WO2022233203A1 - 驱动基板及其制备方法、显示面板及电子设备 - Google Patents
驱动基板及其制备方法、显示面板及电子设备 Download PDFInfo
- Publication number
- WO2022233203A1 WO2022233203A1 PCT/CN2022/083997 CN2022083997W WO2022233203A1 WO 2022233203 A1 WO2022233203 A1 WO 2022233203A1 CN 2022083997 W CN2022083997 W CN 2022083997W WO 2022233203 A1 WO2022233203 A1 WO 2022233203A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active layer
- photoelectric sensing
- conductive structure
- substrate
- sensing structure
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 142
- 238000002360 preparation method Methods 0.000 title claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 claims description 20
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 15
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052733 gallium Inorganic materials 0.000 claims description 7
- 229910052738 indium Inorganic materials 0.000 claims description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical group [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 7
- 239000011787 zinc oxide Substances 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims 1
- 239000000853 adhesive Substances 0.000 abstract description 9
- 230000001070 adhesive effect Effects 0.000 abstract description 9
- 238000005259 measurement Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 161
- 239000011229 interlayer Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 12
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 9
- 238000000151 deposition Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229920005591 polysilicon Polymers 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- -1 oxygen ions Chemical class 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
- H04M1/0266—Details of the structure or mounting of specific components for a display module assembly
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/029—Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0626—Adjustment of display parameters for control of overall brightness
Definitions
- the present application relates to the field of display technology, and in particular, to a driving substrate and a manufacturing method thereof, a display panel and an electronic device.
- Mobile phones With the development of mobile phone technology, users have higher and higher requirements for the comfort and battery life of mobile phone applications, which requires the mobile phone to dynamically adjust the brightness of the display screen according to the environment during display.
- Mobile phones usually sense ambient optical changes by installing ambient light sensors outside the display panel. By sensing the surrounding light conditions, the brightness of the display backlight is automatically adjusted to reduce the power consumption of the product.
- the ambient light sensor usually needs to be installed on the frame area of the screen through adhesive material. Since the size of the ambient light sensor is in the millimeter level, the width of the adhesive material cannot be reduced, thus occupying a large area of the frame area, and a narrow frame cannot be realized.
- a driving substrate and a manufacturing method thereof, a display panel and an electronic device are provided, so as to realize a narrow frame and improve the reliability of the overall structure.
- a drive substrate comprising:
- a first active layer disposed on the substrate
- a first conductive structure disposed on the first active layer
- a second conductive structure disposed on the first active layer, and forming a channel region with the first conductive structure
- the photoelectric sensing structure is disposed in the channel region and is electrically connected with the first conductive structure, and is used for sensing ambient light brightness.
- a preparation method of a driving substrate comprising:
- first conductive structure and a second conductive structure on the first active layer, and forming a channel region between the first conductive structure and the second conductive structure;
- the photoelectric sensing structure is located in the channel region, and the photoelectric sensing structure is electrically connected to the first conductive structure, and the photoelectric sensing structure and the second conductive structure are arranged at intervals.
- a display panel comprising the above-mentioned driving substrate or the above-mentioned driving substrate prepared by the above-mentioned preparation method.
- An electronic device comprising the above-mentioned display panel.
- FIG. 1 is a schematic structural diagram of a driving substrate in an embodiment
- FIG. 2 is a schematic structural diagram of a driving substrate in an embodiment
- FIG. 3 is a schematic structural diagram of a driving substrate in an embodiment
- FIG. 4 is a schematic structural diagram of a driving substrate in an embodiment
- FIG. 5 is a schematic structural diagram of a driving substrate in an embodiment
- FIG. 6 is a schematic structural diagram of a driving substrate in an embodiment
- FIG. 7 is a schematic structural diagram of a driving substrate in an embodiment
- FIG. 8 is a schematic structural diagram of a driving substrate in an embodiment
- FIG. 9 is a method flowchart of a method for manufacturing a driving substrate in an embodiment
- FIG. 10 is a flow chart of a method of manufacturing a driving substrate in an embodiment.
- FIG. 11 is a schematic structural diagram of a display panel in an embodiment
- FIG. 12 is a schematic structural diagram of a display panel in an embodiment
- FIG. 13 is a schematic structural diagram of a display panel in an embodiment.
- first, second, etc. used in this application may be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish a first element from another element, and should not be construed to indicate or imply relative importance or to imply the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature. In the description of the present application, “plurality” means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
- the ambient light sensor In the display device, for the comfort and endurance of the application, it is usually necessary to use an ambient light sensor to detect the ambient light brightness. demand.
- the ambient light sensor is sensitive to dynamically adjust the display brightness of the display device, which can maximize the working time of the battery.
- the ambient light sensor helps the display to provide a soft picture. When the ambient brightness is high, the display using the ambient light sensor is adjusted to high brightness; when the external environment is dark, the display is adjusted to low brightness.
- the ambient light sensor needs to be adhered to the frame area of the display screen through a glue material.
- the ambient light sensor Since the ambient light sensor is large in size, it occupies a certain frame area, so that the effect of a narrow frame cannot be achieved. At the same time, since the adhesive material is adhered to the frame area of the display screen, there is still a problem of bonding force between the adhesive material and the ambient light sensor, and the reliability of the display device will be affected.
- the present application provides a driving substrate, the driving substrate is provided with a pixel driving circuit, which can be applied to an electronic device with a display screen, and the electronic device can be a mobile phone, a tablet computer, a notebook computer, a personal digital assistant, a television Devices with display functions, such as computers, multimedia display panels, and fingerprint sensors.
- the driving substrate includes a photoelectric sensing module composed of a photoelectric sensing structure and a first switching device.
- the photoelectric sensing structure is used to generate a photocurrent according to the collected ambient light
- the first switching device is used to read the photocurrent to obtain the ambient light. Brightness information.
- the photoelectric sensor module is arranged on the drive substrate, and does not need to be additionally installed in the frame area of the screen through adhesive material, which is beneficial to realize a narrow frame and does not have the problem of bonding force.
- the first switching device when the photoelectric sensing structure is in the light sensing state, the first switching device is used as a component of the photoelectric sensing module, and is used to receive the photocurrent when it is turned on to read the ambient light brightness information; when When the photoelectric sensing structure is in the non-photosensing state, the first switching device may only be used as a switching device in the pixel driving circuit of the driving substrate, and participate in the light-emitting driving of the pixel light-emitting unit.
- the photoelectric sensor module can be electrically connected with the control module, and the control module outputs a control signal to control the pixel driving circuit to dynamically adjust the brightness of the screen according to the ambient light brightness sensed by the photoelectric sensor structure. brightness.
- the photoelectric sensing module can be electrically connected to a sequential circuit, for example, the gate of the first switching device is electrically connected to the sequential circuit, and the sequential circuit can be used to control the first switch in a preset time period according to actual needs
- the device is turned on or off, thereby controlling the detection time and frequency of ambient light brightness of the photoelectric sensor module.
- the first switching device can be controlled to be turned on in one frame, and the first switching device can obtain the photocurrent generated by the photoelectric sensing structure in one frame, so that the photoelectric sensing module can detect the ambient light brightness in one frame.
- FIG. 1 is a schematic structural diagram of a driving substrate in an embodiment.
- the driving substrate 10 includes a substrate 101 , a first active layer 102 , a first conductive structure 103 , a second conductive structure 104 and a photoelectric sensing structure 105 .
- the first active layer 102, the first conductive structure 103, and the second conductive structure 104 can form a first switching device, and the photoelectric sensing module formed by the combination of the first switching device and the photoelectric sensing structure 105 can detect light. Brightness detection.
- the substrate 101 may be a flexible substrate or a non-flexible substrate, for example, a transparent organic material or glass may be selected.
- the glass substrate may be an alkali-free borosilicate ultra-thin glass, and the alkali-free borosilicate glass has higher physical properties, better corrosion resistance, higher thermal stability, and higher thermal stability. Low density and high elastic modulus.
- the substrate 101 is provided with a photoelectric sensing structure 105 capable of sensing ambient light information and a first switching device capable of acquiring a photocurrent signal.
- the first active layer 102 is disposed on the substrate 101 .
- the first active layer 102 includes a channel region 102a corresponding to the channel region G, and a first contact region 102b and a second contact region 102c respectively connected to the channel region.
- the first contact region 102b can be used to set the first conductive structure 103
- the second contact region 102c can be used for disposing the second conductive structure 104 .
- the material of the first active layer 102 can be selected from amorphous silicon, polycrystalline silicon or metal oxide. Taking polysilicon as an example, the first active layer 102 can use chemical vapor deposition to form an amorphous silicon layer, and then convert the amorphous silicon layer into a polysilicon layer.
- the pre-shaped region of a contact region 102b and the pre-shaped region corresponding to the second contact region 102c are doped, eg, ion implanted, to create the interconnected first contact region 102b, channel region 102a, and second contact region 102c.
- the selection of the material of the first active layer 102 can determine the type of the first switching device, and the type of the first switching device can be selected according to the magnitude of the photocurrent signal formed by the photoelectric sensing structure 105 .
- a semiconductor device with relatively small leakage current such as an oxide thin film transistor
- the material of the first active layer 102 can be selected from semiconductor oxide
- a semiconductor device with a relatively large leakage current is selected as the first switching device to reduce the influence of the leakage current on the detection result, such as a polysilicon thin film transistor, so that the material of the first active layer 102 can be selected from polysilicon.
- the first conductive structure 103 is disposed on the first active layer 102 ; the second conductive structure 104 is disposed on the first active layer 102 , and a channel region G is formed with the first conductive structure 103 .
- the first conductive structure 103 is used as the first source/drain of the first switching device
- the second conductive structure 104 is used as the first drain/source of the first switching device
- the first conductive structure 103 is used as the input of the first switching device
- the terminal is used to connect with the photoelectric sensing structure 105, the photoelectric sensing structure 105 generates a photocurrent signal according to the received external light, and the second conductive structure 104 is used as the output terminal of the first switching device.
- first conductive structure 103 and the second conductive structure 104 may be selected from metal materials, for example including at least one of molybdenum, titanium, aluminum and copper, to ensure good electrical conductivity.
- the materials and thicknesses of the first conductive structure 103 and the second conductive structure 104 may be the same or different, and are specifically selected and adjusted according to actual application conditions, which are not limited herein.
- the first conductive structure 103 and the second conductive structure 104 may be disposed in the same layer and fabricated by using the same material and the same process steps, thereby reducing fabrication steps and lowering fabrication costs.
- a channel region G is formed between the first conductive structure 103 and the second conductive structure 104, and a photoelectric sensing structure 105 can be arranged in the channel region G, so that the first conductive structure 103 and the second conductive structure 104 are located in the photoelectric sensor.
- the upper end of the first conductive structure 103 , the upper end of the photoelectric sensing structure 105 and the upper end of the second conductive structure 104 are surrounded to form a U-shaped structure in longitudinal section, so that the photoelectric sensing structure 105 can sense the incoming
- the light in the U-shaped structure prevents invalid light in other directions, such as non-detection object light entering from the two sides of the substrate 101 or the bottom of the substrate 101 from entering.
- the driving substrate 10 further includes a first gate 106 .
- the first switching device may be a top-gate or bottom-gate switching device.
- the first gate 106 is provided on the side of the first active layer 102 away from the substrate 101, and is insulated from the first active layer 102 by an insulating layer;
- the first gate 106 is disposed on the side of the first active layer 102 close to the substrate 101, and is insulated from the first active layer 102 by an insulating layer.
- the first gate 106 is disposed in the channel region G between the first active layer 102 and the photoelectric sensing structure 105 .
- the first conductive structure 103 and the second conductive structure 104 are respectively electrically connected to the first active layer 102 , the first gate 106 is insulated from the first active layer 102 , the first conductive structure 103 and the second conductive structure 104 , Therefore, the first gate 106 , the first conductive structure 103 , the second conductive structure 104 and the first active layer 102 form a top-gate first switching device for obtaining the photocurrent of the photoelectric sensing structure 105 .
- an insulating layer is provided between the first gate electrode 106 and the first active layer 102 to achieve the purpose of insulation.
- the photoelectric sensing structure 105 is disposed in the channel region G and is electrically connected to the first conductive structure 103 .
- the photoelectric sensing structure 105 can convert the received optical signal to form a photocurrent signal, and output the photocurrent signal to the first switching device through the first conductive structure 103, so that the first switching device can obtain the optical information.
- the photoelectric sensing structure 105 when light is irradiated into the photoelectric sensing structure 105, electrons in the valence band of the photoelectric sensing structure 105 are excited into the conduction band, holes appear in the valence band, electrons appear in the conduction band, and transitions between electrons and holes form photocurrent.
- the intensity of the light can determine the magnitude of the photocurrent, so that the intensity of the light can be sensed according to the magnitude of the photocurrent.
- the photoelectric sensing structure 105 is arranged in the channel region G, which can avoid increasing the additional occupied volume, and does not need to be adhered by glue, which reduces the restriction of the volume factor on the performance and application range; and the photoelectric sensing structure
- the arrangement of 105 in the channel region G can prevent invalid light outside the channel region G from being sensed.
- the upper surface of the photoelectric sensing structure 105 may be flush with the upper surface of the first conductive structure 103 and the upper surface of the second conductive structure 104 , or the upper surface of the photoelectric sensing structure 105 may be lower than that of the first conductive structure 103 .
- the upper surface and the upper surface of the second conductive structure 104 so that the photoelectric sensing structure 105 can ensure that invalid light outside the channel region G is prevented from being sensed.
- the photoelectric sensing structure 105 is electrically connected to the first conductive structure 103.
- the photoelectric sensing structure 105 and the first conductive structure 103 can be realized by providing contact holes and filling conductive materials in places other than the photosensitive area. It is electrically connected, and it is ensured that the photosensitive area of the photoelectric sensing structure 105 will not be blocked, so that the light to be detected can be obtained as much as possible.
- the first conductive structure 103 penetrates to the photoelectric sensing structure 105 to form a common electrode of the first switching device and the photoelectric sensing structure 105 , that is, the photoelectric sensing structure 105 does not need to be separate. Setting the conductive structure to be connected to the first switching device can reduce the manufacturing process steps and reduce the cost.
- the first conductive structure 103 penetrates to the side of the sensing area of the photoelectric sensing structure 105, so as to ensure that the photosensitive area of the photoelectric sensing structure 105 is not blocked as much as possible, and the light to be detected can be obtained.
- the first conductive structure 103 is made of a material with better light transmittance, so as to further ensure that the photosensitive area of the photoelectric sensing structure 105 will not be blocked.
- the photosensor structure 105 is indium gallium zinc oxide.
- the indium gallium zinc oxide material since the band gap of the indium gallium zinc oxide material is wide, it is completely transparent to visible light, so more visible light can reach the photoelectric sensing structure 105, thereby improving the photoelectric sensing
- the photoresponse characteristics of the structure 105 on the other hand, the size of the photoelectric sensing structure 105 made of indium gallium zinc oxide material can be made as small and thin as possible, so that the photoelectric sensing structure 105 can be reduced in the driving substrate 10 occupied area.
- the driving substrate 10 further includes a first shielding structure 107 .
- the first shielding structure 107 is disposed on the side of the photoelectric sensing structure 105 close to the substrate 101 .
- the first shielding structure 107 is disposed between the first gate 106 and the photoelectric sensing structure 105 ( FIG. 4 is taken as an example); when the first switching device is a bottom-gate structure , the first shielding structure 107 is disposed between the first active layer 102 and the photoelectric sensing structure 105 .
- the first conductive structure 103 and the second conductive structure 104 are generally made of metal materials with high reflectivity, the light incident on the photoelectric sensing structure 105 is reflected inside the driving substrate 10 .
- the first shielding structure 107 can make the light incident on the channel region G and be emitted by the first conductive structure 103 and the second conductive structure 104
- the light from the photoelectric sensor is reflected again into the photoelectric sensing structure 105 , so as to avoid the omission of part of the sensing light by the photoelectric sensing structure 105 and improve the accuracy of light sensing.
- the first active layer 102 is made of polysilicon material, there are H ions in the first active layer 102, and when the material of the photoelectric sensing structure 105 is an oxide semiconductor, the oxygen ions in the photoelectric sensing structure 105 are easy to interact with The H ions combine to form hydroxyl groups, thereby damaging the oxide of the photoelectric sensing structure 105.
- the first shielding structure 107 can prevent the H ions of the first active layer 102 from escaping to the photoelectric sensing structure 105, thereby ensuring the photoelectric sensing structure.
- the structure and performance of 105 are stable, thereby ensuring the stability of structure and performance of the driving substrate 10 formed by the photoelectric sensing structure 105 and the first switching device.
- the first shielding structure 107 is an opaque metal layer, so that the first shielding structure 107 can realize both the light reflection function and the shielding function of the first active layer 102H ions.
- the first projected area of the first blocking structure 107 on the substrate 101 is greater than or equal to the second projected area of the photoelectric sensing structure 105 on the substrate 101 (in FIG.
- the projected area is equal to the second projected area as an example). Therefore, the first shielding structure 107 can reflect the light reflected by the first conductive structure 103 and the second conductive structure 104 to the photoelectric sensing structure 105 as much as possible, and can ensure to block the possible H ions and prevent the H ions from escaping into the photoelectric sensing structure 105 .
- the driving substrate 10 further includes a buffer layer 108 .
- the buffer layer 108 is provided between the substrate 101 and the first active layer 102 .
- the buffer layer 108 can be formed into a single-layer or multi-layer structure by chemical vapor deposition or other deposition methods, such as a silicon oxide layer, a silicon nitride layer or a combination of the two, which is not limited herein.
- the buffer layer 108 can prevent moisture or impurities generated from the substrate 101 from affecting the first active layer 102 , and can also improve adhesion between the first switching device and the substrate 101 .
- the driving substrate 10 further includes an insulating layer 201 disposed between the first active layer 102 and the first gate 106 , and disposed between the first gate 106 and the first shielding structure 107
- the interlayer dielectric layer 203 is disposed between the first shielding structure 107 and the photoelectric sensing structure 105
- the interlayer dielectric layer 204 is disposed between the photoelectric sensing structure 105 and the first conductive structure 103 and the second conductive structure 104
- the interlayer dielectric layer 202 in between.
- the insulating layer and the interlayer dielectric layer can be formed by chemical vapor deposition or other deposition methods to form a single-layer or multi-layer structure, such as a silicon oxide layer, a silicon nitride layer or a combination of the two, which is not limited herein.
- the driving substrate 10 provided in this embodiment includes a substrate 101 , a first active layer 102 , a first conductive structure 103 , a second conductive structure 104 and a photoelectric sensing structure 105 .
- the first active layer 102, the first conductive structure 103, and the second conductive structure 104 can form a first switching device, and the first switching device and the photoelectric sensing structure 105 can detect the brightness of light.
- FIG. 6 is a schematic structural diagram of the driving substrate 10 in an embodiment.
- the driving substrate 10 includes a substrate 101 , a first active layer 102 , a first conductive structure 103 , a second conductive structure 104 , a photoelectric sensing structure 105 , a second active layer 109 and a third conductive structure 110 .
- the first active layer 102 , the first conductive structure 103 and the second conductive structure 104 can be used to form the first switching device, and the second active layer 109 and the third conductive structure 110 can be used to form the second switching device.
- the substrate 101 includes a first area and a second area, the photoelectric sensing structure 105 is orthographically projected on the first area, the first area is used for setting the first switching device and the photoelectric sensing structure 105, and the second area is used for setting second switching device.
- the photoelectric sensing module formed by the combination of the first switching device and the photoelectric sensing structure 105, the second switching device can be used to connect other switching devices or directly connect external light-emitting devices, and the photoelectric sensing module performs brightness detection on ambient light.
- the first active layer 102 , the first conductive structure 103 , the second conductive structure 104 , and the photoelectric sensing structure 105 refer to the relevant descriptions of the above embodiments, and are not repeated here.
- the second active layer 109 is orthographically projected on the second region.
- the material of the second active layer 109 can be selected from amorphous silicon, polycrystalline silicon or metal oxide. If the first switching device is a polysilicon thin film transistor, the second switching device may be an oxide thin film transistor, so that the driving substrate 10 has an LTPO (Low Temperature Polycrystalline Oxide, low temperature polycrystalline oxide) structure to realize the first switching device and the second switching device.
- LTPO Low Temperature Polycrystalline Oxide, low temperature polycrystalline oxide
- the integration and partial sharing of switching devices in fabrication steps and hierarchical structures reduce the fabrication cost of the driving substrate 10 .
- the material of the second active layer 109 can be selected from suitable metal oxide materials, such as zinc oxide (ZnO), tin oxide (SnO2), indium gallium zinc oxide (IGZO), indium zinc oxide (IZO) or others Material.
- the second active layer 109 and the photoelectric sensing structure 105 are disposed in the same layer ( FIG. 7 takes the second active layer 109 and the photoelectric sensing structure 105 disposed in the same layer as an example), so that the second active layer 109 and the photoelectric sensing structure 105 can be made of the same material, for example, IGZO material is used at the same time, which is obtained by patterning the IGZO layer at the same time. At the same time, materials can be saved, so that the preparation efficiency can be improved and the preparation cost can be reduced.
- IGZO material for example, IGZO material is used at the same time, which is obtained by patterning the IGZO layer at the same time.
- the third conductive structure 110 is disposed on the side of the second active layer 109 away from the substrate 101 and penetrates to the first active layer 102 .
- the third conductive structure 110 is the source/drain of the second switching device, and can be used as the input end of the second switching device to be connected to the output end of the first switching device.
- the first switching device and the second switching device as components of the pixel driving circuit, can be connected to the pixel light-emitting unit to drive the light-emitting state of the pixel light-emitting unit.
- the third conductive structure 110 can be selected from a metal material, for example, including at least one of molybdenum, titanium, aluminum and copper, so as to ensure good electrical conductivity.
- the material and thickness of the third conductive structure 110 can be selected and adjusted according to the actual application, which is not limited herein.
- a fourth conductive structure is further provided on the second active layer 109, and the fourth conductive structure may be a drain/source electrode, which is used as the output terminal of the second switching device and is used to connect with the pixel light-emitting unit, so as to The driving of the pixel light-emitting unit is realized through the second switching device.
- the fourth conductive structure can be selected from a metal material, for example, including at least one of molybdenum, titanium, aluminum and copper, so as to ensure good electrical conductivity.
- the material and thickness of the fourth conductive structure can be selected and adjusted according to the actual application, which is not limited herein.
- the third conductive structure 110 and the fourth conductive structure may be disposed in the same layer, and fabricated by using the same material and the same process steps, thereby reducing fabrication steps and lowering fabrication costs.
- the driving substrate 10 further includes a second gate.
- the second switching device may be a top-gate or bottom-gate switching device.
- the second gate is disposed on the side of the second active layer 109 away from the substrate 101 and is insulated from the second active layer 109 by an insulating layer (as shown in FIG. 7 , 111 in FIG. 7 is the second gate);
- the first gate 106 is disposed on the side of the second active layer 109 close to the substrate 101, and is connected to the second active layer 109 The arrangement is insulated by an insulating layer.
- the driving substrate 10 further includes a second shielding structure 112 (for the convenience of subsequent introduction, FIG. 8 is based on the embodiment of FIG. 5 ).
- the second shielding structure is disposed on the side of the second active layer 109 close to the substrate 101, and the third projected area of the second shielding structure 112 on the substrate 101 is greater than or equal to the orthographic projection of the second active layer 109 on the substrate 101.
- the fourth projected area on the substrate 101 is disposed on the side of the second active layer 109 close to the substrate 101, and the third projected area of the second shielding structure 112 on the substrate 101 is greater than or equal to the orthographic projection of the second active layer 109 on the substrate 101.
- the second shielding structure 112 can shield H ions that may escape from the first active layer 102 .
- H ions exist in the first active layer 102.
- the material of the second active layer 109 is an oxide semiconductor, the oxygen ions in the second active layer 109 are easily combined with H ions Hydroxyl groups are formed, thereby damaging the oxide of the second active layer 109.
- the second shielding structure 112 can prevent the first active layer 102H ions from escaping to the second active layer 109, ensuring the Stable structure and stable performance.
- the third projected area of the second blocking structure 112 on the substrate 101 is greater than or equal to the fourth projected area of the second active layer 109 on the substrate 101 (in FIG. 8 , the third projected area is equal to The fourth projected area as an example). Therefore, the second shielding structure can ensure to block possible H ions and prevent H ions from escaping into the second active layer 109 .
- the second shielding structure 112 and the first shielding structure 107 may be disposed in the same layer, and manufactured by using the same material and the same process steps, thereby reducing the number of manufacturing steps and the manufacturing cost.
- the driving substrate 10 further includes an insulating layer 205 disposed between the second active layer 109 and the second gate electrode, and disposed between the second active layer 109 and the second shielding structure 112
- the interlayer dielectric layer 204 in between.
- both the insulating layer 205 and the interlayer dielectric layer 204 can be formed into a single-layer or multi-layer structure by chemical vapor deposition or other deposition methods, such as a silicon oxide layer, a silicon nitride layer or a combination of the two, which is not limited herein.
- FIG. 9 shows a manufacturing method of a driving substrate according to an embodiment, which is used to manufacture the driving substrate of the above embodiment.
- the preparation method includes step 101 , step 102 , step 103 and step 104 .
- Step 101 Provide a substrate.
- Step 102 forming a first active layer on the substrate.
- Step 103 forming a photoelectric sensing structure on an active layer, and the photoelectric sensing structure and the first active layer are insulated from each other.
- Step 104 forming a first conductive structure and a second conductive structure on the first active layer, and forming a channel region between the first conductive structure and the second conductive structure.
- the photoelectric sensing structure is located in the channel region, and the photoelectric sensing structure is electrically connected with the first conductive structure, and the photoelectric sensing structure and the second conductive structure are arranged at intervals.
- the preparation methods of the substrate, the first active layer, the first conductive structure, the second conductive structure, and the photoelectric sensing structure can be the traditional substrate, the first active layer, the first conductive structure, the The preparation method of the two-conductive structure and the photoelectric sensing structure is not further limited in the embodiments of the present application.
- the preparation method may further include step 105 .
- Step 105 forming a first shielding structure on the first active layer, the first shielding structure is insulated from the photoelectric sensing structure and the first active layer, respectively.
- first shielding structure For the description of the first shielding structure, reference may be made to the relevant descriptions in the foregoing embodiments, which will not be repeated here.
- a corresponding preparation method may be selected according to the material actually selected. For example, when an opaque metal is selected for preparation, a sputtering method may be selected to form the first shielding structure, which is not further limited in the embodiments of the present application.
- the preparation method may further include step 106 .
- Step 106 forming a first gate on the first active layer, the first gate is insulated from the first shielding structure and the first active layer, respectively.
- the preparation of the first gate electrode may be a conventional deposition method, which is not further limited in this embodiment of the present application.
- the preparation method may further include step 107 .
- Step 107 Form a buffer layer on the substrate.
- the preparation of the buffer layer may be a traditional deposition method, which is not further limited in this embodiment of the present application.
- the preparation method further includes forming an insulating layer between the first active layer and the first gate, and forming an interlayer dielectric layer between the first gate and the first shielding structure, An interlayer dielectric layer is formed between the first shielding structure and the photoelectric sensing structure.
- both the insulating layer and the interlayer dielectric layer can be formed by chemical vapor deposition or other deposition methods to form a single-layer or multi-layer structure, such as a silicon oxide layer, a silicon nitride layer or a combination of the two, which is not limited herein.
- FIG. 10 shows a manufacturing method of a driving substrate according to an embodiment, which is used to manufacture the driving substrate of the above embodiment.
- the preparation method includes step 201 , step 202 , step 203 , step 204 and step 205 .
- Step 201 Provide a substrate.
- Step 202 forming a first active layer in a first region on the substrate.
- Step 203 forming a second active layer in the second region on the substrate.
- Step 204 forming a photoelectric sensing structure on the first active layer, and the photoelectric sensing structure and the first active layer are insulated from each other.
- Step 205 forming a first conductive structure and a second conductive structure on the first active layer, and forming a channel region between the first conductive structure and the second conductive structure.
- the photoelectric sensing structure is located in the channel region, and the photoelectric sensing structure is electrically connected with the first conductive structure, and the photoelectric sensing structure and the second conductive structure are arranged at intervals.
- Step 206 forming a third conductive structure on the side of the second active layer away from the substrate, and the third conductive structure penetrates to the first active layer.
- step 203 and step 204 may be performed simultaneously.
- the preparation methods of the substrate, the first active layer, the first conductive structure, the second conductive structure, the photoelectric sensing structure, the second active layer and the third conductive structure can be the traditional substrate, the first conductive structure
- the preparation methods of the active layer, the first conductive structure, the second conductive structure, the photoelectric sensing structure, the second active layer and the third conductive structure are not further limited in the embodiments of the present application.
- the preparation method may further include step 207 .
- Step 207 forming a second shielding structure on the second region, so that the second shielding structure is located on the side of the second active layer close to the substrate.
- a corresponding preparation method can be selected according to the material actually selected.
- a sputtering method can be selected to form the second shielding structure, which is not further limited in the embodiments of the present application.
- step 207 and step 105 in the previous embodiment can be performed simultaneously.
- the preparation method may further include step 208 .
- Step 208 forming a second gate on the second active layer, and the second gate is insulated from the second active layer respectively.
- the preparation of the second gate may be a traditional deposition method, which is not further limited in the embodiments of the present application.
- the preparation method further includes forming an insulating layer between the first active layer and the first gate, and forming an interlayer dielectric layer between the first gate and the first shielding structure, An interlayer dielectric layer is formed between the first shielding structure and the photoelectric sensing structure, an interlayer dielectric layer is formed between the second active layer and the second gate, and an interlayer dielectric is formed between the second gate and the third conductive structure interlayer dielectric layer.
- the insulating layer and the interlayer dielectric layer can be formed by chemical vapor deposition or other deposition methods to form a single-layer or multi-layer structure, such as a silicon oxide layer, a silicon nitride layer or a combination of the two, which is not limited herein.
- the present application further provides a display panel, including the driving substrate described in the above embodiment or the driving substrate prepared by the production method described in the above embodiment.
- the display panel does not need to be additionally mounted on the frame area of the screen through adhesive material, which is beneficial to realize a narrow frame and has high reliability.
- the display panel further includes a display area; the photoelectric sensing structure 105 is a light-transmitting member; and the photoelectric sensing structure 105 is located on the display area. Since the photoelectric sensing structure 105 is a light-transmitting member, when the photoelectric sensing structure 105 is disposed on the display area, the display effect will not be affected.
- the display panel includes a pixel light-emitting unit, and the pixel light-emitting unit is disposed on the driving substrate of the display area.
- the display area includes a display photosensitive area, a plurality of pixel light-emitting units located in the display photosensitive area, and a photoelectric sensing structure is arranged between at least two pixel light-emitting units. Therefore, the photoelectric sensing structure can be interspersed between adjacent pixel light-emitting units, and there is usually an idle area between adjacent pixel light-emitting units.
- the photoelectric sensing structure 105 is arranged in the idle area between adjacent pixel light-emitting units. In the area, it is beneficial to improve the effective utilization rate of the display area.
- the photosensor structures 105 can be disposed between two adjacent pixel light-emitting units; when the number of photosensor structures 105 is multiple, multiple photosensors
- the structure 105 may be disposed between a plurality of adjacent pixel light-emitting units in the display photosensitive area, thereby forming a regional photosensitive area.
- the display panel is further provided with a non-display area (as shown in FIG.
- NAA is the non-display area in the figure
- the display light-sensitive area is located at the edge of the display area close to the non-display area. Therefore, the photoelectric sensing structure 105 is arranged at the edge of the display area close to the non-display area, which can ensure that the area of the frame area is not occupied without affecting the display effect, which is conducive to further realizing a narrow frame and further improving the display effect.
- the plurality of pixel light-emitting units include a first pixel unit 310 , a pair of second pixel units 320 separated from the first pixel unit 310 , and a pair of second pixel units 320 separated from the first pixel unit 310 and A pair of third pixel units 330 separated from the second pixel unit 320 .
- the second pixel unit 320 is located on the opposite side of the first pixel unit 310 along the first line, the first pixel unit 310, the second pixel unit 320 and another first pixel unit 310 are continuously arranged along the first line; the third pixel unit 330 Located on the opposite side of the first pixel unit 310 along the second line, the first pixel unit 310 , the third pixel unit 330 and another first pixel unit 310 are continuously arranged along the second line, and the second line and the first line are in the first pixel unit 310 intersect at the location.
- a photoelectric sensing structure 105 is provided between two adjacent first pixel units 310
- a photoelectric sensing structure is provided between the second pixel unit 320 and the adjacent third pixel unit 330 .
- the first pixel units 310 are arranged along the first virtual line VL1
- the second pixel units 320 and the third pixel units 330 are alternately arranged and arranged along the second virtual line VL2 .
- the second pixel unit 320 is located at the first vertex P1 along one diagonal of the virtual square VS
- the third pixel unit 330 is located at the second vertex P2 along the other diagonal of the virtual square VS, where the virtual square
- the VS has a first pixel unit 310 at a virtual center point.
- the first pixel unit 310 , the second pixel unit 320 and the third pixel unit 330 emit green light, blue light and red light respectively, and each first pixel unit 310 has a higher intensity than the adjacent second pixel unit 320 and The third pixel unit 330 has a smaller area.
- the display panel further includes a control module, which is electrically connected to the second conductive structure and the pixel light-emitting unit respectively, and is used for adjusting the light-emitting state of the pixel light-emitting unit according to the brightness of the ambient light, thereby dynamically adjusting the screen brightness, reducing the power consumption of the product.
- a control module which is electrically connected to the second conductive structure and the pixel light-emitting unit respectively, and is used for adjusting the light-emitting state of the pixel light-emitting unit according to the brightness of the ambient light, thereby dynamically adjusting the screen brightness, reducing the power consumption of the product.
- the present application also provides an electronic device, comprising the driving substrate described in the above embodiments or the driving substrate prepared by the production method described in the above embodiments.
- the electronic device does not need to be additionally mounted on the frame area of the screen through adhesive material, which is beneficial to realize a narrow frame and has high reliability.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Thin Film Transistor (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
一种驱动基板(10)及其制备方法、显示面板及电子设备,其中驱动基板(10)包括衬底(101)、第一有源层(102)、第一导电结构(103)、第二导电结构(104)及光电传感结构(105)。第一有源层(102)、第一导电结构(103)、第二导电结构(104)可形成第一开关器件,第一开关器件和光电传感结构(105)能够对光进行亮度检测,并根据检测结果输出控制信号,以直接或间接控制外部发光器件的发光状态。通过将光电传感结构(105)设置在驱动基板(10)中,不需要额外通过胶材安装在屏幕的边框区域,有利于实现窄边框,并且提高整体结构的可靠性。
Description
相关申请的交叉引用
本申请要求于2021年05月07日提交中国专利局、申请号为202110496026X、发明名称为“驱动基板及其制备方法、显示面板及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及显示技术领域,特别是涉及驱动基板及其制备方法、显示面板及电子设备。
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
随着手机技术的发展,用户对手机应用的舒适性和续航能力的要求越来越高,这就要求手机在显示时能够根据环境动态调节显示屏亮度。手机通常通过在显示面板外部安装环境光传感器来感知环境光学变化,通过感知周围光线情况,自动调节显示屏背光亮度,降低产品的功耗。
然而,环境光传感器通常需要通过胶材安装在屏幕的边框区域,由于环境光传感器的尺寸在毫米级,因此无法缩减胶材宽度,从而占用较多的边框区域面积,无法实现窄边框。
发明内容
根据本申请的各种实施例,提供一种驱动基板及其制备方法、显示面板及电子设备,以实现窄边框,并提高整体结构的可靠性。
为了实现本申请的目的,本申请采用如下技术方案:
一种驱动基板,包括:
衬底;
第一有源层,设置在所述衬底上;
第一导电结构,设置在所述第一有源层上;
第二导电结构,设置在所述第一有源层上,与所述第一导电结构形成有沟道区;
光电传感结构,设置在所述沟道区中且与所述第一导电结构电性连接,用于感测环境光亮度。
一种驱动基板的制备方法,包括:
提供衬底;
在所述衬底上形成第一有源层;
在所述第一有源层上形成光电传感结构,所述光电传感结构与所述第一有源层相互绝缘;
在所述第一有源层上形成第一导电结构及第二导电结构,所述第一导电结构及所述第二导电结构之间形成沟道区;
其中,所述光电传感结构位于所述沟道区,且所述光电传感结构与所述第一导电结构电性连接,所述光电传感结构与所述第二导电结构间隔设置。
一种显示面板,所述显示面板包括如上所述的驱动基板或包括由上述的制备方法制备获得的驱动基板。
一种电子设备,所述电子设备包括如上所述的显示面板。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例中驱动基板的结构示意图;
图2为一实施例中驱动基板的结构示意图;
图3为一实施例中驱动基板的结构示意图;
图4为一实施例中驱动基板的结构示意图;
图5为一实施例中驱动基板的结构示意图;
图6为一实施例中驱动基板的结构示意图;
图7为一实施例中驱动基板的结构示意图;
图8为一实施例中驱动基板的结构示意图;
图9为一实施例中驱动基板的制备方法的方法流程图;
图10为一实施例中驱动基板的制备方法的方法流程图
图11为一实施例中显示面板的结构示意图;
图12为一实施例中显示面板的结构示意图;
图13为一实施例中显示面板的结构示意图。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
需要理解的是,术语“上”、“下”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方法或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体地实施例的目的,不是旨在于限制本申请。
在显示设备中,为了应用的舒适性和续航力,通常需要采用环境光传感器检测环境光亮度,显示设备基于环境光亮度动态调节屏幕亮度,以满足在各种环境光亮度下显示亮度都能满足用户的需求。一方面,例如手机等移动显示设备,由于显示器消耗的电量高达电池总电量的60%,基于环境光传感器感光,动态调节显示设备的显示亮度,可以最大限度地延长电池的工作时间。另一方面,环境光传感器有助于显示器提供柔和的画面,当环境亮度较高时,使用环境光传感器的显示器调成高亮度;当外界环境较暗时,显示器调成低亮度。然而,在相关技术中,环境光传感器需要通过胶材粘附在显示屏的边框区域上,由于环境光传感器的体积较大,因此占用了一定的边框面积,从而无法实现窄边框的效果。同时,由于通过胶材粘附在显示屏的边框区域上,胶材和环境光传感器之间还存在结合力问题,显示设备的可靠性会受到影响。
为了解决上述问题,本申请提供了一种驱动基板,驱动基板设有像素驱动电路,可应用于具有显示屏的电子设备,该电子设备可以是手机、平板电脑、笔记本电脑、个人数字助理、电视机、多媒体显示面板、指纹感测等具有显示功能的设备。
其中,驱动基板包括光电传感结构和第一开关器件组成的光电传感模组,光电传感结构用于根据采集的环境光生成光电流,第一开关器件用于读取光电流以获得环境光亮度信息。光电传感模组设置在驱动基板上,不需要额外通过胶材安装在屏幕的边框区域,有利于实现窄边框,并且不会存在结合力的问题。
在一些实施例中,当光电传感结构处于光感测状态时,第一开关器件作为光电传感模组的组成部分,用于在导通时接收光电流以读取环境光亮度信息;当光电传感结构处于非光感测状态时,第一开关器件可以仅作为驱动基板像素驱动电路中的一个开关器件,参与像素发光单元的发光驱动。
在一些实施例中,光电传感模组可与控制模组电性连接,控制模组根据所述光电传感结构感测到的环境光亮度,输出控制信号以控制像素驱动电路动态调节屏幕的亮度。
在一些实施例中,光电传感模组可与时序电路电性连接,例如第一开关器件的栅极与时序电路电性连接,时序电路可用于根据实际需要在预设时间段控制第一开关器件的导通或关断,从而控制光电传感模组的环境光亮度检测时间和频率。例如,可以控制第一开关器件在一帧中导通,第一开关器件在一帧中获取光电传感结构生成的光电流,从而光电传 感模组在一帧中实现对环境光亮度的检测。
图1为一实施例中的驱动基板的结构示意图。
驱动基板10包括衬底101、第一有源层102、第一导电结构103、第二导电结构104及光电传感结构105。其中,第一有源层102、第一导电结构103、第二导电结构104可形成第一开关器件,第一开关器件和光电传感结构105组合形成的光电传感模组,能够对光进行亮度检测。
在本实施例中,衬底101可以选用柔性衬底或者非柔性衬底,例如可以选用透明有机材料也可以选用玻璃。在一个实施例中,玻璃衬底可以为无碱硼硅酸盐超薄玻璃,无碱硼硅酸盐玻璃具有较高的物理特性、较好的耐腐蚀性能、较高的热稳定性以及较低的密度和较高的弹性模量。衬底101上设置有能够感测环境光信息的光电传感结构105及能够获取光电流信号的第一开关器件。
在本实施例中,第一有源层102设置在衬底101上。
其中,第一有源层102包括对应沟道区G的通道区102a,以及分别与通道区连接的第一接触区102b和第二接触区102c,第一接触区102b可用于设置第一导电结构103,第二接触区102c可用于设置第二导电结构104。
其中,第一有源层102的材料可以选用非晶硅、多晶硅或金属氧化物。以多晶硅为例,第一有源层102可以利用化学气相沉积法形成一非晶硅层,再将非晶硅层转换为多晶硅层,多晶硅层形成后,通过掩膜版对多晶硅层中对应第一接触区102b的预成形区域和对应第二接触区102c的预成形区域进行掺杂,例如离子注入,以产生相互连接的第一接触区102b、通道区102a及第二接触区102c。
其中,第一有源层102材料的选取能够确定第一开关器件的种类,而第一开关器件的种类可以根据光电传感结构105所形成的光电流信号的大小进行选择。当光电传感结构105形成的光电流信号比较小时则选择漏电流比较小的半导体器件,例如氧化物薄膜晶体管,从而第一有源层102的材料可以选用半导体氧化物;当光电流信号比较大时则选择漏电流比较大的半导体器件作为第一开关器件以减少漏电流对检测结果的影响,例如多晶硅薄膜晶体管,从而第一有源层102的材料可以选用多晶硅。
在本实施例中,第一导电结构103设置在第一有源层102上;第二导电结构104设置 在第一有源层102上,与第一导电结构103形成有沟道区G。
其中,第一导电结构103作为第一开关器件的第一源/漏极,第二导电结构104作为第一开关器件的第一漏/源极,第一导电结构103作为第一开关器件的输入端用于与光电传感结构105连接,光电传感结构105根据接收的外部光线生成的光电流信号,第二导电结构104作为第一开关器件的输出端。
其中,第一导电结构103和第二导电结构104可以选用金属材料,例如包括钼、钛、铝和铜中的至少一种,以保证良好的导电性能。第一导电结构103和第二导电结构104的材料和厚度可以相同或者不同,具体根据实际应用情况进行选择和调整,在此不作限定。在一些实施例中,第一导电结构103和第二导电结构104可以同层设置,并采用相同的材料和相同的工艺步骤制备获得,从而可以减少制备步骤,降低制备成本。
其中,第一导电结构103和第二导电结构104之间形成沟道区G,在沟道区G中可以设置光电传感结构105,从而第一导电结构103及第二导电结构104位于光电传感结构105的两侧,第一导电结构103的上端部、光电传感结构105及第二导电结构104的上端部围绕形成纵截面类似U字形的结构,以使光电传感结构105感测进入U字形结构的光线,从而防止其他方向的无效光线,例如从衬底101两侧或者衬底101底部进入的非检测对象光线的进入。
其中,驱动基板10还包括第一栅极106。第一开关器件可以为顶栅型或底栅型开关器件。对于顶栅型的第一开关器件,第一栅极106设置在第一有源层102背离衬底101的一侧,且与第一有源层102通过绝缘层绝缘设置;对于底栅型的第一开关器件,第一栅极106设置在第一有源层102靠近衬底101的一侧,且与第一有源层102通过绝缘层绝缘设置。
示例性的,如图2所示,第一栅极106设置在沟道区G中且位于第一有源层102和光电传感结构105之间。第一导电结构103和第二导电结构104分别与第一有源层102电性连接,第一栅极106与第一有源层102、第一导电结构103及第二导电结构104绝缘设置,从而第一栅极106、第一导电结构103、第二导电结构104及第一有源层102形成顶栅型的第一开关器件,用以获取光电传感结构105的光电流。其中,第一栅极106与第一有源层102之间通过绝缘层的设置以实现绝缘的目的。
在本实施例中,光电传感结构105设置在沟道区G中且与第一导电结构103电性连接。
其中,光电传感结构105能够对接收到的光信号转换形成光电流信号,将光电流信号通过第一导电结构103输出至第一开关器件,以使第一开关器件获知光信息。具体的,当光照射到光电传感结构105中,光电传感结构105中价带的电子被激发至导带中,价带出现空穴,导带出现电子,电子和空穴的跃迁从而形成光电流。光的强度能够决定光电流的大小,从而根据光电流的大小可以感知光的强弱信息。
其中,光电传感结构105设置在沟道区G中,能够避免增加额外的占用体积,且不需要额外通过胶材粘附,降低了体积因素对性能和应用范围的制约;并且光电传感结构105设置在沟道区G中能够避免感测到沟道区G外侧的无效光线。示例性的,光电传感结构105的上表面可以与第一导电结构103的上表面、第二导电结构104上表面齐平,或者光电传感结构105的上表面低于第一导电结构103的上表面、第二导电结构104上表面,从而光电传感结构105能够保证避免感测到沟道区G外侧的无效光线。
其中,光电传感结构105与第一导电结构103电性连接,示例性的,可以通过感光区域以外的地方通过设置接触孔并填充导电材料以使光电传感结构105与第一导电结构103实现电连接,并且保证光电传感结构105的感光区域不会被遮挡,能尽可能的获得需要检测的光线。
在一些实施例中,如图3所示,第一导电结构103贯穿至光电传感结构105,形成第一开关器件和光电传感结构105的共用电极,即光电传感结构105不需要再单独设置导电结构与第一开关器件连接,可以减少制作的工艺步骤,降低成本。示例性的,第一导电结构103贯穿至光电传感结构105感测区域的侧边上,从而尽可能保证光电传感结构105的感光区域不会被遮挡,能够获得需要检测的光线。示例性的,第一导电结构103选用透光性较好的材料,从而可以进一步保证光电传感结构105的感光区域不会被遮挡。
在一些实施例中,光电传感结构105为铟镓锌氧化物。一方面,采用铟镓锌氧化物材料,由于铟镓锌氧化物材料的带隙较宽,对可见光完全透明,因此,能让更多的可见光到达光电传感结构105,从而提高了光电传感结构105的光响应特性;另一方面,铟镓锌氧化物材料的光电传感结构105,其尺寸可以做到尽可能小且尽可能薄,从而可以缩小光电传感结构105在驱动基板10中的占用面积。
在一些实施例中,如图4所示,驱动基板10还包括第一遮挡结构107。
其中,第一遮挡结构107设置在光电传感结构105靠近衬底101的一侧。当第一开关器件为顶栅结构时,第一遮挡结构107设置在第一栅极106与光电传感结构105之间(图4以此为例);当第一开关器件为底栅结构时,第一遮挡结构107设置在第一有源层102与光电传感结构105之间。
一方面,由于第一导电结构103和第二导电结构104一般采用金属材质,具有较高的反射率,从而使入射至光电传感结构105的光线在驱动基板10内部发生反射,当第一导电结构103和第二导电结构104将光线反射至光电传感结构105下方区域时,通过第一遮挡结构107,可以使入射在沟道区G且被第一导电结构103和第二导电结构104发射的光线经过再次反射进入光电传感结构105中,从而避免光电传感结构105对部分感测光的遗漏,提供光感测的准确性。
另一方面,若第一有源层102采用多晶硅材料,第一有源层102存在H离子,当光电传感结构105的材料为氧化物半导体时,光电传感结构105中的氧离子易与H离子结合形成羟基,从而损坏光电传感结构105的氧化物,通过第一遮挡结构107,可以防止第一有源层102的H离子逸出至光电传感结构105,保证了光电传感结构105的结构稳定和性能稳定,进而保证了由光电传感结构105和第一开关器件形成的驱动基板10的结构稳定和性能稳定。
在一些实施例中,第一遮挡结构107为不透光金属层,从而第一遮挡结构107既能实现光线反射功能,也能实现对第一有源层102H离子的遮挡功能。
在一些实施例中,第一遮挡结构107正投影在衬底101上的第一投影面积大于或等于光电传感结构105正投影在衬底101上的第二投影面积(图4中以第一投影面积等于第二投影面积为例)。从而,第一遮挡结构107能够尽可能多的将第一导电结构103和第二导电结构104反射的光线反射至光电传感结构105中,并且能够保证阻挡可能存在的H离子,避免H离子逃逸至光电传感结构105中。
在一些实施例中,如图5所示,驱动基板10还包括缓冲层108。
缓冲层108设置在衬底101与第一有源层102之间。
其中,缓冲层108可以通过化学气相沉积或其他沉积方式形成单层或多层结构,例如 氧化硅层、氮化硅层或两种的组合,在此不再限定。缓冲层108可以防止从衬底101产生的水分或杂质对第一有源层102造成影响,还可以提高第一开关器件与衬底101之间的粘附性。
需要说明的是,在上述实施例中,驱动基板10还包括设置在第一有源层102和第一栅极106之间的绝缘层201,设置在第一栅极106和第一遮挡结构107之间的层间介质层203,设置在第一遮挡结构107和光电传感结构105之间的层间介质层204,设置在光电传感结构105和第一导电结构103及第二导电结构104之间的层间介质层202。其中,绝缘层及层间介质层均可以通过化学气相沉积或其他沉积方式形成单层或多层结构,例如氧化硅层、氮化硅层或两种的组合,在此不再限定。
本实施例提供的驱动基板10,包括衬底101、第一有源层102、第一导电结构103、第二导电结构104及光电传感结构105。其中,第一有源层102、第一导电结构103、第二导电结构104可形成第一开关器件,第一开关器件和光电传感结构105,能够对光进行亮度检测。通过将第一开关器件和光电传感结构105设置在驱动基板10中,不需要额外通过胶材安装在屏幕的边框区域,有利于实现窄边框,并且提高整体结构的可靠性。
图6为一实施例中的驱动基板10的结构示意图。
驱动基板10包括衬底101、第一有源层102、第一导电结构103、第二导电结构104、光电传感结构105、第二有源层109及第三导电结构110。其中,第一有源层102、第一导电结构103及第二导电结构104可用于形成第一开关器件,第二有源层109及第三导电结构110可用于形成第二开关器件。
其中,衬底101包括第一区域和第二区域,光电传感结构105正投影在第一区域上,第一区域用于设置第一开关器件和光电传感结构105,第二区域用于设置第二开关器件。第一开关器件和光电传感结构105组合形成的光电传感模组,第二开关器件可用于连接其他开关器件或直接连接外部发光器件,光电传感模组对环境光进行亮度检测。
其中,第一有源层102、第一导电结构103、第二导电结构104、光电传感结构105参见上述实施例的相关描述,在此不再赘述。
在本实施例中,第二有源层109正投影在第二区域上。
其中,第二有源层109的材料可以选用非晶硅、多晶硅或金属氧化物。若第一开关器 件为多晶硅薄膜晶体管,则第二开关器件可以为氧化物薄膜晶体管,使得驱动基板10具有LTPO(Low Temperature Polycrystalline Oxide,低温多晶氧化物)结构,实现第一开关器件和第二开关器件在制备步骤、层级结构上的整合和部分共用,降低驱动基板10的制备成本。第二有源层109的材料可以根据需要选择适宜的金属氧化物材料,如氧化锌(ZnO)、氧化锡(SnO2)、铟镓锌氧化物(IGZO)、铟锌氧化物(IZO)或者其他材料。
在一实施例中,第二有源层109与光电传感结构105同层设置(图7以第二有源层109与光电传感结构105同层设置为例),从而第二有源层109与光电传感结构105可以选用相同的材料,例如同时采用IGZO材料,通过对IGZO层进行图案化处理同时制备获得,不需要在制备其中一种结构时刻蚀掉多余的材料,在减少步骤的同时还可以节省材料,从而可以提高制备效率并降低制备成本。
在本实施例中,第三导电结构110,设置在第二有源层109背离衬底101的一侧上且贯穿至第一有源层102。
其中,第三导电结构110为第二开关器件的源/漏极,可以作为第二开关器件的输入端用于与第一开关器件的输出端连接,在光电传感结构105处于非光感测状态时,第一开关器件和第二开关器件作为像素驱动电路的组成部分,可以连接像素发光单元,驱动像素发光单元的发光状态。
其中,第三导电结构110可以选用金属材料,例如包括钼、钛、铝和铜中的至少一种,以保证良好的导电性能。第三导电结构110的材料和厚度可以根据实际应用情况进行选择和调整,在此不作限定。
在一些实施例中,第二有源层109上还设置有第四导电结构,第四导电结构可以为漏/源极,作为第二开关器件的输出端,用于与像素发光单元连接,以便通过第二开关器件实现对像素发光单元的驱动。
其中,第四导电结构可以选用金属材料,例如包括钼、钛、铝和铜中的至少一种,以保证良好的导电性能。第四导电结构的材料和厚度可以根据实际应用情况进行选择和调整,在此不作限定。在一些实施例中,第三导电结构110和第四导电结构可以同层设置,并采用相同的材料和相同的工艺步骤制备获得,从而可以减少制备步骤,降低制备成本。
其中,驱动基板10还包括第二栅极。第二开关器件可以为顶栅型或底栅型开关器件。 对于顶栅型的第二开关器件,第二栅极设置在第二有源层109背离衬底101的一侧,且与第二有源层109通过绝缘层绝缘设置(如图7所示,图7中111为第二栅极);对于底栅型的第二开关器件,第一栅极106设置在第二有源层109靠近衬底101的一侧,且与第二有源层109通过绝缘层绝缘设置。
在一些实施例中,如图8所示,驱动基板10还包括第二遮挡结构112(为了便于后续介绍,图8以图5的实施例为基础)。
第二遮挡结构,设置在第二有源层109靠近衬底101的一侧,第二遮挡结构112正投影在衬底101上的第三投影面积大于或等于第二有源层109正投影在衬底101上的第四投影面积。
其中,第二遮挡结构112可以遮挡第一有源层102中可能逸出的H离子。当第一有源层102采用多晶硅材料,第一有源层102存在H离子,若第二有源层109的材料为氧化物半导体,第二有源层109中的氧离子易与H离子结合形成羟基,从而损坏第二有源层109的氧化物,通过第二遮挡结构112,可以防止第一有源层102H离子逸出至第二有源层109,保证了第二有源层109的结构稳定和性能稳定。
其中,第二遮挡结构112正投影在衬底101上的第三投影面积大于或等于第二有源层109正投影在衬底101上的第四投影面积(图8中以第三投影面积等于第四投影面积为例)。从而,第二遮挡结构能够保证阻挡可能存在的H离子,避免H离子逸至第二有源层109中。
在一些实施例中,第二遮挡结构112与第一遮挡结构107可以同层设置,并采用相同的材料和相同的工艺步骤制备获得,从而可以减少制备步骤,降低制备成本。
需要说明的是,在上述实施例中,驱动基板10还包括设置在第二有源层109和第二栅极之间的绝缘层205,设置在第二有源层109和第二遮挡结构112之间的层间介质层204。其中,绝缘层205和层间介质层204均可以通过化学气相沉积或其他沉积方式形成单层或多层结构,例如氧化硅层、氮化硅层或两种的组合,在此不再限定。
图9示出了一实施例的驱动基板的制备方法,用于制备如上实施例的驱动基板。制备方法包括步骤101、步骤102、步骤103及步骤104。
步骤101:提供衬底。
步骤102:在衬底上形成第一有源层。
步骤103:在一有源层上形成光电传感结构,光电传感结构与所述第一有源层相互绝缘。
步骤104:在第一有源层上形成第一导电结构及第二导电结构,第一导电结构及第二导电结构之间形成沟道区。其中,光电传感结构位于沟道区,且光电传感结构与第一导电结构电性连接,光电传感结构与第二导电结构间隔设置。
其中,关于衬底、第一有源层、第一导电结构、第二导电结构及光电传感结构的描述参见上述实施例中的相关描述,在此不再赘述。需要说明的是,衬底、第一有源层、第一导电结构、第二导电结构及光电传感结构的制备方法可以为传统的衬底、第一有源层、第一导电结构、第二导电结构及光电传感结构的制备方法,本申请实施例对此不做进一步的限定。
在一些实施例中,在步骤102之后且在步骤103之前,制备方法还可以包括步骤105。
步骤105:在所述第一有源层上形成第一遮挡结构,第一遮挡结构分别与所述光电传感结构与所述第一有源层相互绝缘。
其中,关于第一遮挡结构的描述参见上述实施例中的相关描述,在此不再赘述。第一遮挡结构可以根据实际选用的材料选择相应的制备方法,例如当选用不透光金属制备时,可以选择溅射的方法形成第一遮挡结构,本申请实施例对此不做进一步的限定。
在一些实施例中,在步骤102之后且在步骤103之前,制备方法还可以包括步骤106。
步骤106:在所述第一有源层上形成第一栅极,第一栅极分别与所述第一遮挡结构与所述第一有源层相互绝缘。其中,第一栅极的描述参见上述实施例中的相关描述,在此不再赘述。第一栅极的制备可以为传统的沉积方法,本申请实施例对此不做进一步的限定。
在一些实施例中,在步骤102之前,制备方法还可以包括步骤107。
步骤107:在衬底上形成缓冲层。其中,缓冲层的描述参见上述实施例中的相关描述,在此不再赘述。缓冲层的制备可以为传统的沉积方法,本申请实施例对此不做进一步的限定。
需要说明的是,在上述实施例中,制备方法还包括在第一有源层和第一栅极之间形成绝缘层,在第一栅极和第一遮挡结构之间形成层间介质层,在第一遮挡结构和光电传感结构之间形成层间介质层。其中,绝缘层及层间介质层均可以通过化学气相沉积或其他沉积 方式形成单层或多层结构,例如氧化硅层、氮化硅层或两种的组合,在此不再限定。
图10示出了一实施例的驱动基板的制备方法,用于制备如上实施例的驱动基板。制备方法包括步骤201、步骤202、步骤203、步骤204及步骤205。
步骤201:提供衬底。
步骤202:在衬底上的第一区域形成第一有源层。
步骤203:在衬底上的第二区域形成第二有源层。
步骤204:在第一有源层上形成光电传感结构,光电传感结构与第一有源层相互绝缘。
步骤205:在第一有源层上形成第一导电结构及第二导电结构,第一导电结构及第二导电结构之间形成沟道区。其中,光电传感结构位于所述沟道区,且光电传感结构与第一导电结构电性连接,光电传感结构与第二导电结构间隔设置。
步骤206:在第二有源层背离衬底的一侧上形成第三导电结构,第三导电结构贯穿至第一有源层。
其中,当第二有源层和光电传感结构同层设置且材料相同时,步骤203和步骤204可以同时进行。
其中,关于衬底、第一有源层、第一导电结构、第二导电结构、光电传感结构、第二有源层及第三导电结构的描述参见上述实施例中的相关描述,在此不再赘述。需要说明的是,衬底、第一有源层、第一导电结构、第二导电结构、光电传感结构、第二有源层及第三导电结构的制备方法可以为传统衬底、第一有源层、第一导电结构、第二导电结构、光电传感结构、第二有源层及第三导电结构的制备方法,本申请实施例对此不做进一步的限定。
在一些实施例中,在步骤203之前,制备方法还可以包括步骤207。
步骤207:在所述第二区域上形成第二遮挡结构,以使第二遮挡结构位于第二有源层靠近所述衬底的一侧。
其中,关于第二遮挡结构的描述参见上述实施例中的相关描述,在此不再赘述。第二遮挡结构可以根据实际选用的材料选择相应的制备方法,例如当选用不透光金属制备时,可以选择溅射的方法形成第二遮挡结构,本申请实施例对此不做进一步的限定。
其中,当第二遮挡结构和第一遮挡结构同层设置且材料相同时,步骤207和上一实施 例中的步骤105可以同时进行。
在一些实施例中,在步骤203之后,制备方法还可以包括步骤208。
步骤208:在第二有源层上形成第二栅极,第二栅极分别与第二有源层相互绝缘。其中,第二栅极的描述参见上述实施例中的相关描述,在此不再赘述。第二栅极的制备可以为传统的沉积方法,本申请实施例对此不做进一步的限定。
需要说明的是,在上述实施例中,制备方法还包括在第一有源层和第一栅极之间形成绝缘层,在第一栅极和第一遮挡结构之间形成层间介质层,在第一遮挡结构和光电传感结构之间形成层间介质层,在第二有源层和第二栅极之间形成层间介质层以及在第二栅极与第三导电结构之间形成层间介质层。其中,绝缘层及层间介质层均可以通过化学气相沉积或其他沉积方式形成单层或多层结构,例如氧化硅层、氮化硅层或两种的组合,在此不再限定。
本申请还提供一种显示面板,包括如上实施例所述的驱动基板或包括由如上实施例所述的制备方法制备获得的驱动基板。该显示面板通过将光电传感结构设置在驱动基板中,不需要额外通过胶材安装在屏幕的边框区域,有利于实现窄边框,并具有较高的可靠性。
在一些实施例中,如图11所示(图中AA为显示区),显示面板还包括显示区;光电传感结构105为透光件;光电传感结构105位于显示区上。由于光电传感结构105为透光件,当光电传感结构105设置在显示区上时,不会影响显示效果。
进一步地,在一些实施例中,如图12所示(图中300为像素发光单元,AAG为显示感光区域),显示面板包括像素发光单元,像素发光单元设置在显示区的驱动基板上。显示区域包括显示感光区域,位于显示感光区域的多个像素发光单元,至少两个像素发光单元之间设有光电传感结构。从而,光电传感结构可以穿插设置在相邻的像素发光单元之间,相邻像素发光单元之间通常余留有闲置区域,因此将光电传感结构105设置在相邻像素发光单元间的闲置区域中,有利于提高显示面积的有效利用率。当光电传感结构105的数量为1个时,光电传感结构105可以设置在两个相邻的像素发光单元之间;当光电传感结构105的数量为多个时,多个光电传感结构105可以设置在显示感光区域的多个相邻的像素发光单元之间,从而形成区域性的感光区。示例性的,显示面板还设有非显示区(如图12所示,图中NAA为非显示区);显示感光区域位于显示区靠近非显示区的边缘处。从而 光电传感结构105设置在显示区靠近非显示区的边缘处,在不影响显示效果的基础上还能确保不占用边框区域的面积,有利于进一步实现窄边框,进一步提高显示效果。
进一步地,在一些实施例中,如图13所示,多个像素发光单元包括第一像素单元310、与第一像素单元310分离的一对第二像素单元320及与第一像素单元310和第二像素单元320分离的一对第三像素单元330。
第二像素单元320沿第一线位于第一像素单元310的相对侧,第一像素单元310、第二像素单元320和另一个第一像素单元310沿第一线连续排列;第三像素单元330沿第二线位于第一像素单元310的相对侧,第一像素单元310、第三像素单元330和另一个第一像素单元310沿第二线连续排列,第二线与第一线在第一像素单元310的位置处相交。其中,在显示感光区域中,相邻两个第一像素单元310之间设有光电传感结构105,第二像素单元320与相邻的第三像素单元330之间设有光电传感结构。
示例性的,如图13所示,第一像素单元310沿着第一虚拟直线VL1排列,第二像素单元320和第三像素单元330交替排列并沿着第二虚拟直线VL2进行排列。第二像素单元320位于沿着虚拟方块VS的一个对角线的第一顶点P1处,第三像素单元330位于沿着虚拟方块VS的另一个对角线的第二顶点P2处,其中虚拟方块VS在虚拟的中心点具有一个第一像素单元310。
示例性的,第一像素单元310、第二像素单元320以及第三像素单元330分别发射绿光、蓝光以及红光,且每个第一像素单元310具有比相邻的第二像素单元320和第三像素单元330更小的面积。
在一些实施例中,显示面板还包括控制模组,控制模组分别与所述第二导电结构及像素发光单元电连接,用于根据环境光亮度调节像素发光单元的发光状态,从而动态调节屏幕的亮度,降低产品的功耗。
本申请还提供一种电子设备,包括如上实施例所述的驱动基板或包括由如上实施例所述的制备方法制备获得的驱动基板。该电子设备通过将光电传感结构设置在驱动基板中,不需要额外通过胶材安装在屏幕的边框区域,有利于实现窄边框,并具有较高的可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛 盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (22)
- 一种驱动基板,包括:衬底;第一有源层,设置在所述衬底上;第一导电结构,设置在所述第一有源层上;第二导电结构,设置在所述第一有源层上,与所述第一导电结构形成有沟道区;光电传感结构,设置在所述沟道区中且与所述第一导电结构电性连接,用于感测环境光亮度。
- 根据权利要求1所述的驱动基板,其中所述驱动基板还包括:第一遮挡结构,设置在所述光电传感结构靠近衬底的一侧。
- 根据权利要求2所述的驱动基板,其中所述第一遮挡结构正投影在所述衬底上的第一投影面积大于或等于所述光电传感结构正投影在所述衬底上的第二投影面积。
- 根据权利要求1所述的驱动基板,其中所述第一导电结构贯穿至所述光电传感结构。
- 根据权利要求1所述的驱动基板,其中所述光电传感结构的材料为铟镓锌氧化物。
- 根据权利要求1所述的驱动基板,其中所述衬底包括第一区域和第二区域,所述光电传感结构正投影在所述第一区域上;所述驱动基板还包括:第二有源层,正投影在所述第二区域上;第三导电结构,设置在所述第二有源层背离所述衬底的一侧上且贯穿至所述第一有源层。
- 根据权利要求6所述的驱动基板,其中所述第二有源层与所述光电传感结构同层设置。
- 根据权利要求6所述的驱动基板,其中所述驱动基板还包括:第二遮挡结构,设置在所述第二有源层靠近所述衬底的一侧,所述第二遮挡结构正投影在所述衬底上的第三投影面积大于或等于所述第二有源层正投影在所述衬底上的第四投影面积。
- 根据权利要求6所述的驱动基板,其中所述第二有源层的材料为铟镓锌氧化物。
- 根据权利要求1所述的驱动基板,其中所述驱动基板还包括:缓冲层,设置在所述衬底与所述第一有源层之间。
- 根据权利要求1所述的驱动基板,其中所述光电传感结构的上表面与所述第一导电结构的上表面、所述第二导电结构的上表面齐平;或者所述光电传感结构的上表面低于所述第一导电结构的上表面、所述第二导电结构的上表面。
- 根据权利要求1所述的驱动基板,其中所述驱动基板还包括:第一栅极,设置在所述沟道区中且位于所述第一有源层和所述光电传感结构之间;其中,第一导电结构和所述第二导电结构分别与所述第一有源层电性连接,所述第一栅极与所述第一有源层、所述第一导电结构及所述第二导电结构绝缘设置,所述第一栅极、所述第一导电结构、所述第二导电结构及所述第一有源层形成第一开关器件,所述第一开关器件用以获取所述光电传感结构的光电流。
- 根据权利要求1所述的驱动基板,其中所述第一有源层包括对应所述沟道区的通道区,以及分别与所述通道区连接的第一接触区和第二接触区,所述第一接触区可用于设置所述第一导电结构,所述第二接触区可用于设置所述第二导电结构。
- 一种驱动基板的制备方法,包括:提供衬底;在所述衬底上形成第一有源层;在所述第一有源层上形成光电传感结构,所述光电传感结构与所述第一有源层相互绝缘;在所述第一有源层上形成第一导电结构及第二导电结构,所述第一导电结构及所述第二导电结构之间形成沟道区;其中,所述光电传感结构位于所述沟道区,且所述光电传感结构与所述第一导电结构电性连接,所述光电传感结构与所述第二导电结构间隔设置。
- 一种驱动基板的制备方法,其中包括:提供衬底,所述衬底包括第一区域和第二区域;在所述衬底上的所述第一区域形成第一有源层;在所述衬底上的所述第二区域形成第二有源层;在所述第一有源层上形成光电传感结构,所述光电传感结构与所述第一有源层相互绝缘;在所述第一有源层上形成第一导电结构及第二导电结构,所述第一导电结构及所述第二导电结构之间形成沟道区;其中,所述光电传感结构位于所述沟道区,且所述光电传感结构与所述第一导电结构电性连接,所述光电传感结构与所述第二导电结构间隔设置;在所述第二有源层背离所述衬底的一侧上形成第三导电结构,所述第三导电结构贯穿至第一有源层。
- 一种显示面板,包括如权利要求1所述的驱动基板,或包括由权利要求14或15所述的制备方法制备获得的驱动基板。
- 根据权利要求16所述的显示面板,其中所述显示面板设有显示区,所述光电传感结构为透光件,所述光电传感结构位于所述显示区。
- 根据权利要求17所述的显示面板,其中还包括:像素发光单元,设置在所述显示区的所述驱动基板上;所述显示区域包括显示感光区域,位于所述显示感光区域的多个所述像素发光单元中,至少两个所述像素发光单元之间设有所述光电传感结构。
- 根据权利要求18所述的显示面板,其中多个所述像素发光单元包括:第一像素单元;与所述第一像素单元分离的一对第二像素单元,所述第二像素单元沿第一线位于所述第一像素单元的相对侧,所述第一像素单元、所述第二像素单元和另一个第一像素单元沿所述第一线连续排列;以及与所述第一像素单元和所述第二像素单元分离的一对第三像素单元,所述第三像素单元沿第二线位于所述第一像素单元的相对侧,所述第一像素单元、所述第三像素单元和另一个第一像素单元沿所述第二线连续排列,所述第二线与所述第一线在所述第一像素单元的位置处相交;其中,在所述显示感光区域中,相邻两个所述第一像素单元之间设有所述光电传感结构,所述第二像素单元与相邻的所述第三像素单元之间设有所述光电传感结构。
- 根据权利要求18所述的显示面板,其中还包括:控制模组,分别与所述第二导电结构及所述像素发光单元电连接,用于根据环境光亮度调节所述像素发光单元的发光状态。
- 根据权利要求18所述的显示面板,其中所述显示面板还设有非显示区;所述显示感光区域位于所述显示区靠近所述非显示区的边缘处。
- 一种电子设备,其中所述电子设备包括如权利要求16所述的显示面板。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110496026.XA CN113299225B (zh) | 2021-05-07 | 2021-05-07 | 驱动基板及其制备方法、显示面板及电子设备 |
CN202110496026.X | 2021-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022233203A1 true WO2022233203A1 (zh) | 2022-11-10 |
Family
ID=77321769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/083997 WO2022233203A1 (zh) | 2021-05-07 | 2022-03-30 | 驱动基板及其制备方法、显示面板及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113299225B (zh) |
WO (1) | WO2022233203A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113299225B (zh) * | 2021-05-07 | 2022-11-04 | Oppo广东移动通信有限公司 | 驱动基板及其制备方法、显示面板及电子设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008300630A (ja) * | 2007-05-31 | 2008-12-11 | Sharp Corp | 半導体装置およびその製造方法 |
CN102904560A (zh) * | 2011-07-25 | 2013-01-30 | 三星电子株式会社 | 光感测电路、装置及方法、图像获取装置及光触摸屏装置 |
CN107634079A (zh) * | 2017-09-19 | 2018-01-26 | 中山大学 | 光电传感器及其制造方法 |
CN108376688A (zh) * | 2018-04-28 | 2018-08-07 | 京东方科技集团股份有限公司 | 一种感光组件及其制备方法、阵列基板、显示装置 |
US20190252473A1 (en) * | 2018-02-14 | 2019-08-15 | Samsung Display Co., Ltd. | Display device |
CN111106152A (zh) * | 2019-12-09 | 2020-05-05 | 武汉华星光电半导体显示技术有限公司 | 显示面板及移动终端 |
CN113299225A (zh) * | 2021-05-07 | 2021-08-24 | Oppo广东移动通信有限公司 | 驱动基板及其制备方法、显示面板及电子设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100957585B1 (ko) * | 2003-10-15 | 2010-05-13 | 삼성전자주식회사 | 광 감지부를 갖는 전자 디스플레이 장치 |
CN107357079A (zh) * | 2017-08-29 | 2017-11-17 | 惠科股份有限公司 | 一种显示面板 |
US20200082789A1 (en) * | 2018-09-12 | 2020-03-12 | Chongqing Hkc Optoelectronics Technology Co., Ltd. | Display device and method for automatically regulating screen brightness of the same |
CN112331141A (zh) * | 2020-11-03 | 2021-02-05 | Tcl华星光电技术有限公司 | Oled显示面板和显示装置 |
-
2021
- 2021-05-07 CN CN202110496026.XA patent/CN113299225B/zh active Active
-
2022
- 2022-03-30 WO PCT/CN2022/083997 patent/WO2022233203A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008300630A (ja) * | 2007-05-31 | 2008-12-11 | Sharp Corp | 半導体装置およびその製造方法 |
CN102904560A (zh) * | 2011-07-25 | 2013-01-30 | 三星电子株式会社 | 光感测电路、装置及方法、图像获取装置及光触摸屏装置 |
CN107634079A (zh) * | 2017-09-19 | 2018-01-26 | 中山大学 | 光电传感器及其制造方法 |
US20190252473A1 (en) * | 2018-02-14 | 2019-08-15 | Samsung Display Co., Ltd. | Display device |
CN108376688A (zh) * | 2018-04-28 | 2018-08-07 | 京东方科技集团股份有限公司 | 一种感光组件及其制备方法、阵列基板、显示装置 |
CN111106152A (zh) * | 2019-12-09 | 2020-05-05 | 武汉华星光电半导体显示技术有限公司 | 显示面板及移动终端 |
CN113299225A (zh) * | 2021-05-07 | 2021-08-24 | Oppo广东移动通信有限公司 | 驱动基板及其制备方法、显示面板及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN113299225A (zh) | 2021-08-24 |
CN113299225B (zh) | 2022-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11835809B2 (en) | Touch panel | |
JP6994553B2 (ja) | 表示装置 | |
US11043543B2 (en) | Touch sensor and touch panel | |
WO2020173060A1 (zh) | 显示基板、显示面板及显示装置 | |
US8183769B2 (en) | Organic electroluminescent display unit and method for fabricating the same | |
US11899296B2 (en) | Display device | |
KR100941858B1 (ko) | 유기전계 발광 표시장치 | |
JP2023524325A (ja) | 表示基板及び表示装置 | |
US20130307800A1 (en) | Touch display panel | |
WO2022233203A1 (zh) | 驱动基板及其制备方法、显示面板及电子设备 | |
US9178030B2 (en) | Thin film transistor and display panel employing the same | |
CN114924436B (zh) | 阵列基板及液晶显示面板 | |
CN111834465B (zh) | 阵列基板、显示面板及显示装置 | |
KR20240078400A (ko) | 디스플레이 패널 | |
TWI297210B (en) | System for displaying images including electroluminescent device and method for fabricating the same | |
CN115295567A (zh) | 一种阵列基板及电子设备 | |
KR102103986B1 (ko) | 박막 트랜지스터 및 이를 채용한 디스플레이 패널 | |
CN112086572B (zh) | 一种显示面板和显示装置 | |
US20200201095A1 (en) | Liquid crystal display device | |
US11094758B1 (en) | Organic light emitting diode (OLED) display device | |
CN111312780B (zh) | 一种具有高开口率的显示面板及其制作方法和显示装置 | |
TWI689861B (zh) | 顯示面板及其對向基板 | |
US10665656B2 (en) | OLED display panel | |
CN114200724A (zh) | 像素结构 | |
CN114551522A (zh) | 显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22798544 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22798544 Country of ref document: EP Kind code of ref document: A1 |