WO2022233279A1 - 一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法 - Google Patents

一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法 Download PDF

Info

Publication number
WO2022233279A1
WO2022233279A1 PCT/CN2022/090428 CN2022090428W WO2022233279A1 WO 2022233279 A1 WO2022233279 A1 WO 2022233279A1 CN 2022090428 W CN2022090428 W CN 2022090428W WO 2022233279 A1 WO2022233279 A1 WO 2022233279A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
pouring
temperature
winding
hours
Prior art date
Application number
PCT/CN2022/090428
Other languages
English (en)
French (fr)
Inventor
姜振军
Original Assignee
浙江江山变压器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江江山变压器股份有限公司 filed Critical 浙江江山变压器股份有限公司
Priority to JP2022546715A priority Critical patent/JP7377371B2/ja
Publication of WO2022233279A1 publication Critical patent/WO2022233279A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating

Definitions

  • the invention belongs to the technical field of transformers, and in particular relates to a dry-type transformer cast and molded with polyurethane resin and a processing method thereof.
  • Epoxy resin dry-type transformers use epoxy resin as insulating material, and epoxy resin is poured and cured in a vacuum to form a high-strength glass fiber reinforced plastic body structure.
  • Epoxy resin dry-type transformers have the characteristics of good electrical performance, strong lightning shock resistance, strong short-circuit resistance, small size and light weight.
  • Epoxy resin material is a kind of solid insulating material that is flame-retardant, flame-retardant and self-extinguishing, but some raw materials such as reactive diluent and curing agent have different degrees of irritation and toxicity, which will damage the operator's body. Need to pay attention to ventilation and protection.
  • the vitrified solid formed after vitrification of epoxy resin has a low shrinkage rate, is very brittle, and has an elongation at break of 2%.
  • glass fiber grids are added inside and outside the coil as fillers, when used in places similar to photovoltaics and wind power plants, there will be large load changes, severe temperature changes, and large harmonic content, resulting in high local temperature rise, etc. It is very easy to cause cracking of epoxy resin.
  • the epoxy resin with filler has a relatively high viscosity, and the viscosity can reach up to 4000mpa ⁇ s at an ambient temperature of 40 °C, which is not easy to penetrate between winding layers and sections. If no positive pressure is applied after the vacuum casting is completed, air bubbles are easily generated in the windings, resulting in an increase in the amount of partial discharge.
  • the present invention provides a dry-type transformer casted with polyurethane resin and a processing method thereof, aiming at solving the problems existing in the prior art.
  • the present invention is realized in this way, a dry-type transformer cast and molded with polyurethane resin, including high-voltage winding, low-voltage winding, iron core and clamps, the high-voltage winding and low-voltage winding are made of polyurethane resin and curing agent according to the quality of 3:1 than mixed casting.
  • the curing agent is isocyanate.
  • the curing agent is polymethylene polyphenylene isocyanate and diphenylmethane diisocyanate.
  • the present invention also provides any one of the above-mentioned processing methods of dry-type transformers cast with polyurethane resin, comprising the following steps:
  • pouring Put the polyurethane resin and curing agent into the oven to preheat for 3 hours, the temperature is 70 °C, then control the temperature at 60 ⁇ 65 °C, stir for 1 ⁇ 1.5 hours, and vacuum at the same time, vacuum to 120 ⁇ 150pa;
  • the vacuum temperature of the pouring tank is 80 °C, the mold temperature is 70 °C, and the material is poured when the vacuum is pumped to 70-100pa.
  • the pouring time is 40-60 minutes. After pouring, the vacuum state is placed for 30-40 minutes. Then take out the winding that has been poured.
  • the pouring step before the pouring step, it also includes:
  • Mold treatment Put the mold into the electric oven, apply the mold release agent on the mold, and wipe the mold release agent after the baking is completed;
  • Start winding start the winding machine and start winding.
  • the first turn of each layer of coil is fixed with 0.13 ⁇ 25mm glass fiber tape with adjacent turns; after each layer is wound, place the interlayer insulating glass fiber grid , and then wind the next layer; after one turn, cut or add DMD paper;
  • Insulation treatment After all line segments are wound and the dimensions of each part meet the inspection standards, the outer layer insulation treatment is performed;
  • Terminal welding After the coil is wound, get off the coil and transport it to the welding terminal area to weld the terminal.
  • the pouring step it also includes:
  • Curing transfer the poured windings into the electric oven, gradually increase the temperature in the box, and then cure. After curing, take out the casting body and carry out the demoulding work;
  • the curing process parameters are as follows: A: The temperature is raised to 80 ⁇ 5°C, and the temperature is kept at 80 ⁇ 5°C for 5 hours; B: The temperature is raised from 80 ⁇ 5°C to 110 ⁇ 5°C, and the temperature is 110 ⁇ 5°C. Incubate for 4 hours; C: 110 ⁇ 5°C to 130 ⁇ 5°C, 130 ⁇ 5°C for 6-8 hours; D: Turn off the heating power supply, the hot air circulation system does not stop, and wait for the temperature of the electric oven to drop to 80°C.
  • the beneficial effects of the present invention are as follows: the dry-type transformer cast and molded by using polyurethane resin and its processing method provided by the present invention have the advantages of green environmental protection, non-toxicity, strong anti-stretching and anti-cracking ability, and high temperature resistance. High level, outstanding flame retardant properties and so on. Due to the polyurethane resin and its superior shrinkage performance, it has sufficient safety even in photovoltaic, wind power, high harmonic and other occasions, and will not cause winding cracking due to excessive load and temperature differences.
  • FIG. 1 is a schematic diagram of the overall structure of a casting device of a method for processing a dry-type transformer using polyurethane resin casting and molding according to the present invention
  • Fig. 2 is the structural representation of the casting outer mold of the present invention
  • Fig. 3 is the structural representation of the end ring of the present invention.
  • FIG. 4 is a schematic structural diagram of a panel of the present invention.
  • Fig. 5 is the structural representation of the casting inner mold of the present invention.
  • Fig. 6 is the winding schematic diagram of the polyurethane resin dry-type transformer winding of the present invention.
  • FIG. 7 is a schematic front view of the polyurethane resin dry-type transformer assembly of the present invention.
  • FIG. 8 is a schematic side view of the polyurethane resin dry-type transformer assembly of the present invention.
  • Fig. 9 is the schematic diagram of the polyurethane resin dry-type transformer winding of the present invention.
  • FIG. 10 is a schematic diagram of the high-voltage resistance measurement data of the present invention.
  • FIG. 11 is a schematic diagram of low-voltage resistance measurement data of the present invention.
  • the present invention provides a technical solution: a dry-type transformer casted with polyurethane resin and a processing method thereof.
  • the dry-type transformer includes a high-voltage winding, a low-voltage winding, an iron core and a clamp.
  • the windings The polyurethane resin 1 and the curing agent 2 are mixed and cast in a mass ratio of 3:1, and the curing agent 2 is a mixture of polymethylene polyphenylene isocyanate and diphenylmethane diisocyanate.
  • the mass ratio of isocyanate polymethylene polyphenylene resin and diisocyanate diphenylmethane is 1:1.
  • the processing method includes the following steps:
  • each layer of coils is made of 0.13 ⁇ 25mm glass silk cloth tape and several adjacent turns (about three turns, and the glass silk cloth tape wrapped in the first turn is pressed on the second, under the three-turn wire) fixed.
  • the winding of each layer of turns is required to be flat and compact. The operator uses a wooden hammer while winding to tighten it in the radial and axial directions. After each layer is wound, the interlayer insulating fiberglass mesh is placed and the next layer is wound. After winding one turn, cut or add DMD paper, the interface is allowed to overlap, and the seam should not be larger than 5mm.
  • the number of turns of each layer of the coil should be wound in strict accordance with the requirements of the drawings.
  • the winding 6 to be poured is continuously heated from room temperature to 110 ⁇ 5°C in 0.5 hours, continuously baked at 110 ⁇ 5°C for 7.5 hours, and then kept at 75 ⁇ 5°C for 3 hours.
  • A The temperature is raised to 80 ⁇ 5°C (20 minutes), and the temperature is kept at 80 ⁇ 5°C for 5 hours (this stage requires every hour Open the box and check it once. If there is settlement caused by leakage, the leakage should be repaired in time and the filler should be supplemented to the required position); B: 80 ⁇ 5°C to 110 ⁇ 5°C (20 minutes), 110 ⁇ 5°C heat preservation 4 hours; C: 110 ⁇ 5°C to raise the temperature to 130 ⁇ 5°C (20 minutes), and hold at 130 ⁇ 5°C for 6-8 hours.
  • D Turn off the heating power supply, and the hot air circulation system does not stop. When the temperature of the electric oven drops to 80°C (1 hour), the pouring body is taken out of the oven and the mold is removed.
  • a dry-type transformer of the model SCB12-800/10-0.4 is selected for testing. Its capacity is 800 kVA, the connection group label is Dyn11, the frequency is 50 Hz, and the number of phases is 3.
  • the test data is as follows:
  • the measuring instrument for voltage ratio measurement and connection group label verification is JYT-A transformation ratio tester.
  • Voltage ratio measurement and connection group label verification conclusion the absolute value of the error is not more than 0.4%, qualified.
  • Table 1 Voltage ratio measurement and connection group label verification test table
  • the measuring instrument used for winding resistance measurement is JYR-10 dual-channel transformer DC resistance tester, and the ambient temperature is 6°C. Winding resistance measurement conclusion: the high and low voltage winding wire resistance is not more than 2%, if there is a neutral point, measure the phase and line DC resistance respectively, and the phase resistance is not more than 4%. qualified. For details, see Table 2 Winding Resistance Measurement Test Table.
  • Table 2 Winding resistance measurement test table
  • the measuring instrument is an insulation resistance tester XD2905.
  • the measurement is carried out one by one according to the standard regulations, and the test results are confirmed, and then the next group is measured. , the applied voltage is 2500V.
  • the winding-to-ground and inter-winding DC insulation resistance measurement results are qualified. For details, see Table 3 Winding-to-ground and inter-winding DC insulation resistance measurement test table.
  • Table 3 Winding-to-ground and inter-winding DC insulation resistance measurement test table
  • Insulation routine (external withstand voltage test), conclusion: the test voltage and current are stable within the test time, and there is no abnormal noise in the transformer, which is qualified. For details, see Table 4 Insulation routine (external withstand voltage test) test table.
  • Table 4 Insulation routine (external withstand voltage test) test table
  • Insulation routine induction withstand voltage test
  • NSW-TTCS power transformer test computer measurement and control system test the conclusion: qualified.
  • Insulation routine induction withstand voltage test
  • Table 5 Insulation routine (induction withstand voltage test) test table
  • the short-circuit impedance and load loss are measured by using the NSW-TTCS power transformer test microcomputer measurement and control system. The conclusion is that applying no less than 50% of the rated current, the load loss and impedance voltage are qualified. For details, see Table 7 short-circuit impedance and load loss measurement test table.
  • Table 7 Short-circuit impedance and load loss measurement test table
  • Partial discharge measurement using TWPD-2B multi-channel digital partial discharge instrument test, conclusion: the partial discharge data is less than 10pC under the application of 1.3 times the rated voltage, which is qualified.
  • the present invention is a dry-type transformer casted with polyurethane resin and a processing method thereof.
  • the transformer is casted with polyurethane resin, and the transformer has the advantages of green environmental protection, non-toxicity, strong tensile and crack resistance, high temperature resistance and outstanding flame retardant performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulating Of Coils (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法,干式变压器包括高压绕组、低压绕组、铁心和夹件,绕组采用聚氨酯树脂和固化剂按照3:1的质量比混合浇注成型,浇注方法为将聚氨酯树脂和固化剂放入烘箱预热3小时,温度为70℃,然后将温度控制在60~65℃,搅拌1~1.5小时,同时抽真空,真空抽到120~150pa;浇注时浇注罐(3)真空温度为80℃,模具温度为70℃,真空抽到70~100pa时投料浇注,浇注时间控制在40~60分钟,浇注好后真空状态下放30~40分钟,同时加0.2MPa的正压,然后取出已浇注完成的绕组。

Description

一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法
本申请要求于2021年05月07日提交中国专利局、申请号为CN202110497014.9、发明名称为“一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于变压器技术领域,尤其涉及一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法。
背景技术
传统环氧树脂干式变压器以环氧树脂为绝缘材料,在真空中浇注环氧树脂并固化,构成高强度玻璃钢体结构。环氧树脂干式变压器有电气性能好、耐雷电冲击能力强、抗短路能力强、体积小重量轻等特点。环氧树脂材料是一种难燃、阻燃、自熄的固体绝缘材料,但是有些原材料如活性稀释剂、固化剂等有不同程度的刺激性和毒性,会损伤操作人员的身体,施工操作时需注意通风和防护。
环氧树脂玻璃化后形成的玻璃化固体收缩率较低,脆性非常大,断裂伸长率为2%。虽然线圈内外部加入了玻璃纤维网格作为填充物,但在类似于光伏、风电场所使用时,会出现负荷变化较大、温度变化剧烈、谐波含量较大导致局部温升过高等等情况,极易导致环氧树脂开裂。
另外带填料的环氧树脂粘度相对较高,在40℃环境温度下粘度最高可达4000mpa·s,不容易在绕组层间、段间渗透。真空浇注完成后不施加正压的情况下,绕组内容易产生气泡,造成局部放电量增大。
发明内容
本发明提供一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法,旨在解决现有技术存在的问题。
本发明是这样实现的,一种采用聚氨酯树脂浇注成型的干式变压器,包括高压绕组、低压绕组、铁心和夹件,所述高压绕组和低压绕组采用聚氨酯树脂和固化剂按照3:1的质量比混合浇注成型。
优选的,所述固化剂为异氰酸酯。
优选的,具体的,所述固化剂为异氰酸聚亚甲基聚亚苯基脂和二异氰酸二苯甲烷。
本发明还提供上述任意一种采用聚氨酯树脂浇注成型的干式变压器的加工方法,包括以下步骤:
浇注:将聚氨酯树脂和固化剂放入烘箱预热3小时,温度为70℃,然后将温度控制在60~65℃,搅拌1~1.5小时,同时抽真空,真空抽到120~150pa;浇注时浇注罐真空温度为80℃,模具温度为70℃,真空抽到70~100pa时投料浇注,浇注时间40~60分钟,浇注好后真空状态下放30~40分钟,同时加0.2MPa的正压,然后取出已浇注完成的绕组。
优选的,在所述浇注步骤之前还包括:
模具处理:将模具放入电烘箱,在模具上涂刷脱模剂,烘烤完成后,擦净脱模剂;
启动绕线:启动绕线机,进行绕制,每层线圈第一匝用0.13×25mm的玻璃丝布带与相邻数匝固定;每绕制完一层后,放置层间绝缘玻璃纤维网格,然后绕制下一层;绕制一匝后,裁去或者增垫DMD纸;
绝缘处理:所有线段绕制完毕且各部位尺寸符合检验标准后,进行外层绝缘处理;
接线端子焊接:线圈绕制完毕,将线圈下车,运到焊接出线端子区域焊接出线端子。
优选的,所述浇注步骤之后还包括:
固化:将浇注完毕的绕组转入电烘箱,逐步提升箱内温度,进行固化,固化完成后,取出浇注体,进行拆模工作;
脱模:将固化好的绕组吊至工作场地,从外向内依次脱模。
优选的,在所述固化步骤中,固化工艺参数如下:A:常温升温至80±5℃,80±5℃保温5小时;B:80±5℃升温至110±5℃,110±5℃保温4小时;C:110±5℃升温至130±5℃,130±5℃保温6~8小时;D:关闭加热电源,热风循环系统不停止,待电烘箱温度下降至80℃。
与现有技术相比,本发明的有益效果是:本发明提供的一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法,具有绿色环保无毒、抗拉伸抗开裂能力强、耐温水平高、阻燃性能突出等特点。由于聚氨酯树脂及其 优越的收缩性能,即使是在光伏、风电、高谐波等场合下运行也有足够的安全性,不会因为负载、温差变化过大导致绕组开裂。
说明书附图
图1为本发明的一种采用聚氨酯树脂浇注成型的干式变压器的加工方法的浇注装置的整体结构示意图;
图2为本发明的浇注外模的结构示意图;
图3为本发明的端圈的结构示意图;
图4为本发明的面板的结构示意图;
图5为本发明的浇注内模的结构示意图;
图6为本发明的聚氨酯树脂干式变压器绕组的绕线示意图;
图7为本发明聚氨酯树脂干式变压器总装的正面示意图;
图8为本发明聚氨酯树脂干式变压器总装的侧面示意图;
图9为本发明聚氨酯树脂干式变压器绕组的示意图;
图10为本发明的高压电阻测量数据示意图;
图11为本发明的低压电阻测量数据示意图;
图中:1-聚氨酯树脂;2-固化剂;3-浇注罐;4-混料通道;5-放料管;6-待浇注绕组;7-混料罐;8-浇注外模;9-端圈;10-面板;11-浇注内模。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1~5,本发明提供一种技术方案:一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法,干式变压器包括包括高压绕组、低压绕组、铁心和夹件,所述绕组采用聚氨酯树脂1和固化剂2按照3:1的质量比混合浇注成型,固化剂2为异氰酸聚亚甲基聚亚苯基脂和二异氰酸二苯甲烷的混合,在本实施方式中,异氰酸聚亚甲基聚亚苯基脂和二异氰酸二苯甲烷的质量比为1:1。
请参阅图6~9,其加工方法包括以下步骤:
S1、将新来的模具全部解体,检查外观及尺寸是否合格,端板与模具接触位置贴合应紧密,用磨光机及砂纸清理模具上存在的毛刺、铁屑, 再用酒精对模具进行全面清洗,除去模具上的油污及异物。
S2、将浇注外模8、端圈9、面板10和浇注内模11一起放入电烘箱,温度设置为180±5℃,烘烤3小时后运出电烘箱,趁热在模具上均匀地涂刷脱模剂,再重新将模具放入电烘箱,温度设置为180±5℃,烘烤3小时,用纯棉布擦净脱模剂,按要求做好标识后放于模具架备用。
S3、将装配好的浇注内模11放置到垫有密封胶垫的压板上,从上至下分别套入端圈9,调整至两端,注意方向要一致,调整浇注内模11至下压板的中心位置,放置临时压板,用4根拉螺杆从内部将浇注内模11固定在下压板上。穿入传动方钢,固定好模具后上绕线机,准备绕线。
S4、在浇注内模11上放置图纸要求规格层数的网格布,用玻璃丝布带均匀稀绕一层,将网格布牢靠的固定在内模上,注意网格布接口处不允许搭接,且接缝口不得大于5mm。内层绝缘外径偏差应控制在±1mm范围之内。按图纸要求,在内层绝缘上用记号笔准确标出线圈出线板中心线及线圈分段位置。按图纸要求的线圈绕向和线段位置开始起头,将起头(一般留出一匝长度的导线用于固定)用斜纹布带或玻璃丝布带固定在轴模上。
S5、启动绕线机,开始绕制,每层线圈第一匝用0.13×25mm的玻璃丝布带与相邻数匝(约三匝,将套在第一匝的玻璃丝布带压在第二、三匝线下)固定。每层线匝绕制要求平整、紧凑,操作者一边绕制一边用木锤,沿辐向和轴向敲紧。每绕制完一层后,放置层间绝缘玻璃纤维网格,然后绕制下一层。绕制一匝后,裁去或者增垫DMD纸,接口处部允许搭接,且接缝不得大于5mm。线圈每层匝数应严格按图纸要求绕制。
S6、若线圈层间设置气道板时,用图纸要求规格的POM气道板套上玻璃丝布套管,两端用玻璃丝布带扎紧,并排放置在网格布表面,下端插入定位止口槽内。气道板放置后,测量气道板外径,用红色记号笔标出线圈分段位置。然后放置网格布,继续绕制气道板外的线匝。多根导线并绕的线圈需要换位时,应在图纸要求的部位进行相应的换位。用导线换位工具将导线崴出换位S弯,用0.13×25mm的玻璃丝布带半叠包扎两层,长度为S弯处两边各50mm之间的区域,然后将导线换位后继续绕制。
S7、所有线段绕制完毕且各部位尺寸符合检验标准后,进行外层绝 缘处理。用玻璃丝布带通过绕圆周固定末端出线及最后几匝线,然后沿圆周斜拉到线段的另一边进行包绕,玻璃丝布带宽度控制在40mm左右。四段保持大概一致的外观。线圈外部整体包图纸规定规格层数的网格布,用玻璃丝布带绑牢网格布。注意各段之间的空隙不得填充,以免影响线圈浇注。按图纸要求确定分接线和首末头出线长度。
S8、线圈绕制完毕,将线圈下车,运到焊接出线端子区域焊接出线端子。并用洁净的塑料布盖上,保持清洁。
S9、将经过检测合格的线圈吊入装配现场。清除外膜及接线板上的异物,在浇注外模8、面板10上,均匀涂抹脱模剂,再用棉布擦拭干净。在面板10两侧的密封槽内,分别压入密封橡胶条,修齐两端部,再将接线板安装到浇注外模8上,分接螺母上的工艺螺杆的分别穿入接线面板相对应的位置,调整螺杆至孔的中心位置,用螺帽拧紧螺杆,使分接线螺母与接线面板连接牢固。
S10、调整端圈9的凸出部位与面板10对齐,检查浇注体的高度尺寸是否与图纸一致,用吸尘器清除线圈上的异物,套入浇注外模8,用收紧器收紧,将压条放置在与接线板接触的位置,用“U”型夹将浇注外模8与面板10夹紧,使其紧密贴合。
S11、将十字压具套入拉螺杆,使浇注内模11、浇注外模8同时固定在下端圈上,再用另一副压具将面板10压紧,要求内、外模和面板与底板密封橡胶板充分接触,以密封橡胶板与模板接触位置发生凸起为原则。
S12、待浇注绕组6从室温用0.5小时持续加热到110±5℃,在110±5℃条件下连续烘焙7.5小时,然后在75±5℃条件下保持3小时。
S13、待浇注绕组6入模后放入烘箱105℃保温5~8小时,放入浇注罐3抽真空,温度控制在80℃。
S14、将聚氨酯树脂1和固化剂2放入烘箱预热3小时,温度为70℃,投料时混料罐7开始升温,温度控制在60~65℃。65℃搅拌1~1.5小时,同时抽真空,真空抽到120~150pa。脱气从混料罐7抽真空时开始计时,一般脱气时间为1.5~2小时,从观察口查看,原料没有气泡方可浇注。浇注时浇注罐3真空温度为80℃,模具温度为70℃,真空抽到70~100帕时投料浇注,浇注时间控制在40~60分钟,浇注好后真空状态下放30~40 分钟,同时加0.2MPa的正压,然后破空拉出已浇注完成的待浇注绕组6。
S15、将浇注完毕的绕组转入电烘箱,逐步提升箱内温度,固化工艺参数如下:A:常温升温至80±5℃(20分钟),80±5℃保温5小时(该阶段要求每小时开箱查看一次,如出现因渗漏造成的沉降情况,应及时进行补漏并补充填料至要求的位置);B:80±5℃升温至110±5℃(20分钟),110±5℃保温4小时;C:110±5℃升温至130±5℃(20分钟),130±5℃保温6~8小时。D:关闭加热电源,热风循环系统不停止,待电烘箱温度下降至80℃(1小时),浇注体出烘箱,进行拆模工作。
S16、将固化好的绕组吊至工作场地,从外向内依次脱模,脱模过程中因温度较高,避免手印黏在线圈表面,影响线圈的外表美观,检查脱模后绕组的外表,对凹凸部分进行切割、打磨、修整,要求边角光滑、平整。如当前环境气温低于15℃,脱模后继续对线圈进行保温,待自然冷却后再打磨,避免浇注体因温差过大造成开裂。
S17、拧松旁螺杆、穿心螺杆,拆去上夹件及夹件绝缘,依次拆去上铁轭硅钢片,堆放在总装工作台上。拆下拉螺杆,拧松旁螺杆、穿心螺杆,插入“U”型卡子,注意应交错位置带住各级硅钢片,松开盘螺杆、穿心螺杆,拆去旁螺杆,拆去穿心螺杆,拆去上夹件绝缘,依次拆去上铁轭硅钢片,堆放在总装工作台上。
S18、在下夹件上放好下垫块以及防震垫块(防震垫块叠放在下垫块上面),每相线圈下放置四个垫块,位置参考图纸。用吊具吊起高压线圈,保持线圈与地面垂直,套入铁心心柱,并由下垫块和防震垫块支撑。
S19、用吊具吊起低压线圈,保持线圈与地面垂直,套入铁心心柱,调整同心度,用硅橡胶条固定与铁心之间的距离,将切好后的硅橡胶垫块固定高、低压线圈,并调整高、低压线圈的位置和高度与高压线圈之间的距离。尽量使主空道与相间气隙均匀。
S20、由主级开始逐级向外镶片,同时用整平铁打齐,镶片结束后,检查铁心片孔眼对齐。装上穿心螺杆、夹件绝缘和上夹件,用整理块敲平铁轭各级铁心片及两端。略紧上铁轭,放好旁螺杆,在铁轭由外向里3、4级处插入接地片,插入长度为50mm,检查铁心心柱有无拱片现象,如有应及时处理,再次整理上铁轭,至符合图纸要求,拧紧穿心螺杆、旁螺 杆。
S21、装上垫块和防震垫块、压钉螺母,由主级开始逐级向外镶片,同时用整平铁打齐,镶片结束后,用“U”型卡子夹住,检查铁心片孔眼对齐。装上穿心螺杆、夹件绝缘和上夹件,用整理块敲平铁轭各级铁心片及两端。等上夹件装好后,调整上、下垫块的位置,使上、下垫块的位置适当、美观。略紧上铁轭,放好旁螺杆,在铁轭由外向里3、4级处插入接地片,插入长度为50mm,检查铁心心柱有无拱片现象,如有应及时处理,再次整理上铁轭,置至符合图纸要求,拧紧穿心螺杆、旁螺杆。
S22、按图纸要求准备好高压线圈连接引线,将分接片固定在分接头上。准备适长度“Y”或“D”接地连接棒,两端冲孔后在连接棒两端搪锡,其余部分用黑色热缩管套住。连接连接棒和相应的引线端,连接引线A、B、C三相采用黄、绿、红三种颜色,并拧紧。在夹件和引线之间放置绝缘端子,用螺栓固定。
S23、在夹件和低压绕组内部引线排之间放置绝缘端子,用螺栓固定。把铜排放在引线排上,用螺栓相互连接并紧固。放置标示牌,把所有的螺栓都紧固,整理工具。装好温控器和风机,检查连线是否正确,然后通电,检查温控器和风机是否能正常工作。
S24、粘上接地标志、分接位置、高压危险标志、橡胶赛子、相位标志及环保标志等。
本发明实施例选用了型号为SCB12-800/10-0.4干式变压器进行试验,其容量800千伏安、联结组标号Dyn11、频率50赫兹、相数为3相,试验数据如下:
电压比测量和联接组标号检定采用测量仪器为JYT-A变比测试仪。电压比测量和联接组标号检定结论:误差绝对值不大于0.4%,合格。具体见表1电压比测量和联接组标号检定试验表。
表1:电压比测量和联接组标号检定试验表
Figure PCTCN2022090428-appb-000001
Figure PCTCN2022090428-appb-000002
绕组电阻测量采用的测量仪器为JYR-10双通道变压器直流电阻测试仪,环境温度:6℃。绕组电阻测量结论:高、低压绕组线电阻不大于2%,如有中性点引出,分别测量相、线直流电阻,相电阻不大于4%。合格。具体见表2绕组电阻测量试验表。
表2:绕组电阻测量试验表
Figure PCTCN2022090428-appb-000003
绕组对地及绕组间直流绝缘电阻测量,采用测量仪器为绝缘电阻测试仪XD2905,通过记录环境温度及湿度,按标准规定逐一进行测量,并对测试结果进行确认,然后再测量下一组,测量时,施加电压为2500V。绕组对地及绕组间直流绝缘电阻测量结论为合格。具体见表3绕组对地及绕组间直流绝缘电阻测量试验表。
表3:绕组对地及绕组间直流绝缘电阻测量试验表
Figure PCTCN2022090428-appb-000004
绝缘例行(外施耐压试验),结论:在试验时间内试验电压电流稳定,变压器内无异响声,合格。具体见表4绝缘例行(外施耐压试验)试验表。
表4:绝缘例行(外施耐压试验)试验表
加压部位 试验电压(kV) 试验时间(s) 结论
高压---低压及地 35 60 合格
低压---高压及地 5 60 合格
绝缘例行(感应耐压试验),采用NSW-TTCS电力变压器试验微机测控系统试验,结论:合格。具体见表5绝缘例行(感应耐压试验)试验表。
表5:绝缘例行(感应耐压试验)试验表
Figure PCTCN2022090428-appb-000005
空载损耗和空载电流测量,采用NSW-TTCS电力变压器试验微机测控系统试验,结论:合格。具体见表6空载损耗和空载电流测量试验表。
表6:空载损耗和空载电流测量试验表
项目 实测值 标准值 设计值
空载损耗(W) 1116 1215 1193
空载电流(%) 0.24 1.2+0% 0.42
结论 合格 合格 合格
短路阻抗和负载损耗测量,采用NSW-TTCS电力变压器试验微机测控系统试验,结论:施加不低于50%额定电流,测量其负载损耗及阻抗电压合格。具体见表7短路阻抗和负载损耗测量试验表。
表7:短路阻抗和负载损耗测量试验表
项目 实测值 标准值 设计值
负载损耗(W) 6703 6960 6755
阻抗电压(%) 5.70 6.0+10% 6.14
结论 合格 合格 合格
部放电测量,采用TWPD-2B多通道数字式局放仪试验,结论:施加1.3倍额定电压下局放数据小于10pC,合格。
具体见表8局部放电测量试验表
Figure PCTCN2022090428-appb-000006
温升限值测量,具体见表9温升试验表、表10高压电阻分布、表11低压
表9
Figure PCTCN2022090428-appb-000007
Figure PCTCN2022090428-appb-000008
电阻分布。结论:合格。
表9:温升试验
表10高压电阻测量数据,请参阅图10。
表11低压电阻测量数据,请参阅图11。
雷电冲击试验,结论为合格。具体见表12雷电冲击试验表。
表12:雷电冲击试验表:
Figure PCTCN2022090428-appb-000009
试验程序:
一次降低电压的负极性全波冲击。
三次额定电压的负极性全波冲击。
本发明的一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法,变压器采用聚氨酯树脂浇注成型,变压器具有绿色环保无毒、抗拉伸抗开裂能力强、耐温水平高、阻燃性能突出等特点。由于聚氨酯树脂及其优越的收缩性能,即使是在光伏、风电、高谐波等场合下运行也有足够的安全性,不会因为负载、温差变化过大导致绕组开裂。是一种全新的,可替代现有环氧树脂浇注干式变压器的优秀产品。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含 在本发明的保护范围之内。

Claims (15)

  1. 一种采用聚氨酯树脂浇注成型的干式变压器,包括高压绕组、低压绕组、铁心和夹件,其特征在于:所述高压绕组和低压绕组采用聚氨酯树脂和固化剂按照3:1的质量比混合浇注成型。
  2. 如权利要求1所述的干式变压器,其特征在于:所述固化剂为异氰酸酯。
  3. 如权利要求2所述的干式变压器,其特征在于:所述固化剂为异氰酸聚亚甲基聚亚苯基脂和二异氰酸二苯甲烷。
  4. 如权利要求3所述的干式变压器,其特征在于:所述异氰酸聚亚甲基聚亚苯基脂和二异氰酸二苯甲烷的质量比为1:1。
  5. 如权利要求1~4任意一项所述的干式变压器的加工方法,其特征在于:包括以下步骤:
    浇注:将聚氨酯树脂和固化剂放入烘箱预热3小时,温度为70℃,然后将温度控制在60~65℃,搅拌1~1.5小时,同时抽真空,真空抽到120~150pa;浇注时浇注罐真空温度为80℃,模具温度为70℃,真空抽到70~100pa时投料浇注,浇注时间40~60分钟,浇注好后真空状态下放30~40分钟,同时加0.2MPa的正压,然后取出已浇注完成的绕组。
  6. 如权利要求5所述的加工方法,其特征在于:在所述浇注步骤之前还包括:
    模具处理:将模具放入电烘箱,在模具上涂刷脱模剂,烘烤完成后,擦净脱模剂;
    启动绕线:启动绕线机,进行绕制,每层线圈第一匝用0.13×25mm的玻璃丝布带与相邻数匝固定;每绕制完一层后,放置层间绝缘玻璃纤维网格,然后绕制下一层;绕制一匝后,裁去或者增垫DMD纸;
    绝缘处理:所有线段绕制完毕且各部位尺寸符合检验标准后,进行外层绝缘处理;
    接线端子焊接:线圈绕制完毕,将线圈下车,运到焊接出线端子区域焊接出线端子。
  7. 如权利要求6所述的加工方法,所述模具包括浇注外模(8)、端 圈(9)、面板(10)和浇注内模(11);所述模具处理为:将浇注外模(8)、端圈(9)、面板(10)和浇注内模(11)一起放入电烘箱,温度设置为180±5℃,烘烤3小时后运出电烘箱,趁热在模具上均匀地涂刷脱模剂,再重新将模具放入电烘箱,温度设置为180±5℃,烘烤3小时,用纯棉布擦净脱模剂。
  8. 如权利要求7所述的加工方法,其特征在于:所述启动绕线之前,还包括:将装配好的浇注内模(11)放置到垫有密封胶垫的压板上,从上至下分别套入端圈(9),调整至两端,方向一致,调整浇注内模(11)至下压板的中心位置,放置临时压板,用4根拉螺杆从内部将浇注内模(11)固定在下压板上;穿入传动方钢,固定好模具后上绕线机,准备绕线;
    在浇注内模(11)上放置网格布,用玻璃丝布带均匀稀绕一层,将网格布固定在浇注内模(11)上,网格布接口处不搭接,且接缝口不大于5mm;内层绝缘外径偏差控制在±1mm范围之内。
  9. 如权利要求6所述的加工方法,其特征在于:所述固定为:将套在第一匝的玻璃丝布带压在第二、三匝线下。
  10. 如权利要求6所述的加工方法,其特征在于:裁去或者增垫DMD纸时:接口处部搭接,且接缝不大于5mm。
  11. 如权利要求6所述的加工方法,其特征在于:所述启动绕线的步骤中,若线圈层间设置气道板时,用POM气道板套上玻璃丝布套管,两端用玻璃丝布带扎紧,并排放置在网格布表面,下端插入定位止口槽内;气道板放置后,测量气道板外径,用红色记号笔标出线圈分段位置;然后放置网格布,继续绕制气道板外的线匝;多根导线并绕的线圈需要换位时,用导线换位工具将导线崴出换位S弯,用0.13×25mm的玻璃丝布带半叠包扎两层,长度为S弯处两边各50mm之间的区域,然后将导线换位后继续绕制。
  12. 如权利要求6所述的加工方法,其特征在于:所述外层绝缘处理为:用玻璃丝布带通过绕圆周固定末端出线及最后几匝线,然后沿圆周斜拉到线段的另一边进行包绕,玻璃丝布带宽度在40mm左右;用玻璃丝布带绑牢网格布;注意各段之间的空隙不得填充,以免影响线圈浇注。
  13. 如权利要求6所述的加工方法,其特征在于:所述接线端子焊接后,在所述浇注步骤之前还包括:
    将经过检测合格的线圈吊入装配现场;清除外膜及接线板上的异物,在浇注外模(8)、面板(10)上,均匀涂抹脱模剂,再用棉布擦拭干净;在面板(10)两侧的密封槽内,分别压入密封橡胶条,修齐两端部,再将接线板安装到浇注外模(8)上,分接螺母上的工艺螺杆分别穿入接线面板相对应的位置,调整工艺螺杆至孔的中心位置,用螺帽拧紧螺杆,将分接螺母与接线面板连接牢固;
    调整端圈(9)的凸出部位与面板(10)对齐,用吸尘器清除线圈上的异物,套入浇注外模(8),用收紧器收紧,将压条放置在与接线板接触的位置,用“U”型夹将浇注外模(8)与面板(10)夹紧,使其紧密贴合;
    将十字压具套入拉螺杆,使浇注内模(11)、浇注外模(8)同时固定在下端圈上,再用另一副压具将面板(10)压紧,要求内、外模和面板与底板密封橡胶板充分接触,以密封橡胶板与模板接触位置发生凸起为原则;
    待浇注绕组(6)从室温用0.5小时持续加热到110±5℃,在110±5℃条件下连续烘焙7.5小时,然后在75±5℃条件下保持3小时;
    待浇注绕组(6)入模后放入烘箱105℃保温5~8小时,放入浇注罐3抽真空,温度控制在80℃。
  14. 如权利要求5所述的加工方法,其特征在于:在所述浇注步骤之后还包括:
    固化:将浇注完毕的绕组转入电烘箱,逐步提升箱内温度,进行固化,固化完成后,取出浇注体,进行拆模工作;
    脱模:将固化好的绕组吊至工作场地,从外向内依次脱模。
  15. 如权利要求14所述的加工方法,其特征在于:所述固化的工艺参数如下:A:常温升温至80±5℃,80±5℃保温5小时;B:80±5℃升温至110±5℃,110±5℃保温4小时;C:110±5℃升温至130±5℃,130±5℃保温6~8小时;D:关闭加热电源,热风循环系统不停止,待电烘箱温度下降至80℃。
PCT/CN2022/090428 2021-05-07 2022-04-29 一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法 WO2022233279A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546715A JP7377371B2 (ja) 2021-05-07 2022-04-29 ポリウレタン樹脂を使用して鋳造成形された乾式変圧器の加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110497014.9 2021-05-07
CN202110497014.9A CN113223814B (zh) 2021-05-07 2021-05-07 一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法

Publications (1)

Publication Number Publication Date
WO2022233279A1 true WO2022233279A1 (zh) 2022-11-10

Family

ID=77091546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090428 WO2022233279A1 (zh) 2021-05-07 2022-04-29 一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法

Country Status (3)

Country Link
JP (1) JP7377371B2 (zh)
CN (1) CN113223814B (zh)
WO (1) WO2022233279A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223814B (zh) * 2021-05-07 2023-03-24 浙江江山变压器股份有限公司 一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法
CN114093653A (zh) * 2021-11-30 2022-02-25 广东广特电气股份有限公司 一种干式变压器线圈环氧树脂浇注制备方法
CN114192376A (zh) * 2021-12-09 2022-03-18 南京安盛电子有限公司 变压器聚氨酯胶水的真空灌封工艺
CN117393319A (zh) * 2023-11-07 2024-01-12 浙江江山变压器股份有限公司 一种高压绕组及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009138096A1 (de) * 2008-05-13 2009-11-19 Abb Technology Ag Trockentransformator
CN103177863A (zh) * 2013-04-18 2013-06-26 南京智达电气有限公司 一种具有热塑橡胶的电流互感器及其制备方法
CN103943351A (zh) * 2014-04-29 2014-07-23 天津维可特电力科技有限公司 干式变压器带填料高压绕组组模浇注工艺
CN108701534A (zh) * 2016-02-17 2018-10-23 西门子股份公司 具有电气绕组的紧凑型干式变压器和用于制备电气绕组的方法
CN113223814A (zh) * 2021-05-07 2021-08-06 浙江江山变压器股份有限公司 一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252121A (ja) * 1986-04-24 1987-11-02 Nissin Electric Co Ltd コイルの樹脂モ−ルド方法
JP3998612B2 (ja) 2003-08-19 2007-10-31 ミネベア株式会社 含浸硬化巻線、そのための含浸硬化処理方法、含浸硬化処理システム、含浸硬化処理装置、ワニス塗布装置
US20070241852A1 (en) 2006-04-14 2007-10-18 Goudreau Joel S Transformer with foamed insulating material and method of manufacturing the same
CN201788782U (zh) 2010-06-13 2011-04-06 湖北绍新特种电气股份有限公司 一种高频变压器
CN101847506A (zh) * 2010-06-30 2010-09-29 无锡应达工业有限公司 一种大功率电抗器的封装方法
WO2014029700A1 (de) * 2012-08-20 2014-02-27 Bayer Materialscience Ag POLYURETHAN-GIEßHARZE UND DARAUS HERGESTELLTE VERGUSSMASSEN
CN103151146A (zh) * 2013-03-07 2013-06-12 明珠电气有限公司 一种防水环氧树脂浇注干式变压器
CN103390493B (zh) * 2013-08-06 2016-03-02 天津维可特电力科技有限公司 一种带填料高压线圈的绕制方法
CN104388029B (zh) * 2014-12-03 2016-08-03 湖南皓志科技股份有限公司 一种常温固化环氧树脂柔性灌封胶
CN104875311A (zh) * 2015-04-24 2015-09-02 江苏天利机电有限公司 一种干式变压器线圈生产浇注方法
JP5946574B1 (ja) 2015-08-25 2016-07-06 サンユレック株式会社 ポリウレタン樹脂組成物
WO2017183611A1 (ja) 2016-04-19 2017-10-26 富士電機株式会社 リグニン骨格含有樹脂組成物およびそれを用いたモールド成形体
JP6692266B2 (ja) 2016-09-16 2020-05-13 株式会社東芝 モールドコイル、変圧器及びリアクタンス
CN209785724U (zh) * 2019-06-28 2019-12-13 南京安盛电子有限公司 通用型隔离式骨架灌封变压器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009138096A1 (de) * 2008-05-13 2009-11-19 Abb Technology Ag Trockentransformator
CN103177863A (zh) * 2013-04-18 2013-06-26 南京智达电气有限公司 一种具有热塑橡胶的电流互感器及其制备方法
CN103943351A (zh) * 2014-04-29 2014-07-23 天津维可特电力科技有限公司 干式变压器带填料高压绕组组模浇注工艺
CN108701534A (zh) * 2016-02-17 2018-10-23 西门子股份公司 具有电气绕组的紧凑型干式变压器和用于制备电气绕组的方法
CN113223814A (zh) * 2021-05-07 2021-08-06 浙江江山变压器股份有限公司 一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法

Also Published As

Publication number Publication date
CN113223814B (zh) 2023-03-24
CN113223814A (zh) 2021-08-06
JP2023529044A (ja) 2023-07-07
JP7377371B2 (ja) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2022233279A1 (zh) 一种采用聚氨酯树脂浇注成型的干式变压器及其加工方法
US7834736B1 (en) Dry type pole-mounted transformer
CN205645469U (zh) 一种降噪和抗短路的非晶合金油浸式变压器
CN207504664U (zh) 一种绑扎固定引线及套管的定子铁芯绝缘结构
CN101610018B (zh) 一种电机框形线圈模压加工方法
JPS60210829A (ja) 変圧器の製造方法
CN103117159B (zh) 大型油浸式变压器绝缘端圈及其制作工艺
CN208938784U (zh) 一种新型立体三角形铁芯变压器抗短路结构
CN116015003B (zh) 一种推进线圈的改良绕制装置及该线圈的绕制工艺
CN105206394B (zh) 一种干式变压器绕组表面龟裂修复方法
CN206628348U (zh) 一种轴向分裂单侧四出线头的箔式浇注绕组
CN114300256B (zh) 一种高压绕组的制造方法
CN117393319A (zh) 一种高压绕组及其制备方法和应用
CN114093653A (zh) 一种干式变压器线圈环氧树脂浇注制备方法
CN110394994A (zh) 一种半固化云母制品箔的成型工艺方法
CN102969723B (zh) 一种用于电力电子设备的集成型取能装置
CN115512960A (zh) 一种高压绕组的制备方法及高压绕组
CN112349483A (zh) 一种油浸式变压器
CN210073597U (zh) 一种带有应力锥和半导体管的户外三相一体电流互感器
CN205943735U (zh) 一种用于环氧干式变压器高压分段层式矩形线圈的绕线模具
CN113823506A (zh) 一种高频变压器及其封装方法和用途
Krave et al. Overview of Torus magnet coil production at Fermilab for the Jefferson Lab 12-GeV Hall B upgrade
CN112349495A (zh) 大型换流变压器解体式铁芯绑扎工艺方法
JPS62247740A (ja) 界磁巻線の製造方法
CN112582149A (zh) 一种放电线圈及其调节方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022546715

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798620

Country of ref document: EP

Kind code of ref document: A1