WO2022228541A1 - 控制用电装置的控制系统及其控制方法 - Google Patents

控制用电装置的控制系统及其控制方法 Download PDF

Info

Publication number
WO2022228541A1
WO2022228541A1 PCT/CN2022/090125 CN2022090125W WO2022228541A1 WO 2022228541 A1 WO2022228541 A1 WO 2022228541A1 CN 2022090125 W CN2022090125 W CN 2022090125W WO 2022228541 A1 WO2022228541 A1 WO 2022228541A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
energy storage
control
smart
electrical device
Prior art date
Application number
PCT/CN2022/090125
Other languages
English (en)
French (fr)
Inventor
李斌
Original Assignee
浙江齐享科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111144887.8A external-priority patent/CN116826875A/zh
Priority claimed from CN202111235883.0A external-priority patent/CN116014827A/zh
Priority claimed from CN202111235878.XA external-priority patent/CN115276212A/zh
Priority claimed from CN202111283178.8A external-priority patent/CN116073457A/zh
Priority claimed from CN202210163465.3A external-priority patent/CN116683620A/zh
Application filed by 浙江齐享科技有限公司 filed Critical 浙江齐享科技有限公司
Priority to KR1020237041528A priority Critical patent/KR20240009960A/ko
Priority to CA3217178A priority patent/CA3217178A1/en
Priority to EP22795011.0A priority patent/EP4333386A1/en
Publication of WO2022228541A1 publication Critical patent/WO2022228541A1/zh
Priority to US18/496,956 priority patent/US20240055893A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/00026Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission involving a local wireless network, e.g. Wi-Fi, ZigBee or Bluetooth
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading

Definitions

  • the present application relates to a control system for controlling an electrical device, and also to a control method for controlling an electrical device.
  • the present application provides a control system for controlling an electrical device and a control method thereof.
  • the present application provides a control system for controlling an electrical device.
  • the control system for controlling an electrical device includes a mobile communication device, an energy storage power source, an intelligent power source, and an electrical device; the mobile communication device is wirelessly connected to the energy storage power source, and the energy storage
  • the power supply is connected with the intelligent intelligent wireless communication, and the intelligent power supply is used to provide electric energy to the electric device;
  • a mobile communication device for receiving a control command for controlling an electrical device input from a user
  • the intelligent power supply is used to receive the control command forwarded by the energy storage power supply, and control the electric device according to the control command.
  • the present application also provides a control method for controlling an electrical device.
  • the control method is applied to an energy storage power supply in an electrical device control system, and the control method includes:
  • Receive control instructions, and the control instructions are sent by the mobile communication device through a wireless communication connection
  • the smart power supply can communicate wirelessly with the cloud or mobile communication devices, that is, the smart power supply has the function of network communication, so that the user can remotely control the smart power supply to start or turn off the electrical device, and the control of the smart power supply is more efficient. Intelligent, improve user experience; of course, it can also forward control commands through the energy storage power supply to further extend the communication distance.
  • 1a is a schematic diagram of a control system for controlling an electrical device provided by a specific embodiment of the present application
  • FIG. 1b is a schematic diagram of another control system for controlling an electrical device provided by a specific embodiment of the present application, at this time, the control command is forwarded through the cloud;
  • FIG. 2a is a schematic diagram of another control system for controlling an electrical device provided by a specific embodiment of the application, at this time, a control command is forwarded through an energy storage power supply;
  • Fig. 2b is a schematic diagram of another control system for controlling an electrical device provided by a specific embodiment of the application, at this time, the control command is forwarded through the cloud and the energy storage power source;
  • FIG. 3 is a schematic diagram of another control system for controlling an electrical device provided by a specific embodiment of the present application.
  • the first intelligent power supply is electrically connected with the energy storage power supply, the first intelligent power supply or the cellular communication module of the energy storage power supply is activated;
  • 4a is a schematic diagram of another control system for controlling an electrical device provided by a specific embodiment of the application, at this time, the mobile communication device and the smart power supply are within the WiFi network coverage of the mobile WiFi device;
  • 4b is a schematic diagram of another control system for controlling an electrical device provided by a specific embodiment of the present application.
  • the mobile communication device and the energy storage power supply are within the WiFi network coverage of the mobile WiFi device;
  • FIG. 5 is a schematic diagram of another control system for controlling an electrical device provided by a specific embodiment of the present application.
  • 6a is a schematic diagram of an energy storage power supply controlling multiple smart power supplies simultaneously according to a specific embodiment of the present application, and at this time, it is in an indoor environment;
  • 6b is a schematic diagram of an energy storage power supply controlling multiple smart power supplies simultaneously according to a specific embodiment of the present application, at this time, it is in an outdoor environment;
  • FIG. 6c is a schematic diagram of scene linkage between multiple smart terminals provided by a specific embodiment of the present application.
  • FIG. 7a is a schematic diagram of another energy storage power supply controlling multiple smart power supplies according to a specific embodiment of the present application, at this time, another smart power supply is provided between the energy storage power supply and the smart power supply;
  • FIG. 7b is a schematic diagram of another energy storage power supply controlling multiple intelligent power supplies according to a specific embodiment of the present application, and at this time, multiple intelligent power supplies are arranged between the energy storage power supply and the intelligent power supply;
  • 8a is a schematic circuit diagram of an intelligent power supply and an electrical device provided by a specific embodiment of the application, at this time, the actuator is arranged on the intelligent power supply;
  • 8b is a schematic circuit diagram of an intelligent power supply and an electrical device provided by a specific embodiment of the present application, at this time, the actuator is arranged on the electrical device;
  • FIG. 9 is a schematic diagram of functional modules of an intelligent power supply provided by a specific embodiment of the present application.
  • FIG. 10a is a schematic diagram of the form of a single-cell battery provided by an intelligent power supply provided by a specific embodiment of the present application;
  • FIG. 10b is a schematic diagram of the form of the smart power supply provided by the specific embodiment of the present application as three batteries;
  • FIG. 10c is a schematic diagram of the form of the smart power supply provided by the specific embodiment of the present application as five batteries;
  • FIG. 10d is a schematic diagram of the form of the intelligent power supply provided by the specific embodiment of the application, which is formed by combining multiple intelligent power sources in the form of single-cell batteries;
  • FIG. 10e is a schematic diagram of the form of an energy storage power station provided by a smart power source according to a specific embodiment of the present application.
  • 11a is a schematic diagram of the assembly of an intelligent power supply and an indoor fan provided by a specific embodiment of the present application
  • FIG. 11b is a schematic diagram of an intelligent power supply assembly suitable for an indoor fan provided by a specific embodiment of the present application.
  • Fig. 11c is a schematic diagram of an intelligent power supply assembly provided by a specific embodiment of the application suitable for a cleaning robot;
  • FIG. 11d is a schematic diagram of the smart power supply assembly provided by the specific embodiment of the application suitable for an outdoor vehicle-mounted refrigerator;
  • 11e is a schematic diagram of an intelligent power supply in the form of an energy storage power station provided by a specific embodiment of the application applicable to an outdoor vehicle-mounted refrigerator;
  • FIG. 12 is a schematic diagram of functional modules of an energy storage power supply provided by a specific embodiment of the present application.
  • FIG. 13a is a schematic structural diagram of a computing power module provided in a specific embodiment of the application when it is built into an energy storage power supply;
  • 13b is a schematic structural diagram of a computing power device provided in a specific embodiment of the application when it is connected to an energy storage power source;
  • FIG. 14 is a schematic diagram of the smart power supply provided by the specific embodiment of the application being removed from the electrical device and inserted into the energy storage power supply;
  • FIG. 15a is a multi-party interaction flowchart of a method for controlling an electrical device provided by a specific embodiment of the present application
  • Fig. 15b is a multi-party interaction flow chart of another method for controlling an electric device provided by a specific embodiment of the present application, in this case, instructions are forwarded through the cloud;
  • Fig. 15c is a multi-party interaction flow chart of another method for controlling an electric device provided by a specific embodiment of the present application, at this time, the instruction is forwarded through the energy storage power source;
  • FIG. 15d is a multi-party interaction flowchart of another method for controlling an electrical device provided by a specific embodiment of the present application. In this case, instructions are forwarded through the cloud and the energy storage power source.
  • first, second, third, etc. may be used in this application to describe various information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information without departing from the scope of the present application.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • control system for controlling electrical devices, the control system includes:
  • a mobile communication device for users to input control instruction information
  • Cloud 300 for storing uploaded information and also for forwarding instruction information
  • the intelligent terminal is used to receive the instruction information sent from the mobile communication device, and execute the control instruction to realize the corresponding control operation.
  • the above-mentioned smart terminal includes a smart power source 100 and an electrical device 200 , and the smart power source 100 is used to provide electrical energy to the electrical device 200 .
  • the above-mentioned smart terminal is directly connected to the mobile communication device for wireless communication, and the mobile communication device is connected to the cloud 300 for wireless communication.
  • the smart terminal receives an instruction sent from the mobile communication device, and after confirming the instruction And execute the instructions, at the same time, the smart power supply feeds back the status information to the mobile communication device, and the mobile communication device receives the status information and uploads it to the cloud for storage to the cloud.
  • the smart terminal connects to the home WiFi network through the WiFi communication module.
  • the group is connected to the WiFi network to realize wireless communication with the intelligent terminal.
  • the user sends a power-on command to the fan's smart power supply via the mobile communication device through the WiFi network, and the fan's smart power supply determines the control command after receiving the power-on command, and then controls the smart power supply to start the fan.
  • the above-mentioned smart terminal is wirelessly connected to the cloud
  • the cloud is wirelessly connected to the mobile communication device
  • the mobile communication device receives an instruction from the user and sends it to the cloud
  • the smart power supply of the smart terminal receives the
  • the control command is determined after the command information forwarded from the cloud, and the smart power supply controls the electrical device.
  • the smart power supply uploads the status information to the cloud for storage.
  • the user can remotely control the opening and closing of the smart terminal , you can also adjust the parameters of the smart terminal from a long distance.
  • the control system forwards control instructions through the cloud, which can extend the communication distance between the mobile communication device and the intelligent terminal.
  • the smart terminal is in a WiFi network coverage environment, such as an indoor home environment
  • the smart terminal connects to the home WiFi network through a WiFi communication module
  • the home WiFi network and the cloud communicate wirelessly
  • the mobile phone is also connected to the home WiFi network.
  • Users can communicate wirelessly with the cloud through cellular data from their phone, such as 4G or 5G signals.
  • the user sends a power-on command to the cloud 300 through the wireless network via the mobile communication device
  • the cloud 300 sends a power-on command through the wireless network
  • the smart power supply determines the control command after receiving the power-on command, and controls the smart power supply to start the electrical device,
  • the smart power supply uploads the status information to the cloud.
  • the smart power supply of the smart terminal carried by the user is outdoors without WiFi network coverage.
  • the smart power supply of the smart terminal is connected to the cloud 300 through cellular, such as 4G or 5G communication modules, and the user uses the cellular data of the mobile phone, such as The 4G or 5G signal is connected to the cloud 300 for wireless communication.
  • the user sends a power-on command to the cloud 300 through the mobile communication device through the 4G or 5G network
  • the cloud 300 sends the power-on command through the 4G or 5G network
  • the smart terminal receives the power-on command and controls the smart power source to start the power-consuming device.
  • the smart power supply uploads the status information to the cloud via 4G or 5G network for storage.
  • FIGS. 2a and 2b are schematic diagrams of another control system for controlling an electrical device according to another exemplary embodiment of the present application.
  • the control system for controlling the electric device forwards the control command through the energy storage power supply, which can extend the communication distance between the mobile communication device and the intelligent terminal, and the control system includes:
  • a mobile communication device for users to input control instruction information
  • the cloud 300 is used to store the uploaded information, and can also be used to forward the instruction information;
  • the intelligent terminal is used to receive the instruction information sent from the mobile communication device, and execute the control instruction to realize the corresponding control operation.
  • the above-mentioned smart terminal includes a smart power source 100 and an electrical device 200 , and the smart power source 100 is used to provide electrical energy to the electrical device 200 .
  • the above-mentioned mobile communication device is wirelessly connected to the cloud, while the mobile communication device is wirelessly connected to the energy storage power supply, the energy storage power supply is wirelessly connected to the smart power supply of the smart terminal, and the smart power supply receives The control command is confirmed after the command forwarded by the energy storage power supply.
  • the intelligent power supply sends the status information to the energy storage power supply, and the energy storage power supply receives the status information and sends it to the mobile communication device, and the mobile communication device uploads the status information to the cloud. to store in the cloud.
  • the user carries the energy storage power supply and the smart power supply outdoors, and there is no WiFi network coverage.
  • the WiFi or Bluetooth communication module is connected to the mobile communication device, and the user realizes wireless communication with the cloud 300 through the cellular data of the mobile phone, such as 4G or 5G signal.
  • the user sends a power-on command to the energy storage power supply through the mobile communication device through WiFi or Bluetooth, and the energy storage power supply forwards the information of the power-on command through the WiFi or Bluetooth network.
  • the fan's intelligent power supply confirms the control command and controls The smart power supply turns on the fans.
  • the above-mentioned smart power supply is wirelessly connected to the energy storage power supply
  • the energy storage power supply is wirelessly connected to the cloud
  • the cloud is wirelessly connected to the mobile communication device
  • the mobile communication device receives an instruction from the user Then send it to the cloud
  • the cloud sends the command information to the energy storage power supply
  • the smart power supply confirms the command after receiving the command information forwarded from the energy storage power supply, and executes the control command.
  • the smart power supply uploads the status information to the cloud for storage.
  • the user carries the energy storage power supply and the smart power supply is outdoors without WiFi network coverage.
  • the smart power supply is connected to the energy storage power supply through a non-cellular, such as WiFi or Bluetooth communication module, and the energy storage power supply is connected to the energy storage power supply through a cellular type, such as:
  • the 4G or 5G communication module is connected to the cloud 300, and the user realizes wireless communication with the cloud 300 through the cellular data of the mobile phone, such as 4G or 5G signals.
  • the user sends a power-on command to the cloud 300 through the mobile communication device through the 4G or 5G network
  • the cloud 300 sends the power-on command to the energy storage power supply through the 4G or 5G network
  • the smart terminal receives the power-on command forwarded from the energy storage power supply. After confirming the command, control the intelligent power supply to start the electrical device.
  • FIG. 3 is a schematic diagram of another control system for controlling an electrical device according to another exemplary embodiment of the present application.
  • the first smart power source 110 is electrically connected to the energy storage power source 400
  • the first smart power source 110 or the energy storage power source 400 is electrically connected.
  • the cellular communication module of the power source 400 is activated; the control system includes:
  • a mobile communication device for users to input control instruction information
  • Cloud 300 for storing uploaded information and forwarding instruction information
  • the energy storage power source 400 is used to forward the instruction information
  • a first intelligent power source 110 for providing a wireless network
  • the intelligent terminal is used to receive the control command and execute the command.
  • the above mobile communication device is wirelessly connected to the cloud 300
  • the first smart power source 110 or the energy storage power source 400 is wirelessly connected to the cloud
  • the smart terminal receives the control command information forwarded from the first smart power source 110 or the energy storage power source 400, and executes the the instruction.
  • the above-mentioned smart terminal includes a second smart power source 120 and an electrical device 200 , and the second smart power source 120 is used to provide electrical energy to the electrical device 200 .
  • the above-mentioned first smart power supply 110 or energy storage power supply 400 is configured with a cellular communication module (eg 2G/3G/4G/5G/NB-IOT/LTE-M).
  • a cellular communication module eg 2G/3G/4G/5G/NB-IOT/LTE-M.
  • the cellular communication module of the first intelligent power supply 110 or the energy storage power supply 400 is activated.
  • the first intelligent power supply 110 or the energy storage power supply 400 is wirelessly connected to the cloud through the wireless cellular network;
  • the power source 400 has a mounting portion 407 suitable for electrical connection of the first smart power source 110 , and the first smart power source 110 is adapted to be installed on the mounting portion 407 .
  • the first smart power source 110 and the energy storage power source 400 are positioned and installed at the same time.
  • the installation part is provided with another electrical terminal that is electrically matched with the electrical terminal of the first intelligent power supply 110.
  • the energy storage power supply 400 or the control unit of the first intelligent power supply 110 detects that the two are suitable
  • the distributed electrical signal activates the wireless cellular communication function of the energy storage power supply 400 or the first intelligent power supply 110;
  • the first intelligent power supply 110 is connected with the energy storage power supply 400 for positioning and installation while realizing signal connection.
  • handshake identification is performed on the signals of the two, and the wireless cellular communication function of the energy storage power supply 400 or the first intelligent power supply 110 is activated.
  • the above-mentioned first smart power supply 110 or energy storage power supply 400 has a non-cellular communication module (eg WiFi/Bluetooth/ZigBee/Lora/Sigfox).
  • the network communicates wirelessly with the second intelligent power supply for the forwarding of control instructions.
  • the first intelligent power supply 110 has both a cellular communication module (eg 2G/3G/4G/5G/NB-IOT/LTE-M) and a non-cellular communication module (eg WiFi/Bluetooth/ ZigBee/Lora/Sigfox), wherein the first smart power source 110 can be used as a mobile WiFi device.
  • a cellular communication module eg 2G/3G/4G/5G/NB-IOT/LTE-M
  • a non-cellular communication module eg WiFi/Bluetooth/ ZigBee/Lora/Sigfox
  • the user carries the energy storage power supply 400 and the first smart power supply 110 outdoors without WiFi network coverage, the first smart power supply 110 is installed and connected to the energy storage power supply 400, and the wireless cellular communication function of the first smart power supply 110 is activated,
  • the first smart power supply 110 with the activated wireless cellular communication function is connected to the cloud 300 through a cellular type, such as a 4G or 5G communication module, and the second intelligent power supply 120 is connected to the cloud 300 through a non-cellular type, such as a WiFi or Bluetooth communication module.
  • the first smart power supply 110 with the wireless cellular communication function is activated, and the user realizes wireless communication with the cloud 300 through cellular data of the mobile phone, such as 4G or 5G signals.
  • the user sends a power-on command to the cloud 300 through the wireless network via the mobile communication device
  • the cloud 300 sends a power-on command through the wireless network
  • the first smart power supply 110 with activated wireless cellular communication function sends the power-on command through the connected wireless network It is transmitted to the second intelligent power supply 120 , and the control unit of the second intelligent power supply 120 receives the power-on command through the connected wireless network, and controls the fan powered by the second intelligent power supply 120 to start.
  • control system for controlling an electrical device according to another exemplary embodiment of the present application.
  • the control system is suitable for a situation without a local area network, especially for an outdoor environment, and the control system includes:
  • a mobile communication device for users to input control instruction information
  • the intelligent terminal is used to receive the instruction information and execute the control instruction.
  • the above-mentioned smart terminal includes a smart power source 100 and an electrical device 200 , and the smart power source 100 is used to provide electrical energy to the electrical device 200 .
  • the above-mentioned smart terminal is under the coverage of the WiFi network of the mobile WiFi device, and the mobile communication device is also connected to the WiFi network of the mobile WiFi device.
  • the smart power supply of the smart terminal can pass through the WiFi network.
  • control system also includes a cloud 300 for storing the status information uploaded by the intelligent terminal, and the mobile WiFi device is connected to the cloud wirelessly through its own cellular data, such as 4G/5G.
  • the user carries the mobile WiFi device and the smart power supply outdoors, the mobile communication device and the smart power supply are both covered by the WiFi network of the mobile WiFi device, and the mobile communication device wirelessly communicates with the smart power supply through the WiFi network.
  • the user sends a power-on command to the smart power supply via the mobile communication device through the WiFi network, and the smart power supply confirms the command after receiving the power-on command, and controls the smart power supply to start the electrical device.
  • the control system further includes an energy storage power supply, and the energy storage power supply is under the network coverage of the mobile WiFi device, and the mobile communication device is also connected to the WiFi network of the mobile WiFi device.
  • the time energy storage power supply can wirelessly communicate with the mobile communication device through the WiFi network, and the intelligent power supply of the intelligent terminal is connected to the energy storage power supply through a non-cellular type, such as a Bluetooth communication module, to receive the control command and execute the command;
  • the power supply also has a gateway module to convert the Bluetooth signal and the WiFi signal. Control commands forwarded from the energy storage power supply to extend the communication distance.
  • control system also includes a cloud 300 for storing the status information uploaded by the intelligent terminal, and the mobile WiFi device is connected to the cloud wirelessly through its own cellular data, such as 4G/5G.
  • the user carries the mobile WiFi device and the energy storage power intelligent power supply outdoors, the mobile communication device and the energy storage power supply are both covered by the WiFi network of the mobile WiFi device, and the mobile communication device wirelessly communicates with the energy storage power supply through the WiFi network.
  • the power supply wirelessly communicates with the energy storage power supply through the built-in Bluetooth module.
  • the user sends a power-on command to the energy storage power supply through the mobile communication device through the WiFi network, and the energy storage power supply converts the WiFi signal of the command into a Bluetooth signal, and sends the command to the smart power supply through the Bluetooth module, and the smart power supply receives the command.
  • the smart power supply After turning on the power command, confirm the command and control the intelligent power supply to start the electrical device.
  • FIG. 5 is a schematic diagram of another control system for controlling an electrical device according to another exemplary embodiment of the present application.
  • the control system for controlling the electrical device is applied in an environment without an external network.
  • the energy storage power supply receives the instruction information input from the user, and the control system for controlling the electrical device includes:
  • the intelligent terminal is used to receive the instruction information sent from the mobile communication device, and execute the control instruction to realize the corresponding control operation.
  • the above-mentioned smart terminal includes a smart power source 100 and an electrical device 200 , and the smart power source 100 is used to provide electrical energy to the electrical device 200 .
  • the energy storage power supply 400 is wirelessly connected to the intelligent power supply through its own non-cellular wireless communication module to control the electrical device electrically connected to the intelligent power supply, and the energy storage power supply is received through the self-contained input device. From the user's instruction information, and send the instruction information to the intelligent power supply of the intelligent terminal, the intelligent power supply executes the instruction after receiving the instruction, and realizes the operation corresponding to the instruction;
  • the user can issue a control command to turn on the sweeping robot to the energy storage power supply through a voice command.
  • the energy storage power supply receives the command and sends it to the smart power supply of the cleaning robot. After the smart power supply receives the command and confirms the control command, the smart power The power supply controls the sweeping robot to start.
  • the processing logic of the above-mentioned control electric device is cached in the energy storage power supply and maintained by the energy storage power supply.
  • the processing logic can be transmitted to the energy storage power supply through the wireless network for updating.
  • control system for controlling the electric device may also be applicable to scene linkage, that is, the energy storage power supply 400 may send the control instruction to the smart terminal after retrieving the preset trigger condition;
  • the energy storage power supply will send the instruction to turn on the sweeping robot to the intelligent power supply of the sweeping robot.
  • the intelligent power supply of the sweeping robot will confirm the instruction and realize the corresponding operation of the instruction to Realize the timed start of the sweeping robot.
  • FIGS. 6a and 6b are schematic diagrams of an energy storage power supply controlling multiple smart terminals at the same time according to an exemplary embodiment of the present application, that is, when there are multiple smart terminals in the above control system, the energy storage power supply can monitor multiple smart terminals at the same time.
  • An intelligent power supply that is wirelessly connected to the energy storage power supply.
  • the energy storage power supply 400 can simultaneously control multiple smart terminals such as speakers, projectors, cabinet lights, vacuum cleaners, sweeping robots, hair dryers, etc. As shown in FIG. 5a, the energy storage power supply can simultaneously control the A plurality of intelligent terminals are connected by wireless communication, and the energy storage power supply receives the control command and forwards it to the intelligent power supply of the intelligent terminal wirelessly connected to it; The instruction is sent to the sweeping robot. After the intelligent power supply of the sweeping robot receives the instruction, the intelligent power supply controls the sweeping robot to turn on the power supply; the energy storage power supply 400 receives the instruction to increase the fan speed and sends the instruction to the fan, and the intelligent power supply of the fan receives the instruction. After the command, the fan speed is controlled to increase, that is, the output voltage of the intelligent power supply to the fan is controlled to increase.
  • the fan speed is controlled to increase, that is, the output voltage of the intelligent power supply to the fan is controlled to increase.
  • the energy storage power supply 400 can simultaneously control multiple smart terminals such as speakers, projectors, camping lights, outdoor fans, outdoor air conditioners, etc. Multiple smart terminals are connected by wireless communication, and the energy storage power supply receives the control command and sends it to the smart power supply, as shown in Fig. 5b; After receiving the command, the smart power supply controls the smart power supply to turn on the camping lights; the energy storage power supply 400 receives the command to increase the volume of the audio and forwards it to the smart power supply of the audio. After receiving the command, the smart power supply of the audio controls the Volume up.
  • multiple smart terminals such as speakers, projectors, camping lights, outdoor fans, outdoor air conditioners, etc. Multiple smart terminals are connected by wireless communication, and the energy storage power supply receives the control command and sends it to the smart power supply, as shown in Fig. 5b; After receiving the command, the smart power supply controls the smart power supply to turn on the camping lights; the energy storage power supply 400 receives the command to increase the volume of the audio and forwards it to the smart
  • the above control command is determined by the energy storage power supply, that is, after the energy storage power supply receives the control command, it determines the smart terminal that executes the above control command, and sends the command to the corresponding smart terminal, and the smart terminal receives the control command. Execute after the command is reached.
  • the method for determining the intelligent terminal that executes the instruction may be as follows: when the energy storage power source communicates with each intelligent terminal wirelessly, the energy storage power source may number the intelligent terminals in communication with it according to a preset rule, wherein the preset The rules can be classified according to the device model and/or function of the smart terminal, and then arranged in order according to its own unique physical address.
  • the number of the smart terminal can be composed of letters, numbers and characters; for example, firstly by the device model All intelligent terminals are classified, and when there are multiple intelligent terminals belonging to the same category, they are arranged in order according to their physical addresses.
  • the above numbering results and numbering rules are stored in the storage module of the energy storage power supply to form a database;
  • the energy storage power supply identifies the command information, determines the number of the smart terminal that executes the control command, and sends the command to turn on the power to the corresponding number of smart terminals. That is, the vacuum cleaner, after the intelligent power supply of the vacuum cleaner receives the information, the intelligent power supply controls the vacuum cleaner to start.
  • the above-mentioned control command is determined by the intelligent power supply, that is, after the energy storage power supply receives the control command, it forwards it to all intelligent terminals wirelessly connected to it, and after the intelligent power supply of the intelligent terminal receives the control command, determines the Whether the instruction is executed by itself, if so, the intelligent terminal executes the instruction, if not, the intelligent terminal does not execute the instruction;
  • the energy storage power supply sends the control command to all smart terminals connected to it by wireless communication.
  • the smart power supply of the audio system determines The instruction is not executed by itself, and does not execute the instruction; after receiving the instruction, the smart power supply of the camping light determines that the instruction is executed by itself, and determines that the content of the instruction is to turn off the power. After confirmation, the smart power supply controls the camping light to turn off.
  • a scene linkage can also be formed between the above-mentioned multiple smart terminals and the energy storage power supply, that is, the smart terminal 1 triggers a preset trigger condition, and the energy storage power supply receives the information sent by the smart terminal 1 and sends the
  • the execution command is sent to the smart terminal 2, and the smart terminal 2 executes the command after receiving the command; for example, when the projector plays for 20 minutes, the smart power supply of the projector sends the information that the movie has been played for 20 minutes to the energy storage power supply , after the energy storage power supply receives the information, it sends the control command to control the turn-on of the line light to the intelligent power supply of the line light. After the smart power supply of the line light receives the command, it controls the line light to turn on, as shown in Figure 5c.
  • the above-mentioned trigger conditions, execution actions and corresponding execution programs can all be stored in the energy storage power supply and maintained by the energy storage power supply; wherein, the above-mentioned execution programs can be executed by the computing power module of the energy storage power supply according to the trigger conditions and the execution program. Action generation.
  • FIGS. 7a and 7b are schematic diagrams showing another energy storage power supply controlling multiple smart terminals according to another exemplary embodiment of the present application, wherein at least one smart terminal is provided between the energy storage power supply and the smart terminal that executes the control instruction
  • the intelligent power supply of the terminal is used to forward the control instruction information; as shown in Figure 7a, another intelligent power supply is arranged between the energy storage power supply and the intelligent power supply to forward the control instruction information;
  • the energy storage power supply will control the electrical device of the smart terminal 1
  • the control command of the smart terminal 2 is forwarded to the smart power supply of the smart terminal 2.
  • the smart power supply of the smart terminal 2 receives the control command, it confirms whether the command is executed by itself. If not, the command information is forwarded to the smart power supply of the smart terminal 1.
  • the intelligent power supply of the terminal 1 executes the control instruction after receiving the instruction.
  • the energy storage power supply is wirelessly connected to the smart power supply of the fan through a non-cellular type, such as WiFi or Bluetooth
  • the intelligent power supply of the fan is wirelessly connected to the intelligent power supply of the sweeping robot through a non-cellular type, such as WiFi or Bluetooth.
  • the energy storage power supply After the energy storage power supply receives the control command to turn on the power supply of the sweeping robot, the energy storage power supply sends the control command to turn on the power supply to the intelligent power supply of the fan.
  • the intelligent power supply of the fan confirms that the command is not executed by itself, and then The command to turn on the power of the sweeping robot is forwarded to the intelligent power supply of the sweeping robot.
  • the intelligent power supply of the sweeping robot confirms that the command is turned on, and controls the sweeping robot to turn on.
  • FIG. 7b there may be intelligent power supplies of multiple intelligent terminals between the above-mentioned energy storage power supply and the intelligent terminal 1, that is, the instruction to control the intelligent terminal 1 needs to be processed by the intelligent power supply of multiple intelligent terminals. Power forwarding to extend the communication distance.
  • the above-mentioned status information may include the operation parameters of the intelligent power supply and/or the operation parameters of the electric device, and also include the operation parameters of the energy storage power supply; specifically, the operation parameters of the intelligent power supply may be voltage parameters, current parameters , one or more of temperature parameters and state of charge parameters; the operating parameters of the electrical device can be one or more of working power parameters, working mode parameters, working time parameters, location parameters and temperature parameters; storage The operating parameters of the energy source can be one or more of voltage parameters, current parameters, temperature parameters, and state-of-charge parameters. It should be noted that the foregoing is merely an example, and is not limited to the above operating parameters.
  • the above-mentioned control instruction may be to turn on or turn off the power supply, and may also be an instruction to adjust output parameters; for example, when the smart terminal is a lighting device, the control system can remotely control the lighting device to turn on or off, and also The light intensity, color temperature, lighting duration, etc. of the lighting equipment can be remotely controlled; when the lighting equipment is a fan, the control system can remotely control the opening or closing of the fan, as well as the air volume and air output mode of the fan.
  • the above-mentioned output parameters include one or more of output power, output time, output current direction, and output mode. It is worth noting that the foregoing is just an example, and is not limited to the above-mentioned output parameters.
  • the above control instructions also include automatic power off, that is, when the intelligent power supply and/or the electrical device is abnormal, the intelligent power supply controls the electrical device to automatically turn off; Provide power.
  • the above-mentioned abnormality determination method is: the above-mentioned intelligent power supply processes the collected parameter information to monitor whether the running state is abnormal. The result determines whether there is an abnormality. If there is an abnormality, the intelligent power control electric device stops working; wherein, the self-comparison is the comparison between the currently collected parameters and the previously stored parameters, and the mutual comparison is the currently collected parameters and the preset threshold. Compare.
  • the collected parameters will be stored. If the currently collected parameters are consistent with the previously stored parameters, the recording time will be modified to the current time. If they are inconsistent, the current parameters will be replaced by the previous ones. parameters, at the same time modify the recording time to the current time, and upload the collected parameters to the cloud.
  • the above-mentioned collected parameters are the voltage parameters output by the smart power supply to the electrical device, and the current voltage parameters are compared with the previously stored voltage parameters. It is sent to the mobile communication device to notify the user that the voltage parameters of the smart power supply have changed and stored.
  • the current voltage parameters can also be compared with the pre-stored voltage thresholds. If the current voltage parameters are higher than the pre-stored voltage thresholds, When the voltage is lower than the pre-stored voltage threshold, it means that an abnormality occurs, and the intelligent power supply stops supplying power to the electrical device according to the abnormal result, and sends a reminder message to the mobile communication device to notify the user.
  • the above-mentioned smart power supply can also monitor the status information of the smart power supply during charging, that is, real-time collection of parameters such as voltage, current, and temperature during charging of the smart power supply, and comparisons are made to determine whether there is an abnormality.
  • the data collected above are the temperature parameters when the smart power supply is charging.
  • the collected temperature data is compared with the pre-stored temperature threshold. If the current temperature exceeds the temperature threshold, it means that an abnormality has occurred, and the smart power supply stops charging according to the processing result. , and at the same time send the reminder information to the mobile communication device to notify the user.
  • the above-mentioned mobile communication device includes at least a communication device, a processing device, and a memory; the communication device is used for sending or receiving signals through a wired or wireless network; the processing device includes an application processing part and a radio frequency/digital signal processor ; The memory is used to process or store the signal as a physical storage state; the mobile communication device is an intelligent user terminal such as a mobile phone, a pad, and a notebook.
  • the above-mentioned cloud is a server, and the server referred to herein should be understood as a business point that provides processing, database, and communication facilities.
  • a server may refer to a single physical processor with associated communications, data storage, and database facilities, or it may refer to a networked or clustered collection of processors, associated network and storage devices, and to software and one or more A database system and application software supporting the services provided by the server operate.
  • Servers can vary widely in configuration or performance, but generally a server can include one or more central processing units and memory.
  • the server also includes one or more mass storage devices, one or more power supplies, one or more wired or wireless network interfaces, one or more input/output interfaces, or one or more operating systems, such as Windows Server, Mac OS X, Unix, Linux, FreeBSD, etc.
  • the cloud can be a monolithic server or a distributed server across multiple computers or computer data centers.
  • Servers may be of various types, such as, but not limited to, web servers, news servers, mail servers, messaging servers, advertising servers, file servers, application servers, interactive servers, database servers, or proxy servers.
  • each server may include hardware, software, or embedded logical components or a combination of two or more such components for performing the appropriate functions supported or implemented by the server.
  • the server is used to provide all the functions necessary to support the remote control of the above-mentioned intelligent power supply.
  • the above cloud includes at least: one or more central processing units; one or more memories and/or mass storage devices; one or more wired or wireless network interfaces.
  • the above-mentioned smart terminal includes:
  • the smart power supply 100 is used for wirelessly communicating with the above-mentioned mobile communication device, the cloud or the energy storage power supply to control the electric device 200 .
  • the above-mentioned smart terminal also includes:
  • the actuator 900 is used to execute the above-mentioned command actions, and the actuator 900 can be a circuit switch.
  • the actuator 900 is disposed on the smart power supply 100, that is, the smart power supply 100 executes the above-mentioned control instructions to implement corresponding control operations on the electrical device;
  • the actuator 900 is provided on the electric device 200, that is, the control instruction is sent to the electric device, so as to use the electric device to execute the control command to realize the corresponding control operation.
  • the intelligent power supply and the electrical device can be communicated through a communication interface, and can also be communicated through a wireless network, such as a short-range wireless communication module such as Wifi, Bluetooth, and NFC.
  • FIG. 9 is a schematic diagram of functional modules of the smart power supply 100, the smart power supply 100 includes:
  • the first battery unit 101 for providing electrical energy to the electrical device 200;
  • the first wireless communication unit 102 is used for wireless communication connection with the above-mentioned mobile communication device, cloud or energy storage power source.
  • the above-mentioned first battery unit 101 has at least one battery 10, such as one 21700 battery.
  • one 21700 battery such as one 21700 battery.
  • three 21700 batteries can be used in series, or five 21700 batteries can be connected in series, so as to meet the use of electrical devices with different voltage platforms.
  • the above is just an example, not limited to the use of 21700 batteries, other types of batteries can also be used, such as 18650 batteries.
  • the above-mentioned first battery unit may also include at least one group of battery modules.
  • the battery modules are composed of multiple batteries connected in series or in parallel, so as to be used as an energy storage power source or an energy storage power station 100e, as shown in FIG. 10e.
  • the above-mentioned smart power supply 100 may also be constituted by at least a first smart power supply and a second smart power supply in series or in parallel with each other.
  • the above-mentioned smart power supply 100 has various forms, such as:
  • FIG. 10a it is a schematic diagram of the form of a single-cell battery, which has only one 21700 battery 10 built-in;
  • FIG. 10b it is a schematic diagram of the form of three batteries, which have three built-in 21700 batteries 10 connected in series;
  • FIG. 10c it is a schematic diagram of the form of five batteries, and it has built-in five 21700 batteries 10 connected in series with each other;
  • the smart power source 100d shown in FIG. 10d it is a schematic diagram of the form of a plurality of smart power sources in the form of single-cell batteries (as shown in FIG. 10a) combined with each other, which includes a plurality of smart power sources.
  • the smart power supply 100a can also be composed of a plurality of smart power supplies 100b or 100c connected in series or in parallel with each other.
  • 10e is a schematic diagram of the form of an energy storage power station, which includes at least one battery module, the battery module is composed of multiple batteries 10, and the battery unit is used as an energy storage power source or an energy storage power station.
  • the above-mentioned electrical device 200 may be an electric tool, such as an electric drill, an electric angle grinder, an electric hammer, a sprayer, etc., or an electric gardening tool, such as a pruning machine, a lawn mower, a chainsaw, etc., or an electric power tool.
  • Electric household tools such as vacuum cleaners, coffee machines, electric fans, juicers, and other types of electrical appliances, such as glue guns, air pumps, emergency lamps, etc.
  • a secondary battery or a battery pack (such as an energy storage power source/energy storage power station) is used as an operation device for a power source; when the electrical device 200 is working, an intelligent power source is required to provide electrical energy to drive the electrical device to operate.
  • the above-mentioned smart power supply 100 can be built into the electrical device 200 to supply power for the electrical device to operate.
  • the smart power supply 100a shown in FIG. 11a and FIG. 11b can be detachably applied to the indoor fan 200a, for example, the smart power supply 100b shown in FIG. 11c.
  • the assembly is suitable for the cleaning robot 200b, and for example, the intelligent power supply 100c in FIG. 11d is suitable for the in-vehicle refrigerator 200c; the intelligent power supply can also be externally installed in the electrical device, for example, when the intelligent power supply 100a is used as a specific energy storage power supply 100e, the energy storage power supply 100e is external, and power is supplied to the on-board refrigerator 200c through a power cable or data cable, as shown in Figure 11e;
  • the above-mentioned smart power supply 100 can be detachably installed on the electrical device 200 in a freely removable manner.
  • the smart power supply 100 is suitable for different types of electrical devices 200.
  • the smart power supply 100 can be shared by electric tools, electric gardening tools, and electric household tools, such as:
  • the user has a 3.6V or 12V or 20V smart power supply 100, which can be used not only for power drills, but also for pruning machines, in addition, for vacuum cleaners or emergency lights.
  • a smart power supply 100 can meet the needs of users different usage scenarios.
  • the above-mentioned electrical devices are preferably outdoor camping equipment, that is, suitable for outdoor camping, so as to provide convenience for users when camping outdoors.
  • the smart power supply 100 When the smart power supply 100 is assembled and connected to the electrical device 200, the smart power supply 100 is suitable for mechanical connection and electrical connection to the electrical device 200, fixed through the mechanical connection, and provides power to the electrical device 200 through the electrical connection.
  • the above-mentioned first wireless communication unit 102 at least has a first communication module 1021.
  • the first communication module 1021 is a cellular type (eg: 2G/3G/4G/5G/NB-IOT/LTE-M) or non- Cellular (eg WiFi/Bluetooth/ZigBee/Lora/Sigfox); or both.
  • the smart power supply can be wirelessly connected to the cloud through cellular communication modules, such as 4G/5G communication modules; for another example, the smart power supply can communicate with mobile devices through non-cellular communication modules, such as WiFi/Bluetooth communication modules.
  • the above-mentioned first communication module 1021 is preferably a non-cellular type to reduce networking costs, and more preferably, the communication module is Bluetooth.
  • the above-mentioned first wireless communication unit further includes a first positioning module 1022 for locating the position of the smart power source, so that the user can check the position information of the smart power source.
  • the above-mentioned first positioning module 1022 is a GPS module or a Beidou satellite module.
  • the above-mentioned smart power supply 100 further includes:
  • a first discharge unit used for outputting electric energy to the electric device, so as to supply power to the electric device
  • a first collection unit 103 for collecting various information in real time
  • the first control unit 104 is used to control the execution of the above-mentioned actuator.
  • the above-mentioned first collection unit 103 may be a sensor for collecting various information in real time, such as temperature information, position information, etc.
  • the first collection unit may also be a collector, for example, a voltage collector is used to collect the voltage parameters of the smart power supply,
  • a current collector is used to collect the current parameters of the smart power supply, and another example, a temperature collector is used to collect the temperature parameters of the smart power supply.
  • the above-mentioned voltage collector may be one of a shunt, a transformer, a Hall element current sensor or an optical fiber sensor.
  • the current collection method used by the above-mentioned current collector may adopt one of the relay array method, the constant current source method, the isolated operational amplifier collection method, the voltage/frequency conversion circuit collection method, or the linear optical coupling amplifier circuit collection method. kind, preferably, the constant current source method is used.
  • the temperature acquisition method adopted by the above temperature collector may be one of thermistor acquisition method, thermocouple acquisition method or integrated temperature sensor acquisition method, preferably, the integrated temperature sensor acquisition method is adopted.
  • the above-mentioned first control unit 104 includes:
  • the first processing module 1041 is used for processing information, such as battery status information such as battery voltage, current, temperature, etc., and also for running programs, such as confirming commands, controlling command forwarding, and determining whether information is abnormal; and
  • the first storage module 1042 is used to store the above-mentioned information and/or programs, and can also be used to store the above-mentioned programs. After the wireless communication unit is connected to the wireless network, the stored status information is uploaded to the cloud.
  • the first processing module can also be used to monitor the running state of the smart power supply, that is, to compare the current parameter with the previously stored parameter, and/or compare the current parameter with the pre-stored threshold, to Perform self-monitoring to determine whether there is an abnormality. If there is an abnormality, the smart power supply controls the electrical device to stop working; at the same time, it can also monitor the status of the smart power supply during charging, and can monitor the voltage, current, temperature and other parameters of the smart power supply during charging.
  • the above-mentioned storage module is used to temporarily store the state information collected by the first collection unit in the absence of a network, and used to store the state information collected by the first collection unit through the first wireless communication unit after the first wireless communication unit is connected to the wireless network.
  • the communication unit sends the state information temporarily stored in the storage module to the cloud;
  • the storage module can be a FLASH chip, a random access memory or a cache chip, and of course other memory components used to store data information.
  • the above-mentioned intelligent power supply further includes a first communication interface, and the first communication interface is communicatively connected to the first control unit.
  • the first control unit may perform two-way communication with the energy storage power supply or the cloud through the first communication interface, and may also perform two-way communication with the mobile communication device through the first communication interface.
  • the first communication interface is not a necessary part of the smart power supply.
  • the above-mentioned smart power supply further includes a first display, the first display is communicatively connected to the first control unit, and the first display can display the content desired by the user (for example, temperature, remaining battery, location, etc.) as required. information, etc.) and/or an interface (eg, an interactive interface).
  • the first display is not a necessary part of the smart power supply.
  • FIG. 12 is a schematic diagram of functional modules of an energy storage power supply 400.
  • the energy storage power supply 400 is in the form of an energy storage power station.
  • the energy storage power supply 400 includes:
  • the second wireless communication unit 402 is used for wireless communication connection with the cloud or the mobile communication device.
  • the inverter unit 405 is used to convert the DC power output by the second battery unit into AC power, so as to output AC power and DC power, so as to meet the power consumption requirements of different power consuming devices.
  • the above-mentioned second battery unit 401 has at least one set of battery modules, and the battery module is composed of multiple batteries 10 connected in series or in parallel.
  • the second wireless communication unit 402 has at least one set of second communication modules 4021, and the second communication modules 4021 may be cellular (eg 2G/3G/4G/5G/NB-IOT/LTE-M), or Non-cellular (such as WiFi/Bluetooth/ZigBee/Lora/Sigfox), or have two sets of second communication modules, that is, both cellular communication modules and non-cellular communication modules.
  • the second communication modules 4021 may be cellular (eg 2G/3G/4G/5G/NB-IOT/LTE-M), or Non-cellular (such as WiFi/Bluetooth/ZigBee/Lora/Sigfox), or have two sets of second communication modules, that is, both cellular communication modules and non-cellular communication modules.
  • the above-mentioned energy storage power supply is connected to the cloud wirelessly through its own cellular communication module, such as a 4G/5G communication module; for another example, the energy storage power supply is connected to the cloud through its own non-cellular communication module, such as WiFi/
  • the Bluetooth communication module is wirelessly connected to the mobile communication device; for another example, the energy storage power supply has both a cellular communication module and a non-cellular communication module.
  • the WiFi/Bluetooth communication module is wirelessly connected to the mobile communication device, and at the same time, it can be wirelessly connected to the cloud through the built-in cellular communication module, such as the 4G/5G communication module.
  • the second wireless communication unit 402 further includes a second positioning module 4022 for positioning the position information of the energy storage power source; in some embodiments, the second positioning module 4022 is a GPS module or a Beidou satellite module.
  • the above-mentioned energy storage power source 400 further includes:
  • a second discharge unit for outputting electrical energy
  • the second collection unit 403 is used to collect the status information of the energy storage power supply in real time.
  • the second control unit 404 is used to process various kinds of information, and can also be used to run programs.
  • the above-mentioned second discharge unit includes a DC discharge module and an AC discharge module, with DC output and AC output functions, and is also equipped with a cigarette port (car charging port) and a PD bidirectional charging and discharging port, etc.
  • the above-mentioned second charging unit is equipped with commercial power. Charging port, solar panel charging port, etc.
  • the above-mentioned second collection unit 403 is used to collect state information of the energy storage power supply in real time, such as voltage, current, temperature and other state information;
  • the second collection unit 403 can be a sensor, used to collect various information in real time , such as temperature information, location information, etc.
  • the second acquisition unit can also be a collector, for example, a voltage collector is used to collect the voltage parameters of the smart power supply, and for example, a current collector is used to collect the current parameters of the smart power supply, and for example, A temperature collector is used to collect the temperature parameters of the smart power supply.
  • the above-mentioned voltage collector may be one of a shunt, a transformer, a Hall element current sensor or an optical fiber sensor.
  • the current collection method used by the above-mentioned current collector may adopt one of the relay array method, the constant current source method, the isolated operational amplifier collection method, the voltage/frequency conversion circuit collection method, or the linear optical coupling amplifier circuit collection method. kind, preferably, the constant current source method is used.
  • the temperature acquisition method adopted by the above temperature collector may be one of thermistor acquisition method, thermocouple acquisition method or integrated temperature sensor acquisition method, preferably, the integrated temperature sensor acquisition method is adopted.
  • the above-mentioned second control unit 404 at least includes:
  • the second processing module 4041 is used to process information, such as collected status information such as voltage, current, temperature, etc., and can also control program operation, such as forwarding instructions, determining instructions and other program operations; and
  • the second storage module 4042 is used for storing information and/or programs, such as state information of the energy storage power supply, and for example, a pre-stored execution program.
  • the above-mentioned control unit further includes a computing power module, and the computing power module can be used to generate a program.
  • the action generates the corresponding execution program;
  • the above-mentioned computing power module can be built into the energy storage power supply, as shown in Figure 13a, the computing power module can also be externally placed outside the energy storage power supply, that is, the computing power module and the storage module
  • the group forms a computing power device 700, the computing power device 700 is arranged outside the energy storage power supply, the energy storage power supply is provided with a port 406, and the computing power device is provided with a plug that is electrically connected to the port.
  • the plug is inserted into the port to realize the electrical connection and communication connection between the two, as shown in Figure 13b.
  • the above-mentioned energy storage power supply also includes:
  • the input device is used for the user to input instruction information; the input device is communicably connected with the second control unit.
  • the input device may be a human-computer interaction unit, and the interaction method of the human-computer interaction unit may be one or more of natural interaction methods such as voice, gesture, gaze, expression, etc.
  • the interaction method of physiological data such as electricity and skin electricity;
  • the human-computer interaction unit is preferably a voice collector or a camera;
  • the input device can also be used to input the above trigger conditions and execution actions, so as to cooperate with the computing power module.
  • the above-mentioned energy storage power supply further includes a second display
  • the second display is communicatively connected with the second control unit, and the second display can display the content desired by the user (for example, temperature, remaining power, location information, etc.) and/or interface (eg, interactive interface).
  • the second display is not a necessary part of the energy storage power supply.
  • the above-mentioned energy storage power source 400 is also suitable for providing electric energy to the intelligent power source 100 of the above-mentioned intelligent terminal, that is, when the electric power of the intelligent power source 100 is insufficient, the user can provide electric energy to the intelligent power source 100 through the energy storage power source 400; 400 is provided with a mounting portion 407 for the smart power supply to be installed in the mounting portion 407 of the energy storage power supply, so that the energy storage power supply supplies power to the smart power supply; for example, as shown in FIG. When the power is insufficient, the smart power supply 100a is pulled out from the fan 200a and inserted into the installation portion 407 of the energy storage power supply 400, so that the energy storage power supply 400 provides power to the smart power supply 100a.
  • the capacity (Ah) of the energy storage power source 400 is greater than the capacity (Ah) of the smart power source 100 .
  • FIG. 15a is a multi-party interaction flowchart of a method for controlling an electrical device according to an exemplary embodiment of the present application. The specific steps of the above method are described in detail below in conjunction with Figure 15a:
  • Step 501 The mobile communication device sends a control instruction to the smart power supply.
  • the user uses the smart power supply to control the electrical device for the first time, he needs to register online and fill in the necessary user information.
  • the user can download the user terminal application suitable for the smart power supply from the cloud through the network to the mobile communication device and locally install the application on the mobile communication device, or the user terminal suitable for the smart power supply has been pre-installed on the user's mobile communication device terminal application.
  • the user terminal application on the mobile communication device is started, and the mobile communication device is connected with the smart power supply.
  • the user can input a control command, such as a power-on command, in the mobile communication device.
  • the mobile communication device is connected with the smart power supply 200 through wireless communication, and sends the power-on command input by the user to the smart power supply.
  • Step 502 The intelligent power supply 200 determines the corresponding control operation according to the received control instruction.
  • Step 503 the smart power source 200 performs a control operation to control the powered device 100 .
  • the smart power supply 200 can identify the power-on command to determine the corresponding control operation as a switch for turning on the electric fan, and drive the battery therein to supply power to the connected electric fan according to the identified power-on command.
  • Step 504 The smart power source 200 determines the status information of its own battery.
  • the smart power supply 200 can collect the current, voltage, temperature and other status information of the battery unit in real time through the first collection unit 103 it has.
  • Step 505 The smart power supply 200 sends the determined status information to the mobile communication device.
  • Step 506 the mobile communication device uploads the received status information to the cloud 300 .
  • Step 507 The cloud 300 stores the received state information.
  • the smart power source 200 determines the status information of its battery, it can send the status information to the mobile communication device through its own wireless communication unit, and the mobile communication device uploads the status information to the cloud 300, so that the cloud 300 can monitor the battery of the smart power source 200. Status information is stored.
  • Fig. 15b is a multi-party interaction flow chart of another method for controlling an electrical device according to another exemplary embodiment of the present application, in which a control instruction is forwarded through the cloud. The specific steps of the above method are described in detail below in conjunction with Figure 15b:
  • Step 511 The mobile communication device sends a control instruction to the cloud.
  • the user uses the smart power supply to control the electrical device for the first time, he needs to register online and fill in the necessary user information.
  • the user can download the user terminal application suitable for the smart power supply from the cloud through the network to the mobile communication device and locally install the application on the mobile communication device, or the user terminal suitable for the smart power supply has been pre-installed on the user's mobile communication device terminal application.
  • the user terminal application on the mobile communication device is started, and the mobile communication device is connected to the cloud.
  • the user can input a control command, such as a power-on command, in the mobile communication device.
  • the mobile communication device realizes wireless communication and movement with the cloud 300 through cellular data, such as 4G or 5G signals, and sends the power-on command input by the user to the cloud.
  • Step 512 The cloud 300 sends the received control instruction to the smart power supply 200 .
  • the cloud When the cloud receives the power-on command sent by the mobile communication device, it can forward the power-on command to the connected smart power source 200 .
  • Step 514 The intelligent power supply 200 determines the corresponding control operation according to the received control instruction.
  • Step 514 The smart power source 200 performs a control operation to control the powered device 100 .
  • the smart power supply 200 can identify the power-on command to determine the corresponding control operation as a switch for turning on the electric fan, and drive the battery therein to supply power to the connected electric fan according to the identified power-on command.
  • Step 515 The smart power source 200 determines the status information of its own battery.
  • the smart power supply 200 can collect the current, voltage, temperature and other status information of the battery unit in real time through the first collection unit 103 it has.
  • Step 516 the smart power supply 200 sends the determined status information to the cloud 300 .
  • Step 517 The cloud 300 stores the received state information.
  • the smart power source 200 After the smart power source 200 determines the status information of its battery, it can send the status information to the cloud 300 through its own wireless communication unit, so that the cloud 300 can store the battery status information of the smart power source 200 .
  • Fig. 15c is a multi-party interaction flowchart of another method for controlling an electrical device according to another exemplary embodiment of the present application, wherein the energy storage power source is used to forward instructions. The specific steps of the above method are described in detail below in conjunction with Figure 15c:
  • Step 521 The mobile communication device sends a control instruction to the energy storage power source.
  • the user uses the smart power supply to control the electrical device for the first time, he needs to register online and fill in the necessary user information.
  • the user can download the user terminal application suitable for the smart power supply from the cloud through the network to the mobile communication device and locally install the application on the mobile communication device, or the user terminal suitable for the smart power supply has been pre-installed on the user's mobile communication device terminal application.
  • the user terminal application on the mobile communication device is started, and the mobile communication device is connected with the smart power supply.
  • the user can input a control command, such as a power-on command, in the mobile communication device.
  • the mobile communication device is connected with the energy storage power supply 400 through wireless communication, and sends the power-on command input by the user to the energy storage power supply.
  • Step 522 the energy storage power supply 400 forwards the received control instruction to the intelligent power supply 200 .
  • the energy storage power source 400 When the energy storage power source 400 receives the power-on command sent by the mobile communication device, it can forward the power-on command to the smart power source 200 connected to it.
  • Step 523 The intelligent power supply 200 determines the corresponding control operation according to the received control instruction.
  • Step 524 the smart power source 200 performs a control operation to control the powered device 100 .
  • the smart power supply 200 can identify the power-on command to determine the corresponding control operation as a switch for turning on the electric fan, and drive the battery therein to supply power to the connected electric fan according to the identified power-on command.
  • Step 525 The smart power source 200 determines the status information of its own battery.
  • the smart power supply 200 can collect the current, voltage, temperature and other status information of the battery unit in real time through the first collection unit 103 it has.
  • Step 526 the smart power source 200 sends the determined state information to the energy storage power source 400 .
  • Step 527 The energy storage power source 400 forwards the status information to the mobile communication device.
  • Step 528 The mobile communication device uploads the received status information to the cloud 300 .
  • Step 529 The cloud 300 stores the received state information.
  • the smart power source 200 After the smart power source 200 determines the status information of its battery, it can send the status information to the energy storage power source through its own wireless communication unit, the energy storage power source is forwarded to the mobile communication device, and the mobile communication device uploads the status information to the cloud 300, so that The cloud 300 can store the battery status information of the smart power source 200 .
  • FIG. 15d is a multi-party interaction flowchart of another method for controlling an electrical device according to another exemplary embodiment of the present application, wherein instruction information is forwarded through the cloud and an energy storage power source. The specific steps of the above method are described in detail below in conjunction with Figure 15d:
  • Step 531 The mobile communication device sends a control instruction to the cloud.
  • the user uses the smart power supply to control the electrical device for the first time, he needs to register online and fill in the necessary user information.
  • the user can download the user terminal application suitable for the smart power supply from the cloud through the network to the mobile communication device and locally install the application on the mobile communication device, or the user terminal suitable for the smart power supply has been pre-installed on the user's mobile communication device terminal application.
  • the user terminal application on the mobile communication device is started, and the mobile communication device is connected to the cloud.
  • the user can input control commands in the mobile communication device, such as a power-on command.
  • the mobile communication device realizes wireless communication and movement with the cloud 300 through cellular data, such as 4G or 5G signals, and sends the power-on command input by the user to the cloud.
  • Step 532 The cloud 300 sends the received control instruction to the energy storage power source 400 .
  • the cloud When the cloud receives the power-on command sent by the mobile communication device, it can forward the power-on command to the energy storage power source 400 connected thereto.
  • Step 533 the energy storage power supply 400 forwards the received control instruction to the intelligent power supply 200 .
  • Step 534 The intelligent power supply 200 determines the corresponding control operation according to the received control instruction.
  • Step 535 The smart power source 200 performs a control operation to control the powered device 100 .
  • the smart power supply 200 can identify the power-on command to determine the corresponding control operation as a switch for turning on the electric fan, and drive the battery therein to supply power to the connected electric fan according to the identified power-on command.
  • Step 536 The smart power supply 200 determines the status information of its own battery.
  • the smart power supply 200 can collect the current, voltage, temperature and other status information of the battery unit in real time through the first collection unit 103 it has.
  • Step 537 the smart power source 200 sends the determined state information to the energy storage power source 400 .
  • Step 538 The energy storage power source 400 uploads the status information to the cloud 300 .
  • Step 539 The cloud 300 stores the received state information.
  • the smart power source 200 After the smart power source 200 determines the status information of its battery, it can send the status information to the energy storage power source through its own wireless communication unit, and the energy storage power source uploads the status information to the cloud 300, so that the cloud 300 can monitor the battery of the smart power source 200. Status information is stored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种控制用电装置的控制系统及其控制方法,该控制系统包括移动通信设备、储能电源、智能电源和用电装置;移动通信设备与储能电源无线通信连接,储能电源与智能电源无线通信连接,智能电源用以给用电装置提供电能;其中,移动通信设备,用以接收自用户输入的控制用电装置的控制指令;储能电源,用以转发控制指令;智能电源,用以接收储能电源所转发的控制指令,并根据控制指令控制用电装置。智能电源能够与云端或移动通信设备无线通信,即智能电源具备联网通信功能,如此用户可远程控制智能电源以启动用电装置,智能电源的控制更加智能化,提高用户使用体验。

Description

控制用电装置的控制系统及其控制方法 技术领域
本申请涉及一种控制用电装置的控制系统,还涉及一种控制用电装置的控制方法。
背景技术
传统给用电装置提供电能的电源,多为电池或电池组结构设计,如传统的园林工具电池包或家庭清洁工具使用的电池包,多不具备联网通信功能,用户在操作使用时,需要人为接触去操作控制电池包的通断,使用不智能,特别是在户外休闲场景下,传统锂电电源已经不能满足人们智能生活化的需求。
发明内容
本申请提供一种控制用电装置的控制系统及其控制方法。
具体地,本申请是通过如下技术方案实现的:
本申请提供一种控制用电装置的控制系统,该控制用电装置的控制系统包括移动通信设备、储能电源、智能电源和用电装置;移动通信设备与储能电源无线通信连接,储能电源与智能智能无线通信连接,智能电源用以给用电装置提供电能;其中,
移动通信设备,用以接收自用户输入的控制用电装置的控制指令;
储能电源,用以转发控制指令;
智能电源,用以接收储能电源所转发的控制指令,并根据控制指令控制用电装置。
本申请还提供一种控制用电装置的控制方法,该控制方法应用于用电设备控制系统中的储能电源,该控制方法包括:
接收控制指令,控制指令由移动通信设备通过无线通信连接发送;
将控制指令发送至智能电源,以使智能电源根据控制指令对用电设备进行控制。
根据本申请实施例提供的技术方案,智能电源能够与云端或移动通信设备无线通信,即智能电源具备联网通信功能,如此用户可远程控制智能电源以启动或关闭用电装置,智能电源的控制更加智能化,提高用户使用体验;当然,还可以通过储能电源转发控制指令,进一步延长通信距离。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1a为本申请具体实施例提供的控制用电装置的控制系统的示意图;
图1b为本申请具体实施例提供的另一控制用电装置的控制系统的示意图,此时,通过云端转发控制指令;
图2a为本申请具体实施例提供的另一控制用电装置的控制系统的示意图,此时,通过储能电源转发控制指令;
图2b为本申请具体实施例提供的另一控制用电装置的控制系统的示意图,此时,通过云端和储能电源转发控制指令;
图3为本申请具体实施例提供的另一控制用电装置的控制系统的示意图,此时,第一智能电源与储能电源电连接时,第一智能电源或储能电源的蜂窝通信模组才被激活;
图4a为本申请具体实施例提供的另一控制用电装置的控制系统的示意图,此时,移动通信设备与智能电源处于移动WiFi设备的WiFi网络覆盖范围内;
图4b为本申请具体实施例提供的另一控制用电装置的控制系统的示意图,此时,移动通信设备与储能电源处于移动WiFi设备的WiFi网络覆盖范围内;
图5为本申请具体实施例提供的另一控制用电装置的控制系统的示意图;
图6a为本申具体实施例提供的一种储能电源同时控制多个智能电源的示意图,此时,处于室内环境;
图6b为本申具体实施例提供的一种储能电源同时控制多个智能电源的示意图,此时,处于户外环境;
图6c为本申具体实施例提供的多个智能终端之间形成场景联动的示意图;
图7a为本申具体实施例提供的另一种储能电源控制多个智能电源的示意图,此时,储能电源与智能电源之间设置有另一智能电源;
图7b为本申具体实施例提供的另一种储能电源控制多个智能电源的示意图,此时,储能电源与智能电源之间设置有多个智能电源;
图8a为本申请具体实施例提供的智能电源与用电装置的电路示意图,此时,执行器设置于智能电源上;
图8b为本申请具体实施例提供的智能电源与用电装置的电路示意图,此时,执行器设置于用电装置上;
图9为本申请具体实施例提供的智能电源的功能模块示意图;
图10a为本申请具体实施例提供的智能电源为单节电池形态示意图;
图10b为本申请具体实施例提供的智能电源为三节电池形态示意图;
图10c为本申请具体实施例提供的智能电源为五节电池形态示意图;
图10d为本申请具体实施例提供的智能电源为多个单节电池形态的智能电源相互组合构成的形态示意图;
图10e为本申请具体实施例提供的智能电源为储能电站形态示意图;
图11a为本申请具体实施例提供的智能电源与室内风扇装配示意图;
图11b为本申请具体实施例提供的智能电源装配适用于室内风扇示意图;
图11c为本申请具体实施例提供的智能电源装配适用于清洁机器人示意图;
图11d为本申请具体实施例提供的智能电源装配适用于户外车载冰箱的示意图;
图11e为本申请具体实施例提供的储能电站形态的智能电源适用于户外车载冰箱的示意图;
图12为本申请具体实施例提供的储能电源的功能模块示意图;
图13a为本申请具体实施例提供的算力模组内置于储能电源内时的结构示意图;
图13b为本申请具体实施例提供的算力设备与储能电源连接时的结构示意图;
图14为本申请具体实施例提供的智能电源从用电装置中取下后插入储能电源中的示意图;
图15a为本申请具体实施例提供的一种用电装置控制方法的多方交互流程图;
图15b为本申请具体实施例提供的另一种用电装置控制方法的多方交互流程图,此时,通过云端转发指令;
图15c为本申请具体实施例提供的另一种用电装置控制方法的多方交互流程图,此时,通过储能电源转发指令;
图15d为本申请具体实施例提供的另一种用电装置控制方法的多方交互流程图,此时,通过云端和储能电源转发指令。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。 这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
需要说明的是,在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
参照图1a和1b所示的控制用电装置的控制系统,该控制系统包括:
移动通信设备,用以供用户输入控制指令信息;
云端300,用以存储上传的信息,还可以用以转发指令信息;和
智能终端,用以接收自移动通信设备发送过来的指令信息,并执行控制指令,实现对应的控制操作。
上述智能终端包括智能电源100和用电装置200,该智能电源100用以给用电装置200提供电能。
在一些实施例中,如图1a所示,上述智能终端直接与移动通信设备无线通信连接,移动通信设备与云端300无线通信连接,智能终端接收自移动通信设备发送过来的指令,确认该指令后并执行指令,同时,智能电源将状态信息反馈给移动通信设备,移动通信设备接收到状态信息后上传至云端,以存储至云端。
举例而言,智能终端处于WiFi网络覆盖环境下,如室内家居环境下,智能终端通过WiFi通信模组连接家庭WiFi网络,用户同样处在WiFi网络覆盖环境下,可以通过手机自带的WiFi通信模组连接WiFi网络实现与智能终端无线通信。
此时,用户经移动通信设备通过WiFi网络发出开启电源指令至风扇的智能电源,风扇的智能电源接收开启电源指令后确定控制指令,确定后控制智能电源启动风扇。
在另一些实施例中,如图1b所示,上述智能终端与云端无线通信连接,云端与移动通信设备无线通信连接,移动通信设备接收自用户的指令后发送给云端,智能终端的智能电源接收自云端转发过来的指令信息后确定控制指令,确定后智能电源控制用电装置,同时,智能电源将状态信息上传至云端,以进行存储,此时,用户可以远距离控制智能终端的开启、关闭,也可以远距离对智能终端的参数进行调节。该控制系统通过云端转发控制指令,可以延长移动通信设备与智能终端之间的通信距离。
举例而言,智能终端处于WiFi网络覆盖环境下,如室内家居环境下,智能终端通过WiFi通信模组连接家庭WiFi网络,家庭WiFi网络与云端实现无线通信,手机也连接至家庭WiFi网络中,同时用户可以通过手机的蜂窝数据,如4G或5G信号与云端实现无线通信。
此时,用户经移动通信设备通过无线网络发出开启电源指令至云端300,云端300通过无线网络发出开启电源的指令,智能电源接收开启电源指令后确定该控制指令,控制智能电源启动用电装置,同时,智能电源将状态信息上传至云端。
再举例而言,用户携带智能终端的智能电源处于户外,无WiFi网络覆盖,智能终端的智能电源通过蜂窝类,如:4G或5G通信模组连接至云端300,用户通过手机的蜂窝数据,如4G或5G信号与云端300实现无线通信连接。
此时,用户经移动通信设备通过4G或5G网络发出开启电源指令至云端300,云端300通过4G或5G网络发出开启电源指令,智能终端接收开启电源指令,控制智能电源启动用电装置,同时,智能电源将状态信息通过4G或5G网络上传至云端,以进行存储。
图2a和图2b是根据本申请另一示例性实施例示出的另一种控制用电装置的控制系统示意图。该控制用电装置的控制系统通过储能电源转发控制指令,可延长移动通信设备与智能终端之间的通信距离,该控制系统包括:
移动通信设备,用以供用户输入控制指令信息;
云端300,用以存储上传的信息,还可以用以转发指令信息;
储能电源400,用以转发指令信息;和
智能终端,用以接收自移动通信设备发送过来的指令信息,并执行控制指令,实现对应的控制操作。
上述智能终端包括智能电源100和用电装置200,该智能电源100用以给用电装置200提供电能。
在一些实施例中,如图2a所示,上述移动通信设备与云端无线通信连接,同时移动通信设备与储能电源无线通信连接,储能电源与智能终端的智能电源无线通信连接,智能电源接收自储能电源转发过来的指令后确认控制指令,同时,智能电源将状态信息发送给储能电源,储能电源接收到状态信息后发送给移动通信设备,移动通信设备将状态信息上传至云端,以存储至云端。
举例而言,用户携带储能电源和智能电源处于户外,无WiFi网络覆盖,智能电源通过非蜂窝类,如:WiFi或蓝牙通信模组连接至储能电源,储能电源通过非蜂窝类,如:WiFi或蓝牙通信模组连接至移动通信设备,用户通过手机的蜂窝数据,如:4G或5G信号与云端300实现无线通信。
此时,用户经移动通信设备通过WiFi或蓝牙发出开启电源指令至储能电源,储能电源通过WiFi或蓝牙网络转发开启电源指令的信息,风扇的智能电源接收开启电源指令后确认控制指令,控制智能电源启动风扇。
在另一些实施例中,如图2b所示,上述智能电源与储能电源无线通信连接,储能电源与云端无线通信连接,云端与移动通信设备无线通信连接,移动通信设备接收自用户的指令后发送给云端,云端将指令信息发送给储能电源,智能电源接收自储能电源转发过来的指令信息后确认指令,并执行该控制指令,同时,智能电源经储能电源将状态信息上传至云端,以进行存储。
举例而言,用户携带储能电源、智能电源处于户外,无WiFi网络覆盖,智能电源通过非蜂窝类,如:WiFi或蓝牙通信模组连接至储能电源,储能电源通过蜂窝类,如:4G或5G通信模组连接至云端300,用户通过手机的蜂窝数据,如:4G或5G信号与云端300实现无线通信。
此时,用户经移动通信设备通过4G或5G网络发出开启电源指令至云端300,云端300通过4G或5G网络发出开启电源指令至储能电源,智能终端接收自储能电源转发过来的开启电源指令后确认指令,控制智能电源启动用电装置。
图3是根据本申请另一示例性实施例示出的另一种控制用电装置的控制系统示意图,此时,第一智能电源110与储能电源400电连接时,第一智能电源110或储能电源400的蜂窝通信模组才被激活;该控制系统包括:
移动通信设备,用以供用户输入控制指令信息;
云端300,用以存储上传的信息和转发指令信息;
储能电源400,用以转发指令信息;
第一智能电源110,用以提供无线网络;和
智能终端,用以接收控制指令,并执行该指令。
上述移动通信设备与云端300无线通信连接,第一智能电源110或储能电源400与云端无线通信连接,智能终端接收自第一智能电源110或储能电源400转发过来的控制指令信息,并执行该指令。
上述智能终端包括第二智能电源120和用电装置200,该第二智能电源120用以给用电装置200提供电能。
上述第一智能电源110或储能电源400配置有蜂窝类通信模组(如:2G/3G/4G/5G/NB-IOT/LTE-M),当第一智能电源110与储能电源400电连接时,第一智能电源110或储能电源400的蜂窝通信模组才被激活,此时,第一智能电源110或储能电源400通过无线蜂窝网络与云端无线通信连接;具体地,储能电源400具有适于第一智能电源110电连接的安装部407,第一智能电源110适配安装于安装部407,此时,第一智能电源110与储能电源400进行定位安装连接的同时实现电连接,更具体地,安装部设有与第一智能电源110的电端子进行电气配合的另一电端子,此时,储能电源400或第一智能电源110的控制单元检测到二者适配的电信号,激活储能电源400或第一智能电源110的无线蜂窝通信功能;
或者,第一智能电源110与储能电源400进行定位安装连接的同时实现信号连接,更具体地,安装部设有与第一智能电源110的信号端子进行电信号连接的另一信号端子,二者安装配接时,二者信号上进行握手识别,激活储能电源400或第一智能电源110的无线蜂窝通信功能。
上述第一智能电源110或储能电源400上具有非蜂窝类通信模组(如:WiFi/蓝牙/ZigBee/Lora/Sigfox),此时,该第一智能电源110或储能电源400通过非蜂窝网络与第二智能电源无线通信,以供控制指令的转发。
较为优选地,上述第一智能电源110同时具备蜂窝类通信模组(如:2G/3G/4G/5G/NB-IOT/LTE-M)和非蜂窝类通信模组(如:WiFi/蓝牙/ZigBee/Lora/Sigfox),其中,该第一智能电源110可以作为移动WiFi设备使用。
举例而言,用户携带储能电源400和第一智能电源110处于户外,无WiFi网络覆盖,第一智能电源110安装连接于储能电源400,第一智能电源110的无线蜂窝通信功能被激活,被激活无线蜂窝通信功能的第一智能电源110通过蜂窝类,如:4G或5G通信模组连接至云端300,第二智能电源120通过非蜂窝类,如:WiFi或蓝牙通信模组连接至被激活无线蜂窝通信功能的第一智能电源110,用户通过手机的蜂窝数据,如4G或5G信号与云端300实现无线通信。
此时,用户经移动通信设备通过无线网络发出开启电源指令至云端300,云端300通过无线网络发出开启电源指令,被激活无线蜂窝通信功能的第一智能电源110通过连接的无线网络将开启电源指令传送至第二智能电源120,第二智能电源120的控制单元通过连接的无线网络接收开启电源指令,控制由第二智能电源120供电的风扇启动。
图4a和图4b是根据本申请另一示例性实施例示出的另一种控制用电装置的控制系统示意图,该控制系统适用于无局域网的情形,特别是针对户外环境,该控制系统包括:
移动通信设备,用以供用户输入控制指令信息;
移动WiFi设备600,用以提供WiFi网络;和
智能终端,用以接收指令信息并执行该控制指令。
上述智能终端包括智能电源100和用电装置200,该智能电源100用以给用电装置200提供电能。
在一些实施例中,如图4a所示,上述智能终端处于移动WiFi设备的WiFi网络覆盖下,移动通信设备也连入移动WiFi设备的WiFi网络中,此时智能终端的智能电源可以通过WiFi网络与移动通信设备无线通信,以接收控制指令,确认指令后执行该指令;
此时,该控制系统还包括云端300,用以将智能终端上传的状态信息进行存储,移动WiFi设备通过自带的蜂窝数据,如4G/5G与云端无线通信连接。
举例而言,用户携带移动WiFi设备、智能电源处于户外,移动通信设备与智能电源均处于移动WiFi设备的WiFi网络覆盖下,移动通信设备通过WiFi网络与智能电源无线通信。
此时,用户经移动通信设备通过WiFi网络发出开启电源指令至智能电源,智能电源接收到开启电源指令后确认指令,控制智能电源启动用电装置。
在另一些实施例中,如图4b所示,上述控制系统还包括储能电源,上述储能电源处于移动WiFi设备的网络覆盖下,移动通信设备也连入移动WiFi设备的WiFi网络中,此时储能电源可以通过WiFi网络与移动通信设备无线通信,智能终端的智能电源通过非蜂窝类,如:蓝牙通信模组连接至储能电源,以接收控制指令,执行该指令;其中,该储能电源还具备网关模组,以将蓝牙信号与WiFi信号进行相互转换;此时,智能电源可以不处于移动WiFi设备的网络覆盖下,即可超出移动WiFi设备的网络覆盖范围,也可以接收到自储能电源转发的控制指令,以延长通信距离。
此时,该控制系统还包括云端300,用以将智能终端上传的状态信息进行存储,移动WiFi设备通过自带的蜂窝数据,如4G/5G与云端无线通信连接。
举例而言,用户携带移动WiFi设备、储能电源智能电源处于户外,移动通信设备与储能电源均处于移动WiFi设备的WiFi网络覆盖下,移动通信设备通过WiFi网络与储能电源无线通信,智能电源通过自带的蓝牙模组与储能电源无线通信。
此时,用户经移动通信设备通过WiFi网络发出开启电源指令至储能电源,储能电源将该指令的WiFi信号转换为蓝牙信号,并通过蓝牙模组将指令发送给智能电源,智能电源接收到开启电源指令后确认指令,控制智能电源启动用电装置。
图5是根据本申请另一示例性实施例示出的另一种控制用电装置的控制系统示意图。该控制用电装置的控制 系统应用于无外部网络环境中,此时,由储能电源接收自用户输入的指令信息,该控制用电装置的控制系统包括:
储能电源400,用以将指令信息发送给智能终端;和
智能终端,用以接收自移动通信设备发送过来的指令信息,并执行控制指令,实现对应的控制操作。
上述智能终端包括智能电源100和用电装置200,该智能电源100用以给用电装置200提供电能。
如图5所示,储能电源400通过自带的非蜂窝类无线通信模组与智能电源无线通信连接,以控制与智能电源电连接的用电装置,储能电源通过自带的输入装置接收自用户的指令信息,并将指令信息发送给智能终端的智能电源,智能电源接收到指令后执行指令,实现指令相对应的操作;
举例而言,用户可以通过语音指令下达开启扫地机器人的控制指令至储能电源,储能电源接收到该指令后发送给扫地机器人的智能电源,智能电源接收到该指令并确认控制指令后,智能电源控制扫地机器人启动。
上述控制用电装置的处理逻辑缓存于储能电源中,并由储能电源维护,在有网络时,该处理逻辑可以通过无线网络传送至储能电源内进行更新。
在一些实施例中,上述控制用电装置的控制系统还可以适用于场景联动时,即储能电源400可以根据检索到预设的触发条件后,将控制指令发送给智能终端;
举例而言,当达到预设的时间点,储能电源就将开启扫地机器人的指令发送给扫地机器人的智能电源,扫地机器人的智能电源接收到指令后,确认指令,实现指令的相应操作,以实现定时启动扫地机器人。
图6a和图6b是根据本申请一示例性实施例示出的一种储能电源同时控制多个智能终端的示意图,即上述控制系统中的智能终端为多个时,储能电源可同时监控多个与储能电源无线通信连接的智能电源。
在一些实施例中,处于室内环境中,储能电源400可同时控制音响、投影仪、橱柜灯、吸尘器、扫地机器人、吹风机等多个智能终端,如图5a所示,储能电源可同时与多个智能终端无线通信连接,储能电源接收控制指令后转发给与之无线通信连接的智能终端的智能电源;举例而言,若储能电源400接收开启扫地机器人的指令,储能电源400将指令发送给扫地机器人,扫地机器人的智能电源接收到指令后,智能电源控制扫地机器人开启电源;储能电源400又接收到调大风扇风速的指令后将指令发送给风扇,风扇的智能电源接收到指令后,控制风扇的风速调大,即控制智能电源输出给风扇的输出电压调大。
在一些实施例中,处于户外环境中,储能电源400可同时控制音响、投影仪、露营灯、户外风扇、户外空调等多个智能终端,即储能电源400可同时与音响、露营灯等多个智能终端无线通信连接,储能电源接收到控制指令后发送给智能电源,如图5b所示;举例而言,储能电源400可接收开启露营灯的指令后转发给露营灯,露营灯的智能电源接收到该指令后,控制智能电源开启露营灯;储能电源400又接收到调高音响音量的指令后转发给音响的智能电源,音响的智能电源接收到该指令后,控制音响的音量调高。
在一些实施例中,上述控制指令由储能电源确定,即储能电源接收到控制指令后,确定执行上述控制指令的智能终端,并将该指令发送给相对应的智能终端,该智能终端接收到该指令后执行。
具体地,确定执行指令的智能终端的方法可以为:储能电源与各智能终端无线通信时,储能电源可以按预设的规则对与其通信连接的各智能终端进行编号,其中,预设的规则可以按照智能终端的设备型号和/或功能进行分类,再按其自身的唯一物理地址依序进行排列,该智能终端的编号可以由字母、数字及字符组合而成;比如,先按设备型号将所有智能终端进行分类,属于同一类的智能终端为多个时,再按物理地址进行依序排列,上述编号结果以及编号规则存储于储能电源的存储模组中,形成数据库;
举例而言,在室内环境中,储能电源接收到开启吸尘器的控制指令后,识别指令信息,确定执行该控制指令的智能终端的编号,将开启电源的指令发送给相对应编号的智能终端,即吸尘器,吸尘器的智能电源接收到信息后,智能电源控制吸尘器启动。
在另一些实施例中,上述控制指令由智能电源确定,即储能电源接收到控制指令后,转发给与其无线通信连接的所有智能终端,智能终端的智能电源接收到该控制指令后,确定该指令是否由自身执行,若是,智能终端执行该指令,若不是,智能终端不执行该指令;
举例而言,在户外环境中,储能电源接收到关闭露营灯的控制指令后,将控制指令发送给与之无线通信连接的所有智能终端,其中,音响的智能电源接收到该指令后,确定该指令不是由自身执行,不执行指令;而露营灯的智能电源接收到该指令后,确定该指令由自身执行,并确定指令内容为关闭电源,确定后,智能电源控制露营灯关闭。
在一些实施例中,上述多个智能终端与储能电源之间还可以形成场景联动,即智能终端1触发了预设的触发条件,储能电源接收到智能终端1发送过来的信息后,将执行指令发送给智能终端2,智能终端2接收到该指令后执行该指令;举例而言,当投影仪播放至20min时,投影仪的智能电源将影片已播放至20min的信息发送给储能电源,储能电源接收到该信息后,将控制线灯开启的控制指令发送给线灯的智能电源,线灯的智能电源接收到该指令后,控制线灯开启,如图5c所示。
上述触发条件、执行动作以及与之相对应的执行程序均可存储于储能电源中,并由储能电源维护;其中,上述执行程序可以由储能电源的算力模组根据触发条件和执行动作生成。
图7a和图7b是根据本申请另一示例性实施例示出的另一种储能电源控制多个智能终端的示意图,其中,储能电源与执行控制指令的智能终端之间设置有至少一个智能终端的智能电源,用以转发控制指令信息;如图7a所示,储能电源与智能电源之间设置有另一智能电源,用以转发控制指令信息;
具体地,若上述执行指令的智能终端1超出储能电源的通信范围,而储能电源与智能终端1之间存在智能终端2的智能电源时,储能电源将控制智能终端1的用电装置的控制指令转发给智能终端2的智能电源,当智能终端2的智能电源接收到控制指令后,确认该指令是否由自身执行,若不是,将该指令信息转发给智能终端1的智能电源,智能终端1的智能电源接收到该指令后执行该控制指令。
举例而言,储能电源通过非蜂窝类,如WiFi或蓝牙与风扇的智能电源无线通信连接,风扇的智能电源通过非蜂窝类,如WiFi或蓝牙与扫地机器人的智能电源无线通信连接,此时,储能电源接收到开启扫地机器人电源的控制指令后,储能电源将开启电源的控制指令发送给风扇的智能电源,风扇的智能电源接收到该控制指令后确认该指令不是由自身执行,再将开启扫地机器人电源的指令转发给扫地机器人的智能电源,扫地机器人的智能电源接收到该指令后确认指令为开启,控制扫地机器人开启。
当然,在一些实施例中,如图7b所示,上述储能电源与智能终端1之间可存在多个智能终端的智能电源,即控制智能终端1的指令,需经多个智能终端的智能电源的转发,以延长通信距离。
在上述实施例中,上述状态信息可以包括智能电源的运行参数和/或用电装置的运行参数,还包括储能电源的运行参数;具体地,智能电源的运行参数可以为电压参数、电流参数、温度参数和荷电状态参数中的一种或者多种;用电装置的运行参数可以为工作功率参数、工作模式参数、工作时间参数、位置参数和温度参数中的一种或多种;储能电源的运行参数可以为电压参数、电流参数、温度参数和荷电状态参数中的一种或者多种。值得注意的是,前述仅是列举说明,并不局限于上述运行参数。
在上述实施例中,上述控制指令可以为开启或关闭电源,还可以为调节输出参数的指令;举例而言,该智能终端为照明设备时,通过控制系统可以远程控制照明设备开启或关闭,也可以远程控制照明设备的光强、色温、照明时长等;当照明设备为风扇时,通过控制系统可以远程控制风扇的开启或关闭,也可以远程控制风扇的出风量、出风模式等。
具体地,上述输出参数为包括输出功率,输出时间,输出电流方向,输出模式中的一种或多种。值得注意的是,前述仅是列举说明,并不局限于上述输出参数。
上述控制指令还包括自动关闭电源,即当智能电源和/或用电装置出现异常时,智能电源控制用电装置自动关闭;比如,当风扇的智能电源的温度出现异常时,智能电源停止给风扇提供电能。
上述异常判定方法为:上述智能电源对采集到的参数信息进行处理,以监测运行状态是否出现异常,具体地,智能电源采集到参数后,对参数进行自比较和/或互比较,并根据比较结果判定是否出现异常,若出现异常时,智能电源控制用电装置停止工作;其中,自比较为当前采集的参数与之前存储的参数进行比较,互比较为当前采集 的参数与预设的阈值进行比较。
此时,若智能电源未出现异常时,将采集到的参数进行存储,若当前采集的参数与之前存储的参数一致时,将记录时间修改为当前时间,若不一致时,将当前的参数替换之前的参数,同时将记录时间修改为当前时间,并将采集到的参数上传至云端。
举例而言,上述采集的参数为智能电源给用电装置输出的电压参数,当前的电压参数与之前存储的电压参数进行比较,若当前电压参数与之前存储的电压参数发生变化时,将变化信息发送给移动通信设备,以通知用户智能电源的电压参数发生变化,并进行存储,同时,还可以将当前的电压参数与预存的电压阈值进行比较,若当前的电压参数高于预存的电压阈值,或低于预存的电压阈值时,则说明出现异常,智能电源根据异常结果停止给用电装置供电,并把提醒信息发送给移动通信设备,以通知用户。
当然,上述智能电源还可以对智能电源充电时状态信息进行监测,即对智能电源充电时的电压、电流、温度等参数进行实时采集,并进行比较,以判定是否出现异常。
举例而言,上述采集的数据为智能电源充电时的温度参数,采集到的温度数据与预存的温度阈值进行比较,若当前温度超过温度阈值时,则说明出现异常,智能电源根据处理结果停止充电,同时把提醒信息发送给移动通信设备,以通知用户。
根据本申请的一些实施例,上述移动通信设备至少包括通信装置和处理装置,以及存储器;通信装置用于通过有线或无线网络发送或接收信号;处理装置包含应用处理部和射频/数字信号处理器;存储器用于将信号处理或存储为物理存储状态;移动通信设备为如手机、pad、笔记本等智能用户终端。
根据本申请的一些实施例,上述云端为服务器,本文中所称的服务器应被理解为提供处理、数据库、通讯设施的业务点。举例而言,服务器可以指具有相关通信、数据存储和数据库设施的单个的物理处理器,或它可以指联网或集聚的处理器、相关网络和存储设备的集合体,并且对软件和一个或多个数据库系统和支持服务器所提供的服务的应用软件进行操作。服务器可以在配置或性能上差异很大,但是服务器一般可以包括一个或多个中央处理单元和存储器。服务器还包括一个或多个大容量存储设备、一个或多个电源、一个或多个有线或无线网络接口、一个或多个输入/输出接口、或一个或多个操作系统,诸如,Windows Server、Mac OS X、Unix、Linux、FreeBSD,等等。
上述云端可以是整体式服务器或是跨多计算机或计算机数据中心的分散式服务器。服务器可以是各种类型的,例如但不限于,网络服务器,新闻服务器,邮件服务器,消息服务器,广告服务器,文件服务器,应用服务器,交互服务器,数据库服务器,或代理服务器。在一些实施例中,每个服务器可以包括硬件,软件,或用于执行服务器所支持或实现的合适功能的内嵌逻辑组件或两个或多个此类组件的组合。在本申请中,服务器用于提供支持遥控上述智能电源所必需的全部功能。
上述云端至少包括:一个或多个中央处理单元;一个或多个存储器和/或大容量存储设备;一个或多个有线或无线网络接口。
根据本申请的一些实施例,上述智能终端包括:
用电装置200;和
智能电源100,用以与上述移动通信设备、云端或储能电源无线通信连接,控制用电装置200。
上述智能终端还包括:
执行器900,用以执行上述指令动作,该执行器900可以为电路开关。
在一些实施例中,如图8a所示,该执行器900设置于智能电源100上,即由智能电源100执行上述控制指令,以对用电装置实现对应的控制操作;
在另一些实施例中,如图8b所示,该执行器900设置于用电装置200上,即将控制指令发送给用电装置,以使用电装置执行控制指令实现对应的控制操作,此时,智能电源与用电装置之间可以通过通信接口通信连接,也可以通过无线网络实现通信连接,比如Wifi、蓝牙、NFC等近距离无线通信模组。
图9为智能电源100的功能模块示意图,该智能电源100包括:
第一电池单元101,用以给用电装置200提供电能;和
第一无线通信单元102,用以与上述移动通信设备、云端或储能电源无线通信连接。
上述第一电池单元101至少具有一节电池10,如1节21700电池,当然还可以采用3节21700电池串联,或者5节21700电池串联,以满足不同电压平台的用电装置使用。值得注意的是,前述仅是列举说明,并不局限于使用21700电池,还可以采用其它类型电池,如18650电池。
而且,上述第一电池单元还可以包括至少一组电池模组,电池模组由多节电池相互串联或并联构成,以此作储能电源或储能电站100e用,如图10e所示。
此外,上述智能电源100还可以至少由第一智能电源和第二智能电源相互串联或并联构成。
具体地,上述智能电源100存在多种形态,例如:
参照图10a所示的智能电源100a为单节电池形态示意图,其内置有且仅有1节21700电池10;
参照图10b所示的智能电源100b为三节电池形态示意图,其内置有3节相互串联的21700电池10;
参照图10c所示的智能电源100c为五节电池形态示意图,其内置有5节相互串联的21700电池10;
参照图10d所示的智能电源100d为多个单节电池形态的智能电源(如图10a所示)相互组合构成的形态示意图,其包括多个智能电源,具体图示为4个相互串联或并联的智能电源100a,当然也可以由多个相互串联或并联的智能电源100b或智能电源100c构成。
参照图10e所示的智能电源为储能电站形态示意图,其包括至少一组电池模组,该电池模组由多节电池10构成,此时电池单元作储能电源或储能电站用。
上述用电装置200可以为电动工具,电动工具可以为诸如电钻、电动角磨、电锤、喷雾器等,还可以为电动园艺工具,如修枝机、打草机、链锯等,又或者为电动家用工具,如吸尘器、咖啡机、电风扇、榨汁机,还可以为其它类型的用电装置,如胶枪、气泵、应急灯具等,总体来说,上述用电装置200可以概指采用二次电池或电池组(如储能电源/储能电站)作为动力源的作业设备;用电装置200工作时,需要智能电源提供电能,以驱动用电装置作业。
上述智能电源100可以内置于用电装置200中,供用电装置作业提供电能,如图11a和图11b的智能电源100a可拆卸式地适用于室内风扇200a上,又比如图11c的智能电源100b装配适用于清洁机器人200b,又比如图11d的智能电源100c装配适用于车载冰箱200c;智能电源也可以外置于用电装置,如当智能电源100a作为具体的储能电源100e时,储能电源100e外置,通过电源线或数据线给车载冰箱200c供电,如图11e所示;
当然,较为优选地,上述智能电源100可以以装拆自如的方式,即可拆卸地安装于用电装置200,此时,该智能电源100适于不同类型的用电装置200使用,即,此智能电源100可以被电动工具、电动园艺工具、电动家用工具所共用,比如:
用户拥有一个3.6V或12V或20V的智能电源100,不仅可以供电钻使用,而且可以供修枝机使用,此外,还可以供吸尘器使用,或者应急灯使用,如此一个智能电源100,可以满足用户不同的使用场景。
上述用电装置优选为户外露营设备,即适合户外露营使用,以给用户户外露营时提供便利。
当智能电源100装配连接于用电装置200时,该智能电源100适于机械连接和电连接至用电装置200,通过机械连接固定,通过电连接给用电装置200提供电能。
上述第一无线通信单元102至少具备第一通信模组1021,具体地,该第一通信模组1021为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M)或非蜂窝类(如:WiFi/蓝牙/ZigBee/Lora/Sigfox);或者两者兼具。
举例而言,智能电源可以通过蜂窝类通信模组,如4G/5G通信模组与云端无线通信连接;又如,智能电源可以通过非蜂窝类通信模组,如WiFi/蓝牙通信模组与移动通信设备或储能电源无线通信连接;再如,智能电源同时具备两组通信模组,即通过自带的蜂窝类通信模组,如4G/5G通信模组与云端无线通信连接,又通过自带的非蜂窝类通信模组,如WiFi/蓝牙通信模组与移动通信设备或储能电源无线通信连接,以实现信息的交互。
上述第一通信模组1021优选为非蜂窝类,以降低组网成本,更为优选地,该通信模组为蓝牙。
上述第一无线通信单元还具备第一定位模组1022,用以定位智能电源的位置,以便于用户查看智能电源的位置信息。
在一些实施例中,上述第一定位模组1022为GPS模组或北斗卫星模组。
如图9所示,上述智能电源100还包括:
第一放电单元,用以将电能输出给用电装置,以给用电装置供电;
第一充电单元,用以给第一电池单元充电;
第一采集单元103,用以实时采集各种信息;和
第一控制单元104,用以控制上述执行器执行。
上述第一采集单元103可以为传感器,用以实时采集各种信息,比如温度信息、位置信息等,该第一采集单元也可以为采集器,比如,采用电压采集器采集智能电源的电压参数,又比如,采用电流采集器采集智能电源的电流参数,再比如,采用温度采集器采集智能电源的温度参数。
在一些实施例中,上述电压采集器可以为分流器、互感器、霍尔元件电流传感器或光纤传感器中的一种。
在一些实施例中,上述电流采集器采用的电流采集方法可以采用继电器阵列法、恒流源法、隔离运放采集法、压/频转换电路采集法或线性光耦合放大电路采集法中的一种,优选地,采用恒流源法。
在一些实施例中,上述温度采集器采用的温度采集方法可以为热敏电阻采集法、热电偶采集法或集成温度传感器采集法中的一种,优选地,采用集成温度传感器采集法。
上述第一控制单元104包括:
第一处理模组1041,用以处理信息,比如电池的电压、电流、温度等电池状态信息,也用以运行程序,比如确认指令,控制指令转发,判定信息是否异常等程序;和
第一存储模组1042,用以存储上述信息和/或程序,还可以用以存储上述程序,在无线通信单元连上无线网络后,将存储的状态信息上传至云端。
在一些实施例中,第一处理模组还可以用以监测本智能电源的运行状态,即可将当前参数与之前存储的参数进行比较,和/或将当前参数与预存的阈值进行比较,以进行自行监控,判断是否出现异常,若出现异常,智能电源控制用电装置停止工作;同时还可以监测智能电源充电时的状态,即可监测智能电源充电时的电压、电流、温度等参数。
在一些实施例中,上述存储模组用以在无网络情况下,对第一采集单元采集到的状态信息进行暂时存储,并用以在第一无线通信单元连上无线网络后,通过第一无线通信单元将存储模组中暂时存储的状态信息发送至云端;该存储模组可以为FLASH芯片、随机动态存储器或缓存芯片,当然也可以为其他用来存储数据信息的记忆部件。
在一些实施例中,上述智能电源还包括第一通信接口,该第一通信接口与第一控制单元可通信地连接。第一控制单元可以通过第一通信接口与储能电源或云端进行双向通信,也可以通过第一通信接口与移动通信设备进行双向通信。当然,第一通信接口并非本智能电源的必要部件。
在一些实施例中,上述智能电源还包括第一显示器,该第一显示器与第一控制单元可通信地连接,第一显示器可以根据需要显示用户所希望的内容(例如,温度、剩余电量、位置信息等)和/或界面(例如,交互界面)。当然,第一显示器并非本智能电源的必要部件。
图12为储能电源400的功能模块示意图,该储能电源400为储能电站的形式,该储能电源400包括:
第二电池单元401;
第二无线通信单元402,用以与云端或移动通信设备无线通信连接;和
逆变单元405,用以将第二电池单元输出的直流电转化为交流电,以输出交流电和直流电,以满足不同用电装置的用电需求。
上述第二电池单元401至少具备一组电池模组,该电池模组由多节电池10串联或并联构成,该电池10可以 为21700电池,还可以采用其它类型电池,如18650电池。
该第二无线通信单元402至少具备一组第二通信模组4021,该第二通信模组4021可以为蜂窝类(如:2G/3G/4G/5G/NB-IOT/LTE-M),或非蜂窝类(如:WiFi/蓝牙/ZigBee/Lora/Sigfox),或者具备两组第二通信模组,即同时具备蜂窝类通信模组和非蜂窝类通信模组。
具体地,上述储能电源通过自带的蜂窝类通信模组,如4G/5G通信模组与云端无线通信连接;又如,储能电源通过自带的非蜂窝类通信模组,如WiFi/蓝牙通信模组与移动通信设备无线通信连接;再如,储能电源同时自带蜂窝类通信模组和非蜂窝类通信模组,该储能电源通过自带的非蜂窝类通信模组,如WiFi/蓝牙通信模组与移动通信设备无线通信连接,同时可通过自带的蜂窝类通信模组,如4G/5G通信模组与云端无线通信连接。
上述第二无线通信单元402还包括第二定位模组4022,用以定位储能电源的位置信息;在一些实施例中,上述第二定位模组4022为GPS模组或北斗卫星模组。
如图12所示,上述储能电源400还包括:
第二放电单元,用以将电能输出;
第二充电单元,用以给第二电池单元充电;
第二采集单元403,用以实时采集储能电源的状态信息;和
第二控制单元404,用以处理各种信息,还可以用以运行程序。
上述第二放电单元包括DC放电模组和AC放电模组,具备DC输出和AC输出功能,还配置有点烟口(车充口)以及PD双向充放电口等;上述第二充电单元具备市电充电口、太阳能板充电口等。
在一些实施例中,上述第二采集单元403用以实时采集储能电源的状态信息,比如电压、电流、温度等状态信息;该第二采集单元403可以为传感器,用以实时采集各种信息,比如温度信息、位置信息等,该第二采集单元也可以为采集器,比如,采用电压采集器采集智能电源的电压参数,又比如,采用电流采集器采集智能电源的电流参数,再比如,采用温度采集器采集智能电源的温度参数。
在一些实施例中,上述电压采集器可以为分流器、互感器、霍尔元件电流传感器或光纤传感器中的一种。
在一些实施例中,上述电流采集器采用的电流采集方法可以采用继电器阵列法、恒流源法、隔离运放采集法、压/频转换电路采集法或线性光耦合放大电路采集法中的一种,优选地,采用恒流源法。
在一些实施例中,上述温度采集器采用的温度采集方法可以为热敏电阻采集法、热电偶采集法或集成温度传感器采集法中的一种,优选地,采用集成温度传感器采集法。
上述第二控制单元404至少包括:
第二处理模组4041,用以处理信息,比如采集到的电压、电流、温度等状态信息,还可以控制程序运行,比如转发指令、确定指令等程序运行;和
第二存储模组4042,用以存储信息和/或程序,比如储能电源的状态信息,又比如预先存储的执行程序。
在一些实施例中,上述控制单元还包括算力模组,该算力模组可以用以生成程序,具体地,用户输入了触发条件和执行动作后,算力模组根据上述触发条件和执行动作生成相对应的执行程序;上述算力模组可以内置于储能电源内,如图13a所示,该算力模组也可以外置于储能电源外,即算力模组与存储模组形成算力设备700,算力设备700设置于储能电源外,储能电源上设置有端口406,算力设备上设置有与端口电连接的插头,算力设备连接至储能电源上时,插头与端口插接,以实现两者之间的电连接和通信连接,如图13b所示。
如图12所示,上述储能电源还包括:
输入装置,用以供用户输入指令信息;该输入装置与第二控制单元可通信地连接。
在一些实施例中,该输入装置可以为人机交互单元,该人机交互单元的交互方式可以为语音、手势、眼神、表情等自然交互方式的一种或多种,还可以采用脑电、肌电、皮电等生理数据的交互方式;该人机交互单元优选为语音采集器或摄像头;
在一些实施例中,该输入装置还可以供上述触发条件和执行动作输入,以配合算力模组工作。
在一些实施例中,上述储能电源还包括第二显示器,该第二显示器与第二控制单元可通信地连接,第二显示器可以根据需要显示用户所希望的内容(例如,温度、剩余电量、位置信息等)和/或界面(例如,交互界面)。当然,第二显示器并非本储能电源的必要部件。
上述储能电源400还适于给上述智能终端的智能电源100提供电能,即当智能电源100的电量不足时,用户可以通过储能电源400给智能电源100提供电能;具体地,上述储能电源400上设置有安装部407,以供智能电源安装至储能电源的安装部407内,以供储能电源给智能电源供电;举例而言,如图14所示,当风扇的智能电源100a的电量不足时,将智能电源100a从风扇200a中拔出,插入储能电源400的安装部407内,以供储能电源400给智能电源100a提供电能。
优选地,储能电源400的容量(Ah)大于智能电源100的容量(Ah)。
图15a为根据本申请一示例性实施例示出的一种用电装置控制方法的多方交互流程图。下面结合图15a对上述方法的具体步骤进行详细描述:
步骤501:移动通信设备向智能电源发送控制指令。
用户在第一次使用智能电源来对用电装置进行控制时,需要在线注册并填写必要的用户信息。当然,用户可以通过网络从云端下载适于智能电源的用户终端应用到移动通信设备并且将该应用本地安装到移动通信设备,或者,用户的移动通信设备上已经预装了适于智能电源的用户终端应用。通过登录其用户账号,启动移动通信设备上的用户终端应用,并使该移动通信设备与智能电源建立连接。在与云端建立连接后,用户可以在移动通信设备中输入控制指令,例如开启电源指令。移动通信设备与智能电源200实现无线通信连接,向智能电源发送用户所输入的开启电源指令。
步骤502:智能电源200根据接收到的控制指令确定对应的控制操作。
步骤503:智能电源200执行控制操作以控制用电装置100。
智能电源200可以识别开启电源指令以确定对应的控制操作为开启电风扇的开关,根据识别到的开启电源指令驱动其中的电池为其所连接的电风扇供电。
步骤504:智能电源200确定自身电池的状态信息。
智能电源200可以通过其自身所具备的第一采集单元103实时采集电池单元的电流、电压、温度等状态信息。
步骤505:智能电源200将确定的状态信息发送至移动通信设备。
步骤506:移动通信设备将接收到的状态信息上传至云端300。
步骤507:云端300将接收到的状态信息进行存储。
智能电源200在确定其电池的状态信息后,可以通过其自身的无线通信单元将状态信息发送给移动通信设备,移动通信设备将状态信息上传至云端300,使得云端300能够对智能电源200的电池状态信息进行存储。
图15b为根据本申请另一示例性实施例示出的另一种用电装置控制方法的多方交互流程图,其中通过云端转发控制指令。下面结合图15b对上述方法的具体步骤进行详细描述:
步骤511:移动通信设备向云端发送控制指令。
用户在第一次使用智能电源来对用电装置进行控制时,需要在线注册并填写必要的用户信息。当然,用户可以通过网络从云端下载适于智能电源的用户终端应用到移动通信设备并且将该应用本地安装到移动通信设备,或者,用户的移动通信设备上已经预装了适于智能电源的用户终端应用。通过登录其用户账号,启动移动通信设备上的用户终端应用,并使该移动通信设备与云端建立连接。在与云端建立连接后,用户可以在移动通信设备中输入控制指令,例如开启电源指令。移动通信设备通过蜂窝数据,如4G或5G信号与云端300实现无线通信移动,向云端发送用户所输入的开启电源指令。
步骤512:云端300将接收到的控制指令发送给智能电源200。
云端接收到移动通信设备发送的开启电源指令时,可以将开启电源指令转发给其所连接的智能电源200。
步骤514:智能电源200根据接收到的控制指令确定对应的控制操作。
步骤514:智能电源200执行控制操作以控制用电装置100。
智能电源200可以识别开启电源指令以确定对应的控制操作为开启电风扇的开关,根据识别到的开启电源指令驱动其中的电池为其所连接的电风扇供电。
步骤515:智能电源200确定自身电池的状态信息。
智能电源200可以通过其自身所具备的第一采集单元103实时采集电池单元的电流、电压、温度等状态信息。
步骤516:智能电源200将确定的状态信息发送至云端300。
步骤517:云端300将接收到的状态信息进行存储。
智能电源200在确定其电池的状态信息后,可以通过其自身的无线通信单元将状态信息发送给云端300,使得云端300能够对智能电源200的电池状态信息进行存储。
图15c为根据本申请另一示例性实施例示出的另一种用电装置控制方法的多方交互流程图,其中储能电源用以转发指令。下面结合图15c对上述方法的具体步骤进行详细描述:
步骤521:移动通信设备向储能电源发送控制指令。
用户在第一次使用智能电源来对用电装置进行控制时,需要在线注册并填写必要的用户信息。当然,用户可以通过网络从云端下载适于智能电源的用户终端应用到移动通信设备并且将该应用本地安装到移动通信设备,或者,用户的移动通信设备上已经预装了适于智能电源的用户终端应用。通过登录其用户账号,启动移动通信设备上的用户终端应用,并使该移动通信设备与智能电源建立连接。在于云端建立连接后,用户可以在移动通信设备中输入控制指令,例如开启电源指令。移动通信设备与储能电源400实现无线通信连接,向储能电源发送用户所输入的开启电源指令。
步骤522:储能电源400将接收到的控制指令转发给智能电源200。
储能电源400在接收到移动通信设备发送的开启电源指令时,可以将开启电源指令转发给与其连接的智能电源200。
步骤523:智能电源200根据接收到的控制指令确定对应的控制操作。
步骤524:智能电源200执行控制操作以控制用电装置100。
智能电源200可以识别开启电源指令以确定对应的控制操作为开启电风扇的开关,根据识别到的开启电源指令驱动其中的电池为其所连接的电风扇供电。
步骤525:智能电源200确定自身电池的状态信息。
智能电源200可以通过其自身所具备的第一采集单元103实时采集电池单元的电流、电压、温度等状态信息。
步骤526:智能电源200将确定的状态信息发送给储能电源400。
步骤527:储能电源400将状态信息转发给移动通信设备。
步骤528:移动通信设备将接收到的状态信息上传至云端300。
步骤529:云端300将接收到的状态信息进行存储。
智能电源200在确定其电池的状态信息后,可以通过其自身的无线通信单元将状态信息发送给储能电源,储能电源转发给移动通信设备,移动通信设备将状态信息上传至云端300,使得云端300能够对智能电源200的电池状态信息进行存储。
图15d为根据本申请另一示例性实施例示出的另一种用电装置控制方法的多方交互流程图,其中通过云端、储能电源转发指令信息。下面结合图15d对上述方法的具体步骤进行详细描述:
步骤531:移动通信设备向云端发送控制指令。
用户在第一次使用智能电源来对用电装置进行控制时,需要在线注册并填写必要的用户信息。当然,用户可以通过网络从云端下载适于智能电源的用户终端应用到移动通信设备并且将该应用本地安装到移动通信设备,或者,用户的移动通信设备上已经预装了适于智能电源的用户终端应用。通过登录其用户账号,启动移动通信设备上的用户终端应用,并使该移动通信设备与云端建立连接。在于云端建立连接后,用户可以在移动通信设备中输 入控制指令,例如开启电源指令。移动通信设备通过蜂窝数据,如4G或5G信号与云端300实现无线通信移动,向云端发送用户所输入的开启电源指令。
步骤532:云端300将接收到的控制指令发送给储能电源400。
云端接收到移动通信设备发送的开启电源指令时,可以将开启电源指令转发给其所连接的储能电源400。
步骤533:储能电源400将接收到的控制指令转发给智能电源200。
步骤534:智能电源200根据接收到的控制指令确定对应的控制操作。
步骤535:智能电源200执行控制操作以控制用电装置100。
智能电源200可以识别开启电源指令以确定对应的控制操作为开启电风扇的开关,根据识别到的开启电源指令驱动其中的电池为其所连接的电风扇供电。
步骤536:智能电源200确定自身电池的状态信息。
智能电源200可以通过其自身所具备的第一采集单元103实时采集电池单元的电流、电压、温度等状态信息。
步骤537:智能电源200将确定的状态信息发送给储能电源400。
步骤538:储能电源400将状态信息上传至云端300。
步骤539:云端300将接收到的状态信息进行存储。
智能电源200在确定其电池的状态信息后,可以通过其自身的无线通信单元将状态信息发送给储能电源,储能电源将状态信息上传至云端300,使得云端300能够对智能电源200的电池状态信息进行存储。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (10)

  1. [根据细则91更正 01.09.2022]
    一种控制用电装置的控制系统,其特征在于,所述控制用电装置的控制系统包括移动通信设备、储能电源、智能电源和用电装置;所述移动通信设备与所述储能电源无线通信连接,所述储能电源与所述智能电源无线通信连接,所述智能电源用以给所述用电装置提供电能;其中,
    所述移动通信设备,用以接收自用户输入的控制所述用电装置的控制指令;
    所述储能电源,用以转发所述控制指令;
    所述智能电源,用以接收所述储能电源所转发的所述控制指令,并根据所述控制指令控制所述用电装置。
  2. 根据权利要求1所述的控制用电装置的控制系统,其特征在于,所述控制系统还包括云端,所述移动通信设备与所述云端无线通信连接,所述云端与所述储能电源无线通信连接,其中,
    所述云端,用以转发所述控制指令。
  3. 根据权利要求1所述的控制用电装置的控制系统,其特征在于,所述控制系统还包括移动WiFi设备,用以给所述移动通信设备和所述储能电源提供WiFi网络。
  4. 根据权利要求1所述的控制用电装置的控制系统,其特征在于,所述智能电源包括:
    第一电池单元,用以为所述用电装置提供电能;
    第一无线通信单元,用以与所述储能电源实现无线通信;和
    第一控制单元,用以通过所述第一无线通信单元接收自所述储能电源发出的控制指令,并根据所述控制指令对所述用电设备执行相应的控制操作。
  5. 根据权利要求4所述的控制用电装置的控制系统,其特征在于,所述控制指令由所述智能电源执行,以对所述用电装置实现对应的控制操作,
    或,所述控制指令由所述智能电源发送给所述用电装置,以使所述用电装置执行所述控制指令实现对应的控制操作。
  6. 根据权利要求4所述的控制用电装置的控制系统,其特征在于,所述控制指令包括开启电源指令,所述控制单元被配置为:
    根据所述开启电源指令驱动所述第一电池单元启动所述用电设备;和/或,
    所述控制指令包括关闭电源指令,所述控制单元被配置为:
    根据所述关闭电源指令驱动所述第一电池单元关闭所述用电设备。
  7. 根据权利要求4所述的控制用电装置的控制系统,其特征在于,所述控制指令包括参数调节指令,所述控制单元被配置为:
    根据所述调节指令调节所述第一电池单元的输出参数。
  8. 根据权利要求1所述的控制用电装置的控制系统,其特征在于,所述智能电源为多台,所述储能电源同时与多台所述智能电源无线通信连接。
  9. 根据权利要求1所述的控制用电装置的控制系统,其特征在于,所述智能电源为多台,多台智能电源中的至少一台智能电源用以转发控制另一台智能电源的控制指令。
  10. 一种控制用电装置的控制方法,其特征在于:所述控制方法应用于权利要求1-9任一所述的用电设备控制系统中的储能电源,所述控制方法包括:
    接收控制指令,所述控制指令由移动通信设备通过无线通信连接发送;
    将所述控制指令发送至所述智能电源,以使所述智能电源根据所述控制指令对所述用电设备进行控制。
PCT/CN2022/090125 2021-04-30 2022-04-29 控制用电装置的控制系统及其控制方法 WO2022228541A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237041528A KR20240009960A (ko) 2021-04-30 2022-04-29 전력 소비 장치를 제어하는 제어 시스템 및 그의 제어 방법
CA3217178A CA3217178A1 (en) 2021-04-30 2022-04-29 Control system and control method for controlling electrical apparatus
EP22795011.0A EP4333386A1 (en) 2021-04-30 2022-04-29 Control system and control method for controlling electrical apparatus
US18/496,956 US20240055893A1 (en) 2021-04-30 2023-10-30 Control system and control method for controlling electrical apparatus

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN202110479516 2021-04-30
CN202110479516.9 2021-04-30
CN202111144848.8 2021-09-28
CN202111144848 2021-09-28
CN202111144887.8A CN116826875A (zh) 2021-09-28 2021-09-28 一种用电装置的用电系统及用电装置的控制方法
CN202111144887.8 2021-09-28
CN202111235883.0A CN116014827A (zh) 2021-10-22 2021-10-22 遥控电源、供电组件、用电装置及其系统、控制方法
CN202111235878.XA CN115276212A (zh) 2021-04-30 2021-10-22 遥控电源、供电组件、用电装置及其控制方法、用电系统
CN202111235883.0 2021-10-22
CN202111235878.X 2021-10-22
CN202111283178.8A CN116073457A (zh) 2021-11-01 2021-11-01 用电装置的智能电源、供电组件、供电系统以及监测方法
CN202111283178.8 2021-11-01
CN202210163465.3A CN116683620A (zh) 2022-02-22 2022-02-22 算力系统及其计算方法、指令执行方法
CN202210163465.3 2022-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/496,956 Continuation US20240055893A1 (en) 2021-04-30 2023-10-30 Control system and control method for controlling electrical apparatus

Publications (1)

Publication Number Publication Date
WO2022228541A1 true WO2022228541A1 (zh) 2022-11-03

Family

ID=83847795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090125 WO2022228541A1 (zh) 2021-04-30 2022-04-29 控制用电装置的控制系统及其控制方法

Country Status (5)

Country Link
US (1) US20240055893A1 (zh)
EP (1) EP4333386A1 (zh)
KR (1) KR20240009960A (zh)
CA (1) CA3217178A1 (zh)
WO (1) WO2022228541A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462662A (zh) * 2018-12-20 2019-03-12 深圳市银河风云网络系统股份有限公司 一种网关、物联网子设备、物联网系统及控制方法
US20200093057A1 (en) * 2017-04-25 2020-03-26 Husqvarna Ab Adaptive Signal Transmission
CN111262291A (zh) * 2020-02-13 2020-06-09 深圳市云顶信息技术有限公司 一种具有网关功能的充电设备、系统及数据传输方法
CN111669419A (zh) * 2019-03-07 2020-09-15 阿里巴巴集团控股有限公司 网关及数据通信系统
CN212588351U (zh) * 2020-06-17 2021-02-23 上海乾隆节能科技有限公司 一种边缘网关
CN216313124U (zh) * 2021-12-07 2022-04-15 深圳市旭日东方实业有限公司 一种太阳能网关

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200093057A1 (en) * 2017-04-25 2020-03-26 Husqvarna Ab Adaptive Signal Transmission
CN109462662A (zh) * 2018-12-20 2019-03-12 深圳市银河风云网络系统股份有限公司 一种网关、物联网子设备、物联网系统及控制方法
CN111669419A (zh) * 2019-03-07 2020-09-15 阿里巴巴集团控股有限公司 网关及数据通信系统
CN111262291A (zh) * 2020-02-13 2020-06-09 深圳市云顶信息技术有限公司 一种具有网关功能的充电设备、系统及数据传输方法
CN212588351U (zh) * 2020-06-17 2021-02-23 上海乾隆节能科技有限公司 一种边缘网关
CN216313124U (zh) * 2021-12-07 2022-04-15 深圳市旭日东方实业有限公司 一种太阳能网关

Also Published As

Publication number Publication date
KR20240009960A (ko) 2024-01-23
EP4333386A1 (en) 2024-03-06
CA3217178A1 (en) 2022-11-03
US20240055893A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
CN106878025B (zh) 基于指纹识别权限控制的物联网控制开关及方法
CN108415385A (zh) 基于蓝牙通信的智能家居控制系统
CN108536026A (zh) 一种智能家居设备用电控制方法和系统
CN104709100A (zh) 房车电气总成系统
CN104577548B (zh) 智能插座
CN106814711A (zh) 利用移动终端控制家电设备的方法以及该移动终端
CN204347603U (zh) 智能开关
CN107062325A (zh) 烟机灶具组合系统及其控制方法
WO2022228541A1 (zh) 控制用电装置的控制系统及其控制方法
CN217159371U (zh) 自组网系统
CN220066977U (zh) 供电组件、用电装置以及用电系统
CN218997717U (zh) 用电装置的遥控电源及其用电系统
WO2022228457A1 (zh) 遥控电源、供电组件、用电装置及其控制方法、用电系统
CN219717943U (zh) 用电装置的供电组件
CN217741324U (zh) 智能电源、储能电源及供电组件
JP2024520176A (ja) リモート電源、給電コンポーネント、電気装置及びその制御方法、電気システム
WO2018201799A1 (zh) 免布线语音控制开关、相应的物联网系统及其通讯方法
CN220174651U (zh) 美甲系统
CN108965391A (zh) 一种智能排插的配网方法及系统
CN115276140A (zh) 一种通信系统及其控制方法
CN110417628A (zh) 一种基于智能家居的语音遥控系统及方法
CN205644248U (zh) 一种利用手机app实现家用电器智能化控制系统
CN116014827A (zh) 遥控电源、供电组件、用电装置及其系统、控制方法
CN115276144A (zh) 用电设备控制方法及系统
CN208335459U (zh) 一种ble转红外线信号的装置和控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024518950

Country of ref document: JP

Ref document number: 3217178

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022795011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20237041528

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022795011

Country of ref document: EP

Effective date: 20231128

NENP Non-entry into the national phase

Ref country code: DE