WO2023221646A1 - 一种分级吸收氨法脱碳装置及方法 - Google Patents

一种分级吸收氨法脱碳装置及方法 Download PDF

Info

Publication number
WO2023221646A1
WO2023221646A1 PCT/CN2023/083689 CN2023083689W WO2023221646A1 WO 2023221646 A1 WO2023221646 A1 WO 2023221646A1 CN 2023083689 W CN2023083689 W CN 2023083689W WO 2023221646 A1 WO2023221646 A1 WO 2023221646A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
liquid
ammonium bicarbonate
decarburization
absorption
Prior art date
Application number
PCT/CN2023/083689
Other languages
English (en)
French (fr)
Inventor
张军
祁丽昉
王金勇
罗静
Original Assignee
江南环境科技公司
江苏新世纪江南环保股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南环境科技公司, 江苏新世纪江南环保股份有限公司 filed Critical 江南环境科技公司
Priority to AU2023219960A priority Critical patent/AU2023219960A1/en
Priority to CA3209723A priority patent/CA3209723A1/en
Priority to MX2023010089A priority patent/MX2023010089A/es
Priority to IL305479A priority patent/IL305479A/en
Publication of WO2023221646A1 publication Critical patent/WO2023221646A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention belongs to the technical field of environmental protection, and specifically relates to a graded absorption ammonia decarbonization device and method.
  • the chemical absorption method using ammonia water as the absorption liquid has the characteristics of strong absorption capacity, low corrosiveness, low regeneration energy consumption, low replenishment cost, not easily degraded by other components in the flue gas, and can remove multiple acid gas pollutants at the same time.
  • Scholars at home and abroad have conducted a lot of research.
  • Patent application publication CN108144428A proposes a segmented control, multi-point ammonia adding process, which is mainly divided into a pre-wash section, an absorption section, and a fine particle control section.
  • Each of the pre-wash section, absorption section, and fine particle control section is equipped with several spray layers.
  • the washing section cools down the flue gas while concentrating the circulating washing liquid in the pre-washing section.
  • the absorption section absorbs and removes sulfur dioxide in the flue gas, and controls the escape of ammonia and the generation of aerosols in each section. Likewise, this method also lacks control over the removal of CO 2 from industrial gases.
  • Patent CN101524621B provides a graded absorption regeneration flue gas decarbonization system, which consists of an absorption system, a regeneration system and a heat exchange system. It has lower energy consumption than traditional technology. However, this system is only suitable for systems in which ethanolamine is used as a desulfurizer. The control of multi-stage regeneration liquid return absorption system achieves energy saving effect.
  • Patent application CN200880122376.2 discloses a multi-stage CO2 removal system and method for treating flue gas flow, using an absorber container to contact the flue gas flow with an ionic solution containing ammonia under low temperature conditions of 0-20°C, while simultaneously
  • the solution in the first absorption stage has a higher temperature and a lower ammonia-to-carbon ratio than the solution in the third absorption stage.
  • Ammonia slip can be reduced by controlling a lower temperature and having a lower temperature in the third stage, but a higher ammonia-to-carbon ratio in the third stage will increase ammonia slip. This process still has problems such as low decarbonization efficiency, high energy consumption, and serious ammonia escape.
  • a method of decarbonization by graded absorption of ammonia which uses an absorption circulating liquid containing ammonium salt to remove carbon dioxide from the gas. Through graded solution composition control and reaction condition control, efficient decarbonization is achieved while controlling ammonia escape.
  • the main products of the reaction between CO 2 and ammonia are ammonium carbamate and ammonium carbonate. This reaction is a reversible reaction.
  • ammonium bicarbonate produced by hydrolysis reacts with ammonia to form ammonium carbonate:
  • Ammonium carbonate absorbs carbon dioxide to form ammonium bicarbonate:
  • Graded solution composition control includes concentration gradient control of ammonium carbonate, ammonium bicarbonate, ammonium carbamate, ammonia, or combinations thereof, characterized by the molar ratio of total ammonia to total CO2 .
  • Reaction condition control includes temperature control, pH control, and pressure control.
  • the cooled flue gas contacts the ammonium bicarbonate generation liquid and the decarburization absorption liquid in sequence to achieve coordinated control of ammonium bicarbonate generation, ammonium bicarbonate crystallization, carbon dioxide absorption, and ammonia escape.
  • the ammonium bicarbonate generating liquid is provided with at least one level of gas-liquid contact.
  • the molar ratio of total ammonia to total CO 2 in the solution is 1-3, preferably 1-2.
  • the total ammonia includes ammonia and ammonium radicals;
  • the total CO 2 includes Free CO 2 and carbonized CO 2 ;
  • the decarbonization absorption circulating liquid is provided with at least two levels of gas-liquid contact.
  • the molar ratio of total ammonia to total CO2 in the first-level solution is 1.2-4, preferably 1.4-3.5, more preferably 1.6-3, and most preferably 1.8-2.5.
  • the molar ratio of total ammonia to total CO 2 in the solution between the first stage and the last stage is 1.5-4.5, preferably 1.8-4, more preferably 2-3.5, and the molar ratio of total ammonia to total CO 2 in the last stage solution 1-3, preferably 1.2-2.8, more preferably 1.5-2.5, most preferably 1.6-2.
  • the gas-liquid contact form of the ammonium bicarbonate production liquid is preferably a spray type, a packing type, or a bubbling type, and the gas-liquid contact form of the decarburization absorption liquid is preferably a spray type, or a packing type.
  • Temperature control reduces the temperature of the solution through a cold source, and the solution contacts the flue gas to reduce the temperature of the flue gas.
  • Cold sources can be collected
  • a refrigerator is used to obtain chilled water, and the chilled water is passed through a heat exchanger or coil to cool down the solution.
  • Control the temperature of the ammonium bicarbonate generated liquid to 10-30°C, preferably 12-28°C, preferably 15-25°C, and most preferably 16-22°C.
  • the temperature of the first-stage decarburization absorption liquid is higher than the temperature of the ammonium bicarbonate generated liquid. The higher solution temperature It is beneficial to reduce the investment in cooling equipment.
  • the temperature of the decarburization absorption liquid between the first stage and the last stage is usually higher than the temperature of the first stage decarburization absorption liquid and the last stage of decarburization absorption liquid.
  • the temperature of the last stage of decarburization is The temperature of the absorbing liquid is lower than the temperature of the ammonium bicarbonate generating liquid, which can control the escape of ammonia.
  • the temperature of the circulating liquid for ammonium bicarbonate generation is controlled to be 15 to 25°C
  • the temperature of the first-stage decarburization absorption circulating liquid is higher than the temperature of the ammonium bicarbonate-generating circulating liquid
  • the temperature of the last-stage decarburization absorption circulating liquid is lower than the temperature of the ammonium bicarbonate-generating circulating liquid. temperature.
  • pH control is achieved by adding ammonia or solution replacement between stages.
  • Ammonia is mainly added to the decarburization absorption liquid, and can be added separately from the decarburization absorption liquid at multiple stages.
  • the ammonium bicarbonate generating liquid does not add ammonia or adds less ammonia, and the amount of ammonia added to the last stage of decarburization absorption liquid is lower than that of the previous stage or does not add ammonia.
  • ammonia is added to the first-stage and second-stage decarburization absorption circulating liquids, and the amount of ammonia added to the second-stage decarburization absorption circulating liquid accounts for 80-50wt% of the total ammonia added, preferably 75-55wt%, and more preferably 72 -57wt%, most preferably 60-65wt%, the final decarburization absorption circulating liquid and the ammonium bicarbonate generating circulating liquid do not add ammonia.
  • multi-stage ammonia addition it is beneficial to control the solution components and adjust the pH value of the solution, ensuring the decarburization absorption efficiency while controlling the amount of ammonia escape.
  • ammonia or less ammonia is added to the ammonium bicarbonate generating solution to ensure the production of ammonium bicarbonate.
  • the amount of ammonia added to the last stage of decarburization absorption liquid is lower than that of the previous stage or no ammonia is added, which can effectively control ammonia escape.
  • Solution replacement is through pipeline overflow or pump delivery, transporting the upper level solution to the next level, which can control the solution composition and pH value.
  • the pH value of the ammonium bicarbonate generated liquid is lower than that of the decarburization absorption liquid, and the ammonium bicarbonate content is greater than that of the decarburization absorption liquid.
  • the pH value in the decarburization absorption liquid is ⁇ 8.0, preferably ⁇ 8.2, more preferably ⁇ 8.5, and most preferably ⁇ 9.0.
  • Pressure control is achieved by setting up control valves or liquid seals in the ammonia decarburization system.
  • a control valve or liquid sealing device is installed on the gas pipeline after the decarbonization absorption area or the ammonia escape control system to maintain the pressure in the system as needed.
  • the ammonia decarburization device maintains a normal pressure of ⁇ 50kPa, preferably a normal pressure of ⁇ 40kPa, more preferably a normal pressure of ⁇ 30kPa, and most preferably a normal pressure of ⁇ 25kPa.
  • a device for graded ammonia absorption decarbonization including a decarbonization system, an ammonia escape control system, an ammonium bicarbonate treatment system, an ammonia supply system, and a cooling system.
  • the decarbonization system adopts partition control, including an ammonium bicarbonate generation area and a decarbonization absorption area.
  • the ammonium bicarbonate generation area is equipped with at least a level 1 gas-liquid contactor
  • the decarbonization absorption area is equipped with at least a level 2 gas-liquid contactor.
  • the room is equipped with equipment/components that only allow gas to pass through.
  • mist eliminators are installed after the last stage of the decarbonization absorption zone.
  • the other layers are not equipped with one or more layers of mist eliminators as needed.
  • the mist eliminators are made of baffles, roof ridges, fillers and wire mesh. type, or combination thereof.
  • the ammonia escape control system adopts a multi-stage washing cycle with at least one layer of acidic solution washing.
  • the cooling system is used to reduce the temperature of ammonium bicarbonate generation circulating fluid and decarbonization absorption circulating fluid.
  • the ammonium bicarbonate treatment system includes ammonium bicarbonate crystallization equipment and solid-liquid separation equipment.
  • the CO2 content in the process gas before decarburization is 6-50v%; preferably 8-40v%; more preferably 10-30v%.
  • the CO 2 content in the gas after being treated by the graded ammonia absorption method of the present invention is 0-10v%; preferably 0-8v%; preferably 0-6v%.
  • Clean flue gas SO 2 ⁇ 10mg/Nm 3 , preferably ⁇ 5mg/Nm 3 , more preferably ⁇ 2mg/Nm 3 .
  • the ammonia escape of net flue gas is ⁇ 20ppm, preferably 15ppm, and more preferably 10ppm.
  • CO2 removal efficiency is ⁇ 60%, preferably ⁇ 70%, more preferably ⁇ 80%.
  • a method for graded ammonia absorption decarburization which is characterized by using an absorption circulating liquid containing ammonium salt to remove carbon dioxide from the gas, and achieving efficient decarbonization while controlling ammonia through graded solution composition control and reaction condition control. escape.
  • the graded solution component control is characterized by the molar ratio of total ammonia to total CO2 , and the solution components include ammonium carbonate, ammonium bicarbonate, ammonium carbamate, ammonia or a combination thereof.
  • reaction condition control includes temperature control, pH control, and pressure control.
  • the cooled flue gas is contacted with the ammonium bicarbonate generation circulating liquid and the decarburization absorption circulating liquid in sequence to achieve coordinated control of ammonium bicarbonate generation, ammonium bicarbonate crystallization, carbon dioxide absorption, and ammonia escape.
  • the ammonium bicarbonate generating liquid is provided with at least one level of gas-liquid contact.
  • the molar ratio of total ammonia to total CO 2 in the solution is 1-3, preferably 1-2.
  • the total ammonia includes ammonia and ammonium radicals; the total CO 2 Including free CO 2 and carbonized CO 2 ;
  • the decarburization absorption liquid is provided with at least two levels of gas-liquid contact.
  • the molar ratio of total ammonia to total CO2 in the first-level solution is 1.2-4, preferably 1.4-3.5, more preferably 1.6-3, most preferably 1.8-2.5.
  • the molar ratio of total ammonia to total CO 2 in the solution between the first stage and the last stage is 1.5-4.5, preferably 1.8-4, more preferably 2-3.5, and the molar ratio of total ammonia to total CO 2 in the last stage solution is 1-3 , preferably 1.2-2.8, more preferably 1.5-2.5, most preferably 1.6-2.
  • the gas-liquid contact form of the ammonium bicarbonate generating liquid can be spray type, filler type, or bubbling type, and the gas-liquid contact form of the decarburization absorption liquid can be spray type, filler type. Mode.
  • the pH value of the ammonium bicarbonate generating liquid is lower than that of the decarburization absorption liquid, and the ammonium bicarbonate content is greater than that of the decarburization absorption liquid.
  • the pH value in the decarburization absorption liquid is greater than 8.0, preferably ⁇ 8.2, more preferably ⁇ 8.5, and most preferably ⁇ 9.0.
  • ammonia is mainly added to the decarburization absorption liquid, and no ammonia or less ammonia is added to the ammonium bicarbonate generating liquid. Ammonia, the amount of ammonia added to the last stage of decarburization absorption liquid is lower than that of the previous stage or no ammonia is added.
  • ammonia is added from the decarburization absorption liquid in multiple stages.
  • the ammonium bicarbonate generating liquid temperature is 10-30°C, preferably 12-28°C, preferably 15-25°C, most preferably 16-22°C, and the first-stage decarburization absorption liquid temperature is higher than The temperature of the ammonium bicarbonate generated liquid, the temperature of the last stage decarburization absorption liquid is lower than the temperature of the ammonium bicarbonate generated liquid.
  • the ammonia decarburization device maintains normal pressure ⁇ 50kPa, preferably normal pressure ⁇ 40kPa, more preferably normal pressure ⁇ 30kPa, most preferably normal pressure ⁇ 25kPa.
  • a device for decarburization using the hierarchical absorption ammonia method which is characterized in that it includes a decarbonization system, an ammonia escape control system, an ammonium bicarbonate treatment system, an ammonia supply system, and a cooling system.
  • the decarbonization system adopts partition control, including an ammonium bicarbonate generation area and a decarbonization absorption area, wherein the ammonium bicarbonate generation area is provided with at least one level of gas-liquid contact, and the decarbonization absorption area is provided with at least two levels. Gas-liquid contact, equipment/components that only allow gas to pass are installed between each zone and level.
  • one or more layers of mist eliminators are provided after the last stage of the decarburization absorption zone, and the remaining layers are not provided with one or more layers of mist eliminators as needed, or one or more layers of mist eliminators are provided.
  • the device can use baffle, roof ridge, filler and wire mesh types, or a combination thereof.
  • the ammonia escape control system adopts multi-stage washing cycle control, and at least one layer of acidic solution washing is provided.
  • the cooling system is used to reduce the temperature of the ammonium bicarbonate generating liquid and the decarburization absorption liquid.
  • the ammonium bicarbonate treatment system includes ammonium bicarbonate crystallization equipment and solid-liquid separation equipment.
  • the flue gas is sequentially contacted with the ammonium bicarbonate generation liquid and the decarbonization absorption liquid to achieve coordinated control of ammonium bicarbonate generation, ammonium bicarbonate crystallization, carbon dioxide absorption, and ammonia escape, wherein
  • the temperature control uses a cold source to reduce the temperature of the ammonium bicarbonate generating liquid and decarburization absorbing liquid.
  • the ammonium bicarbonate generating liquid and decarburizing absorbing liquid come into contact with the flue gas to reduce the temperature of the flue gas.
  • the pH is controlled by adding ammonia or solution replacement between stages.
  • Pressure control is achieved by setting up control valves or liquid seals in the ammonia decarburization system. There is no pressure control device during normal pressure operation. 21.
  • the CO 2 content in the process gas before decarburization is 6-50 v%; preferably 8-40 v%; more preferably 10-30 v%; the CO 2 content in the gas after treatment is 0- 10v%; preferably 0-8v%; preferably 0-6v%.
  • Figure 1 is an embodiment
  • Process gas 1 ammonium bicarbonate generation area 2, ammonium bicarbonate generation area circulation pump 3, ammonium bicarbonate generation area heat exchanger 4, ammonia 5, decarbonization absorption area 6, first-stage decarbonization absorption area 7, liquid collector 8, Second-stage decarbonization absorption zone 9, liquid collector 10, third-stage decarbonization absorption zone 11, first-stage decarbonization absorption zone circulation pump 12, first-stage decarbonization absorption zone heat exchanger 13, second-stage decarbonization absorption zone Carbon absorption zone circulation pump 14, second-stage decarbonization absorption zone heat exchanger 15, third-stage decarbonization absorption zone circulation pump 16, third-stage decarbonization absorption zone heat exchanger 17, ammonia escape control system 18, ammonia escape Control system water washing area 19, liquid collector 20, ammonia escape control system pickling area 21, ammonia escape control system water washing area circulation pump 22, desulfurization circulating liquid return 23, circulating liquid from ammonia desulfurization system 24, flue gas emission 25 , ammonium bicarbonate discharge pump 26, crystallizer 27, solid-liquid separation equipment 28, packaging machine 29,
  • the gas to be treated in the method of the present invention is any suitable gas, preferably the process gas after ammonia desulfurization.
  • the CO 2 content in the gas can be significantly reduced through the graded ammonia absorption method of the present invention.
  • the CO 2 content in the process gas before decarburization is 6-50v%; preferably 8-40v%; more preferably 10-30v%.
  • the CO 2 content in the gas after being treated by the graded ammonia absorption method of the present invention is 0-10v%; preferably 0-8v%; preferably 0-6v%.
  • the method for decarburization by the graded absorption ammonia method protected by the present invention is preferably carried out in the device for decarburization by the graded absorption ammonia method defined by the invention.
  • the beneficial effects of the present invention are mainly reflected in decarbonization efficiency, ammonia escape, and ammonium bicarbonate fertilizer (ammonium bicarbonate for short) production.
  • the decarburization efficiency achieved by the method according to the invention is at least 60%, preferably at least 70%, more preferably at least 80%.
  • ammonia escape is smaller (between 800-5000ppm), which can reduce the load on the ammonia escape control system, thereby reducing investment costs and operating expenses.
  • Ammonia escape after passing through the ammonia escape control system is ⁇ 20ppm, preferably 15ppm, and more preferably 10ppm.
  • the ammonium bicarbonate solid content in the ammonium bicarbonate generation zone is greater than 2wt%, preferably greater than 5wt%, and more preferably greater than 8wt%.
  • the decarbonization device can partially absorb the pollutant SO 2 to obtain a lower SO 2 concentration, less than 10 mg/Nm 3 , preferably less than 5 mg/Nm 3 , and more preferably less than 2 mg/Nm 3 .
  • Q1 is the dry flue gas flow rate under standard conditions at the inlet of the decarbonization device, m 3 /h;
  • w1 is the volume fraction of carbon dioxide in the flue gas at the inlet of the decarbonization device measured by the instrument, %;
  • Q2 is the dry flue gas flow rate at the outlet of the decarbonization device under standard conditions, m 3 /h;
  • w1 is the volume fraction of carbon dioxide in the flue gas at the outlet of the decarbonization device measured by the instrument, %.
  • the testing method for the SO 2 content in the gas in the present invention is HJ 629-2011 Fixed pollution source waste gas. Determination of sulfur dioxide. Non-dispersive infrared absorption method;
  • the test method for CO2 content is HJ 870-2017 Determination of carbon dioxide in exhaust gas from fixed pollution sources, non-dispersive infrared absorption method;
  • test method for NH 3 content is HJ 533-2009 Determination of Ammonia in Ambient Air and Exhaust Gas Nessler's Reagent Spectrophotometry.
  • the present invention provides the following Example 1 and Comparative Examples 1 and 2 to further illustrate the beneficial technical and economic effects of the method and device for graded absorption ammonia decarburization of the present invention.
  • the process gas 1 after ammonia desulfurization enters the ammonium bicarbonate generation zone 2.
  • the solution is cooled by the circulation pump 3 in the ammonium bicarbonate generation zone and the heat exchanger 4 in the ammonium bicarbonate generation zone, and reacts with the flue gas to generate ammonium bicarbonate.
  • the ammonium bicarbonate solution/slurry is driven into the crystallizer 27 through the ammonium bicarbonate discharge pump 26, and then passes through the solid-liquid separation equipment 28 and the packaging machine 29 to obtain solid ammonium bicarbonate 30.
  • the gas continues to enter the decarbonization absorption zone 6, which includes the first-level decarbonization absorption zone 7, the second-level decarbonization absorption zone 9, and the third-level decarbonization absorption zone 11 from bottom to top.
  • the liquid collector is separated from the liquid collector, and the liquid collector adopts a tray and gas cap structure to allow gas to pass from bottom to top and collect the circulating liquid in the upper area.
  • the circulating liquid passes through the first-stage decarbonization absorption zone circulation pump 12 and the first-stage decarbonization absorption zone heat exchanger 13 to cool down, and contacts with the flue gas to absorb carbon dioxide, and part of the circulating liquid is decarbonized.
  • Ammonium generation zone 2 is a tray and gas cap structure to allow gas to pass from bottom to top and collect the circulating liquid in the upper area.
  • the gas enters the second-stage decarbonization absorption zone 9 through the liquid collector 8.
  • the circulating liquid is cooled down by the second-stage decarbonization absorption zone circulation pump 14 and the second-stage decarbonization absorption zone heat exchanger 15, and contacts with the flue gas to absorb carbon dioxide. , part of the circulating fluid goes to the first-stage decarburization absorption zone 7.
  • Ammonia 5 is added to the first-stage decarburization absorption zone 7 and the second-stage decarburization absorption zone 9 through pipelines.
  • the gas enters the third-stage decarbonization absorption zone 11 through the liquid collector 10.
  • the circulating liquid passes through the third-stage decarbonization absorption zone circulation pump 16 and the third-stage decarbonization absorption zone heat exchanger 17 to cool down, and contacts with the flue gas to absorb carbon dioxide. , part of the circulating fluid goes to the second-stage decarburization absorption zone 9.
  • the gas continues to enter the ammonia escape control system 18.
  • the ammonia escape control system includes the ammonia escape control system water washing area 19 and the ammonia escape control system pickling area 21 from bottom to top. The two areas are separated by a liquid collector.
  • the liquid collector adopts The tray and gas cap structures allow gas to pass from bottom to top and collect the circulating liquid in the upper area.
  • the circulating liquid is washed by the ammonia escape control system water washing area circulation pump 22, and contacts with the flue gas to absorb free ammonia.
  • the gas enters the pickling area 21 of the ammonia escape control system through the liquid collector 20, uses the circulating liquid 24 from the ammonia desulfurization system, and contacts with the flue gas to absorb free ammonia.
  • the reacted solution (i.e., the desulfurization circulating liquid) 23 returns to the desulfurization system. . Flue gas emissions after ammonia removal25.
  • the temperature control reduces the temperature of the circulating fluid through a cold source, and the circulating fluid contacts the flue gas to reduce the temperature of the flue gas.
  • the cold source uses a refrigerator to produce chilled water, and the chilled water cools down the circulating fluid through a plate heat exchanger.
  • the circulating fluid comes into contact with the flue gas spray to reduce the flue gas temperature.
  • the temperature of the ammonium bicarbonate generating circulating fluid is controlled to be 20 to 25°C, preferably 22°C.
  • the first stage decarburization absorption circulating fluid temperature is higher than the ammonium bicarbonate generating circulating fluid temperature, and the last stage decarburization absorption circulating fluid temperature is lower than the ammonium bicarbonate generating circulation fluid temperature. liquid temperature.
  • the pH is controlled by ammonia addition and solution replacement between stages.
  • Ammonia is added to the first-stage and second-stage decarburization absorption circulating liquids, and the amount of ammonia added to the second-stage decarburization absorption circulating liquid accounts for 80-50% of the total ammonia added, preferably 60%.
  • Solution replacement overflows through the pipeline, transporting the upper level circulating liquid to the next level, and can control the solution composition and pH value.
  • the pH value of the ammonium bicarbonate generating circulating fluid is lower than that of the decarburizing absorption circulating fluid, and the ammonium bicarbonate content is greater than that of the decarburizing absorption circulating fluid.
  • the pH value is ⁇ 8.0, preferably ⁇ 8.2, more preferably ⁇ 8.5, and most preferably ⁇ 9.0.
  • the system operates at normal pressure (the actual pressure is slightly higher than atmospheric pressure, the specific pressure is shown in the table below), and no pressure control device is installed.
  • Ammonia decarburization uses 99.6% liquid ammonia as the absorbent.
  • the parameters of process gas 1 are shown in Table 1 below:
  • Embodiment 1 Compared with Embodiment 1, only the temperature control is different.
  • the temperature control of the first and second stage decarburization absorption zones is the same as that of the third stage, and is set to 20°C.
  • the temperature control of the first and second stage decarbonization absorption zones is low and the temperature difference with the cold source is reduced, the required heat exchange area of the heat exchanger 13 and the heat exchanger 14 increases, which increases the equipment investment cost.
  • the ambient temperature is 20°C
  • the cold sources of the first and second-stage decarbonization absorption zone heat exchangers 13 and 15 in Embodiment 1 can be cooled by low-temperature ambient air through an air cooler to save operating costs.
  • Comparative Example 1 Since the ambient temperature is the same as the target temperature, both set to 20°C, cooling with an air cooler cannot be achieved, and cooling can only be done with chilled water with high energy consumption.
  • Comparative Example 2 is different from Example 1 only in the addition of ammonia. Ammonia is added to the ammonium bicarbonate generation zone and the first, second and third-stage decarburization absorption zones, and the amount of ammonia added in the fourth stage is equivalent.
  • ammonium bicarbonate generation zone Since the amount of ammonia added to the ammonium bicarbonate generation zone reaches 25%, ammonium bicarbonate cannot be generated in the solution, and ammonium bicarbonate crystals cannot be obtained. The amount of ammonia added to the third-stage decarbonization absorption zone reaches 25%, which will lead to a large increase in the escape amount of decarbonized ammonia. After the decarbonization absorption zone 6 is treated, the ammonia escape of the process gas reaches 6000ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

本发明公开了一种分级吸收氨法脱碳的方法,用含有铵盐的吸收循环液脱除气体中的二氧化碳,通过分级溶液成分控制和反应条件控制,实现高效脱碳的同时控制氨逃逸。分级溶液成分控制包括碳酸铵、碳酸氢铵、氨基甲酸铵、氨水或其组合的浓度梯度控制,通过总铵与总CO2摩尔比来表征。反应条件控制包括温度控制、pH控制、压力控制。烟气进入脱碳塔,通过分级吸收,建立浓度、温度、多点加氨,提高脱碳效率,节约脱碳运行成本、控制氨逃逸。

Description

一种分级吸收氨法脱碳装置及方法 技术领域
本发明属于环保技术领域,具体涉及一种分级吸收氨法脱碳装置及方法。
背景技术
气候变暖是影响整个人类发展的问题,CO2是气候变暖的主要贡献者,化工行业生产活动产生的工业气体含有大量的CO2。任何想要大规模控制CO2的排放,应对气候变暖,都必须着力于研发高效捕集CO2的技术。
以氨水作为吸收液的化学吸收法具有吸收能力强、腐蚀性小、再生能耗低、补充成本低,不易被烟气中其它组分降级,可同时脱除多种酸性气体污染物等特点,得到国内外学者进行了大量的研究。
专利申请公开CN108144428A提出分段控制、多点加氨的工艺,主要分为预洗段、吸收段、细微颗粒物控制段,预洗段、吸收段、细微颗粒物控制段各设置若干喷淋层,预洗段对烟气降温的同时浓缩预洗段循环洗涤液,吸收段吸收、脱除烟气中二氧化硫,控制各段氨逃逸、气溶胶的生成。同样的,该方法也缺乏对工业气体中CO2的脱除控制排放。
专利CN101524621B提供一种分级吸收再生的烟气脱碳系统,由吸收系统、再生系统和热交换系统组成,比传统技术更具低能耗,然而该系统仅适用于乙醇胺作为脱硫剂的系统,通过对多级再生液返回吸收系统的控制达到节能效果。
专利申请CN200880122376.2公开了一种处理烟道气流的多级CO2去除系统和方法,使用吸收器容器,在0-20℃低温条件下使烟道气流与含有氨的离子溶液接触,同时第一吸收级的溶液比第三吸收级的溶液具有更高的温度和更低的氨碳比。通过控制较低温度,且第三级有更低的温度可以降低氨逃逸,但第三级具有更高的氨碳比会使氨逃逸增加。该工艺仍存在脱碳效率低、能耗高、氨逃逸严重的问题。
发明内容
一种分级吸收氨法脱碳的方法,用含有铵盐的吸收循环液脱除气体中的二氧化碳,通过分级溶液成分控制和反应条件控制,实现高效脱碳的同时控制氨逃逸。
在10-30℃、一个大气压情况下,CO2与氨水反应主要产物是氨基甲酸铵和碳酸铵,此反应为可逆反应。
总化学反应式:
在实际的反应过程中,存在许多中间反应,大概过程如下:
氨基甲酸铵水解:
NH3和H2O反应:
水解产生的碳酸氢铵与氨水反应生成碳酸铵:
碳酸铵吸收二氧化碳形成碳酸氢铵:
通过以上反应可以看出,二氧化碳和氨存在着复杂的各种化学反应,而且多为可逆反应,溶液成分复杂。想要提高CO2与氨的反应效率,同时减少氨逃逸,需要合理的分级溶液成分控制和反应条件控制。
分级溶液成分控制包括碳酸铵、碳酸氢铵、氨基甲酸铵、氨或其组合的浓度梯度控制,通过总氨与总CO2摩尔比来表征。
反应条件控制包括温度控制、pH控制、压力控制。
降温后的烟气依次与碳铵生成液、脱碳吸收液接触,实现碳铵生成、碳铵结晶、二氧化碳吸收、氨逃逸的协同控制,其中
碳铵生成液至少设置1级气液接触,溶液中总氨与总CO2的摩尔比1-3,优选1-2,所述的总氨包括氨和铵根;所述的总CO2包括游离CO2和碳化CO2
脱碳吸收循环液至少设置2级气液接触,第一级溶液中总氨与总CO2的摩尔比1.2-4,优选1.4-3.5,更优选1.6-3,最优选1.8-2.5。在第一级和最后一级之间溶液中总氨与总CO2的摩尔比1.5-4.5,优选1.8-4,更优选2-3.5,最后一级溶液中总氨与总CO2的摩尔比1-3,优选1.2-2.8,更优选1.5-2.5,最优选1.6-2。
碳酸氢铵生成液的气液接触形式优选为喷淋式、填料式、鼓泡式,脱碳吸收液的气液接触形式优选为喷淋式、填料式。
温度控制通过冷源降低溶液温度,溶液与烟气接触,降低烟气温度。冷源可以采用制冷机制得冷冻水,冷冻水通过换热器或盘管给溶液降温。控制碳铵生成液温度10-30℃,优选12-28℃,优选15-25℃,最优选16-22℃,第一级脱碳吸收液温度高于碳铵生成液温度,高的溶液温度有利于降低冷却设备的投资,在第一级和最后一级之间的脱碳吸收液温度通常高于第一级脱碳吸收液和最后一级脱碳吸收液的温度,最后一级脱碳吸收液温度低于碳铵生成液温度,可以控制氨逃逸。优选地,控制碳铵生成循环液温度为15至25℃,第一级脱碳吸收循环液温度高于碳铵生成循环液温度,最后一级脱碳吸收循环液温度低于碳铵生成循环液温度。
pH控制通过加氨或级间的溶液置换来实现。
氨主要加入脱碳吸收液,可从脱碳吸收液多级分别加入。碳铵生成液不加氨或少加氨,最后一级脱碳吸收液加氨量低于前一级或不加氨。优选地,氨加入到第一级和第二级脱碳吸收循环液且第二级脱碳吸收循环液加氨量占加入总氨量的80-50wt%,优选75-55wt%,更优选72-57wt%,最优选60-65wt%,最后级脱碳吸收循环液和碳铵生成循环液不加氨。通过多级加氨,有利于溶液成分控制,并调节溶液pH值,在保证脱碳吸收效率的同时,控制氨逃逸量。碳铵生成液不加氨或少加氨,以保证生产碳酸氢铵。最后一级脱碳吸收液加氨量低于前一级或不加氨,可以有效控制氨逃逸。
溶液置换通过管道溢流或泵输送,将上一级溶液输送至下一级,可控制溶液成分和pH值。碳铵生成液中pH值低于脱碳吸收液,且碳酸氢铵含量大于脱碳吸收液。
脱碳吸收液中pH值≥8.0,优选≥8.2,更优选≥8.5,最优选≥9.0。
压力控制通过在氨法脱碳系统中设置控制阀或液封等手段实现。在脱碳吸收区后或氨逃逸控制系统后气体管路上设置控制阀或液封装置,可根据需要保持系统内压力。
氨法脱碳装置保持常压±50kPa,优选常压±40kPa,更优选常压±30kPa,最优选常压±25kPa。
一种分级吸收氨法脱碳的装置,包括脱碳系统、氨逃逸控制系统、碳酸氢铵处理系统、氨供应系统、冷却系统。
脱碳系统采用分区控制,包括碳铵生成区、脱碳吸收区,其中碳铵生成区至少设置1级气液接触器,脱碳吸收区至少设置2级气液接触器,各区、各级之间设有只允许气体通过的设备/部件。
脱碳吸收区最后一级后设1层或多层除雾器,其余各层根据需要不设置、设1层或多层除雾器,除雾器选用折流板、屋脊、填料及丝网型式,或其组合形式。
氨逃逸控制系统采用多级洗涤循环,至少设置一层酸性溶液洗涤。
冷却系统用于降低碳铵生成循环液和脱碳吸收循环液温度。
碳酸氢铵处理系统包括碳酸氢铵结晶设备、固液分离设备。
脱碳之前工艺气体中CO2含量为6-50v%;优选8-40v%;更优选10-30v%。
在经过本发明的分级吸收氨法处理之后气体中的CO2含量为0-10v%;优选0-8v%;优选0-6v%。
净烟气SO2≤10mg/Nm3,优选≤5mg/Nm3,更优≤2mg/Nm3
净烟气氨逃逸≤20ppm,优选15ppm,更优10ppm。
CO2脱除效率≥60%,优选≥70%,更优选≥80%。
本发明还涉及如下实施方案:
1.一种分级吸收氨法脱碳的方法,其特征在于,用含有铵盐的吸收循环液脱除气体中的二氧化碳,通过分级溶液成分控制和反应条件控制,实现高效脱碳的同时控制氨逃逸。
2.如实施方案1所述的方法,分级溶液成分控制通过总氨与总CO2摩尔比来表征,溶液成分包括碳酸铵、碳酸氢铵、氨基甲酸铵、氨或其组合。
3.如实施方案1所述的方法,反应条件控制包括温度控制、pH控制、压力控制。
4.如实施方案2所述的方法,降温后的烟气依次与碳酸氢铵生成循环液、脱碳吸收循环液接触,实现碳铵生成、碳铵结晶、二氧化碳吸收、氨逃逸的协同控制,其中
碳酸氢铵生成液至少设置1级气液接触,溶液中总氨与总CO2的摩尔比1-3,优选1-2,所述的总氨包括氨和铵根;所述的总CO2包括游离CO2和碳化CO2
脱碳吸收液至少设置2级气液接触,第一级溶液中总氨与总CO2的摩尔比1.2-4,优选1.4-3.5,更优选1.6-3,最优选1.8-2.5,在第一级和最后一级之间溶液中总氨与总CO2的摩尔比1.5-4.5,优选1.8-4,更优选2-3.5,最后一级溶液中总氨与总CO2的摩尔比1-3,优选1.2-2.8,更优选1.5-2.5,最优选1.6-2。
5.如实施方案4所述的方法,碳酸氢铵生成液的气液接触形式可以为喷淋式、填料式、鼓泡式,脱碳吸收液的气液接触形式可以为喷淋式、填料式。
5.如实施方案4所述的方法,碳铵生成液中pH值低于脱碳吸收液,且碳酸氢铵含量大于脱碳吸收液。
6.如实施方案4所述的方法,脱碳吸收液中pH值大于8.0,优选≥8.2,更优选≥8.5,最优选≥9.0。
7.如实施方案4所述的方法,氨主要加入脱碳吸收液,碳铵生成液不加氨或少加 氨,最后一级脱碳吸收液加氨量低于前一级或不加氨。
8.如实施方案7所述的方法,氨从脱碳吸收液多级分别加入。
9.如实施方案3所述的方法,碳铵生成液温度10-30℃,优选12-28℃,优选15-25℃,最优选16-22℃,第一级脱碳吸收液温度高于碳铵生成液温度,最后一级脱碳吸收液温度低于碳铵生成液温度。
10.如实施方案4所述的方法,氨法脱碳装置保持常压±50kPa,优选常压±40kPa,更优选常压±30kPa,最优选常压±25kPa。
11.如实施方案1所述的方法,其特征在于,净烟气SO2≤10mg/Nm3,优选≤5mg/Nm3,更优选小于2mg/Nm3
12.如实施方案1所述的方法,其特征在于,净烟气氨逃逸≤20ppm,优选15ppm,更优10ppm。
13.如实施方案1所述的方法,其特征在于,CO2脱出效率≥60%,优选≥80%。
14.一种分级吸收氨法脱碳的装置,其特征在于,包括脱碳系统、氨逃逸控制系统、碳酸氢铵处理系统、氨供应系统、冷却系统。
15.如实施方案14所述的装置,脱碳系统采用分区控制,包括碳铵生成区、脱碳吸收区,其中碳铵生成区至少设置1级气液接触,脱碳吸收区至少设置2级气液接触,各区、各级之间设有只允许气体通过的设备/部件。
16.如实施方案14所述的装置,脱碳吸收区最后一级后设1层或多层除雾器,其余各层根据需要不设置、或设1层或多层除雾器,除雾器选用折流板、屋脊、填料及丝网型式,或其组合形式。
17.如实施方案14所述的装置,氨逃逸控制系统采用多级洗涤循环控制,至少设置一层酸性溶液洗涤。
18.如实施方案14所述的装置,冷却系统用于降低碳铵生成液和脱碳吸收液温度。
19.如实施方案14所述的装置,碳酸氢铵处理系统包括碳酸氢铵结晶设备、固液分离设备。
20.如实施方案3所述的方法,烟气依次与碳酸氢铵生成液、脱碳吸收液接触,实现碳铵生成、碳铵结晶、二氧化碳吸收、氨逃逸的协同控制,其中
温度控制通过冷源降低碳酸氢铵生成液、脱碳吸收液温度,碳酸氢铵生成液、脱碳吸收液与烟气接触,降低烟气温度,
pH控制通过加氨或级间的溶液置换,
压力控制通过在氨法脱碳系统中设置控制阀或液封等手段实现,常压运行时不设压力控制装置。21.如实施方案1所述的方法,脱碳之前工艺气体中CO2含量为6-50v%;优选8-40v%;更优选10-30v%;处理之后气体中的CO2含量为0-10v%;优选0-8v%;优选0-6v%。
22.如实施方案1所述的方法,其特征在于,该气体是氨法脱硫后的工艺气体。
附图说明
图1为实施例
工艺气体1、碳铵生成区2、碳铵生成区循环泵3、碳铵生成区换热器4、氨5、脱碳吸收区6、第一级脱碳吸收区7、集液器8、第二级脱碳吸收区9、集液器10、第三级脱碳吸收区11、第一级脱碳吸收区循环泵12、第一级脱碳吸收区换热器13、第二级脱碳吸收区循环泵14、第二级脱碳吸收区换热器15、第三级脱碳吸收区循环泵16、第三级脱碳吸收区换热器17、氨逃逸控制系统18、氨逃逸控制系统水洗区19、集液器20、氨逃逸控制系统酸洗区21、氨逃逸控制系统水洗区循环泵22、脱硫循环液回液23、来自氨法脱硫系统循环液24、烟气排放25、碳酸氢铵排出泵26、结晶器27、固液分离设备28、包装机29、固体碳酸氢铵30
具体实施方式
本发明方法中要处理的气体是任何合适的气体,优选是氨法脱硫后的工艺气体。
经过本发明的分级吸收氨法使气体中的CO2含量显著下降。具体地在脱碳之前工艺气体中CO2含量为6-50v%;优选8-40v%;更优选10-30v%。
在经过本发明的分级吸收氨法处理之后气体中的CO2含量为0-10v%;优选0-8v%;优选0-6v%。
本发明所保护的一种分级吸收氨法脱碳的方法优选在本发明所限定的一种分级吸收氨法脱碳的装置中进行。
本发明的有益效果主要体现在脱碳效率,氨逃逸、碳酸氢铵化肥(简称碳铵)生产。根据本发明的方法所达到的脱碳效率为至少60%,优选至少70%,更优选至少80%。脱碳后氨逃逸更小(800-5000ppm之间),可以减少氨逃逸控制系统的负荷,从而降低投资成本和运行费用。通过氨逃逸控制系统后的氨逃逸≤20ppm,优选15ppm,更优10ppm。碳铵生成区中碳铵固体含量大于2wt%,优选大于5wt%,更优大于8wt%。同时,该脱碳装置可以部分吸收污染物SO2,得到更低的SO2浓度,小于10mg/Nm3,优选小于5mg/Nm3,更优选小于2mg/Nm3
脱碳效率=(Q1*w1-Q2*w2)/(Q1*w1)*100%
Q1为脱碳装置入口标准状态下干烟气流量,m3/h;
w1为仪器测得的脱碳装置入口烟气中二氧化碳体积分数,%;
Q2为脱碳装置出口标准状态下干烟气流量,m3/h;
w1为仪器测得的脱碳装置出口烟气中二氧化碳体积分数,%。
本发明中气体中SO2含量测试方法为HJ 629-2011固定污染源废气.二氧化硫的测定.非分散红外吸收法;
CO2含量测试方法为HJ 870-2017固定污染源废气二氧化碳的测定非分散红外吸收法;
NH3含量测试方法为HJ 533-2009环境空气和废气氨的测定纳氏试剂分光光度法。
本发明提供如下实施例1及对比例1和2以进一步说明本发明分级吸收氨法脱碳的方法和装置的有益技术效果和经济效果。
实施例1
氨法脱硫后的工艺气体1进入碳铵生成区2,溶液通过碳铵生成区循环泵3和碳铵生成区换热器4降温,并与烟气接触反应生成碳酸氢铵。碳酸氢铵溶液/浆液通过碳酸氢铵排出泵26打入结晶器27,再经过固液分离设备28和包装机29得到固体碳酸氢铵30。
气体继续进入脱碳吸收区6,脱碳吸收区自下而上包括第一级脱碳吸收区7、第二级脱碳吸收区9、第三级脱碳吸收区11,各区之间通过集液器隔开,集液器采用塔板、气帽结构,允许气体自下而上通过,并收集上部区域的循环液。在第一级脱碳吸收区7,循环液通过第一级脱碳吸收区循环泵12和第一级脱碳吸收区换热器13降温,并与烟气接触吸收二氧化碳,部分循环液去碳铵生成区2。气体通过集液器8进入第二级脱碳吸收区9,循环液通过第二级脱碳吸收区循环泵14和第二级脱碳吸收区换热器15降温,并与烟气接触吸收二氧化碳,部分循环液去第一级脱碳吸收区7。氨5通过管道加入第一级脱碳吸收区7和第二级脱碳吸收区9。气体通过集液器10进入第三级脱碳吸收区11,循环液通过第三级脱碳吸收区循环泵16和第三级脱碳吸收区换热器17降温,并与烟气接触吸收二氧化碳,部分循环液去第二级脱碳吸收区9。
气体继续进入氨逃逸控制系统18,氨逃逸控制系统自下而上包括氨逃逸控制系统水洗区19、氨逃逸控制系统酸洗区21,两区之间通过集液器隔开,集液器采用塔板、气帽结构,允许气体自下而上通过,并收集上部区域的循环液。在氨逃逸控制系统水洗区19,循环液通过氨逃逸控制系统水洗区循环泵22洗涤,并与烟气接触吸收游离氨。气体通过集液器20进入氨逃逸控制系统酸洗区21,采用来自氨法脱硫系统的循环液24,并与烟气接触吸收游离氨,反应后的溶液(即脱硫循环液)23回脱硫系统。除氨后的烟气排放25。
温度控制通过冷源降低循环液温度,循环液与烟气接触,降低烟气温度。冷源采用制冷机制得冷冻水,冷冻水通过板式换热器给循环液降温。循环液与烟气喷淋接触,降低烟气温度。控制碳铵生成循环液温度为20至25℃,优选22℃,第一级脱碳吸收循环液温度高于碳铵生成循环液温度,最后一级脱碳吸收循环液温度低于碳铵生成循环液温度。
pH控制通过加氨和级间的溶液置换。
氨加入到第一级和第二级脱碳吸收循环液且第二级脱碳吸收循环液加氨量占加入总氨量的80-50%,优选60%,第三级脱碳吸收循环液和碳铵生成循环液不加氨。
溶液置换通过管道溢流,将上一级循环液输送至下一级,可控制溶液成分和pH值。碳铵生成循环液中pH值低于脱碳吸收循环液,且碳酸氢铵含量大于脱碳吸收循环液。
脱碳吸收循环液中
pH值≥8.0,优选≥8.2,更优选≥8.5,最优选≥9.0。
系统常压操作(实际压力略高于大气压,具体压力如下表所示),不设置压力控制装置。
其中,溶液成分及控制条件见下表:

氨法脱碳采用99.6%的液氨作为吸收剂,工艺气体1参数见下表1:
表1
经脱碳吸收区6处理后工艺气体主要参数见下表2:
表2
经洗氨塔18处理后工艺气体主要参数见下表:
对比例1
相对于实施例1,仅温度控制不同,第一、二级脱碳吸收区温度控制与第三级相同,均设置为20℃。
由于第一、二级脱碳吸收区温度控制较低,与冷源的温差减小,所以换热器13、换热器14所需换热面积增大,增加设备投资成本。而且,当环境温度为20℃时,实施例1中第一、二级脱碳吸收区换热器13和换热器15的冷源可以采用低温环境空气通过空冷器冷却,以节省运行费用,对比例1由于环境温度与目标温度相同,均设置为20℃,所以无法实现用空冷器冷却,只能用能耗较高的冷冻水进行冷却。
对比例2,相对于实施例1,仅加氨不同,碳铵生成区和第一、二、三级脱碳吸收区均加氨,四级加氨量相当。
由于碳铵生成区加氨量达到25%,导致溶液中无法生成碳酸氢铵,也得不到碳酸氢铵结晶。第三级脱碳吸收区加氨量达到25%,会导致脱碳氨逃逸量大增,脱碳吸收区6处理后工艺气体氨逃逸达到6000ppm。
从以上本发明实施例和对比例的比较可以看出,经过本发明方法和装置处理的通过分级溶液成分控制和反应条件控制,能够实现高效脱碳的同时控制氨逃逸,从而实现了优异的技术效果和经济效果。
唯以上所述者,仅为本发明的较佳实施例而已,举凡熟悉此项技艺的专业人士在了解本发明的技术手段之后,自然能依据实际的需要,在本发明的教导下加以变化。因此凡依本发明申请专利范围所作的同等变化与修饰,都应仍属本发明专利涵盖的范围内。

Claims (23)

  1. 一种分级吸收氨法脱碳的方法,其特征在于,用含有铵盐的吸收循环液脱除气体中的二氧化碳,通过分级溶液成分控制和反应条件控制,实现高效脱碳的同时控制氨逃逸。
  2. 如权利要求1所述的方法,分级溶液成分控制通过总氨与总CO2摩尔比来表征,溶液成分包括碳酸铵、碳酸氢铵、氨基甲酸铵、氨或其组合。
  3. 如权利要求1所述的方法,反应条件控制包括温度控制、pH控制、压力控制。
  4. 如权利要求2所述的方法,降温后的烟气依次与碳酸氢铵生成循环液、脱碳吸收循环液接触,实现碳铵生成、碳铵结晶、二氧化碳吸收、氨逃逸的协同控制,其中
    碳酸氢铵生成液至少设置1级气液接触,溶液中总氨与总CO2的摩尔比1-3,优选1-2,所述的总氨包括氨和铵根;所述的总CO2包括游离CO2和碳化CO2
    脱碳吸收液至少设置2级气液接触,第一级溶液中总氨与总CO2的摩尔比1.2-4,优选1.4-3.5,更优选1.6-3,最优选1.8-2.5,在第一级和最后一级之间溶液中总氨与总CO2的摩尔比1.5-4.5,优选1.8-4,更优选2-3.5,最后一级溶液中总氨与总CO2的摩尔比1-3,优选1.2-2.8,更优选1.5-2.5,最优选1.6-2。
  5. 如权利要求4所述的方法,碳酸氢铵生成液的气液接触形式可以为喷淋式、填料式、鼓泡式,脱碳吸收液的气液接触形式可以为喷淋式、填料式。
  6. 如权利要求4所述的方法,脱碳吸收液中pH值大于8.0,优选≥8.2,更优选≥8.5,最优选≥9.0。
  7. 如权利要求4所述的方法,氨主要加入脱碳吸收液,碳铵生成液不加氨或少加氨,最后一级脱碳吸收液加氨量低于前一级或不加氨。
  8. 如权利要求7所述的方法,氨从脱碳吸收液多级分别加入。
  9. 如权利要求3所述的方法,碳铵生成液温度10-30℃,优选12-28℃,优选15-25℃,最优选16-22℃,第一级脱碳吸收液温度高于碳铵生成液温度,最后一级脱碳吸收液温度低于碳铵生成液温度。
  10. 如权利要求4所述的方法,氨法脱碳装置保持常压±50kPa,优选常压±40kPa,更优选常压±30kPa,最优选常压±25kPa。
  11. 如权利要求1所述的方法,其特征在于,净烟气SO2≤10mg/Nm3,优选≤5mg/Nm3,更优选小于2mg/Nm3
  12. 如权利要求1所述的方法,其特征在于,净烟气氨逃逸≤20ppm,优选15ppm,更优10ppm。
  13. 如权利要求1所述的方法,其特征在于,CO2脱出效率≥60%,优选≥80%。
  14. 一种分级吸收氨法脱碳的装置,其特征在于,包括脱碳系统、氨逃逸控制系统、碳酸氢铵处理系统、氨供应系统、冷却系统。
  15. 如权利要求14所述的装置,脱碳系统采用分区控制,包括碳铵生成区、脱碳吸收区,其中碳铵生成区至少设置1级气液接触,脱碳吸收区至少设置2级气液接触,各区、各级之间设有只允许气体通过的设备/部件。
  16. 如权利要求14所述的装置,脱碳吸收区最后一级后设1层或多层除雾器,其余各层根据需要不设置、或设1层或多层除雾器,除雾器选用折流板、屋脊、填料及丝网型式,或其组合形式。
  17. 如权利要求14所述的装置,氨逃逸控制系统采用多级洗涤循环控制,至少设置一层酸性溶液洗涤。
  18. 如权利要求14所述的装置,冷却系统用于降低碳铵生成液和脱碳吸收液温度。
  19. 如权利要求14所述的装置,碳酸氢铵处理系统包括碳酸氢铵结晶设备、固液分离设备。
  20. 如权利要求3所述的方法,烟气依次与碳酸氢铵生成液、脱碳吸收液接触,实现碳铵生成、碳铵结晶、二氧化碳吸收、氨逃逸的协同控制,其中
    温度控制通过冷源降低碳酸氢铵生成液、脱碳吸收液温度,碳酸氢铵生成液、脱碳吸收液与烟气接触,降低烟气温度,
    pH控制通过加氨或级间的溶液置换,
    压力控制通过在氨法脱碳系统中设置控制阀或液封等手段实现,常压运行时不设压力控制装置。
  21. 如权利要求1所述的方法,脱碳之前工艺气体中CO2含量为6-50v%;优选8-40v%;更优选10-30v%;处理之后气体中的CO2含量为0-10v%;优选0-8v%;优选0-6v%。
  22. 如权利要求1所述的方法,其特征在于,该气体是氨法脱硫后的工艺气体。
  23. 如权利要求4所述的方法,碳铵生成液中pH值低于脱碳吸收液,且碳酸氢铵含量大于脱碳吸收液。
PCT/CN2023/083689 2022-05-19 2023-03-24 一种分级吸收氨法脱碳装置及方法 WO2023221646A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2023219960A AU2023219960A1 (en) 2022-05-19 2023-03-24 Device and method for staged absorption ammonia-based decarbonization
CA3209723A CA3209723A1 (en) 2022-05-19 2023-03-24 Device and method for staged absorption ammonia-based decarbonization
MX2023010089A MX2023010089A (es) 2022-05-19 2023-03-24 Dispositivo y metodo para la descarbonizacion a base de amoniaco mediante absorcion por etapas.
IL305479A IL305479A (en) 2022-05-19 2023-08-27 Apparatus and method for decarbonization based on graded absorption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210553874.4A CN115105939A (zh) 2022-05-19 2022-05-19 一种分级吸收氨法脱碳装置及方法
CN202210553874.4 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023221646A1 true WO2023221646A1 (zh) 2023-11-23

Family

ID=83325755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083689 WO2023221646A1 (zh) 2022-05-19 2023-03-24 一种分级吸收氨法脱碳装置及方法

Country Status (5)

Country Link
US (1) US20230405521A1 (zh)
CN (1) CN115105939A (zh)
AR (1) AR129385A1 (zh)
CL (1) CL2023002524A1 (zh)
WO (1) WO2023221646A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115105939A (zh) * 2022-05-19 2022-09-27 江苏新世纪江南环保股份有限公司 一种分级吸收氨法脱碳装置及方法
CN114870598B (zh) * 2022-05-20 2024-04-26 江苏新世纪江南环保股份有限公司 一种多级脱碳的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB445319A (en) * 1934-12-20 1936-04-07 Ralph Harper Mckee Improvements in recovery of carbon dioxide from waste gases
CN101229475A (zh) * 2007-10-31 2008-07-30 武汉凯迪电力环保有限公司 氨法脱除电站烟气中二氧化碳的方法及其系统
CN101524621A (zh) 2009-03-31 2009-09-09 西安热工研究院有限公司 一种分级吸收再生的烟气脱碳系统
CN101909720A (zh) * 2007-10-22 2010-12-08 阿尔斯托姆科技有限公司 用于处理烟道气流的多级co2去除系统和方法
CN103889548A (zh) * 2011-08-30 2014-06-25 阿尔斯通技术有限公司 用于捕集氨化溶液中的co2的吸收器
CN108144428A (zh) 2017-03-15 2018-06-12 江苏新世纪江南环保股份有限公司 一种氨法高效脱除气体中硫氧化物和尘的方法及装置
CN113262625A (zh) * 2021-05-11 2021-08-17 江苏新世纪江南环保股份有限公司 一种氨法脱硫脱碳一体化装置及方法
CN115105939A (zh) * 2022-05-19 2022-09-27 江苏新世纪江南环保股份有限公司 一种分级吸收氨法脱碳装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB445319A (en) * 1934-12-20 1936-04-07 Ralph Harper Mckee Improvements in recovery of carbon dioxide from waste gases
CN101909720A (zh) * 2007-10-22 2010-12-08 阿尔斯托姆科技有限公司 用于处理烟道气流的多级co2去除系统和方法
CN101229475A (zh) * 2007-10-31 2008-07-30 武汉凯迪电力环保有限公司 氨法脱除电站烟气中二氧化碳的方法及其系统
CN101524621A (zh) 2009-03-31 2009-09-09 西安热工研究院有限公司 一种分级吸收再生的烟气脱碳系统
CN103889548A (zh) * 2011-08-30 2014-06-25 阿尔斯通技术有限公司 用于捕集氨化溶液中的co2的吸收器
CN108144428A (zh) 2017-03-15 2018-06-12 江苏新世纪江南环保股份有限公司 一种氨法高效脱除气体中硫氧化物和尘的方法及装置
CN113262625A (zh) * 2021-05-11 2021-08-17 江苏新世纪江南环保股份有限公司 一种氨法脱硫脱碳一体化装置及方法
CN115105939A (zh) * 2022-05-19 2022-09-27 江苏新世纪江南环保股份有限公司 一种分级吸收氨法脱碳装置及方法

Also Published As

Publication number Publication date
CL2023002524A1 (es) 2024-01-26
US20230405521A1 (en) 2023-12-21
AR129385A1 (es) 2024-08-21
CN115105939A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2023221646A1 (zh) 一种分级吸收氨法脱碳装置及方法
WO2022237834A1 (zh) 一种氨法脱硫脱碳一体化装置及方法
JP2023508656A (ja) アンモニア系脱硫における吸収時のエアロゾル生成の制御
US9174168B2 (en) Flue gas treatment system
JP7062509B2 (ja) 炭素捕捉
CN101708414A (zh) 循环吸收法废气脱硫系统、方法及用途
CN102266702A (zh) 一种捕集工业废气中氨气的方法和设备及其应用
CN114405258A (zh) 一种适用于低分压co2捕集纯化的吸收体系
WO2023222082A1 (zh) 一种多级氨法脱碳的方法
WO2023221647A1 (zh) 一种控制氨法脱碳系统氨逃逸的装置及方法
WO2023221696A1 (zh) 一种氨法脱硫脱碳系统余热回收的方法及装置
CN105013303A (zh) 一种烟气联合脱硫硝碳装置
CN203916428U (zh) 一种烟气联合脱硫硝碳装置
CN216347344U (zh) 一种利用结晶氨法实现碳捕集与液化的装置
CN115738634A (zh) 一种气动氨法脱硫脱碳一体化系统、方法及应用
CN203737091U (zh) 一种氨法脱硫脱硝装置
AU2023219960A1 (en) Device and method for staged absorption ammonia-based decarbonization
CN115445423A (zh) 氨法脱碳装置及其运行方法
CN115090098B (zh) 一种氨法脱碳系统节水提效的方法及装置
CN217092863U (zh) 一种氨法脱碳塔及脱硫脱碳装置
EA047063B1 (ru) Устройство и способ постадийной абсорбционной декарбонизации на основе аммиака
CA3210453A1 (en) Multi-stage ammonia-process decarbonization method
CN219333749U (zh) 一种废气碳捕集装置
CN219942352U (zh) 一种气动氨法脱硫脱碳一体化系统
AU2021331004B2 (en) Ammonia-based carbon dioxide abatement system and method, and direct contact cooler therefore

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3209723

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12023552325

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2023219960

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 202317057335

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/010089

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2023219960

Country of ref document: AU

Date of ref document: 20230324

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023017469

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 523451737

Country of ref document: SA