WO2022230178A1 - 光治療進度測定方法、光治療進度測定装置および光治療システム - Google Patents
光治療進度測定方法、光治療進度測定装置および光治療システム Download PDFInfo
- Publication number
- WO2022230178A1 WO2022230178A1 PCT/JP2021/017216 JP2021017216W WO2022230178A1 WO 2022230178 A1 WO2022230178 A1 WO 2022230178A1 JP 2021017216 W JP2021017216 W JP 2021017216W WO 2022230178 A1 WO2022230178 A1 WO 2022230178A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phototherapy
- intensity
- affected area
- progress
- fluorescence
- Prior art date
Links
- 238000001126 phototherapy Methods 0.000 title claims abstract description 176
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 89
- 230000001678 irradiating effect Effects 0.000 claims abstract description 12
- 230000008859 change Effects 0.000 claims description 81
- 238000004364 calculation method Methods 0.000 claims description 25
- 238000005259 measurement Methods 0.000 claims description 22
- 238000012937 correction Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000002560 therapeutic procedure Methods 0.000 claims description 5
- 230000002238 attenuated effect Effects 0.000 claims description 4
- 238000000691 measurement method Methods 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 3
- 239000013043 chemical agent Substances 0.000 abstract 2
- 239000003795 chemical substances by application Substances 0.000 description 55
- 239000000523 sample Substances 0.000 description 14
- 238000005286 illumination Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 9
- 230000005284 excitation Effects 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010253 intravenous injection Methods 0.000 description 4
- 230000002250 progressing effect Effects 0.000 description 4
- 238000002073 fluorescence micrograph Methods 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical group CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- UJKPHYRXOLRVJJ-MLSVHJFASA-N CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C Chemical class CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C UJKPHYRXOLRVJJ-MLSVHJFASA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0626—Monitoring, verifying, controlling systems and methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0626—Monitoring, verifying, controlling systems and methods
- A61N2005/0627—Dose monitoring systems and methods
- A61N2005/0628—Dose monitoring systems and methods including a radiation sensor
Definitions
- the present invention relates to a phototherapy progress measuring method, a phototherapy progress measuring device, and a phototherapy system.
- Patent Document 1 there has been known phototherapy that treats an affected area by irradiating the affected area with therapeutic light to excite a fluorescent agent in the affected area.
- the fluorescent agent is consumed, and the intensity of fluorescence generated in the affected area is attenuated accordingly.
- Patent Document 1 irradiation of the therapeutic light to the affected area is terminated when the intensity of the fluorescence becomes equal to or less than a predetermined threshold.
- the fluorescence intensity of the fluorescent agent does not necessarily decay monotonically at the same rate in all affected areas, and exhibits various behaviors depending on the affected area. For example, the decay rate of fluorescence intensity differs from patient to patient. Fluorescence intensity at the end of phototherapy is important for appropriately judging the timing to end phototherapy. However, the fluorescence intensity at the end of the phototherapy does not sufficiently decrease even if the irradiation of the excitation light is continued, and there are even cases where the fluorescence intensity turns from attenuation to increase during the period when the fluorescence intensity is low. person discovered. As a result, it does not necessarily accurately reflect the amount of fluorescent agent consumed in the affected area, that is, the progress of phototherapy. Therefore, it is difficult to accurately grasp the progress of phototherapy in real time based only on the fluorescence intensity from the fluorescent agent.
- the present invention has been made in view of the circumstances described above, and provides a phototherapy progress measuring method, a phototherapy progress measuring apparatus, and a phototherapy system capable of accurately measuring the progress of phototherapy of an affected area in real time. intended to
- One aspect of the present invention is a phototherapy progress measuring method for measuring the progress of phototherapy of an affected area with a fluorescent agent, wherein the intensity of fluorescence generated in the affected area by irradiating the affected area with therapeutic light is the intensity of fluorescence Detecting 1 fluorescence intensity, and calculating progress information representing the progress of phototherapy of the affected area using the first fluorescence intensity and reference data, wherein the reference data is not involved in the phototherapy
- a phototherapy progress measurement method that is determined based on fluorescence intensity associated with the fluorescent agent in the affected area.
- Another aspect of the present invention is a phototherapy progress measuring device for measuring the progress of phototherapy of an affected area with a fluorescent agent, wherein the intensity of fluorescence generated in the affected area by irradiating the affected area with therapeutic light.
- a light detection unit that detects a first fluorescence intensity
- a calculation unit that calculates progress information representing the progress of phototherapy of the affected area using the first fluorescence intensity and reference data, wherein the reference data is the light
- a phototherapy progress measuring device determined based on fluorescence intensity associated with the fluorescent agent in the non-treatment affected area.
- Another aspect of the present invention is a phototherapy system that irradiates an affected area with therapeutic light and performs phototherapy on the affected area with a fluorescent agent, comprising: a therapeutic light source that outputs the therapeutic light; and a therapeutic light that irradiates the affected area with the therapeutic light.
- a phototherapy system comprising a therapeutic light irradiation unit, the phototherapy progress measuring device, and a notification unit for reporting the determination result of the determination unit of the phototherapy progress measuring device.
- FIG. 1 is an overall configuration diagram of a phototherapy progress measuring device and a phototherapy system according to a first embodiment
- FIG. FIG. 5 is a diagram showing an example of temporal changes in fluorescence intensity of an affected area during phototherapy. It is a figure explaining the fluorescence intensity of an affected part.
- FIG. 3 is a diagram showing a plurality of preset data stored in a storage unit; FIG. It is a figure explaining the calculation method of the integrated value using preset data.
- 2 is a flow chart showing the action of the phototherapy progress measuring device and the phototherapy system of FIG. 1; It is an overall configuration diagram of a phototherapy progress measuring device and a phototherapy system according to a second embodiment.
- FIG. 8 is a flow chart showing the action of the phototherapy progress measuring device and phototherapy system of FIG. 7;
- the phototherapy system 100 is an endoscope system that performs phototherapy on the affected area A with a photoresponsive fluorescent agent while observing the affected area A with an endoscope 1.
- Affected area A is, for example, cancer of the upper gastrointestinal tract such as the esophagus.
- the fluorescent drug is a fluorescent molecule that has the property of accumulating in the affected area A, and is activated by being excited by the excitation light to exert a therapeutic effect.
- Fluorescent agents are, for example, panitumumab-IR700 conjugates or hematoporphyrin derivatives.
- the optical therapy system 100 includes an endoscope 1 for observing an affected area A inside the body, an illumination light source 2 for generating illumination light L1 for illuminating the affected area A, and therapeutic light L2 for treating the affected area A.
- a therapeutic light source 3 a probe (therapeutic light irradiation unit) 4 that is inserted into the body via the endoscope 1 and irradiates the affected area A with the therapeutic light L2, an image processing unit 5 that processes an endoscopic image, an internal A display unit (notification unit) 6 for displaying a endoscopic image is provided.
- An endoscope processor 101 is connected to the proximal end of the endoscope 1 .
- the endoscope 1 has a flexible or rigid long scope 7 and an image acquisition section 8 .
- the scope 7 is provided with a treatment instrument channel 7a that extends through the scope 7 in the longitudinal direction.
- An illumination window 7b and a light receiving window 7c are provided on the distal end surface of the scope 7. As shown in FIG.
- the endoscope 1 emits the illumination light L1 supplied from the illumination light source 2 toward the affected area A through the illumination window 7b. Further, the endoscope 1 receives the illumination light L1 reflected by the affected area A through the light receiving window 7c, and acquires an endoscopic image of the affected area A by the image acquisition unit 8 having an imaging device.
- the illumination light source 2 outputs white illumination light L1.
- the therapeutic light source 3 outputs therapeutic light L2, which is excitation light having an excitation wavelength of the fluorescent agent.
- the probe 4 is a long optical fiber probe having an optical fiber that guides the therapeutic light L2, and is inserted into the treatment instrument channel 7a. The proximal end of the probe 4 is connected to the therapeutic light source 3 , and the affected area A is irradiated with the therapeutic light L2 from the distal end of the probe 4 .
- the image processing unit 5 receives the endoscopic image from the image acquisition unit 8 , processes the endoscopic image as necessary, and then outputs the endoscopic image to the display unit 6 .
- the display unit 6 is an arbitrary display device such as a liquid crystal display.
- Figure 2 relates to the experimental results of phototherapy using the panitumumab-IR700 conjugate, which is a conjugate of a molecular targeting antibody and a fluorescent substance.
- the fluorescent agent in the affected area A is consumed, and the fluorescence intensity F attenuates accordingly. Therefore, based on the attenuation of the fluorescence intensity F, the doctor can recognize that the phototherapy is progressing.
- the fluorescence intensity F does not necessarily decrease monotonically like curve a, and may rise at the end of the phototherapy, like curve b and curve c.
- the rate of attenuation of the fluorescence intensity F also varies depending on conditions and the like. Therefore, it is difficult to judge whether or not the required amount of the fluorescent agent administered to the affected area A is consumed, that is, whether or not the phototherapy is completed, based only on the fluorescence intensity F.
- the fluorescence intensity F does not decay monotonically is considered to be the re-accumulation of the fluorescent agent during phototherapy. That is, after a sufficient amount of the fluorescent agent is administered to the patient by intravenous injection, part of the fluorescent agent is recirculated with the blood without being taken into the affected area A, and is reaccumulated in the affected area A at the end of the phototherapy. causes an increase in fluorescence intensity F. Therefore, as shown in FIG. 3, the fluorescence intensity F (see curve b) is the intensity of fluorescence generated by the fluorescent agent preliminarily accumulated in the affected area A before the start of phototherapy (see curve d).
- the phototherapy system 100 includes a phototherapy progress measuring device 10 that measures the progress of phototherapy on the affected area A in order to assist the doctor in determining whether to end the phototherapy on the affected area A.
- the phototherapy progress measuring device 10 includes a photodetector 11 that detects fluorescence intensity (first fluorescence intensity) F, and an intensity data generator that stores the detected fluorescence intensity F in time series. 12, a storage unit 13 that stores a plurality of preset data prepared in advance, a calculation unit 14 that calculates progress information representing the progress of the phototherapy of the affected area A, and the phototherapy of the affected area A is completed based on the progress information.
- a determination unit 15 that determines whether or not the treatment has been performed, and a treatment light adjustment unit 16 that adjusts the intensity of the treatment light L2.
- the phototherapy progress measuring device 10 has at least one processor such as a central processing unit and storage devices such as RAM (random access memory) and ROM (read-only memory).
- the processor executes processing according to the programs stored in the storage device, thereby realizing the processing described later by the intensity data generation unit 12, the calculation unit 14, the determination unit 15, and the therapeutic light adjustment unit 16.
- the storage unit 13 is composed of a storage device.
- a barrier filter 7d is provided on the distal end surface of the scope 7 to selectively transmit the fluorescence Lf and block light in a wavelength range different from the fluorescence Lf.
- the photodetector 11 detects the intensity F of the fluorescence Lf transmitted through the barrier filter 7 d and transmits the fluorescence intensity F to the intensity data generator 12 .
- the light detection unit 11 has an imaging device provided within the endoscope processor 101 or within the scope 7, and acquires a fluorescence image including information on the fluorescence intensity F.
- the fluorescence image may be transmitted to the display section 6 via the image processing section 5 and displayed on the display section 6 .
- the photodetector 11 may have any type of photodetector other than the image sensor.
- the intensity data generator 12 generates intensity data by storing the fluorescence intensity F in time series. For example, the intensity data generator 12 stores the average luminance value of the fluorescence image as the intensity value.
- the intensity data is data representing changes in fluorescence intensity F over time, such as curves a, b, and c shown in FIGS. As shown in FIG. 4, a plurality of preset data D1, D2, D3, . This is data representing the change in fluorescence intensity over time.
- the preset data D1, D2, D3, . It is stored in section 13 .
- the manner of attenuation of the fluorescence intensity of the affected area A changes according to various parameters such as the measurement distance, the concentration of the fluorescent agent, and the irradiation intensity of the treatment light L2. Therefore, a plurality of preset data D1, D2, D3, . . . obtained under different parameters are stored in the storage unit 13.
- the calculation unit 14 When the amount of change ⁇ F is negative, that is, when the fluorescence intensity F is attenuated, the calculation unit 14 does not calculate progress information. When the amount of change ⁇ F is not negative, that is, when the amount of change ⁇ F is zero or positive and the fluorescence intensity F is constant or rising, the calculation unit 14 executes processing described later for calculating progress information.
- FIG. 5 explains a method of calculating progress information using intensity data and preset data.
- the progress information is an integrated value I obtained by integrating the amount of change per unit time in the fluorescence intensity F from the start of treatment to the present time.
- FIG. 5 shows integrated data representing changes in the integrated value I over time.
- the integrated value I represents the amount of fluorescent agent consumed in the affected area A by irradiation of the affected area A with the therapeutic light L2, that is, the progress of the phototherapy of the affected area A.
- the calculation unit 14 selects one preset data that is most similar to the intensity data as reference data from among a plurality of preset data. Specifically, the computing unit 14 compares the curve of the fluorescence intensity F in the intensity data with the curve of the fluorescence intensity G over time in the plurality of preset data, and finds the curve that is most similar in shape to the curve of the intensity data. Select curve preset data. Next, the calculation unit 14 uses the reference data to calculate the correction change amount ⁇ F′ after it is first determined that the change amount ⁇ F is not negative, and the correction change amount ⁇ F′ and the change amount ⁇ F are not negative. The integrated value I is calculated using the amount of change ⁇ F before it is determined for the first time. In FIG. 5, time tk is the time when it is first determined that the variation ⁇ F is not negative.
- the corrected amount of change ⁇ F′ corresponds to the amount of change ⁇ F corrected so as to remove the amount of change per unit time in the fluorescence intensity of the fluorescent agent reaccumulating in the affected area A, and the reaccumulation of the fluorescent agent in the affected area A is It is the net amount of change in the fluorescence intensity of the fluorescent agent preliminarily accumulated in the affected area A that would be expected in the absence of the fluorescent agent.
- the integrated value I is calculated using only the amount of change ⁇ F, the integrated value I is affected by the fluorescence intensity of the reaccumulating fluorescent agent, as indicated by the chain line in the integrated data in FIG. Gone.
- the calculation unit 14 calculates the attenuation rate ⁇ per unit time of the fluorescence intensity G at the time corresponding to the current time as a correction coefficient.
- the attenuation rate ⁇ (t i ) at time t i is calculated from the following equation using fluorescence intensities G(t i ) and G(t i-1 ) at time t i and t i ⁇ 1 .
- the calculation unit 14 multiplies the fluorescence intensity F(t i ⁇ 1 ) detected immediately before the fluorescence intensity F(t i ) by the attenuation rate ⁇ (t i ) to obtain the correction at the current time t i .
- a change amount ⁇ F′(t i ) is calculated.
- the calculation unit 14 calculates the integrated value I(t i ) by adding the correction change amount ⁇ F′(t i ) to the integrated value I(t i ⁇ 1 ) at time t i ⁇ 1 .
- the calculation unit 14 calculates the attenuation rate ⁇ , the correction change amount ⁇ F′, and the integrated value I each time the fluorescence intensity F is detected.
- the determination unit 15 compares the integrated value I with a predetermined threshold value Th. When the integrated value I is equal to or less than the threshold Th, the determination unit 15 outputs a determination result indicating that it is equal to or less than the predetermined threshold. When the integrated value I is greater than the threshold Th, the determination unit 15 outputs a determination result that the predetermined threshold is exceeded. The determination result of the determination unit 15 is transmitted to the therapeutic light adjustment unit 16 and displayed on the display unit 6 to notify the doctor.
- the therapeutic light adjustment unit 16 adjusts the intensity of the therapeutic light L2 irradiated to the affected area A based on the determination result of the determination unit 15. Specifically, when it is determined to be equal to or less than the predetermined threshold value, the therapeutic light adjustment unit 16 maintains the output of the therapeutic light L2 from the therapeutic light source 3, thereby increasing the intensity of the therapeutic light L2 with which the affected area A is irradiated. maintain. On the other hand, when it is determined that the predetermined threshold value is exceeded, the therapeutic light adjustment unit 16 controls the therapeutic light source 3 to reduce or stop the output of the therapeutic light L2 from the therapeutic light source 3 so that the affected area A is irradiated. reduce the intensity of the therapeutic light L2.
- a fluorescent agent is first administered to the affected area A, for example, by intravenous injection into the patient. It takes time for the fluorescent agent to accumulate in the affected area A after the intravenous injection. After a predetermined time (for example, 24 hours) after the intravenous injection, the doctor turns on the illumination light source 2 and inserts the endoscope 1 into the patient's body while observing the endoscopic image displayed on the display unit 6. The distal end of the endoscope 1 is placed in the vicinity of the affected area A.
- the doctor inserts the probe 4 into the body through the treatment instrument channel 7a of the endoscope 1 to place the tip of the probe 4 near the affected area A and turn on the therapeutic light source 3 .
- irradiation of the treatment light L2 from the tip of the probe 4 to the affected area A is started, and phototherapy of the affected area A is started (step S1).
- the doctor confirms that the phototherapy is progressing based on the attenuation of the fluorescence intensity F of the affected area A in the endoscopic image displayed on the display unit 6.
- the fluorescence intensity F is affected by the fluorescent agent that reaccumulates in the affected area A during the phototherapy, so the fluorescence intensity F does not necessarily accurately represent the progress of the phototherapy. Therefore, it is difficult to judge whether the phototherapy has been completed based only on the fluorescence intensity F.
- the phototherapy progress measuring method is performed by the phototherapy progress measuring device 10 during phototherapy.
- the phototherapy progress measuring method comprises steps S2 and S11 of detecting the intensity F of the fluorescence Lf generated in the affected area A by the irradiation of the treatment light L2, and storing the fluorescence intensity F to generate intensity data representing the time change of the fluorescence intensity F. steps S3 and S12, steps S4 and S5 for determining the amount of change ⁇ F in the fluorescence intensity F, steps S6 to S8 for calculating progress information representing the progress of the phototherapy, and phototherapy of the affected area A based on the progress information and a step S9 of determining whether or not has been completed.
- the fluorescence intensity F is detected by the photodetector 11 (step S2), and the fluorescence intensity F is stored in time series by the intensity data generator 12 to generate intensity data (step S3).
- the calculation unit 14 calculates the change amount ⁇ F of the fluorescence intensity F per unit time (step S4), and determines whether the change amount ⁇ F is negative, that is, whether the fluorescence intensity F is monotonically attenuating. is determined (step S5). If the amount of change ⁇ F is negative (YES in step S5), steps S2 to S4 are repeated.
- the computing unit 14 calculates the progress information of the affected area A using the strength data and the reference data (steps S6 to S8). Specifically, preset data that is most similar to the intensity data is selected as reference data from a plurality of preset data (step S6). Next, the calculation unit 14 calculates the corrected amount of change ⁇ F′ of the fluorescence intensity F using the reference data, and the amount of change ⁇ F calculated in step S4 and the amount of corrected change ⁇ F′ are used to integrate the progress information. A value I is calculated.
- the determination unit 15 compares the integrated value I with a predetermined threshold value Th (step S9).
- a predetermined threshold value Th When it is determined that the integrated value I is equal to or less than the threshold Th (NO in step S9), information indicating that the phototherapy has not been completed is displayed on the display unit 6, thereby notifying the doctor of the incompletion of the phototherapy. (step S10). Thereafter, detection of fluorescence intensity F, generation of intensity data, and calculation of progress information in steps S11, S12, S7, and S8 are repeated until it is determined that integrated value I is equal to or less than threshold Th.
- step S9 If it is determined that the integrated value I is greater than the threshold Th (YES in step S9), information indicating the completion of the phototherapy is displayed on the display unit 6 to notify the doctor of the completion of the phototherapy (step S13). Further, the intensity of the therapeutic light L2 applied to the affected area A is reduced by the therapeutic light adjustment unit 16 (step S14).
- the doctor determines whether or not to end the phototherapy based on the determination result displayed on the display unit 6. Specifically, the doctor continues to irradiate the affected area A with the therapeutic light L2 when the determination result is output that it is equal to or less than the predetermined threshold value Th. On the other hand, when the determination result that the predetermined threshold value Th is exceeded is output, the doctor turns off the treatment light source 3 to terminate the irradiation of the treatment light L2 to the affected area A, and the optical treatment of the affected area A is completed. .
- a plurality of preset data D1, D2, D3, is a model of
- the integrated value I representing the accurate consumption amount of the fluorescent agent consumed by the phototherapy can be calculated as the progress information, and the accurate progress of the phototherapy can be measured. can. Moreover, it is possible to accurately determine whether the phototherapy has been completed based on the progress information.
- the fluorescence intensity F is a parameter directly related to the amount of consumption of the fluorescent agent in the affected area A, and progress information can be calculated from the fluorescence intensity F in real time. Accordingly, the accurate progress of phototherapy can be measured in real time, and it can be determined in real time whether phototherapy has been completed. When the progress of phototherapy is indirectly measured using information other than fluorescence intensity, it is difficult to measure the progress of phototherapy in real time.
- the corrected amount of change ⁇ F′ is calculated by multiplying the fluorescence intensity F by the attenuation rate ⁇ calculated from the reference data, but the method of calculating the corrected amount of change ⁇ F′ is not limited to this. Any calculation method can be used as long as it is possible to calculate the net amount of change ⁇ F' derived from the fluorescent agent pre-accumulated in the affected area, excluding the amount of change derived from the re-accumulating fluorescent agent. can be used.
- the amount of change ⁇ G(t i ) per unit time in the fluorescence intensity G(t i ) of the reference data is calculated as the corrected amount of change ⁇ F′(t i ).
- the fluorescence intensity G(t i ) of the reference data may be used as the fluorescence intensity F(t i ) of the intensity data after the first determination that the fluorescence intensity F does not decay.
- the fluorescence intensity F of the intensity data after it is first determined that the fluorescence intensity F does not decay is replaced with the fluorescence intensity G of the reference data, and the change amount ⁇ G of the fluorescence intensity G per unit time is the corrected change amount ⁇ F′.
- the correction change amount ⁇ F′ is predicted only from the reference data, so there is no need to detect and store the fluorescence intensity F after it is first determined that the fluorescence intensity F does not decay. Therefore, the processing for calculating progress information can be simplified.
- the phototherapy progress measuring device 20 acquires the data of the second fluorescence intensity, which is the fluorescence intensity of the reaccumulated fluorescent agent, as reference data, and uses the data of the second fluorescence intensity. It is different from the phototherapy system 100 of the first embodiment in that the progress information is calculated by In this embodiment, the points that are different from the first embodiment will be described, and the same reference numerals will be given to the configurations that are common to the first embodiment, and the description thereof will be omitted.
- the phototherapy system 200 includes an endoscope 1, an illumination light source 2, a treatment light source 3, a probe 4, an image processing unit 5, a display unit 6, and a phototherapy progress measuring device. 20.
- the phototherapy progress measuring device 20 includes a photodetector 11 , a calculator 14 , a determiner 15 , and a therapeutic light adjuster 16 .
- the therapeutic light adjustment unit 16 switches the output of the therapeutic light source 3 between a first output of high output and a second output of low output, thereby adjusting the light irradiated to the affected area A to therapeutic light.
- the therapeutic light L2 is light having a first intensity required for phototherapy. Fluorescent agents fluoresce at any intensity of excitation light, but exhibit phototherapeutic effects only at sufficiently high intensity. A fluorescent drug that exhibits a phototherapeutic effect has the property that the molecular structure of the fluorescent molecule collapses and does not emit fluorescence.
- the measurement light L3 has a second intensity that is less than the first intensity, and is weak light that does not cause the fluorescent agent to exert a phototherapeutic effect.
- the measurement light L3 is light obtained by attenuating the therapeutic light L2.
- the first intensity is approximately 100 mW and the second intensity is several nW.
- the measurement light L3 acts on both the unconsumed fluorescent agent that has accumulated in the affected area in advance and the fluorescent agent that has reaccumulated in the affected area A and is not bound to the affected area A, so that the fluorescent agents in these two states are detected.
- Fluorescence Lf is generated as the sum of fluorescence.
- the photodetector 11 alternately detects the first fluorescence intensity F1 and the second fluorescence intensity F2, and outputs the fluorescence intensities F1 and F2 to the calculator .
- the first fluorescence intensity F1 is the intensity of the fluorescence Lf generated in the affected area A by irradiation with the therapeutic light L2, and is the intensity of the fluorescence Lf generated by the fluorescent agent pre-accumulated in the affected area A and the fluorescent agent re-accumulated.
- the second fluorescence intensity F2 is the intensity of the fluorescence Lf generated in the affected area A by the irradiation of the measurement light L3, and is the intensity of the fluorescence generated by the fluorescent agent reaccumulated in the affected area A.
- the first fluorescence intensity F1 and the second fluorescence intensity F2 are associated with the treatment light L2 and the measurement light L3, respectively, so that the calculation unit 14 can distinguish between the first fluorescence intensity F1 and the second fluorescence intensity F2.
- the calculator 14 calculates a change amount ⁇ F1 per unit time of the first fluorescence intensity F1 at that time, and the photodetector 11 detects the second fluorescence
- the amount of change ⁇ F2 per unit time of the second fluorescence intensity F2 at that time is calculated.
- ⁇ F1 and ⁇ F2 are calculated by the same method as ⁇ F in the first embodiment.
- the calculation unit 14 calculates the degree of matching between the amount of change ⁇ F1 and the amount of change ⁇ F2 as progress information. For example, the degree of matching is expressed using the difference or ratio between ⁇ F1 and ⁇ F2, the closer the difference between ⁇ F1 and ⁇ F2 to zero, the higher the degree of matching.
- the change in the fluorescence intensity F1 of the affected area A is dominated by the change in the fluorescence intensity F2 of the reaccumulated fluorescent agent. equal or approximately equal to ⁇ F2. Therefore, the degree of agreement increases as the phototherapy of affected area A approaches completion.
- the amount of change ⁇ F1 and the amount of change ⁇ F2 are amounts based on lights L2 and L3 of different intensities.
- the amounts of change ⁇ F1 and ⁇ F2 are normalized so that the amounts of change ⁇ F1 and ⁇ F2 are the values when the lights L2 and L3 of the same intensity are irradiated, and the degree of matching is calculated using the normalized amounts of change ⁇ F1 and ⁇ F2.
- the determination unit 15 compares the matching degree with a predetermined threshold value Th. When the matching degree is equal to or less than the threshold Th, the determination unit 15 outputs a determination result that the matching degree is equal to or less than the predetermined threshold Th. When the degree of matching is greater than the threshold Th, the determination unit 15 outputs a determination result indicating that the degree of matching exceeds the predetermined threshold Th.
- the phototherapy progress measuring method shown in FIG. 9 is performed by the phototherapy progress measuring device 20 during phototherapy.
- the phototherapy progress measuring method includes step S21 of irradiating the affected area A with the therapeutic light L2, step S22 of detecting a first fluorescence intensity F1 that is the intensity of fluorescence generated in the affected area A by the irradiation of the therapeutic light L2, A step S24 of irradiating the measurement light L3 on the target area, a step S25 of detecting a second fluorescence intensity F2 that is the intensity of fluorescence generated in the affected area A by the irradiation of the measurement light L3, and a step S25 of detecting the progress information using the fluorescence intensities F1 and F2. It includes steps S23, S26, and S27 for calculating, and step S28 for determining whether or not the phototherapy of the affected area A has been completed based on the progress
- the treatment light L2 and the measurement light L3 are alternately irradiated onto the affected area A (steps S21, S24), and the first fluorescence intensity F1 and the second fluorescence intensity F2 are alternately detected by the photodetector 11. (Steps S22, S25). Then, the amount of change ⁇ F1 and ⁇ F2 per unit time of each of the first fluorescence intensity F1 and the second fluorescence intensity F2 is calculated by the calculation unit 14 (steps S23 and S26), and the amount of change ⁇ F1 and the amount of change ⁇ F2 match. degree is calculated as progress information (step S27).
- the determination unit 15 compares the matching degree with a predetermined threshold value Th (step S28). If the degree of matching is equal to or less than the threshold Th (NO in step S28), the determination unit 15 determines that the degree of coincidence is equal to or less than the predetermined threshold Th, and notifies the doctor of the determination result (step S10). After determining that it is equal to or less than the threshold Th, steps S21 to S27 are repeated until it is determined that the threshold Th is exceeded. If the matching degree is greater than the threshold value Th (YES in step S28), the determination unit 15 determines that the predetermined threshold value Th has been exceeded, and the doctor is informed of the determination result (step S13), and the intensity of the treatment light L2. is reduced by the treatment light adjustment unit 16 (step S14).
- the second fluorescence intensity F2 of the fluorescent agent reaccumulating in the affected area A is obtained as reference data during phototherapy.
- the amount of change ⁇ F1 approaches the amount of change ⁇ F2.
- Such a degree of coincidence can be calculated as progress information, and accurate progress of phototherapy can be measured.
- the doctor can accurately determine whether the phototherapy has been completed based on the progress information.
- the matching degree is calculated in real time from the fluorescence intensities F1 and F2. This allows the accurate progress of phototherapy to be measured in real time, and the doctor to determine in real time whether phototherapy has been completed.
- the phototherapy progress measuring device 20 starts measuring the progress of the phototherapy at the same time as the phototherapy starts.
- the measurement of phototherapy progress may begin when it becomes non-negative for the first time. That is, after the start of phototherapy, the calculator 14 calculates the amount of change ⁇ F1 each time the first fluorescence intensity F1 is detected.
- the therapeutic light adjustment unit 16 outputs the therapeutic light L2 from the therapeutic light source 3 until the variation ⁇ F1 becomes non-negative for the first time after the start of the phototherapy, and after the variation ⁇ F1 becomes non-negative for the first time, the therapeutic light L2 and the measurement light L3 are output.
- the therapeutic light source 3 is alternately output. According to this configuration, the treatment light L2 is applied to the affected area A until the variation ⁇ F1 becomes negative for the first time, so the treatment time for the affected area A can be shortened.
- switching between the therapeutic light L2 and the measurement light L3 is performed by switching the output of the therapeutic light source 3.
- the irradiation distance of the therapeutic light L2 to the affected area A is changed to It may be done by being changed.
- the irradiation distance is the distance from the tip of the probe 4 from which the therapeutic light L2 is emitted to the affected area A.
- the irradiation distance is changed manually, for example, by a doctor reciprocating the probe 4 in the longitudinal direction, or automatically by reciprocating the probe 4 with a motor (not shown).
- a measurement light source that generates and outputs the measurement light L3 may be provided separately from the treatment light source 3 .
- the display unit 6 may display progress information in addition to or instead of the determination result of the determination unit 15.
- the display unit 6 may display the integrated value I, the amounts of change ⁇ F1 and ⁇ F2, and the degree of coincidence as the progress information, or may display a graph representing changes over time.
- the display unit 6 may display the progress of the phototherapy for each affected area A as progress information superimposed on the endoscopic image.
- the doctor can easily grasp the progress of each affected area A based on the display attached to the affected area A in the endoscopic image.
- one of "P1", “P2”, “P3” and “P4" is assigned to each affected area A in the endoscopic image.
- P1 indicates the stage in which the fluorescence intensity F is monotonically attenuating and the phototherapy is progressing.
- P2 indicates a stage at which the change in fluorescence intensity F over time is substantially zero and progress of phototherapy has stopped.
- P3 indicates the stage when the fluorescence intensity F increases and both the phototherapy and the re-accumulation of the fluorescent agent progress.
- “P4" indicates the stage when phototherapy stops progressing and only re-accumulation of the fluorescent agent progresses.
- the notification unit is the display unit 6 that displays the determination result of the determination unit 15, but instead of this, the determination result may be notified using other means. good too.
- the notification unit may output a sound according to the determination result.
- the phototherapy progress measuring devices 10 and 20 are part of the endoscope system, but instead of this, they are devices independent of the endoscope system.
- the optical therapy progress measuring devices 10 and 20 are devices separate from the endoscope processor 101, and detect the fluorescence Lf of the affected area A via a probe arranged outside the endoscope 1 and A may be irradiated with the measurement light L3.
- the reference data is data of the second fluorescence intensity, which is the intensity of the fluorescence of the fluorescent agent that reaccumulates in the affected area during the phototherapy, or the intensity of the fluorescence of the fluorescent agent that reaccumulates
- the preset data representing the temporal change in the fluorescence intensity of the fluorescent agent that does not contain the therapeutic light is irradiated
- the reference data is not limited to the above, and the fluorescent agent in the affected area that is not involved in the phototherapy Based on the fluorescence intensity associated with, if the data determined in association with the fluorescence based on the fluorescent agent in the affected area not involved in the phototherapy, which can be included in the fluorescence intensity at the end of the phototherapy with the treatment light L2, other may be reference data of
- optical therapy system 100, 200 optical therapy system 10, 20 optical therapy progress measuring device 3 therapeutic light source 4 probe (therapeutic light irradiation unit) 6 Display unit (notification unit) 8 image acquisition unit 11 light detection unit 12 intensity data generation unit 13 storage unit 14 calculation unit 15 determination unit 16 treatment light adjustment unit A affected area D1, D2, D3 preset data F, F1 first fluorescence intensity F2 second fluorescence intensity ⁇ F, ⁇ F1, ⁇ F2 Change amount I Integrated value
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
光治療を終了するタイミングを適切に判断するためには、光治療の終盤における蛍光強度が重要である。しかし、光治療の終盤における蛍光強度は、励起光の照射を続けたとしても蛍光強度が十分に下がることなく、蛍光強度が低値の期間においてむしろ減衰から上昇に転じる場合すら有ることを、発明者は発見した。結果、患部における蛍光薬剤の消費量、すなわち光治療の進度を必ずしも正確に反映するとは限らない。したがって、蛍光薬剤からの蛍光強度のみに基づいて、光治療の正確な進度をリアルタイムに把握することは難しい。
本発明の一態様は、蛍光薬剤による患部の光治療の進度を測定する光治療進度測定方法であって、前記患部に治療光が照射されることによって前記患部において発生する蛍光の強度である第1蛍光強度を検出すること、および、前記第1蛍光強度および参照データを用いて前記患部の光治療の進度を表す進度情報を算出することを含み、前記参照データが、前記光治療に関与しない前記患部中の前記蛍光薬剤に関連付いた蛍光強度に基づき決定される、光治療進度測定方法である。
本発明の第1実施形態に係る光治療進度測定方法、光治療進度測定装置および光治療システムについて図面を参照して説明する。
図1に示されるように、本実施形態に係る光治療システム100は、内視鏡1によって患部Aを観察しながら、光応答性の蛍光薬剤によって患部Aを光治療する内視鏡システムである。患部Aは、例えば、食道のような上部消化管の癌である。蛍光薬剤は、患部Aに集積する特性を有する蛍光分子であり、励起光によって励起されることで活性化し治療効果を発揮する。蛍光薬剤は、例えば、パニツムマブ-IR700複合体またはヘマトポルフィリン誘導体である。
治療光源3は、蛍光薬剤の励起波長を有する励起光である治療光L2を出力する。
プローブ4は、治療光L2を導光する光ファイバを有する長尺の光ファイバプローブであり、処置具チャネル7a内に挿入される。プローブ4の基端は、治療光源3と接続され、治療光L2がプローブ4の先端から患部Aに照射される。
画像処理部5は、画像取得部8から内視鏡画像を受け取り、必要に応じて内視鏡画像に処理を施した後に内視鏡画像を表示部6に出力する。
表示部6は、液晶ディスプレイ等の任意の表示装置である。
期間Iでは、光治療前に患部Aに予め集積した蛍光薬剤の蛍光が支配的であり、高い治療効果が得られる。期間IIでは、予め集積した蛍光薬剤の蛍光と再集積した蛍光薬剤の蛍光が混在し、治療効果はわずかである。期間IIIでは、再集積した蛍光薬剤の蛍光が支配的であり、患部Aに予め集積した蛍光薬剤に由来する光治療効果はほとんど得られない。
図4に示されるように、記憶部13に予め記憶されている複数のプリセットデータD1,D2,D3,…は、再集積する蛍光薬剤の蛍光強度を含まない、治療光L2の照射による蛍光薬剤の蛍光強度の時間変化を表すデータである。
具体的には、演算部14は、光検出部11によって蛍光強度Fが検出される都度、その時点での蛍光強度Fの単位時間当たりの変化量ΔFを算出する。例えば、時刻ti(i=1,2,3,…)に蛍光強度F(ti)が検出された場合、時刻tiにおける変化量ΔF(ti)は、蛍光強度F(ti)と、直前の時刻ti-1に検出された蛍光強度F(ti-1)とを用いて下式から算出される。
ΔF(ti)=(F(ti)-F(ti-1))/(ti-ti-1)
進度情報は、治療開始から現時点までの蛍光強度Fの単位時間当たりの変化量を積算した積算値Iである。図5には、積算値Iの時間変化を表す積算データが示されている。積算値Iは、患部Aへの治療光L2の照射によって患部Aにおいて消費された蛍光薬剤の消費量、すなわち患部Aの光治療の進度を表す。
次に、演算部14は、変化量ΔFが負ではないと初めて判断された後の補正変化量ΔF’を参照データを用いて算出し、補正変化量ΔF’と、変化量ΔFが負ではないと初めて判断される前の変化量ΔFとを用いて積算値Iを算出する。図5において、時刻tkは、変化量ΔFが負ではないと初めて判断された時刻である。
α(ti)=1 - G(ti)/G(ti-1)
次に、演算部14は、蛍光強度F(ti)の直前に検出された蛍光強度F(ti-1)に減衰率α(ti)を乗算することによって、現時点tiでの補正変化量ΔF’(ti)を算出する。次に、演算部14は、補正変化量ΔF’(ti)を時刻ti-1の積算値I(ti-1)に加算することによって、積算値I(ti)を算出する。演算部14は、蛍光強度Fが検出される都度、減衰率α、補正変化量ΔF’および積算値Iを算出する。
光治療システム100を使用して患部Aを光治療するために、まず、例えば患者に静脈注射することによって蛍光薬剤が患部Aに投与される。静脈注射後、蛍光薬剤が患部Aに集積するまで時間を要する。静脈注射から所定時間(例えば、24時間)後、医師は、照明光源2を点灯し、表示部6に表示される内視鏡画像を観察しながら内視鏡1を患者の体内に挿入し、内視鏡1の先端を患部Aの近傍に配置する。次に、医師は、内視鏡1の処置具チャネル7aを経由してプローブ4を体内に挿入することによってプローブ4の先端を患部Aの近傍に配置し、治療光源3を点灯させる。これにより、プローブ4の先端から患部Aへの治療光L2の照射が開始され、患部Aの光治療が開始される(ステップS1)。
光治療進度測定方法は、治療光L2の照射によって患部Aにおいて発生する蛍光Lfの強度Fを検出するステップS2,S11と、蛍光強度Fを記憶し蛍光強度Fの時間変化を表す強度データを生成するステップS3,S12と、蛍光強度Fの変化量ΔFを判定するステップS4,S5と、光治療の進度を表す進度情報を算出するステップS6~S8と、進度情報に基づいて患部Aの光治療が完了したか否かを判定するステップS9とを含む。
蛍光強度以外の情報を用いて光治療の進度を間接的に測定する場合、光治療の進度をリアルタイムに測定することは難しい。
他の変形例において、蛍光強度Fが減衰しないとの初めての判断以降、参照データの蛍光強度G(ti)を強度データの蛍光強度F(ti)として用いてもよい。すなわち、蛍光強度Fが減衰しないと初めて判断された後の強度データの蛍光強度Fが、参照データの蛍光強度Gに置換され、蛍光強度Gの単位時間当たりの変化量ΔGが補正変化量ΔF’として算出される。
これらの変形例によれば、補正変化量ΔF’が参照データのみから予測されるので、蛍光強度Fが減衰しないと初めて判断された後、蛍光強度Fを検出および記憶する必要がない。したがって、進度情報の算出にかかる処理を単純化することができる。
次に、本発明の第2実施形態に係る光治療進度測定方法、光治療進度測定装置および光治療システムについて図面を参照して説明する。
本実施形態に係る光治療システム200は、光治療進度測定装置20が、再集積した蛍光薬剤の蛍光強度である第2蛍光強度のデータを参照データとして取得し、第2蛍光強度のデータを用いて進度情報を算出する点において、第1実施形態の光治療システム100と相違する。本実施形態においては、第1実施形態と相違する点において説明し、第1実施形態と共通する構成については同一の符号を付して説明を省略する。
光治療進度測定装置20は、光検出部11と、演算部14と、判定部15と、治療光調整部16とを備える。
変化量ΔF1と変化量ΔF2は、異なる強度の光L2,L3に基づく量である。したがって、変化量ΔF1,ΔF2が同一強度の光L2,L3を照射した場合の値となるように変化量ΔF1,ΔF2を規格化し、規格化された変化量ΔF1,ΔF2を用いて一致度を算出してもよい。
第1実施形態と同様に、光治療中、図9に示される光治療進度測定方法が光治療進度測定装置20によって実行される。
光治療進度測定方法は、患部Aに治療光L2を照射するステップS21と、治療光L2の照射によって患部Aにおいて発生する蛍光の強度である第1蛍光強度F1を検出するステップS22と、患部Aに測定光L3を照射するステップS24と、測定光L3の照射によって患部Aにおいて発生する蛍光の強度である第2蛍光強度F2を検出するステップS25と、蛍光強度F1,F2を用いて進度情報を算出するステップS23,S26,S27と、進度情報に基づいて患部Aの光治療が完了したか否かを判定するステップS28とを含む。
一致度が閾値Thよりも大きい場合(ステップS28のYES)、所定の閾値Thを超えたと判定部15によって判定され、その旨の判定結果が医師に報知され(ステップS13)、治療光L2の強度が治療光調整部16によって低減される(ステップS14)。
また、一致度が蛍光強度F1,F2からリアルタイムに算出される。これにより、光治療の正確な進度をリアルタイムに測定し、光治療が完了したか否かを医師がリアルタイムに判定することができる。
すなわち、光治療開始後、演算部14は、第1蛍光強度F1が検出される度に変化量ΔF1を算出する。治療光調整部16は、光治療開始から変化量ΔF1が初めて負でなくなるまで治療光源3から治療光L2を出力させ、変化量ΔF1が初めて負でなくなって以降、治療光L2および測定光L3を交互に治療光源3から出力させる。
この構成によれば、初めて変化量ΔF1が負になるまでずっと治療光L2が患部Aに照射されるので、患部Aの治療時間を短縮することができる。
照射距離を長くすることによって、患部Aに照射される治療光L2の強度を低下させ、低強度の治療光L2を測定光L3として使用することができる。
また、本実施形態において、治療光源3とは別に、測定光L3を発生し出力する測定光源が設けられていてもよい。
例えば、内視鏡画像内の各患部Aに「P1」、「P2」、「P3」および「P4」のいずれかが付される。「P1」は、蛍光強度Fが単調に減衰し光治療が進行している段階を示す。「P2」は、蛍光強度Fの時間変化が略ゼロであり光治療の進行が停止した段階を示す。「P3」は、蛍光強度Fが上昇し光治療と蛍光薬剤の再集積の両方が進行する段階を示す。「P4」は、光治療の進行が停止し蛍光薬剤の再集積のみが進行する段階を示す。
上記第1および第2実施形態において、光治療進度測定装置10,20が、内視鏡システムの一部であることとしたが、これに代えて、内視鏡システムとは独立した装置であってもよい。例えば、光治療進度測定装置10,20は、内視鏡プロセッサ101とは別体の装置であり、内視鏡1の外側に配置されるプローブを経由して患部Aの蛍光Lfの検出および患部Aへの測定光L3の照射を行ってもよい。
10,20 光治療進度測定装置
3 治療光源
4 プローブ(治療光照射部)
6 表示部(報知部)
8 画像取得部
11 光検出部
12 強度データ生成部
13 記憶部
14 演算部
15 判定部
16 治療光調整部
A 患部
D1,D2,D3 プリセットデータ
F,F1 第1蛍光強度
F2 第2蛍光強度
ΔF,ΔF1,ΔF2 変化量
I 積算値
Claims (20)
- 蛍光薬剤による患部の光治療の進度を測定する光治療進度測定方法であって、
前記患部に治療光が照射されることによって前記患部において発生する蛍光の強度である第1蛍光強度を検出すること、および、
前記第1蛍光強度および参照データを用いて前記患部の光治療の進度を表す進度情報を算出することを含み、
前記参照データが、前記光治療に関与しない前記患部中の前記蛍光薬剤に関連付いた蛍光強度に基づき決定される、光治療進度測定方法。 - 前記参照データが、
前記光治療中に前記患部に再集積する前記蛍光薬剤の蛍光の強度である第2蛍光強度のデータであるか、または、
再集積する前記蛍光薬剤の蛍光の強度を含まない前記蛍光薬剤の蛍光の強度の前記治療光の照射による時間変化を表すプリセットデータである、請求項1に記載の光治療進度測定方法。 - 前記第1蛍光強度を時系列に記憶し該第1蛍光強度の時間変化を表す強度データを生成することをさらに含み、
前記進度情報を算出することが、
複数の前記プリセットデータの中から、前記強度データと最も類似する1つのプリセットデータを前記参照データとして選択すること、
選択された前記プリセットデータを用いて前記第1蛍光強度の単位時間当たりの補正変化量を算出すること、および、
前記第1蛍光強度の単位時間当たりの変化量の積算値を前記補正変化量を用いて算出することを含み、
前記積算値が前記進度情報である請求項2に記載の光治療進度測定方法。 - 前記治療光よりも弱い測定光を前記患部に照射すること、および、
前記測定光が前記患部に照射されることによって前記患部において発生する蛍光の強度である前記第2蛍光強度を検出することをさらに含み、
前記進度情報を算出することが、前記第1蛍光強度の単位時間当たりの変化量と前記第2蛍光強度の単位時間当たりの変化量との間の一致度を算出することを含み、
該一致度が前記進度情報である請求項2に記載の光治療進度測定方法。 - 前記測定光を照射することは、前記患部に照射される前記治療光の強度を第1強度から該第1強度よりも弱い第2強度に切り替えることを含み、前記測定光は、前記第2強度に減弱された前記治療光である、請求項4に記載の光治療進度測定方法。
- 前記治療光を出力する治療光源の出力を切り替えることによって、前記患部に照射される前記治療光の強度が前記第1強度と前記第2強度との間で切り替えられる、請求項5に記載の光治療進度測定方法。
- 前記患部までの前記治療光の照射距離が変更されることによって、前記患部に照射される前記治療光の強度が前記第1強度と前記第2強度との間で切り替えられる、請求項5に記載の光治療進度測定方法。
- 前記第1蛍光強度の単位時間当たりの変化量が負であるか否かを判断することをさらに含み、
前記進度情報を算出することは、前記変化量が負ではないと判断された後に行われる、請求項1から請求項7のいずれかに記載の光治療進度測定方法。 - 前記進度情報に基づいて、前記患部の光治療が完了したか否かを判定することをさらに含む、請求項1から請求項8のいずれかに記載の光治療進度測定方法。
- 蛍光薬剤による患部の光治療の進度を測定する光治療進度測定装置であって、
前記患部に治療光が照射されることによって前記患部において発生する蛍光の強度である第1蛍光強度を検出する光検出部と、
前記第1蛍光強度および参照データを用いて前記患部の光治療の進度を表す進度情報を算出する演算部とを備え、
前記参照データが、前記光治療に関与しない前記患部中の前記蛍光薬剤に関連付いた蛍光強度に基づき決定される、光治療進度測定装置。 - 前記参照データが、前記光治療中に前記患部に再集積する前記蛍光薬剤の蛍光の強度である第2蛍光強度のデータであるか、または、
再集積する前記蛍光薬剤の蛍光の強度を含まない前記蛍光薬剤の蛍光の強度の前記治療光の照射による時間変化を表すプリセットデータである、請求項10に記載の光治療進度測定装置。 - 前記第1蛍光強度を時系列に記憶し該第1蛍光強度の時間変化を表す強度データを生成する強度データ生成部と、
複数の前記プリセットデータを記憶する記憶部とをさらに備え、
前記演算部が、
前記複数のプリセットデータの中から、前記強度データと最も類似する1つのプリセットデータを前記参照データとして選択し、
選択された前記プリセットデータを用いて前記第1蛍光強度の単位時間当たりの補正変化量を補正し、
前記第1蛍光強度の単位時間当たりの変化量の積算値を前記補正変化量を用いて算出し、前記積算値が前記進度情報である、請求項11に記載の光治療進度測定装置。 - 前記光検出部は、前記治療光よりも弱い測定光が前記患部に照射されることによって前記患部において発生する蛍光の強度である前記第2蛍光強度をさらに検出し、
前記演算部が、前記第1蛍光強度の単位時間当たりの変化量と前記第2蛍光強度の単位時間当たりの変化量との間の一致度を算出し、該一致度が前記進度情報である、請求項11に記載の光治療進度測定装置。 - 前記患部に照射される前記治療光の強度を調整する治療光調整部をさらに備え、
該治療光調整部は、前記患部に照射される前記治療光の強度を第1強度と該第1強度よりも弱い第2強度との間で切り替え、前記測定光は前記第2強度に減弱された前記治療光である、請求項13に記載の光治療進度測定装置。 - 前記演算部は、
前記第1蛍光強度の単位時間当たりの変化量が負であるか否かを判断し、
前記変化量が負ではないと判断された後に前記進度情報を算出する、請求項10から請求項14のいずれかに記載の光治療進度測定装置。 - 前記進度情報に基づいて、前記患部の光治療が完了したか否かを判定する判定部をさらに備える、請求項10から請求項15のいずれかに記載の光治療進度測定装置。
- 患部に治療光を照射し前記患部を蛍光薬剤によって光治療する光治療システムであって、
前記治療光を出力する治療光源と、
前記治療光を前記患部に照射する治療光照射部と、
請求項16に記載の光治療進度測定装置と、
該光治療進度測定装置の前記判定部の判定結果を報知する報知部とを備える光治療システム。 - 前記患部に照射される前記治療光の強度を調整する治療光調整部をさらに備え、
前記判定部によって前記患部の光治療が完了したと判定された場合に、前記治療光調整部が前記治療光の強度を低減する、請求項17に記載の光治療システム。 - 前記患部の画像を取得する画像取得部と、
該画像取得部によって取得された前記画像を表示する表示部とをさらに備え、
該表示部が前記進度情報を表示する、請求項17または請求項18に記載の光治療システム。 - 前記表示部が、前記進度情報を前記画像内の前記患部に重ねて表示する、請求項19に記載の光治療システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/017216 WO2022230178A1 (ja) | 2021-04-30 | 2021-04-30 | 光治療進度測定方法、光治療進度測定装置および光治療システム |
CN202180097335.8A CN117222449A (zh) | 2021-04-30 | 2021-04-30 | 光治疗进度测定方法、光治疗进度测定装置以及光治疗系统 |
JP2023517006A JPWO2022230178A5 (ja) | 2021-04-30 | 光治療進度測定方法、プロセッサおよび光治療システム | |
US18/379,050 US20240033535A1 (en) | 2021-04-30 | 2023-10-11 | Phototherapy progress measuring method, processor, and phototherapy system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/017216 WO2022230178A1 (ja) | 2021-04-30 | 2021-04-30 | 光治療進度測定方法、光治療進度測定装置および光治療システム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/379,050 Continuation US20240033535A1 (en) | 2021-04-30 | 2023-10-11 | Phototherapy progress measuring method, processor, and phototherapy system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022230178A1 true WO2022230178A1 (ja) | 2022-11-03 |
Family
ID=83848217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/017216 WO2022230178A1 (ja) | 2021-04-30 | 2021-04-30 | 光治療進度測定方法、光治療進度測定装置および光治療システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240033535A1 (ja) |
CN (1) | CN117222449A (ja) |
WO (1) | WO2022230178A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7476755B2 (ja) | 2020-10-19 | 2024-05-01 | 株式会社島津製作所 | 治療支援装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999006113A1 (en) * | 1997-07-29 | 1999-02-11 | Haishan Zeng | Apparatus and methods to monitor photodynamic therapy (pdt) |
JP2006167046A (ja) * | 2004-12-14 | 2006-06-29 | Susumu Terakawa | 癌治療状況評価方法および装置ならびに癌治療方法および装置 |
JP2011212423A (ja) * | 2010-03-15 | 2011-10-27 | Sony Corp | 評価装置及び評価方法 |
WO2012076631A1 (en) * | 2010-12-07 | 2012-06-14 | Spectracure Ab | System and method for interstitial photodynamic light therapy in combination with photosensitizers |
-
2021
- 2021-04-30 WO PCT/JP2021/017216 patent/WO2022230178A1/ja active Application Filing
- 2021-04-30 CN CN202180097335.8A patent/CN117222449A/zh active Pending
-
2023
- 2023-10-11 US US18/379,050 patent/US20240033535A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999006113A1 (en) * | 1997-07-29 | 1999-02-11 | Haishan Zeng | Apparatus and methods to monitor photodynamic therapy (pdt) |
JP2006167046A (ja) * | 2004-12-14 | 2006-06-29 | Susumu Terakawa | 癌治療状況評価方法および装置ならびに癌治療方法および装置 |
JP2011212423A (ja) * | 2010-03-15 | 2011-10-27 | Sony Corp | 評価装置及び評価方法 |
WO2012076631A1 (en) * | 2010-12-07 | 2012-06-14 | Spectracure Ab | System and method for interstitial photodynamic light therapy in combination with photosensitizers |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7476755B2 (ja) | 2020-10-19 | 2024-05-01 | 株式会社島津製作所 | 治療支援装置 |
Also Published As
Publication number | Publication date |
---|---|
CN117222449A (zh) | 2023-12-12 |
US20240033535A1 (en) | 2024-02-01 |
JPWO2022230178A1 (ja) | 2022-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5074044B2 (ja) | 蛍光観察装置および蛍光観察装置の作動方法 | |
US8556422B2 (en) | Fluorescence image acquisition method, fluorescence image acquisition program, and fluorescence image acquisition apparatus | |
US11202918B2 (en) | Eye treatment system | |
US20130289672A1 (en) | Laser therapy apparatus, laser therapy system, and determination method | |
US20080039697A1 (en) | Endoscope system | |
US20240033535A1 (en) | Phototherapy progress measuring method, processor, and phototherapy system | |
EP1989992A1 (en) | Endoscope system | |
US20110158914A1 (en) | Fluorescence image capturing method and apparatus | |
JPH10314194A (ja) | 歯組織の健康状態を診断する装置 | |
US20160113573A1 (en) | Therapy-progress-level monitoring device and method | |
CN114173679B (zh) | 治疗辅助装置和图像生成方法 | |
JP5030513B2 (ja) | 生体組織用蛍光観測装置および内視鏡システム | |
WO2006049132A1 (ja) | 光線力学的治療装置 | |
JP4845507B2 (ja) | 蛍光観察システム | |
JP2008259591A (ja) | 蛍光観察用光源装置及びそれを用いた蛍光観察装置 | |
JPH07100218A (ja) | 光化学治療診断装置 | |
US11219783B2 (en) | Controlled irradiation of an object | |
JP2023127544A (ja) | 光治療方法、光治療装置および光治療システム | |
US20240033538A1 (en) | Phototherapy assistance method and phototherapy assistance device | |
US20220096862A1 (en) | Method for irradiating cells with light, method for controlling medical device, and medical device | |
CN117084618B (zh) | 内窥镜光源的控制方法、装置及内窥镜摄像系统 | |
JPH08243181A (ja) | 光治療診断装置 | |
JP6268638B2 (ja) | 歯周ポケット深さ測定装置、および、歯周ポケット深さ測定方法 | |
JP2023056636A (ja) | 治療支援用光源ユニットおよびその制御方法 | |
JP2001198230A (ja) | レーザ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21939336 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023517006 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180097335.8 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21939336 Country of ref document: EP Kind code of ref document: A1 |