WO2022230564A1 - コイル部品、コイル部品用接着剤 - Google Patents

コイル部品、コイル部品用接着剤 Download PDF

Info

Publication number
WO2022230564A1
WO2022230564A1 PCT/JP2022/015622 JP2022015622W WO2022230564A1 WO 2022230564 A1 WO2022230564 A1 WO 2022230564A1 JP 2022015622 W JP2022015622 W JP 2022015622W WO 2022230564 A1 WO2022230564 A1 WO 2022230564A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
powder
ferrite powder
adhesive
ferrite
Prior art date
Application number
PCT/JP2022/015622
Other languages
English (en)
French (fr)
Inventor
博 丸澤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280015080.0A priority Critical patent/CN116888694A/zh
Priority to JP2023517195A priority patent/JPWO2022230564A1/ja
Publication of WO2022230564A1 publication Critical patent/WO2022230564A1/ja
Priority to US18/447,022 priority patent/US20230386725A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/045Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the present invention relates to coil components and adhesives for coil components.
  • a coil component described in Patent Document 1 includes a core made of a magnetic material and a top plate made of a magnetic material.
  • the core has a columnar winding core and flanges connected to both axial ends of the winding core.
  • the top plate is plate-shaped.
  • the top plate is connected to the core so as to bridge one flange and the other flange. In the coil component, these top plate and core are adhered to each other with an adhesive.
  • the adhesive contains magnetic powder.
  • the adhesive disclosed in Patent Document 1 contains magnetic powder, so it has magnetism as a whole.
  • the smaller the average particle size of the magnetic powder the more likely the magnetic powder will agglomerate within the adhesive. If the magnetic powder agglomerates, the adhesive strength of the adhesive is reduced, so there is a risk that the adhered core and top plate will separate from each other.
  • One aspect for solving the above problems is a first member made of a magnetic material, a second member made of a magnetic material, a wire wound around the first member, the first member and the second member. and an adhesive that is interposed between and bonds the first member and the second member, and the adhesive is a thermosetting resin, a metal powder made of a soft magnetic material, and a ferrite powder is a coil component containing
  • one aspect for solving the above problems is a coil component adhesive containing a thermosetting resin, a metal powder made of a soft magnetic material, and a ferrite powder.
  • the ferrite powder aggregated by the van der Waals force is pulverized by being ground by the plurality of metal powders. That is, the ferrite powder is dispersed within the adhesive. Therefore, it is possible to reduce the average particle size of the ferrite powder while suppressing a decrease in adhesive strength of the adhesive.
  • FIG. 3 is an exploded perspective view of a coil component; An enlarged view of a portion of the adhesive.
  • FIG. 4 is an enlarged view of a portion of FIG. 3;
  • FIG. 4 is a diagram for explaining the magnetic permeability of adhesives in which the ratio of metal powder and ferrite powder is changed;
  • the coil component 10 has a core 10C as a first member.
  • the core 10 ⁇ /b>C includes a winding core portion 11 , a first flange portion 12 and a second flange portion 14 .
  • the winding core 11 has a quadrangular prism shape. Therefore, the winding core 11 has a central axis CA and extends in a direction along the central axis CA.
  • the axis extending in the direction along the central axis CA is defined as the first axis X.
  • an axis extending parallel to any one of the four sides forming the quadrangle is defined as a second axis Y, and the central axis CA and the second axis Y
  • a third axis Z is an axis perpendicular to both.
  • One of the directions along the first axis X is defined as a first positive direction X1
  • the other direction along the first axis X is defined as a first negative direction X2.
  • One of the directions along the second axis Y is defined as a second positive direction Y1, and the other direction along the second axis Y is defined as a second negative direction Y2. Further, one of the directions along the third axis Z is defined as a third positive direction Z1, and the other direction along the third axis Z is defined as a third negative direction Z2.
  • the first collar portion 12 is connected to the first end of the winding core portion 11 in the first positive direction X1.
  • the first collar portion 12 protrudes outward in the radial direction about the central axis CA when viewed from the peripheral surface of the winding core portion 11 .
  • the first brim portion 12 has a recessed portion 13 .
  • the recessed portion 13 is recessed at the end surface of the first flange portion 12 in the third positive direction Z1.
  • the recessed portion 13 is located in the center of the first flange portion 12 in the direction along the second axis Y. As shown in FIG.
  • the recessed portion 13 is recessed over the entire range in the direction along the first axis X of the first collar portion 12 . Therefore, both end portions of the first flange portion 12 in the direction along the second axis Y are shaped as if they are bifurcated with the recess portion 13 interposed therebetween.
  • the second collar portion 14 is connected to the second end of the winding core portion 11 in the first negative direction X2.
  • the second collar portion 14 is symmetrical with the first collar portion 12 in the direction along the first axis X with the winding core portion 11 interposed therebetween. That is, the second collar portion 14 has the recessed portion 15 .
  • the recessed portion 15 is recessed at the end face of the second flange portion 14 in the third positive direction Z1 and has a shape symmetrical with the recessed portion 13 of the first flange portion 12 .
  • the flanges are connected to both ends of the winding core 11 in the direction along the central axis CA.
  • the material of the core 10C is a magnetic material.
  • the material of the core 10C is, for example, magnetic ceramics typified by nickel-zinc ferrite, metal magnetic powder, ceramics powder, and a composite material of a synthetic resin material or the like.
  • the coil component 10 has a top plate 16 as a second member.
  • the top plate 16 is connected to the end of the core 10C in the third negative direction Z2.
  • the top plate 16 is a rectangular plate material.
  • the top plate 16 is connected to the core 10C so as to bridge the end face of the first flange portion 12 in the third negative direction Z2 and the end face of the second flange portion 14 in the third negative direction Z2.
  • the material of the top plate 16 is the same non-conductive magnetic material as the core 10C.
  • the top plate 16 forms a closed magnetic circuit together with the core 10C.
  • a coil component adhesive 50 is interposed between the core 10 ⁇ /b>C and the top plate 16 .
  • the coil component adhesive 50 connects the core 10 ⁇ /b>C and the top plate 16 . In the following description, the coil component adhesive 50 is simply referred to as the adhesive 50 .
  • the coil component 10 includes a first terminal electrode 21 , a second terminal electrode 22 , a third terminal electrode 23 and a fourth terminal electrode 24 .
  • the first terminal electrode 21 is located on the surface of the first collar portion 12 . Specifically, the first terminal electrode 21 is positioned on the end face of the first brim portion 12 in the third positive direction Z1 in the range on the second positive direction Y1 side when viewed from the recess portion 13 .
  • the second terminal electrode 22 is located on the surface of the first collar portion 12 . Specifically, the second terminal electrode 22 is positioned on the end surface of the first flange portion 12 in the third positive direction Z1 in a range on the second negative direction Y2 side when viewed from the recess portion 13 .
  • the third terminal electrode 23 is located on the surface of the second collar portion 14 . Specifically, the third terminal electrode 23 is positioned on the end surface of the second brim portion 14 in the third positive direction Z1 in a range on the second positive direction Y1 side when viewed from the recess portion 15 .
  • the fourth terminal electrode 24 is located on the surface of the second collar portion 14 . Specifically, the fourth terminal electrode 24 is positioned on the end surface of the second flange portion 14 in the third positive direction Z1 in a range on the second negative direction Y2 side when viewed from the recessed portion 15 .
  • the first terminal electrode 21, the second terminal electrode 22, the third terminal electrode 23, and the fourth terminal electrode 24 are indicated by two-dot chain lines.
  • the first to fourth terminal electrodes 21 to 24 are composed of a metal layer such as silver or copper and a plating layer such as nickel or tin applied to the surface of the metal layer.
  • the surface of the coil component 10 on which the first to fourth terminal electrodes 21 to 24 are provided is the surface facing the substrate when the coil component 10 is mounted on the substrate.
  • illustration of the layer structure of the first terminal electrode 21 to the fourth terminal electrode 24 is omitted.
  • the coil component 10 has a first wire 30 and a second wire 40 .
  • the first wire 30 has a portion that spirally extends on the peripheral surface of the winding core portion 11 with the central axis CA as the rotation axis.
  • the first wire 30 has a circular shape in a cross-sectional view perpendicular to the extending direction of the first wire 30 . A portion of the spirally extending portion of the first wire 30 may not be in contact with the peripheral surface of the winding core portion 11 .
  • the first end of the first wire 30 is connected to the first terminal electrode 21 .
  • a portion of the first wire 30 including the first end extends from the first terminal electrode 21 toward the edge line closest to the second terminal electrode 22 among the four edge lines of the winding core portion 11 .
  • the first wire 30 When the first wire 30 is viewed from the first negative direction X2, the first wire 30 is wound around the winding core 11 in a clockwise direction as the distance from the first terminal electrode 21 increases.
  • a part including the second end on the side opposite to the first end in the extending direction of the first wire 30 is located near the second collar portion 14 of the winding core portion 11 and is located on the first edge of the four ridgelines of the winding core portion 11 . It extends from the farthest edge line from the four-terminal electrode 24 toward the third terminal electrode 23 .
  • a second end of the first wire 30 is connected to the third terminal electrode 23 .
  • the second wire 40 has a portion that spirally extends radially outward from the peripheral surface of the winding core 11 around the central axis CA, with the central axis CA serving as the rotation axis. there is
  • the second wire 40 has the same cross-sectional shape and dimensions as the first wire 30 . A portion of the spirally extending portion of the second wire 40 may not be in contact with the peripheral surfaces of the first wire 30 and the winding core portion 11 .
  • the first end of the second wire 40 is connected to the second terminal electrode 22 .
  • a portion of the second wire 40 including the first end extends toward the farthest edge line from the first terminal electrode 21 among the four edge lines of the core portion 11 .
  • the second wire 40 When the second wire 40 is viewed in the first negative direction X2, the second wire 40 is wound around the winding core 11 in a clockwise direction as the distance from the second terminal electrode 22 increases.
  • a part including the second end opposite to the first end in the extending direction of the second wire 40 is located near the second collar portion 14 of the winding core portion 11 and is the first of the four ridgelines of the winding core portion 11 . It extends from the ridge closest to the three-terminal electrode 23 toward the fourth terminal electrode 24 .
  • a second end of the second wire 40 is connected to the fourth terminal electrode 24 .
  • the adhesive 50 covers the entire surface of the first collar portion 12 facing the third negative direction Z2.
  • the adhesive 50 connects the first collar portion 12 and the top plate 16 without any gap.
  • the adhesive 50 covers the entire surface of the second collar portion 14 facing the third negative direction Z2.
  • the adhesive 50 connects the second collar portion 14 and the top plate 16 without a gap. That is, the top plate 16 is connected to the two flanges.
  • the adhesive 50 contains thermosetting resin 51, ferrite powder 52, and metal powder 53 made of a soft magnetic material.
  • Thermosetting resin 51 is, for example, epoxy resin, polyimide resin, phenol resin, acrylic resin, or a mixture thereof.
  • the ferrite powder 52 is manganese spinel ferrite oxide in this embodiment.
  • the average particle size of the particles of the ferrite powder 52 is approximately 0.1 ⁇ m.
  • the particle size of the ferrite powder 52 and its average particle size are defined as follows. First, the adhesive 50 is viewed in cross section. In the cross-sectional shape of the ferrite powder 52 appearing in the cross section, the length of the longest line segment drawn from edge to edge of the cross-sectional shape is defined as the grain size of the ferrite powder 52 .
  • the average particle size is the average value of the particle sizes of the ferrite powder 52 located within the field of view when observing the cross section of the adhesive 50 with a scanning electron microscope with a magnification of 10,000 times, an acceleration voltage of 5 kV, and five fields of view.
  • the particle shape of the ferrite powder 52 is approximately spherical.
  • the ferrite powder 52 has a small aspect when viewed in plan.
  • the adhesive 50 is viewed in cross section.
  • the length of the longest line segment among the line segments that can be drawn from edge to edge of the cross-sectional shape passing through the geometric center G1 of the cross-sectional shape of one particle in the ferrite powder 52 appearing in the cross section is the first longest distance L1.
  • the length of the shortest line segment that can be drawn from edge to edge of the cross-sectional shape passing through the geometric center G1 is defined as a first shortest distance S1.
  • the value obtained by subtracting the first shortest distance S1 from the first longest distance L1 is 2 or less.
  • the ferrite powder 52 may be aggregated into one lump by a plurality of particles. In this case, if the interface between particles can be observed, the part surrounded by the interface is one particle.
  • the metal powder 53 is Fe-based soft magnetic metal powder.
  • Fe-based soft magnetic metal powders include, for example, carbonyl iron powder [Fe(CO) 5 ], sendust magnetic powder [84.5% Fe-10% Si-5.5% Al (wt%)], permalloy magnetic powder [ Fe50Ni, Fe78.5Ni, etc.].
  • the metal powder 53 is permalloy magnetic powder [Fe50Ni].
  • the average particle size of the particles of the metal powder 53 is approximately 1.5 ⁇ m. That is, the average particle size of the particles of the ferrite powder 52 is smaller than the average particle size of the particles of the metal powder 53 .
  • the definition of the particle size of the metal powder 53 is the same as the definition of the particle size of the ferrite powder 52, so the explanation is omitted.
  • the average particle size here is the particle size of the metal powder 53 located within the field of view when the cross section of the adhesive 50 is observed with a scanning electron microscope with a magnification of 5000 times, an acceleration voltage of 5 kV, and five fields of view. was taken as the average value of
  • the particle shape of the metal powder 53 is approximately spherical.
  • the metal powder 53 has a small aspect when viewed in plan.
  • the adhesive 50 is viewed in cross section.
  • a second longest distance L2 is defined as the length of the longest line segment that can be drawn from edge to edge of the cross-sectional shape passing through the geometric center G2 of one particle in the metal powder 53 appearing in the cross section.
  • the length of the shortest line segment among the line segments that pass through the geometric center G2 and can be drawn from edge to edge of the cross-sectional shape is defined as a second shortest distance S2.
  • the value obtained by subtracting the second shortest distance S2 from the second longest distance L2 is 2 or less.
  • the metal powder 53 may be aggregated into one lump by aggregating a plurality of particles. In this case, if the interface between particles can be observed, the part surrounded by the interface is one particle.
  • the ferrite powder 52 and the metal powder 53 are dispersed in the thermosetting resin 51.
  • the ferrite powder 52 is positioned on the outer surface of the metal powder 53 between the metal powders 53 . Further, in the present embodiment, the metal powder 53 contained in the adhesive 50 is larger than the ferrite powder 52 in volume ratio.
  • test pieces of adhesive 50 having different volume ratios of metal powder 53 and ferrite powder 52 were prepared.
  • the metal powder 53 is carbonyl iron powder with an average particle size of 5 ⁇ m.
  • the ferrite powder 52 is manganese spinel ferrite with an average particle size of 95 nm.
  • the first test piece is a test piece in which the volume ratio of the metal powder 53 and the ferrite powder 52 is 100:0.
  • the second test piece is a test piece in which the volume ratio of the metal powder 53 and the ferrite powder 52 is 96:4.
  • a third test piece is a test piece in which the volume ratio of the metal powder 53 and the ferrite powder 52 is 91:9.
  • a fourth test piece is a test piece in which the volume ratio of the metal powder 53 and the ferrite powder 52 is 87:13.
  • a fifth test piece is a test piece in which the volume ratio of the metal powder 53 and the ferrite powder 52 is 82:18.
  • a sixth test piece is a test piece in which the volume ratio of the metal powder 53 and the ferrite powder 52 is 75:25.
  • Each test piece is a ring-shaped one produced by forming a sheet of resin containing the metal powder 53 and the ferrite powder 52 in the above proportions and heating and curing the sheet. Then, the frequency characteristics of the complex magnetic permeability in the 1 MHz to 1 GHz range were evaluated for each test piece.
  • the real part of complex permeability is simply referred to as permeability.
  • the test piece with a higher proportion of the ferrite powder 52 has a higher magnetic permeability.
  • the test piece in which the volume ratio of the metal powder 53 and the ferrite powder 52 was 75:25 exhibited a magnetic permeability of approximately 10.2.
  • the magnetic permeability was improved compared to when it was not included. Therefore, at least when the volume ratio of the metal powder 53 and the ferrite powder 52 is higher than the volume ratio of 96:4, the permeability is significantly higher than when the ferrite powder 52 is not included. Magnetic permeability is improved.
  • the metal powder 53 was changed from carbonyl iron powder with an average particle size of 5 ⁇ m to Permalloy magnetic powder [Fe50Ni] with an average particle size of 3 ⁇ m, and the relationship between the amount of ferrite powder 52 and magnetic permeability A test was conducted to examine the sex. In this test, the conditions were the same as those of the test described above except for the material of the metal powder 53 . As a result, even when the metal powder 53 was changed to permalloy magnetic powder [Fe50Ni] having an average particle size of 3 ⁇ m, the same tendency was obtained as when the metal powder 53 was carbonyl iron powder.
  • the adhesive 50 of the above embodiment contains metal powder 53 and ferrite powder 52 . Therefore, when the thermosetting resin 51 is not hardened, the powders of the same kind, especially the ferrite powders 52 having high van der Waals forces tend to agglomerate. On the other hand, when the ferrite powder 52 and the metal powder 53 are mixed together, even if the ferrite powder 52 is agglomerated, the agglomerated ferrite powder 52 is ground and pulverized by the plurality of metal powders 53 . Therefore, the ferrite powder 52 can be dispersed without agglomeration.
  • the ferrite powder 52 By mixing the ferrite powder 52 and the metal powder 53 with the thermosetting resin 51 in this state, the ferrite powder 52 can be positioned in the adhesive 50 in a dispersed state. In addition, since the viscosity of the adhesive 50 is considerably high when it is mixed with the thermosetting resin 51, the possibility of the ferrite powder 52 recondensing is low.
  • the adhesive 50 contains metal powder 53 and ferrite powder 52 . Therefore, the ferrite powder 52 and the metal powder 53 collide with each other, so that the aggregated ferrite powder 52 can be dispersed. Therefore, it is possible to reduce the average particle size of the ferrite powder 52 while suppressing a decrease in adhesive strength of the adhesive 50 .
  • the average particle size of the ferrite powder 52 is smaller than the average particle size of the metal powder 53 . According to this particle size relationship, the metal powder 53 tends to suppress the agglomeration of the ferrite powder 52 . Further, in the above embodiment, the average particle size of the metal powder 53 is ten times or more the average particle size of the ferrite powder 52 . When there is such a difference in particle size, the effect of grinding the ferrite powder 52 by the metal powder 53 becomes significant, so the ferrite powder 52 is less likely to agglomerate.
  • the average particle size of the metal powder 53 is approximately 1.5 ⁇ m.
  • the average particle size of the ferrite powder 52 is approximately 0.1 ⁇ m. That is, the average particle size of ferrite powder 52 is sufficiently smaller than the average particle size of metal powder 53 . Therefore, the ferrite powder 52 is easily positioned on the outer surface of the metal powder 53 and in the gaps between the adjacent metal powders 53, and the ratio of the ferrite powder 52 in the adhesive 50 can be increased.
  • the ferrite powder 52 is easily magnetized in the direction in which the first longest distance L1 of the ferrite powder 52 extends. Therefore, the closer the value obtained by dividing the first shortest distance S1 from the first longest distance L1 to 1, that is, the closer the particle shape of the ferrite powder 52 is to a spherical shape, the more the direction in which the ferrite powder 52 is likely to be magnetized is less biased. .
  • the value obtained by dividing the first shortest distance S1 from the first longest distance L1 of one particle in the ferrite powder 52 is 2 or less. Therefore, when the coil component 10 is configured with the adhesive 50 containing such ferrite powder 52, the direction of easy magnetization is not specified, which is preferable.
  • the particles of the ferrite powder 52 are substantially spherical. Also, the particles of the metal powder 53 are substantially spherical. Therefore, in the adhesive 50, the ferrite powder 52 easily enters between the adjacent metal powders 53, and the filling rate of the ferrite powder 52 and the metal powder 53 in the adhesive 50 is less likely to decrease.
  • the metal powder 53 is easily magnetized in the direction in which the second longest distance L2 of the metal powder 53 extends. Therefore, the closer the value obtained by dividing the second shortest distance S2 from the second longest distance L2 to 1, that is, the closer the particle shape of the metal powder 53 is to a spherical shape, the more the direction in which the metal powder 53 is likely to be magnetized becomes less biased. .
  • the value obtained by dividing the second shortest distance S2 from the second longest distance L2 of one particle in the metal powder 53 is 2 or less. Therefore, when the coil component 10 is configured with the adhesive 50 containing such metal powder 53, the direction of easy magnetization is not specified, which is preferable.
  • the ferrite powder 52 is powder of manganese spinel ferrite oxide. Therefore, it is easy to achieve a high saturation magnetic flux density as the saturation magnetic flux density of the adhesive 50 .
  • the metal powder 53 is Fe-based soft magnetic metal powder. Specifically, the metal powder 53 is permalloy magnetic powder [Fe50Ni]. Therefore, as the magnetic permeability of the adhesive 50, it is easy to achieve a high magnetic permeability.
  • the coil component 10 has a closed magnetic circuit formed by the core 10C and the top plate 16.
  • adopting the adhesive 50 of the above-described embodiment as the adhesive 50 for bonding the core 10C and the top plate 16 that form a closed magnetic circuit improves the characteristics of the coil component 10 as a whole. It is particularly suitable.
  • the shape of the winding core 11 is not limited to the example of the above embodiment.
  • it may have a columnar shape, or may have a polygonal columnar shape other than a square columnar shape.
  • the core 10 ⁇ /b>C may include the winding core portion 11 , the first flange portion 12 , and the second flange portion 14 .
  • the recessed portion 13 and the recessed portion 15 may be omitted.
  • the first terminal electrode 21 and the second terminal electrode 22 may be separated from each other, and the third terminal electrode 23 and the fourth terminal electrode 24 may be separated from each other.
  • the materials and shapes of the first terminal electrode 21 to the fourth terminal electrode 24 are not limited to the examples in the above embodiment.
  • the material of the plating layer in the first to fourth terminal electrodes 21 to 24 may be an alloy of tin or nickel.
  • the first terminal electrode 21 to the fourth terminal electrode 24 may not have the plating layer and the conductive metal layer may be exposed.
  • the coil component 10 may comprise only one wire. In the case of this modification, it suffices that one terminal electrode exists on the first flange portion 12 and one terminal electrode exists on the second flange portion 14 .
  • the configuration of the coil component 10 is not limited to the configuration including the core 10 ⁇ /b>C and the top plate 16 .
  • the coil component 10 has a first member around which a wire is wound, a second member connected to the first member via an adhesive 50, and the first member and the second member are connected to a closed magnetic circuit. should be formed.
  • the average particle size of the ferrite powder 52 may be smaller or larger than 0.1 ⁇ m.
  • the average particle size of the ferrite powder 52 is preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less. .
  • the average particle size of the ferrite powder 52 is 1 ⁇ m or less, further 0.1 ⁇ m or less, the ferrite powder 52 becomes a single magnetic domain particle having no domain wall. Therefore, the high frequency characteristic of magnetic permeability can be improved. From the viewpoint of powder handling, it is preferable that the average particle diameter of the ferrite powder 52 is 1 nm or more.
  • the particles of the ferrite powder 52 are not limited to a spherical shape. That is, in the particles of the ferrite powder 52, the value obtained by dividing the first shortest distance S1 from the first longest distance L1 may be greater than two.
  • the ferrite powder 52 may be an oxide of magnetite, magnesium ferrite, nickel-zinc ferrite, or nickel ferrite as a spinel-based magnetic powder. Also, the ferrite powder 52 may be a magnetoplumbite ferrite oxide. Also, the ferrite powder 52 may have a composition other than the above as long as it is a magnetic powder containing ferrite.
  • the average particle size of the metal powder 53 may be smaller or larger than 1.5 ⁇ m.
  • the average particle size of the metal powder 53 should be 2.5 ⁇ m or less, and further 1.5 ⁇ m or less. is preferred.
  • the average particle size of the metal powder 53 is preferably larger than the average particle size of the ferrite powder 52 and is 1 ⁇ m or more.
  • the particles of the metal powder 53 are not limited to a spherical shape. That is, in the particles of the metal powder 53, the value obtained by dividing the second shortest distance S2 from the second longest distance L2 may be greater than two.
  • the metal powder 53 may be made of a material other than those exemplified in the above embodiment.
  • the metal powder 53 is Fe—Si—Cr metal powder [90.5% Fe-3% Cr-6.5% Si (wt%), 92% Fe-5% Cr-3% Si (wt% ), etc.], Fe—Si metal powder [Fe-45% Si (wt %)], and the like.
  • the metal powder 53 may be Fe--Ni-based magnetic metal powder, Fe--Co-based magnetic metal powder [FeCo] such as permendur, Fe--Si--B--Nb--Cu-based nanocrystalline magnetic metal powder, or the like.
  • the metal powder 53 may be Fe--Si--Cr system, Fe--B--Si system, or Fe--Si--Cr--B system amorphous powder. It should be noted that the elemental composition ratios of the respective materials exemplified in the above embodiment and this modified example are merely examples, and there may be some differences even if they are called metal powders of the same kind.
  • 1st wire 40 ... 2nd wire 50
  • Adhesive agent for coil components 51 ... Thermosetting resin 52
  • Ferrite powder 53 Metal powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本開示は、磁性を有する接着剤において、接着力の低下を抑制するコイル部品を提供する。コイル部品は、コアと、天板と、を備えている。コア及び天板は、磁性材料からなる。コイル部品は、第1ワイヤ及び第2ワイヤを備えている。第1ワイヤ及び第2ワイヤは、コアに巻き回されている。コイル部品は、接着剤(50)を備えている。接着剤(50)は、コアと、天板との間に介在している。接着剤(50)は、コアと、天板とを接着している。接着剤(50)は、熱硬化性樹脂(51)と、軟磁性材料からなる金属粉末(53)と、フェライト粉末(52)と、を含有している。

Description

コイル部品、コイル部品用接着剤
 本発明は、コイル部品、及びコイル部品用接着剤に関する。
 特許文献1に記載のコイル部品は、磁性材料からなるコアと、磁性材料からなる天板と、を備えている。コアは、柱状の巻き芯部と、巻き芯部の軸線方向の両端に接続している鍔部と、を有している。天板は、板状である。天板は、一方の鍔部と他方の鍔部とを架け渡すように、コアに接続している。当該コイル部品では、これらの天板及びコアを、接着剤で互いに接着している。当該接着剤は、磁性粉末を含んでいる。
特開2021-19026号公報
 特許文献1が開示する接着剤は、磁性粉末を含んでいるので、全体として磁性を持つ。この接着剤における透磁率を向上させるためには、磁性粉末の平均粒径を小さくして、接着剤中の磁性粉末の割合を高めることが考えられる。しかしながら、磁性粉末の平均粒径が小さければ小さいほど、接着剤内で磁性粉末が凝集する可能性が高くなる。磁性粉末が凝集すると、接着剤の接着力が低下するため、接着したコアと天板とが互いに剥離するおそれがある。
 上記課題を解決するための一態様は、磁性材料からなる第1部材と、磁性材料からなる第2部材と、前記第1部材に巻き回されたワイヤと、前記第1部材及び前記第2部材の間に介在し、前記第1部材及び前記第2部材を接着する接着剤と、を備えており、前記接着剤は、熱硬化性樹脂と、軟磁性材料からなる金属粉末と、フェライト粉末と、を含有するコイル部品である。
 また、上記課題を解決するための一態様は、熱硬化性樹脂と、軟磁性材料からなる金属粉末と、フェライト粉末と、を含有するコイル部品用接着剤である。
 上記構成によれば、ファンデルワールス力により凝集したフェライト粉末が、複数の金属粉末によってすり潰されるようにして粉砕される。すなわち、フェライト粉末は接着剤内で分散して配置される。したがって、接着剤の接着力の低下を抑えつつも、フェライト粉末の平均粒子径を小さくできる。
 接着剤の接着力の低下を抑制しつつ、フェライト粉末の平均粒径を小さくできる。
コイル部品の斜視図。 コイル部品の分解斜視図。 接着剤の一部の拡大図。 図3における一部の拡大図。 金属粉末及びフェライト粉末の比率を変更した接着剤の透磁率を説明する図。
 <コイル部品の一実施形態>
 以下、コイル部品の一実施形態について説明する。なお、図面は理解を容易にするため構成要件を拡大して示している場合がある。構成要素の寸法比率は実際のものと、又は別の図中のものと異なる場合がある。また、断面図では、ハッチングを付しているが、理解を容易にするために一部の構成要素のハッチングを省略している場合がある。
 <全体構成>
 図1に示すように、コイル部品10は、第1部材として、コア10Cを備えている。コア10Cは、巻き芯部11、第1鍔部12及び第2鍔部14を備えている。巻き芯部11は、四角柱状である。したがって、巻き芯部11は、中心軸線CAを有し、且つ中心軸線CAに沿う方向に延びている。
 なお、以下の説明では、中心軸線CAに沿う方向に延びる軸を第1軸Xとする。巻き芯部11の中心軸線CAに直交する断面において、四角形を構成する4つの辺のうちいずれか特定の辺と平行に延びる軸を、第2軸Yとし、中心軸線CA及び第2軸Yの双方に直交する方向の軸を、第3軸Zとする。そして、第1軸Xに沿う方向の一方を第1正方向X1とし、第1軸Xに沿う方向の他方を第1負方向X2とする。また、第2軸Yに沿う方向の一方を第2正方向Y1とし、第2軸Yに沿う方向の他方を第2負方向Y2とする。さらに、第3軸Zに沿う方向の一方を第3正方向Z1とし、第3軸Zに沿う方向の他方を第3負方向Z2とする。
 第1鍔部12は、巻き芯部11の第1正方向X1の端である第1端に接続している。第1鍔部12は、巻き芯部11の周面から視て、中心軸線CAを中心とする径方向の外側に張り出している。
 第1鍔部12は、窪み部13を有する。窪み部13は、第1鍔部12の第3正方向Z1の端面で窪んでいる。窪み部13は、第1鍔部12の第2軸Yに沿う方向における中央に位置している。窪み部13は、第1鍔部12の第1軸Xに沿う方向におけるすべての範囲において窪んでいる。そのため、第1鍔部12の第2軸Yに沿う方向の両端部は、窪み部13を挟んで二股に分かれたような形状になっている。
 第2鍔部14は、巻き芯部11の第1負方向X2の端である第2端に接続している。第2鍔部14は、巻き芯部11を挟んで、第1鍔部12と第1軸Xに沿う方向に対称形状になっている。すなわち、第2鍔部14は、窪み部15を有する。窪み部15は、第2鍔部14の第3正方向Z1の端面で窪んでいて、且つ第1鍔部12の窪み部13と対称形状である。このように、本実施形態では、巻き芯部11における中心軸線CAに沿う方向の両端に鍔部が接続している。
 コア10Cの材質は、磁性材料である。コア10Cの材質は、例えば、ニッケル亜鉛系フェライトに代表される磁性セラミックス、金属磁性粉末、セラミックス粉末、と、合成樹脂材料等とのコンポジット材、等である。
 コイル部品10は、第2部材として、天板16を備えている。天板16は、コア10Cの第3負方向Z2の端に接続している。天板16は、長方形状の板材である。天板16は、第1鍔部12の第3負方向Z2の端面と第2鍔部14の第3負方向Z2の端面とを架け渡すように、コア10Cに接続している。天板16の材質は、コア10Cと同じ非導電性の磁性材料である。天板16は、コア10Cと共に閉磁路を形成している。コア10C及び天板16の間には、コイル部品用接着剤50が介在している。当該コイル部品用接着剤50は、コア10C及び天板16を接続している。なお、以降の説明では、コイル部品用接着剤50について、単に接着剤50と記載する。
 コイル部品10は、第1端子電極21と、第2端子電極22と、第3端子電極23と、第4端子電極24と、を備えている。
 第1端子電極21は、第1鍔部12の表面に位置している。具体的には、第1鍔部12の第3正方向Z1の端面において、窪み部13から視て第2正方向Y1側の範囲に、第1端子電極21は位置している。
 第2端子電極22は、第1鍔部12の表面に位置している。具体的には、第1鍔部12の第3正方向Z1の端面において、窪み部13から視て第2負方向Y2側の範囲に、第2端子電極22は位置している。
 第3端子電極23は、第2鍔部14の表面に位置している。具体的には、第2鍔部14の第3正方向Z1の端面において、窪み部15から視て第2正方向Y1側の範囲に、第3端子電極23は位置している。
 第4端子電極24は、第2鍔部14の表面に位置している。具体的には、第2鍔部14の第3正方向Z1の端面において、窪み部15から視て第2負方向Y2側の範囲に、第4端子電極24は位置している。なお、図面においては、第1端子電極21、第2端子電極22、第3端子電極23及び第4端子電極24を、二点鎖線で図示している。
 上記の第1端子電極21~第4端子電極24は、銀または銅等の金属層と、当該金属層の表面に施されたニッケル、錫等のめっき層からなる。本実施形態では、コイル部品10において第1端子電極21~第4端子電極24が設けられている表面は、コイル部品10を基板に実装する際に基板と対向する面である。なお、図面では、第1端子電極21~第4端子電極24の層構造の図示を省略している。
 <第1ワイヤ及び第2ワイヤ>
 コイル部品10は、第1ワイヤ30と、第2ワイヤ40と、を備えている。
 第1ワイヤ30は、中心軸線CAを回転軸として、巻き芯部11の周面上を螺旋状に延びる部分を有している。第1ワイヤ30は、第1ワイヤ30の延びる方向に直交する断面視で円形状である。なお、第1ワイヤ30の螺旋状に延びる部分のうちの一部が、巻き芯部11の周面に接していないこともある。
 図1に示すように、第1ワイヤ30の第1端は、第1端子電極21に接続している。第1ワイヤ30における第1端を含む一部分は、第1端子電極21から、巻き芯部11の4つの稜線のうちの第2端子電極22に最も近い稜線に向かって延びている。
 第1負方向X2を向いて第1ワイヤ30を視たときに、第1ワイヤ30は、第1端子電極21から離れるに従って時計回りとなるように、巻き芯部11に巻き回されている。第1ワイヤ30の延びる方向における第1端とは反対側の第2端を含む一部分は、巻き芯部11の第2鍔部14の近傍において、巻き芯部11の4つの稜線のうちの第4端子電極24から最も遠い稜線から第3端子電極23に向かって延びている。第1ワイヤ30の第2端は、第3端子電極23に接続している。
 図1に示すように、第2ワイヤ40は、中心軸線CAを回転軸として、巻き芯部11の周面よりも中心軸線CAを中心とする径方向外側を螺旋状に延びる部分を有している。第2ワイヤ40は、第1ワイヤ30と同じ断面形状及び寸法のワイヤである。なお、第2ワイヤ40の螺旋状に延びる部分のうちの一部が、第1ワイヤ30及び巻き芯部11の周面に接していないこともある。
 図1に示すように、第2ワイヤ40の第1端は、第2端子電極22に接続している。第2ワイヤ40における第1端を含む一部分は、巻き芯部11の4つの稜線のうちの第1端子電極21から最も遠い稜線に向かって延びている。
 第1負方向X2を向いて第2ワイヤ40を視たときに、第2ワイヤ40は、第2端子電極22から離れるに従って時計回りとなるように、巻き芯部11に巻き回されている。第2ワイヤ40の延びる方向における第1端とは反対側の第2端を含む一部分は、巻き芯部11の第2鍔部14の近傍において、巻き芯部11の4つの稜線のうちの第3端子電極23に最も近い稜線から第4端子電極24に向かって延びている。第2ワイヤ40の第2端は、第4端子電極24に接続している。
 <接着剤について>
 図2に示すように、接着剤50は、第1鍔部12の第3負方向Z2を向く面全体を覆っている。そして、接着剤50は、第1鍔部12と天板16とを隙間なく接続している。同様に、接着剤50は、第2鍔部14の第3負方向Z2を向く面全体を覆っている。接着剤50は、第2鍔部14と天板16とを隙間なく接続している。すなわち、天板16は、2つの鍔部に接続している。
 図3に示すように、接着剤50は、熱硬化性樹脂51と、フェライト粉末52と、軟磁性材料からなる金属粉末53と、を含有している。
 熱硬化性樹脂51は、例えば、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、アクリル樹脂、又はこれらの混合物である。
 フェライト粉末52は、本実施形態では、マンガンスピネル系フェライト酸化物である。フェライト粉末52の粒子の平均粒径は、略0.1μmである。
 なお、この実施形態においてフェライト粉末52の粒径及びその平均粒径を次のように定義する。まず、接着剤50を断面視する。そして、その断面で現れるフェライト粉末52の断面形状において、その断面形状の縁から縁までに引ける線分のうち最も長い線分の長さを、そのフェライト粉末52の粒径とする。また、平均粒径は、拡大率が10000倍、加速電圧が5kV、5視野の走査電子顕微鏡で接着剤50の断面を観察したときに、視野内に位置するフェライト粉末52の粒径の平均値とした。
 フェライト粉末52の粒子形状は、略球形状である。換言すると、フェライト粉末52は、平面視したときにアスペクトが小さくなっている。具体的には、図4に示すように、接着剤50を断面視する。そして、その断面で現れるフェライト粉末52における1つの粒子の断面形状の幾何中心G1を通り、その断面形状の縁から縁までに引ける線分のうち最も長い線分の長さを第1最長距離L1とする。また、同粒子の断面形状において、幾何中心G1を通り、その断面形状の縁から縁までに引ける線分のうち最も短い線分の長さを第1最短距離S1とする。このとき、第1最長距離L1から、第1最短距離S1を除した値は、2以下になっている。
 なお、フェライト粉末52は、複数の粒子が凝集して、1つの塊になっている場合がある。この場合、粒子と粒子との界面を観察できるのであれば、その界面で囲われる部分が1つの粒子である。
 金属粉末53は、Fe基軟磁性金属粉末である。Fe基軟磁性金属粉末は、例えば、カルボニル鉄粉[Fe(CO)]、センダスト磁性粉末[84.5%Fe-10%Si-5.5%Al(wt%)]、パーマロイ磁性粉末[Fe50Ni、Fe78.5Ni等]等の結晶性金属粉末である。なお、本実施形態では、金属粉末53は、パーマロイ磁性粉末[Fe50Ni]である。
 金属粉末53の粒子の平均粒径は、略1.5μmである。すなわち、フェライト粉末52の粒子の平均粒径は、金属粉末53の粒子の平均粒径よりも小さくなっている。なお、金属粉末53の粒径の定義は、フェライト粉末52の粒径の定義と同様であるので説明を省略する。ただし、ここでの平均粒径は、拡大率が5000倍、加速電圧が5kV、5視野の走査電子顕微鏡で接着剤50の断面を観察したときに、視野内に位置する金属粉末53の粒径の平均値とした。
 金属粉末53の粒子形状は、略球形状である。換言すると、金属粉末53は、平面視したときにアスペクトが小さくなっている。具体的には、図3に示すように、接着剤50を断面視する。そして、その断面で現れる金属粉末53における1つの粒子の幾何中心G2を通り、その断面形状の縁から縁までに引ける線分のうち最も長い線分の長さを第2最長距離L2とする。また、同粒子において、幾何中心G2を通り、その断面形状の縁から縁までに引ける線分のうち最も短い線分の長さを第2最短距離S2とする。このとき、第2最長距離L2から、第2最短距離S2を除した値は、2以下になっている。
 なお、金属粉末53は、複数の粒子が凝集して、1つの塊になっている場合がある。この場合、粒子と粒子との界面を観察できるのであれば、その界面で囲われる部分が1つの粒子である。
 図3に示すように、フェライト粉末52及び金属粉末53は、熱硬化性樹脂51中に分散している。フェライト粉末52は、金属粉末53同士の間、金属粉末53の外面上に位置している。また、本実施形態において、接着剤50に含まれる金属粉末53は、体積比率でフェライト粉末52より多くなっている。
 <フェライト粉末の量と、透磁率との関係性の試験>
 フェライト粉末52の量と、透磁率との関係性を調べるため、金属粉末53及びフェライト粉末52の体積比率が異なる6つ接着剤50の試験片を作成した。試験片において、金属粉末53は、平均粒径5μmのカルボニル鉄粉である。試験片において、フェライト粉末52は、平均粒径95nmのマンガンスピネル系フェライトである。1つ目の試験片は、金属粉末53とフェライト粉末52との体積比率が、100:0の試験片である。2つ目の試験片は、金属粉末53とフェライト粉末52との体積比率が、96:4の試験片である。3つ目の試験片は、金属粉末53とフェライト粉末52との体積比率が、91:9の試験片である。4つ目の試験片は、金属粉末53とフェライト粉末52との体積比率が、87:13の試験片である。5つ目の試験片は、金属粉末53とフェライト粉末52との体積比率が、82:18の試験片である。6つ目の試験片は、金属粉末53とフェライト粉末52との体積比率が、75:25の試験片である。
 各試験片は、上記割合の金属粉末53及びフェライト粉末52を含んだ樹脂をシート状にし、加熱硬化して作製したリング状のものである。そして、各試験片に対して1MHz~1GHz域の複素透磁率の周波数特性評価を行った。なお、以下の説明では、複素透磁率における実数部を、単に透磁率と呼称する。
 図5に示すように、透磁率の数値が安定した10MHzから約100MHzの範囲では、フェライト粉末52の割合が多い試験片ほど、透磁率が高かった。具体的には、金属粉末53とフェライト粉末52との体積比率が75:25の試験片では、透磁率は略10.2を示した。金属粉末53とフェライト粉末52との体積比率が72:18の試験片では、透磁率は略10.1を示した。金属粉末53とフェライト粉末52との体積比率が87:13の試験片では、透磁率は略9.5を示した。金属粉末53とフェライト粉末52との体積比率が91:9の試験片では、透磁率は略9を示した。金属粉末53とフェライト粉末52との体積比率が96:4の試験片では、透磁率は略8を示した。金属粉末53とフェライト粉末52との体積比率が100:0の試験片では、透磁率は略7を示した。
 この結果より、樹脂内部で、フェライト粉末52の割合が多いほど、透磁率が高いといえる。一方、フェライト粉末52の割合が高くなるにつれて、透磁率の伸びが低くなっていた。したがって、フェライト粉末52の割合が25%を超えると、フェライト粉末52の割合を増加させても、透磁率はほとんど増加しないと予測できる。
 また、樹脂にフェライト粉末52が含まれている場合では、含まれていない場合よりも透磁率が向上していた。したがって、少なくとも、金属粉末53とフェライト粉末52との体積比率が、96:4の状態よりもフェライト粉末52の体積比率が多いと、フェライト粉末52が含まれていない場合に比較して有意に透磁率が改善する。
 なお、上記の試験片において、金属粉末53を、平均粒径5μmのカルボニル鉄粉から、平均粒径3μmのパーマロイ磁性粉末[Fe50Ni]に変更して、フェライト粉末52の量と透磁率との関係性を調べるための試験を行った。この試験では、金属粉末53の材質以外は、上述した試験と同じ条件とした。その結果、金属粉末53を平均粒径3μmのパーマロイ磁性粉末[Fe50Ni]に変更した場合でも、金属粉末53をカルボニル鉄粉とした場合と同じ傾向の結果が得られた。
 <本実施形態の作用>
 上記実施形態の接着剤50には、金属粉末53及びフェライト粉末52が含まれる。したがって、熱硬化性樹脂51が硬化していない状態では、同種の粉末同士、特にファンデルワールス力の高いフェライト粉末52同士が凝集しようとする。一方、フェライト粉末52と金属粉末53とを共に混合すると、フェライト粉末52が凝集しても、複数の金属粉末53によって凝集したフェライト粉末52がすり潰されて、粉砕される。そのため、フェライト粉末52は凝集せずに分散できる。この状態で、フェライト粉末52及び金属粉末53を熱硬化性樹脂51に混和させると、フェライト粉末52は、分散した状態で、接着剤50内に位置できる。なお、熱硬化性樹脂51に混和した状態では、接着剤50の粘度が相当に高いため、フェライト粉末52が再凝縮する可能性は低い。
 <本実施形態の効果>
 (1)上記実施形態において、接着剤50は、金属粉末53と、フェライト粉末52と、を含有している。したがって、フェライト粉末52と金属粉末53とが互いにぶつかり合うことで、凝集したフェライト粉末52が分散できる。そのため、接着剤50の接着力の低下を抑えつつも、フェライト粉末52の平均粒子径を小さくできる。
 (2)上記実施形態において、フェライト粉末52の平均粒径は、金属粉末53の平均粒径よりも小さい。この粒径の大小関係によれば、金属粉末53がフェライト粉末52の凝集を抑制しやすい。また、上記実施形態では、金属粉末53の平均粒径は、フェライト粉末52の平均粒径の10倍以上になっている。このような粒径の差があると、金属粉末53によるフェライト粉末52をすり潰す作用が顕著になるので、フェライト粉末52がより凝集しにくい。
 (3)上記実施形態において、金属粉末53の平均粒径は、略1.5μmである。金属粉末53の平均粒径を抑えることで、コイル部品10における接着剤50の厚さが大きくなることを抑制できる。その結果、コイル部品10の特性の向上が期待できる。
 (4)上記実施形態において、フェライト粉末52の平均粒径は、略0.1μmである。すなわち、フェライト粉末52の平均粒径は、金属粉末53の平均粒径よりも十分に小さくなっている。そのため、フェライト粉末52が、金属粉末53の外面上、及び隣り合う金属粉末53の隙間に位置しやすく、接着剤50中でのフェライト粉末52の割合を高めることができる。
 (5)フェライト粉末52は、フェライト粉末52の第1最長距離L1の延びる方向に磁化しやすくなっている。したがって、第1最長距離L1から、第1最短距離S1を除した値が1に近いほど、すなわち、フェライト粉末52の粒子形状が球状に近いほど、フェライト粉末52において磁化しやすい方向に偏りがなくなる。上記実施形態において、フェライト粉末52における1つの粒子の第1最長距離L1から、第1最短距離S1を除した値は、2以下である。したがって、このようなフェライト粉末52を含んだ接着剤50でコイル部品10を構成した場合、磁化しやすい方向が特定されず、好ましい。
 (6)上記実施形態において、フェライト粉末52の粒子は、略球状である。また、金属粉末53の粒子は、略球状である。したがって、接着剤50中において、隣り合う金属粉末53の間にフェライト粉末52が入り込みやすく、接着剤50中でのフェライト粉末52及び金属粉末53の充填率が低下しにくい。
 (7)金属粉末53は、金属粉末53の第2最長距離L2の延びる方向に磁化しやすくなっている。したがって、第2最長距離L2から、第2最短距離S2を除した値が1に近いほど、すなわち、金属粉末53の粒子形状が球状に近いほど、金属粉末53において磁化しやすい方向に偏りがなくなる。上記実施形態において、金属粉末53における1つの粒子の第2最長距離L2から、第2最短距離S2を除した値は、2以下である。したがって、このような金属粉末53を含んだ接着剤50でコイル部品10を構成した場合、磁化しやすい方向が特定されず、好ましい。
 (8)上記実施形態において、フェライト粉末52は、マンガンスピネル系フェライト酸化物の粉末である。したがって、接着剤50の飽和磁束密度として、高い飽和磁束密度を実現しやすい。
 (9)上記実施形態において、金属粉末53は、Fe基軟磁性金属粉末である。具体的には、金属粉末53は、パーマロイ磁性粉末[Fe50Ni]である。したがって、接着剤50の透磁率として、高い透磁率を実現しやすい。
 (10)上記実施形態において、コイル部品10は、コア10Cと天板16とからなる閉磁路を有する。このように、閉磁路を構成するコア10C及び天板16を接着するための接着剤50として、上記実施形態の接着剤50を採用することは、コイル部品10全体での特性を高めるうえで、特に好適である。
 (11)上記のフェライト粉末52の量と、透磁率との関係性の試験より、樹脂にフェライト粉末52が含まれていれば、樹脂の透磁率が比較的に大きくなることが分かった。上記実施形態では、接着剤50にフェライト粉末52が含まれているため、相応に高い透磁率が実現できる。そのため、コイル部品10のインダクタンス値の向上が期待できる。
 <変更例について>
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・上記実施形態において、巻き芯部11の形状は、上記実施形態の例に限定されない。例えば、円柱状でもよいし、四角柱状以外の多角柱状でもよい。
 ・上記実施形態において、コア10Cは、巻き芯部11と、第1鍔部12と、第2鍔部14とを備えていればよい。例えば、窪み部13及び窪み部15を省略してもよい。この場合、例えば、第1端子電極21と第2端子電極22とが互いに離れており、且つ、第3端子電極23と第4端子電極24とが互いに離れていればよい。
 ・上記実施形態において、第1端子電極21~第4端子電極24の材料及び形状は、上記実施形態の例に限定されない。例えば、第1端子電極21~第4端子電極24における、めっき層の材料は、錫やニッケルの合金等でもよい。また、第1端子電極21~第4端子電極24が、めっき層を有さず、導電性を有する金属層が露出していてもよい。
 ・コイル部品10は、1本のワイヤのみを備えていてもよい。この変更例の場合、第1鍔部12に1つの端子電極が存在し、第2鍔部14に1つの端子電極が存在すればよい。
 ・コイル部品10は、コア10C及び天板16を備えた構成に限らない。コイル部品10は、ワイヤが巻き回される第1部材、第1部材に接着剤50を介して接続している第2部材を有しており、且つこれら第1部材及び第2部材が閉磁路を形成していればよい。
 ・上記実施形態において、フェライト粉末52の平均粒径は、0.1μmより小さくても、大きくてもよい。一方で、接着剤50中でのフェライト粉末52の充填率としてある程度高い充填率を確保するためには、フェライト粉末52の平均粒径は、1μm以下、さらには0.1μm以下であると、好ましい。また、フェライト粉末52の平均粒径が、1μm以下、さらには0.1μm以下であると、フェライト粉末52は磁壁を持たない単磁区粒子となる。そのため、透磁率の高周波特性を高めることができる。なお、粉末の取り扱いの観点からすると、フェライト粉末52の平均粒径は1nm以上であると好ましい。
 ・上記実施形態において、フェライト粉末52の粒子は、球形状に限定されない。つまり、フェライト粉末52の粒子において、第1最長距離L1から第1最短距離S1を除した値が、2より大きくてもよい。
 ・上記実施形態において、フェライト粉末52は、スピネル系の磁性粉末として、マグネタイト、マグネシウムフェライト、ニッケル亜鉛フェライト、ニッケルフェライトの酸化物であってもよい。また、フェライト粉末52は、マグネトプランバイト系フェライト酸化物であってもよい。また、フェライト粉末52は、フェライトを含む磁性粉末であれば、上記以外の組成を有していてもよい。
 ・上記実施形態において、金属粉末53の平均粒径は、1.5μmより小さくても、大きくてもよい。一方で、接着剤50中での金属粉末53の充填率としてある程度高い充填率を確保するためには、金属粉末53の平均粒径は、2.5μm以下、さらには1.5μm以下であることが好ましい。また、接着剤50中で凝集したフェライト粉末52を分散させるためには、金属粉末53の平均粒径は、フェライト粉末52の平均粒径よりも大きく、且つ1μm以上であることが好ましい。
 ・上記実施形態において、金属粉末53の粒子は、球形状に限定されない。つまり、金属粉末53の粒子において、第2最長距離L2から第2最短距離S2を除した値が、2より大きくてもよい。
 ・上記実施形態において、金属粉末53は、上記実施形態で例示した以外の材質であってもよい。例えば、金属粉末53は、Fe-Si-Cr系金属粉末[90.5%Fe-3%Cr-6.5%Si(wt%)、92%Fe-5%Cr-3%Si(wt%)等]、Fe-Si金属粉末[Fe-45%Si(wt%)]等であってもよい。また、金属粉末53は、Fe-Ni系磁性金属粉末、パーメンジュール等のFe-Co系磁性金属粉末[FeCo]、Fe-Si-B-Nb-Cu系ナノ結晶磁性金属粉末等でもよい。また、金属粉末53は、Fe-Si-Cr系、Fe-B-Si系、Fe-Si-Cr-B系のアモルファス粉末であってもよい。なお、上記実施形態及びこの変更例で例示した各材料の元素組成比は、あくまでも例示であり、同種の金属粉末として呼称されていても、多少の違いがあることもある。
 G1…幾何中心
 G2…幾何中心
 L1…第1最長距離
 L2…第2最長距離
 S1…第1最短距離
 S2…第2最短距離
 10…コイル部品
 10C…コア
 11…巻き芯部
 12…第1鍔部
 14…第2鍔部
 16…天板
 30…第1ワイヤ
 40…第2ワイヤ
 50…コイル部品用接着剤
 51…熱硬化性樹脂
 52…フェライト粉末
 53…金属粉末

Claims (13)

  1.  磁性材料からなる第1部材と、
     磁性材料からなる第2部材と、
     前記第1部材に巻き回されたワイヤと、
     前記第1部材及び前記第2部材の間に介在し、前記第1部材及び前記第2部材を接着する接着剤と、
     を備えており、
     前記接着剤は、熱硬化性樹脂と、軟磁性材料からなる金属粉末と、フェライト粉末と、を含有する
     コイル部品。
  2.  前記フェライト粉末の粒子の平均粒径は、前記金属粉末の粒子の平均粒径よりも小さい
     請求項1に記載のコイル部品。
  3.  前記フェライト粉末の粒子の平均粒径が1μm以下である
     請求項1または2に記載のコイル部品。
  4.  前記フェライト粉末の粒子の平均粒径が0.1μm以下である
     請求項3に記載のコイル部品。
  5.  前記金属粉末の粒子の平均粒径が1μm以上かつ2.5μm以下である
     請求項1~4のいずれか一項に記載のコイル部品。
  6.  前記金属粉末の粒子の平均粒径が1μm以上かつ1.5μm以下である
     請求項5に記載のコイル部品。
  7.  前記接着剤を断面視したとき、
     前記フェライト粉末における1つの粒子の断面形状の幾何中心を通り、前記フェライト粉末の断面形状の縁から縁までに引ける線分のうち最も長い線分の長さを第1最長距離とし、
     前記フェライト粉末の断面形状の幾何中心を通り、前記フェライト粉末の断面形状の縁から縁までに引ける線分のうち最も短い線分の長さを第1最短距離としたとき、
     前記第1最長距離から前記第1最短距離を除した値が、2以下である
     請求項1~6のいずれか一項に記載のコイル部品。
  8.  前記接着剤を断面視したとき、
     前記金属粉末における1つの粒子の断面形状の幾何中心を通り、前記金属粉末の断面形状の縁から縁までに引ける線分のうち最も長い線分の長さを第2最長距離とし、
     前記金属粉末の断面形状の幾何中心を通り、前記金属粉末の断面形状の縁から縁までに引ける線分のうち最も短い線分の長さを第2最短距離としたとき、
     前記第2最長距離から前記第2最短距離を除した値が、2以下である
     請求項1~7のいずれか一項に記載のコイル部品。
  9.  前記フェライト粉末は、スピネル系フェライト酸化物、またはマグネトプランバイト系フェライト酸化物である
     請求項1~8のいずれか一項に記載のコイル部品。
  10.  前記金属粉末は、Fe基軟磁性金属粉末である
     請求項1~9のいずれか一項に記載のコイル部品。
  11.  前記第1部材は、中心軸線を有する柱状の巻き芯部と、前記巻き芯部における前記中心軸線に沿う方向の両端に接続している鍔部と、を有し
     前記第2部材は、2つの前記鍔部に前記接着剤を介して接続している
     請求項1~10のいずれか一項に記載のコイル部品。
  12.  熱硬化性樹脂と、軟磁性材料からなる金属粉末と、フェライト粉末と、を含有する
     コイル部品用接着剤。
  13.  前記フェライト粉末の粒子の平均粒径は、前記金属粉末の粒子の平均粒径よりも小さい
     請求項12に記載のコイル部品用接着剤。
PCT/JP2022/015622 2021-04-30 2022-03-29 コイル部品、コイル部品用接着剤 WO2022230564A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280015080.0A CN116888694A (zh) 2021-04-30 2022-03-29 线圈部件、线圈部件用粘接剂
JP2023517195A JPWO2022230564A1 (ja) 2021-04-30 2022-03-29
US18/447,022 US20230386725A1 (en) 2021-04-30 2023-08-09 Coil component and adhesive for coil component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-077666 2021-04-30
JP2021077666 2021-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/447,022 Continuation US20230386725A1 (en) 2021-04-30 2023-08-09 Coil component and adhesive for coil component

Publications (1)

Publication Number Publication Date
WO2022230564A1 true WO2022230564A1 (ja) 2022-11-03

Family

ID=83847391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015622 WO2022230564A1 (ja) 2021-04-30 2022-03-29 コイル部品、コイル部品用接着剤

Country Status (4)

Country Link
US (1) US20230386725A1 (ja)
JP (1) JPWO2022230564A1 (ja)
CN (1) CN116888694A (ja)
WO (1) WO2022230564A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237249A (ja) * 2005-02-24 2006-09-07 Tdk Corp コイル部品
JP2008270438A (ja) * 2007-04-18 2008-11-06 Sagami Ereku Kk インダクタおよびその製造方法
JP2014107482A (ja) * 2012-11-29 2014-06-09 Denso Corp 電子装置
JP2018078155A (ja) * 2016-11-08 2018-05-17 株式会社村田製作所 コイル部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237249A (ja) * 2005-02-24 2006-09-07 Tdk Corp コイル部品
JP2008270438A (ja) * 2007-04-18 2008-11-06 Sagami Ereku Kk インダクタおよびその製造方法
JP2014107482A (ja) * 2012-11-29 2014-06-09 Denso Corp 電子装置
JP2018078155A (ja) * 2016-11-08 2018-05-17 株式会社村田製作所 コイル部品

Also Published As

Publication number Publication date
US20230386725A1 (en) 2023-11-30
JPWO2022230564A1 (ja) 2022-11-03
CN116888694A (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
US6717504B2 (en) Magnetic core including bias magnet and inductor component using the same
WO2010103709A1 (ja) 圧粉磁芯およびそれを用いた磁性素子
US20070063804A1 (en) Chip inductor
US9959968B2 (en) Reactor
US9406430B2 (en) Reactor
CN110853910B (zh) 高磁导率低损耗软磁复合材料的制备方法及其磁环
WO2020183997A1 (ja) インダクタ
US9378875B2 (en) Ferromagnetic nano metal powder
WO2022230564A1 (ja) コイル部品、コイル部品用接着剤
WO2020183993A1 (ja) インダクタ
WO2016052257A1 (ja) 磁性コア部品およびチップインダクタ
JP6415910B2 (ja) 磁性材料およびデバイス
WO2021171944A1 (ja) 磁気部品、及び電気装置
JP2022177573A (ja) コイル封入磁心およびコイル部品
CN113223845A (zh) 一种软磁合金粉末的绝缘包覆方法
JP2021158148A (ja) 圧粉磁心
JP6668113B2 (ja) インダクタ
JP2003100509A (ja) 磁気コア及びそれを用いたインダクタンス部品
WO2024176654A1 (ja) 圧粉磁心の製造方法
WO2024004507A1 (ja) 圧粉磁心及び圧粉磁心の製造方法
WO2024176653A1 (ja) 圧粉磁心の製造方法
US20240290532A1 (en) Coil component
WO2020184000A1 (ja) インダクタ
WO2024176655A1 (ja) 圧粉磁心の製造方法
JPH04352403A (ja) 複合型圧粉磁芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023517195

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280015080.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795480

Country of ref document: EP

Kind code of ref document: A1