WO2022230499A1 - 受光素子およびx線撮像素子ならびに電子機器 - Google Patents

受光素子およびx線撮像素子ならびに電子機器 Download PDF

Info

Publication number
WO2022230499A1
WO2022230499A1 PCT/JP2022/014358 JP2022014358W WO2022230499A1 WO 2022230499 A1 WO2022230499 A1 WO 2022230499A1 JP 2022014358 W JP2022014358 W JP 2022014358W WO 2022230499 A1 WO2022230499 A1 WO 2022230499A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor substrate
receiving element
light receiving
conductivity
Prior art date
Application number
PCT/JP2022/014358
Other languages
English (en)
French (fr)
Inventor
宇記 初井
隆宏 河村
裕樹 唐仁原
和伸 太田
徹 白方
晃 岩田
厚博 安藤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社, 国立研究開発法人理化学研究所 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US18/554,254 priority Critical patent/US20240194701A1/en
Priority to KR1020237035649A priority patent/KR20230173669A/ko
Priority to CN202280029906.9A priority patent/CN117242585A/zh
Priority to EP22795416.1A priority patent/EP4333084A1/en
Priority to JP2023517174A priority patent/JPWO2022230499A1/ja
Publication of WO2022230499A1 publication Critical patent/WO2022230499A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14659Direct radiation imagers structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/085Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors the device being sensitive to very short wavelength, e.g. X-ray, Gamma-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type

Definitions

  • the present disclosure relates to, for example, a light-receiving element suitable for X-ray imaging for medical use and non-destructive inspection, an X-ray imaging element including the same, and an electronic device.
  • Solid-state imaging devices are used in a variety of applications, such as imaging devices such as digital still cameras and video cameras, electronic devices such as mobile terminal devices having an imaging function, and electromagnetic wave sensors that detect various wavelengths other than visible light.
  • a solid-state imaging device has an APS (Active Pixel Sensor) equipped with an amplifying element for each pixel.
  • complementary MOS) image sensors (CIS) are widely used.
  • a light-receiving element PIN photodiode
  • FD floating diffusion
  • Such a light receiving element has a simple structure and is easy to manufacture. Also, any potential difference can be applied to the pn junction forming the photoelectric conversion region. Therefore, it is easy to increase the thickness of the photoelectric conversion region.
  • the light-receiving element used in the X-ray imaging element is required to have improved resistance to fluctuations in capacitance and electric field due to X-ray irradiation.
  • a light receiving element includes a semiconductor substrate including a photoelectric conversion region, and a first first conductivity type region provided at an interface between a first surface of the semiconductor substrate and connected to a first electrode. and a second first conductivity type region provided around the first first conductivity type region and connected to the second electrode at the interface of the first surface, and at the interface of the first surface , an electrically floating third first conductivity type region provided around the second first conductivity type region, and at least the first first conductivity type region and the second first conductivity type region; and a conductive film provided above the first surface.
  • An X-ray imaging element includes a plurality of light receiving elements according to the embodiment of the present disclosure, which generate signal charges based on X-rays.
  • An electronic device includes the X-ray imaging device according to the embodiment of the present disclosure.
  • the first electrode is connected to the interface of the first surface of the semiconductor substrate including the photoelectric conversion region. a first first conductivity type region and a second first conductivity type region connected to the second electrode, wherein at least the first first conductivity type region and the second first conductivity type region A conductive film is provided above the first surface of the semiconductor substrate between the substrates. This suppresses generation of fixed charges and generation of interface states in the vicinity of the first surface between the first first-conductivity-type region and the second first-conductivity-type region during X-ray irradiation.
  • FIG. 2 is a schematic plan view showing an example of patterns of p-type conductivity regions and gate electrodes of the light receiving element shown in FIG. 1.
  • FIG. 3 is a schematic plan view showing another example of the pattern of the p-type conductivity type region of the light receiving element shown in FIG. 1.
  • FIG. 3 is a schematic plan view showing another example of the pattern of the p-type conductivity type region of the light receiving element shown in FIG. 1.
  • FIG. 2 is a schematic diagram showing an example of power supply connection to an n-type conductivity type region of the light receiving element shown in FIG. 1.
  • FIG. 3 is a schematic diagram showing another example of power supply connection to the n-type conductivity region of the light receiving element shown in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view showing another example of the configuration of the gate electrode of the light receiving element shown in FIG. 1;
  • FIG. 2 is a schematic cross-sectional view showing another example of the configuration of the gate electrode of the light receiving element shown in FIG. 1;
  • FIG. 2 is a schematic cross-sectional view showing another example of the configuration of the gate electrode of the light receiving element shown in FIG. 1;
  • FIG. 2 is a schematic cross-sectional view showing another example of the configuration of the gate electrode of the light receiving element shown in FIG. 1;
  • FIG. 1 is a schematic cross-sectional view showing another example of the configuration of the gate electrode of the light receiving element shown in FIG. 1;
  • FIG. 2 is a schematic cross-sectional view showing another example of the configuration of the gate electrode of the light receiving element shown in FIG. 1;
  • FIG. 2 is a schematic cross-sectional view showing another example of the configuration of the gate electrode of the light receiving element shown in FIG. 1;
  • FIG. It is a cross-sectional schematic diagram showing an example of a structure of the light receiving element which concerns on the modified example 1 of this indication.
  • 10 is a schematic plan view showing a wiring layer pattern of the light receiving element shown in FIG. 9.
  • FIG. FIG. 11 is a schematic cross-sectional view showing an example of a configuration of a light receiving element according to Modification 2 of the present disclosure;
  • 12 is a schematic plan view showing a pattern of a gate electrode and a wiring layer of the light receiving element shown in FIG.
  • FIG. 11 is a schematic cross-sectional view showing an example of a configuration of a light receiving element according to Modification 3 of the present disclosure
  • FIG. 11 is a schematic cross-sectional view showing an example of a configuration of a light receiving element according to Modification 4 of the present disclosure
  • 15 is a schematic plan view showing a pattern of a gate electrode and a wiring layer of the light receiving element shown in FIG. 14
  • FIG. FIG. 11 is a schematic cross-sectional view showing an example of a configuration of a light receiving element according to Modification 5 of the present disclosure
  • FIG. 11 is a schematic cross-sectional view showing an example of a configuration of a light receiving element according to Modification 6 of the present disclosure; It is a cross-sectional schematic diagram showing an example of a configuration of a light receiving element according to a second embodiment of the present disclosure.
  • FIG. 12 is a schematic cross-sectional view showing an example of a configuration of a light receiving element according to Modification 7 of the present disclosure;
  • FIG. 12 is a schematic cross-sectional view showing an example of a configuration of a light receiving element according to Modification 8 of the present disclosure;
  • FIG. 11 is a schematic cross-sectional view showing an example of a configuration of a light receiving element according to a third embodiment of the present disclosure; It is a block diagram showing the structure of an X-ray imaging element.
  • 23 is a block diagram showing a detailed configuration example of a column selection unit shown in FIG. 22;
  • First embodiment an example of a light receiving element in which a gate electrode is provided on a semiconductor substrate between an anode and a drain and an electric field is applied to the interface of the semiconductor substrate
  • Configuration of Light Receiving Element 1-2 Manufacturing method of light receiving element 1-3.
  • Modification 1 (Example of applying an electric field to the interface of a semiconductor substrate using a wiring layer in an insulating layer) 2-2.
  • Modification 2 (an example of applying an electric field to the interface of a semiconductor substrate using a gate electrode and a wiring layer) 2-3.
  • Modification 3 (Other Examples of Wiring Layer Patterns) 2-4.
  • Modified Example 4 (Another Example of Wiring Layer Pattern) 2-5.
  • Modification 5 (example in which the gate electrode and wiring layer are short-circuited) 2-6.
  • Modified example 6 (an example in which the gate electrode, wiring layer, and drain are short-circuited) 3.
  • Second Embodiment (Example of a light receiving element having a barrier layer facing a buried layer on the back surface side of a semiconductor substrate) 4.
  • Modification 4-1 Modification 7 (example in which anode and barrier layer are connected) 4-2.
  • Modification 8 an example in which regions with different impurity concentrations are provided in the barrier layer) 5.
  • Third Embodiment Example of a light receiving element having a barrier layer facing a conductive film for applying an electric field to an interface of a semiconductor substrate and a buried layer 6.
  • FIG. 1 schematically illustrates an example of a cross-sectional configuration of a light receiving element (light receiving element 1) according to the first embodiment of the present disclosure.
  • the light receiving element 1 is composed of, for example, a PIN (Positive Intrinsic Negative) type photodiode that applies a reverse bias between the front surface and the back surface of the semiconductor substrate 11.
  • a PIN Positive Intrinsic Negative
  • a radiation imaging device for example, an X-ray imaging device 100; see FIG. 22
  • subject information imaging based on radio waves and X-rays, etc.
  • electromagnetic wave detection device for example, an electromagnetic wave detection device.
  • the light receiving element 1 has, for example, a p-type conductivity type region (first conductivity type region) 13 partially formed at the interface of a surface S1 (first surface) of an n-type semiconductor substrate 11, opposite to the surface S1.
  • An n-type conductive layer (second conductive layer) 12 is formed at the interface of the side surface (back surface S2; second surface).
  • the p-type conductivity type region 13 is composed of a plurality of regions, and the light receiving element 1 includes, for example, a region (first first conductivity type region) forming the anode 13A and a region (second first conductivity type region) forming the drain 13B.
  • the light receiving element 1 further includes an n-type conductivity region (second conductivity type region) formed as a buried layer 14 inside the semiconductor substrate 11 .
  • Light-receiving element 1 of the present embodiment further has insulating layer 15 on surface S1 of semiconductor substrate 11. Insulating layer 15 between anode 13A and drain 13B has an insulating layer 15 between anode 13A and drain 13B. or to reduce the volume of the insulating layer 15 provided on the semiconductor substrate 11 between the anode 13A and the drain 13B.
  • the semiconductor substrate 11 is composed of, for example, an n-type, p-type, or i-type (intrinsic semiconductor) semiconductor, and has a pn junction or pin junction serving as a photoelectric conversion region inside.
  • an n-type semiconductor substrate is used as the semiconductor substrate 11, and the p-type conductivity type region (first conductivity type region) 13 is formed at the interface of the surface S1 as described above. formed.
  • the film thickness (hereinafter simply referred to as thickness) of the semiconductor substrate 11 in the lamination direction (Y-axis direction) is, for example, 10 ⁇ m or more and 700 ⁇ m or less.
  • the p-type conductivity type regions 13 are regions containing p-type impurities (p-type impurity regions), and are formed in plurality at the interface of the surface S1 of the semiconductor substrate 11 .
  • p-type conductivity type region 13 has three regions: a region forming anode 13A, a region forming drain 13B, and a region forming guard ring 13C. Each region is spaced apart from each other, and the drain 13B is formed in a ring shape around the anode 13A.
  • the guard ring 13C is formed in a ring shape around the drain 13B.
  • the thickness of the p-type conductivity region 13 depends on the configuration of the unit pixel P, but when the pitch of the unit pixel P is 10 ⁇ m or more and 100 ⁇ m or less, for example, from the interface of the surface S1 of the semiconductor substrate 11, for example, It is formed with a thickness of 2 ⁇ m to 3 ⁇ m.
  • the anode 13A is applied with a voltage for reading out, for example, holes (h+) as signal charges among carriers generated by photoelectric conversion, and is connected to, for example, the electrode 16 (first electrode).
  • the anode 13A is individually formed substantially in the center of the unit pixel P, for example.
  • the planar shape of the anode 13A is not particularly limited, and may be circular (eg, see FIG. 2) or polygonal.
  • the anode 13A for example, partially protrudes toward the rear surface S2 from the bottom surface of the embedding layer 14, which will be described later.
  • the size of the anode 13A depends on the size of the unit pixel P, but is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less when the pitch of the unit pixels P is 10 ⁇ m or more and 100 ⁇ m or less.
  • the drain 13B is applied with a voltage for discharging dark current generated at the interface of the surface S1 when the semiconductor substrate 11 is irradiated with light, and is connected to the electrode 17 (second electrode), for example.
  • the drain 13B is formed in a ring shape around the anode 13A, and the dark current generated at the interface of the surface S1 when the semiconductor substrate 11 is irradiated with light is always discharged from the drain 13B. This can prevent dark current from flowing into the anode 13A.
  • the planar shape of the drain 13B is not particularly limited, and may be an annular shape or a polygonal shape (see FIG. 2, for example).
  • the guard ring 13C is for alleviating electric field concentration on the drain 13B, and at the same time generating a horizontal electric field that assists the transport of signal charges (holes) in the horizontal direction (eg, in the XY plane direction).
  • Guard ring 13C is formed in a ring shape around drain 13B so as to surround anode 13A and drain 13B.
  • the guard ring 13C is electrically floating unlike the anode 13A and the drain 13B.
  • a plurality of guard rings 13C are formed at the interface of the surface S1 of the semiconductor substrate 11, for example. Specifically, as shown in FIGS.
  • the guard ring 13C is composed of, for example, three p-type conductivity regions, and is formed in triplicate (guard rings 13C1, 13C2, 13C3) around the drain 13B. It is By providing a plurality of guard rings 13C in this way, it is possible to disperse electric field concentration at a plurality of locations and at the same time generate a horizontal electric field over a wide area.
  • FIG. 2 shows an example in which the drain 13B and the guard ring 13C are provided continuously around the anode 13A, the present invention is not limited to this. For example, it may be partially cut off as shown in FIG. Alternatively, it may be formed intermittently.
  • the line width of the rings forming the drain 13B and guard ring 13C is, for example, 0.100 ⁇ m or more and 10 ⁇ m or less.
  • the distance between the drain 13B and the guard ring 13C is, for example, 0.100 ⁇ m or more and 10 ⁇ m or less.
  • the distance between the drain 13B and the guard ring 13C and the line width of the drain 13B and the guard ring 13C are not necessarily constant.
  • the drain 13B and the plurality of guard rings 13C are polygonal (for example, rectangular)
  • the drain 13B, the guard ring 13C, and the guard rings 13C1, 13C2, and 13C3 are arranged as shown in FIG.
  • the interval may be formed so that the corner portion (Wb) is wider than the straight portion (Wa). This further reduces the concentration of the electric field at the corners.
  • the n-type conductive layer 12 is a region (n-type impurity region) containing n-type impurities at a higher concentration than the n-type semiconductor substrate 11 and is formed at the interface of the back surface S2 of the semiconductor substrate 11 .
  • the n-type conductive layer 12 is connected to, for example, a power supply VDD (see FIG. 5), and among carriers generated by photoelectric conversion, for example, holes are read out as signal charges through the anode 13A. Electrons (e ⁇ ) are discharged through the type conductive layer 12 .
  • the thickness of the n-type conductive layer 12 depends on the configuration of the unit pixels P, but when the pitch of the unit pixels P is 10 ⁇ m or more and 100 ⁇ m or less, for example, the thickness of the n-type conductive layer 12 is, for example, 1 ⁇ m from the interface of the back surface S2 of the semiconductor substrate 11. is formed with a thickness of
  • FIG. 5 and 6 each show an example of a method of connecting a power supply to the n-type conductive layer 12.
  • FIG. FIG. 5 shows an example in which a transparent electrode 18 is formed on the n-type conductive layer 12, a power supply VDD is connected to this, and a voltage is applied from the back surface S2 side of the semiconductor substrate 11.
  • a neutral region 11N is formed outside a depletion region 11D formed in a semiconductor substrate 11 in a peripheral region 110B around a pixel region 110A in which a plurality of unit pixels P are arranged, for example, in a matrix.
  • This shows an example in which a voltage is applied via the n-type conductivity type region 19 provided at the interface of the surface S1 of the semiconductor substrate 11 via this.
  • the high breakdown voltage guard ring closest to the pixel region 110A is preferably connected to the ground GND.
  • the embedded layer 14 is for preventing carriers (here, signal charges (holes)) generated in the semiconductor substrate 11 by photoelectric conversion from being transferred to the drain 13B and the guard ring 13C.
  • the embedded layer 14 is embedded in the semiconductor substrate 11 , more specifically, in the vicinity of the p-type conductivity region 13 . It is a type region. More specifically, embedded layer 14 is provided in a region of p-type conductivity region 13 corresponding to drain 13B and guard ring 13C, and has an opening in a region facing anode 13A. As a result, signal charges (holes) generated in the semiconductor substrate 11 are efficiently read out from the anode 13A.
  • the embedded layer 14 is formed so as not to be in direct contact with the drain 13B and the guard ring 13C.
  • the thickness of the embedded layer 14 varies depending on the magnitude of the reverse bias voltage applied between the front surface S1 and the back surface S2 of the semiconductor substrate 11, and is, for example, 0.100 ⁇ m or more and 10 ⁇ m or less.
  • the insulating layer 15 is formed on the surface S ⁇ b>1 of the semiconductor substrate 11 .
  • the insulating layer 15 includes, for example, a gate insulating film 15A and an interlayer insulating film 15B formed in this order from the semiconductor substrate 11 side. ).
  • the insulating layer 15 composed of the gate insulating film 15A and the interlayer insulating film 15B is formed using an inorganic insulating material.
  • Inorganic insulating materials include silicon oxide ( SiO2 ), silicon nitride (SiN), aluminum oxide ( Al2O3 ) and hafnium oxide ( HfO2). Insulating layer 15 is formed including at least one of these.
  • the gate electrode 21 is for applying an electric field to the surface S1 interface of the semiconductor substrate 11 between the anode 13A and the drain 13B, as described above. Specifically, an electric field is applied in a direction in which the holes generated in the vicinity of the surface S1 interface of the semiconductor substrate 11 are moved away from the semiconductor substrate 11 . More specifically, a negative (-) voltage is applied to the gate electrode 21 with respect to the potential of the semiconductor substrate 11, thereby causing the surface S1 interface of the semiconductor substrate 11 to have a voltage of, for example, 0.5 MV/cm or more. An electric field is applied. Also, the gate electrode 21 is for reducing the volume of the insulating layer 15 provided on the semiconductor substrate 11 between the anode 13A and the drain 13B, for example. As a result, an increase in positive fixed charge generated near the interface of insulating layer 15 with surface S1 of semiconductor substrate 11 and an increase in the interface level of surface S1 of semiconductor substrate 11 due to X-ray irradiation are reduced.
  • the gate electrode 21 applies an electric field to the surface S1 interface of the semiconductor substrate 11 between the anode 13A and the drain 13B and/or is provided on the semiconductor substrate 11 between the anode 13A and the drain 13B. It is intended to reduce the volume of the insulating layer 15 to be formed, and does not necessarily involve a gate operation, and is hereinafter referred to as a "gate electrode" for convenience.
  • the gate electrode 21 is provided between the anode 13A and the drain 13B via the gate insulating film 15A so as to surround the anode 13A in plan view.
  • the gate electrode 21 can be formed using, for example, polysilicon (poly-Si).
  • the polysilicon forming the gate electrode 21 may be an intrinsic semiconductor containing no impurities, or an impurity semiconductor containing n-type or p-type impurities.
  • the polysilicon forming the gate electrode 21 may have, for example, a plurality of semiconductor regions with different impurity concentrations.
  • the polysilicon may have a first region 21A that contains no impurities or almost no impurities, and a second region 21B that has a higher impurity concentration than the first region 21A.
  • the first region 21A and the second region 21B are formed, for example, as follows.
  • the first region 21A may be formed on the anode 13A side and, for example, the n-type second region 21B may be formed on the drain 13B side.
  • the electric field between the anode 13A and the end portion of the gate electrode 21 on the side of the anode 13A, which may become a dark current source, is relaxed, and the breakdown voltage of the insulating film (gate insulating film 15A) in this portion is prevented from deteriorating. reduced.
  • the first region 21A extends below the n-type second region 21B (between the second region 21B and the gate insulating film 15A) from the side surface on the anode 13A side.
  • the first region 21A and the n-type second region 21B may be stacked in this order from the gate insulating film 15A side.
  • the first region 21A may also be provided on the drain 13B side. This relaxes the electric field between the drain 13B and the end of the gate electrode 21 on the drain 13B side.
  • the entire polysilicon may be the first region 21A, and the n-type second region 21B may be locally provided only at the contact portion with the wiring. As a result, the electric field under the entire gate electrode 21 is further relaxed.
  • the impurities contained in the second region 21B are not limited to n-type impurities. It may be a type impurity region. By using p-type impurities in this manner, the electric field under the gate electrode 21 is further relaxed as compared with the case of using n-type impurities. Degradation can be further reduced.
  • the electrodes 16 and 17, a logic circuit, etc. are formed on the insulating layer 15, and a substrate is arranged.
  • the light receiving element 1 can be manufactured, for example, as follows. First, the n-type conductive layer 12 is formed on the back surface S2 of the semiconductor substrate 11 using the ion implantation technique. Subsequently, after forming a mask on a predetermined region of the surface S1 of the semiconductor substrate 11, an n-type impurity (for example, phosphorus (P)) is doped using an ion implantation technique to form an n-type conductive region (buried layer). 14).
  • n-type impurity for example, phosphorus (P)
  • ion implantation technology is used to dope p-type impurities (for example, boron (B)) to form p-type conductive regions (anode 13A, A drain 13B and a guard ring 13C) are formed.
  • p-type impurities for example, boron (B)
  • p-type conductive regions anode 13A, A drain 13B and a guard ring 13C
  • the gate insulating film 15A is formed on the surface S1 of the semiconductor substrate 11 using, for example, a CVD (Chemical Vapor Deposition) method.
  • the polysilicon film is patterned using, for example, the photolithography method to form a gate electrode between the anode 13A and the drain 13B. 21 is formed. After that, the first region 21A and the second region 21B are appropriately formed in the gate electrode 21 using the ion implantation technique. Finally, the insulating layer 15 is formed by depositing the interlayer insulating film 15B using, for example, the CVD method. Thereby, the light receiving element 1 shown in FIG. 1 is completed.
  • an anode 13A connected to the electrode 16 and a drain 13B connected to the electrode 17 are provided at the interface of the surface S1 of the semiconductor substrate 11 including the photoelectric conversion region.
  • a gate electrode 21 is provided on the surface S1 of the semiconductor substrate 11 between the drain 13B and the gate insulating film 15A. This suppresses the generation of interface states and generation of fixed charges on the surface S1 of the semiconductor substrate 11 between the anode 13A and the drain 13B during X-ray irradiation. This will be explained below.
  • the solid-state imaging device is, for example, an imaging device such as a digital still camera or a video camera, an electronic device such as a mobile terminal device having an imaging function, or an electromagnetic wave sensor that detects various wavelengths other than visible light. etc., are used for various purposes.
  • These solid-state imaging devices widely use CMOS image sensors that read out signal charges accumulated in photodiodes, which are photoelectric conversion elements, via MOS transistors.
  • a unit pixel of a CMOS image sensor includes, for example, a photodiode (PD) having a HAD (Hole Accumulated Diode) structure in a semiconductor substrate, and a floating diffusion region (FD) arranged at a position across a transfer gate from the photodiode. and
  • the unit pixel has, for example, a reset transistor, a select transistor and an amplifier transistor.
  • the unit pixel of the CMOS image sensor there is a structure in which the photoelectric conversion region and the FD are integrated in the semiconductor substrate without having the HAD.
  • This structure is simple and easy to manufacture, and any potential difference can be applied to the pn junction forming the photoelectric conversion region. Therefore, it is easy to thicken the photoelectric conversion region, and taking advantage of this advantage, it is often used in sensors for scientific applications that require high-sensitivity measurement.
  • CMOS image sensor which does not have a HAD and has a structure in which a photoelectric conversion region and an FD are integrated in a semiconductor substrate
  • the surface of the semiconductor substrate is in contact with a depletion layer. is irradiated, the capacitance and the electric field greatly fluctuate due to the generation of fixed charges in the insulating film provided on the semiconductor substrate and its interface. Therefore, there has been a demand for improved resistance to high energy input.
  • the gate electrode 21 is provided on the surface S1 of the semiconductor substrate 11 between the anode 13A and the drain 13B provided on the interface of the surface S1 of the semiconductor substrate 11 with the gate insulating film 15A interposed therebetween. I made it As a result, the volume of the insulating layer 15 provided on the semiconductor substrate 11 between the anode 13A and the drain 13B is reduced, and the interface between the insulating layer 15 and the surface S1 of the semiconductor substrate 11 is reduced by X-ray irradiation. The amount of electron-hole pairs generated in the vicinity is reduced.
  • the gate insulating film 15A is interposed on the surface S1 of the semiconductor substrate 11 between the anode 13A and the drain 13B provided at the interface of the surface S1 of the semiconductor substrate 11. Since the gate electrode 21 is provided, an increase in positive fixed charges generated at the interface of the surface S1 of the semiconductor substrate 11 when X-rays are irradiated is reduced. Therefore, it is possible to reduce fluctuations in the capacitance of the anode and in the electric field at the interface of the surface S1 of the semiconductor substrate 11 . In addition, the generation of interface states on surface S1 of semiconductor substrate 11 is suppressed. Therefore, it is possible to reduce the occurrence of dark current. In other words, it is possible to realize a photodetector that is highly resistant to fluctuations in capacitance and electric field due to X-ray irradiation.
  • the gate electrode 21 is formed using polysilicon, and the first region 21A containing no impurities or almost no impurities in the polysilicon and the first region 21A A semiconductor region 22B having a high impurity concentration is also provided. Specifically, the first region 21A is formed in the vicinity of the anode 13A and the side of the gate insulating film 15A, and the semiconductor region 22B is partially provided. As a result, an increase in dark current due to an excessively strong electric field under the gate electrode 21 and deterioration in breakdown voltage of the gate insulating film 15A are reduced. That is, it is possible to reduce the generation of dark current and improve the withstand voltage of the insulating film while improving the resistance to X-rays.
  • FIG. 9 schematically illustrates an example of a cross-sectional configuration of a light receiving element (light receiving element 1A) according to Modification 1 of the present disclosure.
  • the light-receiving element 1A is, for example, a PIN-type photodiode that applies a reverse bias between the front surface and the rear surface of the semiconductor substrate 11, as in the first embodiment. , ⁇ -rays, ⁇ -rays, X-rays, etc.).
  • the wiring layer 22 formed in the interlayer insulating film 15B is used to apply an electric field to the interface of the surface S1 of the semiconductor substrate 11, or to apply an electric field to the interface between the anode 13A and the drain.
  • the difference from the first embodiment is that the volume of the insulating layer 15 provided on the semiconductor substrate 11 between 13B is reduced.
  • the wiring layer 22 is for applying an electric field to the interface of the surface S1 of the semiconductor substrate 11 as described above. Then, an electric field of, for example, 0.5 MV/cm or more is applied to the interface of the surface S1 of the semiconductor substrate 11 . Also, the wiring layer 22 is for reducing the volume of the insulating layer 15 provided on the semiconductor substrate 11 between the anode 13A and the drain 13B, for example. The wiring layer 22 is provided in the interlayer insulating film 15B, and extends, for example, from between the anode 13A and the drain 13B to a part of the guard ring 13C, as shown in FIG. The wiring layer 22 is formed using a metal material such as aluminum (Al), copper (Cu), tungsten (W), or the like.
  • the wiring layer 22 provided in the interlayer insulating film 15B is used to form the surface of the semiconductor substrate 11.
  • An electric field is applied to the S1 interface, or the volume of the insulating layer 15 provided on the semiconductor substrate 11 between the anode 13A and the drain 13B is reduced.
  • FIG. 11 schematically illustrates an example of a cross-sectional configuration of a light receiving element (light receiving element 1B) according to Modification 2 of the present disclosure.
  • FIG. 12 schematically shows a planar pattern of the wiring layer 22 shown in FIG.
  • the wiring layer 22 extending from between the anode 13A and the drain 13B to a part of the guard ring 13C is used to apply an electric field to the surface S1 interface of the semiconductor substrate 11.
  • the volume of the insulating layer 15 provided on the semiconductor substrate 11 between the anode 13A and the drain 13B is reduced has been shown, a configuration obtained by combining the first embodiment and the modification 1 good too.
  • FIG. 13 schematically illustrates an example of a cross-sectional configuration of a light receiving element (light receiving element 1C) according to Modification 3 of the present disclosure.
  • the wiring layer 22 used is the wiring that covers part of the guard ring 13C from between the anode 13A and the drain 13B. It is not limited.
  • all the guard rings 13C are covered from between the anode 13A and the drain 13B, in other words, they extend continuously between adjacent unit pixels P except above the anode 13A.
  • a wiring layer may be provided and used as the wiring layer 22 .
  • an increase in positive fixed charges generated at the interface of the surface S1 of the semiconductor substrate 11 when X-rays are irradiated is reduced. Therefore, it is possible to reduce the fluctuation of the electric field at the interface of the surface S1 of the semiconductor substrate 11 . In other words, it is possible to realize a photodetector that is highly resistant to fluctuations in capacitance and electric field due to X-ray irradiation.
  • FIG. 14 schematically illustrates an example of a cross-sectional configuration of a light receiving element (light receiving element 1D) according to Modification 4 of the present disclosure.
  • FIG. 15 schematically shows a plane pattern of the wiring layer 22 shown in FIG. In the modification 2, an example is shown in which a wiring layer continuously and uniformly extending between the adjacent unit pixels P except for the area above the anode 13A is used as the wiring layer 22.
  • this wiring layer is For example, it may be patterned in a grid as shown in FIG.
  • FIG. 16 illustrates an example of a cross-sectional configuration of a light receiving element (light receiving element 1E) according to Modification 5 of the present disclosure.
  • the gate electrode 21 and the wiring layer 22 may be short-circuited. This makes it possible to reduce the number of wires and terminals extending in the Z-axis direction in the insulating layer 15 .
  • FIG. 17 illustrates an example of a cross-sectional configuration of a light receiving element (light receiving element 1F) according to Modification 6 of the present disclosure.
  • the gate electrode 21 and the wiring layer 22 may be short-circuited together with the drain 13B. This makes it possible to further reduce the number of wires and terminals extending in the Z-axis direction in the insulating layer 15 .
  • FIG. 18 schematically illustrates an example of a cross-sectional configuration of a light receiving element (light receiving element 2) according to the second embodiment of the present disclosure.
  • the light-receiving element 2 is, for example, a PIN-type photodiode that applies a reverse bias between the front surface and the rear surface of the semiconductor substrate 11, as in the first embodiment. , ⁇ -rays, ⁇ -rays, X-rays, etc.). constitutes
  • a p-type conductivity region 13 is partially formed at the interface of the surface S1 of an n-type semiconductor substrate 11, and the interface of the surface opposite to the surface S1 (back surface S2) has n-type conductivity.
  • a layer 12 is formed.
  • the p-type conductivity type region 13 is composed of a plurality of regions, and the light receiving element 2 has, for example, a region forming the anode 13A, a region forming the drain 13B, and a region forming the guard ring 13C. ing.
  • the light receiving element 2 has an n-type conductivity region formed as a buried layer 14 inside the semiconductor substrate 11 .
  • a barrier layer 23 is further formed at a position facing the buried layer 14 inside the semiconductor substrate 11 on the side opposite to the p-type conductivity region 13 side.
  • the barrier layer 23 prevents carriers (here, signal charges (holes)) generated in the semiconductor substrate 11 by photoelectric conversion from being transferred to the drain 13B and the guard ring 13C.
  • the barrier layer 23 is for preventing carriers generated in the semiconductor substrate 11 by photoelectric conversion from disappearing from the guard ring 13C to the drain 13B.
  • the barrier layer 23 is a p-type conductivity region (fourth layer) provided at a position facing the buried layer 14 inside the semiconductor substrate 11 on the side opposite to the p-type conductivity region 13 side. 1 conductivity type region).
  • the impurity (for example, B (boron)) concentration of this p-type conductivity region is lower than the impurity concentration of the p-type conductivity region forming the anode 13A, the drain 13B and the guard ring 13C so as to be depleted. , 1e10 cm ⁇ 2 to 1e12 cm ⁇ 2 .
  • a buried layer 14 is formed in the vicinity of the p-type conductivity type region 13 inside the semiconductor substrate 11 .
  • the embedded layer 14 is an n-type conductivity region containing n-type impurities at a higher concentration than the n-type semiconductor substrate 11 . It is a potential barrier due to the concentration difference from the impurity concentration. Therefore, if the impurity concentration of the semiconductor substrate 11 varies, the desired effect may not be obtained.
  • the potential barrier by the buried layer 14 can be strengthened by increasing the impurity concentration of the n-type conductivity type region forming the buried layer 14, in that case, the surface S1 of the buried layer 14 and the semiconductor substrate 11 will be reduced. increases, and the breakdown voltage of the surface S1 of the semiconductor substrate 11 decreases.
  • a barrier layer made of a p-type conductivity type region is provided at a position facing the embedded layer 14 inside the semiconductor substrate 11 on the side opposite to the p-type conductivity type region 13 side. 23 was set.
  • the potential barrier against carriers (here, signal charges (holes)) generated in the semiconductor substrate 11 by photoelectric conversion is strengthened, and the signal charges (holes) are transferred to the drain 13B and the guard ring 13C. can be further prevented. Therefore, it is possible to further improve the transfer efficiency of signal charges (holes) generated in the semiconductor substrate 11 .
  • the barrier layer 23 is a low-concentration p-type conductivity region that can be depleted, so the formation of an electric field in the horizontal direction (for example, the XY plane direction) is not hindered. Therefore, it is possible to prevent the transfer efficiency of signal charges (holes) from being lowered, and to suppress the occurrence of color mixture between adjacent unit pixels P. FIG. Also, it is possible to prevent deterioration of the SN ratio due to a decrease in conversion efficiency due to an increase in the capacity of the anode 13A.
  • FIG. 19 schematically illustrates an example of a cross-sectional configuration of a light receiving element (light receiving element 2A) according to Modification 7 of the present disclosure.
  • the light-receiving element 2A is, for example, a PIN-type photodiode that applies a reverse bias between the front surface and the back surface of the semiconductor substrate 11, as in the first embodiment. , ⁇ -rays, ⁇ -rays, X-rays, etc.). constitutes
  • a light-receiving element 2A of this modified example differs from the second embodiment in that a barrier layer 23 is formed to extend over the entire unit pixel P and is connected to an anode 13A.
  • the barrier layer 23 is formed over the entire unit pixel P, and the barrier layer 23 and the anode 13A are connected. holes) are further prevented from being transferred to the drain 13B and the guard ring 13C.
  • FIG. 20 schematically illustrates an example of a cross-sectional configuration of a light receiving element (light receiving element 2B) according to Modification 8 of the present disclosure.
  • the barrier layer 23 extending over the entire unit pixel P may further have p-type impurity regions with different impurity concentrations in the plane. Specifically, a p-type semiconductor region having a higher impurity concentration than other regions may be formed in the connecting portion with the anode 13A and its surroundings.
  • the formation of an electric field in the horizontal direction for example, the XY plane direction
  • the transfer efficiency of signal charges (holes) to the anode 13A is increased. can be improved.
  • FIG. 21 schematically illustrates an example of a cross-sectional configuration of a light receiving element (light receiving element 3) according to the third embodiment of the present disclosure.
  • the light-receiving element 3 is, for example, a PIN-type photodiode that applies a reverse bias between the front surface and the rear surface of the semiconductor substrate 11, as in the first embodiment. , ⁇ -rays, ⁇ -rays, X-rays, etc.). constitutes
  • the light receiving element 3 of the present embodiment is a combination of the technology of the first embodiment and the like and the technology of the second embodiment and the like. That is, the light receiving element 3 applies an electric field to the surface S1 interface of the semiconductor substrate 11 between the anode 13A and the drain 13B provided in the insulating layer 15 between the anode 13A and the drain 13B, or the anode A gate electrode 21 and a wiring layer 22 for reducing the volume of the insulating layer 15 provided on the semiconductor substrate 11 between 13A and the drain 13B, and a gate electrode 21 and a wiring layer 22 inside the semiconductor substrate 11 opposite to the p-type conductivity region 13 side. It has a buried layer 14 provided and a barrier layer 23 facing each other.
  • the light-receiving element 3 of the present embodiment it is possible to improve the transfer efficiency of signal charges (holes) generated in the semiconductor substrate 11 while improving resistance to capacitance and electric field fluctuations due to X-ray irradiation. It becomes possible.
  • FIG. 22 shows the functional configuration of an X-ray imaging element 100 as an example of an electronic device using the light receiving element (for example, light receiving element 1) described in the first to third embodiments and modified examples 1 to 8. It is represented.
  • the X-ray imaging device 100 reads information about a subject (captures an image of the subject) based on, for example, incident radiation Rrad (eg, ⁇ -rays, ⁇ -rays, ⁇ -rays, X-rays, etc.).
  • incident radiation Rrad eg, ⁇ -rays, ⁇ -rays, ⁇ -rays, X-rays, etc.
  • the X-ray imaging device 100 includes a pixel section (pixel area 110A), and a row scanning section 121, an A/D conversion section 122, a column scanning section 123 and a driving circuit (peripheral circuit section) for the pixel area 110A.
  • a system control unit 124 is provided.
  • the pixel region 110A includes a plurality of unit pixels (imaging pixels) P that generate signal charges based on radiation.
  • the plurality of unit pixels P are two-dimensionally arranged in a matrix. As shown in FIG. 1, the horizontal direction (row direction) in the pixel region 110A is the "H" direction, and the vertical direction (column direction) is the "V" direction.
  • the row scanning unit 121 includes a shift register circuit, a predetermined logic circuit, etc., which will be described later, and drives a plurality of unit pixels P in the pixel area 110A in row units (horizontal line units). It is a pixel drive section (row scanning circuit) that performs sequential scanning. Specifically, the row scanning unit 121 performs an imaging operation such as a readout operation and a reset operation for each unit pixel P by, for example, line sequential scanning. The line-sequential scanning is performed by supplying the above-described row scanning signal to each unit pixel P via the readout control line Lread.
  • the A/D conversion unit 122 has a plurality of column selection units 125 provided for each of the plurality (here, four) of signal lines Lsig, and selects the signal voltage ( A/D conversion (analog/digital conversion) is performed based on the voltage corresponding to the signal charge). As a result, output data Dout (imaging signal) composed of digital signals is generated and output to the outside.
  • Each column selector 125 includes, for example, as shown in FIG. 23, a charge amplifier 172, a capacitive element (capacitor or feedback capacitive element) C1, a switch SW1, a sample hold (S/H) circuit 173, and four switches SW2. , and an A/D converter 175 .
  • the charge amplifier 172, the capacitive element C1, the switch SW1, the S/H circuit 173 and the switch SW2 are provided for each signal line Lsig.
  • a multiplexer circuit 174 and an A/D converter 175 are provided for each column selection section 125 .
  • the charge amplifier 172, the capacitive element C1 and the switch SW1 constitute a charge amplifier circuit.
  • the charge amplifier 172 is an amplifier (amplifier) for converting the signal charge read from the signal line Lsig into a voltage (QV conversion).
  • this charge amplifier 172 one end of the signal line Lsig is connected to a negative (-) input terminal, and a predetermined reset voltage Vrst is inputted to a positive (+) input terminal. .
  • a feedback connection is established between the output terminal of the charge amplifier 172 and the negative input terminal via a parallel connection circuit of the capacitive element C1 and the switch SW1. That is, one terminal of the capacitive element C ⁇ b>1 is connected to the negative input terminal of the charge amplifier 172 , and the other terminal is connected to the output terminal of the charge amplifier 172 .
  • one terminal of the switch SW1 is connected to the negative input terminal of the charge amplifier 172 and the other terminal is connected to the output terminal of the charge amplifier 172 .
  • the on/off state of the switch SW1 is controlled by a control signal (amplifier reset control signal) supplied from the system control section 124 via the amplifier reset control line Lcarst.
  • the S/H circuit 173 is arranged between the charge amplifier 172 and the multiplexer circuit 174 (switch SW2), and is a circuit for temporarily holding the output voltage Vca from the charge amplifier 172.
  • the multiplexer circuit 174 selectively connects each S/H circuit 173 and the A/D converter 175 by sequentially turning on one of the four switches SW2 according to the scanning drive by the column scanning section 123. Or it is a circuit to cut off.
  • the A/D converter 175 is a circuit that performs A/D conversion on the output voltage from the S/H circuit 173 input via the switch SW2 to generate and output the output data Dout described above. .
  • the column scanning section 123 includes, for example, a shift register and an address decoder (not shown), and sequentially drives the switches SW2 in the column selecting section 125 while scanning them. By such selective scanning by the column scanning unit 123, the signal of each unit pixel P (the output data Dout) read out via each of the signal lines Lsig is sequentially output to the outside. .
  • the system control section 124 controls each operation of the row scanning section 121 , the A/D conversion section 122 and the column scanning section 123 .
  • the system control unit 124 has a timing generator that generates the various timing signals (control signals) described above. 121 , A/D conversion unit 122 and column scanning unit 123 are controlled. Under the control of the system control unit 124, the row scanning unit 121, the A/D conversion unit 122, and the column scanning unit 123 each perform imaging driving (line sequential imaging driving) for the plurality of unit pixels P in the pixel region 110A. As a result, the output data Dout is obtained from the pixel area 110A.
  • the layer structure of the light receiving element 1 described in the above embodiment and the like is an example, and may further include other layers. Furthermore, the material and thickness of each layer are also examples, and are not limited to those described above. Furthermore, although the X-ray imaging device 100 is used in the above application example, the light receiving device 1 described in the above embodiments and the like can also be applied to radiation imaging devices and electromagnetic wave detection devices, not limited to X-rays.
  • a first first-conductivity-type region connected to a first electrode and a second electrode are connected to an interface of a first surface of a semiconductor substrate including a photoelectric conversion region. a second region of the first conductivity type, and a first region above the first surface of the semiconductor substrate between at least the first region of the first conductivity type and the second region of the first conductivity type;
  • a conductive film is provided to apply an electric field to the interface between the surfaces.
  • a semiconductor substrate including a photoelectric conversion region; a first first conductivity type region provided at the interface of the first surface of the semiconductor substrate and connected to a first electrode; a second first-conductivity-type region provided around the first first-conductivity-type region at the interface of the first surface and connected to a second electrode; an electrically floating third first-conductivity-type region provided around the second first-conductivity-type region at the interface of the first surface; a conductive film provided above the first surface and between at least the first region of the first conductivity type and the second region of the first conductivity type.
  • the wiring layer is formed continuously or intermittently from between the first first conductivity type region and the second first conductivity type region to above the third first conductivity type region,
  • the light receiving element according to any one of (3) to (5) above.
  • Light receiving element (8) The light receiving element according to (7) above, wherein the first region has a lower impurity concentration than the second region and is provided in the vicinity of the first first conductivity type region.
  • the light receiving element according to (7), wherein the first region has a lower impurity concentration than the second region and is provided around the second region.
  • the semiconductor substrate has a second conductivity type and further has a second conductivity type layer at an interface of a second surface facing the first surface;
  • the semiconductor substrate is made of an intrinsic semiconductor.
  • the light receiving element is a semiconductor substrate including a photoelectric conversion region; a first first conductivity type region provided at the interface of the first surface of the semiconductor substrate and connected to a first electrode; a second first-conductivity-type region provided around the first first-conductivity-type region at the interface of the first surface and connected to a second electrode; an electrically floating third first-conductivity-type region provided around the second first-conductivity-type region at the interface of the first surface; and a conductive film provided above the first surface between at least the first region of the first conductivity type and the second region of the first conductivity type.
  • the X-ray imaging device (18) a pixel region in which a plurality of pixels are arranged; a peripheral region provided around the pixel region; The X-ray imaging device according to (17), wherein the semiconductor substrate has a depletion region in the pixel region and a neutral region in the peripheral region.
  • the light receiving element is a pn junction type light receiving element provided for each of the plurality of pixels and applying a reverse bias between the first surface of the semiconductor substrate and a second surface opposite to the first surface.
  • the X-ray imaging element has a plurality of light receiving elements that generate signal charges based on X-rays
  • the light receiving element is a semiconductor substrate including a photoelectric conversion region; a first first conductivity type region provided at the interface of the first surface of the semiconductor substrate and connected to a first electrode; a second first-conductivity-type region provided around the first first-conductivity-type region at the interface of the first surface and connected to a second electrode; an electrically floating third first-conductivity-type region provided around the second first-conductivity-type region at the interface of the first surface; and a conductive film provided above the first surface between at least the first region of the first conductivity type and the second region of the first conductivity type.
  • a semiconductor substrate including a photoelectric conversion region; a first first conductivity type region provided at the interface of the first surface of the semiconductor substrate and connected to a first electrode; a second first-conductivity-type region provided around the first first-conductivity-type region at the interface of the first surface and connected to a second electrode; an electrically floating third first-conductivity-type region provided around the second first-conductivity-type region at the interface of the first surface; a second conductivity type region embedded in the semiconductor substrate and opposed to the second first conductivity type region and the third first conductivity type region; a light-receiving element comprising a fourth first-conductivity-type region embedded in the semiconductor substrate and facing the second-conductivity-type region on a second surface side of the semiconductor substrate facing the first surface.
  • the fourth first-conductivity-type region extends below the first first-conductivity-type region;

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

本開示の一実施形態の受光素子は、光電変換領域を含む半導体基板(11)と、半導体基板(11)の第1の面の界面に設けられると共に、第1の電極(16)に接続された第1の第1導電型領域(13A)と、第1の面の界面において、第1の第1導電型領域(13A)の周囲に設けられると共に、第2の電極(17)に接続された第2の第1導電型領域(13B)と、第1の面の界面において、第2の第1導電型領域(13B)の周囲に設けられると共に、電気的に浮遊状態な第3の第1導電型領域(13C)と、少なくとも第1の第1導電型領域(13A)と第2の第1導電型領域(13B)との間の、第1の面の上方に設けられた導電膜(21)とを備える。

Description

受光素子およびX線撮像素子ならびに電子機器
 本開示は、例えば医療用や非破壊検査用のX線撮影に好適な受光素子およびこれを備えたX線撮像素子ならびに電子機器に関する。
 固体撮像装置は、例えば、デジタルスチルカメラやビデオカメラ等の撮像装置や、撮像機能を有する携帯端末装置等の電子機器、あるいは、可視光以外の様々な波長を検知する電磁波センサ等、様々な用途に用いられる。固体撮像装置には、画素毎に増幅素子を備えたAPS(Active Pixel Sensor)があり、光電変換素子であるフォトダイオードに蓄積された信号電荷をMOS(Metal Oxide Semiconductor)トランジスタを介して読み出すCMOS(complementary MOS)イメージセンサ(CIS)が広く利用されている。
 高感度な計測が求められる科学用途向けセンサでは、光電変換領域と浮遊拡散領域(Floating Diffusion;FD)とが一体化した構造を有する受光素子(PINフォトダイオード)が用いられている(例えば、特許文献1参照)。このような受光素子は、シンプルな構造から製造しやすい。また、光電変換領域を形成するpn接合に任意の電位差を加えることができる。このため、光電変換領域を厚くすることが容易となっている。
特開平11-4012号公報
 ところで、X線撮像素子に用いられる受光素子には、X線照射による容量および電界の変動に対する耐性の向上が求められている。
 X線照射による容量および電界の変動に対して高い耐性を有する受光素子およびX線撮像素子ならびに電子機器を提供することが望ましい。
 本開示の一実施形態の受光素子は、光電変換領域を含む半導体基板と、半導体基板の第1の面の界面に設けられると共に、第1の電極に接続された第1の第1導電型領域と、第1の面の界面において、第1の第1導電型領域の周囲に設けられると共に、第2の電極に接続された第2の第1導電型領域と、第1の面の界面において、第2の第1導電型領域の周囲に設けられると共に、電気的に浮遊状態な第3の第1導電型領域と、少なくとも第1の第1導電型領域と第2の第1導電型領域との間の、第1の面の上方に設けられた導電膜とを備えたものである。
 本開示の一実施形態のX線撮像素子は、X線に基づく信号電荷を発生する、上記本開示の一実施形態の受光素子を複数備えたものである。
 本開示の一実施形態の電子機器は、上記本開示の一実施形態のX線撮像素子を備えたものである。
 本開示の一実施形態の受光素子および一実施形態のX線撮像素子ならびに一実施形態の電子機器では、光電変換領域を含む半導体基板の第1の面の界面に、第1の電極に接続された第1の第1導電型領域および第2の電極に接続された第2の第1導電型領域を設け、少なくともこの第1の第1導電型領域と第2の第1導電型領域との間の、半導体基板の第1の面の上方に導電膜を設けるようにした。これにより、X線照射時に第1の第1導電型領域と第2の第1導電型領域との間の第1の面近傍における固定電荷の発生および界面準位の発生を抑制する。
本開示の第1の実施の形態に係る受光素子の構成の一例を表す断面模式図である。 図1に示した受光素子のp型導電型領域およびゲート電極のパターンの一例を表す平面模式図である。 図1に示した受光素子のp型導電型領域のパターンの他の例を表す平面模式図である。 図1に示した受光素子のp型導電型領域のパターンの他の例を表す平面模式図である。 図1に示した受光素子のn型導電型領域への電源接続の一例を表す模式図である。 図1に示した受光素子のn型導電型領域への電源接続の他の例を表す模式図である。 図1に示した受光素子のゲート電極の構成の他の例を表す断面模式図である。 図1に示した受光素子のゲート電極の構成の他の例を表す断面模式図である。 図1に示した受光素子のゲート電極の構成の他の例を表す断面模式図である。 図1に示した受光素子のゲート電極の構成の他の例を表す断面模式図である。 図1に示した受光素子のゲート電極の構成の他の例を表す断面模式図である。 図1に示した受光素子のゲート電極の構成の他の例を表す断面模式図である。 本開示の変形例1に係る受光素子の構成の一例を表す断面模式図である。 図9に示した受光素子の配線層のパターンを表す平面模式図である。 本開示の変形例2に係る受光素子の構成の一例を表す断面模式図である。 図11に示した受光素子のゲート電極および配線層のパターンを表す平面模式図である。 本開示の変形例3に係る受光素子の構成の一例を表す断面模式図である。 本開示の変形例4に係る受光素子の構成の一例を表す断面模式図である。 図14に示した受光素子のゲート電極および配線層のパターンを表す平面模式図である。 本開示の変形例5に係る受光素子の構成の一例を表す断面模式図である。 本開示の変形例6に係る受光素子の構成の一例を表す断面模式図である。 本開示の第2の実施の形態に係る受光素子の構成の一例を表す断面模式図である。 本開示の変形例7に係る受光素子の構成の一例を表す断面模式図である。 本開示の変形例8に係る受光素子の構成の一例を表す断面模式図である。 本開示の第3の実施の形態に係る受光素子の構成の一例を表す断面模式図である。 X線撮像素子の構成を表すブロック図である。 図22に示した列選択部の詳細構成例を表すブロック図である。
 以下、本開示における実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.第1の実施の形態(アノードとドレインとの間の半導体基板上にゲート電極を設け、半導体基板の界面に電界を印加する受光素子の例)
   1-1.受光素子の構成
   1-2.受光素子の製造方法
   1-3.作用・効果
 2.変形例
   2-1.変形例1(絶縁層内の配線層を用いて半導体基板の界面に電界を印加する例)
   2-2.変形例2(ゲート電極および配線層を用いて半導体基板の界面に電界を印加する例)
   2-3.変形例3(配線層のパターンの他の例)
   2-4.変形例4(配線層のパターンの他の例)
   2-5.変形例5(ゲート電極と配線層とを短絡させた例)
   2-6.変形例6(ゲート電極と配線層とドレインとを短絡させた例)
 3.第2の実施の形態(埋込層と対向するバリア層を半導体基板の裏面側に有する受光素子の例)
 4.変形例
   4-1.変形例7(アノードとバリア層とを接続した例)
   4-2.変形例8(バリア層内に不純物濃度の異なる領域を設けた例)
 5.第3の実施の形態(半導体基板の界面に電界を印加する導電膜および埋込層と対向するバリア層を有する受光素子の例)
 6.適用例
<1.第1の実施の形態>
 図1は、本開示の第1の実施形態に係る受光素子(受光素子1)の断面構成の一例を模式的に表したものである。受光素子1は、例えば、半導体基板11の表面と裏面との間に逆バイアスを印加するPIN(Positive Intrinsic Negative)型のフォトダイオードからなり、例えば、放射線(例えば、α線、β線、γ線およびX線等)に基づいて被写体の情報を読み取る(被写体を撮像する)放射線撮像素子(例えば、X線撮像素子100;図22参照)や電磁波検出装置において1つの画素(単位画素P)を構成するものである。
(1-1.受光素子の構成)
 受光素子1は、例えば、n型の半導体基板11の表面S1(第1の面)の界面にp型導電型領域(第1導電型領域)13が部分的に形成され、表面S1とは反対側の面(裏面S2;第2の面)の界面にn型導電層(第2導電型層)12が形成されている。p型導電型領域13は複数の領域からなり、受光素子1は、例えば、アノード13Aを構成する領域(第1の第1導電型領域)と、ドレイン13Bを構成する領域(第2の第1導電型領域)と、ガードリング13Cを構成する領域(第3の第1導電型領域)とを有している。受光素子1は、さらに、半導体基板11の内部に埋込層14としてn型導電型領域(第2導電型領域)が形成されている。本実施の形態の受光素子1は、さらに、半導体基板11の表面S1上に絶縁層15を有し、アノード13Aとドレイン13Bとの間の絶縁層15内に、アノード13Aとドレイン13Bとの間の半導体基板11の表面S1界面に電界を印加する、または、アノード13Aとドレイン13Bとの間の半導体基板11上に設けられる絶縁層15の体積を減少させるゲート電極21を有している。
 なお、本実施の形態では、光電変換によって生じる励起子(電子正孔対)のうち、正孔を信号電荷として読み出す場合について説明する。また、図中において、「p」「n」に付した「-(マイナス)」は、p型またはn型の不純物濃度が低ことを表し、「+(プラス)」は、p型またはn型の不純物濃度が高いことを表している。p型およびn型の不純物濃度の大小関係は、それぞれ、p<p<p,n<n<nである。
 半導体基板11は、例えば、n型またはp型あるいはi型(真性半導体)の半導体から構成されており、内部に、光電変換領域となるpn接合またはpin接合を有している。具体的には、本実施の形態では、半導体基板11としてn型の半導体基板を用いており、表面S1の界面には、上記のようにp型導電型領域(第1導電型領域)13が形成されている。半導体基板11の積層方向(Y軸方向)の膜厚(以下、単に厚みという)は、例えば、10μm以上700μm以下である。
 p型導電型領域13は、p型の不純物を含む領域(p型の不純物領域)であり、半導体基板11の表面S1の界面に複数形成されている。具体的には、p型導電型領域13は、アノード13Aを構成する領域、ドレイン13Bを構成する領域およびガードリング13Cを構成する領域の3つの領域を有している。各領域は各々離間して設けられており、ドレイン13Bはアノード13Aの周囲にリング状に形成されている。ガードリング13Cは、ドレイン13Bの周囲にリング状に形成されている。p型導電型領域13の厚みは、単位画素Pの構成にもよるが、例えば、単位画素Pのピッチが10μm以上100μm以下の場合には、例えば、半導体基板11の表面S1の界面から、例えば2μm~3μmの厚みで形成されている。
 アノード13Aは、光電変換によって発生したキャリアのうち、例えば、信号電荷として正孔(h+)を読み出すための電圧が印加されるものであり、例えば電極16(第1電極)に接続されている。アノード13Aは、例えば、単位画素Pの略中央に個別に形成されている。アノード13Aの平面形状は特に限定されず、円形状(例えば、図2参照)でもよいし、多角形状であってもよい。アノード13Aは、例えば、一部が後述する埋込層14の底面よりも裏面S2側に突出している。アノード13Aの大きさは、単位画素Pの大きさにもよるが、例えば、単位画素Pのピッチが10μm以上100μm以下の場合には、例えば、0.1μm以上10μm以下である。
 ドレイン13Bは、半導体基板11への光照射時に表面S1の界面に発生する暗電流を排出するための電圧が印加されるものであり、例えば電極17(第2電極)に接続されている。ドレイン13Bは、アノード13Aの周囲にリング状に形成されており、半導体基板11への光照射時に表面S1の界面に発生する暗電流はドレイン13Bから常時排出されるようになる。これにより、暗電流がアノード13Aに流れ込むのを防ぐことができる。ドレイン13Bの平面形状は特に限定されず、円環形状でもよいし、多角形状(例えば、図2参照)であってもよい。
 ガードリング13Cは、ドレイン13Bへの電界集中を緩和し、同時に水平方向(例えば、XY平面方向)に信号電荷(正孔)の輸送を補助する水平方向電界を発生させるためのものである。ガードリング13Cは、アノード13Aおよびドレイン13Bを囲むように、ドレイン13Bの周囲にリング状に形成されている。ガードリング13Cは、アノード13Aおよびドレイン13Bとは異なり、電気的に浮遊状態となっている。ガードリング13Cは、例えば、半導体基板11の表面S1の界面に複数形成されている。具体的には、図1および図2に示したように、ガードリング13Cは、例えば、3つのp型導電型領域からなり、ドレイン13Bの周囲に三重(ガードリング13C1,13C2,13C3)に形成されている。このように、ガードリング13Cを複数設けることにより、電界集中を複数個所に分散すると同時に水平方向電界を広い領域に発生させることができる。
 ドレイン13Bおよびガードリング13Cを多角形状(例えば、矩形状)とする場合には、角部は、図2に示したように曲線状に形成することが好ましい。これにより、角部における電界の集中が緩和される。また、ドレイン13Bおよびガードリング13Cは、図2では、アノード13Aの周囲に連続して設けられた例を示したが、これに限らない。例えば、図3に示したように一部が切断されていてもよい。あるいは、断続的に形成されていてもよい。
 ドレイン13Bおよびガードリング13Cを構成するリングの線幅は、例えば、0.100μm以上10μm以下である。ドレイン13Bとガードリング13Cとの間隔は、例えば、0.100μm以上10μm以下である。但し、ドレイン13Bとガードリング13Cとの間隔ならびにドレイン13Bおよびガードリング13Cの線幅は、必ずしも一定である必要はない。例えば、ドレイン13Bおよび複数のガードリング13Cをそれぞれ多角形状(例えば、矩形状)とする場合には、図4に示したように、ドレイン13Bとガードリング13Cおよび各ガードリング13C1,13C2,13C3の間隔は、直線部(Wa)よりも角部(Wb)が広くなるように形成するようにしてもよい。これにより、角部における電界の集中がさらに緩和される。
 n型導電層12は、n型の半導体基板11よりも高濃度なn型の不純物を含む領域(n型の不純物領域)であり、半導体基板11の裏面S2の界面に形成されている。n型導電層12には、例えば、電源VDD(図5参照)に接続されており、光電変換によって発生したキャリアのうち、例えば正孔がアノード13Aを通じて信号電荷として読み出される場合には、このn型導電層12を通じて電子(e-)が排出される。n型導電層12の厚みは、単位画素Pの構成にもよるが、例えば、単位画素Pのピッチが10μm以上100μm以下の場合には、例えば、半導体基板11の裏面S2の界面から、例えば1μmの厚みで形成される。
 図5および図6は、それぞれ、n型導電層12への電源の接続方法の一例を表したものである。図5は、n型導電層12上に透明電極18を形成し、これに電源VDDを接続して半導体基板11の裏面S2側から電圧を印加する例を表したものである。図6は、複数の単位画素Pが例えば行列状に配列された画素領域110Aの周囲の周辺領域110Bにおいて、半導体基板11に形成されている空乏領域11Dの外側に中性領域11Nを形成し、これを介して半導体基板11の表面S1の界面に設けられたn型導電型領域19を介して電圧を印加する例を表したものである。なお、この場合、図6に示したように、周辺領域110Bにおける半導体基板11の表面S1の界面には、画素領域110Aに形成されている単位画素Pと、n型導電型領域19との間に、複数の高耐圧ガードリング13Dを形成するのが好ましい。複数の高耐圧ガードリング13Dのうち、最も画素領域110Aに近接配置された高耐圧ガードリングはグランドGNDに接続されていることが好ましい。
 埋込層14は、光電変換によって半導体基板11内に発生したキャリア(ここでは、信号電荷(正孔))がドレイン13Bやガードリング13Cに転送されるのを防ぐためのものである。埋込層14は、半導体基板11の内部、具体的には、p型導電型領域13の近傍に埋設される、n型の半導体基板11よりも高濃度なn型の不純物を含むn型導電型領域である。より詳細には、埋込層14は、p型導電型領域13のうち、ドレイン13Bおよびガードリング13Cに対応する領域に設けられると共に、アノード13Aと対向する領域に開口を有している。これにより、半導体基板11内に発生した信号電荷(正孔)は、アノード13Aから効率よく読み出されるようになる。なお、埋込層14は、ドレイン13Bおよびガードリング13Cと直接接しないように形成されている。埋込層14の厚みは、半導体基板11の表面S1と裏面S2との間に印加される逆バイアスの印加電圧の大きさによって変化するが、例えば0.100μm以上10μm以下である。
 絶縁層15は、半導体基板11の表面S1上に形成されたものである。絶縁層15は、例えば、ゲート絶縁膜15Aと層間絶縁膜15Bとが半導体基板11側からこの順に形成されており、ゲート絶縁膜15Aには、上記ゲート電極21が設けられる(例えば、図7A参照)。ゲート絶縁膜15Aおよび層間絶縁膜15Bからなる絶縁層15は、無機絶縁材料を用いて形成されている。無機絶縁材料としては、酸化シリコン(SiO)、窒化シリコン(SiN)、酸化アルミニウム(Al)および酸化ハフニウム(HfO)が挙げられる。絶縁層15は、これらのうちの少なくとも1種を含んで形成されている。
 ゲート電極21は、上記のように、例えば、アノード13Aとドレイン13Bとの間の半導体基板11の表面S1界面に電界を印加するためのものである。具体的には、半導体基板11の表面S1界面近傍に生成された正孔を、半導体基板11から遠ざける方向に電界を印加するものである。より具体的には、ゲート電極21には、半導体基板11の電位に対してマイナス(-)の電圧が印加され、これにより、半導体基板11の表面S1界面に、例えば0.5MV/cm以上の電界を印加するものである。また、ゲート電極21は、例えば、アノード13Aとドレイン13Bとの間の半導体基板11上に設けられる絶縁層15の体積を減少させるためのものである。これにより、X線照射によって絶縁層15の半導体基板11の表面S1との界面付近に生成される正の固定電荷の増加および半導体基板11の表面S1の界面準位の増加が低減される。
 なお、ゲート電極21は、上記のように、アノード13Aとドレイン13Bとの間の半導体基板11の表面S1界面に電界を印加および/またはアノード13Aとドレイン13Bとの間の半導体基板11上に設けられる絶縁層15の体積を減少させるものであり、必ずしもゲート動作を伴うものでなくてもよく、本明細書では、便宜上「ゲート電極」と称する。
 ゲート電極21は、例えば、図2に示したように、平面視においてアノード13Aを囲むように、ゲート絶縁膜15Aを介してアノード13Aとドレイン13Bとの間に設けられている。ゲート電極21は、例えば、ポリシリコン(poly-Si)を用いて形成することができる。このゲート電極21を構成するポリシリコンは、不純物を含まない真性半導体でもよいし、n型またはp型の不純物を含む不純物半導体でもよい。この他、ゲート電極21を構成するポリシリコンは、例えば、不純物濃度が異なる複数の半導体領域を有していてもよい。具体的には、ポリシリコンは、不純物を含まない、または、不純物をほとんど含まない第1領域21Aと、第1領域21Aよりも不純物濃度が高い第2領域21Bとを有していてもよい。第1領域21Aおよび第2領域21Bは、例えば以下のように形成されている。
 例えば、図7Aに示したように、第1領域21Aをアノード13A側に、例えば、n型の第2領域21Bをドレイン13B側に形成するようにしてもよい。これにより、暗電流源となる虞のあるアノード13Aとアノード13A側のゲート電極21端部との間の電界が緩和されると共に、当該部の絶縁膜(ゲート絶縁膜15A)の耐圧の劣化が低減される。
 また、第1領域21Aは、図7Bに示したように、アノード13A側の側面から、n型の第2領域21Bの下方(第2領域21Bとゲート絶縁膜15Aとの間)に延在していてもよい。あるいは、例えば、図7Cに示したように、第1領域21Aおよびn型の第2領域21Bが、ゲート絶縁膜15A側からこの順に積層されていてもよい。このように、ゲート絶縁膜15Aと第2領域21Bとの間に第1領域21Aを設けることにより、ゲート電極21下方全体の電界が緩和されると共に、ゲート絶縁膜15Aの耐圧の劣化がさらに低減される。
 更に、例えば、図7Dに示したように、ドレイン13B側にも第1領域21Aを設けるようにしてもよい。これにより、ドレイン13Bとドレイン13B側のゲート電極21端部との間の電界が緩和される。更にまた、例えば、図7Eに示したように、ポリシリコン全体を第1領域21Aとし、配線とのコンタクト部にのみ、n型の第2領域21Bを局所的に設けるようにしてもよい。これにより、ゲート電極21下方全体の電界がさらに緩和される。
 なお、第2領域21Bに含まれる不純物はn型の不純物に限定されるものではなく、第2領域21Bは、例えば、図8に示したように、p型の不純物をポリシリコンに導入したp型の不純物領域であってもよい。このように、p型の不純物を用いることにより、n型の不純物を用いた場合と比較して、ゲート電極21の下方の電界がさらに緩和され、暗電流の発生およびゲート絶縁膜15Aの耐圧の劣化をさらに低減することができる。
 絶縁層15上には、図示していないが、例えば、上記電極16,17やロジック回路等が形成され基板が配置されている。
(1-2.受光素子の製造方法)
 受光素子1は、例えば次のようにして製造することができる。まず、半導体基板11の裏面S2にイオンインプラント技術を用いてn型導電層12を形成する。続いて、半導体基板11の表面S1の所定の領域にマスクを形成したのち、イオンインプラント技術を用いてn型の不純物(例えばリン(P))をドーピングしてn型導電型領域(埋込層14)を形成する。次に、半導体基板11の表面S1の所定の領域にマスクを形成したのち、イオンインプラント技術を用いてp型の不純物(例えばホウ素(B))をドーピングしてp型導電型領域(アノード13A、ドレイン13Bおよびガードリング13C)を形成する。続いて、半導体基板11の表面S1上に、例えばCVD(Chemical Vapor Deposition)法を用いてゲート絶縁膜15Aを形成する。次に、ゲート絶縁膜15A上に、例えばCVD法を用いてポリシリコン膜を成膜した後、例えばフォトリソグラフィ法を用いてポリシリコン膜をパターニングし、アノード13Aとドレイン13Bとの間にゲート電極21を形成する。その後、イオンインプラント技術を用いてゲート電極21に適宜第1領域21Aと第2領域21Bとを形成する。最後に、例えばCVD法を用いて層間絶縁膜15Bを成膜し、絶縁層15を形成する。これにより、図1に示した受光素子1が完成する。
(1-3.作用・効果)
 本実施の形態の受光素子1では、光電変換領域を含む半導体基板11の表面S1の界面に、電極16に接続されたアノード13Aおよび電極17に接続されたドレイン13Bを設け、さらに、アノード13Aとドレイン13Bとの間の半導体基板11の表面S1にゲート絶縁膜15Aを介してゲート電極21を設けるようにした。これにより、X線照射時に、アノード13Aとドレイン13Bとの間の半導体基板11の表面S1における界面準位の発生および固定電荷の発生が抑制される。以下、これについて説明する。
 前述したように、固体撮像装置は、例えば、デジタルスチルカメラやビデオカメラ等の撮像装置や、撮像機能を有する携帯端末装置等の電子機器、あるいは、可視光以外の様々な波長を検知する電磁波センサ等、様々な用途に用いられる。これら固体撮像装置では、光電変換素子であるフォトダイオードに蓄積された信号電荷を、MOSトランジスタを介して読み出すCMOSイメージセンサが広く利用されている。
 CMOSイメージセンサの単位画素は、例えば、半導体基板内にHAD(Hole Accumulated Diode)構造からなるフォトダイオード(PD)と、フォトダイオードに対し転送ゲートを挟んだ位置に配置される浮遊拡散領域(FD)とを備えている。これらに加えて、単位画素は、例えば、リセットトランジスタ、セレクトトランジスタおよびアンプトランジスタを有している。
 また、CMOSイメージセンサの単位画素の別形態としては、HADを有さず、半導体基板内において光電変換領域とFDとが一体化された構造がある。この構造はシンプルで製造しやすいことに加え、光電変換領域を形成するpn接合に任意の電位差を加えることができる。そのため、光電変換領域を厚くすることが容易で、その利点を活かし、高感度な計測が求められる科学用途向けセンサに多く用いられている。
 ところで、HADを有さず、半導体基板内において光電変換領域とFDとが一体化された構造を有するCMOSイメージセンサでは、半導体基板の表面が空乏層に接するため、例えば、X線等の強い放射線が照射された場合、半導体基板上に設けられる絶縁膜やその界面に固定電荷が生成されることにより容量や電界が大きく変動する。このため、高エネルギー入力への耐性の向上が求められていた。
 これに対して本実施の形態では、半導体基板11の表面S1の界面に設けられたアノード13Aとドレイン13Bとの間の半導体基板11の表面S1にゲート絶縁膜15Aを介してゲート電極21を設けるようにした。これにより、アノード13Aとドレイン13Bとの間の半導体基板11上に設けられる絶縁層15の体積が減少し、X線の照射によってX線照射によって絶縁層15の半導体基板11の表面S1との界面付近に生成される電子正孔対の量が減少する。また、ゲート電極21に、例えばマイナス(-)の電圧を印加し、半導体基板11の表面S1の界面に電界を印加する場合には、X線照射によって絶縁層15の半導体基板11の表面S1との界面近傍の絶縁層(絶縁層15)内に発生する電荷(例えば、正孔)が排出される。
 以上のように、本実施の形態の受光素子1では、半導体基板11の表面S1の界面に設けられたアノード13Aとドレイン13Bとの間の半導体基板11の表面S1にゲート絶縁膜15Aを介してゲート電極21を設けるようにしたので、X線が照射された際に半導体基板11の表面S1の界面に生成される正の固定電荷の増加が低減される。よって、アノードの容量や半導体基板11の表面S1の界面における電界の変動を低減することが可能となる。加えて、半導体基板11の表面S1における界面準位の発生が抑制される。よって、暗電流の発生を低減することが可能となる。即ち、X線照射による容量および電界の変動に対して高い耐性を有する受光素子を実現することが可能となる。
 また、本実施の形態の受光素子1では、ポリシリコンを用いてゲート電極21を形成し、ポリシリコン内に不純物を含まない、または、不純物をほとんど含まない第1領域21Aおよび第1領域21Aよりも不純物濃度が高い半導体領域22Bを設けるようにした。具体的には、アノード13A近傍やゲート絶縁膜15A側に第1領域21Aを形成し、半導体領域22Bを部分的に設けるようにした。これにより、ゲート電極21の下方の電界が強くなりすぎることによる暗電流の増加や、ゲート絶縁膜15Aの耐圧の劣化が低減される。即ち、X線に対する耐性を向上させつつ、暗電流の発生の低減および絶縁膜の耐圧の向上を図ることが可能となる。
 次に、第2,第3の実施の形態および変形例1~8ならびに適用例について説明する。以下では、上記第1の実施の形態と同様の構成要素については同一の符号を付し、適宜その説明を省略する。
<2.変形例>
(2-1.変形例1)
 図9は、本開示の変形例1に係る受光素子(受光素子1A)の断面構成の一例を模式的に表したものである。受光素子1Aは、上記第1の実施の形態と同様に、例えば、半導体基板11の表面と裏面との間に逆バイアスを印加するPIN型のフォトダイオードからなり、例えば、放射線(例えば、α線、β線、γ線およびX線等)に基づいて被写体の情報を読み取る(被写体を撮像する)放射線撮像素子(例えば、X線撮像素子100)や電磁波検出装置において1つの画素(単位画素P)を構成するものである。本変形例の受光素子1Aは、ゲート電極21に代えて、層間絶縁膜15B内に形成される配線層22を用いて半導体基板11の表面S1の界面に電界を印加、または、アノード13Aとドレイン13Bとの間の半導体基板11上に設けられる絶縁層15の体積を減少させた点が、上記第1の実施の形態とは異なる。
 配線層22は、上記のように、半導体基板11の表面S1の界面に電界を印加するためのものであり、例えば、配線層22に半導体基板11の電位に対してマイナス(-)の電圧を印加して、半導体基板11の表面S1の界面に、例えば0.5MV/cm以上の電界を印加するものである。また、配線層22は、例えば、アノード13Aとドレイン13Bとの間の半導体基板11上に設けられる絶縁層15の体積を減少させるためのものである。配線層22は、層間絶縁膜15B内に設けられ、例えば、図10に示したように、例えば、アノード13Aとドレイン13Bとの間からガードリング13Cの一部まで延在している。配線層22は、例えば、アルミニウム(Al)、銅(Cu)またはタングステン(W)等の金属材料を用いて形成されている。
 このように本変形例では、層間絶縁膜15B内に設けられた、例えば、アノード13Aとドレイン13Bとの間からガードリング13Cの一部まで延在する配線層22を用いて半導体基板11の表面S1界面に電界を印加する、または、アノード13Aとドレイン13Bとの間の半導体基板11上に設けられる絶縁層15の体積を減少させるようにした。これにより、上記第1の実施の形態と同様に、X線が照射された際に半導体基板11の表面S1の界面に生成される正の固定電荷の増加が低減される。よって、アノードの容量や半導体基板11の表面S1の界面における電界の変動を低減することが可能となる。即ち、X線照射による容量および電界の変動に対して高い耐性を有する受光素子を実現することが可能となる。
(2-2.変形例2)
 図11は、本開示の変形例2に係る受光素子(受光素子1B)の断面構成の一例を模式的に表したものである。図12は、図11に示した配線層22の平面パターンを模式的に表したものである。上記変形例1では、ゲート電極21に代えて、アノード13Aとドレイン13Bとの間からガードリング13Cの一部まで延在する配線層22を用いて半導体基板11の表面S1界面に電界を印加、または、アノード13Aとドレイン13Bとの間の半導体基板11上に設けられる絶縁層15の体積を減少させた例を示したが、上記第1の実施の形態と変形例1とを組み合わせた構成としてもよい。
 即ち、アノード13Aとドレイン13Bとの間の半導体基板11の表面S1にゲート絶縁膜15Aを介して設けられたゲート電極21と、層間絶縁膜15B内に設けられたアノード13Aとドレイン13Bとの間からガードリング13Cの一部まで延在する配線層22とを用いて半導体基板11の表面S1の界面に電界を印加、または、アノード13Aとドレイン13Bとの間の半導体基板11上に設けられる絶縁層15の体積を減少させるようにしてもよい。この場合においても、上記第1の実施の形態と同様に、X線が照射された際に半導体基板11の表面S1の界面に生成される正の固定電荷の増加が低減される。よって、半導体基板11の表面S1の界面における電界の変動を低減することが可能となる。即ち、X線照射による容量および電界の変動に対して高い耐性を有する受光素子を実現することが可能となる。
(2-3.変形例3)
 図13は、本開示の変形例3に係る受光素子(受光素子1C)の断面構成の一例を模式的に表したものである。上記変形例1および変形例2では、配線層22として、アノード13Aとドレイン13Bとの間からガードリング13Cの一部を覆う配線を用いた例を示したが、配線層22のパターンはこれに限定されるものではない。
 例えば、図13に示したように、アノード13Aとドレイン13Bとの間から全てのガードリング13Cを覆う、換言すると、アノード13Aの上方を除き、隣り合う単位画素Pの間を連続して延在する配線層を設け、これを配線層22として用いるようにしてもよい。この場合においても、上記第1の実施の形態と同様に、X線が照射された際に半導体基板11の表面S1の界面に生成される正の固定電荷の増加が低減される。よって、半導体基板11の表面S1の界面における電界の変動を低減することが可能となる。即ち、X線照射による容量および電界の変動に対して高い耐性を有する受光素子を実現することが可能となる。
(2-4.変形例4)
 図14は、本開示の変形例4に係る受光素子(受光素子1D)の断面構成の一例を模式的に表したものである。図15は、図14に示した配線層22の平面パターンを模式的に表したものである。上記変形例2では、アノード13Aの上方を除き、隣り合う単位画素Pの間を連続して一様に延在する配線層を配線層22として用いた例を示したが、この配線層は、例えば、図15に示したような格子状にパターンされていてもよい。
(2-5.変形例5)
 図16は、本開示の変形例5に係る受光素子(受光素子1E)の断面構成の一例を表したものである。図16に示したように、ゲート電極21と配線層22とは短絡させてもよい。これにより、絶縁層15内においてZ軸方向に延伸する配線数および端子数を削減することが可能となる。
(2-6.変形例6)
 図17は、本開示の変形例6に係る受光素子(受光素子1F)の断面構成の一例を表したものである。図17に示したように、ゲート電極21と配線層22と共にドレイン13Bを短絡させてもよい。これにより、絶縁層15内においてZ軸方向に延伸する配線数および端子数をさらに削減することが可能となる。
<3.第2の実施の形態>
 図18は、本開示の第2の実施形態に係る受光素子(受光素子2)の断面構成の一例を模式的に表したものである。受光素子2は、上記第1の実施の形態と同様に、例えば、半導体基板11の表面と裏面との間に逆バイアスを印加するPIN型のフォトダイオードからなり、例えば、放射線(例えば、α線、β線、γ線およびX線等)に基づいて被写体の情報を読み取る(被写体を撮像する)放射線撮像素子(例えば、X線撮像素子100)や電磁波検出装置において1つの画素(単位画素P)を構成するものである。
 受光素子2は、例えば、n型の半導体基板11の表面S1の界面にp型導電型領域13が部分的に形成され、表面S1とは反対側の面(裏面S2)の界面にn型導電層12が形成されている。p型導電型領域13は複数の領域から構成されており、受光素子2は、例えば、アノード13Aを構成する領域と、ドレイン13Bを構成する領域と、ガードリング13Cを構成する領域とを有している。受光素子2は、さらに、半導体基板11の内部に埋込層14としてn型導電型領域が形成されている。本実施の形態の受光素子2は、さらに、p型導電型領域13側とは反対側の半導体基板11の内部の埋込層14と対向する位置にバリア層23が形成されている。
 バリア層23は、光電変換によって半導体基板11内に発生したキャリア(ここでは、信号電荷(正孔))がドレイン13Bやガードリング13Cに転送されるのを防ぐためのものである。また、バリア層23は、光電変換によって半導体基板11内に発生したキャリアがガードリング13Cからドレイン13Bに消失しないようにするためのものである。バリア層23は、上記のように、p型導電型領域13側とは反対側の半導体基板11の内部の埋込層14と対向する位置に設けられたp型導電型領域(第4の第1導電型領域)である。このp型導電型領域の不純物(例えば、B(ホウ素))濃度は、空乏化するように、アノード13A、ドレイン13Bおよびガードリング13Cを形成するp型導電型領域の不純物濃度よりも低く、例えば、1e10cm-2~1e12cm-2程度の低濃度となっている。
 受光素子1等では、半導体基板11の内部のp型導電型領域13の近傍に埋込層14が形成されている。この埋込層14は、本実施の形態のバリア層23と同様に、光電変換によって半導体基板11内に発生したキャリア(信号電荷(正孔))がドレイン13Bやガードリング13Cに転送されるのを防ぐためのものである。埋込層14は、n型の半導体基板11よりも高濃度なn型の不純物を含むn型導電型領域であり、半導体基板11のn型の不純物濃度と、埋込層14のn型の不純物濃度との濃度差によるポテンシャルバリアである。このため、半導体基板11の不純物濃度にばらつきが生じた場合、所望の効果が得られない虞がある。埋込層14によるポテンシャルバリアは、埋込層14を構成するn型導電型領域の不純物濃度を高くすることで強化することはできるものの、その場合、埋込層14および半導体基板11の表面S1のポテンシャルが上昇し、半導体基板11の表面S1の耐圧が低下してしまう。
 これに対して本実施の形態の受光素子2では、p型導電型領域13側とは反対側の半導体基板11の内部の埋込層14と対向する位置にp型導電型領域からなるバリア層23を設けるようにした。これにより、光電変換によって半導体基板11内に発生したキャリア(ここでは、信号電荷(正孔))に対するポテンシャルバリアが強化され、信号電荷(正孔)がドレイン13Bやガードリング13Cに転送されるのをより防ぐことが可能となる。よって、半導体基板11内で発生した信号電荷(正孔)の転送効率をさらに向上させることが可能となる。
 また、本実施の形態では、バリア層23を空乏化可能な低濃度のp型導電型領域としたので、水平方向(例えば、XY平面方向)の電界の形成は阻害されない。よって、信号電荷(正孔)の転送効率の低下を防ぐことができると共に、隣り合う単位画素P間における混色の発生を抑制することができる。また、アノード13Aの容量の増加による変換効率の低下によるSN比の劣化も防ぐことが可能となる。
<4.変形例>
(4-1.変形例7)
 図19は、本開示の変形例7に係る受光素子(受光素子2A)の断面構成の一例を模式的に表したものである。受光素子2Aは、上記第1の実施の形態と同様に、例えば、半導体基板11の表面と裏面との間に逆バイアスを印加するPIN型のフォトダイオードからなり、例えば、放射線(例えば、α線、β線、γ線およびX線等)に基づいて被写体の情報を読み取る(被写体を撮像する)放射線撮像素子(例えば、X線撮像素子100)や電磁波検出装置において1つの画素(単位画素P)を構成するものである。本変形例の受光素子2Aは、バリア層23を単位画素P全体に延在形成し、さらにアノード13Aと接続した点が、上記第2の実施の形態とは異なる。
 このように本変形例では、単位画素P全体にバリア層23を形成し、バリア層23とアノード13Aとを接続したので、上記第2の実施の形態の効果と比較して、信号電荷(正孔)がドレイン13Bやガードリング13Cに転送されるのをさらに防ぐことが可能となる。
(4-2.変形例8)
 図20は、本開示の変形例8に係る受光素子(受光素子2B)の断面構成の一例を模式的に表したものである。単位画素P全体に延在するバリア層23は、さらに、面内に不純物濃度が異なるp型不純物領域を有していてもよい。具体的には、アノード13Aとの接続部およびその周囲に他の領域よりも高い不純物濃度を有するp型半導体領域を形成するようにしてもよい。これにより、上記第2の実施の形態の効果に加えて、水平方向(例えば、XY平面方向)の電界の形成が促進されるようになり、アノード13Aへの信号電荷(正孔)の転送効率を向上させることが可能となる。
<5.第3の実施の形態>
 図21は、本開示の第3の実施形態に係る受光素子(受光素子3)の断面構成の一例を模式的に表したものである。受光素子3は、上記第1の実施の形態と同様に、例えば、半導体基板11の表面と裏面との間に逆バイアスを印加するPIN型のフォトダイオードからなり、例えば、放射線(例えば、α線、β線、γ線およびX線等)に基づいて被写体の情報を読み取る(被写体を撮像する)放射線撮像素子(例えば、X線撮像素子100)や電磁波検出装置において1つの画素(単位画素P)を構成するものである。
 本実施の形態の受光素子3は、上記第1の実施の形態等の技術と第2の実施の形態等の技術とを組み合わせたものである。即ち、受光素子3は、アノード13Aとドレイン13Bとの間の絶縁層15内に設けられた、アノード13Aとドレイン13Bとの間の半導体基板11の表面S1界面に電界を印加する、または、アノード13Aとドレイン13Bとの間の半導体基板11上に設けられる絶縁層15の体積を減少させるゲート電極21および配線層22と、p型導電型領域13側とは反対側の半導体基板11の内部に設けられた埋込層14と対向するバリア層23とを有している。
 これにより、本実施の形態の受光素子3では、X線照射による容量および電界の変動に対する耐性を向上させつつ、半導体基板11内で発生した信号電荷(正孔)の転送効率を向上させることが可能となる。
<6.適用例>
 図22は、上記第1~第3の実施の形態および変形例1~8において説明した受光素子(例えば、受光素子1)を用いた電子機器の一例としてのX線撮像素子100の機能構成を表したものである。X線撮像素子100は、例えば入射する放射線Rrad(例えばα線,β線,γ線,X線等)に基づいて被写体の情報を読み取る(被写体を撮像する)ものである。このX線撮像素子100は、画素部(画素領域110A)を備えると共に、この画素領域110Aの駆動回路(周辺回路部)として、行走査部121、A/D変換部122、列走査部123およびシステム制御部124を備えている。
(画素領域110A)
 画素領域110Aは、放射線に基づいて信号電荷を発生させる複数の単位画素(撮像画素)Pを備えたものである。複数の単位画素Pは、行列状(マトリクス状)に2次元配置されている。なお、図1に示したように、画素領域110A内における水平方向(行方向)を「H」方向とし、垂直方向(列方向)を「V」方向とする。
(行走査部121)
 行走査部121は、後述のシフトレジスタ回路や所定の論理回路等を含んで構成されており、画素領域110A内の複数の単位画素Pに対して行単位(水平ライン単位)での駆動(線順次走査)を行う画素駆動部(行走査回路)である。具体的には、行走査部121は、各単位画素Pの読み出し動作やリセット動作等の撮像動作を例えば線順次走査により行うものである。なお、線順次走査は、読み出し制御線Lreadを介して前述した行走査信号を各単位画素Pへ供給することによって行われる。
(A/D変換部122)
 A/D変換部122は、複数(ここでは4つ)の信号線Lsigごとに1つ設けられた複数の列選択部125を有しており、信号線Lsigを介して入力された信号電圧(信号電荷に応じた電圧)に基づいてA/D変換(アナログ/デジタル変換)を行うものである。これにより、デジタル信号からなる出力データDout(撮像信号)が生成され、外部へ出力される。
 各列選択部125は、例えば、図23に示したように、チャージアンプ172、容量素子(コンデンサあるいはフィードバック容量素子等)C1、スイッチSW1、サンプルホールド(S/H)回路173、4つのスイッチSW2を含むマルチプレクサ回路(選択回路)174、およびA/Dコンバータ175を有している。これらのうち、チャージアンプ172、容量素子C1、スイッチSW1、S/H回路173およびスイッチSW2はそれぞれ、信号線Lsig毎に設けられている。マルチプレクサ回路174およびA/Dコンバータ175は、列選択部125毎に設けられている。なお、チャージアンプ172、容量素子C1およびスイッチSW1は、チャージアンプ回路を構成するものである。
 チャージアンプ172は、信号線Lsigから読み出された信号電荷を電圧に変換(Q-V変換)するためのアンプ(増幅器)である。このチャージアンプ172では、負側(-側)の入力端子に信号線Lsigの一端が接続され、正側(+側)の入力端子には所定のリセット電圧Vrstが入力されるようになっている。チャージアンプ172の出力端子と負側の入力端子との間は、容量素子C1とスイッチSW1との並列接続回路を介して帰還接続(フィードバック接続)されている。即ち、容量素子C1の一方の端子がチャージアンプ172の負側の入力端子に接続され、他方の端子がチャージアンプ172の出力端子に接続されている。同様に、スイッチSW1の一方の端子がチャージアンプ172の負側の入力端子に接続され、他方の端子がチャージアンプ172の出力端子に接続されている。なお、このスイッチSW1のオン・オフ状態は、システム制御部124からアンプリセット制御線Lcarstを介して供給される制御信号(アンプリセット制御信号)によって制御される。
 S/H回路173は、チャージアンプ172とマルチプレクサ回路174(スイッチSW2)との間に配置されており、チャージアンプ172からの出力電圧Vcaを一時的に保持するための回路である。
 マルチプレクサ回路174は、列走査部123による走査駆動に従って4つのスイッチSW2のうちの1つが順次オン状態となることにより、各S/H回路173とA/Dコンバータ175との間を選択的に接続または遮断する回路である。
 A/Dコンバータ175は、スイッチSW2を介して入力されたS/H回路173からの出力電圧に対してA/D変換を行うことにより、上記した出力データDoutを生成して出力する回路である。
(列走査部123)
 列走査部123は、例えば図示しないシフトレジスタやアドレスデコーダ等を含んで構成されており、上記した列選択部125内の各スイッチSW2を走査しつつ順番に駆動するものである。このような列走査部123による選択走査によって、信号線Lsigの各々を介して読み出された各単位画素Pの信号(上記出力データDout)が、順番に外部へ出力されるようになっている。
(システム制御部124)
 システム制御部124は、行走査部121、A/D変換部122および列走査部123の各動作を制御するものである。具体的には、システム制御部124は、前述した各種のタイミング信号(制御信号)を生成するタイミングジェネレータを有しており、このタイミングジェネレータにおいて生成される各種のタイミング信号を基に、行走査部121、A/D変換部122および列走査部123の駆動制御を行う。このシステム制御部124の制御に基づいて、行走査部121、A/D変換部122および列走査部123がそれぞれ画素領域110A内の複数の単位画素Pに対する撮像駆動(線順次撮像駆動)を行うことにより、画素領域110Aから出力データDoutが取得されるようになっている。
 以上、第1~第3の実施の形態および変形例1~8ならびに適用例を挙げて説明したが、本開示内容は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態等では、信号電荷として正孔を用いた例を示したが、電子を信号電荷として用いるようにしてもよい。なお、その場合には、各部材の導電型はそれぞれ逆の導電型となる。
 また、上記実施の形態等において説明した受光素子1の層構成は一例であり、更に他の層を備えていてもよい。更に、各層の材料や厚みも一例であって、上述のものに限定されるものではない。更に、上記適用例ではX線撮像素子100を挙げたが、上記実施の形態等において説明した受光素子1は、X線に限らない放射線撮像素子や電磁波検出装置にも適用することができる。
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。
 なお、本開示は以下のような構成をとることも可能である。以下の構成の本技術によれば、光電変換領域を含む半導体基板の第1の面の界面に、第1の電極に接続された第1の第1導電型領域および第2の電極に接続された第2の第1導電型領域を設け、少なくともこの第1の第1導電型領域と、第2の第1導電型領域との間の、半導体基板の第1の面の上方に第1の面の界面に電界を印加する導電膜を設けるようにした。これにより、第1の面の界面近傍における固定電荷の発生および界面準位の発生が抑制されるようになる。よって、X線照射による容量および電界の変動に対する耐性を向上させることが可能となる。加えて、暗電流の発生を低減することが可能となる。
(1)
 光電変換領域を含む半導体基板と、
 前記半導体基板の第1の面の界面に設けられると共に、第1の電極に接続された第1の第1導電型領域と、
 前記第1の面の界面において、前記第1の第1導電型領域の周囲に設けられると共に、第2の電極に接続された第2の第1導電型領域と、
 前記第1の面の界面において、前記第2の第1導電型領域の周囲に設けられると共に、電気的に浮遊状態な第3の第1導電型領域と、
 少なくとも前記第1の第1導電型領域と前記第2の第1導電型領域との間の、前記第1の面の上方に設けられた導電膜と
 を備えた受光素子。
(2)
 前記導電膜は、前記第1の第1導電型領域と前記第2の第1導電型領域との間の前記第1の面の界面に電界を印加する、前記(1)に記載の受光素子。
(3)
 前記半導体基板の前記第1の面側に設けられた絶縁層をさらに有し、
 前記導電膜は、前記半導体基板の前記第1の面に設けられたゲート電極および前記絶縁層内に設けられた配線層の少なくとも一方によって形成されている、前記(1)または(2)に記載の受光素子。
(4)
 前記ゲート電極と、前記配線層とは互いに電気的に接続されている、前記(3)に記載の受光素子。
(5)
 前記ゲート電極と、前記配線層と、前記第2の第1導電型領域とは互いに電気的に接続されている、前記(3)に記載の受光素子。
(6)
 前記配線層は、前記第1の第1導電型領域と前記第2の第1導電型領域との間から前記第3の第1導電型領域の上方まで連続または断続的に形成されている、前記(3)乃至(5)のうちのいずれか1つに記載の受光素子。
(7)
 前記ゲート電極は、半導体材料を用いて形成されており、不純物濃度の異なる第1領域および第2領域を有している、前記(3)乃至(6)のうちのいずれか1つに記載の受光素子。
(8)
 前記第1領域は、前記第2領域よりも不純物濃度が低く、前記第1の第1導電型領域の近傍に設けられている、前記(7)に記載の受光素子。
(9)
 前記第1領域は、前記第2領域よりも不純物濃度が低く、前記第2領域の周囲に設けられている、前記(7)に記載の受光素子。
(10)
 前記第1領域は、前記第2領域よりも不純物濃度が低く、前記第1の面側から前記第1領域および前記第2領域の順に積層されている、前記(7)に記載の受光素子。
(11)
 前記半導体基板内に埋め込み形成され、前記第2の第1導電型領域および前記第3の第1導電型領域と対向する第2導電型領域をさらに有する、前記(1)乃至(10)のうちのいずれか1つに記載の受光素子。
(12)
 前記半導体基板内に埋め込み形成され、前記半導体基板の前記第1の面と対向する第2の面側において前記第2導電型領域と対向する第4の第1導電型領域をさらに有する、前記(11)に記載の受光素子。
(13)
 前記第4の第1導電型領域は、前記第1の第1導電型領域の下方まで延在し、前記第1の第1導電型領域と接続されている、前記(12)に記載の受光素子。
(14)
 前記第4の第1導電型領域は、不純物濃度の異なる領域を有している、前記(13)に記載の受光素子。
(15)
 前記半導体基板は第2導電型を有すると共に、前記第1の面と対向する第2の面の界面に第2導電型層をさらに有し、
 前記第2導電型層および前記第2導電型領域は、前記半導体基板よりも不純物濃度が高い、前記(11)乃至(14)のうちのいずれか1つに記載の受光素子。
(16)
 前記半導体基板は真性半導体によって構成されている、前記(1)乃至(15)のうちのいずれか1つに記載の受光素子。
(17)
 X線に基づく信号電荷を発生する複数の受光素子を備え、
 前記受光素子は、
 光電変換領域を含む半導体基板と、
 前記半導体基板の第1の面の界面に設けられると共に、第1の電極に接続された第1の第1導電型領域と、
 前記第1の面の界面において、前記第1の第1導電型領域の周囲に設けられると共に、第2の電極に接続された第2の第1導電型領域と、
 前記第1の面の界面において、前記第2の第1導電型領域の周囲に設けられると共に、電気的に浮遊状態な第3の第1導電型領域と、
 少なくとも前記第1の第1導電型領域と前記第2の第1導電型領域との間の、前記第1の面の上方に設けられた導電膜と
 を有するX線撮像素子。
(18)
 複数の画素が配列された画素領域と、
 前記画素領域の周囲に設けられた周辺領域とを有し、
 前記半導体基板は、前記画素領域に空乏領域を、前記周辺領域に中性領域を有する、前記(17)に記載のX線撮像素子。
(19)
 前記受光素子は前記複数の画素毎に設けられ、前記半導体基板の前記第1の面と前記第1の面と対向する第2の面との間に逆バイアスを印加するpn接合型受光素子である、前記(18)に記載のX線撮像素子。
(20)
 X線撮像素子を備え、
 前記X線撮像素子は、X線に基づく信号電荷を発生する複数の受光素子を有し、
 前記受光素子は、
 光電変換領域を含む半導体基板と、
 前記半導体基板の第1の面の界面に設けられると共に、第1の電極に接続された第1の第1導電型領域と、
 前記第1の面の界面において、前記第1の第1導電型領域の周囲に設けられると共に、第2の電極に接続された第2の第1導電型領域と、
 前記第1の面の界面において、前記第2の第1導電型領域の周囲に設けられると共に、電気的に浮遊状態な第3の第1導電型領域と、
 少なくとも前記第1の第1導電型領域と前記第2の第1導電型領域との間の、前記第1の面の上方に設けられた導電膜と
 を備える電子機器。
(21)
 光電変換領域を含む半導体基板と、
 前記半導体基板の第1の面の界面に設けられると共に、第1の電極に接続された第1の第1導電型領域と、
 前記第1の面の界面において、前記第1の第1導電型領域の周囲に設けられると共に、第2の電極に接続された第2の第1導電型領域と、
 前記第1の面の界面において、前記第2の第1導電型領域の周囲に設けられると共に、電気的に浮遊状態な第3の第1導電型領域と、
 前記半導体基板内に埋め込み形成され、前記第2の第1導電型領域および前記第3の第1導電型領域と対向する第2導電型領域と、
 前記半導体基板内に埋め込み形成され、前記半導体基板の前記第1の面と対向する第2の面側において前記第2導電型領域と対向する第4の第1導電型領域と
 を備えた受光素子。
(22)
 前記第4の第1導電型領域は、前記第1の第1導電型領域の下方まで延在し、
 前記第1の第1導電型領域と前記第4の第1導電型領域とは電気的に接続されている、前記(21)に記載の受光素子。
(23)
 前記第4の第1導電型領域は、不純物濃度の異なる領域を有している、前記(21)または(22)に記載の受光素子。
 本出願は、日本国特許庁において2021年4月28日に出願された日本特許出願番号2021-075731号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (20)

  1.  光電変換領域を含む半導体基板と、
     前記半導体基板の第1の面の界面に設けられると共に、第1の電極に接続された第1の第1導電型領域と、
     前記第1の面の界面において、前記第1の第1導電型領域の周囲に設けられると共に、第2の電極に接続された第2の第1導電型領域と、
     前記第1の面の界面において、前記第2の第1導電型領域の周囲に設けられると共に、電気的に浮遊状態な第3の第1導電型領域と、
     少なくとも前記第1の第1導電型領域と前記第2の第1導電型領域との間の、前記第1の面の上方に設けられた導電膜と
     を備えた受光素子。
  2.  前記導電膜は、前記第1の第1導電型領域と前記第2の第1導電型領域との間の前記第1の面の界面に電界を印加する、請求項1に記載の受光素子。
  3.  前記半導体基板の前記第1の面側に設けられた絶縁層をさらに有し、
     前記導電膜は、前記半導体基板の前記第1の面に設けられたゲート電極および前記絶縁層内に設けられた配線層の少なくとも一方によって形成されている、請求項1に記載の受光素子。
  4.  前記ゲート電極と、前記配線層とは互いに電気的に接続されている、請求項3に記載の受光素子。
  5.  前記ゲート電極と、前記配線層と、前記第2の第1導電型領域とは互いに電気的に接続されている、請求項3に記載の受光素子。
  6.  前記配線層は、前記第1の第1導電型領域と前記第2の第1導電型領域との間から前記第3の第1導電型領域の上方まで連続または断続的に形成されている、請求項3に記載の受光素子。
  7.  前記ゲート電極は、半導体材料を用いて形成されており、不純物濃度の異なる第1領域および第2領域を有している、請求項3に記載の受光素子。
  8.  前記第1領域は、前記第2領域よりも不純物濃度が低く、前記第1の第1導電型領域の近傍に設けられている、請求項7に記載の受光素子。
  9.  前記第1領域は、前記第2領域よりも不純物濃度が低く、前記第2領域の周囲に設けられている、請求項7に記載の受光素子。
  10.  前記第1領域は、前記第2領域よりも不純物濃度が低く、前記第1の面側から前記第1領域および前記第2領域の順に積層されている、請求項7に記載の受光素子。
  11.  前記半導体基板内に埋め込み形成され、前記第2の第1導電型領域および前記第3の第1導電型領域と対向する第2導電型領域をさらに有する、請求項1に記載の受光素子。
  12.  前記半導体基板内に埋め込み形成され、前記半導体基板の前記第1の面と対向する第2の面側において前記第2導電型領域と対向する第4の第1導電型領域をさらに有する、請求項11に記載の受光素子。
  13.  前記第4の第1導電型領域は、前記第1の第1導電型領域の下方まで延在し、前記第1の第1導電型領域と接続されている、請求項12に記載の受光素子。
  14.  前記第4の第1導電型領域は、不純物濃度の異なる領域を有している、請求項13に記載の受光素子。
  15.  前記半導体基板は第2導電型を有すると共に、前記第1の面と対向する第2の面の界面に第2導電型層をさらに有し、
     前記第2導電型層および前記第2導電型領域は、前記半導体基板よりも不純物濃度が高い、請求項11に記載の受光素子。
  16.  前記半導体基板は真性半導体によって構成されている、請求項1に記載の受光素子。
  17.  X線に基づく信号電荷を発生する複数の受光素子を備え、
     前記受光素子は、
     光電変換領域を含む半導体基板と、
     前記半導体基板の第1の面の界面に設けられると共に、第1の電極に接続された第1の第1導電型領域と、
     前記第1の面の界面において、前記第1の第1導電型領域の周囲に設けられると共に、第2の電極に接続された第2の第1導電型領域と、
     前記第1の面の界面において、前記第2の第1導電型領域の周囲に設けられると共に、電気的に浮遊状態な第3の第1導電型領域と、
     少なくとも前記第1の第1導電型領域と前記第2の第1導電型領域との間の、前記第1の面の上方に設けられた導電膜と
     を有するX線撮像素子。
  18.  複数の画素が配列された画素領域と、
     前記画素領域の周囲に設けられた周辺領域とを有し、
     前記半導体基板は、前記画素領域に空乏領域を、前記周辺領域に中性領域を有する、請求項17に記載のX線撮像素子。
  19.  前記受光素子は前記複数の画素毎に設けられ、前記半導体基板の前記第1の面と前記第1の面と対向する第2の面との間に逆バイアスを印加するpn接合型受光素子である、請求項18に記載のX線撮像素子。
  20.  X線撮像素子を備え、
     前記X線撮像素子は、X線に基づく信号電荷を発生する複数の受光素子を有し、
     前記受光素子は、
     光電変換領域を含む半導体基板と、
     前記半導体基板の第1の面の界面に設けられると共に、第1の電極に接続された第1の第1導電型領域と、
     前記第1の面の界面において、前記第1の第1導電型領域の周囲に設けられると共に、第2の電極に接続された第2の第1導電型領域と、
     前記第1の面の界面において、前記第2の第1導電型領域の周囲に設けられると共に、電気的に浮遊状態な第3の第1導電型領域と、
     少なくとも前記第1の第1導電型領域と前記第2の第1導電型領域との間の、前記第1の面の上方に設けられた導電膜と
     を備える電子機器。
     
PCT/JP2022/014358 2021-04-28 2022-03-25 受光素子およびx線撮像素子ならびに電子機器 WO2022230499A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/554,254 US20240194701A1 (en) 2021-04-28 2022-03-25 Light-receiving element, x-ray imaging element, and electronic apparatus
KR1020237035649A KR20230173669A (ko) 2021-04-28 2022-03-25 수광 소자 및 x선 촬상 소자 그리고 전자 기기
CN202280029906.9A CN117242585A (zh) 2021-04-28 2022-03-25 光接收元件、x射线成像元件和电子设备
EP22795416.1A EP4333084A1 (en) 2021-04-28 2022-03-25 Light-receiving element, x-ray imaging element, and electronic device
JP2023517174A JPWO2022230499A1 (ja) 2021-04-28 2022-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021075731 2021-04-28
JP2021-075731 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230499A1 true WO2022230499A1 (ja) 2022-11-03

Family

ID=83847964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014358 WO2022230499A1 (ja) 2021-04-28 2022-03-25 受光素子およびx線撮像素子ならびに電子機器

Country Status (6)

Country Link
US (1) US20240194701A1 (ja)
EP (1) EP4333084A1 (ja)
JP (1) JPWO2022230499A1 (ja)
KR (1) KR20230173669A (ja)
CN (1) CN117242585A (ja)
WO (1) WO2022230499A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114012A (ja) 1997-06-12 1999-01-06 S I I R D Center:Kk Pinフォトダイオード
US20020139970A1 (en) * 2001-02-21 2002-10-03 Jan Iwanczyk Semiconductor radiation detector with internal gain
JP2014002155A (ja) * 2012-06-20 2014-01-09 Oxford Instruments Analytical Oy 漏れ電流収集構造およびそれを用いた放射線検出器
JP2014013894A (ja) * 2012-06-20 2014-01-23 Oxford Instruments Analytical Oy 2次元ガード構造およびそれを用いた放射線検出器
CN109671799A (zh) * 2018-12-21 2019-04-23 中国科学院微电子研究所 漂移探测器及其制作方法
JP2020520102A (ja) * 2017-05-17 2020-07-02 プリズマティック、センサーズ、アクチボラグPrismatic Sensors Ab X線センサ、x線検出器システム、およびx線撮像システム
WO2020231304A1 (en) * 2019-05-14 2020-11-19 Prismatic Sensors Ab X-ray sensor having a field limiting ring configuration
JP2021075731A (ja) 2015-09-30 2021-05-20 ダウ グローバル テクノロジーズ エルエルシー 連鎖シャトリングに有用な多頭性または二頭性組成物、及びそれを調製するためのプロセス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114012A (ja) 1997-06-12 1999-01-06 S I I R D Center:Kk Pinフォトダイオード
US20020139970A1 (en) * 2001-02-21 2002-10-03 Jan Iwanczyk Semiconductor radiation detector with internal gain
JP2014002155A (ja) * 2012-06-20 2014-01-09 Oxford Instruments Analytical Oy 漏れ電流収集構造およびそれを用いた放射線検出器
JP2014013894A (ja) * 2012-06-20 2014-01-23 Oxford Instruments Analytical Oy 2次元ガード構造およびそれを用いた放射線検出器
JP2021075731A (ja) 2015-09-30 2021-05-20 ダウ グローバル テクノロジーズ エルエルシー 連鎖シャトリングに有用な多頭性または二頭性組成物、及びそれを調製するためのプロセス
JP2020520102A (ja) * 2017-05-17 2020-07-02 プリズマティック、センサーズ、アクチボラグPrismatic Sensors Ab X線センサ、x線検出器システム、およびx線撮像システム
CN109671799A (zh) * 2018-12-21 2019-04-23 中国科学院微电子研究所 漂移探测器及其制作方法
WO2020231304A1 (en) * 2019-05-14 2020-11-19 Prismatic Sensors Ab X-ray sensor having a field limiting ring configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEGAL, J.D. PATT, B.E. IWANCZYK, J.S. VILKELIS, G. PLUMMER, J.D. HEDMAN, B. HODGSON, K.O.: "A new structure for controlling dark current due to surface generation in drift detectors", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ELSEVIER BV * NORTH-HOLLAND, NL, vol. 414, no. 2-3, 11 September 1998 (1998-09-11), NL , pages 307 - 316, XP004139174, ISSN: 0168-9002, DOI: 10.1016/S0168-9002(98)00570-1 *

Also Published As

Publication number Publication date
JPWO2022230499A1 (ja) 2022-11-03
KR20230173669A (ko) 2023-12-27
EP4333084A1 (en) 2024-03-06
CN117242585A (zh) 2023-12-15
US20240194701A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
US11843886B2 (en) Solid-state imaging device and manufacturing method therefor
JP4725095B2 (ja) 裏面入射型固体撮像装置及びその製造方法
US20160005783A1 (en) Solid-state imaging device and camera
US6414342B1 (en) Photogate with improved short wavelength response for a CMOS imager
KR100820520B1 (ko) 고체촬상장치
US9425225B2 (en) Solid-state imaging device
US10734420B2 (en) Image sensor having an N-type photodiode and a P-type photodiode
WO2022230499A1 (ja) 受光素子およびx線撮像素子ならびに電子機器
JP2010141045A (ja) 固体撮像装置
WO2022230498A1 (ja) 受光素子およびx線撮像素子ならびに電子機器
WO2023281856A1 (ja) 受光装置およびx線撮像装置ならびに電子機器
WO2023281857A1 (ja) 受光素子およびx線撮像素子ならびに電子機器
WO2022004269A1 (ja) 光検出装置、及び電子機器
WO2022219987A1 (ja) 撮像装置
JPH07115183A (ja) 積層型固体撮像装置
CN117957659A (zh) 一种固态成像设备以及一种电子装置
JP2020113793A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517174

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18554254

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280029906.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022795416

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795416

Country of ref document: EP

Effective date: 20231128