WO2016052257A1 - 磁性コア部品およびチップインダクタ - Google Patents

磁性コア部品およびチップインダクタ Download PDF

Info

Publication number
WO2016052257A1
WO2016052257A1 PCT/JP2015/076673 JP2015076673W WO2016052257A1 WO 2016052257 A1 WO2016052257 A1 WO 2016052257A1 JP 2015076673 W JP2015076673 W JP 2015076673W WO 2016052257 A1 WO2016052257 A1 WO 2016052257A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
core component
winding
winding shaft
shaft portion
Prior art date
Application number
PCT/JP2015/076673
Other languages
English (en)
French (fr)
Inventor
香代 堺
島津 英一郎
真二 宮崎
貴之 小田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201580053369.1A priority Critical patent/CN106688064A/zh
Priority to US15/516,411 priority patent/US20180233268A1/en
Priority to EP15845926.3A priority patent/EP3203488A4/en
Publication of WO2016052257A1 publication Critical patent/WO2016052257A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires

Definitions

  • the present invention relates to a magnetic core component for a chip inductor used in an electronic circuit, and a chip inductor using the magnetic core component.
  • FIG. 4 A general structure of a chip inductor is shown in FIG. 4, the left figure is a plan view and the right figure is a front view.
  • a magnetic core component 11 used for a chip inductor has a structure in which a core 12 called a bobbin type and a plate-like I-type core 13 arranged on the top thereof are combined.
  • a coil is formed by winding a wire around the bobbin type core 12, and an electrode part serving as a contact point with a substrate or the like is provided below the leg part 12 a of the bobbin type core 12. The end of the winding is connected.
  • the I-type core 13 is arranged to form a magnetic path for suppressing leakage magnetic flux.
  • ferrite materials which are currently mainstream as materials for magnetic core components used in chip inductors, are limited in material properties themselves, and new materials are being sought.
  • new materials such as Sendust and amorphous foil strips have been replaced with ferrite materials, but only part of the movement.
  • Amorphous powder materials with excellent magnetic properties have also appeared, but their moldability is poor compared to conventional materials and are not in widespread use.
  • the shape is limited. Moreover, it is necessary to minimize the number of molds in order to reduce costs.
  • dies two pieces for forming the bobbin type core 12 and the I type core 13 are required.
  • the magnetic core component 14 is a combination of cores 15 and 16 having the same shape divided by a plane perpendicular to the axial direction of the winding shaft portion at the center position of the winding shaft portion.
  • the mutual contact area decreases due to the influence of shape error and surface roughness.
  • a gap is likely to occur, and there is a concern about an increase in leakage magnetic flux.
  • the electrode position of the leg portion is outside the dimensional tolerance due to the dimensional tolerance of the joint portion, which may make it difficult to attach to the substrate.
  • the present invention has been made to address such problems, and it is an object of the present invention to provide a magnetic core component capable of suppressing leakage magnetic flux while suppressing the number of molds required at the time of molding, and a chip inductor using the same.
  • the magnetic core component of the present invention is a magnetic core component having a winding shaft portion for winding a winding, and the magnetic core component is formed by joining two half members of the same shape which are magnetic bodies, At least a part of the joining surface is a surface that is not perpendicular to the axial direction of the winding shaft portion.
  • the magnetic core component includes leg portions provided at both ends of the winding shaft portion, and a cover portion provided over one end portion of both leg portions in parallel with the winding shaft portion, and the joint surface includes the winding portion. It is formed in a shaft part and the above-mentioned cover part.
  • the half member is a compression molded body of magnetic material. Further, the two half members have complementary fitting shapes for positioning the two members at the respective joint portions.
  • the chip inductor of the present invention is characterized in that a coil is formed by winding a winding around a winding shaft portion of the magnetic core component of the present invention.
  • the magnetic core component of the present invention is formed by joining two half members of the same shape that are magnetic bodies, and at least a part of the joining surface is a surface that is not perpendicular to the axial direction of the winding shaft portion.
  • the area of the magnetic path cross-section surface perpendicular to the axial direction of the winding shaft portion that forms the coil by winding the winding
  • the area of the joining surface of the two half members increases, and the shape between the members
  • the gap due to the effects of error and surface roughness is reduced, and leakage flux can be suppressed when a chip inductor is formed.
  • the manufacturing cost can be reduced.
  • the magnetic core component of the present invention has leg portions provided at both ends of the winding shaft portion, and a cover portion provided over one end portion of both leg portions in parallel with the winding shaft portion, Since it is formed on the winding shaft and cover, it suppresses leakage flux when using a chip inductor as described above while maintaining the same core shape as a conventional product that combines a bobbin-type core and an I-type core. it can.
  • the half member is a compression-molded body made of a magnetic material, it can be manufactured at a lower cost than the injection molding and can be easily reduced in size.
  • the two half members have complementary fitting shapes for positioning the two members at the respective joint portions, it is possible to prevent the electrode position from being out of the dimensional tolerance.
  • the chip inductor according to the present invention uses this magnetic core component and forms a coil by winding a winding around the winding shaft portion of the magnetic core component, thereby reducing the manufacturing cost and minimizing the leakage magnetic flux. It will be suppressed.
  • the chip inductor of the present invention is a chip inductor particularly effective as a surface mount type used in an electronic circuit such as an electric / electronic device.
  • This type of chip inductor is small, and specifically, the axial length of the magnetic core component is about 15 mm or less.
  • FIG. 1A is a front view (right view) and a plan view (left view) of a magnetic core component
  • FIG. 1B is a front view of a chip inductor using the magnetic core component of FIG. 1A.
  • a magnetic core component 1 of the present invention includes a winding shaft portion 1a for winding a winding, leg portions 1b provided at both ends of the winding shaft portion 1a, and a winding shaft portion 1a. And a cover portion 1c provided over the upper end portions of both leg portions 1b and 1b.
  • the shape is the same as that of a conventional magnetic core component (see FIG. 4A) in which a bobbin type core and an I type core are combined.
  • the cover portion 1c plays the role of an I-type core, and forms a magnetic path for suppressing leakage magnetic flux.
  • the magnetic core component 1 is formed by joining two half members 2 and 3 having the same shape, which are magnetic bodies, and at least a part of the joining surface 1d is a surface that is not perpendicular to the axial direction of the winding shaft portion 1a. It is characterized by being.
  • each half member has a shape in which a right triangle portion (taper portion) and a leg portion are combined in a plan view.
  • the half member 2 and the half member 3 have the same shape and can be manufactured with one type of mold.
  • the joining surface 1d is formed as one flat surface inclined with respect to the axial direction of the winding shaft portion 1a.
  • 1 d of joining surfaces are formed in the winding shaft part 1a and the cover part 1c, and are not formed in the leg part 1b.
  • the chip inductor 6 of the present invention uses the magnetic core component 1 described above, and a coil 4 is formed by winding a winding 4 around a winding shaft portion 1 a of the magnetic core component 1. .
  • a pair of electrode portions 5 is provided below the leg portion 1 b of the magnetic core component 1, and each end of the winding 4 is connected to each electrode portion 5.
  • the chip inductor 6 is connected to the electronic circuit of the substrate 7 at the electrode portion 5.
  • when a current flows through the coil it exits from one end in the axial direction of the winding shaft portion 1a, passes through the leg portion 1b, passes through the cover portion 1c, and returns to the other axial end of the winding shaft portion 1a.
  • Such a magnetic path is formed.
  • the direction of the lines of magnetic force is the direction along the axial direction of the winding shaft portion.
  • the joining area and the magnetic path cross-sectional area are approximately the same, and the joining area of the two members is the smallest.
  • the actual contact area is reduced due to the influence of shape error and surface roughness, and the gap between the members is increased.
  • the joining shape as shown in FIG. 1A a wide joining area can be secured and the actual contact area can be increased, so that the gap between the members can be reduced, and FIG. Compared with the shape as shown, leakage magnetic flux can be suppressed.
  • the chip inductor 6 is connected to the electronic circuit of the substrate 7 by a pair of electrode portions 5 provided at the lower portion of the leg portion 1b of the magnetic core component 1. Since one leg 1b is provided for each of the half members 2 and 3, if the joining position of the half members is shifted, the position of the electrode portion 5 is also shifted. Since the chip inductor 6 of the present invention is small in size, even a slight deviation may cause it to be out of dimensional tolerance, resulting in trouble when attached to the substrate.
  • the half members 2 and 3 are provided with complementary fitting shapes for positioning the two members at the respective joint portions.
  • a recess 1e is formed in the leg portion 1b
  • a protrusion 1f that can be fitted to the recess 1e is formed in the winding shaft portion 1a and the cover portion 1c.
  • the concave portion 1e and the convex portion 1f have complementary shapes, and the half members are accurately positioned by fitting the concave portion 1e and the convex portion 1f.
  • the electrode part of the leg part 1b can also be positioned and it can prevent becoming out of a dimensional tolerance.
  • the complementary fitting shape is not limited to the shape shown in the figure, and can be any shape as long as the half members have the same shape and can be positioned. However, it is preferable to have a simple shape as shown in the figure so that compression molding is possible.
  • FIGS. 3A to 3E are a front view (right view) and a plan view (left view) of the magnetic core component.
  • the magnetic core component 1 shown in FIG. 3A has a shape in which each half member is a combination of a right-angled triangular portion (tapered portion) and a leg portion as seen in a plan view.
  • the joining surface 1d is formed as one flat surface inclined with respect to the axial direction of the winding shaft portion. Compared with the structure of FIG. 1A, the inclination angle of the bonding surface 1d is slightly smaller and the bonding area is also slightly smaller.
  • the magnetic core component 1 shown in FIG. 3B and FIG. 3C has a surface (2) whose joining surface 1d is perpendicular to the axial direction of the winding shaft portion and the axial direction of the winding shaft portion. It is a composite surface composed of one inclined surface. Since it has a surface that is inclined with respect to the axial direction of the winding shaft portion, the bonding area is increased as compared with a case where only a surface perpendicular to the axial direction of the winding shaft portion is formed.
  • FIG. 3B and FIG. 3C have different inclination angles on the inclined surface.
  • the magnetic core component 1 shown in FIG. 3D and FIG. 3E has a surface (two) whose joining surfaces 1d are perpendicular to the axial direction of the winding shaft portion and along the axial direction of the winding shaft portion. It is a composite surface consisting of the two surfaces. Since it has a surface along the axial direction of the winding shaft portion, the area of the surface along the axial direction of this winding shaft portion as compared to the case where only the surface perpendicular to the axial direction of the winding shaft portion is configured. This increases the bonding area.
  • FIG. 3D and FIG. 3E differ in the area of the surface along the axial direction of the winding shaft portion.
  • the half members 2 and 3 have the same shape and can be manufactured with one type of mold. Further, as described above, in any case, a large bonding area can be secured and the actual contact area can be increased, so that the gap between the members can be reduced, and the leakage magnetic flux is compared with the shape shown in FIG. Can be suppressed.
  • the half member is a magnetic body, and its manufacturing method is not particularly limited, but it can be manufactured at a lower cost than an injection molded body and can be easily downsized. It is preferable. Since the magnetic core component of the present invention is formed as a member having a simple shape as described above, it can be sufficiently molded even by compression molding.
  • Semi-members include pure iron-based soft magnetic materials such as iron powder and iron nitride powder, Fe-Si-Al alloy (Sendust) powder, Super Sendust powder, Ni-Fe alloy (Permalloy) powder, Co-Fe alloy powder, Fe Magnetic materials such as iron-based alloy soft magnetic materials such as Si—B alloy powder, ferrite magnetic materials, amorphous magnetic materials, and fine crystal materials can be used as raw materials.
  • Ferrite magnetic materials include manganese zinc ferrite, nickel zinc ferrite, copper zinc ferrite, spinel ferrite having a spinel crystal structure such as magnetite, hexagonal ferrite such as barium ferrite and strontium ferrite, and garnet ferrite such as yttrium iron garnet.
  • the amorphous magnetic material include iron alloy, cobalt alloy, nickel alloy, and mixed alloy amorphous thereof.
  • oxides of insulating metals or metalloids such as Al 2 O 3 , Y 2 O 3 , MgO, and ZrO 2 , glass, and mixtures thereof. Is mentioned.
  • a powder coating method such as mechanofusion, a wet thin film manufacturing method such as electroless plating or a sol-gel method, or a dry thin film manufacturing method such as sputtering can be used.
  • the average particle diameter of the raw material powder is preferably 1 to 150 ⁇ m. More preferably, it is 5 to 100 ⁇ m.
  • the average particle size is smaller than 1 ⁇ m, the compressibility at the time of pressure molding (a measure indicating the ease with which powder is solidified) is lowered, and the material strength after firing is significantly lowered.
  • the average particle diameter is larger than 150 ⁇ m, the iron loss in the high frequency region increases, and the magnetic characteristics (frequency characteristics) deteriorate.
  • the half member which is a compression-molded body, applies a raw material powder of a magnetic material having an insulating coating on the particle surface, or a powder containing a thermosetting resin such as an epoxy resin to the raw material powder, with a predetermined pressure. It can be produced by compacting into a green compact and firing the green compact. Since the half members have the same shape, only one type of mold is used. When amorphous alloy powder is used as a raw material, the firing temperature needs to be lower than the crystallization start temperature of the amorphous alloy. Moreover, when using the powder with which the thermosetting resin was mix
  • the magnetic core parts are completed by joining two obtained half members. Joining is performed using an adhesive or the like in addition to the fitting by the positioning shape described above.
  • an adhesive a solvent-free epoxy adhesive that can adhere to each other is preferable.
  • a coil is formed by winding a winding around a winding shaft portion to obtain a chip inductor having an inductor function.
  • a copper enameled wire can be used as the winding, and the types are urethane wire (UEW), formal wire (PVF), polyester wire (PEW), polyesterimide wire (EIW), polyamideimide wire (AIW), A polyimide wire (PIW), a double coated wire combining these, a self-bonding wire, a litz wire, or the like can be used.
  • Polyamideimide wire (AIW), polyimide wire (PIW) and the like excellent in heat resistance are preferred.
  • a round wire or a square wire can be used as the cross-sectional shape of the copper enamel wire.
  • a known method can be employed for winding the coil.
  • magnetic core components and chip inductor of this invention are not limited to these.
  • the magnetic core component of the present invention can be suitably used as a core for chip inductors used in electronic circuits of various electric / electronic devices, since leakage magnetic flux can be suppressed while suppressing the number of molds required at the time of molding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

 成形時に必要となる金型数を抑えつつ、漏れ磁束を抑制できる磁性コア部品、およびこれを用いたチップインダクタを提供する。巻線4を巻くための巻軸部1aを有する磁性コア部品1であり、磁性体である同一形状の2つの半部材2、3を接合してなり、巻軸部1aの両端に設けられた脚部1bと、巻軸部1aと並行に両脚部の一端部にわたって設けられたカバー部1cとを有し、巻軸部1aおよびカバー部1cに接合面1dが形成され、この接合面1dが、巻軸部1aの軸方向に対して非垂直な面である。

Description

磁性コア部品およびチップインダクタ
 本発明は電子回路に用いられるチップインダクタ用の磁性コア部品、および該磁性コア部品を用いたチップインダクタに関する。
 近年、電気機器や電子機器の小型化、高周波化、大電流化が進む中で、磁性コア部品にも同様の対応が求められている。特に、電子回路に用いられる表面実装型のチップインダクタでは、更なる小型化や高性能化が求められている。チップインダクタの一般的な構造を図4(a)に示す。図4では、左図が平面図であり、右図が正面図である。チップインダクタに用いられる磁性コア部品11は、ボビン型と呼ばれるコア12と、その上部に配された板状のI型コア13とを組み合わせた構造を有している。図示は省略するが、ボビン型コア12に巻線を巻回してコイルを形成し、ボビン型コア12の脚部12aの下部に基板等との接点となる電極部を有し、該電極部に巻線の端末が接続されている。I型コア13は、漏れ磁束を抑えるための磁路を形成するために配置されている。
 このような構造に近い従来のチップインダクタとして、例えば、中央部に巻線部を有する導電性磁性材料からなる柱状の第1コアと、その上部に導電性磁性材料で形成した略鞍型形状の第2コアとを有する表面実装型閉磁コイルが提案されている(特許文献1参照)。
特開2012-84776号公報
 しかしながら、チップインダクタに用いる磁性コア部品の材料として現在主流であるフェライト材料は、材料特性そのものが限界にきており、新たな材料が模索されている。また、センダストやアモルファス箔帯等の新材料がフェライト材料に置き換えられているが、一部の動きにとどまっている。磁気特性に優れたアモルファス粉末材料も登場しているが、成形性が従来の材料に比べて悪く、普及している状態ではない。
 粉末の磁性材から圧粉磁性コア部品を成形する場合、形状に制限が生じる。また、コスト低減のために金型の数を最小限に抑える必要がある。図4(a)に示す従来形状の磁性コア部品を形成する場合、ボビン型コア12とI型コア13とをそれぞれ形成するための金型(2個)が必要になる。
 金型数を増加させない対策として、図4(b)に示すような形状が考えられる。この磁性コア部品14は、巻軸部の中央位置で該巻軸部の軸方向に垂直な面で分断した同形状のコア15と16とを組み合わせている。しかしながら、該図に示すように分割した接合部の面積が磁路断面積と同等程度の場合、形状誤差や面粗度の影響により相互の接触面積が低下する。これによりギャップが生じやすく、漏れ磁束の増大が懸念される。また、接合部の寸法公差によって脚部の電極位置が寸法公差外になり、基板への取り付けが困難になるおそれがある。
 本発明はこのような問題に対処するためになされたものであり、成形時に必要となる金型数を抑えつつ、漏れ磁束を抑制できる磁性コア部品、およびこれを用いたチップインダクタの提供を目的とする。
 本発明の磁性コア部品は、巻線を巻くための巻軸部を有する磁性コア部品であって、該磁性コア部品は、磁性体である同一形状の2つの半部材を接合してなり、該接合面の少なくとも一部が、上記巻軸部の軸方向に対して非垂直な面であることを特徴とする。
 上記磁性コア部品は、上記巻軸部の両端に設けられた脚部と、上記巻軸部と並行に両脚部の一端部にわたって設けられたカバー部とを有し、上記接合面は、上記巻軸部および上記カバー部に形成されることを特徴とする。
 上記半部材は、磁性材料の圧縮成形体であることを特徴とする。また、上記2つの半部材は、それぞれの接合部に両部材の位置決めをする相補的な嵌合形状を有することを特徴とする。
 本発明のチップインダクタは、上記本発明の磁性コア部品の巻軸部に巻線を巻回してコイルを形成してなることを特徴とする。
 本発明の磁性コア部品は、磁性体である同一形状の2つの半部材を接合してなり、該接合面の少なくとも一部が巻軸部の軸方向に対して非垂直な面であるので、磁路断面(巻線を巻いてコイルを形成した巻軸部の軸方向に対して垂直な面)の面積に比較して、2つの半部材の接合面の面積が大きくなり、部材間の形状誤差や面粗度の影響によるギャップが小さくなり、チップインダクタとした際に漏れ磁束を抑制できる。また、成形時に必要となる金型は1種類であるため、製造コストを低減できる。
 また、本発明の磁性コア部品は、巻軸部の両端に設けられた脚部と、巻軸部と並行に両脚部の一端部にわたって設けられたカバー部とを有し、上記接合面は、巻軸部およびカバー部に形成されるので、ボビン型コアとI型コアとを組み合わせた従来の製品と同形状の磁性コア部品としつつ、上述のとおり、チップインダクタとした際に漏れ磁束を抑制できる。
 上記半部材は、磁性材料の圧縮成形体であるので、射出成形に比較して安価に製造でき、かつ、小型化も容易である。
 上記2つの半部材は、それぞれの接合部に両部材の位置決めをする相補的な嵌合形状を有するので、電極位置が寸法公差外になることを防止できる。
 本発明のチップインダクタは、この磁性コア部品を用い、該磁性コア部品の巻軸部に巻線を巻回してコイルを形成してなるので、製造コストを低減しつつ、漏れ磁束も最小限に抑制したものとなる。
本発明の磁性コア部品とチップインダクタの一例を示す正面図等である。 接合部の拡大図である。 本発明の磁性コア部品の他の例を示す正面図および平面図である。 従来の磁性コア部品等を示す正面図および平面図である。
 本発明のチップインダクタは、電気・電子機器などの電子回路に用いられる表面実装型として特に有効なチップインダクタである。この種のチップインダクタは小型であり、具体的には、磁性コア部品の軸方向長さは15mm程度以下である。
 本発明の磁性コア部品およびチップインダクタの一例を図1に基づいて説明する。図1(a)は磁性コア部品の正面図(右図)および平面図(左図)であり、図1(b)は図1(a)の磁性コア部品を用いたチップインダクタの正面図である。図1(a)に示すように、本発明の磁性コア部品1は、巻線を巻くための巻軸部1aと、巻軸部1aの両端に設けられた脚部1bと、巻軸部1aと並行に両脚部1b、1bの上端部にわたって設けられたカバー部1cとを有する。形状としては、ボビン型コアとI型コアとを組み合わせた従来の磁性コア部品(図4(a)参照)と同形状である。磁性コア部品1では、カバー部1cがI型コアの役割を担い、漏れ磁束を抑えるための磁路を形成するものである。
 磁性コア部品1は、磁性体である同一形状の2つの半部材2、3を接合してなり、接合面1dの少なくとも一部が、巻軸部1aの軸方向に対して非垂直な面であることを特徴としている。図1(a)に示す例では、平面図でみて、それぞれの半部材は、直角三角形部(テーパ部)と脚部とを組み合わせた形状を有している。半部材2と半部材3は同一の形状であり、1種の金型で製造できる。接合面1dは、巻軸部1aの軸方向に対して傾斜した1つの平面として形成されている。また、接合面1dは、巻軸部1aおよびカバー部1cに形成され、脚部1bには形成されていない。
 図1(b)に示すように、本発明のチップインダクタ6は、上記の磁性コア部品1を用い、磁性コア部品1の巻軸部1aに巻線4を巻回してコイルを形成している。磁性コア部品1の脚部1bの下部に一対の電極部5を有し、巻線4の各端末がそれぞれの電極部5に接続されている。チップインダクタ6は、電極部5で基板7の電子回路に接続されている。このように構成したチップインダクタ6において、コイルに電流が流れると、巻軸部1aの軸方向一端から出て脚部1bを経てカバー部1cを通り、巻軸部1aの軸方向他端に戻るような磁路が形成される。巻軸部1aとカバー部1cにおいては、磁力線の方向は、該巻軸部の軸方向に沿った方向になる。
 図4(b)に示すような巻軸部の軸方向に対して垂直な面を接合面とすると、この接合面積と磁路断面積とが同程度となり、2部材の接合面積としては最小であり、形状誤差や面粗度の影響により実接触面積が小さくなり、部材間のギャップが大きくなる。これに対して、図1(a)に示すような接合形状とすることで、接合面積を広く確保でき、実接触面積も大きくなるため、部材間のギャップを小さくでき、図4(b)に示すような形状と比較して、漏れ磁束を抑制できる。
 図1(b)に示すように、チップインダクタ6は、磁性コア部品1の脚部1bの下部に設けられた一対の電極部5で基板7の電子回路に接続されている。脚部1bは、半部材2、3のそれぞれに1つ設けられているので、半部材の接合位置がずれると、この電極部5の位置もずれる。本発明のチップインダクタ6は、小型であるため、僅かなずれであっても寸法公差外になるおそれがあり、基板への取り付け時に支障がでる。
 この対策として、半部材2、3において、それぞれの接合部に両部材の位置決めをする相補的な嵌合形状を設けることが好ましい。例えば、接合部の拡大図である図2に示すように、脚部1bに凹部1eを形成し、巻軸部1aとカバー部1cに、凹部1eと嵌合可能な凸部1fを形成する。凹部1eと凸部1fは相補的な形状であり、両者が嵌合することで半部材同士の正確な位置決めがなされる。これにより、脚部1bの電極部も位置決めされ、寸法公差外になることを防止できる。相補的な嵌合形状は、該図に示す形状に限定されず、半部材同士で同じ形状であり、位置決め可能な形状であれば任意の形状とできる。ただし、圧縮成形可能とするよう該図に示すような簡易な形状とすることが好ましい。
 本発明の磁性コア部品の他の例を図3に基づいて説明する。図3(a)~(e)は、磁性コア部品の正面図(右図)および平面図(左図)である。図3(a)に示す磁性コア部品1は、平面図でみて、それぞれの半部材が直角三角形部(テーパ部)と脚部とを組み合わせた形状を有している。接合面1dは巻軸部の軸方向に対して傾斜した1つの平面として形成されている。これは図1(a)の構造と比較して、接合面1dの傾斜角度が若干小さく、接合面積も若干小さい。
 図3(b)および図3(c)に示す磁性コア部品1は、その接合面1dが巻軸部の軸方向に対して垂直な面(2つ)と、巻軸部の軸方向に対して傾斜した1つの面とからなる複合面となっている。巻軸部の軸方向に対して傾斜した面を有するため、巻軸部の軸方向に対して垂直な面のみから構成される場合と比較して接合面積が大きくなる。図3(b)と図3(c)とでは、傾斜した面における傾斜角度が異なる。
 図3(d)および図3(e)に示す磁性コア部品1は、その接合面1dが巻軸部の軸方向に対して垂直な面(2つ)と、巻軸部の軸方向に沿った面とからなる複合面となっている。巻軸部の軸方向に沿った面を有するため、巻軸部の軸方向に対して垂直な面のみから構成される場合と比較して、この巻軸部の軸方向に沿った面の面積分、接合面積が大きくなる。図3(d)と図3(e)とでは、巻軸部の軸方向に沿った面の面積が異なる。
 図3(a)~(e)のいずれの場合も半部材2と3は同一の形状であり、1種の金型で製造できる。また、上述のとおり、いずれの場合も接合面積を広く確保でき、実接触面積も大きくなるため、部材間のギャップを小さくでき、図4(b)に示すような形状と比較して、漏れ磁束を抑制できる。
 上記半部材は、磁性体であり、その製造方法は特に限定されないが、射出成形体に比較して安価に製造でき、かつ、小型化も容易であることから、磁性材料の圧縮成形体とすることが好ましい。本発明の磁性コア部品は、上述のような簡易形状の部材として形成するため、圧縮成形でも十分に成形が可能となる。
 半部材は、鉄粉、窒化鉄粉等の純鉄系軟磁性材料、Fe-Si-Al合金(センダスト)粉末、スーパーセンダスト粉末、Ni-Fe合金(パーマロイ)粉末、Co-Fe合金粉末、Fe-Si-B系合金粉末等の鉄基合金系軟磁性材料、フェライト系磁性材料、アモルファス系磁性材料、微細結晶材料などの磁性材料を原料とできる。フェライト系磁性材料としては、マンガン亜鉛フェライト、ニッケル亜鉛フェライト、銅亜鉛フェライト、磁鉄鉱等のスピネル型結晶構造を有するスピネルフェライト、バリウムフェライト、ストロンチウムフェライト等の六方晶フェライト、イットリウム鉄ガーネットなどのガーネットフェライトが挙げられる。アモルファス系磁性材料としては、鉄合金系、コバルト合金系、ニッケル合金系、これらの混合合金系アモルファスなどが挙げられる。
 原料となる磁性材料の粒子表面に絶縁被覆を形成する酸化物としては、Al23、Y23、MgO、ZrO2等の絶縁性金属または半金属の酸化物、ガラス、これらの混合物が挙げられる。絶縁被覆の形成方法としては、メカノフュージョン等の粉末コーティング法や、無電解メッキやゾル-ゲル法等の湿式薄膜作製法、またはスパッタリング等の乾式薄膜作製法等を用いることができる。
 原料粉末の平均粒子径は1~150μmであることが好ましい。より好ましくは5~100μmである。平均粒子径が1μmよりも小さくなると、加圧成形時の圧縮性(粉末の固まり易さを示す尺度)が低下し、焼成後の材料強度が著しく低下する。平均粒子径が150μmよりも大きくなると、高周波数領域での鉄損が大きくなり、磁気特性(周波数特性)が低下する。
 圧縮成形体である半部材は、粒子表面に絶縁被覆が形成された磁性材料の原料粉末単体、または原料粉末にエポキシ樹脂などの熱硬化性樹脂が配合された粉末を、所定の加圧力で加圧成形して圧粉体とし、この圧粉体を焼成して製造できる。半部材は同一形状であるので、使用する金型は1種である。なお、原料に非晶質合金粉末を用いる場合には、焼成温度を非晶質合金の結晶化開始温度より低温とする必要がある。また、熱硬化性樹脂が配合された粉末を用いる場合には、焼成温度を樹脂の硬化温度範囲とする必要がある。
 得られた半部材を2つ接合することで、磁性コア部品が完成する。接合は、上述の位置決め形状による嵌合等に加えて、接着剤などを用いて行なう。接着剤としては、相互に密着できる無溶剤型のエポキシ系接着剤が好ましい。
 得られた磁性コア部品において、巻軸部に巻線を巻回してコイルを形成することで、インダクタ機能を持たせたチップインダクタとする。巻線としては銅エナメル線を使用することができ、その種類としてはウレタン線(UEW)、ホルマール線(PVF)、ポリエステル線(PEW)、ポリエステルイミド線(EIW)、ポリアミドイミド線(AIW)、ポリイミド線(PIW)、これらを組み合わせた二重被覆線、または自己融着線、リッツ線等を使用できる。耐熱性に優れるポリアミドイミド線(AIW)、ポリイミド線(PIW)等が好ましい。銅エナメル線の断面形状としては丸線や角線を使用できる。コイルの巻き方等については公知の方法を採用できる。
 以上、各図などに基づき本発明の実施形態を説明したが、本発明の磁性コア部品とチップインダクタはこれらに限定されるものではない。
 本発明の磁性コア部品は、成形時に必要となる金型数を抑えつつ、漏れ磁束を抑制できるので、各種の電気・電子機器の電子回路に用いられるチップインダクタ用のコアとして好適に利用できる。
  1 磁性コア部品
  2 半部材
  3 半部材
  4 巻線
  5 電極部
  6 チップインダクタ
  7 基板

Claims (5)

  1.  巻線を巻くための巻軸部を有する磁性コア部品であって、
     該磁性コア部品は、磁性体である同一形状の2つの半部材を接合してなり、該接合面の少なくとも一部が、前記巻軸部の軸方向に対して非垂直な面であることを特徴とする磁性コア部品。
  2.  前記磁性コア部品は、前記巻軸部の両端に設けられた脚部と、前記巻軸部と並行に両脚部の一端部にわたって設けられたカバー部とを有し、前記接合面は、前記巻軸部および前記カバー部に形成されることを特徴とする請求項1記載の磁性コア部品。
  3.  前記半部材は、磁性材料の圧縮成形体であることを特徴とする請求項1記載の磁性コア部品。
  4.  前記2つの半部材は、それぞれの接合部に両部材の位置決めをする相補的な嵌合形状を有することを特徴とする請求項1記載の磁性コア部品。
  5.  磁性コア部品の巻軸部に巻線を巻回してコイルを形成してなるチップインダクタであって、前記磁性コア部品が請求項1記載の磁性コア部品であることを特徴とするチップインダクタ。
PCT/JP2015/076673 2014-10-01 2015-09-18 磁性コア部品およびチップインダクタ WO2016052257A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580053369.1A CN106688064A (zh) 2014-10-01 2015-09-18 磁芯部件以及片式电感器
US15/516,411 US20180233268A1 (en) 2014-10-01 2015-09-18 Magnetic core component and chip inductor
EP15845926.3A EP3203488A4 (en) 2014-10-01 2015-09-18 Magnetic core component and chip inductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-203334 2014-10-01
JP2014203334A JP2016072569A (ja) 2014-10-01 2014-10-01 磁性コア部品およびチップインダクタ

Publications (1)

Publication Number Publication Date
WO2016052257A1 true WO2016052257A1 (ja) 2016-04-07

Family

ID=55630297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076673 WO2016052257A1 (ja) 2014-10-01 2015-09-18 磁性コア部品およびチップインダクタ

Country Status (5)

Country Link
US (1) US20180233268A1 (ja)
EP (1) EP3203488A4 (ja)
JP (1) JP2016072569A (ja)
CN (1) CN106688064A (ja)
WO (1) WO2016052257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009351A (ja) * 2017-06-27 2019-01-17 矢崎総業株式会社 ノイズフィルタ及びノイズ低減ユニット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6630315B2 (ja) * 2017-06-27 2020-01-15 矢崎総業株式会社 ノイズ低減ユニット
FR3082351B1 (fr) * 2018-06-08 2021-10-22 Valeo Systemes De Controle Moteur Composant formant au moins deux inductances

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547563A (ja) * 1991-08-09 1993-02-26 Tokin Corp インダクタ及びその製造方法
JPH05299273A (ja) * 1992-04-16 1993-11-12 Mitsubishi Electric Corp チョークコイル
JPH0677059A (ja) * 1992-08-26 1994-03-18 Nippon Steel Corp トランスのコア
JPH06333745A (ja) * 1993-05-25 1994-12-02 Tokin Corp チップ型インダクタ用コア

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717500B2 (en) * 2001-04-26 2004-04-06 Coilcraft, Incorporated Surface mountable electronic component
CN101010756B (zh) * 2004-08-23 2011-06-01 日本科学冶金株式会社 磁芯部件的制造方法
CN101243594B (zh) * 2005-10-24 2012-07-04 松下电器产业株式会社 电容电动机及其制造方法
WO2009008213A1 (ja) * 2007-07-11 2009-01-15 Murata Manufacturing Co., Ltd. コモンモードチョークコイル
CN103310947A (zh) * 2013-06-26 2013-09-18 华为技术有限公司 磁性器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547563A (ja) * 1991-08-09 1993-02-26 Tokin Corp インダクタ及びその製造方法
JPH05299273A (ja) * 1992-04-16 1993-11-12 Mitsubishi Electric Corp チョークコイル
JPH0677059A (ja) * 1992-08-26 1994-03-18 Nippon Steel Corp トランスのコア
JPH06333745A (ja) * 1993-05-25 1994-12-02 Tokin Corp チップ型インダクタ用コア

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203488A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009351A (ja) * 2017-06-27 2019-01-17 矢崎総業株式会社 ノイズフィルタ及びノイズ低減ユニット
US10395818B2 (en) 2017-06-27 2019-08-27 Yazaki Corporation Noise filter and noise reduction unit

Also Published As

Publication number Publication date
EP3203488A4 (en) 2018-06-13
EP3203488A1 (en) 2017-08-09
CN106688064A (zh) 2017-05-17
US20180233268A1 (en) 2018-08-16
JP2016072569A (ja) 2016-05-09

Similar Documents

Publication Publication Date Title
KR102054299B1 (ko) 복합 자성 코어 및 자성 소자
CN107799260B (zh) 磁性粉末以及包含磁性粉末的电感器
JP6374683B2 (ja) 磁性素子
JP6608762B2 (ja) 磁性素子
JP6340805B2 (ja) 電子部品
JP2018078155A (ja) コイル部品
JP2009302386A (ja) 面実装インダクタ
US11101062B2 (en) Coil component
WO2016052257A1 (ja) 磁性コア部品およびチップインダクタ
WO2014091589A1 (ja) 磁気デバイス、磁気バイアス印加用部材及び磁気バイアス印加用部材の製造方法
JP2010141191A (ja) インダクタおよびその製造方法
WO2017047740A1 (ja) 磁性素子
JP2017208480A (ja) コイル部およびコイル装置
JP2019153808A (ja) 磁性素子
JP2016225441A (ja) 磁性素子
WO2019187952A1 (ja) 磁性素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516411

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015845926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845926

Country of ref document: EP