WO2022236768A1 - 一种基于复合材料的柔性温度传感器、制备方法及其应用 - Google Patents

一种基于复合材料的柔性温度传感器、制备方法及其应用 Download PDF

Info

Publication number
WO2022236768A1
WO2022236768A1 PCT/CN2021/093568 CN2021093568W WO2022236768A1 WO 2022236768 A1 WO2022236768 A1 WO 2022236768A1 CN 2021093568 W CN2021093568 W CN 2021093568W WO 2022236768 A1 WO2022236768 A1 WO 2022236768A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
graphene oxide
flexible
temperature
solution
Prior art date
Application number
PCT/CN2021/093568
Other languages
English (en)
French (fr)
Inventor
李晖
朱正芳
苏毅
王磊
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2022236768A1 publication Critical patent/WO2022236768A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2211/00Thermometers based on nanotechnology

Definitions

  • the invention belongs to the field of sensor materials, and in particular relates to a composite material-based flexible temperature sensor and a preparation method thereof.
  • thermoelectric materials require excellent properties such as simple fabrication, reasonable raw materials, strong biological adaptability, and certain ductility.
  • thermoelectric materials for wearable flexible temperature sensors:
  • Carbon-containing materials Common carbon materials are carbon black, graphite, carbon nanotubes and graphene.
  • PEDOT:PSS poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid)
  • P3HT poly-3-hexylthiophene
  • pNIPAM poly(N-iso Propylacrylamide)
  • PPy polypyrrole
  • PVDF polyvinylidene fluoride
  • effective temperature-sensitive conductive materials are prepared by a single thermoelectric material and by mixing two different thermoelectric materials to prepare a composite material.
  • thermoelectric material Preparation of temperature-sensitive conductive materials with a single thermoelectric material: Srinivas Gandla et al. used laser-induced carbonization of PI (polyimide) substrates to prepare a stable and highly linear temperature sensor with a response time of 1s and a resolution of 0.2 °C, the temperature coefficient of resistance is 0.00142 °C -1 .
  • Zheng Cui et al. report a kirigami-inspired gas-permeable and stretchable temperature sensor based on silver nanowires (AgNWS), encapsulating the AgNW percolation network in a thin polyimide film.
  • the temperature coefficient of resistance of the AgNW network was customized by changing the nanowire density and thermal annealing temperature; the AgNW network with a density of 2.053 ⁇ m -2 after annealing at 200 °C was selected to make a temperature sensor, the TCR was 3.32 ⁇ 10 -3 °C -1 , and the sensitivity was 0.47 ⁇ /°C.
  • PEDOT:PSS is a new type of organic conductive polymer, which is often used in printable flexible temperature sensors. Yu et al. used pre-stretched and acid-treated PEDOT:PSS and PDMS (polydimethylsiloxane) to prepare flexible materials with microcracks.
  • thermosensitive conductive materials Two or more heat-sensitive materials were mixed to prepare temperature-sensitive conductive materials: Ju et al. prepared a high-sensitivity resistance temperature sensor composed of poly(n-isopropylacrylamide) (pN IPAM) temperature-sensitive hydrogel, PEDOT:PSS and CNTs . In the temperature range of 25-40°C, the device has a sensitivity of 2.6%°C -1 and can accurately detect changes in skin temperature of 0.5°C.
  • thermoelectric material prepared by using the temperature-sensitive conductive material prepared by a single thermoelectric material.
  • the temperature sensor prepared by pre-stretching and other methods is easily disturbed by non-temperature factors such as stress and tension, which affects the accuracy of the measurement results.
  • the present invention proposes a flexible temperature sensor based on composite materials, including a temperature-sensitive conductive composite film material and a flexible substrate carrying the temperature-sensitive conductive composite film material, the temperature-sensitive conductive composite film material
  • the film material is at least prepared from single-wall carbon nanotubes, reduced graphene oxide and (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)).
  • the mass ratio of the single-walled carbon nanotubes, the reduced graphene oxide and the (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)) is 1:1:( 3-39).
  • the present invention also provides a method for preparing a flexible temperature sensor based on a composite material, comprising the following steps:
  • Modify the single-walled carbon nanotubes add H 2 SO 4 /H 2 O 2 mixed solution to the single-walled carbon nanotubes, heat and reflux and stir; stop the reaction, cool to room temperature, and rinse with deionized water several times. "Washing-suction filtration” until the filtrate becomes neutral, then vacuum-dry the obtained solid product to obtain modified single-walled carbon nanotube powder;
  • thermosensitive conductive composite film material add surfactant to water to dissolve, then weigh the single-walled carbon nanotube powder of S1 and the reduced graphene oxide powder of S2 respectively and add them to the surface active solution, stirring and dispersing, and performing ultrasonic treatment; adding (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)) aqueous solution to the ultrasonically treated mixed solution, dispersing, suction filtration, and The obtained solid matter is vacuum-dried by suction filtration to obtain a temperature-sensitive conductive composite film material;
  • Preparation of a flexible temperature sensor based on composite materials cut the temperature-sensitive conductive composite film material of S3 into strips or serpentine shapes, place it on a flexible substrate, and use silver glue to bond the wires to the temperature-sensitive conductive composite film The materials are connected, then packaged and dried to obtain the flexible temperature sensor based on the composite material.
  • the flexible substrate is a polydimethylsiloxane (PDMS) substrate or a polyimide (PI) substrate.
  • PDMS polydimethylsiloxane
  • PI polyimide
  • step S2 the reducing agent is ascorbic acid, and the ratio of the graphene oxide powder to the ascorbic acid is (0.4-0.6) g: (90-110) mL.
  • the surfactant is sodium dodecylbenzenesulfonate, and the addition amount is 15-25g.
  • S4 specifically includes the following steps:
  • Described S4 specifically comprises the following steps:
  • the rotational speed of the spin coating in S4 is 1000-2000 rpm, and the spin coating time is 5-15 s.
  • the mass ratio of polydimethylsiloxane prepolymer to curing agent in S4 is (9-12):1.
  • the invention also provides an application of a flexible temperature sensor based on a composite material in a wearable device sensor.
  • the present invention has the following advantages:
  • the preparation method is simple, and a simple suction filtration method is adopted.
  • the temperature coefficient of resistance of the prepared flexible temperature sensor based on the composite material can reach 0.605% °C -1 , which has high sensitivity.
  • the resistance of the sensor is basically consistent with the change of temperature.
  • Fig. 1 is a schematic flow chart of a preparation method of a composite material-based flexible temperature sensor provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of a flexible temperature sensor based on a composite material provided by an embodiment of the present invention
  • Fig. 3 is the physical figure of a kind of flexible temperature sensor based on composite material provided by the embodiment of the present invention.
  • Fig. 4 is the cycle test result of a kind of flexible temperature sensor based on composite material provided by the embodiment of the present invention.
  • Fig. 5 is the resistance change rate curve of the flexible temperature sensor based on composite material with temperature variation with PDMS and PI respectively as substrate;
  • FIG. 6 is a schematic flow chart showing the specific process of the preparation method of the composite material-based flexible temperature sensor provided by Examples 1 and 2 of the present invention.
  • the present invention combines (poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid)) aqueous solution (ie PEDOT: PSS aqueous solution) with single-walled carbon nanotubes (SWCNT) and reduced graphene oxide (rGO) according to The ratio is evenly mixed, and the temperature-sensitive conductive composite material is prepared by a simple and easy-to-implement suction filtration method, and a flexible temperature sensor based on the composite material is prepared by combining the material with a highly flexible PDMS or PI substrate.
  • S3 Weigh 0.2g of sodium dodecylbenzenesulfonate (SDBS) into a beaker, add 20mL of deionized water to dissolve, then weigh 0.01g of reduced graphene oxide and 0.01g of acid-treated single-walled carbon nanotubes , stir to disperse, and ultrasonicate at 800W for 5min. Add 6mL of PEDOT:PSS (1.3wt%) aqueous solution to the mixed solution after ultrasonic dispersion, and ultrasonicate for 30min at 800W. The homogeneously dispersed mixed solution is suction-filtered with a PVDF filter membrane, and vacuum-dried to obtain a temperature-sensitive conductive composite material. Sodium dodecylbenzene sulfonate acts as a surfactant, which can enhance the conductivity of the material.
  • SDBS sodium dodecylbenzenesulfonate
  • S4 Mix PDMS and curing agent at a mass ratio of 10:1, stir and degas at 2000 rpm, and then evenly spin-coat it on a silicon wafer uniformly sprayed with a release agent.
  • the rotational speed of the spin coating process is 1500 rpm, and the duration is 10 s.
  • the entire silicon wafer is flattened and placed in a blast drying oven for 30 minutes at 70°C.
  • Spin-coating speed can be adjusted in the range of 1000-2000rpm
  • spin-coating time can be adjusted in the range of 5-15s
  • the mass ratio of PDMS and curing agent can be adjusted in the range of (9-12): 1, spin-coating speed, duration and The mass ratio of PDMS to curing agent will affect the thickness of the PDMS substrate, thereby affecting the sensitivity of the flexible temperature sensor.
  • the mass ratio of single-walled carbon nanotubes, reduced graphene oxide and (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)) is preferably 1:1:(3-39) Within the range, the mass ratio of the three will affect the sensitivity, response speed and other properties of the entire flexible sensor.
  • Fig. 1 is a schematic flow chart of the preparation method of the flexible temperature sensor based on the composite material. See Figures 2 and 3, Figure 2 is a schematic diagram of the prepared PDMS-based PEDOT:PSS/SWCNT/rGO composite flexible temperature sensor, and Figure 3 is the prepared PDMS-based PEDOT:PSS/SWCNT The physical map of the /rGO composite flexible temperature sensor, which is bendable and suitable for wear.
  • the flexible temperature sensor based on composite materials is subjected to a rapid heating-cooling process in the temperature range of 25°C-45°C, as shown in Figure 4, it can be seen that the resistance of the sensor is basically consistent with the change of temperature, so it can be seen that this implementation
  • the PEDOT:PSS/SWCNT/rGO composite flexible temperature sensor provided by Example has excellent repeatability.
  • the resistivity change test of the PEDOT:PSS/SWCNT/rGO composite flexible temperature sensor based on PDMS was carried out, and the resistance change rate of the PEDOT:PSS/SWCNT/rGO composite flexible temperature sensor based on PDMS was obtained with temperature change Curve, the temperature coefficient of resistance is 0.605% °C -1 , see Figure 5.
  • H 2 SO 4 solution and hydrogen peroxide aqueous solution (H 2 O 2 30%) are prepared.
  • the volume ratio of H 2 SO 4 and H 2 O 2 can be adjusted in the range of (4-5): 1, and SWCNT is very easy in the solution Agglomeration occurs, and the use of the H 2 SO 4 /H 2 O 2 mixed solution in this volume ratio range can effectively reduce the agglomeration of SWCNTs, so as to avoid the adverse effect of SWCNT agglomeration on the conductivity of the material.
  • Ascorbic acid solution acts as a reducing agent.
  • the ratio of graphene oxide powder to ascorbic acid can be adjusted in the range of (0.4-0.6) g: (90-110) mL.
  • Non-essential functional groups further enhance the conductivity of the material.
  • S3 Weigh 0.2g of sodium dodecylbenzenesulfonate (SDBS) into a beaker, add 20mL of deionized water to dissolve, then weigh 0.01g of reduced graphene oxide and 0.01g of acid-treated single-walled carbon nanotubes , stir to disperse, and ultrasonicate at 800W for 5min. Add 6mL of PEDOT:PSS (1.3wt%) aqueous solution to the mixed solution after ultrasonic dispersion, and ultrasonicate for 30min at 800W. The homogeneously dispersed mixed solution is suction-filtered with a PVDF filter membrane, and vacuum-dried to obtain a temperature-sensitive conductive composite material.
  • SDBS sodium dodecylbenzenesulfonate
  • Sodium dodecylbenzenesulfonate is used as a surfactant, and its dosage is adjusted according to the actual added carbon material, which is 10 times the mass of the added carbon material, which can effectively disperse the carbon material and enhance the conductivity of the material.
  • the mass ratio of single-walled carbon nanotubes, reduced graphene oxide and (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)) is preferably 1:1:(3-39) Within the range, the mass ratio of the three will affect the sensitivity, repeatability, response speed and other properties of the entire flexible sensor.
  • the resistivity change test of the PEDOT:PSS/SWCNT/rGO composite flexible temperature sensor based on PI was carried out, and the resistance change rate of the PEDOT:PSS/SWCNT/rGO composite flexible temperature sensor based on PI was obtained with temperature change Curve, the temperature coefficient of resistance is 0.335% °C -1 , see Figure 5.
  • Example 1 The specific preparation method flow chart of Example 1 and Example 2 can be referred to FIG. 6 .
  • the composite material-based flexible temperature sensor provided by the invention can be applied to wearable devices, such as wearable medical devices and the like.

Abstract

一种基于复合材料的柔性温度传感器,包括温敏导电复合薄膜材料(1)以及承载温敏导电复合薄膜材料的柔性基底(3),温敏导电复合薄膜材料(1)至少由单壁碳纳米管、还原氧化石墨烯和(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))制备而成。还公开了一种基于复合材料的柔性温度传感器的制备方法及在可穿戴设备传感器中的应用。制备方法简单方便,具有较高的灵敏度、优异的重复性以及较快的响应速度和恢复速度,综合性能优异。

Description

一种基于复合材料的柔性温度传感器、制备方法及其应用 技术领域
本发明属于传感器材料领域,具体涉及一种基于复合材料的柔性温度传感器及其制备方法。
背景技术
近些年来,可穿戴医疗设备逐步走进人们的生活,各项生理指标的实时监测对医生诊断疾病发挥了极大的辅助作用。为了更加精准地监测与更好地诊疗,可穿戴设备的精度、灵敏度和响应速度等性能参数需要不断提升和精进。温度传感器的性能提升通常需要从热电材料的选择与改进着手。优异的热电材料需要制造简单、原料合理、生物适应性强、具有一定延展性等优良的性能。
目前可穿戴柔性温度传感器的热电材料主要有以下几类:
1.含碳的材料。常见的碳材料有炭黑、石墨、碳纳米管和石墨烯。
2.含金属及其氧化物的材料。常用的导电金属材料有金、银、铜、铂金、镍和铝等。
3.含导电聚合物的材料。常用的热敏聚合物材料有PEDOT:PSS(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))、P3HT(聚-3-己基噻吩)、pNIPAM(聚(N-异丙基丙烯酰胺))、PPy(聚吡咯)、PVDF(聚偏二氟乙烯)等。
通常,通过单一的的热电材料制备和将不同的两种热电材料混合制备复合材料这两种方式制得有效的温敏导电材料。
单一的热电材料制备温敏导电材料:Srinivas Gandla等采用激光诱导PI(聚酰亚胺)基底碳化的方式制备了一种稳定和高线性的温度传感器,该传感器的响应时间为1s,分辨率为0.2℃,其电阻温度系数为0.00142 ℃ -1。Zheng Cui等报道了一种基于银纳米线(AgNWS)的剪纸启发的透气和可伸缩温度传感器,将AgNW渗流网络封装在薄聚酰亚胺薄膜中。通过改变纳米线密度和热退火温度来定制AgNW网络的电阻温度系数;选择200℃退火后密度为2.053μm -2的AgNW网络制作温度传感器,TCR为3.32×10 -3-1,灵敏度为0.47Ω/℃。PEDOT:PSS是一种新型有机导电聚合物,常用于可打印的柔性温度传感器,Yu等利用预拉伸和酸处理PEDOT:PSS和PDMS(聚二甲基硅氧烷)制备具有微裂纹的柔性温度传感器,较高的裂纹密度和较大的裂纹长度导致更大的温度敏感性,具有最佳裂纹形貌的传感器(裂纹长度:185.2μm,裂纹密度:22.84mm -1)显示出0.042℃ -1的高温灵敏度,良好的线性度为0.998。
两种或多种热敏材料混合制备温敏导电材料:Ju等制备了由聚(n-异丙基丙烯酰胺)(pN IPAM)温敏水凝胶,PEDOT:PSS和CNTs组成的高灵敏度电阻温度传感器。在25-40℃的温度范围内,该装置具有2.6%℃ -1的灵敏度,并能准确地检测0.5℃的皮肤温度变化。
但上述类型的温度传感器仍存在以下不足:
1.用单一热电材料制备的温敏导电材料制备得到的温度传感器的某些性能较好,但是存在另外一些性能上的不足。
2.采用预拉伸等方法制备的温度传感器,容易受到应力拉力等非温度因素的干扰,影响测量结果的准确性。
3.选用两种或多种热敏材料混合制备温敏导电材料时,需要考虑不同材料的相互影响,也需要考虑不同材料的配比对温度感应的影响。
发明内容
为了克服上述现有技术的缺陷,本发明提出了一种基于复合材料的柔性温度传感器,包括温敏导电复合薄膜材料以及承载所述温敏导电复合薄 膜材料的柔性基底,所述温敏导电复合薄膜材料至少由单壁碳纳米管、还原氧化石墨烯和(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))制备而成。
进一步地,所述单壁碳纳米管、所述还原氧化石墨烯和所述(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))的质量比为1:1:(3-39)。
本发明还提供一种基于复合材料的柔性温度传感器的制备方法,包括以下步骤:
将(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))与改性后的单壁碳纳米管和还原氧化石墨烯按比例进行混合均匀,经抽滤并真空干燥得到温敏导电复合薄膜材料;将所述温敏导电复合薄膜材料与柔性基底结合即制得所述基于复合材料的柔性温度传感器。
进一步地,具体包括以下步骤:
S1、将单壁碳纳米管进行改性处理:向单壁碳纳米管中加入H 2SO 4/H 2O 2混合溶液,加热回流搅拌;停止反应,冷却至室温,用去离子水多次“洗涤-抽滤”,直至滤液变为中性,将得到的固体产物进行真空干燥,制得改性处理后的单壁碳纳米管粉末;
S2、将氧化石墨烯进行改性处理:将氧化石墨烯粉末中加入水,得到分散的氧化石墨烯溶液;滴加还原剂到所述氧化石墨烯溶液中,搅拌、反应,经洗涤抽滤,冷冻干燥得到还原氧化石墨烯粉末;
S3、温敏导电复合薄膜材料制备:将表面活性剂加入到水中溶解,再分别称取所述S1的单壁碳纳米管粉末、所述S2的还原氧化石墨烯粉末并加入到所述表面活性剂溶液中,搅拌分散并进行超声处理;向超声处理后的混合液中加入(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))水溶液,进行分散、抽滤,将抽滤所得固体物进行真空干燥,得到温敏导电复合薄膜材料;
S4、基于复合材料的柔性温度传感器制备:将所述S3的温敏导电复合 薄膜材料切割成长条形或蛇形后,置于柔性基底上,用银胶将导线与所述温敏导电复合薄膜材料相连,然后封装,干燥,得到所述基于复合材料的柔性温度传感器。
进一步地,所述柔性基底为聚二甲基硅氧烷(PDMS)基底或聚酰亚胺(PI)基底。
进一步地,步骤S2中,所述还原剂为抗坏血酸,所述氧化石墨烯粉末与所述抗坏血酸的比例为(0.4-0.6)g:(90-110)mL。
进一步地,步骤S3中,所述表面活性剂为十二烷基苯磺酸钠,加入量为15-25g。
进一步地,所述S4具体包括以下步骤:
将聚二甲基硅氧烷预聚物与固化剂进行混合,搅拌并脱气,然后将所述聚二甲基硅氧烷预聚物与固化剂的混合液均匀旋涂在均匀喷涂有脱模剂的硅片上;旋涂完成后,将所述硅片在60-100℃的环境下干燥,得到聚二甲基硅氧烷基底;将所述S3的温敏导电复合材料切割成长条形或蛇形后,置于所述聚二甲基硅氧烷基底上,用银胶将导线与所述温敏导电复合薄膜材料相连,烤干银胶,然后用聚二甲基硅氧烷旋涂封装,干燥,得到所述基于复合材料的柔性温度传感器;
或,
所述S4具体包括以下步骤:
将所述S3的温敏导电薄膜切割成长条形后,置于聚酰亚胺基底上,用银胶将导线与所述温敏导电复合薄膜材料相连,烤干银胶,然后用聚酰亚胺胶带封装,得到所述基于复合材料的柔性温度传感器。
进一步地,所述S4中旋涂的转速为1000-2000rpm,旋涂时长为5-15s。
进一步地,所述S4中聚二甲基硅氧烷预聚物与固化剂质量比为 (9-12):1。
本发明还提供一种基于复合材料的柔性温度传感器在可穿戴设备传感器中的应用。
本发明与现有技术相比具有如下优点:
1.制备方法简单,采用简便的抽滤方式。
2.制备得到的基于复合材料的柔性温度传感器的电阻温度系数可达0.605%℃ -1,具备较高的灵敏度。
3.具备优异的重复性,在25℃-45℃温度范围内进行快速的升温-降温过程,传感器的电阻随温度变化基本保持一致。
4.还具备较快的响应速度和恢复速度,综合性能优异。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种基于复合材料的柔性温度传感器的制备方法流程示意图;
图2本发明实施例提供的一种基于复合材料的柔性温度传感器的示意图;
图3为本发明实施例提供的一种基于复合材料的柔性温度传感器的实物图;
图4为本发明实施例提供的一种基于复合材料的柔性温度传感器的循环测试结果;
图5为分别以PDMS和PI做基底的基于复合材料的柔性温度传感器随 温度变化的电阻变化率曲线;
图6为本发明实施例1和2提供的基于复合材料的柔性温度传感器的制备方法具体流程示意图。
附图标记:
1-温敏导电复合薄膜材料;2-铜导线;3-柔性基底。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明将(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))水溶液(即PEDOT:PSS水溶液)与单壁碳纳米管(SWCNT)和还原氧化石墨烯(rGO)按比例均匀混合,采用简单、易实施的抽滤方式制得温敏导电复合材料,利用该材料与高柔性的PDMS或PI基底结合制备得到基于复合材料的柔性温度传感器。该传感器在工作时,PEDOT:PSS与rGO的π-π强相互作用,促进电荷的运输和电势积累,而SWCNT和rGO具有协同效应,从而引起整个材料的电阻发生较大变化,实现热电信号的快速转换,从而实现对温度的实时监测。
实施例1
S1:配制2mol/L硫酸(H 2SO 4)水溶液100mL,然后取该H 2SO 4溶液和过氧化氢水溶液(H 2O 2 30%)配制H 2SO 4与H 2O 2体积比为3:1的混合溶液。
称取0.2g SWCNT置于圆底烧瓶中,加入40mLH 2SO 4/H 2O 2(3:1)混合溶液,油浴加热,搅拌回流一晚上。停止反应,冷却至室温,用去离子水 多次“洗涤-抽滤”,直至滤液变为中性。将得到的固体产物在60℃条件下真空干燥一晚上,密封保存备用。使用H 2SO 4/H 2O 2混合溶液处理SWCNT,可以减少SWCNT的团聚,可以避免团聚对其导电性带来的不良影响。
S2:将0.5g氧化石墨烯(GO)粉末放入烧杯中,加入250mL去离子水,100W条件超声剥离2小时,得到分散的GO溶液。用磁力搅拌器(转速800rpm)搅拌GO溶液,搅拌过程中匀速滴加100mL抗坏血酸溶液(10%),滴加完毕继续搅拌30min。将得到的r-GO溶液用去离子水“洗涤-抽滤”多次,将得到的固体产物冷冻干燥,密封保存备用。抗坏血酸溶液作为还原剂,可以消除氧化石墨烯上非必要的官能团,进一步增强材料的导电性。
S3:称取0.2g十二烷基苯磺酸钠(SDBS)加入烧杯中,加入20mL去离子水溶解,然后分别称取0.01g还原氧化石墨烯和0.01g酸处理后的单壁碳纳米管,搅拌分散,800W条件超声5min。向超声分散后的混合液中加入6mL PEDOT:PSS(1.3wt%)水溶液,800W条件超声30min。将分散均匀的混合液用PVDF滤膜抽滤,真空干燥,得到温敏导电复合材料。十二烷基苯磺酸钠作为表面活性剂,可以增强材料的导电性。
S4:将PDMS与固化剂以质量比10:1进行混合,2000rpm转速下搅拌并脱气,然后将其均匀旋涂在均匀喷涂脱模剂的硅片上。旋涂过程转速为1500rpm,时长为10s。旋涂完成后,将整个硅片平整放入鼓风干燥箱中70℃干燥30min。旋涂转速可在1000-2000rpm范围内调整,旋涂时长可在5-15s范围内调整,PDMS与固化剂质量比可在(9-12):1范围内调整,旋涂的转速、时长以及PDMS与固化剂质量比将影响PDMS基底的厚度,从而对柔性温度传感器的灵敏度造成影响。
将干燥后的温敏导电薄膜用激光切割成3cm×1cm的长方形或蛇形,然后将该膜置于旋涂好的PDMS基底上,用银胶将铜导线与其相连,60℃ 烤干银胶,然后用PDMS旋涂封装,70℃干燥,即得以PDMS为基底的PEDOT:PSS/SWCNT/rGO复合材料柔性温度传感器。
本发明中,单壁碳纳米管、还原氧化石墨烯和(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))的质量比优选在1:1:(3-39)范围内,三者的质量比会影响整个柔性传感器的灵敏度、响应速度等性能。
图1为基于复合材料的柔性温度传感器的制备方法流程示意图。参见图2、3,图2为所制得的以PDMS为基底的PEDOT:PSS/SWCNT/rGO复合材料柔性温度传感器的示意图,图3为所制得的以PDMS为基底的PEDOT:PSS/SWCNT/rGO复合材料柔性温度传感器的实物图,柔性温度传感器可弯曲,适用于穿戴。
对基于复合材料的柔性温度传感器在25℃-45℃温度区间内进行快速的升温-降温过程,如图4所示,可以看出,传感器的电阻随温度变化基本保持一致,由此可见本实施例提供的PEDOT:PSS/SWCNT/rGO复合材料柔性温度传感器具有优异的可重复性。
对以PDMS为基底的PEDOT:PSS/SWCNT/rGO复合材料柔性温度传感器进行电阻率变化测试,得出以PDMS为基底的PEDOT:PSS/SWCNT/rGO复合材料柔性温度传感器随温度变化的电阻变化率曲线,其电阻温度系数为0.605%℃ -1,参见图5。
实施例2
S1:配制2mol/L硫酸(H 2SO 4)水溶液100mL,然后取该H 2SO 4溶液和过氧化氢水溶液(H 2O 2 30%)配制H 2SO 4与H 2O 2体积比为3:1的混合溶液。
称取0.2g SWCNT置于圆底烧瓶中,加入40mLH 2SO 4/H 2O 2(3:1)混合溶液,油浴加热,搅拌回流一晚上。停止反应,冷却至室温,用去离子水多次“洗涤-抽滤”,直至滤液变为中性。将得到的固体产物在60℃条件下 真空干燥一晚上,密封保存备用。
H 2SO 4溶液和过氧化氢水溶液(H 2O 2 30%)配制H 2SO 4与H 2O 2体积比可以在(4-5):1范围内进行调整,SWCNT在溶液中极易发生团聚,使用该体积比范围的H 2SO 4/H 2O 2混合溶液,可以有效减少SWCNT的团聚,以避免SWCNT团聚对材料导电性带来的不良影响。
S2:将0.5g氧化石墨烯(GO)粉末放入烧杯中,加入250mL去离子水,100W条件超声剥离2小时,得到分散的GO溶液。用磁力搅拌器(转速800rpm)搅拌GO溶液,搅拌过程中匀速滴加100mL抗坏血酸溶液(10%),滴加完毕继续搅拌30min。将得到的r-GO溶液用去离子水“洗涤-抽滤”多次,将得到的固体产物冷冻干燥,密封保存备用。
抗坏血酸溶液起还原剂的作用,氧化石墨烯粉末与抗坏血酸的比例可以在(0.4-0.6)g:(90-110)mL范围内调整,在该比例范围内,可以很好地消除氧化石墨烯上非必要的官能团,进一步增强材料的导电性。
S3:称取0.2g十二烷基苯磺酸钠(SDBS)加入烧杯中,加入20mL去离子水溶解,然后分别称取0.01g还原氧化石墨烯和0.01g酸处理后的单壁碳纳米管,搅拌分散,800W条件超声5min。向超声分散后的混合液中加入6mL PEDOT:PSS(1.3wt%)水溶液,800W条件超声30min。将分散均匀的混合液用PVDF滤膜抽滤,真空干燥,得到温敏导电复合材料。
十二烷基苯磺酸钠作为表面活性剂,其用量根据实际所添加的碳材料进行调整,为所添加碳材料质量的10倍,能够有效对碳材料进行分散,增强材料的导电性。
S4:将干燥后的温敏导电薄膜用激光切割成3cm×1cm的长方形,然后将该膜置于PI基底上,用银胶将铜导线与其相连,60℃烤干银胶,然后用PI胶带封装,即得以PI为基底的PEDOT:PSS/SWCNT/rGO复合材料柔 性温度传感器。
本发明中,单壁碳纳米管、还原氧化石墨烯和(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))的质量比优选在1:1:(3-39)范围内,三者的质量比会影响整个柔性传感器的灵敏度、重复性、响应速度等性能。
对以PI为基底的PEDOT:PSS/SWCNT/rGO复合材料柔性温度传感器进行电阻率变化测试,得出以PI为基底的PEDOT:PSS/SWCNT/rGO复合材料柔性温度传感器随温度变化的电阻变化率曲线,其电阻温度系数为0.335%℃ -1,参见图5。
实施例1和实施例2的具体制备方法流程可参见图6。本发明提供的基于复合材料的柔性温度传感器可应用于可穿戴式设备上,如可穿戴医疗设备等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、同比例放大、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种基于复合材料的柔性温度传感器,其特征在于,包括温敏导电复合薄膜材料以及承载所述温敏导电复合薄膜材料的柔性基底,所述温敏导电复合薄膜材料至少由单壁碳纳米管、还原氧化石墨烯和(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))制备而成。
  2. 根据权利要求1所述的基于复合材料的柔性温度传感器,其特征在于,所述单壁碳纳米管、所述还原氧化石墨烯和所述(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))的质量比为1:1:(3-39)。
  3. 一种根据权利要求1或2所述的基于复合材料的柔性温度传感器的制备方法,其特征在于,包括以下步骤:
    将(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))与改性后的单壁碳纳米管和还原氧化石墨烯按比例进行混合均匀,经抽滤并真空干燥得到温敏导电复合薄膜材料;将所述温敏导电复合薄膜材料与柔性基底结合即制得所述基于复合材料的柔性温度传感器。
  4. 根据权利要求3所述的基于复合材料的柔性温度传感器的制备方法,其特征在于,所述单壁碳纳米管、所述还原氧化石墨烯和所述(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))的质量比为1:1:(3-39)。
  5. 根据权利要求3所述的基于复合材料的柔性温度传感器的制备方法,其特征在于,包括以下步骤:
    S1、将单壁碳纳米管进行改性处理:向单壁碳纳米管中加入H 2SO 4/H 2O 2混合溶液,加热回流搅拌;停止反应,冷却至室温,用去离子水重复进行“洗涤-抽滤”操作至滤液变为中性,将得到的固体产物进行真空干燥,制得改性处理后的单壁碳纳米管粉末;
    S2、将氧化石墨烯进行改性处理:将氧化石墨烯粉末中加入水,得到分散的氧化石墨烯溶液;将还原剂匀速滴加至搅拌状态下的所述氧化石墨 烯溶液中,滴加完毕后继续搅拌反应,将反应所得溶液经洗涤抽滤,并将抽滤所得固体物经冷冻干燥得到还原氧化石墨烯粉末;
    S3、温敏导电复合薄膜材料制备:将表面活性剂加入到水中溶解,再分别称取所述S1的单壁碳纳米管粉末、所述S2的还原氧化石墨烯粉末并加入到所述表面活性剂溶液中,搅拌分散并进行超声处理;向超声处理后的混合液中加入(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))水溶液,进行分散、抽滤,将抽滤所得固体物进行真空干燥,得到温敏导电复合薄膜材料;
    S4、基于复合材料的柔性温度传感器制备:将所述S3的温敏导电复合薄膜材料切割成长条形或蛇形后,置于柔性基底上,用银胶将导线与所述温敏导电复合薄膜材料相连,然后封装,干燥,得到所述基于复合材料的柔性温度传感器。
  6. 根据权利要求5所述的基于复合材料的柔性温度传感器的制备方法,其特征在于,所述柔性基底为聚二甲基硅氧烷基底或聚酰亚胺基底。
  7. 根据权利要求5所述的基于复合材料的柔性温度传感器的制备方法,其特征在于,所述S4具体包括以下步骤:
    将聚二甲基硅氧烷预聚物与固化剂进行混合,搅拌并脱气,然后将所述聚二甲基硅氧烷预聚物与固化剂的混合液均匀旋涂在均匀喷涂有脱模剂的硅片上;旋涂完成后,将所述硅片在60-100℃的环境下干燥,得到聚二甲基硅氧烷基底;将所述S3的温敏导电复合材料切割成长条形或蛇形后,置于所述聚二甲基硅氧烷基底上,用银胶将导线与所述温敏导电复合薄膜材料相连,烤干银胶,然后用聚二甲基硅氧烷旋涂封装,干燥,得到所述基于复合材料的柔性温度传感器;
    或,
    所述S4具体包括以下步骤:
    将所述S3的温敏导电薄膜切割成长条形或蛇形后,置于聚酰亚胺基底上,用银胶将导线与所述温敏导电复合薄膜材料相连,烤干银胶,然后用 聚酰亚胺胶带封装,得到所述基于复合材料的柔性温度传感器。
  8. 根据权利要求7所述的基于复合材料的柔性温度传感器的制备方法,其特征在于,所述S4中旋涂的转速为1000-2000rpm,旋涂时长为5-15s。
  9. 根据权利要求7所述的基于复合材料的柔性温度传感器的制备方法,其特征在于,所述S4中聚二甲基硅氧烷预聚物与固化剂质量比为(9-12):1。
  10. 根据权利要求5所述的基于复合材料的柔性温度传感器的制备方法,其特征在于,具体包括以下步骤:
    S1:配制2mol/L的H 2SO 4水溶液100mL,然后取该H 2SO 4溶液和质量份30%的H 2O 2水溶液配制成H 2SO 4与H 2O 2体积比为3:1的H 2SO 4/H 2O 2混合溶液;
    称取0.2g单壁碳纳米管置于反应容器中,加入40mL所述H 2SO 4/H 2O 2混合溶液,油浴加热,搅拌回流一晚上;停止反应,冷却至室温,用去离子水重复进行“洗涤-抽滤”,直至滤液变为中性,将抽滤得到的固体产物在60℃条件下真空干燥一晚上,得到改性后的产物单壁碳纳米管并密封保存备用;
    S2:将0.5g氧化石墨烯粉末放入容器中,加入250mL去离子水,100W条件超声剥离2小时,得到分散的氧化石墨烯溶液;于转速800rpm条件下搅拌氧化石墨烯溶液,搅拌过程中匀速滴加100mL质量分数10%的抗坏血酸溶液,滴加完毕继续搅拌30min,将得到的还原氧化石墨烯溶液用去离子水“洗涤-抽滤”多次,将抽滤得到的固体物冷冻干燥,得到产物还原氧化石墨烯并密封保存备用;
    S3:称取0.2g十二烷基苯磺酸钠加入容器中,加入20mL去离子水溶解,然后分别称取0.01g步骤S2所得产物还原氧化石墨烯和0.01g步骤S1所得产物单壁碳纳米管,搅拌分散,800W条件超声5min;向超声分散后的混合液中加入6mL质量分数1.3%的(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))水溶液,800W条件超声30min;将分散均匀的混合液用PVDF滤膜抽滤,真空干燥,得到温敏导电复合薄膜材料;
    S4:将聚二甲基硅氧烷预聚物与固化剂以质量比10:1进行混合,2000rpm转速下搅拌并脱气,然后将其均匀旋涂在均匀喷涂有脱模剂的硅片上,旋涂过程转速为1500rpm,时长为10s,旋涂完成后,将整个硅片平整放入鼓风干燥箱中70℃干燥30min,得到聚二甲基硅氧烷柔性基底;
    将干燥后的温敏导电复合薄膜材料用切割成长方形或蛇形,然后置于旋涂好的聚二甲基硅氧烷柔性基底上,用银胶将铜导线与其相连,60℃烤干银胶,然后用聚二甲基硅氧烷旋涂封装,70℃干燥,即得以聚二甲基硅氧烷为柔性基底的柔性温度传感器。
  11. 根据权利要求5所述的基于复合材料的柔性温度传感器的制备方法,其特征在于,具体包括以下步骤:
    S1:配制2mol/LH 2SO 4水溶液100mL,然后取该H 2SO 4溶液和质量份30%的H 2O 2水溶液配制H 2SO 4与H 2O 2体积比为3:1的H 2SO 4/H 2O 2混合溶液;
    称取0.2g单壁碳纳米管置于反应容器中,加入40mL所述H 2SO 4/H 2O 2混合溶液,油浴加热,搅拌回流一晚上;停止反应,冷却至室温,用去离子水重复进行“洗涤-抽滤”,直至滤液变为中性,将抽滤得到的固体产物在60℃条件下真空干燥一晚上,得到改性后的产物单壁碳纳米管并密封保存备用;
    S2:将0.5g氧化石墨烯粉末放入容器中,加入250mL去离子水,100W条件超声剥离2小时,得到分散的GO溶液。于转速800rpm条件下搅拌氧化石墨烯溶液,搅拌过程中匀速滴加100mL质量分数10%的抗坏血酸溶液,滴加完毕继续搅拌30min,将得到的还原氧化石墨烯溶液用去离子水“洗涤-抽滤”多次,将抽滤得到的固体物冷冻干燥,得到产物还原氧化石墨烯并密封保存备用;
    S3:称取0.2g十二烷基苯磺酸钠加入烧杯中,加入20mL去离子水溶解,然后分别称取0.01g步骤S2所得产物还原氧化石墨烯和0.01g步骤S1所得产物单壁碳纳米管,搅拌分散,800W条件超声5min;向超声分 散后的混合液中加入6mL质量分数1.3%的(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))水溶液,800W条件超声30min;将分散均匀的混合液用PVDF滤膜抽滤,真空干燥,得到温敏导电复合材料;
    S4:将干燥后的温敏导电薄膜用激光切割成3cm×1cm的长方形或蛇形,然后将该膜置于PI基底上,用银胶将铜导线与其相连,60℃烤干银胶,然后用PI胶带封装,即得以PI为基底的柔性温度传感器。
  12. 权利要求1或2所述基于复合材料的柔性温度传感器或根据权利要求3-11任一项所述制备方法所得的基于复合材料的柔性温度传感器在可穿戴设备传感器中的应用。
PCT/CN2021/093568 2021-05-08 2021-05-13 一种基于复合材料的柔性温度传感器、制备方法及其应用 WO2022236768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110500891.7 2021-05-08
CN202110500891.7A CN113108935B (zh) 2021-05-08 2021-05-08 一种柔性温度传感器、制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2022236768A1 true WO2022236768A1 (zh) 2022-11-17

Family

ID=76721673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093568 WO2022236768A1 (zh) 2021-05-08 2021-05-13 一种基于复合材料的柔性温度传感器、制备方法及其应用

Country Status (2)

Country Link
CN (1) CN113108935B (zh)
WO (1) WO2022236768A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116855254A (zh) * 2023-07-03 2023-10-10 江苏莘野生物科技有限公司 一种长效可控的酸性土壤调理剂及其制备方法
CN117245934A (zh) * 2023-11-20 2023-12-19 南京邮电大学 基于微电子打印的柔性拉伸传感器及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112124B (zh) * 2021-11-02 2023-11-10 陕西科技大学 一种PEDOT:PSS/MgAlV-LDH/皮革柔性可穿戴传感材料及其制备方法
CN113984235B (zh) * 2021-11-10 2024-04-19 武汉大学 基于离子热电水凝胶的柔性可拉伸热电偶及其制备方法
CN114235212A (zh) * 2021-12-24 2022-03-25 济南大学 一种柔性温度传感材料、传感器及其制备方法
CN114396869B (zh) * 2022-01-18 2023-09-22 山西大学 一种极端环境耐受型高灵敏度应变传感器的制备方法
CN114812847B (zh) * 2022-04-29 2023-10-03 中国科学院物理研究所 一种拓扑型温度计、其制备及测量方法
CN117091727B (zh) * 2023-08-24 2024-04-23 哈尔滨理工大学 一种基于peo的可植入电池温度传感器及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140105242A1 (en) * 2011-06-23 2014-04-17 Brown University Device and methods for temperature and humidity measurements using a nanocomposite film sensor
CN104919633A (zh) * 2012-11-15 2015-09-16 索尔维公司 包含石墨烯材料和导电聚合物的成膜组合物
CN106568539A (zh) * 2016-10-20 2017-04-19 上海交通大学 基于聚合物衬底的单片集成温湿压柔性传感器及制备方法
CN106840483A (zh) * 2017-03-31 2017-06-13 北京工业大学 碳纳米管/聚苯胺复合薄膜柔性力敏传感器及其制备方法
CN108489646A (zh) * 2018-03-16 2018-09-04 电子科技大学 一种柔性可穿戴力学传感器及其制备方法
CN109632140A (zh) * 2018-12-26 2019-04-16 天津大学 一种温度传感器及温度检测装置
CN110068397A (zh) * 2019-04-29 2019-07-30 中国科学院宁波材料技术与工程研究所 一种柔性体温传感器及其制备方法
CN110729138A (zh) * 2019-09-04 2020-01-24 江苏大学 一种基于导电聚合物复合柔性电极材料的制备方法
CN112284579A (zh) * 2020-09-30 2021-01-29 济南大学 基于生物薄膜的自供电柔性压阻式压力传感器及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8198976B2 (en) * 2006-08-18 2012-06-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flexible thin metal film thermal sensing system
US7649439B2 (en) * 2006-08-18 2010-01-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flexible thin metal film thermal sensing system
CN106932119A (zh) * 2017-03-24 2017-07-07 东华大学 一种印刷式织物基柔性温度传感器
CN108896199B (zh) * 2018-08-21 2020-06-23 厦门大学 一种可拉伸的纱线传感器及其制备方法
CN112225942A (zh) * 2020-10-13 2021-01-15 中南大学 应变-温度双响应柔性电子传感器复合材料的制备方法及得到的电子传感器和复合材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140105242A1 (en) * 2011-06-23 2014-04-17 Brown University Device and methods for temperature and humidity measurements using a nanocomposite film sensor
CN104919633A (zh) * 2012-11-15 2015-09-16 索尔维公司 包含石墨烯材料和导电聚合物的成膜组合物
CN106568539A (zh) * 2016-10-20 2017-04-19 上海交通大学 基于聚合物衬底的单片集成温湿压柔性传感器及制备方法
CN106840483A (zh) * 2017-03-31 2017-06-13 北京工业大学 碳纳米管/聚苯胺复合薄膜柔性力敏传感器及其制备方法
CN108489646A (zh) * 2018-03-16 2018-09-04 电子科技大学 一种柔性可穿戴力学传感器及其制备方法
CN109632140A (zh) * 2018-12-26 2019-04-16 天津大学 一种温度传感器及温度检测装置
CN110068397A (zh) * 2019-04-29 2019-07-30 中国科学院宁波材料技术与工程研究所 一种柔性体温传感器及其制备方法
CN110729138A (zh) * 2019-09-04 2020-01-24 江苏大学 一种基于导电聚合物复合柔性电极材料的制备方法
CN112284579A (zh) * 2020-09-30 2021-01-29 济南大学 基于生物薄膜的自供电柔性压阻式压力传感器及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Thesis", 30 April 2018, WUHAN INSTITUTE OF TECHNOLOGY, article CAO NANNAN: "Thermoelectric Properties of PEDOT:PSS Enhanced by Carbon Materials", pages: 1 - 96, XP093003246 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116855254A (zh) * 2023-07-03 2023-10-10 江苏莘野生物科技有限公司 一种长效可控的酸性土壤调理剂及其制备方法
CN117245934A (zh) * 2023-11-20 2023-12-19 南京邮电大学 基于微电子打印的柔性拉伸传感器及其制备方法
CN117245934B (zh) * 2023-11-20 2024-01-26 南京邮电大学 基于微电子打印的柔性拉伸传感器及其制备方法

Also Published As

Publication number Publication date
CN113108935B (zh) 2022-09-06
CN113108935A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2022236768A1 (zh) 一种基于复合材料的柔性温度传感器、制备方法及其应用
Yan et al. Inkjet printing for flexible and wearable electronics
Liu et al. A high performance self-healing strain sensor with synergetic networks of poly (ɛ-caprolactone) microspheres, graphene and silver nanowires
Tang et al. Large-scale fabrication of highly elastic conductors on a broad range of surfaces
Tachibana et al. A printed flexible humidity sensor with high sensitivity and fast response using a cellulose nanofiber/carbon black composite
US20180340848A1 (en) Three-layer self-healing flexible strain sensor and preparation method thereof
CN110108375B (zh) 一种基于MXene材料的电子皮肤及其制备方法
CN109115107B (zh) 一种高灵敏度柔性应变传感器的制备方法
CN109294133A (zh) 可拉伸自愈合水凝胶柔性应变传感器及其制备方法
CN107036741B (zh) 一种自修复石墨烯基压力传感器的制备方法
Yu et al. Highly sensitive, weatherability strain and temperature sensors based on AgNPs@ CNT composite polyvinyl hydrogel
WO2020253306A1 (zh) 一种柔性压阻式应力传感器及其制备方法
CN105841849A (zh) 一种柔性压力传感器与薄膜晶体管的集成器件及制备方法
Xu et al. Highly stretchable, fast thermal response carbon nanotube composite heater
CN108112177B (zh) 一种柔性透明电路的制备方法
WO2022252021A1 (zh) 一种柔性温度传感器阵列及其制备方法
Madhavan Flexible and stretchable strain sensors fabricated by inkjet printing of silver nanowire-ecoflex composites
Qiao et al. Study of flexible piezoresistive sensors based on the hierarchical porous structure CNT/PDMS composite materials
CN102023064B (zh) 用于研制柔性传感器敏感单元的挤压式极间硫化成型封装法
CN108962438A (zh) 一种导电球及其制作方法、液晶显示装置
CN110501086B (zh) 一种柔性温度传感器及其制备方法
CN113418645B (zh) 基于铁磁纳米线/碳材料的复合型柔性三维力传感器及其制备方法
WO2021253274A1 (zh) 一种柔性图案化电极的制备和柔性电子设备
CN113041008A (zh) 一种可穿戴热疗电子器件及其阵列化的制备方法
Liu et al. Highly sensitive wearable strain sensors using copper nanowires and elastomers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE