WO2022233322A1 - 膨胀阀 - Google Patents

膨胀阀 Download PDF

Info

Publication number
WO2022233322A1
WO2022233322A1 PCT/CN2022/091211 CN2022091211W WO2022233322A1 WO 2022233322 A1 WO2022233322 A1 WO 2022233322A1 CN 2022091211 W CN2022091211 W CN 2022091211W WO 2022233322 A1 WO2022233322 A1 WO 2022233322A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle
valve
section
throttling
diameter
Prior art date
Application number
PCT/CN2022/091211
Other languages
English (en)
French (fr)
Inventor
冯忠波
林元阳
俞舟
宋治国
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Priority to JP2023564224A priority Critical patent/JP2024516144A/ja
Priority to KR1020237041609A priority patent/KR20240004879A/ko
Publication of WO2022233322A1 publication Critical patent/WO2022233322A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • F16K27/044Construction of housing; Use of materials therefor of sliding valves slide valves with flat obturating members
    • F16K27/047Construction of housing; Use of materials therefor of sliding valves slide valves with flat obturating members with wedge-shaped obturating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves

Definitions

  • the present application relates to the technical field of expansion valves, and in particular, to an expansion valve.
  • the expansion valve in the prior art generally includes a valve seat and a valve needle.
  • the throttling part of the valve needle generally adopts a tapered structure.
  • the flow area will change continuously with the change of the spring and the pressure difference between the front and rear of the valve. .
  • the flow accuracy is completely determined by the manufacturing accuracy of the spring and the machining accuracy of the taper part of the valve needle; it will also lead to the problems that the flow area is affected by the accuracy and the flow stability is poor in practical applications.
  • the main purpose of the present application is to provide an expansion valve to solve the technical problem that the flow area of the expansion valve in the prior art is greatly affected by the machining accuracy during throttling.
  • an expansion valve comprising: a valve seat, a valve seat is provided with a valve cavity and a flow channel that communicate with each other, and a valve port is formed at the connection between the valve cavity and the flow channel; a valve needle, a valve needle It comprises a main body part and a throttling part that are connected to each other, the main body part is movably arranged in the valve cavity, and the throttling part is movably arranged at the valve port; wherein the throttling part comprises a plurality of throttling sections connected in sequence, each The throttling sections are all cylindrical structures of equal section, and a connecting step is formed between two adjacent throttling sections.
  • the throttling portion includes a first throttling section and a second throttling section that are connected to each other, the first throttling section is connected to the main body section, and the second throttling section is arranged at one end of the first throttling section away from the main body section, The diameter of the first throttle section is larger than the diameter of the second throttle section.
  • the throttle portion further includes a third throttle section, the third throttle section is arranged at one end of the second throttle section away from the first throttle section, and the diameter of the second throttle section is larger than the diameter of the third throttle section .
  • each throttle segment is a cylindrical segment structure
  • the valve port is a circular port structure.
  • the diameter of the first throttle section is D 1
  • the diameter of the second throttle section is D 2
  • the diameter of the first throttle section is D 1
  • the diameter of the valve port is D 3
  • the diameter of the second throttle section is D 2
  • the diameter of the valve port is D 3
  • the expansion valve further includes: a head, mounted on the valve seat, the head is located at one end of the valve cavity away from the circulation channel; wherein the length of the circulation channel is H 1 , and the end of the head close to the circulation channel is close to the valve cavity for circulation
  • the distance between one end of the channel is H 2
  • the length of the throttling portion is L 1
  • the distance between the end of the head close to the flow channel and the end of the main body near the flow channel is L 2
  • L 1 +L 2 >H 1 +H 2 .
  • each throttle segment is a cylindrical segment structure
  • the valve port is a polygonal structure.
  • the flow rate at each throttling section can be a constant value, and the flow rate at each throttling section can be a constant value.
  • the throttling section can be within the length of the throttling section, and it does not need to be adjusted accurately, and it also avoids the situation that the flow area is greatly affected by the taper.
  • a connection step is formed between two adjacent throttling sections, it can be avoided that the connection between two adjacent throttling sections is set to a tapered structure, thereby facilitating the throttling section between different throttling states to switch. Therefore, the technical solution provided by the present application can solve the technical problem that the flow area of the expansion valve in the prior art is greatly affected by the machining accuracy during throttling.
  • FIG. 1 shows a cross-sectional view of an expansion valve provided according to an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a throttle portion provided according to an embodiment of the present application when it is in a first throttle state
  • FIG. 3 shows a schematic structural diagram of a throttle portion provided according to an embodiment of the present application when it is in a second throttle state
  • FIG. 4 shows a schematic structural diagram of a valve needle provided according to an embodiment of the present application
  • Figure 5 shows a bottom view of a valve seat provided in accordance with an embodiment of the present application.
  • valve seat 10, valve seat; 11, valve cavity; 12, circulation channel; 13, valve port; 20, valve needle; 21, main body part; 22, throttle part; 221, first throttle section; 222, second throttle section; 223, the third throttle section; 30, head; 40, valve body; 50, spring.
  • an embodiment of the present application provides an expansion valve
  • the expansion valve includes a valve seat 10 and a valve needle 20
  • the valve seat 10 is provided with a valve cavity 11 and a flow passage 12 that communicate with each other
  • a valve port 13 is formed at the connection between the valve chamber 11 and the flow passage 12 .
  • the valve needle 20 includes a main body portion 21 and a throttling portion 22 that are connected to each other.
  • the main body portion 21 is movably arranged in the valve cavity 11
  • the throttling portion 22 is movably arranged at the valve port 13 .
  • the throttling portion 22 includes a plurality of throttling sections connected in sequence, each throttling section is a cylindrical structure of equal cross-section, and a connection step is formed between two adjacent throttling sections.
  • the flow rate at each throttling section can be a constant value
  • each throttling section has a certain length, it is only necessary to adjust the throttling section during adjustment.
  • the part 22 can be adjusted within the length range of the corresponding throttling section, and precise adjustment is not required, and the situation that the flow area is greatly affected by the taper is also avoided.
  • connection step is formed between two adjacent throttling sections, in this way, it can be avoided that the connection between two adjacent throttling sections is set in a tapered structure, so that it is convenient to make the throttling section 22 in different throttling states. switch between. Therefore, using the expansion valve provided in this embodiment can solve the technical problem that the flow area of the expansion valve in the prior art is greatly affected by the machining accuracy during throttling.
  • the throttling portion 22 includes a first throttling section 221 and a second throttling section 222 that are connected to each other, the first throttling section 221 is connected to the main body 21 , and the second throttling section 222 is provided at the first throttling section 222 One end of the throttle section 221 away from the main body portion 21 , and the diameter of the first throttle section 221 is larger than the diameter of the second throttle section 222 .
  • a first step is formed at the connection between the first throttle section 221 and the second throttle section 222 .
  • the throttle portion 22 further includes a third throttle section 223, the third throttle section 223 is disposed at one end of the second throttle section 222 away from the first throttle section 221, and the diameter of the second throttle section 222 is larger than that of the third throttle section 222.
  • the diameter of the three throttle segments 223 With such a structural arrangement, when the third throttling section 223 moves to the valve port 13, the throttling portion 22 is at the third throttling position corresponding to the third throttling state. Since the diameter of the second throttle section 222 is larger than the diameter of the third throttle section 223 , the flow rate of the throttle section 22 at the second throttle position is smaller than the flow rate of the throttle section 22 at the third throttle position.
  • a second step is formed at the connection between the second throttle section 222 and the third throttle section 223 .
  • each throttle segment is a cylindrical segment structure
  • the valve port 13 is a circular port structure.
  • the throttle section and the valve port 13 are in a matching shape, and the first throttle section 221 can be used to fit and block the valve port 13 to prevent the liquid from flowing out of the circulation channel 12 . .
  • the diameter of the first throttle section 221 is D 1
  • the diameter of the second throttle section 222 is D 2
  • the diameter of the first throttle section 221 in this embodiment is D 1
  • the diameter of the valve port 13 is D 3
  • 0.5 ⁇ D 1 /D 3 ⁇ 0.9 it is convenient to reasonably adjust the flow rate at the valve port 13 in the first throttle state, and it is also convenient to have sufficient space for movement between the first throttle section 221 and the valve port 13 .
  • the diameter of the second throttle section 222 is D 2
  • the diameter of the valve port 13 is D 3
  • 0.3 ⁇ D 2 /D 3 ⁇ 0.8 it is convenient to reasonably adjust the flow rate at the valve port 13 in the second throttling state, and it is also convenient to have sufficient space for movement between the first throttle section 221 and the valve port 13 .
  • the expansion valve in this embodiment further includes a head 30 .
  • the head 30 is installed on the valve seat 10 , and the head 30 is located at one end of the valve cavity 11 away from the flow passage 12 .
  • the length of the flow channel 12 is H 1
  • the distance between the end of the head 30 close to the flow channel 12 and the end of the valve cavity 11 close to the flow channel 12 is H 2
  • the length of the throttling portion 22 is L 1
  • the head 30 is close to the flow
  • the distance between one end of the channel 12 and the end of the main body portion 21 close to the flow channel 12 is L 2 , L 1 +L 2 >H 1 +H 2 .
  • each throttling section is a cylindrical section structure, the corresponding cross-sectional area of each throttling section is different, so that the throttling area of each throttling section is different when throttling, and the valve port 13 is a polygonal structure. Since each throttling section is a cylindrical section structure, when the first throttling section 221 of the throttling section 22 closes the valve port 13, there is still a flow gap between the valve port 13 and the first throttling section 221, that is, A small amount of liquid can still flow out of the valve port 13 .
  • the expansion valve includes a valve body 40 and a spring 50 , the valve body 40 is connected to the refrigeration system, the valve seat 10 is arranged inside the valve body 40 , and the valve seat 10 has a valve port 13 .
  • the main body 21 of the valve needle 20 is arranged inside the valve seat 10 , one end of the throttle portion 22 of the valve needle 20 extends into the valve port 13 , and the valve needle 20 moves along the axial direction of the valve cavity 11 to adjust the valve port 13
  • the throttling part 22 of the valve needle 20 adopts a multi-segment structure similar to a stepped shaft. When each straight section acts on the valve port 13 for throttling, the flow area is constant.
  • the present application adopts a multi-stage valve needle 20 similar to a stepped shaft structure to ensure that the flow area of the valve port 13 is constant and the flow rate is naturally more stable under the pressure difference point of each working condition.
  • valve needle 20 adopts the valve needle 20 with a multi-stage stepped shaft structure, the flow area formed when the valve needle 20 and the valve port 13 are throttled are all located in the cross-sectional area of the valve needle 20 .
  • the influence of the flow area of the valve port 13 by the machining accuracy of the spring 50 is reduced, and the influence of the taper machining accuracy of the valve needle 20 is removed, which minimizes the factors that affect the flow area of the valve port 13 and greatly improves the flow stability. sex.
  • the flow area of the valve port 13 can be kept constant at S1, and the flow at this time is only affected by the pressure difference before and after the valve.
  • valve needle 20 When the expansion valve in this embodiment is assembled, the valve needle 20 is put into the valve seat 10 , one end of the valve needle 20 extends out of the valve port 13 , the spring 50 is put into the valve seat 10 , and the spring of the head 30 is inserted into the valve seat 10 .
  • the guide section 50 is placed into the valve seat 10 along the inner hole of the spring 50 , and then the head 30 is riveted to form the valve seat 10 part. Then, the valve seat 10 is put into the valve body 40, and the positioning and necking is completed with a tool.
  • the above-mentioned embodiments of the present application achieve the following technical effects: the machining accuracy of the throttle portion is reduced, the manufacturing accuracy of the spring is reduced, the manufacturing cost is reduced, and the flow area of the valve port is It remains constant under multiple operating conditions (different throttling states), which greatly improves the flow stability of the expansion valve.
  • orientations indicated by the orientation words such as “front, rear, top, bottom, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” etc.
  • positional relationship is usually based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present application and simplifying the description, and these orientations do not indicate or imply the indicated device or element unless otherwise stated. It must have a specific orientation or be constructed and operated in a specific orientation, so it cannot be construed as a limitation on the protection scope of the application; the orientation words “inside and outside” refer to the inside and outside relative to the contour of each component itself.
  • spatially relative terms such as “on”, “over”, “on the surface”, “above”, etc., may be used herein to describe what is shown in the figures.
  • spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “above” or “over” other devices or features would then be oriented “below” or “over” the other devices or features under other devices or constructions”.
  • the exemplary term “above” can encompass both an orientation of "above” and “below.”
  • the device may also be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lift Valve (AREA)

Abstract

一种膨胀阀,包括:阀座(10),阀座(10)内设置有相互连通的阀腔(11)和流通通道(12),阀腔(11)和流通通道(12)的连接处形成阀口(13);阀针(20),阀针(20)包括相互连接的主体部(21)和节流部(22),主体部(21)可活动地设置在阀腔(11)内,节流部(22)可活动地设置在阀口(13)处。其中,节流部(22)包括多个依次连接的节流段,各个节流段均为等截面柱体结构,相邻两个节流段之间形成连接台阶。该膨胀阀能够解决现有技术中的膨胀阀在节流时流通面积受加工精度影响较大的技术问题。

Description

膨胀阀
本申请要求于2021年05月07日提交至中国国家知识产权局、申请号为202120966626.3、申请名称为“膨胀阀”的专利申请的优先权。
技术领域
本申请涉及膨胀阀技术领域,具体而言,涉及一种膨胀阀。
背景技术
目前,现有技术中的膨胀阀一般包括阀座和阀针,阀针的节流部位一般采用具有锥度的结构,在节流时流通面积将随着弹簧和阀前后压差的变化而不断变化。这样,使得流量精度完全取决于弹簧的制造精度和阀针的锥度部位的加工精度;也会导致在实际应用中存在节流时流通面积受精度影响波动较大、流量稳定性差的问题。
实用新型内容
本申请的主要目的在于提供一种膨胀阀,以解决现有技术中的膨胀阀在节流时流通面积受加工精度影响较大的技术问题。
为了实现上述目的,本申请提供了一种膨胀阀,包括:阀座,阀座内设置有相互连通的阀腔和流通通道,阀腔和流通通道的连接处形成阀口;阀针,阀针包括相互连接的主体部和节流部,主体部可活动地设置在阀腔内,节流部可活动地设置在阀口处;其中,节流部包括多个依次连接的节流段,各个节流段均为等截面柱体结构,相邻两个节流段之间形成连接台阶。
进一步地,节流部包括相互连接的第一节流段和第二节流段,第一节流段与主体部连接,第二节流段设置在第一节流段远离主体部的一端,第一节流段的直径大于第二节流段的直径。
进一步地,节流部还包括第三节流段,第三节流段设置在第二节流段远离第一节流段的一端,第二节流段的直径大于第三节流段的直径。
进一步地,各个节流段均为圆柱段结构,阀口为圆形口结构。
进一步地,第一节流段的直径为D 1,第二节流段的直径为D 2,1.1<D 1/D 2<2。
进一步地,第一节流段的直径为D 1,阀口的直径为D 3,0.5<D 1/D 3<0.9。
进一步地,第二节流段的直径为D 2,阀口的直径为D 3,0.3<D 2/D 3<0.8。
进一步地,膨胀阀还包括:封头,安装在阀座上,封头位于阀腔远离流通通道的一端;其中,流通通道的长度为H 1,封头靠近流通通道的一端与阀腔靠近流通通道一端的距离为H 2, 节流部的长度为L 1,封头靠近流通通道的一端与主体部靠近流通通道一端的距离为L 2,L 1+L 2>H 1+H 2
进一步地,各个节流段均为圆柱段结构,阀口为多边形结构。
应用本申请的技术方案,通过设置多个依次连接的节流段,且各个节流段均为等截面柱体结构,这样能够使得各个节流段处的流通量均为一个恒定值,在对流量进行调节时,只需要将节流部调节至使对应的节流段位于阀口处即可,由于各个节流段处均有一定的长度,在调节时只需要将节流部调节至对应的节流段的长度范围内即可,不需要进行精确地调节,也避免了流通面积受锥度影响较大的情况。另外,由于相邻两个节流段之间形成连接台阶,这样,能够避免相邻两个节流段的连接处设置成锥形结构,从而便于使得节流部在不同的节流状态之间进行切换。因此,采用本申请提供的技术方案,能够解决现有技术中的膨胀阀在节流时流通面积受加工精度影响较大的技术问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的实施例提供的膨胀阀的剖视图;
图2示出了根据本申请的实施例提供的节流部处于第一节流状态时的结构示意图;
图3示出了根据本申请的实施例提供的节流部处于第二节流状态时的结构示意图;
图4示出了根据本申请的实施例提供的阀针的结构示意图;
图5示出了根据本申请的实施例提供的阀座的仰视图。
其中,上述附图包括以下附图标记:
10、阀座;11、阀腔;12、流通通道;13、阀口;20、阀针;21、主体部;22、节流部;221、第一节流段;222、第二节流段;223、第三节流段;30、封头;40、阀体;50、弹簧。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
如图1至图5所示,本申请的实施例提供了一种膨胀阀,该膨胀阀包括阀座10和阀针20,阀座10内设置有相互连通的阀腔11和流通通道12,阀腔11和流通通道12的连接处形成阀口13。阀针20包括相互连接的主体部21和节流部22,主体部21可活动地设置在阀腔11内,节流部22可活动地设置在阀口13处。其中,节流部22包括多个依次连接的节流段,各个节流段均为等截面柱体结构,相邻两个节流段之间形成连接台阶。
采用本实施例提供的膨胀阀,通过设置多个依次连接的节流段,且各个节流段均为等截面柱体结构,这样能够使得各个节流段处的流通量均为一个恒定值,在对流量进行调节时,只需要将节流部22调节至使对应的节流段位于阀口13处即可,由于各个节流段处均有一定的长度,在调节时只需要将节流部22调节至对应的节流段的长度范围内即可,不需要进行精确地调节,也避免了流通面积受锥度影响较大的情况。另外,由于相邻两个节流段之间形成连接台阶,这样,能够避免相邻两个节流段的连接处设置成锥形结构,从而便于使得节流部22在不同的节流状态之间进行切换。因此,采用本实施例提供的膨胀阀,能够解决现有技术中的膨胀阀在节流时流通面积受加工精度影响较大的技术问题。
在本实施例中,节流部22包括相互连接的第一节流段221和第二节流段222,第一节流段221与主体部21连接,第二节流段222设置在第一节流段221远离主体部21的一端,第一节流段221的直径大于第二节流段222的直径。采用这样的结构设置,当第一节流段221运动至阀口13处时,节流部22处于第一节流位置处对应第一节流状态;当第二节流段222运动至阀口13处时,节流部22处于第二节流位置处对应第二节流状态。由于第一节流段221的直径大于第二节流段222的直径,这样,节流部22在第一节流位置处时流量小于节流部22在第二节流位置处的流量。
在本实施例中,第一节流段221和第二节流段222的连接处形成第一台阶。采用这样的结构设置,能够避免第一节流段221和第二节流段222的连接处设置成锥形结构,从而使得节流部22从第一节流状态能够直接切换至第二节流状态、或者使得节流部22从第二节流状态能够直接切换至第一节流状态,提高了节流状态切换的精准性。
具体的,节流部22还包括第三节流段223,第三节流段223设置在第二节流段222远离第一节流段221的一端,第二节流段222的直径大于第三节流段223的直径。采用这样的结构设置,当第三节流段223运动至阀口13处时,节流部22处于第三节流位置处对应第三节流状态。由于第二节流段222的直径大于第三节流段223的直径,这样,节流部22在第二节流位置时的流量小于节流部22在第三节流位置处的流量。
在本实施例中,第二节流段222和第三节流段223的连接处形成第二台阶。采用这样的结构设置,能够避免第二节流段222和第三节流段223的连接处设置成锥形结构,从而使得节流部22从第二节流状态能够直接切换至第三节流状态、或者使得节流部22从第三节流状态能够直接切换至第二节流状态,提高了节流状态切换的精准性。
具体的,在一个实施例中,各个节流段均为圆柱段结构,阀口13为圆形口结构。采用这样的结构设置,使得节流段与阀口13为相适配的形状,第一节流段221可以用于对阀口13处进行贴合封堵,以避免液体从流通通道12处流出。
在本实施例中,第一节流段221的直径为D 1,第二节流段222的直径为D 2,1.1<D 1/D 2<2。采用这样的结构设置,能够优化第一节流部22和第二节流部22之间的比例关系,优化节流部22的外形结构,便于形成递进式的节流部22的结构,便于对阀口13处的流量进行合理的调节。
具体的,本实施例中的第一节流段221的直径为D 1,阀口13的直径为D 3,0.5<D 1/D 3<0.9。采用这样的结构设置,能够在第一节流状态时便于对阀口13处的流量进行合理的调节,也便于使第一节流段221和阀口13之间具有充足的活动空间。
在本实施例中,第二节流段222的直径为D 2,阀口13的直径为D 3,0.3<D 2/D 3<0.8。采用这样的结构设置,能够便于在第二节流状态时对阀口13处的流量进行合理的调节,也便于使第一节流段221和阀口13之间具有充足的活动空间。
具体的,本实施例中的膨胀阀还包括封头30,封头30安装在阀座10上,封头30位于阀腔11远离流通通道12的一端。其中,流通通道12的长度为H 1,封头30靠近流通通道12的一端与阀腔11靠近流通通道12一端的距离为H 2,节流部22的长度为L 1,封头30靠近流通通道12的一端与主体部21靠近流通通道12一端的距离为L 2,L 1+L 2>H 1+H 2。采用这样的结构设置,不论节流段有几段,均能够使得阀针20的最前端始终不脱离阀口13,对阀口13进行稳定节流。
在另一实施例中,各个节流段均为圆柱段结构,各个节流段对应的横截面积不同从而使得各个节流段在节流时的节流面积不同,阀口13为多边形结构。由于各个节流段均为圆柱段结构,这样使得节流部22的第一节流段221对阀口13进行关闭时,阀口13与第一节流段221之间仍具有流通间隙,即仍有少量液体能够从阀口13处流出。
在上述所有实施例中,膨胀阀均包括阀体40和弹簧50,阀体40连接制冷系统,阀座10设置在阀体40的内部,阀座10具有阀口13。阀针20的主体部21设置在阀座10的内部,阀针20的节流部22的一端伸入至阀口13处,阀针20沿阀腔11的轴向运动,以调节阀口13处的流通面积,阀针20的节流部22位采用多段式类似阶梯轴结构,各直段处与阀口13节流作用时,流通面积恒定。本申请采用多段式类似阶梯轴结构的阀针20,保证在各工况压差点下,阀口13的流通面积恒定,流量自然也更稳定。
具体的,由于阀针20采用多段式阶梯轴结构的阀针20,使得阀针20与阀口13节流作用时形成的流通面积皆是处于阀针20横截部位都是在阀针20的直段处,减小了阀口13流通面积受弹簧50加工精度的影响,同时去除了阀针20锥度加工精度的影响,将影响阀口13流通面积的因素降至最低,大幅提升了流量稳定性。
如图2所示:在工况1时(第一节流状态),阀针20的第一节流段221的(直径为D 1)与阀口13(直径为D 3)产生节流作用,此时阀口13的流通面积为S1=π(D 3 2-D 1 2)/4。且只要第一节流段221的长度范围与阀口13相对设置,就能够使得阀口13的流通面积一直恒定为S1,此时的流量只受阀前后压差的影响。
如图3所示:在工况2时(第二节流状态),第一节流段221完全离开阀口13,第二节流段222与阀口13产生节流作用,此时阀口13的流通面积为S1=π(D 3 2-D 2 2)/4,阀口13的流通面积一直恒定为S2,此时的流量只受阀前后压差的影响,S2>S1始终成立。
本实施例中的膨胀阀在进行组装时,将阀针20放入阀座10内,阀针20的一端伸出阀口13,将弹簧50放入阀座10内,将封头30的弹簧50导向段沿弹簧50内孔放入阀座10内,随后将封头30进行铆接,以形成阀座10部件。随后,将阀座10部件放入阀体40中,用工装定位缩颈完成。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:降低了节流部的加工精度,减小了弹簧的制造精度,降低了制造成本,使阀口流量面积在多工况(不同的节流状态)下保持恒定,大幅提升了膨胀阀的流量稳定性。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (9)

  1. 一种膨胀阀,其特征在于,包括:
    阀座(10),所述阀座(10)内设置有相互连通的阀腔(11)和流通通道(12),所述阀腔(11)和所述流通通道(12)的连接处形成阀口(13);
    阀针(20),所述阀针(20)包括相互连接的主体部(21)和节流部(22),所述主体部(21)可活动地设置在所述阀腔(11)内,所述节流部(22)可活动地设置在所述阀口(13)处;
    其中,所述节流部(22)包括多个依次连接的节流段,各个所述节流段均为等截面柱体结构,相邻两个所述节流段之间形成连接台阶。
  2. 根据权利要求1所述的膨胀阀,其特征在于,所述节流部(22)包括相互连接的第一节流段(221)和第二节流段(222),所述第一节流段(221)与所述主体部(21)连接,所述第二节流段(222)设置在所述第一节流段(221)远离所述主体部(21)的一端,所述第一节流段(221)的直径大于所述第二节流段(222)的直径。
  3. 根据权利要求2所述的膨胀阀,其特征在于,所述节流部(22)还包括第三节流段(223),所述第三节流段(223)设置在所述第二节流段(222)远离所述第一节流段(221)的一端,所述第二节流段(222)的直径大于所述第三节流段(223)的直径。
  4. 根据权利要求1至3任一项所述的膨胀阀,其特征在于,各个所述节流段均为圆柱段结构,所述阀口(13)为圆形口结构。
  5. 根据权利要求3所述的膨胀阀,其特征在于,所述第一节流段(221)的直径为D 1,所述第二节流段(222)的直径为D 2,1.1<D 1/D 2<2。
  6. 根据权利要求3所述的膨胀阀,其特征在于,所述第一节流段(221)的直径为D 1,所述阀口(13)的直径为D 3,0.5<D 1/D 3<0.9。
  7. 根据权利要求3所述的膨胀阀,其特征在于,所述第二节流段(222)的直径为D 2,所述阀口(13)的直径为D 3,0.3<D 2/D 3<0.8。
  8. 根据权利要求1所述的膨胀阀,其特征在于,所述膨胀阀还包括:
    封头(30),安装在所述阀座(10)上,所述封头(30)位于所述阀腔(11)远离所述流通通道(12)的一端;
    其中,所述流通通道(12)的长度为H 1,所述封头(30)靠近所述流通通道(12)的一端与所述阀腔(11)靠近所述流通通道(12)一端的距离为H 2,所述节流部(22)的长度为L 1,所述封头(30)靠近所述流通通道(12)的一端与所述主体部(21)靠近所述流通通道(12)一端的距离为L 2,L 1+L 2>H 1+H 2
  9. 根据权利要求1至3中任一项所述的膨胀阀,其特征在于,各个所述节流段均为圆柱段结构,所述阀口(13)为多边形结构。
PCT/CN2022/091211 2021-05-07 2022-05-06 膨胀阀 WO2022233322A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023564224A JP2024516144A (ja) 2021-05-07 2022-05-06 膨張弁
KR1020237041609A KR20240004879A (ko) 2021-05-07 2022-05-06 팽창 밸브

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120966626.3 2021-05-07
CN202120966626.3U CN215806313U (zh) 2021-05-07 2021-05-07 膨胀阀

Publications (1)

Publication Number Publication Date
WO2022233322A1 true WO2022233322A1 (zh) 2022-11-10

Family

ID=80172355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091211 WO2022233322A1 (zh) 2021-05-07 2022-05-06 膨胀阀

Country Status (4)

Country Link
JP (1) JP2024516144A (zh)
KR (1) KR20240004879A (zh)
CN (1) CN215806313U (zh)
WO (1) WO2022233322A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215806313U (zh) * 2021-05-07 2022-02-11 浙江盾安人工环境股份有限公司 膨胀阀

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071186A (ja) * 2004-09-02 2006-03-16 Saginomiya Seisakusho Inc 弁装置および冷凍サイクル装置
CN105972233A (zh) * 2016-07-20 2016-09-28 珠海格力电器股份有限公司 膨胀阀、冷媒循环系统和空调器
CN106369893A (zh) * 2016-11-21 2017-02-01 珠海格力电器股份有限公司 空调器及其电子膨胀阀
CN107356024A (zh) * 2016-05-10 2017-11-17 浙江盾安人工环境股份有限公司 电子膨胀阀
CN108361393A (zh) * 2017-01-26 2018-08-03 浙江三花智能控制股份有限公司 电子膨胀阀
CN212746974U (zh) * 2020-05-09 2021-03-19 盾安环境技术有限公司 节流装置及空调系统
CN215806313U (zh) * 2021-05-07 2022-02-11 浙江盾安人工环境股份有限公司 膨胀阀

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071186A (ja) * 2004-09-02 2006-03-16 Saginomiya Seisakusho Inc 弁装置および冷凍サイクル装置
CN107356024A (zh) * 2016-05-10 2017-11-17 浙江盾安人工环境股份有限公司 电子膨胀阀
CN105972233A (zh) * 2016-07-20 2016-09-28 珠海格力电器股份有限公司 膨胀阀、冷媒循环系统和空调器
CN106369893A (zh) * 2016-11-21 2017-02-01 珠海格力电器股份有限公司 空调器及其电子膨胀阀
CN108361393A (zh) * 2017-01-26 2018-08-03 浙江三花智能控制股份有限公司 电子膨胀阀
CN212746974U (zh) * 2020-05-09 2021-03-19 盾安环境技术有限公司 节流装置及空调系统
CN215806313U (zh) * 2021-05-07 2022-02-11 浙江盾安人工环境股份有限公司 膨胀阀

Also Published As

Publication number Publication date
CN215806313U (zh) 2022-02-11
JP2024516144A (ja) 2024-04-12
KR20240004879A (ko) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2022233322A1 (zh) 膨胀阀
WO2023098768A1 (zh) 电子膨胀阀
US10845105B2 (en) Electronic expansion valve with high flow control precision
WO2023045984A1 (zh) 连接管组件及具有其的控制阀组件
US9945592B2 (en) Throttle device
CN110671519B (zh) 一种管式流量调节阀
CN207864654U (zh) 一种流体流量调节器
WO2023030409A1 (zh) 阀针及具有其的电子膨胀阀
WO2023088254A1 (zh) 电子膨胀阀
CN102767924A (zh) 电子膨胀阀
CN112361030A (zh) 一种冷热切换动态平衡电动调节阀
CN204942128U (zh) 一种双向阻尼阀结构
CN215806405U (zh) 阀座及具有其的电子膨胀阀
CN211203004U (zh) 一种单向节流阀
CN110732697B (zh) 膨胀阀的加工方法及膨胀阀
CN104895857B (zh) 一种低噪声锥阀
CN220505458U (zh) 一种耐高压比例减压阀阀套
CN218118661U (zh) 电子膨胀阀
CN213039873U (zh) 一种组合式阀体
WO2023030462A1 (zh) 阀组件及具有其的电子膨胀阀
CN205013435U (zh) 一种两阶段可调节节流及缓冲行程的液压缸
CN220556053U (zh) 阀座
CN216279611U (zh) 一种动态流量平衡阀
CN219954236U (zh) 电子膨胀阀
CN216158322U (zh) 截止节流阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023564224

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237041609

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237041609

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798662

Country of ref document: EP

Kind code of ref document: A1