WO2022228457A1 - 遥控电源、供电组件、用电装置及其控制方法、用电系统 - Google Patents

遥控电源、供电组件、用电装置及其控制方法、用电系统 Download PDF

Info

Publication number
WO2022228457A1
WO2022228457A1 PCT/CN2022/089528 CN2022089528W WO2022228457A1 WO 2022228457 A1 WO2022228457 A1 WO 2022228457A1 CN 2022089528 W CN2022089528 W CN 2022089528W WO 2022228457 A1 WO2022228457 A1 WO 2022228457A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
remote control
cloud
mobile communication
Prior art date
Application number
PCT/CN2022/089528
Other languages
English (en)
French (fr)
Inventor
李斌
Original Assignee
浙江齐享科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111144887.8A external-priority patent/CN116826875A/zh
Priority claimed from CN202111235878.XA external-priority patent/CN115276212A/zh
Priority claimed from CN202111283178.8A external-priority patent/CN116073457A/zh
Application filed by 浙江齐享科技有限公司 filed Critical 浙江齐享科技有限公司
Priority to CA3217193A priority Critical patent/CA3217193A1/en
Priority to EP22794927.8A priority patent/EP4333241A1/en
Priority to KR1020237041530A priority patent/KR20240013749A/ko
Publication of WO2022228457A1 publication Critical patent/WO2022228457A1/zh
Priority to US18/496,997 priority patent/US20240055894A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/00026Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission involving a local wireless network, e.g. Wi-Fi, ZigBee or Bluetooth
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances

Definitions

  • the invention relates to the field of power supply, in particular to a remote control power supply, a power supply component, an electrical device, a control method thereof, and an electrical system.
  • the invention provides a remote control power supply, a power supply component, an electric device, a control method thereof, and an electric system.
  • a first aspect of the present invention provides a remote control power supply for an electrical device, which is used to start the electrical device after receiving a power-on command sent from the cloud through a wireless network;
  • the remote control power supply includes:
  • a battery or battery pack for supplying electrical energy to the powered device
  • a wireless communication unit for wireless communication with the cloud
  • the control unit is used for receiving the power-on command sent by the cloud through the wireless communication unit, and driving the battery or the battery pack to start the electric device according to the power-on command.
  • a second aspect of the present invention provides a power supply assembly for an electrical device, the power supply assembly comprising:
  • a third aspect of the present invention provides an electrical device, comprising:
  • the power supply assembly is used to provide electrical energy to the power consumption assembly.
  • a fourth aspect of the present invention provides an electrical system, comprising:
  • the remote control power supply of the power supply assembly is wirelessly connected to the cloud
  • the mobile communication device is used for sending a power-on request to the cloud to trigger the cloud to send a power-on command to the remote control power supply.
  • a fifth aspect of the present invention provides a control method for an electrical device, the method is implemented by a mobile communication device, and the method includes:
  • the power-on request is sent to the cloud to trigger the cloud to send a power-on command to the remote control power supply, so as to drive the remote control power supply to start the electrical device, so that the user The electrical device is in a powered state.
  • a sixth aspect of the present invention provides a mobile communication device, comprising:
  • a communication device for establishing communication with the cloud through a wireless network
  • Memory used to process or store signals as physical storage states.
  • a seventh aspect of the present invention provides a method for controlling an electrical device, the method is implemented through the cloud, and the method includes:
  • the power-on command is sent to a remote control power supply, so as to drive the remote control power supply to start the electrical device, so that the electrical device is in a powered state.
  • An eighth aspect of the present invention provides a cloud, including:
  • One or more wired or wireless network interfaces are One or more wired or wireless network interfaces.
  • a ninth aspect of the present invention provides a control method for an electrical device, the method is implemented by a remote control power supply, and the method includes:
  • the power-consuming device is started, so that the power-consuming device is in a power-consuming state.
  • a tenth aspect of the present invention provides a remote control power supply, comprising:
  • a control unit configured to implement the method described in the ninth aspect.
  • An eleventh aspect of the present invention provides a remote control power supply for an electrical device, which is used to receive a control command sent from a mobile communication device through a wireless network;
  • the remote control power supply includes:
  • a battery or battery pack for supplying electrical energy to the powered device
  • a wireless communication unit for wireless communication with the mobile communication device
  • control unit configured to receive a control instruction sent by the mobile communication device through the wireless communication unit
  • control command includes at least a power-on command
  • control unit is configured to drive the battery or the battery pack to start the electrical device according to the power-on command.
  • the remote control power supply can communicate wirelessly with the cloud or mobile communication equipment, that is, the remote control power supply has the function of network communication, so that the user can remotely control the remote control power supply to start the electric device, and the control of the remote control power supply is more intelligent. , to improve the user experience.
  • FIG. 1 is a schematic diagram of a control principle module of a remote control power supply provided by a specific embodiment of the present invention
  • FIG. 2 is a schematic diagram of functional modules of a remote control power supply provided by a specific embodiment of the present invention.
  • FIG. 3 a is a schematic diagram of the form of a single-cell battery provided by a remote control power supply provided by a specific embodiment of the present invention
  • 3b is a schematic diagram of the form of a remote control power supply provided by a specific embodiment of the present invention as three batteries;
  • 3c is a schematic diagram of the form of the remote control power supply provided by a specific embodiment of the present invention as five batteries;
  • FIG. 3d is a schematic diagram of the form of the remote control power supply provided by a specific embodiment of the present invention, which is composed of a combination of remote control power supplies in the form of a plurality of single-cell batteries;
  • 3e is a schematic diagram of the form of a remote control power supply provided by a specific embodiment of the present invention as an energy storage power station;
  • 4a is a schematic diagram of the assembly of a remote control power supply and an indoor fan provided by a specific embodiment of the present invention
  • 4b is a schematic diagram of a remote control power supply assembly provided by a specific embodiment of the present invention suitable for an indoor fan;
  • 4c is a schematic diagram of a remote control power supply assembly provided by a specific embodiment of the present invention suitable for a cleaning robot;
  • 4d is a schematic diagram of a remote control power supply assembly provided by a specific embodiment of the present invention suitable for an outdoor vehicle-mounted refrigerator;
  • 4e is a schematic diagram of a remote control power supply in the form of an energy storage power station provided by a specific embodiment of the present invention applicable to an outdoor vehicle-mounted refrigerator;
  • FIG. 5 is a flowchart of a login step in a method for controlling an electrical device provided by a specific embodiment of the present invention
  • FIG. 6 is a flow chart of power consumption steps in a method for controlling a power consumption device provided by a specific embodiment of the present invention.
  • FIG. 7 is a flowchart of a power-off step in a control method for an electrical device provided by a specific embodiment of the present invention.
  • FIG. 8 is a flowchart of another type of power-off steps in a method for controlling an electrical device provided by a specific embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another control principle module of a remote control power supply provided by a specific embodiment of the present invention.
  • FIG. 10 is a schematic diagram of functional modules of a second power supply provided by a specific embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a combination of a first power supply and a second power supply provided by a specific embodiment of the present invention applicable to an outdoor vehicle-mounted refrigerator;
  • FIG. 12 is a flow chart of logging steps in a method for controlling an electrical device that is applicable to a combination of a first power source and a second power source according to a specific embodiment of the present invention
  • FIG. 13 is a flow chart of power consumption steps in a method for controlling a power consumption device that is applicable to a combination of a first power source and a second power source according to a specific embodiment of the present invention
  • FIG. 14 is a flowchart of a power-off step in a method for controlling a power-consuming device that is applicable to a combination of a first power source and a second power source according to a specific embodiment of the present invention
  • 15 is a flowchart of another type of power-off steps in a control method for an electrical device that is applicable to a combination of a first power source and a second power source according to a specific embodiment of the present invention
  • 16 is a schematic diagram of another control principle module of a remote control power supply provided by a specific embodiment of the present invention.
  • 17 is a schematic diagram of functional modules of a third power supply provided by a specific embodiment of the present invention.
  • FIG. 18 is a schematic diagram illustrating that the combination of the first power supply/second power supply and the third power supply provided by a specific embodiment of the present invention is suitable for an outdoor vehicle-mounted refrigerator;
  • 19 is a flow chart of logging steps in a method for controlling an electrical device that is applicable to a combination of a first power source/second power source and a third power source according to a specific embodiment of the present invention
  • FIG. 20 is a flow chart of power consumption steps in a method for controlling a power consumption device that is applicable to a combination of a first power source/second power source and a third power source according to a specific embodiment of the present invention
  • 21 is a flowchart of a power-off step in a control method for an electrical device that is applicable to a combination of a first power supply/second power supply and a third power supply according to a specific embodiment of the present invention
  • FIG. 22 is a flowchart of another type of power-off steps in a control method for an electrical device that is applicable to a combination of a first power source/second power source and a third power source according to a specific embodiment of the present invention
  • FIG. 23 is a schematic diagram of another control principle module of a remote control power supply provided by a specific embodiment of the present invention.
  • 24 is a schematic diagram of another control principle module of a remote control power supply provided by a specific embodiment of the present invention.
  • 25 is a schematic diagram of another control principle module of a remote control power supply provided by a specific embodiment of the present invention.
  • 26 is a schematic diagram of functional modules of a remote control power supply provided by a specific embodiment of the present invention.
  • FIG. 27 is a flowchart of a control method for an electrical device provided by a specific embodiment of the present invention.
  • 29 is a schematic diagram of functional modules of a second power supply provided by a specific embodiment of the present invention.
  • FIG. 30 is a flowchart of a control method for an electrical device provided by a specific embodiment of the present invention.
  • FIG. 31 is a flowchart of a data comparison method in a method for controlling an electrical device provided by a specific embodiment of the present invention.
  • FIG. 32 is a schematic diagram of a principle module of a remote control power supply for controlling multiple electrical devices according to a specific embodiment of the present invention
  • 33 is a schematic diagram of another principle module of the remote control power supply of the remote control power supply provided by the specific embodiment of the present invention for controlling multiple electric devices.
  • first, second, third, etc. may be used in the present invention to describe various information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present invention.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the remote control power supply 100 of the electric device 200 is used to start the electric device after receiving the power-on command sent from the cloud 300 through the wireless network. 200;
  • the above-mentioned electrical device 200 may be an electric tool, such as an electric drill, an electric angle grinder, an electric hammer, a sprayer, etc., or an electric gardening tool, such as a pruning machine, a lawn mower, a chainsaw, etc., or an electric power tool.
  • Electric household tools such as vacuum cleaners, coffee machines, electric fans, juicers, and other types of electrical equipment, such as glue guns, air pumps, emergency lamps, etc.
  • a secondary battery or a battery pack (such as an energy storage power source/energy storage power station) is used as an operation device for a power source; when the electrical device 200 is working, it needs a power source to provide electrical energy to drive the electrical device to operate.
  • the above-mentioned electrical device 200 can be further summarized as including motorized power tool equipment (such as electric drill, electric angle grinder, electric hammer, pruning machine, lawn trimmer, chainsaw, etc.) or non-motorized electrical equipment (such as lamps, audio, etc.) ).
  • motorized power tool equipment such as electric drill, electric angle grinder, electric hammer, pruning machine, lawn trimmer, chainsaw, etc.
  • non-motorized electrical equipment such as lamps, audio, etc.
  • the above-mentioned remote control power supply 100 can be built into the electric device 200 to supply the electric energy for the operation of the electric device; it can also be externally installed in the electric device 200, for example, when the remote control power supply 100 is used as the specific energy storage power supply 100e, the energy storage power supply 100e is external.
  • the device is connected to the power supply line or data line of the electrical device 200 to supply power (as shown in Figure 4e);
  • the above-mentioned remote control power supply 100 can be detachably installed on the electric device 200 in a way of being detachable.
  • the remote control power supply 100 can be shared by power tools, power garden tools, and power household tools, such as:
  • the user has a 3.6V or 12V or 20V remote control power supply 100, which can be used not only for power drills, but also for pruning machines. In addition, it can also be used for vacuum cleaners or emergency lights. Such a remote control power supply 100 can meet the needs of users. different usage scenarios.
  • the remote control power supply 100 When the remote control power supply 100 is assembled and connected to the powered device 200, the remote control power supply 100 is suitable for mechanical connection and electrical connection to the powered device 200, fixed through the mechanical connection, and provides power to the powered device 200 through the electrical connection.
  • the remote control power supply 100 includes:
  • a battery 10 or a battery pack for providing electrical energy to the electrical device 200;
  • a wireless communication unit for realizing wireless communication with the cloud 300
  • the control unit is configured to receive the power-on command sent by the cloud 300 through the wireless communication unit, and drive the battery 10 or the battery pack to start the electric device according to the power-on command.
  • the above-mentioned battery 10 or battery pack has at least one battery, such as one 21700 battery.
  • one 21700 battery such as one 21700 battery.
  • three 21700 batteries can be used in series, or five 21700 batteries can be connected in series to meet the use of electrical devices with different voltage platforms.
  • 5 21700 batteries can be connected in series to meet the use of electrical devices with different voltage platforms. It is worth noting that the above is just an example, not limited to the use of 21700 batteries, other types of batteries can also be used, such as 18650 batteries.
  • the above-mentioned battery pack may also include at least one group of battery modules, and the battery modules are formed by connecting multiple cells in series or in parallel, so as to be used as energy storage power sources or energy storage power stations 100e.
  • the above-mentioned remote control power supply 100 may also be constituted by at least a first remote control power supply and a second remote control power supply in series or in parallel with each other.
  • the above-mentioned remote control power supply 100 has various forms, such as:
  • FIG. 3a it is a schematic diagram of the form of a single battery, which has built-in and only one 21700 battery 10;
  • FIG. 3b it is a schematic diagram of the form of three batteries, and it has built-in three 21700 batteries 10 connected in series with each other;
  • FIG. 3c it is a schematic diagram of the form of five batteries, which have built-in five 21700 batteries 10 connected in series with each other;
  • the remote control power supply 10d shown in FIG. 3d it is a schematic diagram of a form in which a plurality of remote control power supplies in the form of single-cell batteries (as shown in FIG. 3a) are combined with each other.
  • the power supply 100a may also be constituted by a plurality of remote control power supplies 100b or 100c connected in series or in parallel with each other.
  • the remote control power supply shown in FIG. 3e is a schematic diagram of the form of an energy storage power station, which includes at least one battery module, and the battery module is composed of multiple batteries 10. At this time, the battery or the battery pack is used as an energy storage power source or an energy storage power station.
  • the above-mentioned wireless communication unit is used to realize wireless communication with the cloud 300.
  • the wireless communication unit at least has a communication module. It should be noted that:
  • This communication module can be cellular (eg: 2G/3G/4G/5G/NB-IOT/LTE-M) or non-cellular (eg: WiFi/Bluetooth/ZigBee/Lora/Sigfox), or both .
  • cellular eg: 2G/3G/4G/5G/NB-IOT/LTE-M
  • non-cellular eg: WiFi/Bluetooth/ZigBee/Lora/Sigfox
  • the above wireless communication unit may have a 4G/5G communication function, or a WiFi/Bluetooth connection function, and may also have a 4G/5G communication function and a WiFi/Bluetooth connection function at the same time.
  • a server may refer to a single physical processor with associated communications and data storage and database facilities, or it may refer to a networked or clustered collection of processors, associated network and storage devices, and to software and one or more A database system and application software supporting the services provided by the server operate.
  • Servers can vary widely in configuration or performance, but generally a server can include one or more central processing units and memory.
  • the server also includes one or more mass storage devices, one or more power supplies, one or more wired or wireless network interfaces, one or more input/output interfaces, or one or more operating systems, such as Windows Server, Mac OS X, Unix, Linux, FreeBSD, etc.
  • the cloud may be a monolithic server or a distributed server across multiple computers or computer data centers.
  • Servers may be of various types, such as, but not limited to, web servers, news servers, mail servers, messaging servers, advertising servers, file servers, application servers, interactive servers, database servers, or proxy servers.
  • each server may include hardware, software, or embedded logical components or a combination of two or more such components for performing the appropriate functions supported or implemented by the server.
  • the server is used to provide all the functions necessary to support the remote control of the above-mentioned remote control power supply.
  • the remote control power supply 100 includes a control unit, an input device and a communication interface.
  • the input device and the communication interface are respectively connected communicatively with the control unit.
  • the control unit includes a microprocessor for processing data and a memory for storing data.
  • the control unit can carry out two-way communication with the cloud through the communication interface, and can also carry out two-way communication with the mobile communication device through the communication interface.
  • a user can input an instruction or information into the control unit through an input device, so that the control unit executes the content of the instruction or information.
  • the control unit of the remote control power supply is connected to the cloud through a communication interface, the cloud establishes communication with the mobile communication device through a wireless network, the mobile communication device controls the remote control power supply via the cloud, and the remote control power supply regularly reports status information to the cloud, the status information includes electricity consumption One or more of status information, power-off status information, location information, remaining power, temperature, and the like.
  • the remote control power supply also includes a sensor and a display, both of which are respectively communicatively connected to the control unit; the sensor can collect the status information of the battery or battery pack in real time (eg, temperature, remaining power, location information, etc.) This status information is transmitted to the control unit.
  • the display may display user desired content (eg, temperature, remaining power, location information, etc.) and/or interface (eg, interactive interface) as required.
  • the display and sensors are not necessary parts of this remote power supply.
  • the above-mentioned wireless communication unit for realizing wireless communication with the cloud 300, may also have a positioning module in addition to the above-mentioned communication module, such as a GNSS module or a GPS module, including a GPS module or a Beidou module.
  • a positioning module in addition to the above-mentioned communication module, such as a GNSS module or a GPS module, including a GPS module or a Beidou module.
  • the control unit is further adapted to receive a power-off command sent by the cloud through the wireless communication unit, and drive the battery or battery pack to turn off the power-consuming device according to the power-off command, and the power-consuming device is in a powered-off state.
  • the control unit includes;
  • an electronic controller for identifying the wireless signal received by the wireless communication unit and driving the actuator to act
  • the actuator is used to perform the action of starting or closing the electric device.
  • the wireless signal may include a power-on command or a power-off command in the above-mentioned embodiment.
  • the wireless signal when the cloud sends a power-on command to the wireless communication unit, the wireless signal is a power-on command; when the cloud sends a power-off command to the wireless communication unit, the wireless signal is a power-on command; unit, the wireless signal is the power-off command. It can be understood that when the cloud sends to the wireless communication unit other signals other than the power-on command and the power-off command, the wireless signal is the other signal.
  • the actuator is a circuit switch, which has a simple structure and low cost.
  • the actuator may be other structures capable of starting or shutting down the electrical device.
  • the power-on command is generated by the cloud when it receives a power-on request sent by the mobile communication device, so as to realize the purpose of remotely controlling the remote control power supply to start the electric device, and there is no need to manually operate the button of the remote control power supply to start the electric device.
  • the remote control power supply 100 is in a WiFi network coverage environment, such as an indoor home environment, the remote control power supply 100 is connected to the home WiFi network through a non-cellular type, such as a WiFi communication module, and wireless communication is realized with the cloud through the WiFi network.
  • a non-cellular type such as a WiFi communication module
  • wireless communication is realized with the cloud through the WiFi network.
  • 4G or 5G signals and the cloud to achieve wireless communication of course, when the user is also in the WiFi network coverage environment, you can use the WiFi communication module that comes with the mobile phone to connect to the WiFi network to achieve wireless communication with the cloud.
  • the user sends a power-on command to the cloud 300 through the wireless network via the mobile communication device
  • the cloud 300 sends a power-on command through the wireless network
  • the control unit of the remote control power supply 100 receives the power-on command through the connected wireless network to control the battery 10 or the battery The group starts the electrical device.
  • the remote control power supply 100a in the form of a single battery is connected, and the remote control power supply provides power for the indoor fan 200a and the cleaning robot 200b.
  • the remote control power supply 100 is under the coverage of the WiFi network, and the remote control power supply 100 is connected to the home through the WiFi communication module WiFi network, realize wireless communication with cloud 300 through WiFi network, at this time, even if the user is located outdoors, such as in the studio, or on the way home from get off work, the user can remotely control the remote control power supply 100 through the cloud 300 through the terminal APP to turn on and start the indoor A fan or cleaning robot does the work.
  • the user carries the remote control power supply 100 outdoors without WiFi network coverage.
  • the remote control power supply 100 is connected to the cloud 300 through cellular, such as 4G or 5G communication modules, and the user communicates wirelessly with the cloud 300 through the cellular data of the mobile phone, such as 4G or 5G signals communication.
  • the user sends a power-on command to the cloud 300 through the wireless network via the mobile communication device
  • the cloud 300 sends a power-on command through the wireless network
  • the control unit of the remote control power supply 100 receives the power-on command through the connected wireless network to control the battery 10 or the battery The group starts the electrical device.
  • the schematic diagram of the remote control power supply assembly suitable for the outdoor vehicle-mounted refrigerator is shown.
  • the outdoor vehicle-mounted refrigerator 200c provides power through the remote control power supply 100 (eg, the remote control power supply 100c in the form of five batteries).
  • the remote control power supply 100 is not covered by the WiFi network.
  • the remote control power supply 100 is connected to the cloud through its own cellular, such as 4G or 5G communication module.
  • the user can remotely control the remote control power supply 100 to turn on through the terminal APP through the cloud, and start the outdoor car refrigerator 200c to work.
  • the remote control power supply 100 is suitable for cordless coupling to the electrical device 200 and can be disassembled.
  • FIG. 4e another form of the remote control power supply 100 is shown, that is, the form of an energy storage power station.
  • the outdoor vehicle-mounted refrigerator 200c provides electrical energy through a remote control power source (eg, a remote control power source 100e in the form of an energy storage power station).
  • a remote control power source eg, a remote control power source 100e in the form of an energy storage power station.
  • a battery module the battery module is composed of multiple batteries 10, at this time, the remote control power supply 100 is used as an energy storage power source or an energy storage power station.
  • the remote control power supply 100 is located outdoors without WiFi network coverage.
  • the remote control power supply 100 is connected to the outdoor car refrigerator 200c through a power cord, and is connected to the cloud through its own cellular type, such as a 4G or 5G communication module. , the user can remotely control the remote power supply 100 to turn on through the terminal APP through the cloud, and start the outdoor car refrigerator 200c to work.
  • a method for controlling a powered device is provided for controlling the powered device 200 based on the remote control power supply 100 as described above.
  • the control method for the powered device 200 includes logging in part or all of the steps, the steps of using electricity and the steps of turning off the electricity. Each step of the control method of the present invention will be described in detail below with reference to the flowchart.
  • Fig. 5 shows the flow chart of the login step in the control method of the electric device of the present invention
  • the user can download the user terminal application suitable for the remote control power supply from the cloud to the mobile communication device through the network and install the application locally on the mobile communication device, or, the user suitable for the remote control power supply has been pre-installed on the user's mobile communication device terminal application.
  • the login step the user starts the user terminal application on the mobile communication device, and makes the mobile communication device establish a connection with the cloud.
  • step S1 the mobile communication device running the user terminal application requests a verification code from the cloud 300; in step S2, after receiving the verification code request sent from the user's mobile communication device, the cloud 300 performs verification and confirmation, and sends the verification code through a short message Send the verification code to the mobile communication device by means of , email, voice call, etc.; in step S3, after the user receives the verification code sent by the cloud 300, the verification code is input into the mobile communication device, and the mobile communication device is sent via the network.
  • the verification code is sent to the cloud 300; in step S4, the cloud 300 sends login confirmation information to the user's mobile communication device after verifying the verification code.
  • Fig. 6 shows the flow chart of controlling the power consumption device to turn on power consumption
  • step S10 the mobile communication device sends the power-on request to the cloud 300; in step S20, after receiving the power-on request, the cloud 300 sends the power-on command to the remote control power supply 100 to turn on the power; in step S30, the remote control The power supply 100 transmits the power-on state information to the cloud 300; in step S40, the cloud 300 sends the power-on state information feedback to the mobile communication device.
  • the user when the user needs to end the operation of the electric device, the user sends a power-off request to the cloud 300 through the mobile communication device (step S100 ).
  • the cloud 300 After receiving the power-off request, the cloud 300 sends a power-off command to the remote control power supply 100 .
  • the remote control power supply 100 sends the power-off state information of the remote control power supply 100 to the cloud 300 (step S300), and the cloud 300 confirms the remote control power supply 100 based on the power-off state information of the remote control power supply 100.
  • a message confirming that the power off is successful is sent to the mobile communication device, and the current power consumption is ended (step S400).
  • the power-off step in the present invention can also be realized by automatically powering off the electrical device.
  • the remote control power supply actively reports the power-off state information to the cloud (step S3000 ).
  • the cloud receives the power-off state information and sends the power-off state information feedback to the mobile communication device, so as to remind the user that the electrical device is powered off (step S4000 ).
  • the electric device 200 has a built-in sensor, such as a temperature sensor.
  • a temperature sensor detects that the temperature reaches a preset threshold
  • the power supply circuit between the remote control power supply and the electric device is automatically closed.
  • control method of the electric device may include:
  • the power-on request is sent to the cloud to trigger the cloud to send a power-on command to the remote control power supply, so as to drive the remote control power supply to start the electrical device, so that the electrical device is in a powered state.
  • control method of the electric device further includes: when the power-off request is obtained, sending the power-off request to the cloud to trigger the cloud to send a power-off command to the remote control power supply, so as to drive the remote control power supply to turn off the electric device. Further, the control method of the electric device also includes: receiving information sent by the cloud for confirming that the power is turned off successfully, wherein the information for confirming the successful power-off is determined by the cloud based on the state information of the remote control power supply turning off the power sent by the remote control power supply.
  • the method for controlling an electrical device further includes: receiving information that is forwarded by the remote control power source via the cloud, indicating that the electrical device is automatically powered off.
  • control method of the electric device may include the following steps:
  • the method for controlling an electrical device further includes: when receiving a power-off request sent by the mobile communication device, generating a power-off command according to the power-off request; sending a power-off command to a remote control power supply to drive the remote control power supply to turn off electrical device.
  • the control method of the electric device further includes: receiving the status information of the remote control power supply being turned off from the remote control power supply; determining the power off of the remote control power supply is successful according to the status information;
  • the method for controlling the electrical device further includes: forwarding the information sent by the remote control power supply indicating that the electrical device is automatically powered off to the mobile communication device.
  • control method of the electric device may include the following steps:
  • the method for controlling the power consumption device further includes: receiving a power-off command sent by the cloud, wherein the power-off command is generated by the cloud according to a power-off request sent by the mobile communication device; according to the power-off command, turning off the power consumption device .
  • the control method of the electric device further includes: sending the state information of the power off of the remote control power supply to the cloud, so that the cloud can judge whether the power off of the remote control power supply is successful according to the state information.
  • the method for controlling the electrical device further includes: when the remote control power supply and the electrical device are automatically powered off, forwarding information indicating that the electrical device is automatically powered off to the mobile communication device via the cloud.
  • the above-mentioned mobile communication equipment includes at least a communication device, a processing device, and a memory; the communication device is used to send or receive signals through a wired or wireless network; the processing device includes an application processing part and a radio frequency/digital signal processor; The memory is used to process or store the signal as a physical storage state; such as smart terminals such as mobile phones, pads, and notebooks.
  • the above cloud includes at least: one or more central processing units; one or more memories and/or mass storage devices; one or more wired or wireless network interfaces.
  • FIG. 9 Referring to the schematic diagram of another control principle module of the remote control power supply shown in FIG. 9 , it includes a first power supply 700 (the first power supply 700 shown in FIG.
  • the first power supply 700 has a wireless communication unit for realizing wireless communication with the cloud 300, the wireless communication unit at least has a communication module, specifically, the communication module is a cellular type (eg 2G/3G/4G/5G/NB -IOT/LTE-M);
  • the communication module is a cellular type (eg 2G/3G/4G/5G/NB -IOT/LTE-M);
  • the second power supply 800 also has a wireless communication unit for realizing wireless communication with the first power supply 700.
  • the wireless communication unit at least has a communication module, specifically, the communication module is a non-cellular type (eg: WiFi/Bluetooth/ZigBee /Lora/Sigfox);
  • the second power source 800 is connected to the electrical device 200 to provide electrical energy to the electrical device 200.
  • the above-mentioned electrical device 200 can be an electric tool, such as an electric drill, an electric angle grinder, an electric hammer, a sprayer, etc.
  • Electric garden tools such as pruning machines, lawn trimmers, chainsaws, etc.
  • electric household tools such as vacuum cleaners, coffee machines, electric fans, juicers, and other types of electrical equipment, such as glue guns , air pump, emergency lighting, etc.
  • the above-mentioned power-consuming device 200 can generally refer to the operation equipment that uses a secondary battery or a battery pack (such as an energy storage power source/energy storage power station) as a power source; when the power-consuming device 200 is working, A power supply is required to provide electrical energy to drive the electrical device to operate.
  • a secondary battery or a battery pack such as an energy storage power source/energy storage power station
  • the electrical device 200 as described above can be further generalized to include motorized power tool equipment (eg, electric drills, electric angle grinders, electric hammers, pruning machines, lawn trimmers, chainsaws, etc.) or non-motorized electrical equipment (such as lamps, speakers, etc.).
  • motorized power tool equipment eg, electric drills, electric angle grinders, electric hammers, pruning machines, lawn trimmers, chainsaws, etc.
  • non-motorized electrical equipment such as lamps, speakers, etc.
  • the second power source 800 can be built into the electrical device 200 to supply electrical energy for the electrical device to operate; it can also be externally placed in the electrical device 200.
  • the energy storage power source 100e is externally connected to the power supply line or data line of the electrical device 200 for power supply (as shown in Figure 4e);
  • the above-mentioned second power supply 800 can be installed on the electrical device 200 in a freely detachable manner.
  • the second power supply 800 is suitable for use by different types of electrical devices 200, that is, the second power supply 800 can be shared by power tools, power garden tools, power household tools, such as:
  • the user has a 3.6V or 12V or 20V second power supply 800, which can be used not only for power drills, but also for pruning machines, and also for vacuum cleaners or emergency lights.
  • a second power supply 800 can be used for Meet the different usage scenarios of users.
  • the second power source 800 When the second power source 800 is assembled and connected to the powered device 200, the second power source 800 is suitable for mechanical connection and electrical connection to the powered device 200, fixed through the mechanical connection, and provides power to the powered device 200 through the electrical connection.
  • the second power supply 800 includes:
  • a battery 10 or a battery pack for providing electrical energy to the electrical device 200;
  • a wireless communication unit for realizing wireless communication with the first power supply 700
  • the control unit is used for receiving the power-on command issued by the first power source 700 through the wireless communication unit of the second power source 800, and according to the power-on command to drive the battery 10 or the battery pack to start the electric device, and the electric device is in use. power status. It should be noted that the power-on command sent by the first power source 700 is actually sent by the cloud to the first power source 700 , that is, the first power source 700 is used to forward the power-on command sent by the cloud to the wireless communication unit of the second power source 800 .
  • the above-mentioned battery 10 or battery pack has at least one battery, such as one 21700 battery.
  • one 21700 battery such as one 21700 battery.
  • three 21700 batteries can be used in series, or five 21700 batteries can be connected in series to meet the use of electrical devices with different voltage platforms.
  • 5 21700 batteries can be connected in series to meet the use of electrical devices with different voltage platforms. It is worth noting that the above is just an example, not limited to the use of 21700 batteries, other types of batteries can also be used, such as 18650 batteries.
  • the above-mentioned battery pack may also include at least one group of battery modules, and the battery modules are formed by connecting multiple cells in series or in parallel, so as to be used as energy storage power sources or energy storage power stations 100e.
  • the above-mentioned second power supply 800 may also be constituted by at least a first remote control power supply and a second remote control power supply in series or in parallel with each other.
  • the above-mentioned second power supply 800 has various forms, such as:
  • the form of remote control power supply (as shown in Figure 3a) is combined with each other; or, the form of an energy storage power station as shown in Figure 3e.
  • the second power supply 800 includes a control unit, an input device and a communication interface.
  • the input device and the communication interface are respectively connected communicatively with the control unit.
  • the control unit includes a microprocessor for processing data and a memory for storing data.
  • the control unit may communicate with the first power supply 700 through the communication interface, and may also communicate with the mobile communication device through the communication interface.
  • a user can input an instruction or information into the control unit through an input device, so that the control unit executes the content of the instruction or information.
  • the control unit of the second power supply 800 is connected to the first power supply 700 through the communication interface, the first power supply 700 establishes communication with the cloud through a wireless network (such as 4G or 5G), the cloud establishes communication with the mobile communication device through the wireless network, and the mobile communication device communicates with the mobile communication device via the wireless network.
  • the cloud and the first power supply 700 control the second power supply 800, and the second power supply 800 regularly reports status information to the cloud through the first power supply 700, and the status information includes power consumption status information, power-off status information, location information, and remaining power one or more of , temperature, etc.
  • the second power supply 800 also includes a sensor and a display, both of which are respectively communicatively connected to the control unit; the sensor can collect the status information of the battery or battery pack in real time (for example, temperature, remaining power, location information, etc.), and transmit these status information to the control unit.
  • the display may display user desired content (eg, temperature, remaining power, location information, etc.) and/or interface (eg, interactive interface) as required.
  • the display and sensor are not necessary components of this second power supply.
  • the wireless communication unit of the second power supply 800 is used to realize wireless communication with the first power supply 700.
  • the communication module can also have a positioning module, such as a GNSS module or a GPS module, including GPS module or Beidou module.
  • the above-mentioned control unit is further adapted to be connected to the first power source through the wireless communication unit of the second power source 800, and through the first power source, receive a power-off command sent by the cloud, and drive the battery or the battery according to the power-off command.
  • the battery pack turns off the power-consuming device, and the power-consuming device is in the power-off state at this time. It should be noted that the power-off command sent by the cloud is forwarded to the wireless communication unit of the second power supply 800 via the first power supply 700 .
  • the control unit of the second power supply 800 includes;
  • an electronic controller for identifying the wireless signal received by the wireless communication unit of the second power supply 800 and driving the actuator to act;
  • the actuator is used to perform the action of starting or closing the electric device.
  • the wireless signal may include a power-on command or a power-off command.
  • the wireless signal when the cloud forwards the power-on command to the wireless communication unit of the second power source 800 via the first power supply 700, the wireless signal is the power-on command;
  • the wireless signal when a power supply 700 forwards a power-off command to the wireless communication unit of the second power supply 800, the wireless signal is a power-off command. It can be understood that when the cloud forwards other signals except the power-on command and the power-off command to the wireless communication unit of the second power source 800 via the first power source 700, the wireless signal is the other signal.
  • the actuator is a circuit switch, which has a simple structure and low cost.
  • the actuator may be other structures capable of starting or shutting down the electrical device.
  • the power-on command is generated by the cloud when it receives a power-on request sent by the mobile communication device, so as to realize the purpose of remotely controlling the second power supply 800 to start the electric device, and there is no need to manually operate the button of the second power supply 800 to start the electric device. .
  • the user carries the first power supply 700 and the second power supply 800 outdoors without WiFi network coverage.
  • the first power supply 700 is connected to the cloud 300 through a cellular type, such as a 4G or 5G communication module, and the second power supply is through a non-cellular type, such as:
  • the WiFi or Bluetooth communication module is connected to the first power supply, and the user realizes wireless communication with the cloud 300 through cellular data of the mobile phone, such as 4G or 5G signals.
  • the user sends a power-on command to the cloud 300 via the mobile communication device through the wireless network
  • the cloud 300 sends the power-on command through the wireless network
  • the first power supply 700 transmits the power-on command to the second power supply 800 through the connected wireless network
  • the first power supply The control unit of the second power source 800 receives the power-on command through the connected wireless network, and controls the battery 10 or the battery pack to start the electric device.
  • the outdoor vehicle-mounted refrigerator 200c provides power through the second power supply 800 (eg, the remote control power supply 100c in the form of five batteries).
  • the second power supply 800 is connected to the first power supply 700 through a non-cellular communication module, such as WiFi or Bluetooth, and the first power supply 700 is connected to the cloud 300 through a cellular communication module carried by itself, such as a 4G or 5G communication module.
  • the user can remotely control the remote power supply 100 to turn on through the terminal APP through the cloud, and start the outdoor car refrigerator 200c to work.
  • the purpose of remotely controlling the second power source 800 to turn off the power-consuming device is realized, and there is no need to manually operate the button of the second power source 800 to turn off the power-consuming device. device.
  • a method for controlling an electrical device is provided, which is used to control the electrical device 200 based on the combination of the first power source 700 and the second power source 800 as described above.
  • the control method of the device 200 includes a part or all of the logging-in step, the power-consuming step, and the power-off step. Each step of the control method of the present invention will be described in detail below with reference to the flowchart.
  • Fig. 12 shows the flow chart of login steps in the control method of the electric device
  • the user uses the electrical device and the first power source and the second power source for the first time, he needs to register online and fill in necessary user information.
  • the user can download the user terminal application from the cloud to the mobile communication device through the network and locally install the application on the mobile communication device, or the user terminal application has been pre-installed on the user's mobile communication device.
  • the user starts the user terminal application on the mobile communication device, and makes the mobile communication device establish a connection with the cloud.
  • step S1 the mobile communication device running the user terminal application requests a verification code from the cloud 300; in step S2, after receiving the verification code request sent from the user's mobile communication device, the cloud 300 performs verification and confirmation, and sends the verification code through a short message Send the verification code to the mobile communication device by means of , email, voice call, etc.; in step S3, after the user receives the verification code sent by the cloud 300, the verification code is input into the mobile communication device, and the mobile communication device is sent via the network.
  • the verification code is sent to the cloud 300; in step S4, the cloud 300 sends login confirmation information to the user's mobile communication device after verifying the verification code.
  • Fig. 13 shows the flow chart of controlling the power consumption device to turn on power consumption
  • step S10 the mobile communication device sends the power-on request to the cloud 300; in step S20, after receiving the power-on request, the cloud 300 sends the power-on command to the first power source 700, and in step S30, the first power source 700 receives the power-on command and transmits it to the second power supply 800 to turn on the power; in step S40, the second power supply 800 transmits the power-on state information to the first power supply 700; in step S50, the first power supply 700 will receive The power-on state information is sent to the cloud 300; in step S60, the cloud 300 sends feedback of the power-on state information to the mobile communication device.
  • the user when the user needs to end the operation of the electrical device, the user sends a power-off request to the cloud 300 through the mobile communication device (step S100 ).
  • the cloud 300 After receiving the power-off request, the cloud 300 sends the first The power supply sends a power-off command (step S200 ), the first power supply 700 receives the power-off command and transmits it to the second power supply 800 to turn off the power (step S300 ), and the second power supply 800 sends the power-off state information to the first power supply 700 (Step S400 ), after receiving the instruction, the first power source 700 sends the power-off status information of the second power source 800 to the cloud 300 (step S500 ), and the cloud 300 confirms the second power source based on the power-off status information of the second power source 800 800 In the case that the power has been turned off, a message confirming that the power off is successful is sent to the mobile communication device, and the current power consumption is ended (step S600).
  • the power-off step in the present invention can also be realized by automatically powering off the power-consuming device.
  • the second power supply 800 sends the power-off status information Actively transmit it to the first power source 700 and report it to the cloud (step S4000-step 5000), the cloud receives the power-off status information and sends the power-off status information feedback to the mobile communication device to remind the user that the electrical device is powered off (step S4000-step 5000).
  • S6000 the power-off status information Actively transmit it to the first power source 700 and report it to the cloud.
  • the electric device 200 has a built-in sensor, such as a temperature sensor.
  • a temperature sensor detects that the temperature reaches a preset threshold
  • the power supply circuit between the remote control power supply and the electric device is automatically closed.
  • control method of the electric device may include:
  • the power-on request is sent to the cloud to trigger the cloud to send the power-on command to the first power source 700, and the first power source 700 forwards the power-on command to the second power source 800 to drive the first power source 800.
  • the second power source 800 activates the electrical device so that the electrical device is in a powered state.
  • control method for the electrical device further includes: when the power-off request is obtained, sending the power-off request to the cloud to trigger the cloud to send a power-off command to the first power source 700 , which is forwarded by the first power source 700 to turn off the power.
  • the power command is given to the second power source 800 to drive the second power source 800 to turn off the electrical device.
  • control method of the electric device further includes: receiving information sent by the cloud for confirming the successful power-off, wherein the information for confirming the successful power-off is the second power source 800 sent by the cloud through the first power source 700 based on the second power source 800 The power-off status information is OK.
  • the method for controlling the electrical device further includes: receiving information indicating that the electrical device is automatically powered off, which is forwarded by the second power source 800 through the first power source 700 and the cloud in turn.
  • control method of the electric device may include the following steps:
  • the method for controlling the power consumption device further includes: when receiving a power-off request sent by the mobile communication device, generating a power-off command according to the power-off request; sending a power-off command to the first power supply 700, and the first power supply The power supply 700 forwards the power-off command to the second power supply 800 to drive the second power supply 800 to turn off the electrical device.
  • the control method of the electric device further includes: receiving the status information of the power off of the second power source 800 forwarded by the first power source 700; determining according to the status information that the power of the second power source 800 was successfully powered off; and sending information confirming that the power off was successful to the mobile communication device.
  • the method for controlling the electrical device further includes: forwarding the information sent by the second power source 800 through the first power source 700 indicating that the electrical device is automatically powered off to the mobile communication device.
  • control method of the electric device may include the following steps:
  • the method for controlling an electrical device further includes: receiving a power-off command sent by the cloud through the first power supply 700, wherein the power-off command is generated by the cloud according to a power-off request sent by the mobile communication device; according to the power-off command , turn off the electrical device.
  • the control method of the electric device further includes: sending the status information of the power off of the second power source 800 to the cloud through the first power source 700, so that the cloud can judge whether the power off of the second power source 800 is successful according to the status information.
  • the method for controlling the electrical device further includes: when the second power source 800 and the electrical device are automatically powered off, sequentially forwarding the information indicating the automatic power off of the electrical device to the mobile communication via the first power source 700 and the cloud. equipment.
  • the above-mentioned first power source 700 may also be suitable for charging the second power source 800 .
  • the user can use the first power source 700 to supplement the second power source 800 with power.
  • the above-mentioned first power source 700 preferably adopts the form of an energy storage power station, that is, as shown in FIG. 3e, it includes at least one battery module, and the battery module is composed of multiple batteries 10. At this time, the batteries or battery packs are used for energy storage. It is used for power supply or energy storage power station (also known as outdoor power supply).
  • conventional energy storage power stations or outdoor power supplies have DC output and AC output functions, and are equipped with a cigarette port (car charging port), a mains charging port, a solar panel charging port, and a PD two-way charging port. It can be seen that when the first power source 700 adopts the form of an energy storage power station, it will also have the conventional necessary functions and configurations of the existing energy storage power station.
  • first power source 700 may be suitable for charging the second power source 800, preferably the capacity (Ah) of the first power source 700 is greater than the capacity (Ah) of the second power source; or the energy (WH) of the first power source 700 ) is greater than the energy (WH) possessed by the second power source.
  • FIG. 16 Please continue to refer to the schematic diagram of another control principle module of the remote control power supply shown in 16, which includes a first power supply 700 (the first power supply 700 shown in FIG. 16 can be referred to as an energy storage power supply) and a second power supply 800 (shown in FIG. 16 )
  • the second power supply 800 may be referred to as a transfer power supply), and the third power supply 900.
  • the first power supply 700 or the second power supply 800 has a wireless communication unit for realizing wireless communication with the cloud 300, the wireless communication unit at least has a communication module, specifically, the communication module is a cellular type (eg: 2G/3G/ 4G/5G/NB-IOT/LTE-M);
  • the communication module is a cellular type (eg: 2G/3G/ 4G/5G/NB-IOT/LTE-M);
  • the wireless cellular communication function of the first power supply 700 or the second power supply 800 is activated only after the first power supply 700 and the second power supply 800 are electrically connected.
  • the installation part 700a, the second power supply 800 is adapted to be installed and connected to the installation part 700a.
  • the second power supply 800 is positioned and connected to the first power supply 700 and is electrically connected at the same time.
  • the electrical terminal of the power supply 800 is electrically matched with the other electrical terminal.
  • the control unit of the first power supply 700 or the second power supply 800 detects the electrical signal that is matched by the two, and activates the first power supply 700 or the second power supply 800.
  • Wireless cellular communication capability is provided.
  • the second power supply 800 is connected to the first power supply 700 for positioning and installation while realizing signal connection.
  • the handshake identification is performed on the two signals, and the wireless cellular communication function of the first power supply 700 or the second power supply 800 is activated.
  • the third power supply 900 also has a wireless communication unit for realizing wireless communication with the first power supply 700 or the second power supply 800 whose wireless cellular communication function is activated.
  • the wireless communication unit at least has a communication module.
  • the communication module Non-cellular (eg WiFi/Bluetooth/ZigBee/Lora/Sigfox);
  • the third power source 900 is connected to the electrical device 200 to provide electrical energy to the electrical device 200.
  • the above-mentioned electrical device 200 can be an electric tool, such as an electric drill, an electric angle grinder, an electric hammer, a sprayer, etc. It can also be electric gardening tools, such as pruning machines, lawn mowers, chainsaws, etc., or electric household tools, such as vacuum cleaners, coffee machines, electric fans, juicers, and other types of electrical equipment, Such as glue guns, air pumps, emergency lamps, etc.
  • the above-mentioned electrical device 200 can generally refer to the operation equipment that uses a secondary battery or a battery pack (such as an energy storage power source/energy storage power station) as a power source; the electrical device 200 When working, the power supply is required to provide electrical energy to drive the electrical device to operate.
  • a secondary battery or a battery pack such as an energy storage power source/energy storage power station
  • the third power source 900 can be built into the electrical device 200 to supply electrical energy for the electrical device to operate; it can also be externally placed in the electrical device 200.
  • the energy storage power source 100e is externally connected to the power supply line or data line of the electrical device 200 for power supply (as shown in Figure 4e);
  • the upper third power supply 900 can be installed on the electrical device 200 in a freely detachable manner.
  • the third power supply 900 is suitable for use by different types of electrical devices 200, that is, the third power supply 900 can be shared by power tools, power garden tools, power household tools, such as:
  • the user has a 3.6V or 12V or 20V third power supply 900, which can be used not only for power drills, but also for pruning machines, and also for vacuum cleaners or emergency lights. Such a third power supply 900 can be used for Meet the different usage scenarios of users.
  • the third power source 900 When the third power source 900 is assembled and connected to the powered device 200, the third power source 900 is suitable for mechanical connection and electrical connection to the powered device 200, fixed through the mechanical connection, and provides power to the powered device 200 through the electrical connection.
  • the second power supply 800 includes:
  • a battery 10 or a battery pack for providing electrical energy to the electrical device 200;
  • a wireless communication unit for realizing wireless communication with the first power supply 700 or the second power supply 800 whose wireless cellular communication function is activated;
  • the control unit is used to receive the power-on command issued by the first power source 700 or the second power source 800 with the activated wireless cellular communication function through the wireless communication unit of the third power source 900, and drive the battery 10 according to the power-on command. Or the battery pack starts the power-consuming device, and the power-consuming device is in the power-consuming state. It should be noted that the power-on command issued by the first power source 700 or the second power source 800 is actually sent by the cloud to the first power source 700 , that is, the first power source 700 is used to forward the power-on command sent by the cloud to the third power source 900 . wireless communication unit.
  • the above-mentioned battery 10 or battery pack has at least one battery, such as one 21700 battery.
  • one 21700 battery such as one 21700 battery.
  • three 21700 batteries can be used in series, or five 21700 batteries can be connected in series to meet the use of electrical devices with different voltage platforms.
  • 5 21700 batteries can be connected in series to meet the use of electrical devices with different voltage platforms. It is worth noting that the above is just an example, not limited to the use of 21700 batteries, other types of batteries can also be used, such as 18650 batteries.
  • the above-mentioned battery pack may also include at least one group of battery modules, and the battery modules are formed by connecting multiple cells in series or in parallel, so as to be used as energy storage power sources or energy storage power stations 100e.
  • the above-mentioned third power supply 900 may also be constituted by at least a first remote control power supply and a second remote control power supply in series or in parallel with each other.
  • the above-mentioned third power supply 900 has various forms, such as:
  • the form of remote control power supply (as shown in Figure 3a) is combined with each other; or, the form of an energy storage power station as shown in Figure 3e.
  • the third power supply 900 includes a control unit, an input device and a communication interface.
  • the input device and the communication interface are respectively connected communicatively with the control unit.
  • the control unit includes a microprocessor for processing data and a memory for storing data.
  • the control unit can communicate with the first power source 700 or the second power source 800 with activated wireless cellular communication function through the communication interface, and can also communicate with the mobile communication device through the communication interface.
  • a user can input an instruction or information into the control unit through an input device, so that the control unit executes the content of the instruction or information.
  • the control unit of the third power supply 900 is connected to the first power supply 700 or the second power supply 800 with the activated wireless cellular communication function through the communication interface, and the first power supply 700 or the second power supply 800 with the activated wireless cellular communication function is connected through a wireless network (eg 4G or 5G) establishes communication with the cloud, the cloud establishes communication with the mobile communication device through a wireless network, and the mobile communication device controls the third power source 900 via the cloud and the first power source 700 or the second power source 800 activated with the wireless cellular communication function,
  • the third power source 900 regularly reports status information to the cloud via the first power source 700 or the second power source 800 activated with the wireless cellular communication function, and the status information includes power consumption status information, power off status information, location information, remaining power, temperature one or more of the waiting.
  • the third power supply 900 also includes a sensor and a display, both of which are communicatively connected to the control unit respectively; the sensor can collect the status information of the battery or battery pack in real time (for example, temperature, remaining power, location information, etc.), and transmit these status information to the control unit.
  • the display may display user desired content (eg, temperature, remaining power, location information, etc.) and/or interface (eg, interactive interface) as required.
  • the display and sensor are not necessary components of this second power supply.
  • the wireless communication unit of the third power supply 900 is used to realize wireless communication with the first power supply 700 or the second power supply 800 whose wireless cellular communication function is activated.
  • GNSS module or GPS module including GPS module or Beidou module.
  • the above-mentioned control unit is further adapted to connect the first power source 700 or the second power source 800 with the activated wireless cellular communication function through the wireless communication unit of the third power source 900, and connect the first power source 700 with the activated wireless cellular communication function through the first power source 700 with the activated wireless cellular communication function.
  • the second power source 800 receives a power-off command sent by the cloud 300, and drives the battery or battery pack to turn off the electrical device according to the power-off command. It should be noted that the power-off command sent by the cloud is forwarded to the wireless communication unit of the third power supply 900 via the first power supply 700 or the second power supply 800 whose wireless cellular communication function is activated.
  • the control unit of the third power supply 900 includes;
  • an electronic controller for identifying the wireless signal received by the wireless communication unit of the third power supply 900 and driving the actuator to act;
  • the actuator is used to perform the action of starting or closing the electric device.
  • the wireless signal may include a power-on command or a power-off command.
  • the wireless signal when the cloud forwards the power-on command to the wireless communication unit of the third power source 900 via the first power source 700 or the second power source 800 activated with the wireless cellular communication function , the wireless signal is the power-on command; when the cloud forwards the power-off command to the wireless communication unit of the third power source 900 via the first power source 700 or the second power source 800 activated with the wireless cellular communication function, the wireless signal is the power-off command.
  • the wireless signal is: the other signal.
  • the actuator is a circuit switch, which has a simple structure and low cost.
  • the actuator may be other structures capable of starting or shutting down the electrical device.
  • the power-on command is generated by the cloud when it receives a power-on request sent by the mobile communication device, so as to realize the purpose of remotely controlling the remote control power supply to start the electric device, and there is no need to manually operate the button of the remote control power supply to start the electric device.
  • the user carries the first power supply 700 and the second power supply 800 outdoors without WiFi network coverage, the second power supply 800 is installed and connected to the first power supply 700, and the wireless cellular communication function of the first power supply 700 or the second power supply 800 is activated, activated
  • the first power supply 700 or the second power supply 800 of the wireless cellular communication function is connected to the cloud 300 through a cellular type, such as a 4G or 5G communication module, and the third power supply 900 is connected to the cloud through a non-cellular type, such as a WiFi or Bluetooth communication module.
  • the user realizes wireless communication with the cloud 300 through cellular data of the mobile phone, such as 4G or 5G signals.
  • the user sends a power-on command to the cloud 300 through the mobile communication device through the wireless network
  • the cloud 300 sends a power-on command through the wireless network
  • the first power supply 700 or the second power supply 800 with the activated wireless cellular communication function passes through the connected wireless network.
  • the power-on command is sent to the third power source 900
  • the control unit of the third power source 900 receives the power-on command through the connected wireless network, and controls the battery 10 or the battery pack to start the electrical device.
  • the outdoor vehicle-mounted refrigerator 200c provides power through the third power source 900 (eg, the remote control power source 100c in the form of five batteries),
  • the third power supply 900 is connected to the first power supply 700 or the second power supply 800 with the activated wireless cellular communication function through a non-cellular, such as WiFi or Bluetooth communication module, and the first power supply 700 with the activated wireless cellular communication function
  • the second power supply 800 is connected to the cloud 300 through its own cellular type, such as a 4G or 5G communication module.
  • the user can remotely control the remote power supply 100 to turn on through the cloud through the terminal APP, and start the outdoor car refrigerator 200c to work.
  • the purpose of remotely controlling the remote control power supply to turn off the electric device is realized, and there is no need to manually operate the button of the remote control power supply to turn off the electric device.
  • a method for controlling an electrical device for controlling the electrical device 200 based on the combination of the first power source 700 / the second power source 800 and the third power source 900 as described above, in some embodiments Among them, the control method of the electric device 200 includes a part or all of a login step, a power consumption step and a power off step. Each step of the control method of the present invention will be described in detail below with reference to the flowchart.
  • Fig. 19 shows the flow chart of the login step in the control method of the electric device
  • the user uses the electrical device and the first power source/second power source and the third power source for the first time, he needs to register online and fill in necessary user information.
  • the user can download the user terminal application from the cloud to the mobile communication device through the network and locally install the application on the mobile communication device, or the user terminal application has been pre-installed on the user's mobile communication device.
  • the login step the user starts the user terminal application on the mobile communication device, and makes the mobile communication device establish a connection with the cloud.
  • step S1 the mobile communication device running the user terminal application requests a verification code from the cloud 300; in step S2, after receiving the verification code request sent from the user's mobile communication device, the cloud 300 performs verification and confirmation, and sends the verification code through a short message Send the verification code to the mobile communication device by means of , email, voice call, etc.; in step S3, after the user receives the verification code sent by the cloud 300, the verification code is input into the mobile communication device, and the mobile communication device is sent via the network.
  • the verification code is sent to the cloud 300; in step S4, the cloud 300 sends login confirmation information to the user's mobile communication device after verifying the verification code.
  • Fig. 20 shows the flow chart of controlling the power consumption device to turn on power consumption
  • step S10 the mobile communication device sends the power-on request to the cloud 300; in step S20, after receiving the power-on request, the cloud 300 sends the power-on command to the first power source 700 or the first power source 700 or the first power source with the activated wireless cellular communication function in step S20.
  • Second power supply 800 in step S30, the first power supply 700 or the second power supply 800 activated with the wireless cellular communication function receives the power-on command and transmits it to the third power supply 900 to turn on the power supply; in step S40, the third power supply 900 Send the power-on state information to the first power supply 700 or the second power supply 800 with the activated wireless cellular communication function; in step S50, the first power supply 700 or the second power supply 800 with the activated wireless cellular communication function will receive the power-on The state information is sent to the cloud 300; in step S60, the cloud 300 sends feedback of the power-on state information to the mobile communication device.
  • the user when the user needs to end the operation of the power-consuming device, the user sends a power-off request to the cloud 300 through the mobile communication device (step S100).
  • the cloud 300 After receiving the power-off request, the cloud 300 sends the power-off request to The first power source 700 or the second power source 800 of the wireless cellular communication function sends a power-off command (step S200), and the first power source 700 or the second power source 800 of the activated wireless cellular communication function receives the power-off command and transmits it to the third power source 900 to turn off the power (step S300), the third power supply 900 sends the power-off status information to the first power supply 700 or the second power supply 800 with the activated wireless cellular communication function (step S400), and the third power supply with the activated wireless cellular communication function.
  • the first power source 700 or the second power source 800 sends the power-off status information of the third power source 900 to the cloud 300 (step S500 ).
  • the cloud 300 confirms the third power source 900 based on the power-off status information of the third power source 900 .
  • a message confirming that the power off is successful is sent to the mobile communication device, and the current power consumption is ended (step S600).
  • the power-off step in the present invention can also be realized by automatically powering off the electrical device.
  • the third power supply 900 sends the power-off status information Actively transmit to the first power source 700 or the second power source 800 with the activated wireless cellular communication function, and report to the cloud (step S4000-step 5000), the cloud receives the power-off status information and sends the power-off status information feedback to the mobile communication equipment to remind the user that the electrical device is powered off (step S6000).
  • the electric device 200 has a built-in sensor, such as a temperature sensor.
  • a temperature sensor detects that the temperature reaches a preset threshold
  • the power supply circuit between the remote control power supply and the electric device is automatically closed.
  • control method of the electric device may include:
  • the method for controlling a powered device further includes: when a power-off request is obtained, sending a power-off request to the cloud, so as to trigger the cloud to send a power-off command to the first power source 700 with the activated wireless cellular communication function or
  • the second power supply 800 forwards the power-off command to the third power supply 900 by the first power supply 700 or the second power supply 800 activated with the wireless cellular communication function, so as to drive the third power supply 900 to turn off the electric device.
  • control method of the electric device also includes: receiving information sent by the cloud to confirm the successful power-off, wherein the information to confirm the successful power-off is that the cloud uses the first power source 700 or the first power source with the activated wireless cellular communication function based on the remote control power source.
  • the state information sent by the second power supply 800 that the third power supply 900 is turned off is determined.
  • the method for controlling an electrical device further includes: receiving a remote control power supply via the first power supply 700 or the second power supply 800 activated with the wireless cellular communication function and the information forwarded by the cloud indicating that the electrical device is automatically powered off. .
  • control method of the electric device may include the following steps:
  • the power supply 900 is used to drive the third power supply 900 to start the electrical device, so that the electrical device is in a powered state.
  • the method for controlling a powered device further includes: when receiving a power-off request sent by the mobile communication device, generating a power-off instruction according to the power-off request; A power supply 700 or a second power supply 800 forwards a power-off command to the third power supply 900 by the first power supply 700 or the second power supply 800 activated with the wireless cellular communication function, so as to drive the third power supply 900 to turn off the electric device.
  • control method for the electrical device further includes: receiving state information that the third power supply 900 is turned off and forwarded by the first power supply 700 or the second power supply 800 with the activated wireless cellular communication function; and determining the third power supply according to the state information 900 The power off is successful; the information confirming the power off is successfully sent to the mobile communication device.
  • the method for controlling a powered device further includes: forwarding information indicating that the powered device is automatically powered off, sent by the third power source 900 through the first power source 700 or the second power source 800 activated with the wireless cellular communication function, to the mobile device communication device.
  • control method of the electric device may include the following steps:
  • the method for controlling a powered device further includes: receiving a power-off command sent by the cloud through the first power source 700 or the second power source 800 activated with the wireless cellular communication function, wherein the power-off command is the cloud according to the mobile communication
  • the power-off request sent by the device is generated; according to the power-off command, the power-consuming device is turned off.
  • the control method of the electric device further includes: sending the status information of the power off of the third power source 900 to the cloud through the first power source 700 or the second power source 800 activated with the wireless cellular communication function, so that the cloud can judge according to the status information. Whether the remote control power is turned off successfully.
  • the method for controlling a powered device further includes: when the third power source 900 and the powered device are automatically powered off, forwarding the power via the first power source 700 or the second power source 800 activated with the wireless cellular communication function and the cloud in sequence Information indicating that the electrical device is automatically powered off is sent to the mobile communication device.
  • the second power supply 800 has a wireless communication unit for realizing wireless communication with the cloud 300, and the wireless communication unit at least has a communication module, specifically, the communication module is a cellular type (such as : 2G/3G/4G/5G/NB-IOT/LTE-M); the wireless cellular communication function of the second power supply 800 can be activated only after the second power supply 800 and the first power supply 700 are electrically connected to each other.
  • the communication module is a cellular type (such as : 2G/3G/4G/5G/NB-IOT/LTE-M); the wireless cellular communication function of the second power supply 800 can be activated only after the second power supply 800 and the first power supply 700 are electrically connected to each other.
  • the first power supply 700 is provided with a mounting portion 700a suitable for electrical connection of the second power supply 800, and the second power supply 800 is adapted to be mounted and connected to the mounting portion 700a.
  • the second power supply 800 is positioned and connected to the first power supply 700.
  • the electrical connection is realized.
  • the installation part is provided with another electrical terminal that is electrically matched with the electrical terminal of the second power supply 800.
  • the control unit of the second power supply 800 detects the electrical signal matching the two. , activate the wireless cellular communication function of the second power supply 800 .
  • the second power supply 800 is connected to the first power supply 700 for positioning and installation while realizing signal connection.
  • the mounting portion 700a is provided with another signal terminal for electrical signal connection with the signal terminal of the second power supply 800, for convenience
  • the signal terminal of the mounting part 700a can be referred to as the first signal terminal
  • the signal terminal of the second power supply 800 can be referred to as the second signal terminal.
  • handshake identification is performed on the two signals, and the wireless cellular communication function of the second power supply 800 is activated.
  • the second power supply 800 is much smaller in volume than the first power supply 700 , wherein the second power supply 800 is most preferably in the form of a single-cell 21700 battery, which can be small in size and is convenient for users to carry. It can also be understood that the second power source 800 is assembled to the first power source 700 , and the first power source 700 can provide power to the second power source 800 , that is, perform charging service for the second power source 800 .
  • the above-mentioned first power source 700 preferably adopts the form of an energy storage power station, that is, as shown in FIG. 3e, it includes at least one battery module, and the battery module is composed of multiple batteries 10.
  • the battery or battery pack Used as energy storage power supply or energy storage power station (also known as outdoor power supply).
  • conventional energy storage power stations or outdoor power supplies have DC output and AC output functions, and are equipped with a cigarette port (car charging port), a mains charging port, a solar panel charging port, and a PD two-way charging port. It can be seen that when the first power source 700 adopts the form of an energy storage power station, it will also have the conventional necessary functions and configurations of the existing energy storage power station.
  • the first power source 700 can charge the second power source 800, preferably the capacity (Ah) of the first power source 700 is greater than the capacity (Ah) of the second power source; or the energy (WH) of the first power source 700 is greater than that of the second power source 700 The energy (WH) of the power supply.
  • the second power supply 800 in the form of a single-cell 21700 battery is most preferably activated for the first time, it can be taken out from the mounting portion 700a of the first power supply 700.
  • the second power supply 800 can also be used as a portable WiFi device.
  • the second power source 800 can also take other forms, such as a three-cell battery form as shown in FIG. 3b; or a schematic diagram of a five-cell battery form as shown in FIG. 3c; or a plurality of single-cell batteries as shown in FIG. 3d
  • the remote control power sources in the form of batteries are combined with each other to form a form; or, the form of an energy storage power station as shown in Figure 3e.
  • An embodiment of the present invention also provides a remote control power supply for an electrical device, which is used to receive a control command sent from a mobile communication device through a wireless network.
  • the remote control power supply may include:
  • a wireless communication unit for wireless communication with a mobile communication device
  • control unit for receiving control instructions sent by the mobile communication device through the wireless communication unit
  • control command includes at least a power-on command
  • control unit is used to drive the battery or the battery pack to start the electric device according to the power-on command.
  • the remote control power supply in the embodiment of the present invention can wirelessly communicate with the mobile communication device, that is, the remote control power supply has the function of network communication, so that the user can remotely control the remote control power supply to start the electric device, the control of the remote control power supply is more intelligent, and the user experience is improved.
  • the control command may also include a power-off command and/or a parameter setting command and/or a parameter reading command, for example, in some embodiments, the control command includes a power-off command, and the control unit is used to drive the battery or battery pack according to the power-off command Turn off the electrical device; in other embodiments, the control instruction includes a parameter setting instruction, and the control unit is used to perform parameter setting on the remote control power supply and/or the single device according to the parameter setting instruction.
  • the control instruction includes a parameter reading instruction
  • the control unit is used to The parameter reading command obtains the state information of the remote control power supply, and sends the state information of the remote control power supply to the mobile communication device through the wireless communication unit. command), the status information of the remote control power supply may also include status information such as the power and/or temperature of the remote control power supply.
  • the wireless communication unit of the remote control power supply is indirectly wirelessly connected to the mobile communication device.
  • the wireless communication unit of the remote control power supply 100 is connected to the mobile communication device through the cloud 300 for wireless communication; as shown in FIG. 9 , the wireless communication unit of the second power supply 800 (the second power supply 800 is a remote control power supply) realizes wireless communication connection with the mobile communication device through the first power supply 700 and the cloud 300 in turn; as shown in FIG. 16 , the third power supply 900 (the third power supply 900 is the wireless communication unit of the remote control power supply) to realize wireless communication connection with the mobile communication device through the second power supply 800 or the first power supply 700 and the cloud 300 in turn.
  • the wireless communication unit of the remote control power supply is in direct wireless communication connection with the mobile communication device.
  • the remote control power supply 100 of the electric device 200 is used to provide electric power to the electric device 200 and at the same time receive the control command sent from the mobile communication device through the wireless network.
  • the remote control power supply 100 has a wireless communication unit, the wireless communication unit at least has a wireless communication module, and the wireless communication module can be a cellular type (eg 2G/3G/4G/5G/NB-IOT/LTE-M) or Non-cellular (eg WiFi/Bluetooth/ZigBee/Lora/Sigfox), or both.
  • a cellular type eg 2G/3G/4G/5G/NB-IOT/LTE-M
  • Non-cellular eg WiFi/Bluetooth/ZigBee/Lora/Sigfox
  • the functional modules of the remote control power supply 100 are shown in FIG. 2 .
  • the remote control power supply 100 directly implements wireless communication connection with the mobile communication device, and is used for receiving control instructions sent from the mobile communication device, and feeding back state information of the remote control power supply to the mobile communication device.
  • the remote control power supply may include a first power supply 700 and a second power supply 800, which are formed by connecting the first power supply 700 and the second power supply 800 in series or in parallel, and the second power supply 800 is connected to the electric device 200 for Power is supplied to the powered device 200 .
  • the first power supply 700 has a wireless communication unit for realizing wireless communication with a mobile communication device, the wireless communication unit at least has a communication module, specifically, the communication module is a cellular type (eg 2G/3G/4G/5G /NB-IOT/LTE-M) or non-cellular (eg WiFi/Bluetooth/ZigBee/Lora/Sigfox), or both.
  • the communication module is a cellular type (eg 2G/3G/4G/5G /NB-IOT/LTE-M) or non-cellular (eg WiFi/Bluetooth/ZigBee/Lora/Sigfox), or both.
  • the functional modules of the second power supply 800 are shown in FIG. 10 .
  • the remote control power source may include a first power source 700 , a second power source 800 and a third power source 900 .
  • the third power source 900 is connected to the powered device 200 for providing power to the powered device 200 .
  • the first power supply 700 or the second power supply 800 has a wireless communication unit for realizing wireless communication with the mobile communication device, the wireless communication unit at least has a communication module, specifically, the communication module is a cellular type (eg: 2G/3G /4G/5G/NB-IOT/LTE-M).
  • the communication module is a cellular type (eg: 2G/3G /4G/5G/NB-IOT/LTE-M).
  • the functional modules of the third power supply 900 are shown in FIG. 17 .
  • the wireless communication unit of the remote control power supply also wirelessly communicates with the cloud via the mobile communication device.
  • the wireless communication unit of the remote control power supply 100 also wirelessly communicates with the cloud 300 via the mobile communication device; as shown in FIG. 24
  • the wireless communication unit of the first power supply 700 also wirelessly communicates with the cloud 300 via the mobile communication device; as shown in FIG. 25 , the first power supply 700 or the second power supply 800 also wirelessly communicates with the cloud 300 via the mobile communication device.
  • the control unit of the remote control power supply after acquiring the state information of the remote control power supply, sends the state information to the mobile communication device through the wireless communication unit, and the mobile communication device forwards the state information to the cloud, so that the state information can be checked by the cloud through the cloud.
  • the control method of the electric device is the same.
  • a power supply assembly is provided, and the power supply assembly may include the remote control power supply in the above embodiments.
  • the remote control power supply 100 directly communicates with the cloud 300 through a wireless network, and the control unit of the remote control power supply 100 is adapted to receive the power-on signal sent by the cloud 300 through the wireless communication unit of the remote control power supply 100 . command, and drive the battery 10 or the battery pack to start the power-consuming device according to the power-on command, and the power-consuming device is in the power-on state.
  • the control unit of the remote control power supply 100 is also adapted to receive the power-off command sent by the cloud 300 through the wireless communication unit of the remote-control power supply 100, and drive the battery or battery pack to turn off the power-consuming device according to the power-off command, and the power-consuming device is powered off. state.
  • control commands obtained from the power-on command and the power-off command are forwarded by the mobile communication device to the remote control power source 100 via the cloud.
  • the remote control power source is a second power source 800
  • the power supply component further includes a first power source 700
  • the first power source 700 may also be referred to as an energy storage power source
  • the first power source 700 is used for wireless communication with the cloud connected with the wireless communication unit of the second power source 800 to realize wireless communication between the second power source 800 and the cloud 300 ; wherein the first power source 700 can charge the second power source 800 .
  • the second power source 800 implements wireless communication with the cloud 300 through the switching of the first power source 700 .
  • control commands obtained from the power-on command and the power-off command are forwarded by the mobile communication device to the first power source 700 via the cloud, and then the first power source 700 forwards the control commands to the second power source 800 .
  • the remote control power source is a third power source 900
  • the power supply component may further include a first power source 700 (the first power source 700 may also be referred to as an energy storage power source) and a second power source 800 (the second power source 800 It may also be referred to as a transfer power supply), wherein when the first power supply 700 is electrically connected with the second power supply 800, the wireless communication function of the first power supply 700 or the second power supply 800 is activated, so that the first power supply 700 or the second power supply 800 is wirelessly connected to the cloud 300 , and the first power source 700 or the second power source 800 is wirelessly connected to the wireless communication unit of the third power source 900 to realize wireless communication between the third power source 900 and the cloud 300 .
  • control commands obtained from the power-on command and the power-off command are forwarded by the mobile communication device to the first power source 700 or the second power source 80 via the cloud, and then the first power source 700 or the second power source 80 sends the The control command is forwarded to the third power source 900 .
  • the first power supply 700 includes a mounting portion 700 a
  • the second power supply 800 is adapted to be installed and connected to the mounting portion 700 a to realize electrical connection between the second power supply 800 and the first power supply 700 .
  • the installation part is provided with a first signal terminal, and the second power supply 800 includes a second signal terminal.
  • the first signal terminal and the second signal terminal are installed and matched to realize the second power supply 800 Electrical connection with the first power supply 700 .
  • the second power supply 800 After the wireless communication function of the first power supply 700 or the second power supply 800 is activated, if the second power supply 800 is removed from the first power supply 700 , the second power supply 800 can be used as an accompanying wireless network.
  • the first power source 700 and the cloud 300 implement wireless communication based on a cellular network
  • the wireless communication units of the first power source 700 and the third power source 900 implement wireless communication based on a non-cellular network.
  • the remote control power supply 100 directly communicates with the mobile communication device through a wireless network.
  • the control commands obtained from the power-on command and the power-off command are directly sent to the remote control power supply 100 by the mobile communication device.
  • the first power supply 700 directly communicates with the mobile communication device through a wireless network.
  • the control commands obtained from the power-on command and the power-off command are directly sent by the mobile communication device to the first power source 700 , and then the first power source 700 forwards the control commands to the second power source 800 .
  • control commands obtained from the power-on command and the power-off command are forwarded by the mobile communication device to the first power source 700 or the second power source 80 via the cloud, and then the first power source 700 or the second power source 80 sends the The control command is forwarded to the third power source 900 .
  • an electrical device and the electrical device may include:
  • the power supply component is used to provide electrical energy to the power consumption component.
  • the electrical device further includes a housing, and the remote control power supply is detachably mounted on the housing.
  • the remote control power source is suitable for electric tools, such as electric garden tools and/or electric household tools and other electric components.
  • a power consumption system including:
  • the cloud wirelessly communicatively connected to the mobile communication device
  • the remote control power supply of the power supply component is wirelessly connected to the cloud; wherein, the mobile communication device is used to send a power-on request to the cloud to trigger the cloud to send a power-on command to the remote control power supply.
  • the remote control power supply of the power supply component is directly connected to the mobile communication device in wireless communication, and the mobile communication device directly sends control commands such as power-on commands to the remote control power supply.
  • the above-mentioned remote control power supply 100 is also suitable for parameter adjustment.
  • the remote control power supply 100 includes:
  • a battery 10 or a battery pack for providing electrical energy to the electrical device 200;
  • a wireless communication unit for realizing wireless communication with the cloud 300
  • the control unit is configured to receive, through the wireless communication unit, a control instruction for adjusting an output parameter sent by the mobile communication device, and adjust the output parameter of the remote control power supply according to the control instruction.
  • the above output parameters include one or more of output power, output time, output current direction, and output mode.
  • the output parameter is basically the output power, and the wind speed of the electric fan can be adjusted by adjusting the output power; for another example, when the vacuum cleaner is controlled remotely, the output parameter can also be the output power, which can be adjusted by adjusting the output power.
  • the suction power of the vacuum cleaner can be adjusted by the output power; for example, when controlling the electric drill, the adjustment parameters can be the output power and the output current direction, the rotation speed of the electric drill can be adjusted by adjusting the output power, and the rotation of the electric drill can also be adjusted by adjusting the output current direction.
  • the output parameter of the coffee machine can be an output mode, and the output mode can be set according to the flavor of the coffee, such as American flavor, latte flavor, espresso flavor, etc.
  • the above control unit includes:
  • the acquisition module is used to collect the current output parameters of the remote control power supply, and at the same time, it is used to collect wireless communication signals, and send the collected data and/or signals to the processing module;
  • the processing module is used to compare the current output parameters collected from the acquisition module with the output parameters to be adjusted sent from the mobile communication device. If the comparison result is consistent, the output need not be adjusted again. parameters, and feedback the result to the mobile communication device; if the comparison results are inconsistent, adjust the current output parameter to the output parameter to be adjusted, and feed back the adjustment result to the mobile communication device; and
  • the storage module stores the current output parameters collected from the collection module, and also stores the above comparison results when there is no network state.
  • the above-mentioned mobile communication device at least has a display module to display an adjustment interface or a feedback interface, and is also convenient for the user to input control instructions.
  • the remote control power supply further includes a sensor and a display, both of which are respectively connected communicatively with the control unit; the sensor can collect the status information of the battery or battery pack in real time (for example, temperature, remaining power, location information, etc. ) and transmit these status information to the control unit.
  • the display may display user desired content (eg, temperature, remaining power, location information, etc.) and/or interface (eg, interactive interface) as required.
  • the display and sensors are not necessary parts of this remote power supply.
  • the above-mentioned wireless communication unit may also include a positioning module, such as a GNSS module or a GPS module, including a GPS module or a Beidou module, in addition to the above-mentioned communication module.
  • a positioning module such as a GNSS module or a GPS module, including a GPS module or a Beidou module, in addition to the above-mentioned communication module.
  • the control unit includes:
  • an electronic controller for identifying the wireless signal received by the wireless communication unit and driving the actuator to act
  • the actuator is used to perform the action of adjusting the output parameters.
  • the actuator is a circuit switch, which has a simple structure and low cost.
  • the actuator may be other structures capable of adjusting output parameters.
  • the above-mentioned mobile communication equipment includes at least a communication device, a processing device, and a memory; the communication device is used to send or receive signals through a wired or wireless network; the processing device includes an application processing part and a radio frequency/digital signal processor; The memory is used to process or store the signal as a physical storage state; such as smart terminals such as mobile phones, pads, and notebooks.
  • the above cloud includes at least: one or more central processing units; one or more memories and/or mass storage devices; one or more wired or wireless network interfaces.
  • the remote control power supply 100 is in a WiFi network coverage environment, such as an indoor home environment, the remote control power supply 100 connects to the home WiFi network through a non-cellular type, such as a WiFi communication module, and realizes wireless communication with the mobile communication device through the WiFi network.
  • Cellular data such as 4G or 5G signals, communicate wirelessly with the cloud.
  • the user sends an instruction to adjust the output parameters to the remote control power supply via the mobile communication device through the wireless network
  • the control unit of the remote control power supply 100 receives the instruction to adjust the output parameters through the connected wireless network, and adjusts the output parameters of the remote control power supply.
  • the remote control power supply 100a) in the form of a battery is connected, and the remote control power supply provides power for the work of the fan 200a and the cleaning robot 200b.
  • the remote control power supply 100 is in the WiFi network coverage environment, and the remote control power supply 100 is connected to the home WiFi network through the WiFi communication module.
  • the WiFi network and the mobile communication device realize wireless communication.
  • the user can remotely control the remote control power supply 100 to turn on through the terminal APP, start the fan or the cleaning robot to work, and can also remotely control and adjust the output parameters of the remote control power supply, such as changing the wind speed of the fan, Cleaning mode of the cleaning robot, etc.
  • the user carries the remote control power supply 100 outdoors without WiFi network coverage.
  • the remote control power supply 100 is connected to the mobile communication device through a non-cellular type, such as a Bluetooth communication module, and the user communicates wirelessly with the cloud 300 through the cellular data of the mobile phone, such as 4G or 5G signals. communication.
  • the user sends the adjustment output parameter to the mobile communication device through the wireless network
  • the control unit of the remote control power supply 100 receives the control command to adjust the output parameter through the connected wireless network, and adjusts the output parameter of the remote control power supply.
  • the schematic diagram of the remote control power supply assembly suitable for the outdoor vehicle-mounted refrigerator is shown.
  • the outdoor vehicle-mounted refrigerator 200c provides power through the remote control power supply 100 (eg, the remote control power supply 100c in the form of five batteries).
  • the remote control power supply 100 is not covered by the WiFi network.
  • the remote control power supply 100 is connected to the mobile communication device through its own cellular type, such as: 4G or 5G communication module.
  • the user can remotely control the output parameters of the remote control power supply 100 through the terminal APP, such as adjusting the outdoor car refrigerator. Output Power.
  • FIG. 4e another form of the remote control power supply 100 is shown, that is, the form of an energy storage power station.
  • the outdoor vehicle-mounted refrigerator 200c provides electrical energy through a remote control power source (eg, a remote control power source 100e in the form of an energy storage power station).
  • a remote control power source eg, a remote control power source 100e in the form of an energy storage power station.
  • a battery module the battery module is composed of a plurality of batteries 10, at this time the remote control power supply 100 is used as an energy storage power supply or an energy storage power station.
  • the remote control power supply 100 is located outdoors without WiFi network coverage.
  • the remote control power supply 100 is connected to the outdoor car refrigerator 200c through a power cord, and is connected to the cloud through its own cellular type, such as a 4G or 5G communication module. , the user can remotely control the remote control power supply 100 to turn on through the terminal APP, and start the outdoor car refrigerator 200c to work.
  • FIG. 27 shows a flowchart of the method for adjusting output parameters:
  • Step S10 the mobile communication device sends a request for adjusting the output parameter to the remote control power supply 100;
  • Step S20 when step S10 is performed, the request information is sent to the cloud for storage at the same time;
  • Step S30 after the remote control power supply 100 receives the control instruction for adjusting the output parameter, executes the control instruction
  • Step S40 after the remote control power supply 100 executes the control command, it feeds back the execution situation to the mobile communication device;
  • step S50 the mobile communication device transmits the feedback information to the cloud, and the cloud classifies and stores the feedback information.
  • step S30 a comparison method is also included, and the steps are as follows:
  • Step S31 the collection module of the control unit collects the current output parameter data, and receives the control instruction data for adjusting the output parameter sent from the mobile communication device;
  • Step S32 after the processing module receives the data transmitted from the acquisition module, compares the current output parameter data with the output parameter data to be adjusted;
  • Step S33 judging whether the current output parameter data is consistent with the output parameter data to be adjusted
  • Step S34 if the comparison results are consistent, the control instruction for adjusting the output parameters does not need to be executed;
  • Step S35 if the comparison results are inconsistent, execute the control instruction for adjusting the output parameters.
  • FIG. 24 Referring to the schematic diagram of another control principle module of the remote control power supply shown in FIG. 24 , it includes a first power supply 700 (the first power supply 700 shown in FIG.
  • the first power supply 700 has a wireless communication unit for realizing wireless communication with a mobile communication device, the wireless communication unit at least has a communication module, NB-IOT/LTE-M), or non-cellular (eg WiFi/Bluetooth/ZigBee/Lora/Sigfox), or both;
  • NB-IOT/LTE-M a communication module
  • non-cellular eg WiFi/Bluetooth/ZigBee/Lora/Sigfox
  • the communication module at the first power source is non-cellular, and specifically, the communication module at the first power source is Bluetooth.
  • the second power supply 800 also has a wireless communication unit for realizing wireless communication with the first power supply 700.
  • the wireless communication unit at least has a communication module.
  • the communication module is a cellular type (eg 2G/3G/4G/ 5G/NB-IOT/LTE-M), non-cellular (eg WiFi/Bluetooth/ZigBee/Lora/Sigfox), or both.
  • the communication module at the second power source is non-cellular, and specifically, the communication module at the second power source is Bluetooth.
  • the second power source 800 is connected to the electrical device 200 to provide electrical energy to the electrical device 200.
  • the above-mentioned electrical device 200 can be an electric tool, such as an electric drill, an electric angle grinder, an electric hammer, a sprayer, etc.
  • Electric garden tools such as pruning machines, lawn trimmers, chainsaws, etc.
  • electric household tools such as vacuum cleaners, coffee machines, electric fans, juicers, and other types of electrical equipment, such as glue guns , air pump, emergency lighting, etc.
  • the above-mentioned power-consuming device 200 can generally refer to the operation equipment that uses a secondary battery or a battery pack (such as an energy storage power source/energy storage power station) as a power source; when the power-consuming device 200 is working, A power supply is required to provide electrical energy to drive the electrical device to operate.
  • a secondary battery or a battery pack such as an energy storage power source/energy storage power station
  • the second power source 800 can be built into the electrical device 200 to supply electrical energy for the electrical device to operate; it can also be externally placed in the electrical device 200.
  • the energy storage power source 100e is externally connected to the power supply line or data line of the electrical device 200 for power supply (as shown in Figure 4e);
  • the above-mentioned second power supply 800 can be installed on the electrical device 200 in a freely detachable manner.
  • the second power supply 800 is suitable for use by different types of electrical devices 200, that is, the second power supply 800 can be shared by power tools, power garden tools, power household tools, such as:
  • the user has a 3.6V or 12V or 20V second power supply 800, which can be used not only for power drills, but also for pruning machines, and also for vacuum cleaners or emergency lights.
  • a second power supply 800 can be used for Meet the different usage scenarios of users.
  • the second power source 800 When the second power source 800 is assembled and connected to the powered device 200, the second power source 800 is suitable for mechanical connection and electrical connection to the powered device 200, fixed through the mechanical connection, and provides power to the powered device 200 through the electrical connection.
  • the second power supply 800 includes:
  • a battery 10 or a battery pack for providing electrical energy to the electrical device 200;
  • a wireless communication unit for realizing wireless communication with the first power supply 700
  • the control unit is configured to receive, through the wireless communication unit of the second power supply 800, a control instruction for adjusting the output parameters sent by the first power supply 700, and perform the adjustment work according to the control instruction.
  • the control command for adjusting the output parameters sent by the first power supply 700 is actually sent by the mobile communication device to the first power supply 700 , that is, the first power supply 700 is used to forward the control command sent by the mobile communication device to the second power supply 800 the wireless communication unit.
  • the above control unit includes:
  • the acquisition module is used to collect the current output parameters of the remote control power supply, and at the same time, it is used to collect wireless communication signals, and send the collected data and/or signals to the processing module;
  • the processing module is used to compare the current output parameters collected from the acquisition module with the output parameters to be adjusted sent from the mobile communication device. If the comparison result is consistent, the output need not be adjusted again. parameters, and feedback the result to the mobile communication device; if the comparison results are inconsistent, adjust the current output parameter to the output parameter to be adjusted, and feed back the adjustment result to the mobile communication device; and
  • the storage module stores the current output parameters collected from the collection module, and also stores the above comparison results when there is no network state.
  • the above output parameters include one or more of output power, output time, output current direction, and output mode.
  • the output parameter when adjusting the electric fan, is basically the output power, and the wind speed of the electric fan can be adjusted by adjusting the output power; for another example, when adjusting the vacuum cleaner, the output parameter can also be the output power, and the output power can be adjusted by adjusting the output power.
  • the adjustment parameters can be the output power and the output current direction
  • the speed of the electric drill can be adjusted by adjusting the output power
  • the rotation direction of the electric drill can also be adjusted by adjusting the output current direction
  • the output parameter of the coffee machine can be an output mode
  • the output mode can be set according to the flavor of the coffee, such as American flavor, latte flavor, espresso flavor, and the like.
  • the above-mentioned battery 10 or battery pack has at least one battery, such as one 21700 battery.
  • one 21700 battery such as one 21700 battery.
  • three 21700 batteries can be used in series, or five 21700 batteries can be connected in series to meet the use of electrical devices with different voltage platforms.
  • 5 21700 batteries can be connected in series to meet the use of electrical devices with different voltage platforms. It is worth noting that the above is just an example, not limited to the use of 21700 batteries, other types of batteries can also be used, such as 18650 batteries.
  • the above-mentioned battery pack may also include at least one group of battery modules, and the battery modules are formed by connecting multiple cells in series or in parallel, so as to be used as energy storage power sources or energy storage power stations 100e.
  • the above-mentioned second power supply 800 has various forms, such as:
  • the form of remote control power supply (as shown in Figure 3a) is combined with each other; or, the form of an energy storage power station as shown in Figure 3e.
  • the second power supply 800 includes a control unit, an input device and a communication interface.
  • the input device and the communication interface are respectively connected communicatively with the control unit.
  • the control unit includes a microprocessor for processing data and a memory for storing data.
  • the control unit may communicate with the first power supply 700 through the communication interface, and may also communicate with the mobile communication device through the communication interface.
  • a user can input an instruction or information into the control unit through an input device, so that the control unit executes the content of the instruction or information.
  • the control unit of the second power source 800 is connected to the first power source 700 through the communication interface, the first power source 700 establishes communication with the mobile communication device through the wireless network, the mobile communication device establishes communication with the cloud through the wireless network, and the mobile communication device communicates with the cloud through the first power source 700 Controlling the second power source 800, the second power source 800 regularly reports status information to the cloud via the first power source 700 and the mobile communication device, the status information includes power consumption status information, power off status information, location information, remaining power, temperature one or more of the waiting.
  • the second power supply 800 also includes a sensor and a display, both of which are respectively communicatively connected to the control unit; the sensor can collect the status information of the battery or battery pack in real time (for example, temperature, remaining power, location information, etc.), and transmit these status information to the control unit.
  • the display may display user desired content (eg, temperature, remaining power, location information, etc.) and/or interface (eg, interactive interface) as required.
  • the display and sensor are not necessary components of this second power supply.
  • the wireless communication unit of the second power supply 800 is used to realize wireless communication with the first power supply 700.
  • the communication module can also have a positioning module, such as a GNSS module or a GPS module, including GPS module or Beidou module.
  • the above-mentioned control unit includes an electronic controller and an actuator, the electronic controller is the above-mentioned processor, and the electronic controller is used to identify the wireless signal received by the wireless communication unit of the second power supply 800, and drive the actuator to act; the actuator , which is used to adjust the action of the output parameter.
  • the wireless signal may include a control command for adjusting output parameters, and may also be a control command for turning on or off the power supply.
  • the wireless signal is the control command for adjusting the output parameter.
  • the actuator is a circuit switch, which has a simple structure and low cost.
  • the actuator may be other structures capable of adjusting output parameters.
  • the above-mentioned first power supply 700 may also be suitable for charging the second power supply 800.
  • the user can use the first power supply 700 to supplement the second power supply 800, preferably the capacity of the first power supply 700. (Ah) is larger than the capacity (Ah) of the second power source.
  • the above-mentioned first power source 700 preferably adopts the form of an energy storage power station, that is, as shown in FIG. 3e, it includes at least one battery module, and the battery module is composed of multiple batteries 10. At this time, the batteries or battery packs are used for energy storage. It is used for power supply or energy storage power station (also known as outdoor power supply).
  • conventional energy storage power stations or outdoor power supplies have DC output and AC output functions, and are equipped with a cigarette port (car charging port), a mains charging port, a solar panel charging port, and a PD two-way charging port. It can be seen that when the first power source 700 adopts the form of an energy storage power station, it will also have the conventional necessary functions and configurations of the existing energy storage power station.
  • the user carries the first power supply 700 and the second power supply 800 outdoors without WiFi network coverage.
  • the first power supply 700 is connected to the mobile communication device through a non-cellular type, such as a Bluetooth communication module
  • the second power supply is connected through a non-cellular type, such as:
  • the Bluetooth communication module is connected to the first power source, and the user realizes wireless communication with the mobile communication device through cellular data of the mobile phone, such as 4G or 5G signals.
  • the user sends a control command for adjusting the output parameters to the first power supply 700 via the mobile communication device through Bluetooth, and the first power supply 700 transmits the control command for adjusting the output parameters to the second power supply 800 through the connected Bluetooth.
  • the control unit receives the control instruction for adjusting the output parameter, and judges whether the output parameter currently running is consistent with the output parameter to be adjusted.
  • a schematic diagram of the combination of the first power source and the second power source is suitable for an outdoor vehicle-mounted refrigerator.
  • the outdoor vehicle-mounted refrigerator 200c provides power through the second power source 800 (eg, the remote control power source 100c in the form of five batteries).
  • class such as: WiFi or Bluetooth communication module is connected to the first power supply 700
  • the first power supply 700 is connected to the mobile communication device through the non-cellular class carried by itself, such as: WiFi or Bluetooth communication module, at this time, the user can use the terminal
  • the APP remotely controls the output parameters of the second power supply via the first power supply, and adjusts the operating power of the outdoor vehicle-mounted refrigerator 200c.
  • Figure 30 shows a flowchart of a method for adjusting output parameters, the steps are as follows:
  • step S100 the mobile communication device sends a request for adjusting the output parameters to the first power supply 700; in step S200, when performing step S100, the request information is simultaneously sent to the cloud for storage; in step S300, the first power supply 700 will adjust the output parameters.
  • the control instruction is forwarded to the second power supply 800; in step S400, the second power supply 800 executes the control instruction after receiving the control instruction for adjusting the output parameters; in step S500, the remote control power supply 100 feeds back the execution status through the first power supply after executing the control instruction
  • a mobile communication device in step S600, the mobile communication device transmits the feedback information to the cloud, and the cloud classifies and stores the feedback information.
  • step S400 a data comparison method is also included, and the steps are as follows:
  • step S410 the acquisition module of the control unit collects the current output parameter data, and receives the control instruction data for adjusting the output parameters sent from the mobile communication device; in step S420, the processing module receives the data transmitted from the acquisition module Then, compare the current output parameter data with the output parameter data to be adjusted; step S430, determine whether the current output parameter data is consistent with the output parameter data to be adjusted; step S440, if the comparison results are consistent, there is no need to execute A control instruction for adjusting the output parameter; step S450, if the comparison results are inconsistent, the control instruction for adjusting the output parameter is executed.
  • the present invention also relates to a remote control power supply 100 for an electrical device, which is used to receive a control command for adjusting output parameters sent from a mobile communication device through a wireless network and execute the control command;
  • the remote control power supply 100 includes:
  • the battery 10 or the battery pack is used to provide electrical energy to the electrical device 200;
  • a wireless communication unit for wireless communication with a mobile communication device
  • the control unit is configured to receive, through the wireless communication unit, a control instruction for adjusting output parameters sent by the mobile communication device, and adjust the output parameters of the remote control power supply 100 according to the control instruction.
  • control unit includes:
  • a collection module for collecting first data and second data, wherein the first data is the output parameter data of the current operation of the remote control power supply, and the second data is the output to be adjusted sent from the mobile communication device parameter data; and a processing module for receiving the first data and the second data collected from the collection module, and comparing the first data with the second data.
  • control unit also includes:
  • the storage module stores the data collected from the acquisition module and the comparison result data of the processing module. After the storage module is connected to the wireless network, the stored data is transmitted to the mobile communication device.
  • the output parameters include one or more of output power, output time, output current direction, and output mode.
  • the present application provides a power supply component for an electrical device, the power supply component includes:
  • the above-mentioned remote control power supply and energy storage power supply are used for wireless communication connection with the mobile communication device, and wireless communication connection with the wireless communication unit of the remote control power supply, so as to realize wireless communication between the remote control power supply and the mobile communication device; wherein, the energy storage power supply can Charge the remote power supply.
  • the application provides an electrical device, comprising:
  • An electrical component; and the above-mentioned power supply component, the power supply component is used to provide electrical energy to the electrical component.
  • the present application provides a power consumption system, including:
  • Mobile communication devices wirelessly connected to the cloud.
  • the remote control power supply of the power supply assembly is wirelessly connected to the mobile communication device
  • the mobile communication device is used to send a control command for adjusting the output parameters to the remote control power supply, so as to adjust the output parameters of the remote control power supply.
  • the present application provides a control method for an electrical device, which is applied to the above-mentioned electrical system, and the control method includes:
  • the mobile communication device sends a request for a control command to adjust the output parameter to the remote control power supply through the wireless network;
  • the remote control power supply executes the control command and feeds back the execution status information to the mobile communication device.
  • the data comparison method includes: comparing the first data with the second data, and judging whether the first data and the second data are consistent; if the comparison results are consistent, no Execute the control instruction, if the comparison results are inconsistent, execute the control instruction; wherein, the first data is the output parameter data of the current operation of the remote control power supply, and the second data is the output parameter data to be adjusted sent from the mobile communication device.
  • the mobile communication device while sending the request for the control instruction to the remote control power supply, the mobile communication device sends the request for the control instruction to the cloud for storage.
  • the mobile communication device sends the feedback execution status information to the cloud for storage.
  • the remote control power supply can communicate wirelessly with the mobile communication device, that is, the remote control power supply has the function of network communication, so that the user can remotely control the remote control power supply to adjust the output parameters, the control of the remote control power supply is more intelligent, and the user Use experience.
  • the first power supply 700 has a first wireless communication unit for realizing wireless communication with the mobile communication device, and the first wireless communication unit at least includes a first communication module;
  • the second power supply 800 has a second wireless communication unit for realizing wireless communication with the mobile communication device or the first power supply, and the second wireless communication unit at least includes a second communication module;
  • the data transmission distance of the first communication module is greater than the data transmission distance of the second communication module.
  • the above-mentioned first power source 700 may be suitable for charging the second power source 800.
  • the capacity (Ah) of the first power source 700 is greater than the capacity (Ah) of the second power source.
  • the capacity of the first power source 700 is at least It is twice the capacity of the second power supply.
  • the above-mentioned first power supply 700 receives the control command data sent from the mobile communication device through the first wireless communication unit and forwards it to the second power supply.
  • the first wireless communication unit at least has a first communication module.
  • the first communication The modules are cellular (eg: 2G/3G/4G/5G/NB-IOT/LTE-M) or non-cellular (eg: WiFi/Bluetooth/ZigBee/Lora/Sigfox); or both.
  • the first communication module is non-cellular, so as to reduce the cost of networking, and preferably, the first communication module is Bluetooth.
  • the above-mentioned second power supply 800 has a second wireless communication unit, which is used for direct wireless network communication with the mobile communication device to directly receive the control command data sent from the mobile communication device, or for communicating with the second power supply wireless network to communicate with the mobile communication device via the wireless network.
  • the first power supply forwards control instruction data
  • the second wireless communication unit at least has a second communication module, specifically, the second communication module is a cellular type (such as: 2G/3G/4G/5G/NB-IOT/LTE -M) or non-cellular (eg: WiFi/Bluetooth/ZigBee/Lora/Sigfox); or both.
  • the second communication module is a non-cellular type to reduce networking costs, and preferably, the second communication module is Bluetooth.
  • the data transmission distance of the first communication module is greater than the data transmission distance of the second communication module, so as to reduce the networking cost and realize long-distance data transmission at the same time;
  • the data transmission distance of the first communication module is at least 1.2 times the data transmission distance of the second communication module. Further, under the same conditions, the data transmission distance of the first communication module is 1.5-2 times the data transmission distance of the second communication module.
  • the transmit power of the first communication module is greater than the transmit power of the second communication module; or under the same conditions, the antenna gain of the first communication module is higher than that of the second communication module The antenna gain of the first communication module is greater than the transmission distance of the second communication module.
  • the above-mentioned first power source or mobile communication device can realize wireless communication connection with multiple second power sources at the same time, that is, multiple second power sources can be controlled simultaneously, that is, multiple electrical devices using the above-mentioned second power sources can be controlled simultaneously.
  • the mobile communication device When the distance between the mobile communication device and the electrical device exceeds the preset transmission distance, the mobile communication device is wirelessly connected to the first power source, and the first power source is then wirelessly connected to the second power source, that is, the first power source is forwarded from the first power source.
  • the control command data sent by the mobile communication device or the feedback information fed back from the second power supply when the distance between the mobile communication device and the electrical device is within the preset transmission distance, the information can be forwarded through the first power supply, that is, the mobile The communication device is wirelessly connected to the first power source, and the first power source is then wirelessly connected to the second power source; of course, the mobile communication device can be directly connected to the electrical device in wireless communication.
  • the data communication of the remote control battery adopts the first data communication method, and the first data communication method is:
  • Step S1 the first power supply receives the control command data sent from the mobile communication device through the first wireless communication network;
  • Step S2 the second power supply receives the control command data forwarded from the first power supply through the second wireless communication network;
  • Step S3 the second power supply feeds back the execution information and state information of the control instruction to the first power supply through the second wireless communication network;
  • step S4 the first power supply forwards the received state information and execution information to the mobile communication network through the first wireless communication network equipment.
  • the above-mentioned first wireless communication network is established between the mobile communication device and the first power source to realize two-way data transmission between the two;
  • the above-mentioned second wireless communication network is established between the first power source and the second power source to realize the two-way data transmission.
  • an electrical system includes:
  • a mobile communication device for wirelessly communicating with the cloud 300
  • a remote control power supply used for wireless communication connection with the mobile communication device, the remote control power supply is multiple;
  • each of the remote control power supplies is used to provide power to the electrical device 200, and at the same time, it receives and executes control commands sent from the mobile communication device through the wireless network, and transmits execution information or feedback information through the wireless network. to mobile communication devices.
  • the above-mentioned mobile communication device can be connected to multiple remote control power sources 100 by wireless communication at the same time, so that the mobile communication device can simultaneously control multiple remote control power sources, that is, control the working states of multiple electrical devices.
  • the above-mentioned mobile communication equipment at least has a processor and a memory, the processor numbers the user power supply and the remote control power supply according to the preset rules according to the identification information, analyzes and processes the connection information between the remote control power supply and the electric device, and outputs the two. Correspondence information between; the memory stores the above identification information, serial number information and corresponding information.
  • the processor After the processor receives the identification information of the remote control power supply or the identification information of the electric device, it is numbered according to the preset rules and stored in the memory.
  • the serial number corresponds to the serial number of the electrical device and is stored in the memory.
  • the serial number of the remote control power supply, the serial number of the electrical device, and the corresponding relationship between the two form a database, and the database is uploaded to the cloud.
  • the preset rules of the remote control power supply can be numbered according to the rules of specifications, models and product serial numbers with a combination of letters, numbers and characters; the preset rules of the electrical device can be according to specifications, models, functions. and the product serial number are numbered according to the rules of combination of letters, numbers and characters.
  • the above-mentioned mobile communication equipment also includes a display device to display the working state of each electric device and the working state of the remote control power supply that supplies power to the electric device, so as to facilitate the user to input control instructions according to the instructions, and also facilitate the user to view the remote control. Status of power sources and powered devices.
  • the above-mentioned mobile communication device may be an intelligent terminal such as a mobile phone, a pad, and a notebook.
  • control method of the electric device includes:
  • Step S1 the user inputs a control command for one or some electrical devices
  • Step S2 the processor of the mobile communication device receives the request for executing the above-mentioned control instruction, analyzes and processes the request information, and finds out the number of the remote control power supply that receives the above-mentioned request information by querying the database;
  • Step S3 the mobile communication device transmits the control instruction information to the remote control power supply corresponding to the above-mentioned number through the wireless communication network;
  • Step S4 the remote control power supply receives the above request information, processes and analyzes the request information, and executes a control instruction.
  • the above control method also includes:
  • Step S5 before the remote control power supply executes the control command, it is necessary to detect whether the remote control power supply is electrically connected to the electrical device;
  • Step S6 if yes, the remote control power supply executes the control instruction
  • Step S7 if not, the remote control power supply does not execute the control instruction, and feeds back the information that the remote control power supply is not electrically connected to the electrical device to the mobile communication device.
  • the above-mentioned database is transmitted to the cloud through the wireless communication network for classification and storage;
  • the communication module between the mobile communication device and the cloud is of the cellular type, which can realize the communication between the mobile communication device and the cloud. long-distance transmission.
  • the electrical system includes:
  • a mobile communication device for wirelessly communicating with the cloud
  • a second power source used for wireless communication connection with the first power source, and the second power source is multiple;
  • the second power supply is used to provide power to the electrical device 200, and at the same time, it receives and executes the control command sent from the mobile communication device through the first power supply, and transmits execution information or feedback information to the mobile communication device through the first power supply. communication device.
  • the second power source 800 is connected to the powered device 200 for providing power to the powered device 200 .
  • the above-mentioned first power source 700 can be connected to multiple second power sources 800 by wireless communication at the same time, so that the multiple second power sources 800 can be controlled simultaneously through the mobile communication device, that is, the working states of multiple electrical devices can be controlled.
  • the above-mentioned first power supply 700 includes:
  • a second wireless communication unit for realizing wireless communication with the mobile communication device
  • the second control unit is used for processing and analyzing the request information of the control instruction, forwarding the request information to the first power supply, and for numbering the second power supply and the electric device.
  • the above-mentioned first power source 700 may also be suitable for charging the second power source 800.
  • the capacity (Ah) of the first power source 700 is greater than the capacity (Ah) of the second power source.
  • the second power supply 800 is supplemented with electricity through the first power supply 700 .
  • the above-mentioned first power source 700 preferably adopts the form of an energy storage power station, that is, as shown in FIG. 3e, it includes at least one battery module, and the battery module is composed of multiple batteries 10. At this time, the batteries or battery packs are used for energy storage. It is used for power supply or energy storage power station (also known as outdoor power supply).
  • the above-mentioned second control unit includes:
  • the second processing module is used for analyzing and processing the request information of the control instruction, and controlling the request information to be sent to the corresponding second power supply, and for numbering the second power supply and the electric device according to the preset rules ;
  • the second storage module is used to store the above identification information, connection information and corresponding information, and form a database.
  • the second processing module After the second processing module receives the identification information of the second power supply or the identification information of the electric device, it is numbered according to a preset rule and stored in the memory, and the second processing module will also connect the information. Analysis is carried out, the number of the second power source and the number of the electrical device are corresponding, and stored in the memory, the number of the above-mentioned second power source, the number of the electrical device, and the corresponding information between the two form a database, and upload the database to the cloud.
  • the preset rule of the second power supply can be numbered according to the specification, model and product serial number with a combination of letters, numbers and characters; the preset rule of the electrical device can be according to the specification, model, Function and product serial numbers are numbered using a combination of letters, numbers and characters.
  • the above-mentioned second control unit also includes:
  • the second collection unit is used to collect state information of the first power supply.
  • the above-mentioned mobile communication equipment includes at least a communication device, a processing device, and a memory; the communication device is used for sending or receiving signals through a wired or wireless network; the processing device includes an application processing part and a radio frequency/digital signal processor; the memory is used for signal processing or Storage is a physical storage state; such as smart terminals such as mobile phones, pads, and notebooks.
  • the above-mentioned mobile communication device also includes a display device for displaying the working state of each electric device and the working state of the second power supply that supplies power to the electric device, so as to facilitate the user to input control instructions according to the instructions, and also facilitate the user to view Status information of the first power source, the second power source and the powered device.
  • control method of the electrical device includes:
  • Step S10 the user inputs a control command for one or some electrical devices
  • Step S20 the mobile communication device sends the request information of the control command to the first power supply
  • Step S30 the second processing unit of the first power supply receives the above-mentioned request information, analyze and process the request information, and find out the second power supply number that needs to receive the above-mentioned request information by querying the database
  • step S40 the first power supply transmits the request information to the numbered phase through the wireless communication network The corresponding second power supply
  • Step S50 the second power supply receives the above request information, analyzes and processes the request information, and executes the control instruction.
  • the above control method also includes:
  • Step S60 before the second power supply executes the control command, it needs to detect whether the second power supply is electrically connected to the corresponding electrical device; Step S70, if yes, the second power supply executes the control command; Step S80, If not, the second power source does not execute the control instruction, and feeds back information that the second power source is not electrically connected to the electrical device to the mobile communication device.
  • the above-mentioned mobile communication device When the above-mentioned mobile communication device is wirelessly connected to the cloud, the above-mentioned information and database are transmitted to the cloud through the wireless communication network for classification and storage.
  • the communication module between the mobile communication device and the cloud is of the cellular type, which can realize the Long-distance transmission between clouds.
  • the remote control power supply 100 may further include a monitoring unit for collecting the operating parameters of the electrical device 200 and/or the remote control power supply 100, and analyzing and processing the operating parameters; a control unit for receiving The control command sent from the mobile communication device is executed and used to control the remote control power supply and/or the remote control power supply according to the processing result obtained by the monitoring unit.
  • the above-mentioned monitoring unit includes:
  • an acquisition module for real-time acquisition of the operating parameters of the remote control power supply 100 and/or the electrical device 200;
  • the processing module is used for feature extraction from the operating parameters collected from the acquisition module, and the extracted features are compared with each other; Control instruction;
  • the storage module is used for storing the operation parameters and the result processed by the processing module.
  • the acquisition module can be a sensor for acquiring various operating parameters; the storage module can be a FLASH chip, a random access dynamic memory or a cache chip.
  • the above self-comparison is comparing the currently extracted features with previously collected features, and the mutual comparison is comparing the extracted features with a preset threshold, and determining whether the operating parameters are abnormal according to the results of the self-comparison and the results of the mutual comparison.
  • the recording time is modified to the current time; if not, the current feature is replaced with the previous feature, and the recording time is modified to the current time.
  • the operating parameters of the above-mentioned remote control power supply can be one or more of voltage parameters, current parameters, temperature parameters and state-of-charge parameters; the operating parameters of the above-mentioned electrical device can be operating power parameters, operating mode parameters, operating time parameters, One or more of a location parameter and a temperature parameter.
  • the collected parameters are the temperature parameters when the remote control power supply is charging, the collected temperature parameters are compared with the previously stored temperature parameters, and at the same time, the collected temperature parameters are compared with the pre-stored thresholds. If the previous temperature rises and the current temperature exceeds the threshold, it means that there is an abnormality, and the abnormal result is sent to the control unit.
  • the control unit controls the remote control power supply to stop charging, and sends reminder information to the mobile communication device to notify the user.
  • the collected parameter is the voltage parameter of the remote control power supply during discharge
  • the current voltage is compared with the voltage during the previous storage and discharge
  • the current voltage is compared with the pre-stored threshold value, if the voltage decreases during self-comparison, and discharge
  • the processing unit sends the abnormal result to the control unit.
  • the control unit controls the remote control power supply to stop discharging the electric device, and at the same time sends the reminder information to the mobile communication device to notify the user.
  • the collected parameter is the position parameter of the electrical device, and the collected position parameter is compared with the previous position parameter, and at the same time compared with the preset threshold value.
  • the control unit which controls the remote control power supply to issue alarm information, and sends the reminder information to the mobile communication device to notify the user.
  • the present application also relates to a monitoring method for a power supply system, which is used to monitor the above-mentioned remote control power supply 100 and the electric device 200 based on the remote control power supply 100.
  • the flow chart of the monitoring method is as follows:
  • Step S10 the parameter collection step, the collection module collects the operating parameters of the remote control power supply and/or the electric device;
  • Step S20 the feature extraction step, the processing module extracts the features of the operating parameters collected by the collection module;
  • Step S30 a comparative analysis step, performing self-comparison and mutual comparison on the extracted features to obtain self-comparison results and mutual-comparison results;
  • Step S40 the abnormality determination step, according to the processed self-comparison results and mutual comparison results to determine whether it is abnormal;
  • Step S50 the abnormality processing step, if an abnormality occurs, obtain a corresponding control instruction according to a preset rule, and send the control instruction to the control unit, and the control unit executes the control instruction, and at the same time, the reminder information and execution information of the abnormality occur. sent to the mobile communication device.
  • Step S60 the parameter transmission step, if no abnormality occurs, transmit the extracted parameter information to the mobile communication device, the mobile communication device transmits the parameter information to the cloud, and the cloud classifies and stores the parameter information.
  • the above-mentioned self-comparison is to compare the currently extracted feature with the previously stored feature, compare the current feature with a preset threshold, and determine whether the operating parameter is abnormal according to the self-comparison result and the mutual-comparison result.
  • the preset rule is: when the voltage parameter, current parameter, temperature parameter or state of charge parameter of the remote control power supply is abnormal, control the remote control power supply to stop running, specifically stop charging or stop discharging the electric device; When the working power parameter, working mode parameter, working time parameter or temperature parameter of the electric device is abnormal, control the remote control power supply to stop supplying power to the electric device; when the position parameter of the electric device is abnormal, control the The remote control power supply stops running, specifically to stop supplying power to the electrical device, and at the same time control the remote control power supply to issue an alarm signal.
  • control instructions are mainly control instructions for controlling the remote control power supply or the electric device to stop running.
  • control instruction for sending an alarm signal is also required.
  • the above-mentioned reminder information notifies the user through a certain reminder method, and the reminder method may be one or more of sound, text, image, vibration or light.
  • the mobile communication device compares the current parameter information with the previously stored parameter information. If the two are consistent, the recording time is modified to the current time. If the two are inconsistent, the previously stored parameter The information is replaced with the current parameter information, and the recording time is modified to the current time.
  • the parameter information is transmitted to the cloud, the parameter information is classified and saved, so as to facilitate the user to query the data.

Abstract

本发明提供一种遥控电源、供电组件、用电装置及其控制方法、用电系统,遥控电源用以通过无线网络接收自云端发出的开启电源指令后启动用电装置;所述遥控电源包括:电池或电池组,用以给所述用电装置提供电能;无线通信单元,用以与所述云端实现无线通信;和控制单元,用以通过所述无线通信单元,接收所述云端发出的开启电源指令,并根据所述开启电源指令驱动所述电池或所述电池组启动所述用电装置。本发明可实现电源联网通信功能,可供用户远程遥控用电,满足用户智能化生活用电需求,满足用户智能用电生活需求。

Description

遥控电源、供电组件、用电装置及其控制方法、用电系统
优先权1:2021104795169,申请日:2021/4/30;
优先权2:2021111161736,申请日:2021/9/23;
优先权3:2021111448878,申请日:2021/9/28;
优先权4:2021111448488,申请日:2021/9/28;
优先权5:2021112831788,申请日:2021/11/1;
优先权6:202111235878X,申请日:2021/10/22。
技术领域
本发明涉及供电领域,尤其涉及一种遥控电源、供电组件、用电装置及其控制方法、用电系统。
背景技术
传统给用电装置提供电能的电源,多为电池或电池组结构设计,如传统的园林工具电池包或家庭清洁工具使用的电池包,多不具备联网通信功能,用户在操作使用时,需要人为接触去操作控制电池包的通断,使用不智能,特别是在户外休闲场景下,传统锂电电源已经不能满足人们智能生活化的需求。
发明内容
本发明提供一种遥控电源、供电组件、用电装置及其控制方法、用电系统。
具体地,本发明是通过如下技术方案实现的:
本发明的第一方面提供一种用电装置的遥控电源,用以通过无线网络接收自云端发出的开启电源指令后启动用电装置;
所述遥控电源包括:
电池或电池组,用以给所述用电装置提供电能;
无线通信单元,用以与所述云端实现无线通信;和
控制单元,用以通过所述无线通信单元,接收所述云端发出的开启电源指令,并根据所述开启电源指令驱动所述电池或所述电池组启动所述用电装置。
本发明的第二方面提供一种用电装置的供电组件,所述供电组件包括:
第一方面所述的遥控电源。
本发明的第三方面提供一种用电装置,包括:
用电组件;和
第二方面所述的供电组件,所述供电组件用以给所述用电组件提供电能。
本发明的第四方面提供一种用电系统,包括:
移动通信设备;
云端,与所述移动通信设备无线通信连接;和
第二方面所述的供电组件,所述供电组件的遥控电源与所述云端无线通信连接;
其中,所述移动通信设备用以发送开启电源请求至所述云端,以触发所述云端发送开启电源指令至所述遥控电源。
本发明的第五方面提供一种用电装置的控制方法,所述方法通过移动通信设备实施,所述方法包括:
与所述云端建立无线通信连接,其中,所述云端与遥控电源无线通信连接;
当获取到开启电源请求时,发送所述开启电源请求至所述云端,以触发所述云端发送开启电源指令至遥控电源,以驱动所述遥控电源启动所述用电装置,以使所述用电装置处于用电状态。
本发明的第六方面提供一种移动通信设备,包括:
通信装置,用于通过无线网络与云端建立通信;
处理装置,用于实施第五方面所述方法;
存储器,用于将信号处理或存储为物理存储状态。
本发明的第七方面提供一种用电装置的控制方法,所述方法通过云端实施,所述方法包括:
分别与移动通信设备、遥控电源建立无线通信连接;
当接收到所述移动通信设备发送的开启电源请求时,根据所述开启电源请求生成开启电源指令;
发送所述开启电源指令至遥控电源,以驱动所述遥控电源启动所述用电装置,使得所述用电装置处于用电状态。
本发明的第八方面提供一种云端,包括:
一个或多个中央处理单元,用于实施第七方面所述方法;
一个或多个存储器和/或大容量存储设备;
一个或多个有线或无线网络接口。
本发明的第九方面提供一种用电装置的控制方法,所述方法通过遥控电源实施,所述包括:
与云端建立无线通信连接,其中,所述云端与移动通信设备无线通信连接;
接收所述云端发送的开启电源指令,其中,所述开启电源指令为所述云端根据所述移动通信设备发送的开启电源请求生成;
根据所述开启电源指令,启动所述用电装置,使得所述用电装置处于用电状态。
本发明的第十方面提供一种遥控电源,包括:
控制单元,用于实施第九方面项所述方法。
本发明的第十一方面提供一种用电装置的遥控电源,用以通过无线网络接收自移动通信设备发出的控制指令;所述遥控电源包括:
电池或电池组,用以给所述用电装置提供电能;
无线通信单元,用以与所述移动通信设备实现无线通信;和
控制单元,用以通过所述无线通信单元,接收所述移动通信设备发出的控制指令;
其中,所述控制指令至少包括开启电源指令,所述控制单元用以根据所述开启电源指令驱动所述电池或所述电池组启动所述用电装置。
根据本发明实施例提供的技术方案,遥控电源能够与云端或移动通信设备无线通信,即遥控电源具备联网通信功能,如此用户可远程控制遥控电源以启动用电装置,遥控电源的控制更加智能化,提高用户使用体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1为本发明具体实施例提供的遥控电源的控制原理模块示意图;
图2为本发明具体实施例提供的遥控电源的功能模块示意图;
图3a为本发明具体实施例提供的遥控电源为单节电池形态示意图;
图3b为本发明具体实施例提供的遥控电源为三节电池形态示意图;
图3c为本发明具体实施例提供的遥控电源为五节电池形态示意图;
图3d为本发明具体实施例提供的遥控电源为多个单节电池形态的遥控电源组合构成的形态示意图;
图3e为本发明具体实施例提供的遥控电源为储能电站形态示意图;
图4a为本发明具体实施例提供的遥控电源与室内风扇装配示意图;
图4b为本发明具体实施例提供的遥控电源装配适用于室内风扇示意图;
图4c为本发明具体实施例提供的遥控电源装配适用于清洁机器人示意图;
图4d为本发明具体实施例提供的遥控电源装配适用于户外车载冰箱的示意图;
图4e为本发明具体实施例提供的储能电站形态的遥控电源适用于户外车载冰箱的示意图;
图5为本发明具体实施例提供的用电装置的控制方法中登录步骤的流程图;
图6为本发明具体实施例提供的用电装置的控制方法中用电步骤的流程图;
图7为本发明具体实施例提供的用电装置的控制方法中关电步骤的流程图;
图8为本发明具体实施例提供的用电装置的控制方法中另一类关电步骤的流程图;
图9为本发明具体实施例提供的遥控电源另一种控制原理模块示意图;
图10为本发明具体实施例提供的第二电源的功能模块示意图;
图11为本发明具体实施例提供的第一电源和第二电源组合适用于户外车载冰箱的示意图;
图12为本发明具体实施例提供的适用于第一电源和第二电源组合的用电装置的控制方法中登录步骤的流程图;
图13为本发明具体实施例提供的适用于第一电源和第二电源组合的用电装置的控制方法中用电步骤的流程图;
图14为本发明具体实施例提供的适用于第一电源和第二电源组合的用电装置的控制方法中关电步骤的流程图;
图15为本发明具体实施例提供的适用于第一电源和第二电源组合的用电装置的控制方法中另一类关电步骤的流程图;
图16为本发明具体实施例提供的遥控电源又一种控制原理模块示意图;
图17为本发明具体实施例提供的第三电源的功能模块示意图;
图18为本发明具体实施例提供的第一电源/第二电源与第三电源组合适用于户外车载冰箱的示意图;
图19为本发明具体实施例提供的适用于第一电源/第二电源与第三电源组合的用电装置的控制方法中登录步骤的流程图;
图20为本发明具体实施例提供的适用于第一电源/第二电源与第三电源组合的用电装置的控制方法中用电步骤的流程图;
图21为本发明具体实施例提供的适用于第一电源/第二电源与第三电源组合的用电装置的控制方法中关电步骤的流程图;
图22为本发明具体实施例提供的适用于第一电源/第二电源与第三电源组合的用电装置的控制方法中另一类关电步骤的流程图;
图23为本发明具体实施例提供的遥控电源的还一种控制原理模块示意图;
图24为本发明具体实施例提供的遥控电源的还一种控制原理模块示意图;
图25为本发明具体实施例提供的遥控电源的还一种控制原理模块示意图;
图26为本发明具体实施例提供的遥控电源的功能模块示意图;
图27为本发明具体实施例提供的用电装置的控制方法的流程图;
图28为本发明具体实施例提供的用电装置的控制方法中数据比较方法的流程图;
图29为本发明具体实施例提供的第二电源的功能模块示意图;
图30为本发明具体实施例提供的用电装置的控制方法的流程图;
图31为本发明具体实施例提供的用电装置的控制方法中数据比较方法的流程图;
图32为本发明具体实施例提供的遥控电源的控制多个用电装置的原理模块示意图;
图33为本发明具体实施例提供的遥控电源的遥控电源的控制多个用电装置的另一原理模块示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本发明可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
需要说明的是,在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
参照图1和图2所示的遥控电源100的控制原理模块示意图和功能模块示意图,用电装置200的遥控电源100,用以通过无线网络接收自云端300发出的开启电源指令后启动用电装置200;
上述用电装置200可以为电动工具,电动工具可以为诸如电钻、电动角磨、电锤、喷雾器等,还可以为电动园艺工具,如修枝机、打草机、链锯等,又或者为电动家用工具,如吸尘器、咖啡机、电风扇、榨汁机,还可以为其它类型的用电设备,如胶枪、气泵、应急灯具等,总体来说,上述用电装置200可以概指采用二次电池或电池组(如储能电源/储能电站)作为动力源的作业设备;用电装置200工作时,需要电源提供电能,以驱动用电装置作业。
上述用电装置200可以进一步概括为包括机动的动力工具设备(例如电钻、电动角磨、电锤、修枝机、打草机、链锯等)或非机动的电气设备(例如灯具、音响等)。
上述遥控电源100可以内置于用电装置200中,供用电装置作业提供电能;也可以外置于用电装置200,如当遥控电源100作为具体的储能电源100e时,储能电源100e外置与用电装置200电源线或数据线连接供电(如图4e所示);
当然,较为优选地,上述遥控电源100可以以装拆自如的方式,即可拆卸地安装于用电装置200,此时,该遥控电源100适于不同类型的用电装置200使用,即,此遥控电源100可以被电动工具、电动园艺工具、电动家用工具所共用,比如:
用户拥有一个3.6V或12V或20V的遥控电源100,不仅可以供电钻使用,而且可以供修枝机使用,此外,还可以供吸尘器使用,或者应急灯使用,如此一个遥控电源100,可以满足用户不同的使用场景。
当遥控电源100装配连接于用电装置200时,该遥控电源100适于机械连接和电连接至用电装置200,通过机械连接固定,通过电连接给用电装置200提供电能。
参照图2所示的遥控电源100的功能模块示意图,遥控电源100包括:
电池10或电池组,用以给所述用电装置200提供电能;
无线通信单元,用以与所述云端300实现无线通信;
控制单元,用以通过所述无线通信单元,接收所述云端300发出的开启电源指令,并根据开启电源指令驱动所述电池10或电池组启动用电装置。
上述电池10或电池组至少具有一节电池,如1节21700电池,当然还可以采用3节21700电池串联,或者5节21700电池串联,以满足不同电压平台的用电装置使用。值得注意的是,前述仅是列举说明,并不局限于使用21700电池,还可以采用其它类型电池,如18650电池。
而且,上述电池组还可以包括至少一组电池模组,电池模组由多节电池相互串联或并联构成,以此作储能电源或储能电站100e用。
此外,上述遥控电源100还可以至少由第一遥控电源和第二遥控电源相互串联或并联构成。
具体地,上述遥控电源100存在多种形态,例如:
参照图3a所示的遥控电源100a为单节电池形态示意图,其内置有且仅有1节21700电池10;
参照图3b所示的遥控电源100b为三节电池形态示意图,其内置有3节相互串联的21700电池10;
参照图3c所示的遥控电源100c为五节电池形态示意图,其内置有5节相互串联的21700电池10;
参照图3d所示的遥控电源10d为多个单节电池形态的遥控电源(如图3a所示)相互组合构成的形态示意图,其包括多个,具体图示为4个相互串联或并联的遥控电源100a,当然也可以由多个相互串联或并联的遥控电源100b或遥控电源100c构成。
参照图3e所示的遥控电源为储能电站形态示意图,其包括至少一个电池模组,电池模组由多节电池10构成,此时电池或电池组作储能电源或储能电站用。
上述无线通信单元,用以与所述云端300实现无线通信,该无线通信单元至少具备通信模组,需要重点说明的是:
此通信模组可以为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M)或非蜂窝类(如:WiFi/蓝牙/ZigBee/Lora/Sigfox),或者二者兼具。
如,上述无线通信单元可以具备4G/5G通信功能,或具备WiFi/蓝牙连接功能,还可以同时具备4G/5G通信功能和WiFi/蓝牙连接功能。
上述云端为服务器,本文中所称的服务器应被理解为提供处理、数据库、通讯设施的业务点。举例而言,服务器可以指具有相关通信和数据存储和数据库设施的单个的物理处理器,或它可以指联网或集聚的处理器、相关网络和存储设备的集合体,并且对软件和一个或多个数据库系统和支持服务器所提供的服务的应用软件进行操作。服务器可以在配置或性能上差异很大,但是服务器一般可以包括一个或多个中央处理单元和存储器。服务器还包括一个或多个大容量存储设备、一个或多个电源、一个或多个有线或无线网络接口、一个或多个输入/输出接口、或一个或多个操作系统,诸如,Windows Server、Mac OS X、Unix、Linux、FreeBSD,等等。
根据本发明的一些实施例,云端可以是整体式服务器或是跨多计算机或计算机数据中心的分散式服务器。服务器可以是各种类型的,例如但不限于,网络服务器,新闻服务器,邮件服务器,消息服务器,广告服务器,文件服务器,应用服务器,交互服务器,数据库服务器,或代理服务器。在一些实施例中,每个服务器可以包括硬件,软件,或用于执行服务器所支持或实现的合适功能的内嵌逻辑组件或两个或多个此类组件的组合。在本发明中,服务器用于提供支持遥控上述遥控电源所必需的全部功能。
根据本发明具体实施例,参照图2所示的遥控电源的功能模块示意图,该遥控电源100包括控制单元、输入装置和通信接口。
其中,输入装置和通信接口分别与控制单元可通信地连接。控制单元包括用于处理数据的微处理器和用于存储数据的存储器。控制单元可以通过通信接口与云端进行双向通信,也可以通过通信接口与移动通信设备进行双向通信。用户可以通过输入装置将指令或信息输入到控制单元中,以使控制单元执行该指令或信息的内容。
遥控电源的控制单元通过通信接口连接至云端,云端通过无线网络与移动通信设备建立通信,移动通信设备经由云端对遥控电源进行控制,遥控电源定时向云端上报状态信息,所述状态信息包括用电状态信息、关电状态信息、位置信息、剩余电量、温度等的一者或多者。
此外,该遥控电源还包括传感器和显示器,传感器和显示器均分别与控制单元可通信地连接;传感器可以实时采集电池或电池组的状态信息(例如,温度、剩余电量、位置信息等),并将这些状态信息传送到控制单元。显示器可以根据需要显示用户所希望的内容(例如,温度、剩余电量、位置信息等)和/或界面(例如,交互界面)。当然,显示器和传感器并非本遥控电源的必要部件。
另外,上述无线通信单元,用以与所述云端300实现无线通信,除了上述通信模组之外还可以具备定位模组,如GNSS模组或GPS模组,包括GPS模块或北斗模块。
值得说明的是:
上述控制单元还适于用以通过所述无线通信单元,接收所述云端发出的关闭电源指令,并根据关闭电源指令驱动所述电池或电池组关闭用电装置,用电装置处于下电状态。
所述控制单元包括;
电子控制器,用以识别所述无线通信单元接收到的无线信号,并驱动执行器动作;
执行器,用以执行启动或关闭所述用电装置的动作。
其中,无线信号可以包括上述实施例中的开启电源指令或关闭电源指令,具体地,当云端发送开启电源指令给无线通信单元时,无线信号为开启电源指令;当云端发送关闭电源指令给无线通信单元时,无线信号为关闭电源指令。可以理解地是,当云端发送给无线通信单元除开启电源指令和关闭电源指令的其他信号时,无线信号为该其他信号。
在一可行的实施例中,所述执行器为电路开关,结构简单且成本低。当然,在其他实施例中,执行器可以为其他能够启动或关闭用电装置的结构。
其中,开启电源指令为云端在接收到移动通信设备发送的开启电源请求时产生,实现远程控制遥控电源启动用电装置的目的,无需人为手动操作遥控电源的按键来启动用电装置。
【应用场景一】
遥控电源100处于WiFi网络覆盖环境下,如室内家居环境下,遥控电源100通过非蜂窝类,如:WiFi通信模组连接家庭WiFi网络,通过WiFi网络与云端实现无线通信,用户通过手机的蜂窝数据,如4G或5G信号与云端实现无线通信,当然,当用户同样处在WiFi网络覆盖环境下,可以通过手机自带的WiFi通信模组连接WiFi网络实现与云端无线通信。
此时,用户经移动通信设备通过无线网络发出开启电源指令至云端300,云端300通过无线网络发出开启电源指令,遥控电源100的控制单元通过连接的无线网络接收开启电源指令,控制电池10或电池组启动用电装置。
具体参照图4a的遥控电源与室内风扇装配示意图和图4b遥控电源装配适用于室内风扇示意图,以及图4c遥控电源装配适用于清洁机器人示意图所示,室内风扇200a或清洁机器人200b分别与遥控电源(如:单节电池形态的遥控电源100a)连接,遥控电源为室内风扇200a和清洁机器人200b工作提供电能,此时,遥控电源100处于WiFi网络覆盖环境下,遥控电源100通过WiFi通信模组连接家庭WiFi网络,通过WiFi网络与云端300实现无线通信,此时,即使用户位于户外,如在工作室,或在下班回家途中,用户可以通过终端APP经云端300远程控制遥控电源100开启,启动室内风扇或清洁机器人进行工作。
参照图4a的遥控电源与室内风扇装配示意图和图4b遥控电源装配适用于室内风扇示意图,以及图4c遥控电源装配适用于清洁机器人示意图所示,遥控电源100适于无绳地耦合于用电装置200,并可拆卸。
【应用场景二】
用户携带遥控电源100处于户外,无WiFi网络覆盖,遥控电源100通过蜂窝类,如:4G或5G通信模组连接至云端300,用户通过手机的蜂窝数据,如4G或5G信号与云端300实现无线通信。
此时,用户经移动通信设备通过无线网络发出开启电源指令至云端300,云端300通过无线网络发出开启电源指令,遥控电源100的控制单元通过连接的无线网络接收开启电源指令,控制电池10或电池组启动用电装置。
参照图4d遥控电源装配适用于户外车载冰箱的示意图所示,户外车载冰箱200c通过遥控电源100(如:五节电池形态的遥控电源100c)提供电能,此时,遥控电源100处于无WiFi网络覆盖的户外,遥控电源100通过自身携带的蜂窝类,如:4G或5G通信模组连接至云端,此时,用户可以通过终端APP经云端远程控制遥控电源100开启,启动户外车载冰箱200c进行工作。
同样地,参照图4d遥控电源装配适用于户外车载冰箱的示意图所示,遥控电源100适于无绳地耦合于用电装置200,并可拆卸。
参照图4e所示为遥控电源100的另一种形态,即储能电站形态,户外车载冰箱200c通过遥控电源(如,储 能电站形态的遥控电源100e)提供电能,此时遥控电源100包括多个电池模组,电池模组由多节电池10构成,此时遥控电源100作储能电源或储能电站用。
此时,该遥控电源100处于无WiFi网络覆盖的户外,遥控电源100通过电源线与户外车载冰箱200c连接,并通过自身携带的蜂窝类,如:4G或5G通信模组连接至云端,此时,用户可以通过终端APP经云端远程控制遥控电源100开启,启动户外车载冰箱200c进行工作。
此外,当关闭电源指令为云端在接收到移动通信设备发送的关电请求时产生,实现远程控制遥控电源关闭用电装置的目的,无需人为手动操作遥控电源的按键来关闭用电装置。根据本发明的另一方面,提供了一种用电装置的控制方法,用于控制如上述基于遥控电源100的用电装置200,在一些实施例中,该用电装置200的控制方法包括登录步骤、用电步骤和关电步骤中的一部分或全部。下面将参照流程图详细描述本发明控制方法的各个步骤。
图5示出了本发明用电装置的控制方法中登录步骤的流程图;
用户在第一次使用该用电装置和遥控电源时,需要在线注册并填写必要的用户信息。当然,用户可以通过网络从云端下载适于遥控电源的用户终端应用到移动通信设备并且将该应用本地安装到移动通信设备,或者,用户的移动通信设备上已经预装了适于遥控电源的用户终端应用。在登录步骤中,用户启动移动通信设备上的用户终端应用,并使该移动通信设备与云端建立连接。
在步骤S1中,运行用户终端应用的移动通信设备向云端300请求验证码;在步骤S2中,云端300收到来自用户的移动通信设备发送的验证码请求后,进行验证和确认,并通过短信、邮件、语音电话等方式向该移动通信设备发送验证码;在步骤S3中,用户收到由云端300发送的验证码之后,将该验证码输入移动通信设备,并通过移动通信设备经由网络将该验证码发送到云端300;在步骤S4中,云端300对该验证码验证后给用户的移动通信设备发送登录确认信息。
图6示出了控制用电装置开启用电的流程图;
在步骤S10中,移动通信设备将开启电源请求发送给云端300;在步骤S20中,云端300接收到开启电源请求后,将开启电源指令发送给遥控电源100以开启电源;在步骤S30中,遥控电源100将开启电源状态信息传送给云端300;在步骤S40中,云端300将开启电源状态信息反馈发送给移动通信设备。
接下来说明关电步骤。
参照图7所示,当用户需要结束用电装置工作后,通过移动通信设备向云端300发送关电请求(步骤S100),云端300收到关电请求之后,向遥控电源100发送关电指令,以关闭电源(步骤S200),遥控电源100收到该指令后,将遥控电源100关闭电源的状态信息发送给云端300(步骤S300),云端300基于该遥控电源100关闭电源状态信息确认遥控电源100已经关电情况下,向移动通信设备发送确认关电成功的信息,结束本次用电(步骤S400)。
此外,本发明中关电步骤还可以通过用电装置自动断电来实现,具体参照图8所示,用电装置自动断电后,遥控电源将断电状态信息主动上报至云端(步骤S3000),云端收到断电状态信息并将断电状态信息反馈发送给移动通信设备,以提醒用户用电装置断电(步骤S4000)。
具体地,用电装置200内置传感器,如温度传感器,当传感器检测到温度达到预设的阈值时,自动关闭遥控电源与用电装置之间的供电电路。
其中,对于移动通信设备,本发明实施例的用电装置的控制方法可以包括:
(1)、与云端建立无线通信连接(即登录步骤),其中,云端与遥控电源无线通信连接;
(2)、当获取到开启电源请求时,发送开启电源请求至云端,以触发云端发送开启电源指令至遥控电源,以驱动遥控电源启动用电装置,以使用电装置处于用电状态。
在一些实施例中,用电装置的控制方法还包括:当获取到关电请求时,发送关电请求至云端,以触发云端发送关闭电源指令至遥控电源,以驱动遥控电源关闭用电装置。进一步地,用电装置的控制方法还包括:接收云端 发送的确认关电成功的信息,其中,确认关电成功的信息为云端基于遥控电源发送的该遥控电源关闭电源的状态信息确定。
在一些实施例中,用电装置的控制方法还包括:接收遥控电源经云端转发的指示用电装置自动断电的信息。
对于云端,用电装置的控制方法可以包括如下步骤:
(1)、分别与移动通信设备、遥控电源建立无线通信连接;
(2)、当接收到移动通信设备发送的开启电源请求时,根据开启电源请求生成开启电源指令;
(3)、发送开启电源指令至遥控电源,以驱动遥控电源启动用电装置,使得用电装置处于用电状态。
在一些实施例中,用电装置的控制方法还包括:当接收到移动通信设备发送的关电请求时,根据关电请求生成关闭电源指令;发送关闭电源指令至遥控电源,以驱动遥控电源关闭用电装置。进一步地,用电装置的控制方法还包括:接收遥控电源发送的该遥控电源关闭电源的状态信息;根据状态信息,确定遥控电源关电成功;发送确认关电成功的信息至移动通信设备。
在一些实施例中,用电装置的控制方法还包括:转发遥控电源发送的指示用电装置自动断电的信息至移动通信设备。
对于遥控电源,用电装置的控制方法可以包括如下步骤:
(1)、与云端建立无线通信连接,其中,云端与移动通信设备无线通信连接;
(2)、接收云端发送的开启电源指令,其中,开启电源指令为云端根据移动通信设备发送的开启电源请求生成;
(3)、根据开启电源指令,启动用电装置,使得用电装置处于用电状态。
在一些实施例中,用电装置的控制方法还包括:接收云端发送的关闭电源指令,其中,关闭电源指令为云端根据移动通信设备发送的关电请求生成;根据关闭电源指令,关闭用电装置。进一步地,用电装置的控制方法还包括:发送遥控电源关闭电源的状态信息至云端,以使云端根据状态信息,判断遥控电源是否关电成功。
在一些实施例中,用电装置的控制方法还包括:当遥控电源与用电装置自动断电时,经云端转发指示用电装置自动断电的信息至移动通信设备。
在此需要说明的是:上述移动通信设备至少包括通信装置和处理装置,以及存储器;通信装置用于通过有线或无线网络发送或接收信号;处理装置包含应用处理部和射频/数字信号处理器;存储器用于将信号处理或存储为物理存储状态;如手机、pad、笔记本等智能终端。
上述云端至少包括:一个或多个中央处理单元;一个或多个存储器和/或大容量存储设备;一个或多个有线或无线网络接口。
参照图9所示的遥控电源另一种控制原理模块示意图,其包括第一电源700(图9所示的第一电源700可以称作为储能电源)和第二电源800。
第一电源700具有无线通信单元,用以与云端300实现无线通信,该无线通信单元至少具备通信模组,具体地,该通信模组为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M);
第二电源800也具有无线通信单元,用以与第一电源700实现无线通信,该无线通信单元至少具备通信模组,具体地,该通信模组为非蜂窝类(如:WiFi/蓝牙/ZigBee/Lora/Sigfox);
第二电源800与用电装置200连接,用以给用电装置200提供电能,同样地,上述用电装置200可以为电动工具,如电钻、电动角磨、电锤、喷雾器等,还可以为电动园艺工具,如修枝机、打草机、链锯等,又或者为电动家用工具,如吸尘器、咖啡机、电风扇、榨汁机,还可以为其它类型的用电设备,如胶枪、气泵、应急灯具等,总体来说,上述用电装置200可以概指采用二次电池或电池组(如储能电源/储能电站)作为动力源的作业设备;用电装置200工作时,需要电源提供电能,以驱动用电装置作业。
同样地,如上所述用电装置200可以进一步概括为包括机动的动力工具设备(例如电钻、电动角磨、电锤、修枝机、打草机、链锯等)或非机动的电气设备(例如灯具、音响等)。
上述第二电源800可以内置于用电装置200中,供用电装置作业提供电能;也可以外置于用电装置200,如当第二电源800作为具体的储能电源100e时,储能电源100e外置与用电装置200电源线或数据线连接供电(如图4e所示);
当然,较为优选地,上述第二电源800可以以装拆自如的方式安装于用电装置200,此时,该第二电源800适于不同类型的用电装置200使用,即,此第二电源800可以被电动工具、电动园艺工具、电动家用工具所共用,比如:
用户拥有一个3.6V或12V或20V的第二电源800,不仅可以供电钻使用,而且可以供修枝机使用,此外,还可以供吸尘器使用,或者应急灯使用,如此一个第二电源800,可以满足用户不同的使用场景。
当第二电源800装配连接于用电装置200时,该第二电源800适于机械连接和电连接至用电装置200,通过机械连接固定,通过电连接给用电装置200提供电能。
请继续参照图10所示的第二电源的功能模块示意图,第二电源800包括:
电池10或电池组,用以给所述用电装置200提供电能;
无线通信单元,用以与第一电源700实现无线通信;
控制单元,用以通过第二电源800的无线通信单元,接收第一电源700发出的开启电源指令,并根据开启电源指令驱动所述电池10或电池组启动用电装置,用电装置即处于用电状态。需要说明的是,第一电源700发出的开启电源指令实际为云端发送给第一电源700的,即第一电源700用以转发云端发出的开启电源指令至第二电源800的无线通信单元。
上述电池10或电池组至少具有一节电池,如1节21700电池,当然还可以采用3节21700电池串联,或者5节21700电池串联,以满足不同电压平台的用电装置使用。值得注意的是,前述仅是列举说明,并不局限于使用21700电池,还可以采用其它类型电池,如18650电池。
而且,上述电池组还可以包括至少一组电池模组,电池模组由多节电池相互串联或并联构成,以此作储能电源或储能电站100e用。
此外,上述第二电源800还可以至少由第一遥控电源和第二遥控电源相互串联或并联构成。
具体地,上述第二电源800存在多种形态,例如:
如图3a所示的单节电池形态;或,如图3b所示的三节电池形态;或,如图3c所示的五节电池形态示意图;或,如图3d所示的多个单节电池形态的遥控电源(如图3a所示)相互组合构成的形态;或,如图3e所示的储能电站形态。
根据本发明具体实施例,参照图10所示的第二电源的功能模块示意图,该第二电源800包括控制单元、输入装置和通信接口。
其中,输入装置和通信接口分别与控制单元可通信地连接。控制单元包括用于处理数据的微处理器和用于存储数据的存储器。控制单元可以通过通信接口与第一电源700进行通信,也可以通过通信接口与移动通信设备进行通信。用户可以通过输入装置将指令或信息输入到控制单元中,以使控制单元执行该指令或信息的内容。
第二电源800的控制单元通过通信接口连接至第一电源700,第一电源700通过无线网络(如4G或5G)与云端建立通信,云端通过无线网络与移动通信设备建立通信,移动通信设备经由云端和第一电源700对第二电源800进行控制,第二电源800定时经第一电源700向云端上报状态信息,所述状态信息包括用电状态信息、关电状态信息、位置信息、剩余电量、温度等的一者或多者。
此外,该第二电源800还包括传感器和显示器,传感器和显示器均分别与控制单元可通信地连接;传感器可以实时采集电池或电池组的状态信息(例如,温度、剩余电量、位置信息等),并将这些状态信息传送到控制单元。显示器可以根据需要显示用户所希望的内容(例如,温度、剩余电量、位置信息等)和/或界面(例如,交互界面)。当然,显示器和传感器并非本第二电源的必要部件。
另外,上述第二电源800的无线通信单元,用以与所述第一电源700实现无线通信,除了上述通信模组之外 还可以具备定位模组,如GNSS模组或GPS模组,包括GPS模块或北斗模块。
值得说明的是:
上述控制单元还适于用以通过所述第二电源800的无线通信单元连接第一电源,并经第一电源,接收所述云端发出的关闭电源指令,并根据关闭电源指令驱动所述电池或电池组关闭用电装置,此时用电装置处于下电状态。需要说明的是,云端发出的关闭电源指令经第一电源700转发给第二电源800的无线通信单元。
所述第二电源800的控制单元包括;
电子控制器,用以识别所述第二电源800的无线通信单元接收到的无线信号,并驱动执行器动作;
执行器,用以执行启动或关闭所述用电装置的动作。
其中,无线信号可以包括开启电源指令或关闭电源指令,具体地,当云端经第一电源700转发开启电源指令给第二电源800的无线通信单元时,无线信号为开启电源指令;当云端经第一电源700转发关闭电源指令给第二电源800的无线通信单元时,无线信号为关闭电源指令。可以理解地是,当云端经第一电源700转发除开启电源指令和关闭电源指令的其他信号给第二电源800的无线通信单元时,无线信号为该其他信号。
在一可行的实施例中,所述执行器为电路开关,结构简单且成本低。当然,在其他实施例中,执行器可以为其他能够启动或关闭用电装置的结构。
其中,开启电源指令为云端在接收到移动通信设备发送的开启电源请求时产生,实现远程控制第二电源800启动用电装置的目的,无需人为手动操作第二电源800的按键来启动用电装置。
【应用场景】
用户携带第一电源700和第二电源800处于户外,无WiFi网络覆盖,第一电源700通过蜂窝类,如:4G或5G通信模组连接至云端300,第二电源通过非蜂窝类,如:WiFi或蓝牙通信模组连接至第一电源,用户通过手机的蜂窝数据,如4G或5G信号与云端300实现无线通信。
此时,用户经移动通信设备通过无线网络发出开启电源指令至云端300,云端300通过无线网络发出开启电源指令,第一电源700通过连接的无线网络将开启电源指令传送至第二电源800,第二电源800的控制单元通过连接的无线网络接收开启电源指令,控制电池10或电池组启动用电装置。
参照图11所示的第一电源和第二电源组合适用于户外车载冰箱的示意图,户外车载冰箱200c通过第二电源800(如:五节电池形态的遥控电源100c)提供电能,此时,第二电源800通过非蜂窝类,如:WiFi或蓝牙通信模组连接至第一电源700,第一电源700通过自身携带的蜂窝类,如:4G或5G通信模组连接至云端300,此时,用户可以通过终端APP经云端远程控制遥控电源100开启,启动户外车载冰箱200c进行工作。
此外,当关闭电源指令为云端在接收到移动通信设备发送的关电请求时产生,实现远程控制第二电源800关闭用电装置的目的,无需人为手动操作第二电源800的按键来关闭用电装置。
根据本发明的另一方面,提供了一种用电装置的控制方法,用于控制如上述基于第一电源700和第二电源800组合的用电装置200,在一些实施例中,该用电装置200的控制方法包括登录步骤、用电步骤和关电步骤中的一部分或全部。下面将参照流程图详细描述本发明控制方法的各个步骤。
图12示出了用电装置的控制方法中登录步骤的流程图;
用户在第一次使用该用电装置和第一电源和第二电源时,需要在线注册并填写必要的用户信息。当然,用户可以通过网络从云端下载用户终端应用到移动通信设备并且将该应用本地安装到移动通信设备,或者,用户的移动通信设备上已经预装了用户终端应用。在登录步骤中,用户启动移动通信设备上的用户终端应用,并使该移动通信设备与云端建立连接。
在步骤S1中,运行用户终端应用的移动通信设备向云端300请求验证码;在步骤S2中,云端300收到来自用户的移动通信设备发送的验证码请求后,进行验证和确认,并通过短信、邮件、语音电话等方式向该移动通信设备发送验证码;在步骤S3中,用户收到由云端300发送的验证码之后,将该验证码输入移动通信设备,并通过移动通信设备经由网络将该验证码发送到云端300;在步骤S4中,云端300对该验证码验证后给用户的移动通 信设备发送登录确认信息。
图13示出了控制用电装置开启用电的流程图;
在步骤S10中,移动通信设备将开启电源请求发送给云端300;在步骤S20中,云端300接收到开启电源请求后,将开启电源指令发送给第一电源700,在步骤S30中,第一电源700接收到开启电源指令后传送给第二电源800以开启电源;在步骤S40中,第二电源800将开启电源状态信息传送给第一电源700;在步骤S50中,第一电源700将接收到开启电源状态信息传送至云端300;在步骤S60中,云端300将开启电源状态信息反馈发送给移动通信设备。
接下来说明关电步骤。
参照图14所示的关电步骤流程图,当用户需要结束用电装置工作后,通过移动通信设备向云端300发送关电请求(步骤S100),云端300收到关电请求之后,向第一电源发送关电指令(步骤S200),第一电源700接收到关电指令后传送给第二电源800以关闭电源(步骤S300),第二电源800将关闭电源的状态信息发送给第一电源700(步骤S400),第一电源700收到该指令后,将第二电源800关闭电源的状态信息发送给云端300(步骤S500),云端300基于该第二电源800关闭电源状态信息确认第二电源800已经关电情况下,向移动通信设备发送确认关电成功的信息,结束本次用电(步骤S600)。
此外,本发明中关电步骤还可以通过用电装置自动断电来实现,具体参照图15所示的关电步骤流程图,用电装置自动断电后,第二电源800将断电状态信息主动传送至第一电源700,并上报至云端(步骤S4000-步骤5000),云端收到断电状态信息并将断电状态信息反馈发送给移动通信设备,以提醒用户用电装置断电(步骤S6000)。
具体地,用电装置200内置传感器,如温度传感器,当传感器检测到温度达到预设的阈值时,自动关闭遥控电源与用电装置之间的供电电路。
其中,对于移动通信设备,本发明实施例的用电装置的控制方法可以包括:
(1)、与云端建立无线通信连接(即登录步骤),其中,云端与第一电源700无线通信连接以实现云端与第二电源800的无线通信;
(2)、当获取到开启电源请求时,发送开启电源请求至云端,以触发云端发送开启电源指令给第一电源700,由第一电源700转发开启电源指令给第二电源800,以驱动第二电源800启动用电装置,以使用电装置处于用电状态。
在一些实施例中,用电装置的控制方法还包括:当获取到关电请求时,发送关电请求至云端,以触发云端发送关闭电源指令给第一电源700,由第一电源700转发关闭电源指令给第二电源800,以驱动第二电源800关闭用电装置。进一步地,用电装置的控制方法还包括:接收云端发送的确认关电成功的信息,其中,确认关电成功的信息为云端基于第二电源800通过第一电源700发送的该第二电源800关闭电源的状态信息确定。
在一些实施例中,用电装置的控制方法还包括:接收第二电源800一次依次经第一电源700、云端转发的指示用电装置自动断电的信息。
对于云端,用电装置的控制方法可以包括如下步骤:
(1)、分别与移动通信设备、第二电源800建立无线通信连接;
(2)、当接收到移动通信设备发送的开启电源请求时,根据开启电源请求生成开启电源指令;
(3)、发送开启电源指令给第一电源700,由第一电源700转发开启电源指令给第二电源800,以驱动第二电源800启动用电装置,使得用电装置处于用电状态。
在一些实施例中,用电装置的控制方法还包括:当接收到移动通信设备发送的关电请求时,根据关电请求生成关闭电源指令;发送关闭电源指令给第一电源700,由第一电源700转发关闭电源指令给第二电源800,以驱动第二电源800关闭用电装置。进一步地,用电装置的控制方法还包括:接收第一电源700转发的该第二电源800关闭电源的状态信息;根据状态信息,确定第二电源800关电成功;发送确认关电成功的信息至移动通信设备。
在一些实施例中,用电装置的控制方法还包括:转发第二电源800通过第一电源700发送的指示用电装置自 动断电的信息至移动通信设备。
对于第二电源800,用电装置的控制方法可以包括如下步骤:
(1)、与第一电源700建立无线通信连接以实现第二电源800与云端的无线通信,其中,云端与第一电源700、移动通信设备分别无线通信连接;
(2)、接收云端通过第一电源700发送的开启电源指令,其中,开启电源指令为云端根据移动通信设备发送的开启电源请求生成;
(3)、根据开启电源指令,启动用电装置,使得用电装置处于用电状态。
在一些实施例中,用电装置的控制方法还包括:接收云端通过第一电源700发送的关闭电源指令,其中,关闭电源指令为云端根据移动通信设备发送的关电请求生成;根据关闭电源指令,关闭用电装置。进一步地,用电装置的控制方法还包括:通过第一电源700发送第二电源800关闭电源的状态信息至云端,以使云端根据状态信息,判断第二电源800是否关电成功。
在一些实施例中,用电装置的控制方法还包括:当第二电源800与用电装置自动断电时,依次经第一电源700和云端转发指示用电装置自动断电的信息至移动通信设备。
除此之外,还值得说明的是:
上述第一电源700还可以适于给第二电源800进行充电,当第二电源800电量不足时,用户可以通过第一电源700给第二电源800进行电量补充。
具体地,上述第一电源700优选采用储能电站形态,即,如图3e所示,其包括至少一个电池模组,电池模组由多节电池10构成,此时电池或电池组作储能电源或储能电站(也称户外电源)用。
根据现有储能电站技术可知,常规储能电站或户外电源都具备DC输出和AC输出功能,并配置有点烟口(车充口),市电充电口,太阳能板充电口,以及PD双向充放电口和智能显示屏等;由此可知,当第一电源700采用储能电站形态时也将具备现有储能电站的常规必备功能和配置。
此外,上述第一电源700可以适于给第二电源800进行充电,优选其第一电源700的容量(Ah)大于第二电源的容量(Ah);或者第一电源700所具的能量(WH)大于第二电源所具的能量(WH)。
请继续参照16所示的遥控电源另一种控制原理模块示意图,其包括第一电源700(图16所示的第一电源700可以称作为储能电源)和第二电源800(图16所示的第二电源800可以称作为转接电源),以及第三电源900。
第一电源700或第二电源800具有无线通信单元,用以与云端300实现无线通信,该无线通信单元至少具备通信模组,具体地,该通信模组为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M);
需要特别说明的是:
第一电源700或第二电源800的无线蜂窝通信功能,需要第一电源700与第二电源800进行电连接之后才被激活,具体地,第一电源700具有适于第二电源800电连接的安装部700a,第二电源800适配安装连接于安装部700a,此时,第二电源800与第一电源700进行定位安装连接的同时实现电连接,更具体地,安装部设有与第二电源800的电端子进行电气配合的另一电端子,此时,第一电源700或第二电源800的控制单元检测到二者适配的电信号,激活第一电源700或第二电源800的无线蜂窝通信功能。
或者,第二电源800与第一电源700进行定位安装连接的同时实现信号连接,更具体地,安装部设有与第二电源800的信号端子进行电信号连接的另一信号端子,二者安装配接时,二者信号上进行握手识别,激活第一电源700或第二电源800的无线蜂窝通信功能。
第三电源900也具有无线通信单元,用以与被激活无线蜂窝通信功能的第一电源700或第二电源800实现无线通信,该无线通信单元至少具备通信模组,具体地,该通信模组为非蜂窝类(如:WiFi/蓝牙/ZigBee/Lora/Sigfox);
同理;第三电源900与用电装置200连接,用以给用电装置200提供电能,同样地,上述用电装置200可以为电动工具,如电钻、电动角磨、电锤、喷雾器等,还可以为电动园艺工具,如修枝机、打草机、链锯等,又或者为电动家用工具,如吸尘器、咖啡机、电风扇、榨汁机,还可以为其它类型的用电设备,如胶枪、气泵、应急 灯具等,总体来说,上述用电装置200可以概指采用二次电池或电池组(如储能电源/储能电站)作为动力源的作业设备;用电装置200工作时,需要电源提供电能,以驱动用电装置作业。
上述第三电源900可以内置于用电装置200中,供用电装置作业提供电能;也可以外置于用电装置200,如当第三电源900作为具体的储能电源100e时,储能电源100e外置与用电装置200电源线或数据线连接供电(如图4e所示);
当然,较为优选地,上第三电源900可以以装拆自如的方式安装于用电装置200,此时,该第三电源900适于不同类型的用电装置200使用,即,此第三电源900可以被电动工具、电动园艺工具、电动家用工具所共用,比如:
用户拥有一个3.6V或12V或20V的第三电源900,不仅可以供电钻使用,而且可以供修枝机使用,此外,还可以供吸尘器使用,或者应急灯使用,如此一个第三电源900,可以满足用户不同的使用场景。
当第三电源900装配连接于用电装置200时,该第三电源900适于机械连接和电连接至用电装置200,通过机械连接固定,通过电连接给用电装置200提供电能。
请继续参照图17所示的第三电源900的功能模块示意图,第二电源800包括:
电池10或电池组,用以给所述用电装置200提供电能;
无线通信单元,用以与被激活无线蜂窝通信功能的第一电源700或第二电源800实现无线通信;
控制单元,用以通过所述第三电源900的无线通信单元,接收被激活无线蜂窝通信功能的第一电源700或第二电源800发出的开启电源指令,并根据开启电源指令驱动所述电池10或电池组启动用电装置,用电装置即处于用电状态。需要说明的是,第一电源700或第二电源800发出的开启电源指令实际为云端发送给第一电源700的,即第一电源700用以转发云端发出的开启电源指令至第三电源900的无线通信单元。
上述电池10或电池组至少具有一节电池,如1节21700电池,当然还可以采用3节21700电池串联,或者5节21700电池串联,以满足不同电压平台的用电装置使用。值得注意的是,前述仅是列举说明,并不局限于使用21700电池,还可以采用其它类型电池,如18650电池。
而且,上述电池组还可以包括至少一组电池模组,电池模组由多节电池相互串联或并联构成,以此作储能电源或储能电站100e用。
此外,上述第三电源900还可以至少由第一遥控电源和第二遥控电源相互串联或并联构成。
具体地,上述第三电源900存在多种形态,例如:
如图3a所示的单节电池形态;或,如图3b所示的三节电池形态;或,如图3c所示的五节电池形态示意图;或,如图3d所示的多个单节电池形态的遥控电源(如图3a所示)相互组合构成的形态;或,如图3e所示的储能电站形态。
根据本发明具体实施例,参照图17所示的第三电源900的功能模块示意图,该第三电源900包括控制单元、输入装置和通信接口。
其中,输入装置和通信接口分别与控制单元可通信地连接。控制单元包括用于处理数据的微处理器和用于存储数据的存储器。控制单元可以通过通信接口与被激活无线蜂窝通信功能的第一电源700或第二电源800进行通信,也可以通过通信接口与移动通信设备进行通信。用户可以通过输入装置将指令或信息输入到控制单元中,以使控制单元执行该指令或信息的内容。
第三电源900的控制单元通过通信接口连接至被激活无线蜂窝通信功能的第一电源700或第二电源800,被激活无线蜂窝通信功能的第一电源700或第二电源800通过无线网络(如4G或5G)与云端建立通信,云端通过无线网络与移动通信设备建立通信,移动通信设备经由云端和被激活无线蜂窝通信功能的第一电源700或第二电源800对第三电源900进行控制,第三电源900定时经被激活无线蜂窝通信功能的第一电源700或第二电源800向云端上报状态信息,所述状态信息包括用电状态信息、关电状态信息、位置信息、剩余电量、温度等的一者或多者。
此外,该第三电源900还包括传感器和显示器,传感器和显示器均分别与控制单元可通信地连接;传感器可以实时采集电池或电池组的状态信息(例如,温度、剩余电量、位置信息等),并将这些状态信息传送到控制单元。显示器可以根据需要显示用户所希望的内容(例如,温度、剩余电量、位置信息等)和/或界面(例如,交互界面)。当然,显示器和传感器并非本第二电源的必要部件。
另外,上述第三电源900的无线通信单元,用以与被激活无线蜂窝通信功能的第一电源700或第二电源800实现无线通信,除了上述通信模组之外还可以具备定位模组,如GNSS模组或GPS模组,包括GPS模块或北斗模块。
值得说明的是:
上述控制单元还适于用以通过所述第三电源900的无线通信单元连接被激活无线蜂窝通信功能的第一电源700或第二电源800,并经被激活无线蜂窝通信功能的第一电源700或第二电源800,接收所述云端300发出的关闭电源指令,并根据关闭电源指令驱动所述电池或电池组关闭用电装置。需要说明的是,云端发出的关闭电源指令经被激活无线蜂窝通信功能的第一电源700或者第二电源800转发给第三电源900的无线通信单元。
所述第三电源900的控制单元包括;
电子控制器,用以识别所述第三电源900的无线通信单元接收到的无线信号,并驱动执行器动作;
执行器,用以执行启动或关闭所述用电装置的动作。
其中,无线信号可以包括开启电源指令或关闭电源指令,具体地,当云端经被激活无线蜂窝通信功能的第一电源700或第二电源800转发开启电源指令给第三电源900的无线通信单元时,无线信号为开启电源指令;当云端经被激活无线蜂窝通信功能的第一电源700或第二电源800转发关闭电源指令给第三电源900的无线通信单元时,无线信号为关闭电源指令。可以理解地是,当云端经被激活无线蜂窝通信功能的第一电源700或第二电源800转发除开启电源指令和关闭电源指令的其他信号给第三电源900的无线通信单元时,无线信号为该其他信号。
在一可行的实施例中,所述执行器为电路开关,结构简单且成本低。当然,在其他实施例中,执行器可以为其他能够启动或关闭用电装置的结构。
其中,开启电源指令为云端在接收到移动通信设备发送的开启电源请求时产生,实现远程控制遥控电源启动用电装置的目的,无需人为手动操作遥控电源的按键来启动用电装置。
【应用场景】
用户携带第一电源700和第二电源800处于户外,无WiFi网络覆盖,第二电源800安装连接于第一电源700,第一电源700或第二电源800的无线蜂窝通信功能被激活,被激活无线蜂窝通信功能的第一电源700或第二电源800通过蜂窝类,如:4G或5G通信模组连接至云端300,第三电源900通过非蜂窝类,如:WiFi或蓝牙通信模组连接至被激活无线蜂窝通信功能的第一电源700或第二电源800,用户通过手机的蜂窝数据,如4G或5G信号与云端300实现无线通信。
此时,用户经移动通信设备通过无线网络发出开启电源指令至云端300,云端300通过无线网络发出开启电源指令,被激活无线蜂窝通信功能的第一电源700或第二电源800通过连接的无线网络将开启电源指令传送至第三电源900,第三电源900的控制单元通过连接的无线网络接收开启电源指令,控制电池10或电池组启动用电装置。
参照图18所示的第一电源/第二电源与第三电源组合适用于户外车载冰箱的示意图,户外车载冰箱200c通过第三电源900(如:五节电池形态的遥控电源100c)提供电能,此时,第三电源900通过非蜂窝类,如:WiFi或蓝牙通信模组连接至被激活无线蜂窝通信功能的第一电源700或第二电源800,被激活无线蜂窝通信功能的第一电源700或第二电源800通过自身携带的蜂窝类,如:4G或5G通信模组连接至云端300,此时,用户可以通过终端APP经云端远程控制遥控电源100开启,启动户外车载冰箱200c进行工作。
此外,当关闭电源指令为云端在接收到移动通信设备发送的关电请求时产生,实现远程控制遥控电源关闭用电装置的目的,无需人为手动操作遥控电源的按键来关闭用电装置。
根据本发明的另一方面,提供了一种用电装置的控制方法,用于控制如上述基于第一电源700/第二电源800与第三电源900组合的用电装置200,在一些实施例中,该用电装置200的控制方法包括登录步骤、用电步骤和关电步骤中的一部分或全部。下面将参照流程图详细描述本发明控制方法的各个步骤。
图19示出了用电装置的控制方法中登录步骤的流程图;
用户在第一次使用该用电装置和第一电源/第二电源和第三电源时,需要在线注册并填写必要的用户信息。当然,用户可以通过网络从云端下载用户终端应用到移动通信设备并且将该应用本地安装到移动通信设备,或者,用户的移动通信设备上已经预装了用户终端应用。在登录步骤中,用户启动移动通信设备上的用户终端应用,并使该移动通信设备与云端建立连接。
在步骤S1中,运行用户终端应用的移动通信设备向云端300请求验证码;在步骤S2中,云端300收到来自用户的移动通信设备发送的验证码请求后,进行验证和确认,并通过短信、邮件、语音电话等方式向该移动通信设备发送验证码;在步骤S3中,用户收到由云端300发送的验证码之后,将该验证码输入移动通信设备,并通过移动通信设备经由网络将该验证码发送到云端300;在步骤S4中,云端300对该验证码验证后给用户的移动通信设备发送登录确认信息。
图20示出了控制用电装置开启用电的流程图;
在步骤S10中,移动通信设备将开启电源请求发送给云端300;在步骤S20中,云端300接收到开启电源请求后,将开启电源指令发送给被激活无线蜂窝通信功能的第一电源700或第二电源800,在步骤S30中,被激活无线蜂窝通信功能的第一电源700或第二电源800接收到开启电源指令后传送给第三电源900以开启电源;在步骤S40中,第三电源900将开启电源状态信息传送给被激活无线蜂窝通信功能的第一电源700或第二电源800;在步骤S50中,被激活无线蜂窝通信功能的第一电源700或第二电源800将接收到开启电源状态信息传送至云端300;在步骤S60中,云端300将开启电源状态信息反馈发送给移动通信设备。
接下来说明关电步骤。
参照图21所示的关电步骤流程图,当用户需要结束用电装置工作后,通过移动通信设备向云端300发送关电请求(步骤S100),云端300收到关电请求之后,向被激活无线蜂窝通信功能的第一电源700或第二电源800发送关电指令(步骤S200),被激活无线蜂窝通信功能的第一电源700或第二电源800接收到关电指令后传送给第三电源900以关闭电源(步骤S300),第三电源900将关闭电源的状态信息发送给被激活无线蜂窝通信功能的第一电源700或第二电源800(步骤S400),被激活无线蜂窝通信功能的第一电源700或第二电源800收到该指令后,将第三电源900关闭电源的状态信息发送给云端300(步骤S500),云端300基于该第三电源900关闭电源状态信息确认第三电源900已经关电情况下,向移动通信设备发送确认关电成功的信息,结束本次用电(步骤S600)。
此外,本发明中关电步骤还可以通过用电装置自动断电来实现,具体参照图22所示的关电步骤流程图,用电装置自动断电后,第三电源900将断电状态信息主动传送至被激活无线蜂窝通信功能的第一电源700或第二电源800,并上报至云端(步骤S4000-步骤5000),云端收到断电状态信息并将断电状态信息反馈发送给移动通信设备,以提醒用户用电装置断电(步骤S6000)。
具体地,用电装置200内置传感器,如温度传感器,当传感器检测到温度达到预设的阈值时,自动关闭遥控电源与用电装置之间的供电电路。
其中,对于移动通信设备,本发明实施例的用电装置的控制方法可以包括:
(1)、与云端建立无线通信连接(即登录步骤),其中,云端与遥控电源无线通信连接;
(2)、当获取到开启电源请求时,发送开启电源请求至云端,以触发云端发送开启电源指令给被激活无线蜂窝通信功能的第一电源700或第二电源800,由被激活无线蜂窝通信功能的第一电源700或第二电源800转发开启电源指令给第三电源900,以驱动第三电源900启动用电装置,以使用电装置处于用电状态。
在一些实施例中,用电装置的控制方法还包括:当获取到关电请求时,发送关电请求至云端,以触发云端发 送关闭电源指令给被激活无线蜂窝通信功能的第一电源700或第二电源800,由被激活无线蜂窝通信功能的第一电源700或第二电源800转发关闭电源指令给第三电源900,以驱动第三电源900关闭用电装置。进一步地,用电装置的控制方法还包括:接收云端发送的确认关电成功的信息,其中,确认关电成功的信息为云端基于遥控电源通过被激活无线蜂窝通信功能的第一电源700或第二电源800发送的该第三电源900关闭电源的状态信息确定。
在一些实施例中,用电装置的控制方法还包括:接收遥控电源一次依次经被激活无线蜂窝通信功能的第一电源700或第二电源800以及云端转发的指示用电装置自动断电的信息。
对于云端,用电装置的控制方法可以包括如下步骤:
(1)、分别与移动通信设备、遥控电源建立无线通信连接;
(2)、当接收到移动通信设备发送的开启电源请求时,根据开启电源请求生成开启电源指令;
(3)、发送开启电源指令给被激活无线蜂窝通信功能的第一电源700或第二电源800,由被激活无线蜂窝通信功能的第一电源700或第二电源800转发开启电源指令给第三电源900,以驱动第三电源900启动用电装置,使得用电装置处于用电状态。
在一些实施例中,用电装置的控制方法还包括:当接收到移动通信设备发送的关电请求时,根据关电请求生成关闭电源指令;发送关闭电源指令给被激活无线蜂窝通信功能的第一电源700或第二电源800,由被激活无线蜂窝通信功能的第一电源700或第二电源800转发关闭电源指令给第三电源900,以驱动第三电源900关闭用电装置。进一步地,用电装置的控制方法还包括:接收被激活无线蜂窝通信功能的第一电源700或第二电源800转发的该第三电源900关闭电源的状态信息;根据状态信息,确定第三电源900关电成功;发送确认关电成功的信息至移动通信设备。
在一些实施例中,用电装置的控制方法还包括:转发第三电源900通过被激活无线蜂窝通信功能的第一电源700或第二电源800发送的指示用电装置自动断电的信息至移动通信设备。
对于遥控电源,用电装置的控制方法可以包括如下步骤:
(1)、与被激活无线蜂窝通信功能的第一电源700或第二电源800建立无线通信连接以实现第三电源900与云端的无线通信,其中,云端与被激活无线蜂窝通信功能的第一电源700或第二电源800以及移动通信设备分别无线通信连接;
(2)、接收云端通过被激活无线蜂窝通信功能的第一电源700或第二电源800发送的开启电源指令,其中,开启电源指令为云端根据移动通信设备发送的开启电源请求生成;
(3)、根据开启电源指令,启动用电装置,使得用电装置处于用电状态。
在一些实施例中,用电装置的控制方法还包括:接收云端通过被激活无线蜂窝通信功能的第一电源700或第二电源800发送的关闭电源指令,其中,关闭电源指令为云端根据移动通信设备发送的关电请求生成;根据关闭电源指令,关闭用电装置。进一步地,用电装置的控制方法还包括:通过被激活无线蜂窝通信功能的第一电源700或第二电源800发送第三电源900关闭电源的状态信息至云端,以使云端根据状态信息,判断遥控电源是否关电成功。
在一些实施例中,用电装置的控制方法还包括:当第三电源900与用电装置自动断电时,依次经被激活无线蜂窝通信功能的第一电源700或第二电源800和云端转发指示用电装置自动断电的信息至移动通信设备。
需要特别说明的是:
参照图16和图18所示,优选第二电源800具有无线通信单元,用以与云端300实现无线通信,该无线通信单元至少具备通信模组,具体地,该通信模组为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M);第二电源800的无线蜂窝通信功能需要将第二电源800与第一电源700进行相互电连接之后方可被激活。
具体地,第一电源700具备适于第二电源800电连接的安装部700a,第二电源800适配安装连接于安装部700a,此时,第二电源800与第一电源700进行定位安装连接的同时实现电连接,更具体地,安装部设有与第二电源800的电端子进行电气配合的另一电端子,此时,第二电源800的控制单元检测到二者适配的电信号,激活 第二电源800的无线蜂窝通信功能。
或者,第二电源800与第一电源700进行定位安装连接的同时实现信号连接,更具体地,安装部700a设有与第二电源800的信号端子进行电信号连接的另一信号端子,为方便描述,可以将安装部700a的信号端子称作为第一信号端子,将第二电源800的信号端子称作为第二信号端子,二者(即第一信号端子和第二信号端子)安装配接时,二者信号上进行握手识别,激活第二电源800的无线蜂窝通信功能。
此时,可以理解的是:
第二电源800较第一电源700体积小许多,其中第二电源800最优选采用单节21700电池形态,其体积可以较小,方便用户携带。而且可以理解的是第二电源800装配于第一电源700,第一电源700可以给第二电源800提供电量,即给第二电源800进行充电服务。
此时,具体地,上述第一电源700优选采用储能电站形态,即,如图3e所示,其包括至少一个电池模组,电池模组由多节电池10构成,此时电池或电池组作储能电源或储能电站(也称户外电源)用。
根据现有储能电站技术可知,常规储能电站或户外电源都具备DC输出和AC输出功能,并配置有点烟口(车充口),市电充电口,太阳能板充电口,以及PD双向充放电口和智能显示屏等;由此可知,当第一电源700采用储能电站形态时也将具备现有储能电站的常规必备功能和配置。
上述第一电源700可以给第二电源800进行充电,优选其第一电源700的容量(Ah)大于第二电源的容量(Ah);或者第一电源700所具的能量(WH)大于第二电源所具的能量(WH)。
另外,最优选采用的单节21700电池形态的第二电源800被首次激活之后,还可以从第一电源700的安装部700a取出,此时,第二电源800还可以当作随行WiFi装置使用。
当然,第二电源800也可以采用其它形态,如,如图3b所示的三节电池形态;或,如图3c所示的五节电池形态示意图;或,如图3d所示的多个单节电池形态的遥控电源(如图3a所示)相互组合构成的形态;或,如图3e所示的储能电站形态。
本发明实施例还提供一种用电装置的遥控电源,用以通过无线网络接收自移动通信设备发出的控制指令。该遥控电源可包括:
电池或电池组,用以给用电装置提供电能;
无线通信单元,用以与移动通信设备实现无线通信;和
控制单元,用以通过无线通信单元,接收移动通信设备发出的控制指令;
其中,控制指令至少包括开启电源指令,控制单元用以根据开启电源指令驱动电池或电池组启动用电装置。
本发明实施例中的遥控电源能够与移动通信设备无线通信,即遥控电源具备联网通信功能,如此用户可远程控制遥控电源以启动用电装置,遥控电源的控制更加智能化,提高用户使用体验。
控制指令还可包括关闭电源指令和/或参数设置指令和/或参数读取指令,例如,在一些实施例中,控制指令包括关闭电源指令,控制单元用以根据关闭电源指令驱动电池或电池组关闭用电装置;在另外一些实施例中,控制指令包括参数设置指令,控制单元用以根据参数设置指令对遥控电源和/或用单装置进行参数设置,例如,控制单元可以根据参数设置指令对遥控电源的输出电流和/或输出电压等参数进行设置和/或对设置用电装置的工作模式、工作参数等;在又一些实施例中,控制指令包括参数读取指令,控制单元用以根据参数读取指令获取遥控电源的状态信息,并通过无线通信单元将遥控电源的状态信息发送给移动通信设备,遥控电源的状态信息可以包括遥控电源执行控制指令的情况(如遥控电源是否成功执行控制指令),遥控电源的状态信息还可包括遥控电源的电量和/或温度等状态信息。
在一些实施例中,遥控电源的无线通信单元与移动通信设备间接无线通信连接,如图1中,遥控电源100的无线通信单元通过云端300与移动通信设备实现无线通信连接;又如图9中,第二电源800(第二电源800为遥控电源)的无线通信单元依次通过第一电源700和云端300与移动通信设备实现无线通信连接;又如图16中,第三电源900(第三电源900为遥控电源)的无线通信单元依次通过第二电源800或第一电源700以及云端300 与移动通信设备实现无线通信连接。
在另外一些实施例中,遥控电源的无线通信单元与移动通信设备直接无线通信连接。如图23所示,用电装置200的遥控电源100,用以给用电装置200提供电能,同时通过无线网络接收自移动通信设备发出的控制指令。
该遥控电源100具有无线通信单元,该无线通信单元至少具备无线通信模组,该无线通信模组为可以为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M)或非蜂窝类(如:WiFi/蓝牙/ZigBee/Lora/Sigfox),或者二者兼具。
该遥控电源100的功能模块,如图2所示。
该遥控电源100直接与移动通信设备实现无线通信连接,用于接收自移动通信设备发出的控制指令,并反馈遥控电源的状态信息给移动通信设备。
如图24所示,遥控电源可包括第一电源700和第二电源800,由第一电源700和第二电源800相互串联或并联构成,该第二电源800与用电装置200连接,用以给用电装置200提供电能。
该第一电源700具有无线通信单元,用以与移动通信设备实现无线通信,该无线通信单元至少具备通信模组,具体地,该通信模组为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M)或非蜂窝类(如:WiFi/蓝牙/ZigBee/Lora/Sigfox),或者二者兼具。
第二电源800的功能模块如图10所示。
如图25所示,遥控电源可包括第一电源700、第二电源800以及第三电源900,该第三电源900与用电装置200连接,用以给用电装置200提供电能。
第一电源700或第二电源800具有无线通信单元,用以与移动通信设备实现无线通信,该无线通信单元至少具备通信模组,具体地,该通信模组为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M)。
第三电源900的功能模块如图17所示。
在一些实施例中,遥控电源的无线通信单元还经移动通信设备与云端无线通信,如图23所示,遥控电源100的无线通信单元还经移动通信设备与云端300无线通信;又如图24所示,第一电源700的无线通信单元还经移动通信设备与云端300无线通信;又如图25所示,第一电源700或第二电源800还经移动通信设备与云端300无线通信。本实施例中,遥控电源的控制单元在获取到遥控电源的状态信息后,通过无线通信单元将状态信息发送给移动通信设备,由移动通信设备将状态信息转发给云端,以通过云端对状态信息进行存储或者进行分类并存储。
需要说明的是,遥控电源的无线通信单元与移动通信设备无论是间接无线通信连接,还是直接通信连接,用电装置的控制方式相同,具体参见上述实施例中相应部分的描述,不再赘述。
根据本发明的另一方面,提供了一种供电组件,该供电组件可以包括上述实施例中的遥控电源。
如图1所示的实施例中,遥控电源100直接与云端300通过无线网络实现无线通信,遥控电源100的控制单元适于用以通过遥控电源100的无线通信单元,接收云端300发出的开启电源指令,并根据开启电源指令驱动电池10或电池组启动用电装置,用电装置即处于用电状态。
遥控电源100的控制单元还适于用以通过遥控电源100的无线通信单元,接收云端300发出的关闭电源指令,并根据关闭电源指令驱动电池或电池组关闭用电装置,用电装置处于下电状态。
图1所示实施例中,开启电源指令、关闭电源指令得控制指令为移动通信设备经云端转发给遥控电源100。
如图9所示的实施例中,遥控电源为第二电源800,供电组件还包括第一电源700(第一电源700也可称为储能电源),第一电源700用以与云端无线通信连接,并与第二电源800的无线通信单元无线通信连接,以实现第二电源800与云端300之间的无线通信;其中,第一电源700能够为第二电源800进行充电。本实施例中,第二电源800经第一电源700的转接实现与云端300之间的无线通信。
图9所示实施例中,开启电源指令、关闭电源指令得控制指令为移动通信设备经云端转发给第一电源700,再由第一电源700将控制指令转发给第二电源800。
如图16所示的实施例中,遥控电源为第三电源900,供电组件还可包括第一电源700(第一电源700也可称 为储能电源)和第二电源800(第二电源800也可称为转接电源),其中,当第一电源700与第二电源800电连接时,第一电源700或者第二电源800的无线通信功能被激活,使得第一电源700或者第二电源800与云端300无线通信连接,并使得第一电源700或者第二电源800与第三电源900的无线通信单元无线通信连接,以实现第三电源900与云端300之间的无线通信。
图16所示实施例中,开启电源指令、关闭电源指令得控制指令为移动通信设备经云端转发给得第一电源700或者第二电源80,再由得第一电源700或者第二电源80将控制指令转发给第三电源900。
如图16所示,第一电源700包括安装部700a,第二电源800适配安装连接于安装部700a,以实现第二电源800和第一电源700的电连接。
安装部设有第一信号端子,第二电源800包括第二信号端子,第二电源800定位安装于安装部时,第一信号端子与第二信号端子实现安装配接,以实现第二电源800和第一电源700的电连接。
在第一电源700或者第二电源800的无线通信功能被激活之后,若第二电源800从第一电源700上取下,则第二电源800能够作为随行无线网络使用。
此外,图9或图16所示的实施例中,第一电源700与云端300基于蜂窝网络实现无线通信,第一电源700与第三电源900的无线通信单元基于非蜂窝网络实现无线通信。
如图23所示的实施例中,遥控电源100直接与移动通信设备通过无线网络实现无线通信。开启电源指令、关闭电源指令得控制指令为移动通信设备直接发送给遥控电源100。
如图24所示的实施例中,第一电源700直接与移动通信设备通过无线网络实现无线通信。开启电源指令、关闭电源指令得控制指令为移动通信设备直接发送给第一电源700,再由第一电源700将控制指令转发给第二电源800。
图25所示实施例中,开启电源指令、关闭电源指令得控制指令为移动通信设备经云端转发给得第一电源700或者第二电源80,再由得第一电源700或者第二电源80将控制指令转发给第三电源900。
本发明实施例的另一方面,提供了一种用电装置,该用电装置可包括:
用电组件;和
上述任一实施例中所述的供电组件,供电组件用以给用电组件提供电能。
在一些实施例中,用电装置还包括壳体,遥控电源可拆卸地安装于壳体。
其中,遥控电源适于电动工具,如电动园艺工具和/或电动家用工具等用电组件。
本发明实施例的另一方面,提供了一种用电系统,包括:
移动通信设备;
云端,与移动通信设备无线通信连接;和
上述任一实施例中的供电组件,在一些实施例中,供电组件的遥控电源与云端无线通信连接;其中,移动通信设备用以发送开启电源请求至云端,以触发云端发送开启电源指令至遥控电源。在另外一些实施例中,供电组件的遥控电源直接与移动通信设备无线通信连接,移动通信设备直接发送开启电源指令等控制指令至遥控电源。
除此之外,还值得一提的是:上述遥控电源100还适于参数调节。
具体地,参照图26所示的遥控电源100的功能模块示意图,遥控电源100包括:
电池10或电池组,用以给所述用电装置200提供电能;
无线通信单元,用以与所述云端300实现无线通信;
控制单元,用以通过所述无线通信单元,接收所述移动通信设备发出的调节输出参数的控制指令,并根据所述控制指令调节所述遥控电源的输出参数。
上述输出参数为包括输出功率,输出时间,输出电流方向,输出模式中的一种或多种。比如,远程操控电风扇时,该输出参数基本为输出功率,就可以通过调节输出功率来调整电风扇的风速;又比如,远程操控吸尘器时,该输出参数也可以为输出功率,就可以通过调节输出功率来调整吸尘器的吸力;还比如,操控电钻时,该调节参 数可以为输出功率和输出电流方向,可以通过调节输出功率来调节电钻的转速,还可以通过调节输出电流方向来调节电钻的转动方向;还比如,远程操控咖啡机时,该咖啡机的输出参数可以为输出模式,该输出模式可以根据咖啡的风味进行设置,如美式风味、拿铁风味、意式浓缩风味等。
上述控制单元包括:
采集模组,用以采集遥控电源当前的输出参数,同时用以采集无线通信信号,并将采集到的数据和/或信号发送给处理模组;
处理模组,用以将从所述采集模组采集到的当前的输出参数与从所述移动通信设备发送来的待调节的输出参数进行比较,若比较结果为一致时,不需要再调节输出参数,并将结果反馈给所述移动通信设备;若比较结果不一致,将当前的输出参数调节为待调节的输出参数,并将调节结果反馈给所述移动通信设备;和
存储模组,将从所述采集模组采集到的当前的输出参数进行存储,在无网络状态时,还将上述比较结果进行存储。
上述移动通信设备至少具备显示模组,以显示调节界面或反馈界面,也便于用户输入控制指令。
此外,如上所述,该遥控电源还包括传感器和显示器,传感器和显示器均分别与控制单元可通信地连接;传感器可以实时采集电池或电池组的状态信息(例如,温度、剩余电量、位置信息等),并将这些状态信息传送到控制单元。显示器可以根据需要显示用户所希望的内容(例如,温度、剩余电量、位置信息等)和/或界面(例如,交互界面)。当然,显示器和传感器并非本遥控电源的必要部件。
另外,上述无线通信单元除了上述通信模组之外还可以具备定位模组,如GNSS模组或GPS模组,包括GPS模块或北斗模块。
所述控制单元包括:
电子控制器,用以识别所述无线通信单元接收到的无线信号,并驱动执行器动作;
执行器,用以执行调节输出参数的动作。
在一可行的实施例中,所述执行器为电路开关,结构简单且成本低。当然,在其他实施例中,执行器可以为其他能够调节输出参数的结构。
在此需要说明的是:上述移动通信设备至少包括通信装置和处理装置,以及存储器;通信装置用于通过有线或无线网络发送或接收信号;处理装置包含应用处理部和射频/数字信号处理器;存储器用于将信号处理或存储为物理存储状态;如手机、pad、笔记本等智能终端。
上述云端至少包括:一个或多个中央处理单元;一个或多个存储器和/或大容量存储设备;一个或多个有线或无线网络接口。
【应用场景一】
遥控电源100处于WiFi网络覆盖环境下,如室内家居环境下,遥控电源100通过非蜂窝类,如:WiFi通信模组连接家庭WiFi网络,通过WiFi网络与移动通信设备实现无线通信,用户通过手机的蜂窝数据,如4G或5G信号与云端实现无线通信,当然,当云端同样处在WiFi网络覆盖环境下,可以通过手机自带的WiFi通信模组连接WiFi网络实现与云端无线通信。
此时,用户经移动通信设备通过无线网络发出调节输出参数的指令至遥控电源,遥控电源100的控制单元通过连接的无线网络接收到调节输出参数的指令,调节遥控电源的输出参数。
具体参照图4a的遥控电源与风扇装配示意图和图4b遥控电源装配适用于风扇示意图,以及图4c遥控电源装配适用于清洁机器人示意图所示,风扇200a或清洁机器人200b分别与遥控电源(如:单节电池形态的遥控电源100a)连接,遥控电源为风扇200a和清洁机器人200b工作提供电能,此时,遥控电源100处于WiFi网络覆盖环境下,遥控电源100通过WiFi通信模组连接家庭WiFi网络,通过WiFi网络与移动通信设备实现无线通信,此时,用户可以通过终端APP远程控制遥控电源100开启,启动风扇或清洁机器人进行工作,还可以远程控制调节遥控电源的输出参数,比如改变风扇的风速,清洁机器人的清洁模式等。
【应用场景二】
用户携带遥控电源100处于户外,无WiFi网络覆盖,遥控电源100通过非蜂窝类,如:蓝牙通信模组连接至移动通信设备,用户通过手机的蜂窝数据,如4G或5G信号与云端300实现无线通信。
此时,用户经移动通信设备通过无线网络发出调节输出参数至移动通信设备,遥控电源100的控制单元通过连接的无线网络接收调节输出参数的控制指令,调节遥控电源的输出参数。
参照图4d遥控电源装配适用于户外车载冰箱的示意图所示,户外车载冰箱200c通过遥控电源100(如:五节电池形态的遥控电源100c)提供电能,此时,遥控电源100处于无WiFi网络覆盖的户外,遥控电源100通过自身携带的蜂窝类,如:4G或5G通信模组连接至移动通信设备,此时,用户可以通过终端APP远程操控遥控电源100的输出参数,比如调节户外车载冰箱的输出功率。
参照图4e所示为遥控电源100的另一种形态,即储能电站形态,户外车载冰箱200c通过遥控电源(如,储能电站形态的遥控电源100e)提供电能,此时遥控电源100包括多个电池模组,电池模组由多节电池10构成,此时遥控电源100作储能电源或储能电站用,
此时,该遥控电源100处于无WiFi网络覆盖的户外,遥控电源100通过电源线与户外车载冰箱200c连接,并通过自身携带的蜂窝类,如:4G或5G通信模组连接至云端,此时,用户可以通过终端APP远程控制遥控电源100开启,启动户外车载冰箱200c进行工作。
根据本申请的另一方面,提供了一种用电装置的控制方法,用于控制如上述基于遥控电源100的用电装置200,图27示出了调节输出参数的方法的流程图:
步骤S10,移动通信设备将调节输出参数的请求发送给遥控电源100;
步骤S20,在执行步骤S10时,同时将请求信息发送给云端进行存储;
步骤S30,遥控电源100接收到调节输出参数的控制指令后,执行该控制指令;
步骤S40,遥控电源100执行控制指令后将执行情况反馈给移动通信设备;
步骤S50,移动通信设备将反馈信息传送给云端,云端将该反馈信息进行分类存储。
参照图28所示,在执行步骤S30前,还包括比较方法,步骤如下:
步骤S31,控制单元的采集模组采集当前的输出参数数据,并接收自移动通信设备发出的调节输出参数的控制指令数据;
步骤S32,处理模组接收到从所述采集模组传送过来的数据后,将当前的输出参数数据与待调节的输出参数数据进行比较;
步骤S33,判断当前的输出参数数据与待调节的输出参数数据是否一致;
步骤S34,若比较结果一致,则不需要执行调节输出参数的控制指令;
步骤S35,若比较结果不一致,执行调节输出参数的控制指令。
参照图24所示的遥控电源另一种控制原理模块示意图,其包括第一电源700(图7所示的第一电源700可以称作为储能电源)和第二电源800。
第一电源700具有无线通信单元,用以与移动通信设备实现无线通信,该无线通信单元至少具备通信模组,具体地,该通信模组为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M),或非蜂窝类(如:WiFi/蓝牙/ZigBee/Lora/Sigfox),或者两者兼具;
优选地,第一电源处的通信模组为非蜂窝类,具体地,该第一电源处的通信模组为蓝牙。
第二电源800也具有无线通信单元,用以与第一电源700实现无线通信,该无线通信单元至少具备通信模组,具体地,该通信模组为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M),非蜂窝类(如:WiFi/蓝牙/ZigBee/Lora/Sigfox),或者两者兼具。
优选地,第二电源处的通信模组为非蜂窝类,具体地,该第二电源处的通信模组为蓝牙。
第二电源800与用电装置200连接,用以给用电装置200提供电能,同样地,上述用电装置200可以为电动 工具,如电钻、电动角磨、电锤、喷雾器等,还可以为电动园艺工具,如修枝机、打草机、链锯等,又或者为电动家用工具,如吸尘器、咖啡机、电风扇、榨汁机,还可以为其它类型的用电设备,如胶枪、气泵、应急灯具等,总体来说,上述用电装置200可以概指采用二次电池或电池组(如储能电源/储能电站)作为动力源的作业设备;用电装置200工作时,需要电源提供电能,以驱动用电装置作业。
上述第二电源800可以内置于用电装置200中,供用电装置作业提供电能;也可以外置于用电装置200,如当第二电源800作为具体的储能电源100e时,储能电源100e外置与用电装置200电源线或数据线连接供电(如图4e所示);
当然,较为优选地,上述第二电源800可以以装拆自如的方式安装于用电装置200,此时,该第二电源800适于不同类型的用电装置200使用,即,此第二电源800可以被电动工具、电动园艺工具、电动家用工具所共用,比如:
用户拥有一个3.6V或12V或20V的第二电源800,不仅可以供电钻使用,而且可以供修枝机使用,此外,还可以供吸尘器使用,或者应急灯使用,如此一个第二电源800,可以满足用户不同的使用场景。
当第二电源800装配连接于用电装置200时,该第二电源800适于机械连接和电连接至用电装置200,通过机械连接固定,通过电连接给用电装置200提供电能。
请继续参照图29所示的第二电源的功能模块示意图,第二电源800包括:
电池10或电池组,用以给所述用电装置200提供电能;
无线通信单元,用以与第一电源700实现无线通信;
控制单元,用以通过第二电源800的无线通信单元,接收第一电源700发出的调节输出参数的控制指令,并根据控制指令执行调节工作。需要说明的是,第一电源700发出的调节输出参数的控制指令实际为移动通信设备发送给第一电源700的,即第一电源700用以转发移动通信设备发出的控制指令至第二电源800的无线通信单元。
上述控制单元包括:
采集模组,用以采集遥控电源当前的输出参数,同时用以采集无线通信信号,并将采集到的数据和/或信号发送给处理模组;
处理模组,用以将从所述采集模组采集到的当前的输出参数与从所述移动通信设备发送来的待调节的输出参数进行比较,若比较结果为一致时,不需要再调节输出参数,并将结果反馈给所述移动通信设备;若比较结果不一致,将当前的输出参数调节为待调节的输出参数,并将调节结果反馈给所述移动通信设备;和
存储模组,将从所述采集模组采集到的当前的输出参数进行存储,在无网络状态时,还将上述比较结果进行存储。
上述输出参数为包括输出功率,输出时间,输出电流方向,输出模式中的一种或多种。比如,调节电风扇时,该输出参数基本为输出功率,就可以通过调节输出功率来调整电风扇的风速;又比如,调节吸尘器时,该输出参数也可以为输出功率,就可以通过调节输出功率来调整吸尘器的吸力;还比如,调节电钻时,该调节参数可以为输出功率和输出电流方向,可以通过调节输出功率来调节电钻的转速,还可以通过调节输出电流方向来调节电钻的转动方向;还比如,调节咖啡机时,该咖啡机的输出参数可以为输出模式,该输出模式可以根据咖啡的风味进行设置,如美式风味、拿铁风味、意式浓缩风味等。
上述电池10或电池组至少具有一节电池,如1节21700电池,当然还可以采用3节21700电池串联,或者5节21700电池串联,以满足不同电压平台的用电装置使用。值得注意的是,前述仅是列举说明,并不局限于使用21700电池,还可以采用其它类型电池,如18650电池。
而且,上述电池组还可以包括至少一组电池模组,电池模组由多节电池相互串联或并联构成,以此作储能电源或储能电站100e用。
具体地,上述第二电源800存在多种形态,例如:
如图3a所示的单节电池形态;或,如图3b所示的三节电池形态;或,如图3c所示的五节电池形态示意图; 或,如图3d所示的多个单节电池形态的遥控电源(如图3a所示)相互组合构成的形态;或,如图3e所示的储能电站形态。
根据本申请具体实施例,参照图29所示的第二电源的功能模块示意图,该第二电源800包括控制单元、输入装置和通信接口。
其中,输入装置和通信接口分别与控制单元可通信地连接。控制单元包括用于处理数据的微处理器和用于存储数据的存储器。控制单元可以通过通信接口与第一电源700进行通信,也可以通过通信接口与移动通信设备进行通信。用户可以通过输入装置将指令或信息输入到控制单元中,以使控制单元执行该指令或信息的内容。
第二电源800的控制单元通过通信接口连接至第一电源700,第一电源700通过无线网络与移动通信设备建立通信,移动通信设备通过无线网络与云端建立通信,移动通信设备经由第一电源700对第二电源800进行控制,第二电源800定时经第一电源700和移动通信设备向云端上报状态信息,所述状态信息包括用电状态信息、关电状态信息、位置信息、剩余电量、温度等的一者或多者。
此外,该第二电源800还包括传感器和显示器,传感器和显示器均分别与控制单元可通信地连接;传感器可以实时采集电池或电池组的状态信息(例如,温度、剩余电量、位置信息等),并将这些状态信息传送到控制单元。显示器可以根据需要显示用户所希望的内容(例如,温度、剩余电量、位置信息等)和/或界面(例如,交互界面)。当然,显示器和传感器并非本第二电源的必要部件。
另外,上述第二电源800的无线通信单元,用以与所述第一电源700实现无线通信,除了上述通信模组之外还可以具备定位模组,如GNSS模组或GPS模组,包括GPS模块或北斗模块。
上述控制单元包括电子控制器和执行器,该电子控制器即上述处理器,该电子控制器用以识别所述第二电源800的无线通信单元接收到的无线信号,并驱动执行器动作;执行器,用以调节输出参数的动作。
其中,无线信号可以包括调节输出参数的控制指令,还可以为开启电源或关闭电源的控制指令,具体地,当移动通信设备经第一电源700转发调节输出参数的控制指令给第二电源800的无线通信单元时,无线信号为调节输出参数的控制指令。
在一可行的实施例中,所述执行器为电路开关,结构简单且成本低。当然,在其他实施例中,执行器可以为其他能够调节输出参数的结构。
除此之外,还值得说明的是:
上述第一电源700还可以适于给第二电源800进行充电,当第二电源800电量不足时,用户可以通过第一电源700给第二电源800进行电量补充,优选其第一电源700的容量(Ah)大于第二电源的容量(Ah)。
具体地,上述第一电源700优选采用储能电站形态,即,如图3e所示,其包括至少一个电池模组,电池模组由多节电池10构成,此时电池或电池组作储能电源或储能电站(也称户外电源)用。
根据现有储能电站技术可知,常规储能电站或户外电源都具备DC输出和AC输出功能,并配置有点烟口(车充口),市电充电口,太阳能板充电口,以及PD双向充放电口和智能显示屏等;由此可知,当第一电源700采用储能电站形态时也将具备现有储能电站的常规必备功能和配置。
【应用场景三】
用户携带第一电源700和第二电源800处于户外,无WiFi网络覆盖,第一电源700通过非蜂窝类,如:蓝牙通信模组连接至移动通信设备,第二电源通过非蜂窝类,如:蓝牙通信模组连接至第一电源,用户通过手机的蜂窝数据,如4G或5G信号与移动通信设备实现无线通信。
此时,用户经移动通信设备通过蓝牙发出调节输出参数的控制指令至第一电源700,第一电源700通过连接的蓝牙将调节输出参数的控制指令传送至第二电源800,第二电源800的控制单元接收调节输出参数的控制指令,判断当前运行的输出参数是否与待调节的输出参数一致,若一致,不需要执行,若不一致,按自移动通信设备发出的控制指令执行。
第一电源和第二电源组合适用于户外车载冰箱的示意图,户外车载冰箱200c通过第二电源800(如:五节电 池形态的遥控电源100c)提供电能,此时,第二电源800通过非蜂窝类,如:WiFi或蓝牙通信模组连接至第一电源700,第一电源700通过自身携带的非蜂窝类,如:WiFi或蓝牙通信模组连接至移动通信设备,此时,用户可以通过终端APP经第一电源远程控制第二电源的输出参数,调节户外车载冰箱200c的运行功率。
图30示出了调节输出参数的方法的流程图,步骤如下:
步骤S100,移动通信设备将调节输出参数的请求发送给第一电源700;步骤S200,在执行步骤S100时,同时将请求信息发送给云端进行存储;步骤S300,第一电源700将调节输出参数的控制指令转发给第二电源800;步骤S400,第二电源800接收到调节输出参数的控制指令后,执行该控制指令;步骤S500,遥控电源100执行控制指令后将执行情况经第一电源反馈给移动通信设备;步骤S600,移动通信设备将反馈信息传送给云端,云端将该反馈信息进行分类存储。
参照图31所示,在执行步骤S400前,还包括数据比较方法,步骤如下:
步骤S410中,控制单元的采集模组采集当前的输出参数数据,并接收自移动通信设备发出的调节输出参数的控制指令数据;步骤S420,处理模组接收从所述采集模组传送过来的数据后,将当前的输出参数数据与待调节的输出参数数据进行比对;步骤S430,判断当前的输出参数数据与待调节的输出参数数据是否一致;步骤S440,若比较结果一致,则不需要执行调节输出参数的控制指令;步骤S450,若比较结果不一致,则执行调节输出参数的控制指令。
综上所述:
本发明还涉及一种用电装置的遥控电源100,用以通过无线网络接收自移动通信设备发出的调节输出参数的控制指令并执行该控制指令;
其中,所述遥控电源100包括:
电池10或电池组,用以给用电装置200提供电能;
无线通信单元,用以与移动通信设备实现无线通信;和
控制单元,用以通过所述无线通信单元,接收所述移动通信设备发出的调节输出参数的控制指令,并根据所述控制指令调节所述遥控电源100的输出参数。
进一步地,所述控制单元包括:
采集模组,用以采集第一数据和第二数据,其中,所述第一数据为遥控电源当前运行的输出参数数据,所述第二数据为自所述移动通信设备发出的待调节的输出参数数据;和处理模组,用以接收从所述采集模组采集到的所述第一数据和所述第二数据,并将所述第一数据与所述第二数据进行比较。
进一步地,控制单元还包括:
存储模组,将从采集模组采集到的数据和处理模组的比较结果数据进行存储,存储模组在连上无线网络后,将存储的数据传送给移动通信设备。
进一步地,输出参数为包括输出功率,输出时间,输出电流方向,输出模式中的一种或多种。
本申请提供一种用电装置的供电组件,供电组件包括:
上述遥控电源和储能电源,用以与移动通信设备无线通信连接,并与遥控电源的无线通信单元无线通信连接,以实现遥控电源与移动通信设备之间的无线通信;其中,储能电源能够为遥控电源进行充电。
本申请提供一种用电装置,包括:
用电组件;和上述供电组件,供电组件用以给用电组件提供电能。
本申请提供一种用电系统,包括:
云端;
移动通信设备,与云端无线通信连接;和
上述供电组件,供电组件的遥控电源与移动通信设备无线通信连接;
其中,移动通信设备用以发送调节输出参数的控制指令至遥控电源,以调节遥控电源的输出参数。
本申请提供一种用电装置的控制方法,应用于上述用电系统,控制方法包括:
移动通信设备通过无线网络将调节输出参数的控制指令的请求发送给遥控电源;
遥控电源执行控制指令,并将执行状态信息反馈给移动通信设备。
进一步地,遥控电源执行控制指令前,需进行数据比较方法,数据比较方法包括:将第一数据与第二数据进行比较,并判断第一数据与第二数据是否一致;若比较结果一致,不执行控制指令,若比较结果不一致,执行控制指令;其中,第一数据为遥控电源当前运行的输出参数数据,第二数据为自移动通信设备发出的待调节的输出参数数据。
进一步地,移动通信设备将控制指令的请求发送给遥控电源的同时,将控制指令的请求发送给云端,以进行存储。
进一步地,移动通信设备将反馈的执行状态信息发送给云端,以进行存储。
根据本申请实施例提供的技术方案,遥控电源能够与移动通信设备无线通信,即遥控电源具备联网通信功能,如此用户可远程控制遥控电源以调节输出参数,遥控电源的控制更加智能化,提高用户使用体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
除此之外,进一步参照图9所示,第一电源700具有第一无线通信单元,用以与所述移动通信设备实现无线通信,所述第一无线通信单元至少具备第一通信模组;
第二电源800具有第二无线通信单元,用以与所述移动通信设备或所述第一电源实现无线通信,所述第二无线通信单元至少具备第二通信模组;
其中,在同等条件下,所述第一通信模组的数据传输距离大于所述第二通信模组的数据传输距离。
如上所述,上述第一电源700可以适于给第二电源800进行充电,该第一电源700的容量(Ah)大于第二电源的容量(Ah),优选地,第一电源700的容量至少为第二电源的容量的2倍。
上述第一电源700通过第一无线通信单元接收自移动通信设备发来的控制指令数据并转发给第二电源,该第一无线通信单元至少具备第一通信模组,具体地,该第一通信模组为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M)或非蜂窝类(如:WiFi/蓝牙/ZigBee/Lora/Sigfox);或者两者兼具。
具体的,该第一通信模组为非蜂窝类,以降低组网成本,优选地,该第一通信模组为蓝牙。
上述第二电源800具有第二无线通信单元,用以与移动通信设备直接无线网络通信,以直接接收自移动通信设备发来的控制指令数据,或者用以与第二电源无线网络通信,以经第一电源转发控制指令数据,该第二无线通信单元至少具备第二通信模组,具体地,该第二通信模组为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M)或非蜂窝类(如:WiFi/蓝牙/ZigBee/Lora/Sigfox);或者两者兼具。
具体的,该第二通信模组为非蜂窝类,以降低组网成本,优选地,该第二通信模组为蓝牙。
在同等条件下,上述第一通信模组的数据传输距离大于上述第二通信模组的数据传输距离,以降低组网成本,同时实现远距离数据传输;
具体地,在同等条件下,所述第一通信模组的数据传输距离至少为所述第二通信模组的数据传输距离的1.2倍。更进一步地,在同等条件下,所述第一通信模组的数据传输距离为所述第二通信模组的数据传输距离的1.5-2倍。
如此,在同等条件下,第一通信模组的发射功率大于所述第二通信模组的发射功率;或者在同等条件下,第一通信模组的天线增益高于所述第二通信模组的天线增益,以实现第一通信模组的传输距离大于第二通信模组的传输距离。
上述第一电源或移动通信设备可同时与多个第二电源实现无线通信连接,即可以对多个第二电源同时控制,即可以对多个应用上述第二电源的用电装置实现同时控制。
当移动通信设备与用电装置之间的距离超出预设的传输距离时,移动通信设备与第一电源无线通信连接,第一电源再与第二电源无线通信连接,即经第一电源转发自移动通信设备发出的控制指令数据或从第二电源处反馈 的反馈信息;当移动通信设备与用电装置之间的距离处于预设的传输距离内时,可以经第一电源转发信息,即移动通信设备与第一电源无线通信连接,第一电源再与第二电源无线通信连接;当然,移动通信设备可以直接与用电装置无线通信连接。
具体地,当移动通信设备与用电装置之间的距离超出预设的传输距离时,该遥控电池的数据通信采用第一数据通信方法,该第一数据通信方法为:
步骤S1,第一电源通过第一无线通信网络接收自移动通信设备发出的控制指令数据;步骤S2,第二电源通过第二无线通信网络接收从第一电源处转发过来的控制指令数据;步骤S3,第二电源通过第二无线通信网络将控制指令的执行信息和状态信息反馈给第一电源;步骤S4,第一电源通过第一无线通信网络将接收到的状态信息和执行信息转发给移动通信设备。
其中,移动通信设备与第一电源之间建立上述第一无线通信网络,以实现两者之间的双向数据传输;第一电源与第二电源之间建立上述第二无线通信网络,以实现两者之间的双向数据传输;其中,第一电源的第一通信模组的数据传输距离大于第二电源的第二通信模组的数据传输距离,以实现移动通信设备与用电装置之间的远距离通信。
另外,请参照图32所示的遥控电源的控制多个用电装置的原理模块示意图,一种用电系统包括:
云端;
移动通信设备,用以与所述云端300无线通信连接;和
遥控电源,用以与所述移动通信设备无线通信连接,所述遥控电源为多个;
其中,每个所述遥控电源均用以给所述用电装置200提供电能,同时通过无线网络接收自移动通信设备发出的控制指令并执行控制指令,并通过无线网络将执行信息或反馈信息发射给移动通信设备。
上述移动通信设备可同时与多个所述遥控电源100无线通信连接,以使通过移动通信设备同时控制多个遥控电源,即实现对多个用电装置的工作状态进行控制。
上述移动通信设备至少具备处理器和存储器,处理器根据识别信息按预设的规则对用户电源和遥控电源进行编号,同时分析处理遥控电源与用电装置之间的连接信息,并输出两者之间的对应信息;存储器将上述识别信息、编号信息和对应信息进行存储。
所述处理器接收到遥控电源的识别信息或用电装置的识别信息后,根据预设的规则进行编号,存储于所述存储器内,所述处理器还将连接信息进行分析,将遥控电源的编号与用电装置的编号对应起来,并存储于所述存储器内,上述遥控电源的编号、用电装置的编号,以及两者之间的对应关系形成数据库,并将该数据库上传至云端。
所述遥控电源的预设的规则可以为按规格、型号和产品序列号以字母、数字及字符组合的规则来进行编号;所述用电装置的预设的规则可以为按规格、型号、功能和产品序列号以字母、数字及字符组合的规则来进行编号。
上述移动通信设备还包括显示装置,用以显示各用电装置的工作状态,以及显示给所述用电装置供电的遥控电源的工作状态,以便于用户根据指示输入控制指令,也便于用户查看遥控电源和用电装置的状态。
上述移动通信设备可以为手机、pad、笔记本等智能终端。
具体地,该用电装置的控制方法包括:
步骤S1,用户输入对某一或某些用电装置的控制指令;
步骤S2,移动通信设备的处理器接收执行上述控制指令的请求,对该请求信息进行分析处理,并通过查询数据库,找出接收上述请求信息的遥控电源的编号;
步骤S3,移动通信设备将所述控制指令信息通过无线通信网络将所述控制指令传送给上述编号相对应的遥控电源;
步骤S4,所述遥控电源接收上述请求信息,处理分析所述请求信息,并执行控制指令。
上述控制方法还包括:
步骤S5,所述遥控电源在执行控制指令之前,需要先检测遥控电源与用电装置是否电连接;
步骤S6,若是,所述遥控电源执行所述控制指令;
步骤S7,若不是,所述遥控电源不执行所述控制指令,并将所述遥控电源与所述用电装置没有电连接的信息反馈给所述移动通信设备。
上述移动通信设备与云端无线连接时,将上述数据库通过无线通信网络传输给云端,以进行分类保存;该移动通信设备与云端之间的通信模组为蜂窝类,可以实现移动通信设备与云端之间的远距离传输。
请进一步参照图33所示,用电系统包括:
云端;
移动通信设备,用以与所述云端无线通信连接;
第一电源,用以与所述移动通信设备无线通信连接;和
第二电源,用于与所述第一电源无线通信连接,所述第二电源为多个;
其中,所述第二电源用以给用电装置200提供电能,同时经过第一电源接收自移动通信设备发出的控制指令并执行控制指令,并经过第一电源将执行信息或反馈信息发射给移动通信设备。
第二电源800与用电装置200连接,用以给用电装置200提供电能。
上述第一电源700可同时与多个所述第二电源800无线通信连接,以使通过移动通信设备同时控制多个第二电源800,即实现对多个用电装置的工作状态进行控制。
如图9所示,上述第一电源700包括:
电池10或电池组,用以给所述第二电源800提供电能;
第二无线通信单元,用以与所述移动通信设备实现无线通信;
第二控制单元,用以处理分析所述控制指令的请求信息,转发所述请求信息至第一电源,并用以对第二电源和用电装置进行编号。
上述第一电源700还可以适于给第二电源800进行充电,优选地,第一电源700的容量(Ah)大于第二电源的容量(Ah),当第二电源800电量不足时,用户可以通过第一电源700给第二电源800进行电量补充。
具体地,上述第一电源700优选采用储能电站形态,即,如图3e所示,其包括至少一个电池模组,电池模组由多节电池10构成,此时电池或电池组作储能电源或储能电站(也称户外电源)用。
上述第二控制单元包括:
第二处理模组,用以分析处理所述控制指令的请求信息,并控制所述请求信息发送给相对应的第二电源,并用以根据预设的规则对第二电源和用电装置进行编号;和
第二存储模组,用以存储上述识别信息、连接信息以及对应信息,并形成数据库。
所述第二处理模组接收到第二电源的识别信息或用电装置的识别信息后,根据预设的规则进行编号,存储于所述存储器内,所述第二处理模组还将连接信息进行分析,将第二电源的编号与用电装置的编号对应起来,并存储于所述存储器内,上述第二电源的编号、用电装置的编号,以及两者之间的对应信息形成数据库,并将该数据库上传至云端。
所述第二电源的预设的规则可以为按规格、型号和产品序列号以字母、数字及字符组合的规则来进行编号;所述用电装置的预设的规则可以为按规格、型号、功能和产品序列号以字母、数字及字符组合的规则来进行编号。
上述第二控制单元还包括:
第二采集单元,用以采集第一电源的状态信息。
上述移动通信设备至少包括通信装置和处理装置,以及存储器;通信装置用于通过有线或无线网络发送或接收信号;处理装置包含应用处理部和射频/数字信号处理器;存储器用于将信号处理或存储为物理存储状态;如手机、pad、笔记本等智能终端。
上述移动通信设备还包括显示装置,用以显示各用电装置的工作状态,以及显示给所述用电装置供电的第二电源的工作状态,以便于用户根据指示输入控制指令,也便于用户查看第一电源、第二电源和用电装置的状态信 息。
具体地,用电装置的控制方法包括:
步骤S10,用户输入对某一或某些用电装置的控制指令;步骤S20,移动通信设备将控制指令的请求信息发送给第一电源;步骤S30,第一电源的第二处理单元接收到上述请求信息,对该请求信息进行分析处理,并通过查询数据库,找出需要接收上述请求信息的第二电源编号;步骤S40,第一电源通过无线通信网络将所述请求信息传送给所述编号相对应的第二电源;步骤S50,第二电源接收上述请求信息,并分析处理请求信息,执行所述控制指令。
上述控制方法还包括:
步骤S60,所述第二电源在执行控制指令之前,需要先检测第二电源与相对应的用电装置是否电连接;步骤S70,若是,所述第二电源执行所述控制指令;步骤S80,若不是,所述第二电源不执行所述控制指令,并将所述第二电源与所述用电装置没有电连接的信息反馈给所述移动通信设备。
上述移动通信设备与云端无线连接时,将上述信息、数据库通过无线通信网络传输给云端,以进行分类保存,该移动通信设备与云端之间的通信模组为蜂窝类,可以实现移动通信设备与云端之间的远距离传输。
请进一步参照图26或图29所示,遥控电源100还可以包括监测单元,用以采集用电装置200和/或遥控电源100的运行参数,分析处理所述运行参数;控制单元,用以接收自移动通信设备发出的控制指令,并执行控制指令,同时用以根据监测单元得出的处理结果控制遥控电源和/或遥控电源。
具体地,上述监测单元包括:
采集模组,用以实时采集遥控电源100和/或用电装置200的运行参数;
处理模组,用以将从所述采集模组采集到的运行参数进行特征提取,并将提取后的特征进行自比较和互比较;同时用以接收自移动通信设备发出的控制指令,并执行控制指令;
存储模组,用于将运行参数和从经所述处理模组处理的结果进行存储。
所述采集模组可以为传感器,用以采集各种运行参数;所述存储模组可以为FLASH芯片或者随机动态存储器或者缓存芯片。
上述自比较为当前提取的特征与之前采集到的特征进行比较,互比较为提取的特征与预设的阈值进行比较,并根据自比较的结果和互比较的结果判定运行参数是否异常。
上述存储模组进行存储时,若当前提取的特征与之前存储的特征一致,将记录时间修改为当前时间,若不一致,将当前特征替换之前的特征,同时记录时间修改为当前时间。
上述遥控电源的运行参数可以为电压参数、电流参数、温度参数和荷电状态参数中的一种或者多种;上述用电装置的运行参数可以为工作功率参数、工作模式参数、工作时间参数、位置参数和温度参数中的一种或多种。
比如,采集的参数为遥控电源充电时的温度参数,采集到的温度参数与之前存储的温度参数进行比较,同时,将采集到的温度参数与预存的阈值进行比较,若自比较时当前温度比之前温度升高,且当前温度超过阈值,则说明出现异常,将异常结果发送给所述控制单元,控制单元控制遥控电源停止充电,同时把提醒信息发送给移动通信设备,以通知用户。
再比如,采集的参数为遥控电源放电时的电压参数,当前的电压与之前存储放电时的电压进行比较,同时,将当前的电压与预存的阈值进行比较,若自比较时电压降低,且放电电压低于预设的阈值时,视为异常,处理单元将异常结果发送给控制单元,控制单元控制遥控电源停止给用电装置放电,同时把提醒信息发送给移动通信设备,以通知用户。
再比如,采集的参数为用电装置的位置参数,采集到的位置参数与之前的位置参数进行比较,同时与预设的阈值进行比较,若自比较时,当前的位置与之前的位置距离变大,且当前的位置超出预设的地域阈值时,视为异常,将异常结果发送给控制单元,控制单元控制遥控电源发出报警信息,并将提醒信息发送给移动通信设备,以通知用户。
如此,本申请另一方面还涉及了一种供电系统的监控方法,用于监控上述遥控电源100和基于遥控电源100的用电装置200,监控方法的流程图:
步骤S10,参数采集步骤,采集模组采集遥控电源和/或用电装置的运行参数;
步骤S20,特征提取步骤,处理模组将所述采集模组采集到的运行参数的特征进行提取;
步骤S30,比较分析步骤,将提取到的特征进行自比较和互比较,得出自比较结果和互比较结果;
步骤S40,异常判定步骤,根据处理好的自比较结果和互比较结果判定是否异常;
步骤S50,异常处理步骤,若出现异常,根据预设的规则得出相应的控制指令,并将所述控制指令发送给控制单元,控制单元执行控制指令,同时将出现异常的提醒信息和执行信息发送给所述移动通信设备。
步骤S60,参数传输步骤,若未出现异常,将提取到的参数信息传输给所述移动通信设备,所述移动通信设备将所述参数信息传输给云端,云端将所述参数信息进行分类存储。
上述自比较为将当前提取的特征与之前存储的特征进行比较,互比较为当前的特征与预设的阈值进行比较,并根据自比较结果和互比较结果判定运行参数是否异常。
预设的规则为:当所述遥控电源的电压参数、电流参数、温度参数或荷电状态参数出现异常时,控制遥控电源停止运行,具体为停止充电或停止给所述用电装置放电;当所述用电装置的工作功率参数、工作模式参数、工作时间参数或温度参数出现异常时,控制遥控电源停止给所述用电装置供电;当所述用电装置的位置参数出现异常时,控制遥控电源停止运行,具体为停止给用电装置供电,同时控制遥控电源发出报警信号。
上述控制指令主要为控制遥控电源或用电装置停止运行的控制指令,当位置参数超出预设的地域时,还需要发出报警信号的控制指令。
上述提醒信息通过一定的提醒方式来通知用户,该提醒方式可以为声音、文本、图像、振动或光等方式中的一种或多种。
上述参数信息传输至移动通信设备后,移动通信设备将当前的参数信息与之前存储的参数信息进行比较,若两者一致,将记录时间修改为当前时间,若两者不一致,将之前存储的参数信息替换为当前的参数信息,并将记录时间修改为当前时间。
而参数信息传输至云端后,将所述参数信息进行分类保存,以便于用户查询数据。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (35)

  1. 一种用电装置的遥控电源,用以通过无线网络接收自云端发出的开启电源指令后启动用电装置;
    其特征在于,所述遥控电源包括:
    电池或电池组,用以给所述用电装置提供电能;
    无线通信单元,用以与所述云端实现无线通信;和
    控制单元,用以通过所述无线通信单元,接收所述云端发出的开启电源指令,并根据所述开启电源指令驱动所述电池或所述电池组启动所述用电装置。
  2. 根据权利要求1所述的用电装置的遥控电源,其特征在于,所述控制单元还适于用以通过所述无线通信单元,接收所述云端发出的关闭电源指令,并根据所述关闭电源指令驱动所述电池或所述电池组关闭用电装置。
  3. 根据权利要求1或2所述的用电装置的遥控电源,其特征在于,所述控制单元包括;
    电子控制器;和
    执行器,用以执行启动或关闭所述用电装置的动作;
    其中,所述电子控制器用以识别所述无线通信单元接收到的所述云端发出的无线信号,并驱动所述执行器动作,所述无线信号包括所述开启电源指令或关闭电源指令。
  4. 根据权利要求3所述的用电装置的遥控电源,其特征在于,所述执行器为电路开关。
  5. 根据权利要求3所述的用电装置的遥控电源,其特征在于,所述无线信号为所述云端在接收到移动通信设备发送的开启电源请求时产生。
  6. 一种用电装置的供电组件,其特征在于,所述供电组件包括:
    权利要求1至5任一项所述的遥控电源。
  7. 根据权利要求6所述的用电装置的供电组件,其特征在于,所述供电组件还包括:
    储能电源,用以与所述云端无线通信连接,并与所述遥控电源的无线通信单元无线通信连接,以实现所述遥控电源与所述云端之间的无线通信;
    其中,所述储能电源能够为所述遥控电源进行充电。
  8. 根据权利要求7所述的用电装置的供电组件,其特征在于,所述供电组件还包括:
    转接电源;
    其中,当所述储能电源与所述转接电源电连接时,所述储能电源或者所述转接电源的无线通信功能被激活,使得所述储能电源或者所述转接电源与所述云端无线通信连接,并使得所述储能电源或者所述转接电源与所述遥控电源的无线通信单元无线通信连接,以实现所述遥控电源与所述云端之间的无线通信。
  9. 根据权利要求8所述的用电装置的供电组件,其特征在于,所述储能电源包括安装部,所述转接电源适配安装连接于所述安装部,以实现所述转接电源和所述储能电源的电连接。
  10. 根据权利要求9所述的用电装置的供电组件,其特征在于,所述安装部设有第一信号端子,所述转接电源包括第二信号端子,所述转接电源定位安装于所述安装部时,所述第一信号端子与所述第二信号端子实现安装配接,以实现所述转接电源和所述储能电源的电连接。
  11. 根据权利要求8所述的用电装置的供电组件,其特征在于,在所述储能电源或者所述转接电源的无线通信功能被激活之后,若所述转接电源从所述储能电源上取下,则所述转接电源能够作为随行无线网络使用。
  12. 一种用电装置,其特征在于,包括:
    用电组件;和
    权利要求6-11任一所述的供电组件,所述供电组件用以给所述用电组件提供电能。
  13. 根据权利要求12所述的用电装置,其特征在于,所述用电装置还包括壳体,所述遥控电源可拆卸地安装于所述壳体。
  14. 根据权利要求12所述的用电装置,其特征在于,所述遥控电源适于电动工具。
  15. 根据权利要求14所述的用电装置,其特征在于,所述电动工具包括电动园艺工具和/或电动家用工具。
  16. 一种用电系统,其特征在于,包括:
    移动通信设备;
    云端,与所述移动通信设备无线通信连接;和
    权利要求6-11任一所述的供电组件,所述供电组件的遥控电源与所述云端无线通信连接;
    其中,所述移动通信设备用以发送开启电源请求至所述云端,以触发所述云端发送开启电源指令至所述遥控电源。
  17. 一种用电装置的控制方法,其特征在于,所述方法通过移动通信设备实施,所述方法包括:
    与云端建立无线通信连接,其中,所述云端与遥控电源无线通信连接;
    当获取到开启电源请求时,发送所述开启电源请求至所述云端,以触发所述云端发送开启电源指令至遥控电源,以驱动所述遥控电源启动所述用电装置,以使所述用电装置处于用电状态。
  18. 根据权利要求17所述的用电装置的控制方法,其特征在于,所述方法还包括:
    当获取到关电请求时,发送所述关电请求至所述云端,以触发所述云端发送关闭电源指令至遥控电源,以驱动所述遥控电源关闭所述用电装置。
  19. 根据权利要求18所述的用电装置的控制方法,其特征在于,所述方法还包括:
    接收所述云端发送的确认关电成功的信息,其中,所述确认关电成功的信息为所述云端基于所述遥控电源发送的该遥控电源关闭电源的状态信息确定。
  20. 根据权利要求17所述的用电装置的控制方法,其特征在于,所述方法还包括:
    接收所述遥控电源经所述云端转发的指示所述用电装置自动断电的信息。
  21. 一种移动通信设备,其特征在于,包括:
    通信装置,用于通过无线网络与云端建立通信;
    处理装置,用于实施如权利要求17至20任一项所述方法;
    存储器,用于将信号处理或存储为物理存储状态。
  22. 一种用电装置的控制方法,其特征在于,所述方法通过云端实施,所述方法包括:
    分别与移动通信设备、遥控电源建立无线通信连接;
    当接收到所述移动通信设备发送的开启电源请求时,根据所述开启电源请求生成开启电源指令;
    发送所述开启电源指令至遥控电源,以驱动所述遥控电源启动所述用电装置,使得所述用电装置处于用电状态。
  23. 根据权利要求22所述的用电装置的控制方法,其特征在于,所述方法还包括:
    当接收到所述移动通信设备发送的关电请求时,根据所述关电请求生成关闭电源指令;
    发送所述关闭电源指令至遥控电源,以驱动所述遥控电源关闭所述用电装置。
  24. 根据权利要求23所述的用电装置的控制方法,其特征在于,所述方法还包括:
    接收所述遥控电源发送的该遥控电源关闭电源的状态信息;
    根据所述状态信息,确定所述遥控电源关电成功;
    发送确认关电成功的信息至所述移动通信设备。
  25. 根据权利要求22所述的用电装置的控制方法,其特征在于,所述方法还包括:
    转发所述遥控电源发送的指示所述用电装置自动断电的信息至所述移动通信设备。
  26. 一种云端,其特征在于,包括:
    一个或多个中央处理单元,用于实施如权利要求22至25任一项所述方法;
    一个或多个存储器和/或大容量存储设备;
    一个或多个有线或无线网络接口。
  27. 一种用电装置的控制方法,其特征在于,所述方法通过遥控电源实施,所述方法还包括:
    与云端建立无线通信连接,其中,所述云端与移动通信设备无线通信连接;
    接收所述云端发送的开启电源指令,其中,所述开启电源指令为所述云端根据所述移动通信设备发送的开启电源请求生成;
    根据所述开启电源指令,启动所述用电装置,使得所述用电装置处于用电状态。
  28. 根据权利要求27所述的用电装置的控制方法,其特征在于,所述方法还包括:
    接收所述云端发送的关闭电源指令,其中,所述关闭电源指令为所述云端根据所述移动通信设备发送的关电请求生成;
    根据所述关闭电源指令,关闭所述用电装置。
  29. 根据权利要求28所述的用电装置的控制方法,其特征在于,所述方法还包括:发送所述遥控电源关闭电源的状态信息至所述云端,以使所述云端根据所述状态信息,判断所述遥控电源是否关电成功。
  30. 根据权利要求27所述的用电装置的控制方法,其特征在于,所述方法还包括:
    当所述遥控电源与所述用电装置自动断电时,经所述云端转发指示所述用电装置自动断电的信息至所述移动通信设备。
  31. 一种遥控电源,其特征在于,包括:
    控制单元,用于实施如权利要求27至30任一项所述方法。
  32. 一种用电装置的遥控电源,用以通过无线网络接收自移动通信设备发出的控制指令;其特征在于,所述遥控电源包括:
    电池或电池组,用以给所述用电装置提供电能;
    无线通信单元,用以与所述移动通信设备实现无线通信;和
    控制单元,用以通过所述无线通信单元,接收所述移动通信设备发出的控制指令;
    其中,所述控制指令至少包括开启电源指令,所述控制单元用以根据所述开启电源指令驱动所述电池或所述电池组启动所述用电装置。
  33. 根据权利要求32所述的用电装置的遥控电源,其特征在于,所述控制指令还包括关闭电源指令和/或参数设置指令和/或参数读取指令;
    所述控制单元用以根据所述关闭电源指令驱动所述电池或所述电池组关闭用电装置,和/或根据所述参数设置指令对所述遥控电源和/或所述用电装置进行参数设置,和/或根据所述参数读取指令获取所述遥控电源的状态信息,并通过所述无线通信单元将所述状态信息发送给所述移动通信设备。
  34. 根据权利要求32所述的用电装置的遥控电源,其特征在于,所述无线通信单元与所述移动通信设备直接无线通信连接。
  35. 根据权利要求34所述的用电装置的遥控电源,其特征在于,所述无线通信单元还经所述移动通信设备与云端无线通信,所述控制单元在获取到所述遥控电源的状态信息后,通过所述无线通信单元将所述状态信息发送给所述移动通信设备,由所述移动通信设备将所述状态信息转发给所述云端,以通过所述云端对所述状态信息进行存储或者进行分类并存储。
PCT/CN2022/089528 2021-04-30 2022-04-27 遥控电源、供电组件、用电装置及其控制方法、用电系统 WO2022228457A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3217193A CA3217193A1 (en) 2021-04-30 2022-04-27 Remote control power supply, power supply assembly, electrical device and control method therefor, and electrical system
EP22794927.8A EP4333241A1 (en) 2021-04-30 2022-04-27 Remote control power supply, power supply assembly, electrical device and control method therefor, and electrical system
KR1020237041530A KR20240013749A (ko) 2021-04-30 2022-04-27 원격 제어 전원, 전원 공급 조립체, 전력 소비 장치와 그의 제어 방법 및 전력 소비 시스템
US18/496,997 US20240055894A1 (en) 2021-04-30 2023-10-30 Remote control power supply, power supply assembly, electrical device and control method therefor, and electrical system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202110479516 2021-04-30
CN202110479516.9 2021-04-30
CN202111116173 2021-09-23
CN202111116173.6 2021-09-23
CN202111144848.8 2021-09-28
CN202111144887.8 2021-09-28
CN202111144848 2021-09-28
CN202111144887.8A CN116826875A (zh) 2021-09-28 2021-09-28 一种用电装置的用电系统及用电装置的控制方法
CN202111235878.X 2021-10-22
CN202111235878.XA CN115276212A (zh) 2021-04-30 2021-10-22 遥控电源、供电组件、用电装置及其控制方法、用电系统
CN202111283178.8A CN116073457A (zh) 2021-11-01 2021-11-01 用电装置的智能电源、供电组件、供电系统以及监测方法
CN202111283178.8 2021-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/496,997 Continuation US20240055894A1 (en) 2021-04-30 2023-10-30 Remote control power supply, power supply assembly, electrical device and control method therefor, and electrical system

Publications (1)

Publication Number Publication Date
WO2022228457A1 true WO2022228457A1 (zh) 2022-11-03

Family

ID=83847779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089528 WO2022228457A1 (zh) 2021-04-30 2022-04-27 遥控电源、供电组件、用电装置及其控制方法、用电系统

Country Status (5)

Country Link
US (1) US20240055894A1 (zh)
EP (1) EP4333241A1 (zh)
KR (1) KR20240013749A (zh)
CA (1) CA3217193A1 (zh)
WO (1) WO2022228457A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07203634A (ja) * 1993-12-30 1995-08-04 Kenji Harada 2次電池セルの充電装置
CN103914028A (zh) * 2013-01-08 2014-07-09 无锡南理工科技发展有限公司 一种远程电器开关控制系统及其控制方法
CN204360501U (zh) * 2015-02-06 2015-05-27 黑龙江大学 基于铁电薄膜的便携式热释电红外警示器
US20150194844A1 (en) * 2012-08-10 2015-07-09 Zte Corporation Mobile terminal and control method for battery thereof
CN205594861U (zh) * 2016-03-28 2016-09-21 深圳市智慧猫软件技术有限公司 一种智能遥控装置
CN110783649A (zh) * 2019-11-05 2020-02-11 苏州力佳达电子科技有限公司 一种可以远程控制的电池
CN111463906A (zh) * 2020-05-24 2020-07-28 浙江千河智能科技有限公司 一种基于单片机的智能电源及其控制方法
CN211287956U (zh) * 2019-11-20 2020-08-18 优链加(重庆)科技有限公司 供水管网检测设备使用的供电装置
CN112186276A (zh) * 2019-07-01 2021-01-05 上海耦荷科技有限公司 一种用于动力电池的基于物联网的电池管理系统和方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07203634A (ja) * 1993-12-30 1995-08-04 Kenji Harada 2次電池セルの充電装置
US20150194844A1 (en) * 2012-08-10 2015-07-09 Zte Corporation Mobile terminal and control method for battery thereof
CN103914028A (zh) * 2013-01-08 2014-07-09 无锡南理工科技发展有限公司 一种远程电器开关控制系统及其控制方法
CN204360501U (zh) * 2015-02-06 2015-05-27 黑龙江大学 基于铁电薄膜的便携式热释电红外警示器
CN205594861U (zh) * 2016-03-28 2016-09-21 深圳市智慧猫软件技术有限公司 一种智能遥控装置
CN112186276A (zh) * 2019-07-01 2021-01-05 上海耦荷科技有限公司 一种用于动力电池的基于物联网的电池管理系统和方法
CN110783649A (zh) * 2019-11-05 2020-02-11 苏州力佳达电子科技有限公司 一种可以远程控制的电池
CN211287956U (zh) * 2019-11-20 2020-08-18 优链加(重庆)科技有限公司 供水管网检测设备使用的供电装置
CN111463906A (zh) * 2020-05-24 2020-07-28 浙江千河智能科技有限公司 一种基于单片机的智能电源及其控制方法

Also Published As

Publication number Publication date
KR20240013749A (ko) 2024-01-30
US20240055894A1 (en) 2024-02-15
CA3217193A1 (en) 2022-11-03
EP4333241A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
AU2020277118A1 (en) An electrical apparatus, a power system, a power tool, a network of power tools and a power tool controller
US11552340B2 (en) Apparatus and system for providing device configuration via a battery
WO2019101168A1 (zh) 基于移动终端显示电池包信息的方法及移动终端
CN102692252A (zh) 温室大棚环境监控系统
CN106814711A (zh) 利用移动终端控制家电设备的方法以及该移动终端
CN104577548B (zh) 智能插座
WO2022228457A1 (zh) 遥控电源、供电组件、用电装置及其控制方法、用电系统
CN220066977U (zh) 供电组件、用电装置以及用电系统
CN219717943U (zh) 用电装置的供电组件
CN218997717U (zh) 用电装置的遥控电源及其用电系统
WO2022228541A1 (zh) 控制用电装置的控制系统及其控制方法
CN217159371U (zh) 自组网系统
CN116073457A (zh) 用电装置的智能电源、供电组件、供电系统以及监测方法
CN116014827A (zh) 遥控电源、供电组件、用电装置及其系统、控制方法
CN217741324U (zh) 智能电源、储能电源及供电组件
JP2021120176A (ja) 通信装置及びそれを用いた電気機器システム
CN108965391A (zh) 一种智能排插的配网方法及系统
CN116094076A (zh) 智能电源、储能电源、供电组件及其定位方法、检测方法
CN116826875A (zh) 一种用电装置的用电系统及用电装置的控制方法
CN110762778A (zh) 一种空调远程智能控制管理系统
WO2024046486A1 (zh) 一种装置组件及设备系统
CN115276140A (zh) 一种通信系统及其控制方法
CN220174651U (zh) 美甲系统
CN219125207U (zh) 全向强声驱鸟设备智能中控设备
CN212376805U (zh) 一种具有水位监测功能的太阳能抽水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794927

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024510537

Country of ref document: JP

Ref document number: 3217193

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022794927

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022794927

Country of ref document: EP

Effective date: 20231128

NENP Non-entry into the national phase

Ref country code: DE