makeup water. In this way, the concentration of ammonium sulfate in the circulating fluid can be controlled at 0-5%, preferably 0.02-2%.
  • the water washing circulation solution in the second particle removal part is pumped into the purification membrane separation device, and the purified water is used as supplementary water in the ammonia washing functional area to control the ammonia concentration in the washing water and the concentration of dilute ammonium sulfate solution in the desulfurization section.
  • the concentrated water produced by the membrane separation device can enter the desulfurization absorption section.
  • the decarbonization functional zone and the ammonia scrubbing functional zone can use one or a combination of spray absorption, plate absorption, packing absorption, float valve absorption, etc.
  • the ammonium sulfate slurry produced by desulfurization can enter the post-ammonium sulfate system. After solid-liquid separation, wet ammonium sulfate is dried and packaged into ammonium sulfate products, or wet ammonium sulfate products are directly produced; the solution from solid-liquid separation Return to the desulfurization functional area; if ammonium sulfate solution is produced, it needs to be evaporated and crystallized to form ammonium sulfate slurry before entering the solid-liquid separation device.
  • the ammonium bicarbonate slurry coming out of the decarbonization tower can enter the solid-liquid separation equipment, the solution returns to the decarbonization functional area, and the wet ammonium bicarbonate is dried and packaged into a product, or the wet ammonium bicarbonate product is directly produced.
  • at least part of the ammonium bicarbonate produced by decarbonization can be further heated to regenerate CO and ammonia solution, which is returned to the decarbonization functional area for further use.
  • the main parameters of the desulfurization functional area are as follows:
  • Superficial gas velocity control 0.5-5m/s, preferably 2-4m/s;
  • the spray density of each layer of spray circulating fluid is 4-100m 3 /m 2 .h, preferably 8-80m 3 /m 2 .h;
  • the circulating fluid temperature is controlled at 5-55°C, preferably 20-40°C;
  • the pH of the circulating fluid is controlled at 1-7.
  • the main parameters of the decarburization functional zone are as follows:
  • the pH of the circulating fluid is controlled at 7-11.
  • the main parameters of the ammonia washing functional area are as follows:
  • Temperature control 0-50°C, preferably 3-40°C;
  • the pH of the circulating fluid is controlled at 3-10.
  • a strong acid such as sulfuric acid, nitric acid, or hydrochloric acid, is added to the desulfurization functional area and/or the ammonia scrubbing functional area to adjust the pH of the circulating fluid.
  • the device further includes a heat pump system to provide cooling capacity required for cooling the decarbonized circulating liquid and the desulfurized circulating liquid by using heat pump refrigeration technology.
  • the temperature of the chilled water obtained by the heat pump may be 3-25°C, preferably 5-10°C.
  • the chilled water inlet/return pipelines are connected to each refrigeration heat exchanger.
  • the device also includes a CO2 regeneration tower, and the regeneration of the decarbonized circulating liquid is carried out in the CO2 regeneration tower.
  • 100°C, preferably 70-90°C, regeneration pressure at the bottom of the tower is 0.2-0.7MPa, preferably 0.3-0.5MPa.
  • the gas velocity of the regeneration tower is 0.2-3m/s, preferably 0.3-2m/s.
  • the apparatus also includes one or more of a solution heat exchanger, a reboiler, a circulating water cooler, a chilled water cooler, a CO buffer tank, a CO compressor.
  • the ammonium bicarbonate solution/slurry from decarburization may be sent to a regeneration unit to produce carbon dioxide and ammonia solution.
  • the regenerated gas CO 2 can be used for the production of downstream products, such as urea, soda ash, sodium bicarbonate, polycarbonate, food CO 2 , CO 2 gas fertilizer, carbonic acid Potassium hydrogen, etc., or used for oil displacement, beverage production, gas welding, or for ocean storage or underground storage.
  • the separated liquid can be returned to the CO2 regeneration tower.
  • the solution of the present invention organically integrates decarbonization and desulfurization technologies, uses acidic desulfurization circulating liquid to wash ammonia, has high ammonia washing efficiency, successfully solves the problem of ammonia escape in the decarbonization process, has simpler process, low investment and operating costs, and produces sulfuric acid by-product ammonium and ammonium bicarbonate fertilizers, and re-inject a part of CO 2 to underground storage, which can flexibly adjust the production of ammonium bicarbonate, CO 2 sequestration, and CO 2 downstream product output.
  • the proposal of the present invention can use the by-product ammonia water, and realize waste treatment with waste and circular economy. Compared with the calcium method desulfurization/sodium method desulfurization + organic amine decarburization + carbon sequestration device:
  • the solution of the present invention occupies a small area and can flexibly adjust the amount of carbon sequestration
  • the scheme of the present invention has a simple process flow and can flexibly adjust the output of by-products.
  • CO 2 can be used to produce urea, ammonium bicarbonate, soda ash, food CO 2 , polycarbonate, methanol, synthesis gas, polyurethane, and can be used for oil displacement, gas welding, gas fertilizer, etc.
  • China's total demand is close to 150 million tons per year;
  • the decarburization of organic amines after calcium desulfurization needs to be equipped with alkaline deep desulfurization equipment.
  • the investment in desulfurization will increase by 60-80% on the existing basis.
  • the investment in conventional ammonia desulfurization is about 85-95% of that in calcium desulfurization. It is about 60% of organic amine decarburization, and the integration of desulfurization and decarbonization can further reduce the investment by about 10-20%, so the investment of ammonia desulfurization and decarbonization integration technology is lower than that of calcium desulfurization + sodium desulfurization + organic amine decarburization 40-50%; and no waste water and residue discharge.
  • the operating cost of ammonia desulfurization and decarbonization integrated technology is 50-60% lower than that of calcium desulfurization + alkali desulfurization + organic amine decarburization.
  • the main technical indicators are as follows:
  • the decarbonization efficiency is not less than 50%, and the content of CO 2 (including fine particles) in the flue gas at the outlet of the decarbonization tower can be significantly controlled to ⁇ 6%
  • Ammonia recovery i.e., the fraction or percentage of ammonia that is utilized and captured in the gas cleaning process out of the ammonia added to the process
  • process outlet ammonia slip ⁇ 10ppm
  • Percentages used herein are volume percent for gases and weight percent for liquids, unless otherwise indicated.
  • Figure 1 is a schematic flow diagram of one embodiment of the process according to the invention.
  • Figure 2 and Figure 3 show an integrated device for ammonia desulfurization and decarbonization according to some embodiments of the present invention.
  • the process gas 1 containing sulfur oxides and CO2 enters the desulfurization functional area 2, and the desulfurization circulation pump-a 5 is used for spray circulation, and the ammonium sulfate solution is concentrated while the tail gas is cooled, and the solid sulfuric acid is concentrated and precipitated
  • the ammonium slurry is sent to the ammonium sulfate solid-liquid separator 31 through the ammonium sulfate discharge pump 6, and the solid can be dried in the ammonium sulfate dryer 32 and packaged in the ammonium sulfate packaging machine 33 to finally obtain the finished product ammonium sulfate 34.
  • the desulfurization circulating pump-c10 and the desulfurization circulating water tank 9 to carry out the washing and spraying cycle, use the desulfurization heat exchanger-b11 to control the washing temperature and the temperature of the tail gas 12 after desulfurization, and the flue gas condensed water 14 is treated by the membrane separation device 15 to obtain
  • the membrane-separated concentrated water 16 is returned to the desulfurization functional area 2 for use, part of the purified water 18 is used as replenishment water for the ammonia washing tower, and the rest of the purified water 17 is discharged.
  • the ammonia 8 is metered, it goes to the ammonia adding chamber of the desulfurization circulation tank 13 to add ammonia.
  • the oxidation air 7 goes to the oxidation chamber of the desulfurization circulation tank 13 to oxidize the desulfurization circulation liquid.
  • the tail gas 12 enters the decarburization functional area 19, and the decarburization circulation pump 21 is used for absorption and spraying circulation, and the solution/slurry is sent to the ammonium bicarbonate solid-liquid separator 37 by the decarburization discharge pump 22, and the solid can be separated in the ammonium bicarbonate Dried in the drier 38 and packaged in the ammonium bicarbonate packaging machine 39 to finally obtain the finished product ammonium sulfate 40.
  • the ammonia 24 goes to the decarburization tower 19 to add ammonia after metering.
  • the decarbonized tail gas 23 enters the ammonia washing functional area 25, and uses the ammonia washing tower circulating pump-a 26 to perform primary washing.
  • the primary washing liquid can come from the desulfurization circulating tank 13, and the acidic desulfurization liquid 35 of the particle washing circulating pump is continuously replenished into the ammonia washing tower 25 bottom.
  • the acidic desulfurization liquid 35 comes from a particle washing circulation pump connected to the oxidation chamber of the desulfurization circulation tank.
  • the desulfurized liquid 36 after absorbing ammonia is returned to the desulfurization circulation tank 13, preferably to the oxidation chamber.
  • the secondary washing liquid comes from the purified water 18, and the liquid returns to the desulfurization functional area 2 after washing. After washing, the net flue gas 30 is discharged.
  • part of the solution at the outlet of the decarburization circulation pump 22 enters the CO2 regeneration tower 41 after heat exchange by the solution heat exchanger 42, and part of the tower bottom liquid is heated by steam in the reboiler 43, and CO2 gas is extracted from the top of the tower. After two-stage cooling by the circulating water cooler 44 and the chilled water cooler 45, it is sent to the CO2 buffer tank 46. After being buffered for a certain period of time, it is compressed by the CO2 compressor 47, and part of it is sent to the downstream production device 49 of CO2 to produce urea, soda ash, etc. Product, Portions go bottled or tanker 48 cans. Condensate is removed from the bottom of reboiler 43.
  • Process water 53 is added to the upper part of the CO2 regeneration tower 41.
  • the device also includes a heat pump system 50, the heat pump system produces chilled water, chilled upper water 54 is sent to chilled water cooler 45, desulfurization heat exchanger-a5, desulfurization heat exchanger-b3 and other heat exchangers are used for process gas (flue gas), The CO 2 gas and the circulating liquid are cooled, and the chilled return water 55 is returned to the heat pump system 50 .
  • Embodiment 1 An integrated method for ammonia desulfurization and decarbonization, using ammonia to remove sulfur oxides and CO2 in process gas, characterized in that it includes the following steps in sequence:
  • Embodiment 2 The method of embodiment 1, characterized by at least one of the following:
  • Products include ammonium sulfate fertilizer and ammonium bicarbonate fertilizer
  • step 2 the CO removal rate is 30-98%
  • the method further comprises
  • the regeneration of the decarbonized circulating liquid is carried out in the CO2 regeneration system, and the preferred operating parameters are: the regeneration temperature is 90-150°C at the bottom of the tower, preferably 100-130°C, 6-100°C at the top of the tower, preferably 70-90°C, and the regeneration pressure is The bottom of the tower is 0.2-0.7MPa, preferably 0.3-0.5MPa.
  • the gas velocity of the regeneration tower is 0.2-3m/s, preferably 0.3-2m/s;
  • the method also includes using part of the gas CO for downstream product production or for oil displacement, and the downstream products preferably include urea, soda ash, sodium bicarbonate, polycarbonate, food CO , CO gas fertilizer, potassium bicarbonate ;
  • Embodiment 3 The method as described in Embodiment 1, characterized in that, between step 2) and step 3), step 4) is used to remove part of the free ammonia in the process gas by using process water, and/or in the step After 3), step 5) is further included in step 5) using process water to further remove part of the free ammonia in the process gas.
  • Embodiment 4 The method of embodiment 1, characterized by at least one of the following:
  • Desulfurization circulating liquid includes concentrated circulating liquid, absorption circulating liquid, concentrated circulating liquid pH 1-6, preferably 2-4.5, ammonium sulfite concentration 0-0.2%, ammonium sulfate concentration 10-60%, absorption circulating liquid pH 4.5-6.5 , preferably 4.8-6.2, ammonium sulfite concentration 0.1-3%, ammonium sulfate concentration 10-38%;
  • the pH of the decarburization circulating fluid is 7-13, preferably 7.5-11, more preferably 8-9.5, the concentration of ammonium bicarbonate is 3-40%, preferably 10-22%, and the molar ratio of NH 3 /CO 2 is 0.6-4, preferably 1.2- 3, better than 2-2.5;
  • the desulfurization absorption temperature is 5-55°C, preferably 15-50°C, more preferably 20-40°C;
  • the decarburization absorption temperature is 0-45°C, preferably 5-40°C, more preferably 10-30°C.
  • Embodiment 5 The device for realizing the method described in any one of Embodiments 1-4 is characterized in that, ammonia desulfurization functional area, ammonia decarburization functional area, ammonia washing functional area, ammonium sulfate post-treatment system and ammonium bicarbonate post-treatment system; ammonia is used as the desulfurization and decarburization agent, the process gas first enters the desulfurization functional area for desulfurization to generate ammonium sulfate fertilizer, and the desulfurized process gas enters the decarbonization functional area to remove the process gas The carbon dioxide in the carbon dioxide will generate a solution/slurry containing ammonium bicarbonate.
  • the decarburized process gas contains free ammonia, which enters the ammonia scrubbing functional area, and is washed with the desulfurization circulating solution, and then washed with process water. After washing, the ammonia-containing gas
  • the desulfurization solution and process aqueous solution are returned to the desulfurization functional area to be used as absorbents for desulfurization, and part of the ammonium bicarbonate solution containing ammonium sulfate is returned to the desulfurization functional area.
  • Embodiment 6 The device according to embodiment 5, characterized in at least one of the following:
  • said apparatus comprises a desulfurization circulation tank comprising an oxidation chamber and an ammoniation chamber in fluid communication with each other, wherein the oxidation chamber is configured to allow at least a portion of the reflux from the absorption section to contact and react with an oxygen-containing gas, and At least a portion of the liquid phase is allowed to be withdrawn therefrom for recycling to the particulate removal section and ammonia scrubbing functional area, and the ammoniation chamber is configured to be in fluid communication with said oxidation chamber, allowing at least a portion of the reflux liquid from the absorption section to be mixed with the ammonia absorbent mixing, and allowing a liquid stream to be withdrawn therefrom for recycling to the absorption section;
  • -Ammonia washing functional area also includes washing with process water before using desulfurization circulating solution for washing, ammonia desulfurization functional area, ammonia decarbonization functional area, and ammonia washing functional area are combined into one tower or multiple towers.
  • Embodiment 7 The device as described in Embodiment 5, wherein the desulfurization functional area is divided into multiple sections, including a cooling and concentration cooling section, an absorption section, and a particle removal section, and each section is provided with at least one spray layer, There are devices/components that allow gas to pass between the sections,
  • the particulate matter removal section is divided into two parts.
  • the first particulate matter removal section is sprayed and washed with a high-concentration ammonium-sulfur solution for circular washing, and the second particulate matter removal section is washed with a dilute ammonium-sulfur solution for circular washing.
  • Equipment/components that allow gas to pass through are provided;
  • the concentration of the concentrated ammonium sulfate solution in the first particulate matter removal section is controlled at 10-38%, preferably 12-30%, and the pH is controlled at 2.5-7.5, preferably 3-5.5;
  • the second particulate matter removal section The concentration of dilute ammonium sulfate solution is controlled at 0-5%, preferably 0.02-2%, and the pH is controlled at 3-7.
  • the desulfurization functional area is equipped with a cooling device to control the flue gas temperature after desulfurization to 5-55°C, preferably 15-50°C, and more preferably 20-40°C.
  • the cooling device is set on the circulating desulfurization liquid circulation pipeline to cool Spray circulating desulfurization liquid and further cool the desulfurization flue gas; or set the cooling device on the process gas pipeline/flue in the desulfurization functional area to directly cool the gas; the coolant uses circulating water and/or chilled water.
  • Embodiment 8 The device as described in Embodiment 5, characterized in that the decarburization functional area is provided with a cooling device to control the temperature of the flue gas after decarburization to 0--45°C, preferably 5-40°C, more preferably 10-30°C °C.
  • Embodiment 9 The device according to embodiment 5, characterized by at least one of the following:
  • the ammonia washing circulation solution is taken from the ammonium sulfate washing solution in the particle removal section of the ammonia desulfurization functional area, and returns to the ammonia desulfurization functional area after washing the ammonia for desulfurization.
  • the pH of the ammonium sulfate washing solution is controlled at 2.5-7.5;
  • the ammonia washing circulation solution is taken from the ammonium sulfate solution in the absorption section of the desulfurization functional area, and returns to the absorption section of the desulfurization functional area after washing the ammonia, and is used for desulfurization, and the pH of the ammonium sulfate solution is controlled at 3-7;
  • Embodiment 10 The device as described in embodiment 7, characterized in that the dilute ammonium sulfate washing solution is partly drawn out into the purification membrane separation device, and the purified water is used as deammonization and washing functional area to replenish water, and it is unnecessary for external use to control the amount of water in the washing water.
  • the concentration of ammonia and the concentration of dilute ammonium sulfate solution for desulfurization washing, concentrated water enters the desulfurization absorption area.
  • Embodiment 11 The device according to embodiment 5, characterized in that it has at least one of the following features:
  • the decarbonization functional area adopts one or a combination of spray absorption, plate absorption, packing absorption, float valve absorption;
  • ammonium sulfate slurry produced by desulfurization is separated into solids and liquids, dried and packaged into products, or directly produced as wet products;
  • ammonium bicarbonate slurry produced by decarbonization is partly separated into solids and liquids, dried and packaged into products, or directly produced as wet products; the separated solution is returned to the decarburization device.
  • ammonium bicarbonate slurry or ammonium bicarbonate solution produced by decarburization is further heated partially or completely to generate CO and ammonia solution, and the ammonia solution is returned to the decarburization functional area for further use;
  • -CO2 is used for downstream product production, oil flooding, beverage production, storage;
  • ammonia desulfurization functional area The main parameters of the ammonia desulfurization functional area are as follows:
  • each layer of spray circulating fluid is 4-100m 3 /m 2 .h, preferably 8-80m 3 /m 2 .h;
  • the circulating fluid temperature is controlled at 5-55°C, preferably 20-40°C;
  • the device also includes a heat pump system, the heat pump system provides the chilled water required for cooling, and the temperature of the chilled water obtained by the heat pump is 3-25°C, preferably 5-10°C;
  • the device also includes a CO2 regeneration tower, the regeneration of the decarburization circulating fluid is carried out in the CO2 regeneration tower, and the operating parameters are: the regeneration temperature is 90-150 ° C at the bottom of the tower, preferably 100-130 ° C, and 6-100 ° C at the top of the tower, It is preferably 70-90°C, and the regeneration pressure is 0.2-0.7MPa at the bottom of the tower, preferably 0.3-0.5MPa.
  • the gas velocity of the regeneration tower is 0.2-3m/s, preferably 0.3-2m/s.
  • the upper part of the regeneration tower is provided with a process water inlet;
  • the gas CO2 obtained from the regeneration tower is used for the production of downstream products, and the downstream products include urea, soda ash, sodium bicarbonate, polycarbonate, food CO2 , CO2 gas fertilizer, potassium bicarbonate, or for oil flooding, Beverage production, gas welding, or for marine or underground storage;
  • the device also includes a solution heat exchanger, a reboiler, a circulating water cooler, a chilled water cooler, a CO2 buffer tank, a CO2 compressor,
  • the solution at the outlet of the decarbonization circulation pump enters the CO2 regeneration tower after heat exchange by the solution heat exchanger, and the CO2 gas is produced at the top of the tower, cooled by the cooler, sent to the CO2 buffer tank, and then sent out after being compressed by the CO2 compressor .
  • Sulfur-containing oxides and CO 2 coal-fired boiler flue gas enter the above-mentioned desulfurization and decarbonization integrated device, and the process flow is shown in Figure 2.
  • the device includes a desulfurization functional area 2, a decarbonization functional area 19, and an ammonia washing functional area 25.
  • the process gas 1 containing sulfur oxides and CO 2 enters the desulfurization functional area 2, and the desulfurization circulation pump-a 5 is used for spray circulation. While the tail gas is cooling down, the ammonium sulfate solution is concentrated, and the ammonium sulfate slurry that is concentrated and precipitated is passed through sulfur Ammonium discharge pump 6 is sent to ammonium sulfate solid-liquid separator 31, ammonium sulfate drier 32, ammonium sulfate packing machine 33, finally obtains finished product ammonium sulfate 34.
  • the tail gas 12 After desulfurization, the tail gas 12 enters the decarbonization functional area 19, and the decarburization circulating pump 21 is used for absorption and spraying circulation, and the slurry is sent to the ammonium bicarbonate solid-liquid separator 37, the ammonium bicarbonate dryer 38, the bicarbonate The ammonium packaging machine 39 finally obtains the finished product ammonium carbonate 40.
  • Ammonia 24 goes to decarburization tower 19 to add ammonia after metering. Part of the ammonium bicarbonate solution containing ammonium sulfate returns to the desulfurization functional area.
  • the decarbonized tail gas 23 enters the ammonia washing functional area 25, and uses the ammonia washing tower circulation pump-a 26 to perform primary washing.
  • the primary washing liquid is the acidic desulfurization liquid 35 from the particle washing circulation pump in the oxidation chamber of the desulfurization circulation tank 13, which is continuously replenished
  • the ammonia washing tower 25 returns the desulfurization liquid 36 after absorbing the ammonia gas to the desulfurization circulation tank 13 .
  • the circulation pump-b 27 of the ammonia washing functional area and the circulating water tank 28 of the ammonia washing functional area to perform secondary washing the secondary washing liquid comes from the purified water 18, and the liquid returns to the desulfurization functional area 2 after washing. After washing, the net flue gas 30 is discharged.
  • Desulfurization and decarbonization use 99.6% liquid ammonia as the absorbent, and the process gas (boiler flue gas) parameters are shown in the table below:
  • serial number project value 1 Gas volume at the outlet of desulfurization tower, Nm 3 /h 528326 2 Desulfurization tower outlet temperature, °C 18 3 SO2 content at the outlet of desulfurization tower, ppm ⁇ 5 4 CO2 content at the outlet of desulfurization tower, v% 12.7 5 H 2 O content at the outlet of desulfurization tower, v% 2.0 6 Amount of by-product ammonium sulfate, t/h 5.24 7 Desulfurization efficiency, % 99.9 8 99.6% liquid ammonia consumption, t/h 1.34
  • Sulfur-containing oxides and CO 2 coal-fired boiler flue gas enter the above-mentioned desulfurization and decarbonization integrated device, and the process flow is shown in Figure 2 and Figure 3.
  • the device in FIG. 2 includes a desulfurization functional area 2 , a decarbonization functional area 19 , and an ammonia washing functional area 25 .
  • the process gas 1 containing sulfur oxides and CO2 enters the desulfurization functional area 2, and is sprayed and circulated by the desulfurization circulation pump-a5, and the ammonium sulfate solution is concentrated while the tail gas is cooled, and the ammonium sulfate slurry that is concentrated and precipitated is passed through the sulfur Ammonium discharge pump 6 is sent to ammonium sulfate solid-liquid separator 31, ammonium sulfate drier 32, ammonium sulfate packing machine 33, finally obtains finished product ammonium sulfate 34.
  • the tail gas 12 enters the decarburization functional area 19, and the decarburization circulation pump 21 is used for absorption and spray circulation, and the slurry is sent to the ammonium bicarbonate solid-liquid separator 37, ammonium bicarbonate dryer 38, bicarbonate Ammonium packaging machine 39 to finally obtain finished product ammonium carbonate 40.
  • Ammonia 24 goes to decarburization tower 19 to add ammonia after metering. Part of the ammonium bicarbonate solution containing ammonium sulfate returns to the desulfurization functional area.
  • the decarbonized tail gas 23 enters the ammonia washing functional area 25, and uses the ammonia washing tower circulation pump-a 26 to perform primary washing.
  • the primary washing liquid is the acidic desulfurization liquid 35 from the ammonia desulfurization functional area, which is continuously fed into the ammonia washing tower 25, absorbing The desulfurized liquid 36 after the ammonia gas is returned to the desulfurization circulation tank 13 .
  • the circulation pump-b 27 of the ammonia washing functional area and the circulating water tank 28 of the ammonia washing functional area to perform secondary washing the secondary washing liquid comes from the purified water 18, and the liquid returns to the desulfurization functional area 2 after washing. After washing, the net flue gas 30 is discharged.
  • the device also includes a CO2 regeneration tower 41.
  • the regeneration of the decarbonized circulating fluid is carried out in the CO2 regeneration tower 41.
  • the operating parameters are: 100-130°C at the bottom of the tower, 60-90°C at the top of the tower, 0.3-0.4MPa operating pressure at the bottom of the tower, gas Speed 0.6-0.8m/s.
  • the device also includes a solution heat exchanger 42, a reboiler 43, a circulating water cooler 44, a chilled water cooler 45, a CO2 buffer tank 46, and a CO2 compressor 47.
  • Part of the decarburized ammonium post-treatment device (37-39) in the production solution of the decarburization circulation pump 22 is used to obtain the product ammonium bicarbonate 40, and the rest enters the CO regeneration tower 41 after heat exchange by the solution heat exchanger 42, and part of the tower still After the liquid is heated by steam in the reboiler 43, the CO 2 gas is extracted from the top of the tower, cooled by the circulating water cooler 44 and the chilled water cooler 45, and then sent to the CO 2 buffer tank 46, which is compressed by CO 2 after being buffered for a certain period of time. After being compressed by machine 47, 10% is sent to CO 2 downstream production unit 49 to produce polycarbonate, 5% is bottled or tanker 48 canned, and 85% is stored.
  • Condensate is removed from the bottom of reboiler 43.
  • Process water 53 is added to the upper part of the CO2 regeneration tower 41.
  • the device also includes a heat pump system 50, the heat pump system produces chilled water, the chilled upper water 54 is sent to the chilled water cooler 45, desulfurization heat exchanger-a, desulfurization heat exchanger-b and other heat exchangers are used for CO gas and circulating liquid cooling, The chilled return water 55 returns to the heat pump system 50 .
  • Desulfurization and decarbonization use 99.6% liquid ammonia as absorbent, one 600MW unit, process gas (boiler flue gas) parameters are shown in the table below:
  • serial number project value 1 Gas volume at the outlet of desulfurization tower, Nm 3 /h 1923557 2 Desulfurization tower outlet temperature, °C 18 3 SO2 content at the outlet of desulfurization tower, ppm ⁇ 10 4 CO2 content at the outlet of desulfurization tower, v% 13.1 5 H 2 O content at the outlet of desulfurization tower, v% 2.0 6 Amount of by-product ammonium sulfate, t/h 30.6 7 Desulfurization efficiency, % 99.9 8 99.6% of liquid ammonia consumption, t/h 7.8

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Fertilizers (AREA)
  • Industrial Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明应用于含硫氧化物、CO2工艺气体的脱硫及脱碳,属于环保领域,以氨为脱硫和脱碳剂,气体首先进入脱硫装置进行脱硫,生成硫酸铵化肥,脱硫后的气体进入脱碳装置中,脱除气体中的二氧化碳,生成碳酸氢铵化肥,脱碳后的气体中含有游离氨,采用脱硫循环液进行洗涤,再用水洗涤,洗涤液返回脱硫塔用于脱硫的吸收剂。该技术将脱碳和脱硫技术有机集成在一起,采用酸性脱硫循环液洗氨,洗氨效率高,成功解决脱碳过程中氨逃逸问题,流程更简单,投资和运行成本低,副产硫酸铵和碳酸氢铵化肥,不需将全部CO2回注到地下封存,可使用部分CO2生产尿素、纯碱等下游产品,灵活调节产品结构,可使用副产氨水,真正实现了以废治废、循环经济。

Description

一种氨法脱硫脱碳一体化装置及方法 技术领域:
本发明属于环保技术领域,具体涉及一种用于氨法脱除硫氧化物和CO 2的装置及方法。
背景技术:
大气中的CO 2、甲烷等气体,可以透过太阳短波辐射,但却能阻挡地球表面向宇宙空间的长波辐射,随着CO 2等温室气体浓度的增加,造成入射能量大于逸散能量,导致地球大气的温度升高,这种现象称作温室效应(greenhouse effect)。
二氧化碳是最重要的温室气体,化石能源使用是其主要的排放源,我国CO 2排放总量已位居世界第一,而且中国能源结构以煤为主的局面还将持续一段时间,煤炭能源仍将是新能源调峰及能源安全的基础,我国已向世界承诺2030年碳达峰,2060年实现碳中和。对排放烟气中CO 2进行捕集封存和资源化,对于控制和减少温室气体的排放,应对温室效应、全球变暖问题具有重要意义。
目前,世界范围内主要采用的碳捕集技术是有机胺法,但存在运行成本高、系统三废排放量大且难处理的等问题。国内外也一直积极探索新的脱碳技术,与有机胺法相比,氨法具有再生容易、运行成本低、脱碳的副产物即为重要的碳酸氢铵化肥,也可将部分脱碳循环液再生得到CO 2,CO 2部分用于下游产品如尿素、纯碱、聚碳酸酯等的生产,部分用于驱油、饮料生产、气焊,部分直接回注地底或海洋。碳酸氢铵是一个典型的复合肥,可同时向植物提供氮肥和CO 2,特别适合于无土栽培的现代农业、大棚植物生长的需要,真正实现了CO 2的资源化利用,实现碳循环,可以避免碳地下储存可能造成的二次污染和CO 2环境事故。与有机胺脱碳产物相比,氨吸收CO 2的效率高、碳酸氢铵更容易再生,可大幅降低脱碳成本。
氨法脱碳技术一直是研究的重点,也是解决温室气体的最佳方法;但氨易挥发,脱碳需在偏碱性条件下进行,造成氨逃逸量增加。如不加以解决,大量的氨逃逸,不仅造成脱碳成本的增加,也造成二次污染。
专利CN104707451A报道一种氨法烟气碳捕集及合成化工产品的方法,它在烟气吸收合成装置内运行,所述烟气吸收合成装置包括烟气管路、并联的吸收塔和碳化塔、除氨塔和固液分离设备,以氨水为吸收剂捕集烟气中的CO 2,并以硫酸钠为转化媒介生产碳酸钠、碳酸氢钠等化工产品。脱碳后的含氨尾气,采用简单的水洗方法脱除氨,造成大量的氨逃逸。
CN201110039363.2报道了一种氨法常压捕集吸收二氧化硫和二氧化碳系统及工艺,先 进行脱硫,再进行脱碳,在脱硫和脱碳单元设置了多个换热器,用于控制吸收温度,同时先用高浓度氨水进行脱硫和脱碳,再用稀浓度氨水进行脱硫和脱碳,脱碳后气体直接排放,仅采用低温和低浓度氨水吸收,并不能解决氨逃逸问题,此外氨水浓度还不能太低,低浓度氨水会带入大量的水,造成脱硫产物硫酸铵和脱碳产物碳酸氢铵不能结晶。
CN104874272A报道了一种集成脱硫和二氧化碳捕集的设备和方法,烟气首先经过氨法脱硫装置脱除SO 2,再进入直接接触式冷却装置进行冷却降温后,进入脱碳塔进行脱碳,脱碳后气体进行氨洗涤塔,用水进行洗涤,洗涤后烟气再进入直接接触式加热装置,在喷淋接触加热过程中同步脱除一些氨。喷淋接触溶液采用接触冷却塔排出的水溶液,接触喷淋后溶液经冷却塔降温后再用于接触冷却喷淋。水洗塔的氨溶液进入脱碳塔用于脱碳,或进入汽提塔脱氨。在再生接触塔中加入酸性试剂硫酸强化氨洗涤。本方法存在以下问题,直接采用水洗,洗涤后的水返回脱碳使用,大量的水带入脱碳系统造成投资和运行成本增加;其次采用硫酸进一步洗涤氨,会造成硫酸消耗;第三流程复杂,需要单独设置接触冷却装置、接触再热装置,投资和运行成本高。
发明概述
本发明人针对上述问题,结合氨法脱硫经验,开发了一种氨法脱硫脱碳一体化技术。在脱硫过程中对吸收液和/或工艺气进行降温,达到后续脱碳的温度要求;脱碳后的含氨工艺气气体首先采用脱硫循环液进行吸收,吸收后的循环溶液返回脱硫功能区脱硫,减少脱硫加氨量;进一步采用新鲜水洗涤脱碳后排放气,洗涤后含氨洗涤水返回脱硫功能区,作为脱硫颗粒物脱除洗涤水补水;脱硫颗粒物洗涤区产生的冷凝水通过膜分离净化后,干净水用于洗氨补充水,多余的排出装置外用。
本发明具有以下优点:
1、洗涤效果好,采用酸性脱硫吸收液洗涤含氨工艺气,洗涤效果好;
2、使用脱硫循环液脱除脱碳后工艺气中的氨,洗涤后脱硫循环液直接用于脱硫,简化了工艺流程,实现了脱硫脱碳一体化;
3、洗涤氨后的含氨洗涤水直接用于脱硫颗粒物洗涤补水,减少了脱硫补水;
4、不需要单独设置接触冷却装置,流程简单;
5、冷凝水经膜分离净化后循环使用,无废水排放。
6、回收得到硫酸铵和碳铵化肥,也可以将部分或全部脱碳循环液解析得到CO 2,部分CO 2用于饮料生产、驱油、气焊,部分CO 2用于生产下游产品包括尿素、纯碱、碳酸氢钠、聚碳酸酯、聚氨酯、食品CO 2、CO 2气肥、碳酸氢钾等。不需要将全部CO 2回注到地下封存,真正实现了碳减排。
7、不需控制脱硫功能区出口SO 2到≤2ppm,脱硫功能区未脱除的硫氧化物可在脱碳 装置进一步脱除,降低了脱硫装置投资及运行成本。
附图简要说明
图1是按照本发明方法的一个实施方案的流程图。
图2显示了按照本发明的一个实施方案的氨法脱硫脱碳一体化装置。
图3显示了按照本发明的一个实施方案的氨法脱硫脱碳一体化装置的二氧化碳再生段。
在图2和图3中,各符号具有如下含义:1-工艺气;2-脱硫功能区;3-脱硫1#循环泵;4-脱硫换热器-a;5-脱硫循环泵-a;6-硫铵排出泵;7-氧化空气;8-去脱硫系统加氨;9-脱硫循环水槽;10-脱硫循环泵-b;11-脱硫换热器-b;12-脱硫后尾气;13-脱硫循环槽;14-烟气冷凝水;15-膜分离装置;16-膜分离浓水;17-膜分离外排净化水;18-去洗氨功能区净化水;19-脱碳功能区;20-颗粒物洗涤循环泵;21-脱碳塔循环泵;22-脱碳塔排出泵;23-脱碳后尾气;24-去脱碳系统加氨;25-洗氨功能区;26-洗氨功能区循环泵-a;27-洗氨功能区循环泵-b;28-洗氨水槽;29-洗氨排水;30-净烟气;31-硫酸铵固液分离器;32-硫酸铵干燥器;33-硫酸铵包装机;34-成品硫酸铵;35-酸性脱硫液;36-返回脱硫液;37-碳酸氢铵固液分离器;38-碳酸氢铵干燥器;39-碳酸氢铵包装机;40-成品碳酸氢铵;41-CO 2再生塔;42-溶液换热器;43-再沸器;44-循环水冷却器;45-冷冻水冷却器;46-CO 2缓冲罐;47-CO 2压缩机;48-装瓶或罐车;49-CO 2下游生产装置;50-热泵系统;51-蒸汽;52-冷凝水;53-工艺水;54-冷冻上水,55-冷冻回水。
优选实施方案的描述
本发明提供了一种氨法脱硫脱碳一体化装置及方法,采用氨脱除硫氧化物和CO 2,生成硫酸铵化肥和碳酸氢铵化肥。装置设置氨法脱硫功能区、氨法脱碳功能区,氨洗涤功能区,硫铵后处理系统及碳酸氢铵后处理系统。采用氨为脱硫和脱碳剂气体首先进入脱硫功能区中进行脱硫,生成硫酸铵化肥;脱硫后的气体进入脱碳功能区中,脱除气体中的二氧化碳,生成碳酸氢铵化肥;脱碳后的气体中含有游离氨,进入氨洗涤功能区中,采用脱硫的硫酸铵溶液进行洗涤,再用水洗涤,洗涤后含氨的硫酸铵溶液和水溶液,返回脱硫塔用于脱硫的吸收剂。上述功能区,可以组合成一个塔中或多个塔中。在脱硫功能区,分成多个段,其中包括冷却浓缩降温段、吸收段、颗粒物去除段。每个段设置至少一层喷淋层,段与段之间设有允许气体通过的设备/部件。
在一些优选的实施方案中,颗粒物去除段分成两个部分,其中第一颗粒物去除段喷淋洗涤采用含硫铵的高浓度溶液循环洗涤,第二颗粒物去除段采用含硫铵的稀溶液循环洗涤。 两个部分之间设有允许气体通过的设备/部件。第一颗粒物去除段使用的浓硫铵溶液浓度控制在5-40%,优选10-30%,PH控制在3-7,优选3-5.5;第二颗粒物去除段稀硫铵溶液浓度控制在0.02-10%,优选0.03-5%,PH控制在3-7。
在一些优选的实施方案中,本发明的装置包括脱硫循环槽,该脱硫循环槽包括彼此流体连通的氧化室和加氨室的脱硫循环槽,其中氧化室被构建成允许来自吸收段的回流液的至少一部分与含氧气体接触和反应,并允许从其取出液相的至少一部分以循环到第一颗粒物去除段和氨洗涤功能区,并且加氨室被构建成与所述氧化室流体联通,允许来自吸收段的回流液的至少一部分与氨吸收剂混合,和允许从其取出液体物流以循环到吸收段。
所述脱硫脱碳一体化方法依次包括以下步骤:
1)使用脱硫循环液脱除烟气中的部分SO 2
2)使用脱碳循环液脱除工艺气中的部分CO 2
3)使用脱硫循环液脱除工艺气中的部分游离氨,并将吸收游离氨后的脱硫循环液返回脱硫装置。
在一些优选的实施方案中,步骤3)中使用来自脱硫循环槽的氧化室的脱硫循环液脱除工艺气中的部分游离氨,并将吸收游离氨后的脱硫循环液返回脱硫装置。
在一些实施方案中,步骤1)和步骤2)的产品包括硫酸铵化肥、碳酸氢铵化肥。
在一些实施方案中,步骤2)中CO 2脱除率30-98%。
在一些实施方案中,将部分脱碳循环液送碳铵后处理装置生产碳酸氢铵化肥,或将部分脱碳循环液送CO 2再生装置再生得到气体CO 2,部分CO 2用于饮料生产、驱油、气焊,部分CO 2用于生产下游产品包括尿素、纯碱、碳酸氢钠、聚碳酸酯、聚氨酯、食品CO 2、CO 2气肥、碳酸氢钾等。
在一些实施方案中,在步骤2)与步骤3)之间还包括步骤4)使用工艺水脱除工艺气中的部分游离氨和/或
在步骤3)后还包括步骤5)使用工艺水进一步脱除工艺气中的部分游离氨。
在本发明中使用的脱硫循环液包括浓缩循环液、吸收循环液。在一些实施方案中,浓缩循环液pH 1-6,优选2-4.5,亚硫酸铵浓度0-0.2%,硫酸铵浓度10-60%,吸收循环液pH 4.5-6.5,优选4.8-6.2,亚硫酸铵浓度0.1-3%,硫酸铵浓度10-38%。
在一些实施方案中,在本发明中使用的脱碳循环液pH 7-13,优选7.5-11,更优8-9.5,碳酸氢铵浓度3-40%,优选10-22%,NH 3/CO 2摩尔比0.6-4,优选1.2-3,更优2-2.5。
在一些实施方案中,脱硫吸收温度5-55℃,优选15-50℃,更优20-40℃;脱碳吸收温度0-45℃,优选5-40℃,更优10-30℃。可使用热泵制冷技术提供脱碳循环液、脱硫循 环液冷却所需的冷量。热泵得到的冷冻水温度可为3-25℃,优选5-10℃。
热泵动力可包括热水、蒸汽和电中的一种或多种,冷源可采用循环水/脱盐水,使用脱盐水时,换热后的脱盐水可送至低温省煤器,节省吨蒸汽耗煤。
在一些实施方案中,在所述的脱硫功能区,设有冷却装置,控制脱硫后烟气温度5-55℃,优选20-40℃,满足后续脱碳的温度要求;冷却装置可设置在循环脱硫液循环管线上,冷却循环脱硫液,降温后循环脱硫液进一步冷却脱硫烟气;可设置多个冷却装置,如在吸收段、颗粒物去除段循环吸收管线上,优选在第二颗粒物去除部分的水洗管线上;洗涤冷凝水可采用膜分离净化后,浓溶液可进入脱硫吸收区,清水可充当洗氨的补水或外用。
在一些实施方案中,冷却装置也可设置在工艺气管道上,可以在脱硫功能区的进口、中间或出口。冷却剂采用循环水或冷冻水,可以单独使用或组合使用。
在一些实施方案中,洗氨用的脱硫循环溶液可取自脱硫塔的循环洗涤溶液,洗涤氨后返回氨法脱硫功能区,用于脱硫,洗氨用的脱硫循环溶液的PH控制在2.5-7.5,优选3-5.5。在一些实施方案中,洗氨用的脱硫循环溶液取自脱硫循环槽氧化室。
在一些实施方案中,洗氨功能区中使用的洗涤工艺水的PH控制在3-7。工艺水洗氨后产生的水溶液的至少一部分可进入脱硫塔第二颗粒物去除部分的循环液,充当补水。这样,所述循环液中硫酸铵浓度可控制在0-5%,优选0.02-2%。
在一些实施方案中,第二颗粒物去除部分的水洗循环溶液部分抽出进入净化膜分离装置,净化的产水作为氨洗涤功能区补水,控制洗涤水中的氨浓度及脱硫段稀硫铵溶液的浓度。膜分离装置产生的浓水可进入到脱硫吸收段。
在一些实施方案中,脱碳功能区和氨洗涤功能区可采用喷淋吸收、板式吸收、填料吸收、浮阀吸收等一种或其组合。
在一些实施方案中,脱硫产生的硫酸铵浆液可进入硫铵后系统,经过固液分离后,湿硫铵经干燥包装成硫铵产品,或直接出湿硫铵产品;固液分离出来的溶液返回脱硫功能区;如产生硫铵溶液,需经蒸发结晶后形成硫铵浆液再进入固液分离装置。
在一些实施方案中,从脱碳塔出来的碳酸氢铵浆液可进入固液分离设备,溶液返回脱碳功能区,湿碳酸氢铵经干燥包装成产品,或直接出湿碳酸氢铵产品。在一些实施方案中,脱碳产生的至少部分碳酸氢铵可进一步加热再生成CO 2和氨溶液,该氨溶液返回脱碳功能区进一步使用。
在一些实施方案中,脱硫功能区主要参数如下:
空塔气速控制0.5-5m/s,优选2-4m/s;
每层喷循环液喷淋密度4-100m 3/m 2.h,优选8-80m 3/m 2.h;
循环液温度控制5-55℃,优选20-40℃;
循环液PH控制1-7。
在一些实施方案中,脱碳功能区主要参数如下:
空塔气速控制0.1-5m/s;
温度控制5-40℃,优选10-30℃;
循环液PH控制7-11。
在一些实施方案中,洗氨功能区主要参数如下:
空塔气速控制0.25-5m/s;
温度控制0-50℃,优选3-40℃;
循环液PH控制3-10。
在一些实施方案中,在脱硫功能区和/或氨洗涤功能区加入强酸调节循环液pH,如硫酸、硝酸、盐酸。
在一些实施方案中,装置还包括热泵系统,以使用热泵制冷技术提供脱碳循环液、脱硫循环液冷却所需的冷量。热泵得到的冷冻水温度可为3-25℃,优选5-10℃。冷冻水进水/回水管线与各冷冻换热器连接。
在一些实施方案中,装置还包括CO 2再生塔,脱碳循环液再生在CO 2再生塔进行,操作参数为:再生温度为塔底90-150℃,优选100-130℃,塔顶6-100℃,优选70-90℃,再生压力为塔底0.2-0.7MPa,优选0.3-0.5MPa。再生塔气速0.2-3m/s,优选0.3-2m/s。
在一些实施方案中,装置还包括溶液换热器、再沸器、循环水冷却器、冷冻水冷却器、CO 2缓冲罐、CO 2压缩机中的一个或多个。
在一些实施方案中,来自脱碳碳酸氢铵溶液/浆液可送至再生单元,以产生二氧化碳和氨溶液。
在一些实施方案中,经气液分离后,再生得到的气体CO 2可用于下游产品生产,下游产品包括例如尿素、纯碱、碳酸氢钠、聚碳酸酯、食品CO 2、CO 2气肥、碳酸氢钾等,或用于驱油、饮料生产、气焊,或用于海洋封存或地底封存。分离液可返回CO 2再生塔。
本发明方案将脱碳和脱硫技术有机集成在一起,采用酸性脱硫循环液洗氨,洗氨效率高,成功解决脱碳过程中氨逃逸问题,流程更简单,投资和运行成本低,副产硫酸铵和碳酸氢铵化肥,并将一部分CO 2回注到地下封存,可灵活调节碳铵产量、CO 2封存量、CO 2下游产品产量。
本发明方案可使用副产氨水,实现了以废治废、循环经济。本发明方案与钙法脱硫/钠法脱硫+有机胺脱碳+碳封存装置相比:
本发明方案占地面积小,可灵活调节碳封存量;
本发明方案流程简单、可灵活调节副产品产量,CO 2可用于生产尿素、碳铵、纯碱、 食品CO 2、聚碳酸酯、甲醇、合成气、聚氨酯,用作驱油、气焊、气肥等,中国总需求量接近1.5亿吨/年;
钙法脱硫后有机胺脱碳需配套碱法深度脱硫装置,脱硫投资在现有基础上增加60-80%,常规氨法脱硫投资约为钙法脱硫的85-95%,氨法脱碳投资约为有机胺脱碳的60%,而脱硫脱碳一体化可进一步降低投资约10-20%,故氨法脱硫脱碳一体化技术投资较钙法脱硫+钠法脱硫+有机胺脱碳低40-50%;且无废水废渣排放。
氨法脱硫脱碳一体化技术运行费用较钙法脱硫+碱法脱硫+有机胺脱碳低50-60%。
氨法脱硫脱碳一体化技术与钙法脱硫+碱法脱硫+有机胺脱碳技术对比
Figure PCTCN2022092214-appb-000001
主要技术指标如下:
脱碳效率不低于50%,能显著控制脱碳塔出口烟气中CO 2(含细微颗粒物)的含量≤6%
出口SO 2含量≤5mg/Nm 3
氨回收率(即在所述气体清洁方法中被利用和捕集的氨占添加到该方法中的氨的分数或百分比)≥98%,工艺出口氨逃逸≤10ppm
电耗≤250kWh/t CO 2
蒸汽消耗≤1.2t/t CO 2
除非另外指明,本文中使用的百分浓度对于气体来说是体积百分浓度,对于液体来说是重量百分浓度。
下面结合附图描述按照本发明的一些实施方案的氨法脱硫脱碳一体化装置和方法。
图1是按照本发明方法的一个实施方案的示意性流程图。
图2和图3显示了按照本发明的一些实施方案的氨法脱硫脱碳一体化装置。参见图2,含硫氧化物、CO 2的工艺气1进入脱硫功能区2,用脱硫循环泵-a 5进行喷淋循环,尾气降温的同时提浓硫酸铵溶液,提浓并析出固体的硫酸铵浆液经硫铵排出泵6送至硫酸铵固液分离器31,固体可以被在硫酸铵干燥器32中干燥和在硫酸铵包装机33中包装,最终得到成品硫酸铵34。用脱硫功能区2循环泵-b 3、脱硫循环槽13进行吸收喷淋循环,吸收尾气中的硫氧化物(二氧化硫及三氧化硫),利用脱硫换热器-a 4控制脱硫温度。利用脱硫循环泵-c 10、脱硫循环水槽9进行洗涤喷淋循环,利用脱硫换热器-b 11控制洗涤温度及脱硫后尾气12的温度,烟气冷凝水14经膜分离装置15处理,得到的膜分离浓水16回脱硫功能区2使用,一部分净化水18作为洗氨塔补水,其余净化水17外排。氨8经计量后去脱硫循环槽13的加氨室加氨。氧化空气7去脱硫循环槽13的氧化室将脱硫循环液氧化。
脱硫后尾气12进入脱碳功能区19,用脱碳循环泵21进行吸收喷淋循环,溶液/浆液用脱碳排出泵22送至碳酸氢铵固液分离器37,固体可以被在碳酸氢铵干燥器38中干燥和在碳酸氢铵包装机39中包装,最终得到成品硫酸铵40。氨24经计量后分别去脱碳塔19加氨。
脱碳尾气23进入洗氨功能区25,利用洗氨塔循环泵-a 26进行一级洗涤,一级洗涤液可来自脱硫循环槽13颗粒物洗涤循环泵酸性脱硫液35,连续补入洗氨塔25底部。优选地,所述酸性脱硫液35来自连接至脱硫循环槽氧化室的颗粒物洗涤循环泵。吸收氨气后的脱硫液36返回至脱硫循环槽13,优选的返回至所述氧化室。利用洗氨功能区循环泵-b 27、洗氨功能区循环水槽28进行二级洗涤,二级洗涤液来自净化水18,洗涤后液体返回至脱硫功能区2。洗涤后净烟气30排出。
参见图3,脱碳循环泵22出口部分溶液经溶液换热器42换热后进入CO 2再生塔41,部分塔釜液在再沸器43经蒸汽加热后,塔顶采出CO 2气体,经循环水冷却器44、冷冻水冷却器45两级冷却后送CO 2缓冲罐46,缓冲一定时间后经CO 2压缩机47压缩后,部分送CO 2下游生产装置49生产尿素、纯碱等下游产品,部分去装瓶或罐车48罐装。从再沸器43底部取出冷凝液。
CO 2再生塔41上部加入工艺水53。
装置还包括热泵系统50,热泵系统生产冷冻水,冷冻上水54送冷冻水冷却器45、脱硫换热器-a 5、脱硫换热器-b3等换热器用于工艺气(烟气)、CO 2气体、循环液冷却, 冷冻回水55返回热泵系统50。
本公开提供了以下实施方案:
实施方案1.一种氨法脱硫脱碳一体化方法,采用氨脱除工艺气中硫氧化物和CO 2,其特征在于,依次包括以下步骤:
1)使用脱硫循环液脱除工艺气中的部分SO 2
2)使用脱碳循环液脱除工艺气中的部分CO 2;和
3)使用来自脱硫循环槽、优选来自脱硫循环槽氧化室的脱硫循环液脱除工艺气中的部分游离氨,并且吸收游离氨后的脱硫循环液返回脱硫装置。
实施方案2.如实施方案1所述的方法,其特征在于以下至少之一:
-产品包括硫酸铵化肥和碳酸氢铵化肥;
-步骤2)中CO 2脱除率为30-98%;
-所述方法还包括
将部分脱碳循环液送碳铵后处理装置生产碳酸氢铵化肥,
和/或将部分脱碳循环液送CO 2再生装置再生得到气体CO 2
脱碳循环液再生在CO 2再生系统进行,优选地操作参数为:再生温度为塔底90-150℃,优选100-130℃,塔顶6-100℃,优选70-90℃,再生压力为塔底0.2-0.7MPa,优选0.3-0.5MPa。再生塔气速0.2-3m/s,优选0.3-2m/s;
-所述方法还包括将部分气体CO 2用于下游产品生产或用于驱油,下游产品优选包括尿素、纯碱、碳酸氢钠、聚碳酸酯、食品CO 2、CO 2气肥、碳酸氢钾;
和/或将部分CO 2用于海洋封存或地底封存。
实施方案3.如实施方案1所述的方法,其特征在于,在步骤2)与步骤3)之间还包括步骤4)使用工艺水脱除工艺气中的部分游离氨,和/或在步骤3)后还包括步骤5)使用工艺水进一步脱除工艺气中的部分游离氨。
实施方案4.如实施方案1所述的方法,其特征在于以下至少之一:
-脱硫循环液包括浓缩循环液、吸收循环液,浓缩循环液pH 1-6,优选2-4.5,亚硫酸铵浓度0-0.2%,硫酸铵浓度10-60%,吸收循环液pH 4.5-6.5,优选4.8-6.2,亚硫酸铵浓度0.1-3%,硫酸铵浓度10-38%;
-脱碳循环液pH 7-13,优选7.5-11,更优8-9.5,碳酸氢铵浓度3-40%,优选10-22%,NH 3/CO 2摩尔比0.6-4,优选1.2-3,更优2-2.5;
-脱硫吸收温度5-55℃,优选15-50℃,更优20-40℃;
-脱碳吸收温度0-45℃,优选5-40℃,更优10-30℃。
实施方案5.用于实现实施方案1-4中任一项所述的方法的装置,其特征在于,设置氨法脱硫功能区、氨法脱碳功能区、氨洗涤功能区,硫铵后处理系统及碳酸氢铵后处理 系统;采用氨为脱硫和脱碳剂,工艺气首先进入脱硫功能区中进行脱硫,生成硫酸铵化肥,脱硫后的工艺气进入脱碳功能区中,脱除工艺气中的二氧化碳,生成含碳酸氢铵溶液/浆液,脱碳后的工艺气中含有游离氨,进入氨洗涤功能区中,采用脱硫的循环溶液进行洗涤,再用工艺水洗涤,洗涤后含氨的脱硫溶液和工艺水溶液,返回脱硫功能区用做脱硫的吸收剂,部分含硫铵的碳铵液返回脱硫功能区。
实施方案6.如实施方案5所述的装置,其特征在于以下至少之一:
-所述装置包括脱硫循环槽,该脱硫循环槽包括彼此流体连通的氧化室和加氨室,其中氧化室被构建成允许来自吸收段的回流液的至少一部分与含氧气体接触和反应,并允许从其取出液相的至少一部分以循环到颗粒物去除段和氨洗涤功能区,并且加氨室被构建成与所述氧化室流体联通,允许来自吸收段的回流液的至少一部分与氨吸收剂混合,和允许从其取出液体物流以循环到吸收段;
-氨洗涤功能区还包括在采用脱硫的循环溶液进行洗涤前,使用工艺水洗涤,氨法脱硫功能区、氨法脱碳功能区、氨洗涤功能区组合成一个塔中或多个塔中。
实施方案7.如实施方案5所述的装置,其特征在于,脱硫功能区分成多个段,其中包括冷却浓缩降温段、吸收段、颗粒物去除段,每个段设置至少一层喷淋层,段与段之间设有允许气体通过的设备/部件,
优选地,颗粒物去除段分成两个部分,第一颗粒物去除段喷淋洗涤采用含硫铵的高浓度溶液循环洗涤,第二颗粒物去除段采用含硫铵的稀溶液循环洗涤,两个部分之间设有允许气体通过的设备/部件;第一颗粒物去除段浓硫铵溶液浓度控制在10-38%,优选12-30%,PH控制在2.5-7.5,优选3-5.5;第二颗粒物去除段稀硫铵溶液浓度控制在0-5%,优选0.02-2%,PH控制在3-7。
优选地,脱硫功能区设有冷却装置,控制脱硫后烟气温度5-55℃,优选15-50℃,更优20-40℃,优选地,冷却装置设置在循环脱硫液循环管线上,冷却喷淋循环脱硫液,并进一步冷却脱硫烟气;或者冷却装置设置在脱硫功能区工艺气管道/烟道上,直接冷却气体;冷却剂采用循环水和/或冷冻水。
实施方案8.如实施方案5所述的装置,其特征在于,脱碳功能区设有冷却装置,控制脱碳后烟气温度0--45℃,优选5-40℃,更优10-30℃。
实施方案9.如实施方案5所述的装置,其特征在于以下至少之一:
-洗氨循环溶液取自氨法脱硫功能区的颗粒物去除段洗涤硫铵溶液,洗涤氨后返回氨法脱硫功能区,用于脱硫,洗涤硫铵溶液的PH控制在2.5-7.5;
-洗氨循环溶液取自脱硫功能区吸收段洗涤硫铵溶液,洗涤氨后返回脱硫功能区吸收段,用于脱硫,所述硫铵溶液的PH控制在3-7;
-洗氨循环吸收的水溶液一部分进入脱硫功能区颗粒物去除段的循环液的补水,洗氨 循环液中氨浓度控制在0-5%,优选0-1%。
实施方案10.如实施方案7所述的装置,其特征在于,稀硫铵洗涤溶液部分抽出进入净化膜分离装置,净化的产水补水作为脱氨洗涤功能区补水,多余外用,控制洗涤水中的氨浓度及脱硫洗涤稀硫铵溶液的浓度,浓水进入到脱硫吸收区。
实施方案11.如实施方案5所述的装置,其特征在于,具有以下特征至少之一:
-脱硫、脱碳、洗氨功能区,脱碳功能区采用喷淋吸收、板式吸收、填料吸收、浮阀吸收中一种或其组合;
-脱硫产生的硫酸铵浆液,经固液分离、干燥包装成产品,或直接出湿产品;
-脱碳产生的碳铵浆液,部分经固液分离、干燥包装成产品,或直接出湿产品;分离出来的溶液返回脱碳装置。
-脱碳产生的碳铵浆液或碳酸氢铵溶液,部分或全部进一步加热再生成CO 2和氨溶液,氨溶液返回脱碳功能区进一步使用;
-CO 2用于下游产品生产、驱油、饮料生产、封存;
-氨法脱硫功能区主要参数如下:
1)空塔气速控制0.5-5m/s,优选2-4m/s;
2)每层喷循环液喷淋密度4-100m 3/m 2.h,优选8-80m 3/m 2.h;
3)循环液温度控制5-55℃,优选20-40℃;和
4)循环液PH控制1-7;
-脱碳功能区主要参数如下:
1)空塔气速控制0.1-5m/s;
2)温度控制5-40℃,优选10-30℃;和
3)循环液PH控制7-11;
-洗氨功能区主要参数如下:
1)空塔气速控制0.25-5m/s;
2)温度控制0-50℃,优选3-40℃;和
3)循环液PH控制3-10;
-所述装置还包括热泵系统,热泵系统提供冷却所需的冷冻水,热泵得到的冷冻水温度为3-25℃,优选5-10℃;
-所述装置还包括CO 2再生塔,脱碳循环液再生在CO 2再生塔进行,操作参数为:再生温度为塔底90-150℃,优选100-130℃,塔顶6-100℃,优选70-90℃,再生压力为塔底0.2-0.7MPa,优选0.3-0.5MPa。再生塔气速0.2-3m/s,优选0.3-2m/s优选地,再生塔上部设有工艺水入口;
优选地,再生塔得到的气体CO 2用于下游产品生产,下游产品包括尿素、纯碱、碳 酸氢钠、聚碳酸酯、食品CO 2、CO 2气肥、碳酸氢钾,或者用于驱油、饮料生产、气焊,或者用于海洋封存或地底封存;
优选地,所述装置还包括溶液换热器、再沸器、循环水冷却器、冷冻水冷却器、CO2缓冲罐、CO2压缩机,
其中脱碳循环泵出口部分溶液经溶液换热器换热后进入CO 2再生塔,塔顶采出CO 2气体,经冷却器冷却后送CO 2缓冲罐,经CO 2压缩机压缩后外送。
实施例
下面结合具体实施例对本发明作进一步说明,但并不构成对本发明的任何限制。
实施例1:
含硫氧化化物、CO 2燃煤锅炉烟气(工艺气)进入上述脱硫脱碳一体化装置,工艺流程见图2。装置包括脱硫功能区2、脱碳功能区19、洗氨功能区25。
含硫氧化物、CO 2的工艺气1进入脱硫功能区2,用脱硫循环泵-a 5进行喷淋循环,尾气降温的同时提浓硫酸铵溶液,提浓并析出固体的硫酸铵浆液经硫铵排出泵6送至硫酸铵固液分离器31、硫酸铵干燥器32、硫酸铵包装机33,最终得到成品硫酸铵34。用脱硫功能区2循环泵-b 3、脱硫循环槽13(加氨室)进行吸收喷淋循环,吸收尾气中的硫氧化物(二氧化硫及三氧化硫),利用脱硫换热器-a 4控制脱硫温度。利用脱硫循环泵-c 10、脱硫循环水槽9进行洗涤喷淋循环,利用脱硫换热器-b 11控制洗涤温度及脱硫后尾气12的温度,烟气冷凝水14经膜分离装置15处理,得到的膜分离浓水16回脱硫功能区2使用,一部分净化水18作为洗氨塔补水,其余净化水17外排。氨8经计量后去脱硫循环槽13加氢室加氨。氧化空气7去脱硫循环槽13氧化室将溶液氧化。
脱硫后尾气12进入脱碳功能区19,用脱碳循环泵21进行吸收喷淋循环,浆液用脱碳排出泵22送至碳酸氢铵固液分离器37、碳酸氢铵干燥器38、碳酸氢铵包装机39,最终得到成品碳酸铵40。氨24经计量后去脱碳塔19加氨。部分含硫铵的碳铵液返回脱硫功能区。
脱碳尾气23进入洗氨功能区25,利用洗氨塔循环泵-a 26进行一级洗涤,一级洗涤液为来自脱硫循环槽13氧化室的颗粒物洗涤循环泵酸性脱硫液35,连续补入洗氨塔25,吸收氨气后的脱硫液36返回至脱硫循环槽13。利用洗氨功能区循环泵-b 27、洗氨功能区循环水槽28进行二级洗涤,二级洗涤液来自净化水18,洗涤后液体返回至脱硫功能区2。洗涤后净烟气30排出。
脱硫脱碳采用99.6%的液氨作为吸收剂,工艺气(锅炉烟气)参数见下表:
序号 项目 数值
1 气量,Nm 3/h 560000
2 温度,℃ 160
3 SO 2含量,mg/Nm 3 4500
4 CO 2含量,v% 12
5 H 2O含量,v% 5.48
6 O 2含量,v% 8.65
经脱硫系统处理的主要参数见下表:
序号 项目 数值
1 脱硫塔出口气量,Nm 3/h 528326
2 脱硫塔出口温度,℃ 18
3 脱硫塔出口SO 2含量,ppm <5
4 脱硫塔出口CO 2含量,v% 12.7
5 脱硫塔出口H 2O含量,v% 2.0
6 副产硫酸铵量,t/h 5.24
7 脱硫效率,% 99.9
8 99.6%液氨消耗量,t/h 1.34
经脱碳塔处理后主要参数见下表:
序号 项目 数值
1 脱碳塔出口气量,Nm 3/h 468360
2 脱碳塔出口CO 2含量,v% 1.4
3 脱碳塔出口NH 3含量,ppm 900
4 脱碳效率,% 90
5 副产碳酸氢铵量,t/h 221.9
6 99.6%的液氨消耗量,t/h 46.0
经洗氨塔处理后主要参数见下表:
序号 项目 数值
1 洗氨塔出口气量,Nm 3/h 467940
2 洗氨塔出口CO 2含量,v% 1.4
3 洗氨塔出口NH 3含量,ppm <3
4 洗氨塔出口SO 2含量,ppm <2
实施例2:
含硫氧化化物、CO 2燃煤锅炉烟气(工艺气)进入上述脱硫脱碳一体化装置,工艺流程见图2、图3。图2中的装置包括脱硫功能区2、脱碳功能区19、洗氨功能区25。
含硫氧化物、CO 2的工艺气1进入脱硫功能区2,用脱硫循环泵-a 5进行喷淋循环, 尾气降温的同时提浓硫酸铵溶液,提浓并析出固体的硫酸铵浆液经硫铵排出泵6送至硫酸铵固液分离器31、硫酸铵干燥器32、硫酸铵包装机33,最终得到成品硫酸铵34。用脱硫功能区2循环泵-b 3、脱硫循环槽13进行吸收喷淋循环,吸收尾气中的硫氧化物(二氧化硫及三氧化硫),利用脱硫换热器-a 4控制脱硫温度。利用脱硫循环泵-c 10、脱硫循环水槽9进行洗涤喷淋循环,利用脱硫换热器-b 11控制洗涤温度及脱硫后尾气12的温度,烟气冷凝水14经膜分离装置15处理,得到的膜分离浓水16回脱硫功能区2使用,一部分净化水18作为洗氨塔补水,其余净化水17外排。氨8经计量后去脱硫循环槽13加氨室加氨。氧化空气7去脱硫循环槽13氧化室将溶液氧化。
脱硫后尾气12进入脱碳功能区19,用脱碳循环泵21进行吸收喷淋循环,浆液用脱碳排出泵22送至碳酸氢铵固液分离器37、碳酸氢铵干燥器38、碳酸氢铵包装机39,最终得到成品碳酸铵40。氨24经计量后去脱碳塔19加氨。部分含硫铵的碳铵溶液返回脱硫功能区。
脱碳尾气23进入洗氨功能区25,利用洗氨塔循环泵-a 26进行一级洗涤,一级洗涤液为来自氨法脱硫功能区酸性脱硫液35,连续补入洗氨塔25,吸收氨气后的脱硫液36返回至脱硫循环槽13。利用洗氨功能区循环泵-b 27、洗氨功能区循环水槽28进行二级洗涤,二级洗涤液来自净化水18,洗涤后液体返回至脱硫功能区2。洗涤后净烟气30排出。
装置还包括CO 2再生塔41,脱碳循环液再生在CO 2再生塔41进行,操作参数为:塔底100-130℃,塔顶60-90℃,塔底操作压力0.3-0.4MPa,气速0.6-0.8m/s。
装置还包括溶液换热器42、再沸器43、循环水冷却器44、冷冻水冷却器45、CO 2缓冲罐46、CO 2压缩机47。
脱碳循环泵22出口采出溶液中的部分去碳铵后处理装置(37-39)得到产品碳酸氢铵40,其余经溶液换热器42换热后进入CO 2再生塔41,部分塔釜液在再沸器43经蒸汽加热后,塔顶采出CO 2气体,经循环水冷却器44、冷冻水冷却器45两级冷却后送CO 2缓冲罐46,缓冲一定时间后经CO 2压缩机47压缩后,10%送CO 2下游生产装置49生产聚碳酸酯,5%装瓶或罐车48罐装,85%去封存。
从再沸器43底部取出冷凝液。
CO 2再生塔41上部加入工艺水53。
装置还包括热泵系统50,热泵系统生产冷冻水,冷冻上水54送冷冻水冷却器45、脱硫换热器-a、脱硫换热器-b等换热器用于CO 2气体、循环液冷却,冷冻回水55返回热泵系统50。
脱硫脱碳采用99.6%的液氨作为吸收剂,1台600MW机组,工艺气(锅炉烟气)参数见下表:
序号 项目 数值
1 烟气量,Nm 3/h 2100000
2 温度,℃ 150
3 SO 2含量,mg/Nm 3 7000
4 CO 2含量,v% 12
5 H 2O含量,v% 6.1
6 O 2含量,v% 5.9
经脱硫系统处理的主要参数见下表:
序号 项目 数值
1 脱硫塔出口气量,Nm 3/h 1923557
2 脱硫塔出口温度,℃ 18
3 脱硫塔出口SO 2含量,ppm <10
4 脱硫塔出口CO 2含量,v% 13.1
5 脱硫塔出口H 2O含量,v% 2.0
6 副产硫酸铵量,t/h 30.6
7 脱硫效率,% 99.9
8 99.6%的液氨消耗量,t/h 7.8
经脱碳塔处理后主要参数见下表:
序号 项目 数值
1 脱碳塔出口气量,Nm 3/h 1698128
2 脱碳塔出口CO 2含量,v% 1.48
3 脱碳塔出口NH 3含量,ppm 800
4 脱碳效率,% 90
5 副产碳酸氢铵量,t/h 83.3
6 99.6%的液氨消耗量,t/h 17.3
经洗氨塔处理后主要参数见下表:
序号 项目 数值
1 洗氨塔出口气量,Nm 3/h 1696783
2 洗氨塔出口CO 2含量,v% 1.49
3 洗氨塔出口NH 3含量,ppm <8
4 洗氨塔出口SO 2含量,ppm <2
经CO 2再生塔再生、两级冷却后的CO 2气体主要参数见下表:
序号 项目 数值
1 气量,Nm 3/h 204313
2 CO 2含量,v% 99.9
3 气体中NH 3含量,ppm <20
4 气体中水含量,ppm <500
5 气体压力,MPa 0.3

Claims (11)

  1. 一种氨法脱硫脱碳一体化方法,采用氨脱除工艺气中硫氧化物和CO 2,其特征在于,依次包括以下步骤:
    1)使用脱硫循环液脱除工艺气中的SO 2
    2)使用脱碳循环液脱除工艺气中的CO 2;和
    3)使用脱硫循环液脱除工艺气中的游离氨,并且吸收游离氨后的脱硫循环液返回脱硫装置。
  2. 如权利要求1所述的方法,其特征在于以下至少之一:
    -步骤3)使用来自脱硫循环槽氧化室的脱硫循环液脱除工艺气中的部分游离氨;
    -产品包括硫酸铵化肥和碳酸氢铵化肥;
    -步骤2)中CO 2脱除率为30-98%;
    -所述方法还包括
    将部分脱碳循环液送碳铵后处理装置生产碳酸氢铵化肥,
    和/或将部分脱碳循环液送CO 2再生装置再生得到气体CO 2
    脱碳循环液再生在CO 2再生系统进行,优选地操作参数为:再生温度为塔底90-
    150℃,优选100-130℃,塔顶6-100℃,优选70-90℃,再生压力为塔底0.2-0.7MPa,优选0.3-0.5MPa。再生塔气速0.2-3m/s,优选0.3-2m/s;
    -所述方法还包括将部分气体CO 2用于下游产品生产或用于驱油,下游产品优选包括尿素、纯碱、碳酸氢钠、聚碳酸酯、食品CO 2、CO 2气肥、碳酸氢钾;
    和/或将部分CO 2用于海洋封存或地底封存。
  3. 如权利要求1所述的方法,其特征在于,在步骤2)与步骤3)之间还包括步骤4)使用工艺水脱除工艺气中的部分游离氨,和/或在步骤3)后还包括步骤5)使用工艺水进一步脱除工艺气中的部分游离氨。
  4. 如权利要求1所述的方法,其特征在于以下至少之一:
    -脱硫循环液包括浓缩循环液、吸收循环液,浓缩循环液pH 1-6,优选2-4.5,亚硫酸铵浓度0-0.2%,硫酸铵浓度10-60%,吸收循环液pH 4.5-6.5,优选4.8-6.2,亚硫酸铵浓度0.1-3%,硫酸铵浓度10-38%;
    -脱碳循环液pH 7-13,优选7.5-11,更优8-9.5,碳酸氢铵浓度3-40%,优选10-22%,NH 3/CO 2摩尔比0.6-4,优选1.2-3,更优2-2.5;
    -脱硫吸收温度5-55℃,优选15-50℃,更优20-40℃;
    -脱碳吸收温度0-45℃,优选5-40℃,更优10-30℃。
  5. 用于实现权利要求1-4中任一项所述的方法的装置,其特征在于,设置氨法脱硫 功能区、氨法脱碳功能区、氨洗涤功能区,硫铵后处理系统及碳酸氢铵后处理系统;采用氨为脱硫和脱碳剂,工艺气首先进入脱硫功能区中进行脱硫,生成硫酸铵化肥,脱硫后的工艺气进入脱碳功能区中,脱除工艺气中的二氧化碳,生成含碳酸氢铵溶液/浆液,脱碳后的工艺气中含有游离氨,进入氨洗涤功能区中,采用脱硫的循环溶液进行洗涤,再用工艺水洗涤,洗涤后含氨的脱硫溶液和工艺水溶液,返回脱硫功能区用做脱硫的吸收剂,部分含硫铵的碳铵液返回脱硫功能区。
  6. 如权利要求5所述的装置,其特征在于以下至少之一:
    -所述装置包括脱硫循环槽,该脱硫循环槽包括彼此流体连通的氧化室和加氨室,其中氧化室被构建成允许来自吸收段的回流液的至少一部分与含氧气体接触和反应,并允许从其取出液相的至少一部分以循环到颗粒物去除段和氨洗涤功能区,并且加氨室被构建成与所述氧化室流体联通,允许来自吸收段的回流液的至少一部分与氨吸收剂混合,和允许从其取出液体物流以循环到吸收段;
    -氨洗涤功能区还包括在采用脱硫的循环溶液进行洗涤前,使用工艺水洗涤,氨法脱硫功能区、氨法脱碳功能区、氨洗涤功能区组合成一个塔中或多个塔中。
  7. 如权利要求5所述的装置,其特征在于,脱硫功能区分成多个段,其中包括冷却浓缩降温段、吸收段、颗粒物去除段,每个段设置至少一层喷淋层,段与段之间设有允许气体通过的设备/部件,
    优选地,颗粒物去除段分成两个部分,第一颗粒物去除段喷淋洗涤采用含硫铵的高浓度溶液循环洗涤,第二颗粒物去除段采用含硫铵的稀溶液循环洗涤,两个部分之间设有允许气体通过的设备/部件;第一颗粒物去除段浓硫铵溶液浓度控制在10-38%,优选12-30%,PH控制在2.5-7.5,优选3-5.5;第二颗粒物去除段稀硫铵溶液浓度控制在0-5%,优选0.02-2%,PH控制在3-7,
    优选地,脱硫功能区设有冷却装置,控制脱硫后烟气温度5-55℃,优选15-50℃,更优20-40℃,优选地,冷却装置设置在循环脱硫液循环管线上,冷却喷淋循环脱硫液,并进一步冷却脱硫烟气;或者冷却装置设置在脱硫功能区工艺气管道/烟道上,直接冷却气体;冷却剂采用循环水和/或冷冻水。
  8. 如权利要求5所述的装置,其特征在于,脱碳功能区设有冷却装置,控制脱碳后烟气温度0--45℃,优选5-40℃,更优10-30℃。
  9. 如权利要求5所述的装置,其特征在于以下至少之一:
    -洗氨循环溶液取自氨法脱硫功能区的颗粒物去除段洗涤硫铵溶液,洗涤氨后返回氨法脱硫功能区,用于脱硫,洗涤硫铵溶液的PH控制在2.5-7.5;
    -洗氨循环溶液取自脱硫功能区吸收段洗涤硫铵溶液,洗涤氨后返回脱硫功能区吸收段,用于脱硫,所述洗涤硫铵溶液的PH控制在3-7;
    -洗氨循环吸收的水溶液一部分进入脱硫功能区颗粒物去除段的循环液的补水,洗氨循环液中氨浓度控制在0-5%,优选0-1%。
  10. 如权利要求7所述的装置,其特征在于,稀硫铵洗涤溶液部分抽出进入净化膜分离装置,净化的产水补水作为脱氨洗涤功能区补水,多余外用,控制洗涤水中的氨浓度及脱硫洗涤稀硫铵溶液的浓度,浓水进入到脱硫吸收区。
  11. 如权利要求5所述的装置,其特征在于,具有以下特征至少之一:
    -脱硫、脱碳、洗氨功能区,脱碳功能区采用喷淋吸收、板式吸收、填料吸收、浮阀吸收中一种或其组合;
    -脱硫产生的硫酸铵浆液,经固液分离、干燥包装成产品,或直接出湿产品;
    -脱碳产生的碳铵浆液,部分经固液分离、干燥包装成产品,或直接出湿产品;分离出来的溶液返回脱碳装置。
    -脱碳产生的碳铵浆液或碳酸氢铵溶液,部分或全部进一步加热再生成CO 2和氨溶液,氨溶液返回脱碳功能区进一步使用;
    -CO 2用于下游产品生产、驱油、饮料生产、封存;
    -氨法脱硫功能区主要参数如下:
    1)空塔气速控制0.5-5m/s,优选2-4m/s;
    2)每层喷循环液喷淋密度4-100m 3/m 2.h,优选8-80m 3/m 2.h;
    3)循环液温度控制5-55℃,优选20-40℃;和
    4)循环液PH控制1-7;
    -脱碳功能区主要参数如下:
    1)空塔气速控制0.1-5m/s;
    2)温度控制5-40℃,优选10-30℃;和
    3)循环液PH控制7-11;
    -洗氨功能区主要参数如下:
    1)空塔气速控制0.25-5m/s;
    2)温度控制0-50℃,优选3-40℃;和
    3)循环液PH控制3-10;
    -所述装置还包括热泵系统,热泵系统提供冷却所需的冷冻水,热泵得到的冷冻水温度为3-25℃,优选5-10℃;
    -所述装置还包括CO 2再生塔,脱碳循环液再生在CO 2再生塔进行,操作参数为:再生温度为塔底90-150℃,优选100-130℃,塔顶6-100℃,优选70-90℃,再生压力为塔底0.2-0.7MPa,优选0.3-0.5MPa。再生塔气速0.2-3m/s,优选0.3-2m/s优选地,再生塔上部设有工艺水入口;
    优选地,再生塔得到的气体CO 2用于下游产品生产,下游产品包括尿素、纯碱、碳酸氢钠、聚碳酸酯、食品CO 2、CO 2气肥、碳酸氢钾,或者用于驱油、饮料生产、气焊,或者用于海洋封存或地底封存;
    优选地,所述装置还包括溶液换热器、再沸器、循环水冷却器、冷冻水冷却器、CO2缓冲罐、CO2压缩机,
    其中脱碳循环泵出口部分溶液经溶液换热器换热后进入CO 2再生塔,塔顶采出CO 2气体,经冷却器冷却后送CO 2缓冲罐,经CO 2压缩机压缩后外送。
PCT/CN2022/092214 2021-05-11 2022-05-11 一种氨法脱硫脱碳一体化装置及方法 WO2022237834A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020227039362A KR20230004591A (ko) 2021-05-11 2022-05-11 통합된 암모니아-기반 탈황 및 탈탄소 장치 및 방법
IL305518A IL305518A (en) 2021-05-11 2022-05-11 Device and method that combine de-sulfurization and de-carbonization based on ammonia
MX2023010153A MX2023010153A (es) 2021-05-11 2022-05-11 Metodo y aparato de descarbonizacion y desulfuracion integrada a base de amoniaco.
EP22798047.1A EP4134154A1 (en) 2021-05-11 2022-05-11 Ammonia process-based desulfurization and decarburization integrated apparatus and method
CA3174110A CA3174110A1 (en) 2021-05-11 2022-05-11 Integrated ammonia-based desulfurization and decarbonization apparatus and method
JP2022567767A JP2023532173A (ja) 2021-05-11 2022-05-11 統合されたアンモニア系脱硫脱炭酸装置及び方法
AU2022256100A AU2022256100A1 (en) 2021-05-11 2022-05-11 Integrated ammonia-based desulfurization and decarbonization apparatus and method
ZA2023/08319A ZA202308319B (en) 2021-05-11 2023-08-29 Integrated ammonia-based desulfurization and decarbonization apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110510852.5A CN113262625A (zh) 2021-05-11 2021-05-11 一种氨法脱硫脱碳一体化装置及方法
CN202110510852.5 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022237834A1 true WO2022237834A1 (zh) 2022-11-17

Family

ID=77230370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092214 WO2022237834A1 (zh) 2021-05-11 2022-05-11 一种氨法脱硫脱碳一体化装置及方法

Country Status (14)

Country Link
US (1) US20220362706A1 (zh)
EP (1) EP4134154A1 (zh)
JP (1) JP2023532173A (zh)
KR (1) KR20230004591A (zh)
CN (1) CN113262625A (zh)
AR (1) AR125829A1 (zh)
AU (1) AU2022256100A1 (zh)
CA (1) CA3174110A1 (zh)
CL (1) CL2023002574A1 (zh)
IL (1) IL305518A (zh)
MX (1) MX2023010153A (zh)
TW (1) TW202243723A (zh)
WO (1) WO2022237834A1 (zh)
ZA (1) ZA202308319B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113262625A (zh) * 2021-05-11 2021-08-17 江苏新世纪江南环保股份有限公司 一种氨法脱硫脱碳一体化装置及方法
CN114146549A (zh) * 2021-11-29 2022-03-08 中国科学院过程工程研究所 一种烟气氨法脱硫脱硝脱碳的系统装置及方法
CN114870579A (zh) * 2022-05-16 2022-08-09 江苏新世纪江南环保股份有限公司 一种氨法脱硫脱碳系统余热回收的方法及装置
CN114917743A (zh) 2022-05-19 2022-08-19 江苏新世纪江南环保股份有限公司 一种控制氨法脱碳系统氨逃逸的装置及方法
CN115105939A (zh) * 2022-05-19 2022-09-27 江苏新世纪江南环保股份有限公司 一种分级吸收氨法脱碳装置及方法
CN114870599B (zh) * 2022-05-20 2024-01-30 江苏新世纪江南环保股份有限公司 一种氨法脱碳系统生产碳酸氢铵的方法及装置
CN114870600A (zh) * 2022-05-20 2022-08-09 江苏新世纪江南环保股份有限公司 一种高效氨法脱碳的装置及方法
CN115090098B (zh) * 2022-06-17 2023-12-19 江苏新世纪江南环保股份有限公司 一种氨法脱碳系统节水提效的方法及装置
CN115090099A (zh) * 2022-06-20 2022-09-23 江苏新世纪江南环保股份有限公司 一种氨法脱碳系统中脱除杂质的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120137A (zh) * 2011-02-16 2011-07-13 安徽淮化股份有限公司 氨法常压捕集吸收二氧化硫和二氧化碳系统及工艺
CN102172470A (zh) * 2011-03-23 2011-09-07 华北电力大学(保定) 一种联合脱除电厂烟气中硫碳氧化物的方法及装置
CN102671531A (zh) * 2012-05-18 2012-09-19 华北电力大学(保定) 以氨水为吸收剂的烟气污染物吸收方法及装置
CN103203174A (zh) * 2013-03-27 2013-07-17 华北电力大学(保定) 一种捕集燃煤电厂烟气中so2和co2并生产化工产品的方法
CN103272468A (zh) * 2013-06-13 2013-09-04 北京中环新锐环保技术有限公司 一种联合脱除烟气中二氧化硫、氮氧化物的吸收塔
CN104645808A (zh) * 2015-01-13 2015-05-27 清华大学 烟气的处理方法及系统
CN104707451A (zh) 2014-12-08 2015-06-17 华北电力大学(保定) 一种氨法烟气碳捕集及合成化工产品的方法
CN104874272A (zh) 2014-02-28 2015-09-02 阿尔斯通技术有限公司 集成脱硫和二氧化碳捕集的设备和方法
CN109529549A (zh) * 2017-09-22 2019-03-29 江苏新世纪江南环保股份有限公司 超洁净氨法脱硫技术应用于碳捕集过程的方法
WO2020012204A2 (en) * 2018-07-10 2020-01-16 Alexandros Papadopoulos Capture of carbon dioxide in form of fertilizers in coal-fired power plants
CN113262625A (zh) * 2021-05-11 2021-08-17 江苏新世纪江南环保股份有限公司 一种氨法脱硫脱碳一体化装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103223292B (zh) * 2013-04-15 2015-04-22 江苏新世纪江南环保股份有限公司 酸性尾气氨法烟气治理方法及装置
CN104941423B (zh) * 2015-05-20 2018-02-02 江苏新世纪江南环保股份有限公司 一种催化裂化再生烟气氨法脱硫脱硝除尘方法及装置
CN105126589B (zh) * 2015-09-16 2018-02-06 鲁西化工集团股份有限公司动力分公司 氨法脱硫装置及工艺
CN108722163B (zh) * 2017-09-07 2019-06-07 江苏新世纪江南环保股份有限公司 一种氨法脱硫控制吸收过程气溶胶产生的方法
CN208943815U (zh) * 2018-07-14 2019-06-07 邢台润天环保科技有限公司 一种降低氨和脱硫液逃逸的脱硫设备
CN108686477B (zh) * 2018-07-14 2023-12-01 邢台润天环保科技有限公司 一种降低氨和脱硫液逃逸的脱硫工艺与设备
CN111957183A (zh) * 2019-12-26 2020-11-20 江苏新世纪江南环保股份有限公司 一种改进的氨法脱硫控制吸收过程气溶胶产生的方法
CN111992017B (zh) * 2020-08-21 2023-03-10 中石化南京工程有限公司 一种组合式氨法脱硫生产方法及装置
CN112206641A (zh) * 2020-09-23 2021-01-12 武汉龙净环保工程有限公司 一种单塔多级循环氨/硫铵法烟气脱硫方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120137A (zh) * 2011-02-16 2011-07-13 安徽淮化股份有限公司 氨法常压捕集吸收二氧化硫和二氧化碳系统及工艺
CN102172470A (zh) * 2011-03-23 2011-09-07 华北电力大学(保定) 一种联合脱除电厂烟气中硫碳氧化物的方法及装置
CN102671531A (zh) * 2012-05-18 2012-09-19 华北电力大学(保定) 以氨水为吸收剂的烟气污染物吸收方法及装置
CN103203174A (zh) * 2013-03-27 2013-07-17 华北电力大学(保定) 一种捕集燃煤电厂烟气中so2和co2并生产化工产品的方法
CN103272468A (zh) * 2013-06-13 2013-09-04 北京中环新锐环保技术有限公司 一种联合脱除烟气中二氧化硫、氮氧化物的吸收塔
CN104874272A (zh) 2014-02-28 2015-09-02 阿尔斯通技术有限公司 集成脱硫和二氧化碳捕集的设备和方法
US20150246312A1 (en) * 2014-02-28 2015-09-03 Alstom Technology Ltd Apparatus and method for integrating desulfurization and carbon dioxide capture
CN104707451A (zh) 2014-12-08 2015-06-17 华北电力大学(保定) 一种氨法烟气碳捕集及合成化工产品的方法
CN104645808A (zh) * 2015-01-13 2015-05-27 清华大学 烟气的处理方法及系统
CN109529549A (zh) * 2017-09-22 2019-03-29 江苏新世纪江南环保股份有限公司 超洁净氨法脱硫技术应用于碳捕集过程的方法
WO2020012204A2 (en) * 2018-07-10 2020-01-16 Alexandros Papadopoulos Capture of carbon dioxide in form of fertilizers in coal-fired power plants
CN113262625A (zh) * 2021-05-11 2021-08-17 江苏新世纪江南环保股份有限公司 一种氨法脱硫脱碳一体化装置及方法

Also Published As

Publication number Publication date
EP4134154A1 (en) 2023-02-15
KR20230004591A (ko) 2023-01-06
JP2023532173A (ja) 2023-07-27
AU2022256100A1 (en) 2022-12-08
CN113262625A (zh) 2021-08-17
CA3174110A1 (en) 2022-11-17
TW202243723A (zh) 2022-11-16
US20220362706A1 (en) 2022-11-17
ZA202308319B (en) 2024-03-27
IL305518A (en) 2023-10-01
MX2023010153A (es) 2023-09-11
CL2023002574A1 (es) 2024-03-15
AR125829A1 (es) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2022237834A1 (zh) 一种氨法脱硫脱碳一体化装置及方法
CA2675503C (en) Use of so2 from flue gas for acid wash of ammonia
TWI751430B (zh) 酸性氣處理
CN102218261B (zh) 氨水细喷雾捕集烟气中二氧化碳的方法及其设备
JP2011502746A (ja) 炭素捕捉システム及び方法
CN102698585B (zh) 回收锅炉烟道气中二氧化碳的方法
CN102838088B (zh) 一体化酸气处理工艺
WO2023221646A1 (zh) 一种分级吸收氨法脱碳装置及方法
CN116585868B (zh) 一种二氧化碳捕集与尿素制备一体化工艺
WO2023221647A1 (zh) 一种控制氨法脱碳系统氨逃逸的装置及方法
CN217961993U (zh) 一种氨法脱硫脱碳塔及化工品联产装置
CN216347344U (zh) 一种利用结晶氨法实现碳捕集与液化的装置
CN114870598A (zh) 一种多级脱碳的方法
CN108786423A (zh) 一种烟气综合治理方法及装置
CN115090098B (zh) 一种氨法脱碳系统节水提效的方法及装置
CN217092863U (zh) 一种氨法脱碳塔及脱硫脱碳装置
CN220554641U (zh) 低硫烟气碳捕集联产氮肥控制氨逃逸的装置
AU2023222850A1 (en) Device and method for controlling ammonia escape in ammonia-based decarbonization system
CN219291039U (zh) 氨法脱碳系统
CN219399606U (zh) 一种用于粘胶纤维废气处理系统
CN217646159U (zh) 一种适用于烟气中低浓度co2的脱碳装置
CN213433745U (zh) 烟气硫酸雾脱除装置
AU2023219960A1 (en) Device and method for staged absorption ammonia-based decarbonization
CN116899389A (zh) 低硫烟气碳捕集联产氮肥控制氨逃逸的方法及装置
CN114159961A (zh) 一种同时用于烟气脱硫脱碳吸收剂及其制备和应用方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022567767

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227039362

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022798047

Country of ref document: EP

Effective date: 20221110

ENP Entry into the national phase

Ref document number: 2022256100

Country of ref document: AU

Date of ref document: 20220511

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 305518

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/010153

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023017465

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023017465

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230829

NENP Non-entry into the national phase

Ref country code: DE