WO2022228111A1 - 摄像模组 - Google Patents

摄像模组 Download PDF

Info

Publication number
WO2022228111A1
WO2022228111A1 PCT/CN2022/086333 CN2022086333W WO2022228111A1 WO 2022228111 A1 WO2022228111 A1 WO 2022228111A1 CN 2022086333 W CN2022086333 W CN 2022086333W WO 2022228111 A1 WO2022228111 A1 WO 2022228111A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
driving
carrier
friction
camera module
Prior art date
Application number
PCT/CN2022/086333
Other languages
English (en)
French (fr)
Inventor
赵波杰
叶林敏
阙嘉耀
黄桢
方银丽
洪超
傅强
袁栋立
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110482636.4A external-priority patent/CN115268166A/zh
Priority claimed from CN202110482664.6A external-priority patent/CN115268167A/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to EP22794582.1A priority Critical patent/EP4318118A1/en
Priority to CN202280028966.9A priority patent/CN117501176A/zh
Publication of WO2022228111A1 publication Critical patent/WO2022228111A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/04Vertical adjustment of lens; Rising fronts

Definitions

  • the present application relates to the field of camera modules, and in particular, to a camera module that uses a novel piezoelectric actuator as a driving element to meet the optical anti-shake requirements of the camera module.
  • a reasonable arrangement scheme is adopted to arrange the piezoelectric actuator in the camera module, so as to further meet the structure and size requirements of the camera module.
  • the existing driving element for driving the optical component is an electromagnetic motor, for example, a voice coil motor (Voice Coil Motor: VCM), a shape memory alloy actuator (Shape of Memory Alloy Actuator: SMA), and the like.
  • VCM voice Coil Motor
  • SMA shape of Memory Alloy Actuator
  • the existing voice coil motors and shape memory alloy drivers are only suitable for driving optical components with a weight of less than 100mg, that is, if the weight of the optical components exceeds 100mg, the existing drivers will not be able to meet the application requirements of the camera module .
  • the existing voice coil motor is equipped with a coil and a magnet.
  • the internal magnetic fields will interact with each other, causing the magnets to move or shake, reducing the stability of the drive control. .
  • the new type of driver can not only meet the driving requirements for the optical performance adjustment of the camera module, but also meet the development of light weight and thinning of the camera module. need.
  • An advantage of the present application is to provide a camera module, wherein the camera module adopts a novel piezoelectric actuator as a driving element to not only provide a sufficiently large driving force, but also provide higher precision and The driving performance with longer stroke can meet the requirement of adjusting the optical performance of the camera module, for example, the requirement of optical image stabilization.
  • Another advantage of the present application is to provide a camera module, wherein the piezoelectric actuator has a relatively small size, so as to better adapt to the development trend of light and thin camera modules.
  • Another advantage of the present application is to provide a camera module, wherein the piezoelectric actuator is arranged in the camera module by adopting a reasonable arrangement scheme to meet the structure and size requirements of the camera module.
  • a camera module which includes:
  • a photosensitive assembly comprising: a circuit board and a photosensitive chip electrically connected to the circuit board;
  • the lens assembly held on the photosensitive path of the photosensitive assembly includes: a lens carrier and an optical lens mounted on the lens carrier, wherein the optical lens is provided with an optical axis;
  • a driving assembly comprising: a first carrying frame, a first driving element and a first preloading member, wherein the photosensitive assembly is mounted on the first carrying frame, and the first driving element is implemented as piezoelectric actuation wherein the first drive element is frictionally coupled to the first carrier frame via the first pre-compression member and is configured to flexurally vibrate in both directions after being driven in a direction perpendicular to the
  • the optical axis moves along a first direction in a two-dimensional trajectory in a plane so as to drive the first carrier frame through friction to drive the photosensitive component to move in the first direction in a plane perpendicular to the optical axis.
  • Orientation shift for optical image stabilization wherein the photosensitive assembly is mounted on the first carrying frame, and the first driving element is implemented as piezoelectric actuation wherein the first drive element is frictionally coupled to the first carrier frame via the first pre-compression member and is configured to flexurally vibrate in both directions after being driven in a direction perpendicular to the
  • the driving assembly further includes a second carrying frame, a second driving element and a second pre-pressing component, wherein the second carrying frame is externally disposed on the first carrying frame,
  • the second drive element is implemented as a piezoelectric actuator, wherein the second drive element is frictionally coupled to the second carrier frame by the second preload portion and is configured to, after being driven, Bending and vibrating in two directions in a two-dimensional trajectory in a plane perpendicular to the optical axis and moving along the second direction to drive the second carrying frame through friction to drive the first carrying frame to drive the
  • the photosensitive member moves in the second direction in a plane perpendicular to the optical axis to perform optical image stabilization, and the first direction is perpendicular to the second direction.
  • the piezoelectric actuator includes: an actuation system and a drive circuit system, wherein the actuation system is controlled by the drive circuit system to move in two directions
  • the way of bending vibration is a two-dimensional trajectory along a preset direction.
  • the actuating system includes: a piezoelectric plate structure and a friction driving part fixed to the piezoelectric plate structure, the friction driving part being frictionally coupled to the first the carrier frame or the second carrier frame.
  • the piezoelectric plate structure has a first side surface extending along its depth direction and a second side extending along its height direction and adjacent to the first side surface A surface, wherein the piezoelectric plate structure has a first resonance frequency along its depth direction and a second resonance frequency along its height direction, wherein the second resonance frequency is greater than the first resonance frequency.
  • the piezoelectric plate structure includes a first piezoelectric region, a second piezoelectric region and a third piezoelectric region formed on the second side surface, and, formed on the second side surface a fourth piezoelectric region on the first side surface, wherein the second piezoelectric region is located between the first piezoelectric region and the third piezoelectric region, and the fourth piezoelectric region is connected to the first piezoelectric region
  • the two piezoelectric regions are adjacent; wherein, the piezoelectric plate structure further includes a first electrode pair electrically connected to the first piezoelectric region, a second electrode pair electrically connected to the second piezoelectric region, A third electrode pair electrically connected to the third piezoelectric region and a fourth electrode pair electrically connected to the fourth electrical connection region.
  • the driving circuit system includes a first driving circuit and a second driving circuit, the first driving circuit is electrically connected to the first electrode pair and the third electrode pair, so The second drive circuit is electrically connected to the second electrode pair and the fourth electrode pair; wherein, the vibration frequency of the circuit vibration signal output by the first drive circuit and the second drive circuit is equal to the first resonance frequency or the second resonant frequency.
  • the piezoelectric plate structure when the vibration frequency of the circuit vibration signal output by the first driving circuit is the first resonance frequency, the piezoelectric plate structure resonates in its height direction and at its depth A partial resonance occurs in the direction, so that the piezoelectric plate structure moves in a two-dimensional trajectory along a preset direction in the manner of bending vibration in two directions; wherein, when the circuit vibration signal input by the second drive circuit is When the vibration frequency is the second resonant frequency, the piezoelectric plate structure resonates in its depth direction and partially resonates in its height direction, so that the piezoelectric plate structure bends and vibrates in two directions. It moves in a two-dimensional trajectory along a preset direction.
  • the driving assembly further includes a first friction actuating portion and a second friction actuating portion, the first friction actuating portion is clamped and disposed on the first driving element and the first bearing frame, so that the first driving element is frictionally coupled to the first bearing frame through the first friction actuating portion and the first preloading member; the first Two frictional actuating parts are sandwiched between the second driving element and the second carrying frame, so that the second preloading part and the second frictional actuating part make the second A drive element is frictionally coupled to the second carrier frame.
  • the first driving element is located at the side of the first carrying frame.
  • the first driving element is located on the upper part of the first carrying frame.
  • the first driving element is located at the lower part of the first carrying frame.
  • the driving assembly is further peripherally disposed on the outer frame of the second carrying frame, wherein the second driving element passes through the second pre-pressing member and the second friction
  • the actuating portion is sandwiched between the second carrier frame and the outer frame in such a way that the second drive element is frictionally coupled to the second carrier frame, wherein the The second driving element is located on the side of the second carrier frame.
  • the driving assembly is further peripherally disposed on the outer frame of the second carrying frame, wherein the second driving element passes through the second pre-pressing member and the second friction
  • the actuating portion is sandwiched between the second carrier frame and the lens carrier in such a way that the second drive element is frictionally coupled to the second carrier frame, wherein the The second driving element is located on the upper part of the second carrier frame.
  • the driving assembly is further peripherally disposed on the outer frame of the second carrying frame, wherein the second driving element passes through the second pre-pressing member and the second friction
  • the actuating portion is sandwiched between the second carrier frame and the outer frame in such a way that the second drive element is frictionally coupled to the second carrier frame, wherein the The second driving element is located at the lower part of the second carrier frame.
  • the driving assembly further includes a first guide mechanism disposed between the first carrying frame and the second carrying frame, and a first guiding mechanism disposed between the second carrying frame and the second carrying frame.
  • the second guide mechanism between the outer frames.
  • the driving assembly further includes a first guide mechanism disposed between the first carrying frame and the second carrying frame, and a first guiding mechanism disposed between the second carrying frame and the second carrying frame.
  • the second guide mechanism between the lens carriers.
  • the driving assembly further includes a first guide mechanism disposed between the first carrying frame and the second carrying frame, and a first guiding mechanism disposed between the second carrying frame and the second carrying frame.
  • the second guide mechanism between the outer frames.
  • the first pre-compression member includes a first elastic element, and the first elastic element is disposed on the piezoelectric plate structure of the first driving element and the second carrier frame In between, the friction driving part of the first driving element is forced against the first friction actuating part by the elastic force of the first elastic element.
  • the first bearing frame; the second preloading element includes a second elastic element, and the second elastic element is arranged between the piezoelectric plate structure of the second driving element and the outer frame, so as to pass the The elastic force of the second elastic element forces the friction driving portion of the second driving element against the second friction actuating portion in such a way that the second driving element is frictionally coupled to the second carrier frame.
  • the first pre-compression member includes a first elastic element, and the first elastic element is disposed on the piezoelectric plate structure of the first driving element and the second carrier frame In between, the friction driving part of the first driving element is forced against the first friction actuating part by the elastic force of the first elastic element.
  • the first carrying frame; the second preloading element includes a second elastic element, the second elastic element is arranged between the piezoelectric plate structure of the second driving element and the lens carrier, so as to pass the The elastic force of the second elastic element forces the friction driving portion of the second driving element against the second friction actuating portion in such a way that the second driving element is frictionally coupled to the second carrier frame.
  • the first pre-compression member includes a first elastic element, and the first elastic element is disposed on the piezoelectric plate structure of the first driving element and the second carrier frame In between, the friction driving part of the first driving element is forced against the first friction actuating part by the elastic force of the first elastic element.
  • the first bearing frame; the second preloading element includes a second elastic element, and the second elastic element is arranged between the piezoelectric plate structure of the second driving element and the outer frame, so as to pass the The elastic force of the second elastic element forces the friction driving portion of the second driving element against the second friction actuating portion in such a way that the second driving element is frictionally coupled to the second carrier frame.
  • the first elastic element and the second elastic element are implemented as elastic adhesives.
  • the thickness dimension of the first elastic element and the second elastic element is between 10um and 50um.
  • the first pre-pressing component includes a first magnetic attraction element disposed on the first carrying frame and a first magnetic attraction element disposed on the second carrying frame and corresponding to the first magnetic attraction the second magnetic attraction element of the element to force the friction driving part of the first driving element against the first friction action through the magnetic attraction between the first magnetic attraction element and the second magnetic attraction element
  • the moving part is frictionally coupled to the first carrying frame through the first driving element
  • the second preloading part includes a third magnetic attraction element disposed on the second carrying frame and a the outer frame and the fourth magnetic attraction element corresponding to the third magnetic attraction element, so as to force the second driving element through the magnetic attraction between the third magnetic attraction element and the fourth magnetic attraction element
  • the friction driving part of the friction driving part is against the second friction actuating part in such a way that the second driving element is frictionally coupled to the second carrier frame.
  • the first pre-pressing component includes a first magnetic attraction element disposed on the first carrying frame and a first magnetic attraction element disposed on the second carrying frame and corresponding to the first magnetic attraction the second magnetic attraction element of the element to force the friction driving part of the first driving element against the first friction action through the magnetic attraction between the first magnetic attraction element and the second magnetic attraction element
  • the moving part is frictionally coupled to the first carrying frame through the first driving element
  • the second preloading part includes a third magnetic attraction element disposed on the second carrying frame and a a fourth magnetic attraction element of the lens carrier and corresponding to the third magnetic attraction element, so as to force the second driving element through the magnetic attraction between the third magnetic attraction element and the fourth magnetic attraction element
  • the friction driving part of the friction driving part is against the second friction actuating part in such a way that the second driving element is frictionally coupled to the second carrier frame.
  • the first pre-pressing component includes a first magnetic attraction element disposed on the first carrying frame and a first magnetic attraction element disposed on the second carrying frame and corresponding to the first magnetic attraction the second magnetic attraction element of the element to force the friction driving part of the first driving element against the first friction action through the magnetic attraction between the first magnetic attraction element and the second magnetic attraction element
  • the moving part is frictionally coupled to the first carrying frame through the first driving element
  • the second preloading part includes a third magnetic attraction element disposed on the second carrying frame and a the outer frame and the fourth magnetic attraction element corresponding to the third magnetic attraction element, so as to force the second driving element through the magnetic attraction between the third magnetic attraction element and the fourth magnetic attraction element
  • the friction driving part of the friction driving part is against the second friction actuating part in such a way that the second driving element is frictionally coupled to the second carrier frame.
  • the present application provides a camera module comprising:
  • a photosensitive assembly comprising: a circuit board and a photosensitive chip electrically connected to the circuit board;
  • the frame carrier assembly includes a first frame carrier
  • Drive assembly comprising: a first drive element implemented as a piezoelectric actuator and a first preload part, wherein the first drive element is frictionally frictionally driven by the first preload part is coupled to the first frame carrier and is configured to move along a two-dimensional trajectory in a plane perpendicular to the optical axis in a two-direction bending vibration manner after being driven, thereby driving the drive by friction.
  • the first frame carrier is used to drive the optical lens to move in a first direction perpendicular to the optical axis.
  • the frame assembly further includes a second frame carrier externally provided on the first frame carrier and an outer frame carrier externally provided on the second frame carrier, wherein the driving The assembly further includes a second drive element implemented as the piezoelectric actuator and a second pre-compression member, wherein the second drive element is frictionally coupled by the second pre-compression portion the second frame carrier and is configured to, after being driven, move along a two-dimensional trajectory in a plane perpendicular to the optical axis in a manner of bending vibration in two directions, thereby driving the said
  • the second frame carrier drives the first frame carrier and then drives the optical lens to move in a second direction perpendicular to the optical axis, and the second direction is perpendicular to the first direction.
  • the piezoelectric actuator includes: an actuation system and a drive circuit system, wherein the actuation system is controlled by the drive circuit system to move in two directions
  • the way of bending vibration is a two-dimensional trajectory along a preset direction.
  • the actuating system includes: a piezoelectric plate structure and a friction driving part fixed to the piezoelectric plate structure, the friction driving part being frictionally coupled to the first frame carrier or the second frame carrier.
  • the piezoelectric plate structure has a first side surface extending along its depth direction and a second side extending along its height direction and adjacent to the first side surface A surface, wherein the piezoelectric plate structure has a first resonance frequency along its depth direction and a second resonance frequency along its height direction, wherein the second resonance frequency is greater than the first resonance frequency.
  • the piezoelectric plate structure includes a first piezoelectric region, a second piezoelectric region and a third piezoelectric region formed on the second side surface, and, formed on the second side surface a fourth piezoelectric region on the first side surface, wherein the second piezoelectric region is located between the first piezoelectric region and the third piezoelectric region, and the fourth piezoelectric region is connected to the first piezoelectric region
  • the two piezoelectric regions are adjacent; wherein, the piezoelectric plate structure further includes a first electrode pair electrically connected to the first piezoelectric region, a second electrode pair electrically connected to the second piezoelectric region, A third electrode pair electrically connected to the third piezoelectric region and a fourth electrode pair electrically connected to the fourth electrical connection region.
  • the driving circuit system includes a first driving circuit and a second driving circuit, the first driving circuit is electrically connected to the first electrode pair and the third electrode pair, so The second drive circuit is electrically connected to the second electrode pair and the fourth electrode pair; wherein, the vibration frequency of the circuit vibration signal output by the first drive circuit and the second drive circuit is equal to the first resonance frequency or the second resonant frequency.
  • the piezoelectric plate structure when the vibration frequency of the circuit vibration signal output by the first driving circuit is the first resonance frequency, the piezoelectric plate structure resonates in its height direction and at its depth A partial resonance occurs in the direction, so that the piezoelectric plate structure moves in a two-dimensional trajectory along a preset direction in the manner of bending vibration in two directions; wherein, when the circuit vibration signal input by the second drive circuit is When the vibration frequency is the second resonant frequency, the piezoelectric plate structure resonates in its depth direction and partially resonates in its height direction, so that the piezoelectric plate structure bends and vibrates in two directions. It moves in a two-dimensional trajectory along a preset direction.
  • the driving assembly further includes a first friction actuating portion and a second friction actuating portion, the first friction actuating portion is clamped and disposed on the first driving element between the friction driving portion and the first frame carrier, so that the first driving element is frictionally coupled to the first frame carrier through the first friction actuating portion and the first preloading member;
  • the second frictional actuating portion is sandwiched between the frictional actuating portion of the second driving element and the second frame carrier so as to pass the second pre-compression member and the second frictional actuating portion.
  • the moving portion of the second drive element is frictionally coupled to the second frame carrier.
  • the first driving element is located on the side of the first frame carrier.
  • the first driving element is located on the upper part of the first frame carrier.
  • the first driving element is located at the lower part of the first frame carrier.
  • the second driving element is sandwiched and disposed on the second frame carrier and the outer frame by the second pre-pressing member and the second friction actuating portion Between the carriers, the second drive element is frictionally coupled to the second frame carrier in such a way that the second drive element is located on the side of the second frame carrier.
  • the second driving element is sandwiched and disposed on the second frame carrier and the lens carrier by the second pre-pressing member and the second friction actuating portion In between, the second drive element is frictionally coupled to the second frame carrier in such a way that the second drive element is located on the upper portion of the second frame carrier.
  • the driving assembly is further peripherally disposed on the outer frame carrier of the second frame carrier, wherein the second driving element passes through the second pre-pressing member and the second A frictional actuation portion is sandwiched between the second frame carrier and the outer frame carrier in such a way that the second drive element is frictionally coupled to the second frame carrier, wherein , the second driving element is located in the lower part of the second frame carrier.
  • the first pre-compression member includes a first elastic element, and the first elastic element is provided on the piezoelectric plate structure of the first driving element and the second frame carrier between, the friction driving part of the first driving element is forced against the first friction actuating part by the elastic force of the first elastic element, and in this way, the first driving element is frictionally coupled on the first frame carrier;
  • the second preloading element includes a second elastic element, and the second elastic element is arranged between the piezoelectric plate structure of the second driving element and the outer frame carrier, in such a way that the second drive element is frictionally coupled to the The second frame carrier.
  • the first pre-compression member includes a first elastic element, and the first elastic element is provided on the piezoelectric plate structure of the first driving element and the second frame carrier between, the friction driving part of the first driving element is forced against the first friction actuating part by the elastic force of the first elastic element, and in this way, the first driving element is frictionally coupled on the first frame carrier;
  • the second preloading element includes a second elastic element, and the second elastic element is disposed between the piezoelectric plate structure of the second driving element and the lens carrier, so as to The friction driving portion of the second driving element is forced against the second friction actuating portion by the elastic force of the second elastic element, and in this way, the second driving element is frictionally coupled to the first driving element.
  • the first pre-compression member includes a first elastic element, and the first elastic element is provided on the piezoelectric plate structure of the first driving element and the second frame carrier between, the friction driving part of the first driving element is forced against the first friction actuating part by the elastic force of the first elastic element, and in this way, the first driving element is frictionally coupled on the first frame carrier;
  • the second preloading element includes a second elastic element, and the second elastic element is arranged between the piezoelectric plate structure of the second driving element and the outer frame carrier, in such a way that the second drive element is frictionally coupled to the The second frame carrier.
  • the first elastic element and the second elastic element are implemented as elastic adhesives.
  • the thickness dimension of the first elastic element and the second elastic element is between 10um and 50um.
  • the first pre-pressing component includes a first magnetic attraction element disposed on the first frame carrier and a first magnetic attraction element disposed on the second frame carrier and corresponding to the first magnetic attraction the second magnetic attraction element of the element to force the friction driving part of the first driving element against the first friction action through the magnetic attraction between the first magnetic attraction element and the second magnetic attraction element the moving part, in such a way that the first driving element is frictionally coupled to the first frame carrier; a fourth magnetic attraction element on the outer frame carrier and corresponding to the third magnetic attraction element, so as to force the third magnetic attraction element through the magnetic attraction between the third magnetic attraction element and the fourth magnetic attraction element
  • the frictional drive portions of the two drive elements abut against the second frictional actuation portion, in such a way that the second drive element is frictionally coupled to the second frame carrier.
  • the first frame carrier includes a first groove concavely formed on the surface thereof, and the first friction actuating portion is disposed in the first groove, wherein, The first groove forms a guide groove for guiding the movement of the friction drive portion of the first drive element.
  • the second frame carrier includes a second groove concavely formed on the surface thereof, and the second friction actuating portion is disposed in the second groove, wherein, The second groove forms a guide groove for guiding the movement of the friction drive portion of the second drive element.
  • the first groove has a reduced aperture
  • the second groove has a reduced aperture
  • the driving assembly further includes a first guide mechanism disposed between the first frame carrier and the second frame carrier, and a first guide mechanism disposed between the second frame carrier and the second frame carrier.
  • the second guide mechanism between the outer frame carriers.
  • the driving assembly further includes a first guide mechanism disposed between the first frame carrier and the second frame carrier, and a first guide mechanism disposed between the second frame carrier and the second frame carrier.
  • the second guide mechanism between the outer frame carriers
  • FIG. 1 illustrates a schematic diagram of a camera module according to an embodiment of the present application.
  • FIG. 2 illustrates a schematic diagram of a photosensitive component of the camera module according to an embodiment of the present application.
  • FIG. 3 illustrates another schematic diagram of the camera module according to an embodiment of the present application.
  • FIG. 4A illustrates a schematic diagram of a piezoelectric actuator according to an embodiment of the application.
  • 4B illustrates a schematic diagram of a piezoelectric plate structure of the piezoelectric actuator according to an embodiment of the present application.
  • 4C illustrates a schematic diagram of a driving circuit system of the piezoelectric actuator according to an embodiment of the present application.
  • 4D-4F illustrate schematic diagrams of the piezoelectric actuator moving in a first mode according to an embodiment of the present application.
  • 4G-4I illustrate schematic diagrams of the piezoelectric actuator moving in a second mode according to embodiments of the present application.
  • FIG. 4J illustrates another schematic diagram of the piezoelectric plate structure of the piezoelectric actuator according to an embodiment of the present application.
  • FIG. 4K illustrates a schematic diagram of the piezoelectric actuator acting on a moved object according to an embodiment of the present application.
  • 4L illustrates a schematic diagram of the movement of the piezoelectric actuator according to an embodiment of the present application.
  • FIG. 5 illustrates a schematic diagram of a variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 6 illustrates a schematic diagram of another modified embodiment of the camera module according to the embodiment of the present application.
  • FIG. 7 illustrates a schematic diagram of another variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram illustrating yet another variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 9 illustrates a schematic diagram of a camera module according to an embodiment of the present application.
  • FIG. 10 illustrates a schematic diagram of a photosensitive component of the camera module according to an embodiment of the present application.
  • FIG. 11A illustrates one of schematic diagrams of an optical lens, a frame carrier assembly and a driving assembly of the camera module according to an embodiment of the present application.
  • FIG. 11B illustrates the second schematic diagram of an optical lens, a frame carrier assembly and a driving assembly of the camera module according to an embodiment of the present application.
  • FIG. 11C illustrates the third schematic diagram of an optical lens, a frame carrier assembly and a driving assembly of the camera module according to an embodiment of the present application.
  • FIG. 12A illustrates a schematic diagram of a piezoelectric actuator according to an embodiment of the application.
  • FIG. 12B illustrates a schematic diagram of a piezoelectric plate structure of the piezoelectric actuator according to an embodiment of the present application.
  • Figure 12C illustrates a schematic diagram of output signals of the drive circuitry of the piezoelectric actuator according to an embodiment of the present application.
  • 12D-12F illustrate schematic diagrams of the piezoelectric actuator moving in a first mode according to an embodiment of the present application.
  • 12G-12I illustrate schematic diagrams of the piezoelectric actuator moving in a second mode according to embodiments of the present application.
  • 12J illustrates another schematic diagram of a piezoelectric plate structure of the piezoelectric actuator according to an embodiment of the present application.
  • FIG. 12K illustrates a schematic diagram of the piezoelectric actuator acting on a moved object according to an embodiment of the present application.
  • FIG. 12L illustrates a schematic diagram of the movement of the piezoelectric actuator according to an embodiment of the present application.
  • FIG. 13 illustrates a schematic diagram of a variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 14 illustrates a schematic diagram of another variant implementation of the camera module according to the embodiment of the present application.
  • FIG. 15 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 16 illustrates a schematic diagram of still another variant implementation of the camera module according to the embodiment of the present application.
  • FIG. 17 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application.
  • a camera module according to an embodiment of the present application is illustrated, which includes: a photosensitive assembly 10 , a lens assembly 20 held on a photosensitive path of the photosensitive assembly 10 , and a camera module for driving the photosensitive assembly 10 Assembly 10 to drive assembly 40 for optical image stabilization.
  • the lens assembly 20 includes a lens carrier 21 and an optical lens 22 mounted on the lens carrier 21 .
  • the optical lens 22 includes a lens barrel and at least one optical lens mounted in the lens barrel.
  • the optical lens 22 can be implemented as an integrated lens, or a split lens, wherein, when the optical lens 22 is implemented as an integrated lens, the optical lens 22 includes a lens barrel, All the optical lenses are installed in the lens barrel; and when the optical lens 22 is implemented as a split optical lens, the optical lens 22 is assembled from at least two parts of a single lens.
  • the lens carrier 21 is a fixed carrier, that is, when the optical lens 22 is installed on the lens carrier 21, the relative relationship between the lens carrier 21 and the optical lens 22 The positional relationship does not change. It should be understood that in other examples of the present application, the lens carrier 21 may also be implemented as a driving carrier, so as to change the relative positional relationship between the optical lens 21 and the photosensitive assembly 10 through the driving carrier to Autofocus is performed, which is not limited by this application.
  • the photosensitive assembly 10 includes a circuit board 11 , a photosensitive chip 12 electrically connected to the circuit board 11 , and a filter held on the photosensitive path of the photosensitive chip 12 .
  • the component 13 wherein the circuit board 11 forms the mounting substrate of the photosensitive component 10 .
  • the circuit board can be implemented as a printed circuit board (Printed Circuit Board, PCB), a software combination board, or a reinforced flexible circuit board (Flexible Printed Circuit, PFC).
  • a reinforcing plate (not shown) can also be arranged under the circuit board 11, for example, a steel sheet is arranged under the circuit board, so as to strengthen all the The strength of the circuit board is improved and the heat dissipation performance of the photosensitive component is improved.
  • the photosensitive assembly 10 further includes a bracket 14 disposed on the circuit board 11 , wherein the filter element 13 is mounted on the bracket 14 to be maintained on the photosensitive path of the photosensitive chip 12 .
  • the specific implementation of the filter element 13 held on the photosensitive path of the photosensitive chip 12 is not limited by the present application.
  • the filter element 13 may be implemented as a filter element The film is coated on the surface of a certain optical lens of the lens group, so as to have the effect of filtering light.
  • the photosensitive component 10 may further include a filter element bracket (not shown) mounted on the bracket 14. Schematic diagram), wherein the filter element 13 is held on the photosensitive path of the photosensitive chip 12 by being mounted on the filter element holder.
  • the bracket 14 may be implemented as a plastic bracket, which is attached to the circuit board 11 through an adhesive.
  • the bracket 14 may also be implemented as an integrated bracket integrally formed on the circuit board 11 , such as a molded bracket, which is not limited by this application.
  • the existing driving element for driving the optical component is an electromagnetic motor, for example, a voice coil motor (Voice Coil Motor: VCM), a shape memory alloy actuator (Shape of Memory Alloy Actuator: SMA), and the like.
  • VCM voice Coil Motor
  • SMA shape of Memory Alloy Actuator
  • the existing voice coil motors and shape memory alloy drivers are only suitable for driving optical components with a weight of less than 100mg, that is, if the weight of the optical components exceeds 100mg, the existing drivers will not be able to meet the application requirements of the camera module .
  • the existing voice coil motor is equipped with a coil and a magnet.
  • the internal magnetic fields will interact with each other, causing the magnets to move or shake, reducing the stability of the drive control. .
  • the new type of driver can not only meet the driving requirements for the optical performance adjustment of the camera module, but also meet the development of light weight and thinning of the camera module. need.
  • the new driver needs to meet the following requirements: relatively larger driving force, and better driving performance (specifically including: higher-precision driving control and longer driving journey).
  • the present application proposes a piezoelectric actuator with a novel structure, which can meet the technical requirements of the camera module for the driver. And, the piezoelectric actuator is further arranged in the camera module by using a suitable arrangement, so that it meets the structural design requirements and size design requirements of the camera module.
  • the piezoelectric actuator 100 includes an actuation system 110 and a drive circuit system 120 , wherein the actuation system 110 controls the drive circuit system 120
  • the lower part moves in a two-dimensional trajectory along a preset direction in the manner of bending vibration in two directions.
  • the piezoelectric actuator 100 is a high-efficiency semi-resonant drive system, and after being turned on, the actuation system 110 of the piezoelectric actuator 100 can move along two It moves in a two-dimensional trajectory along a preset direction in the manner of bending vibration in one direction, so as to frictionally couple and move the acted object along the preset direction.
  • the actuating system 110 includes a piezoelectric plate structure 111 and a friction driving part 112 fixed to the piezoelectric plate structure 111 .
  • the piezoelectric plate structure 111 may be symmetrical or asymmetrical.
  • the piezoelectric plate structure 111 has a first side surface extending along its depth direction and a second side surface extending along its height direction and adjacent to the first side surface, wherein the piezoelectric plate
  • the structure 111 has a first resonance frequency along its depth direction (eg, D as illustrated in FIG. 4A ) and a second resonance frequency along its height direction (eg, H as illustrated in FIG. 4A ).
  • the height dimension of the piezoelectric plate structure 111 is greater than the depth dimension thereof, that is, the second resonance frequency is greater than the first resonance frequency.
  • the piezoelectric plate structure 111 includes at least one piezoelectric layer formed together.
  • the thickness of the piezoelectric plate structure 111 ranges from 5um to 40um.
  • the at least one piezoelectric layer structure may be a single piezoelectric layer, or may include a plurality of piezoelectric layers stacked together (for example, a plurality of piezoelectric layers that are co-fired together). parallel piezoelectric layers).
  • multiple piezoelectric layers can achieve similar effects under the premise of applying a smaller voltage.
  • the piezoelectric plate structure 111 includes a first piezoelectric region 1111 , a second piezoelectric region 1112 and a third piezoelectric region 1113 formed on the second side surface, And, a fourth piezoelectric region 1114 formed on the first side surface, wherein the second piezoelectric region 1112 is located between the first piezoelectric region 1111 and the third piezoelectric region 1113, and all the The fourth piezoelectric region 1114 is adjacent to the second piezoelectric region 1112 .
  • the piezoelectric plate structure 111 further includes a first electrode pair 1115 electrically connected to the first piezoelectric region 1111 , a second electrode pair 1116 electrically connected to the second piezoelectric region 1112 , and a second electrode pair 1116 electrically connected to the second piezoelectric region 1112 .
  • the third electrode pair 1117 of the third piezoelectric region 1113 is electrically connected to the fourth electrode pair 1118 of the fourth piezoelectric region 1114 . That is, in the example illustrated in FIG. 1 , the piezoelectric plate structure 111 includes four piezoelectric regions and four electrode pairs electrically connected to the four piezoelectric regions, respectively.
  • the piezoelectric plate structure 111 may include other numbers of piezoelectric regions and electrode pairs, which are not limited by the present application.
  • one of the first piezoelectric region 1111 and the third piezoelectric region 1113, and/or the second piezoelectric region 1112 and the One of the fourth piezoelectric regions 1114 may be passive, which may reduce the drive amplitude but not alter the operation of the actuation system 110 .
  • the first piezoelectric region 1111 , the second piezoelectric region 1112 , the third piezoelectric region 1113 and the fourth piezoelectric region 1114 The polarities produced by the neutralization, thus forming the positive and negative electrodes.
  • the first piezoelectric region 1111 is polarized during the manufacturing process such that one electrode of the first electrode pair 1115 corresponding to the first piezoelectric region 1111 forms a negative electrode (eg, as shown in FIG. 4A ) A-), the other electrode forms the positive electrode (eg, A+ as illustrated in FIG.
  • the third piezoelectric region 1113 is polarized during fabrication so that the third piezoelectric region 1113 corresponds to the In the third electrode pair 1117 of , one electrode forms a negative electrode (eg, B- as shown in FIG. 4A ), and the other electrode forms a positive electrode (eg, B+ as shown in FIG. 4A ); the second piezoelectric region 1112 is polarized during fabrication such that one electrode of the second electrode pair 1116 corresponding to the second piezoelectric region 1112 forms the negative electrode (eg, C- as illustrated in FIG. 4A ) and the other electrode forms the positive electrode (eg, C+ as illustrated in FIG.
  • each electrode of the first electrode pair 1115 and/or the second electrode pair 1116 and/or the third electrode pair 1117 and/or the second electrode pair 1116 has "L" type.
  • one electrode in the first electrode pair 1115 is coupled and cross-connected with one inner electrode of each piezoelectric layer of the first piezoelectric region 1111 , so The other electrode of the first electrode pair 1115 is alternately connected to the inner electrode of the first piezoelectric region 1111 opposite to each piezoelectric layer, wherein during the polarization process, the first electrode pair 1115 One electrode was identified as the positive electrode and the other electrode was identified as the negative electrode.
  • One electrode of the second electrode pair 1116 is coupled and cross-connected to one internal electrode of each piezoelectric layer of the second piezoelectric region 1112, and the other electrode of the second electrode pair 1116 is cross-connected to The inner electrodes of the second piezoelectric region 1112 opposite to each piezoelectric layer, wherein one electrode of the second electrode pair 1116 is determined as a positive electrode and the other electrode is determined as a negative electrode during the polarization process.
  • One electrode of the third electrode pair 1117 is coupled and cross-connected to one internal electrode of each piezoelectric layer of the third piezoelectric region 1113, and the other electrode of the third electrode pair 1117 is cross-connected to The inner electrodes of the third piezoelectric region 1113 opposite to each piezoelectric layer, wherein one electrode of the third electrode pair 1117 is determined as a positive electrode and the other electrode is determined as a negative electrode during the polarization process.
  • One electrode of the third electrode pair 1117 is coupled and cross-connected to one internal electrode of each piezoelectric layer of the third piezoelectric region 1113, and the other electrode of the third electrode pair 1117 is cross-connected to The inner electrodes of the third piezoelectric region 1113 opposite to each piezoelectric layer, wherein one electrode of the third electrode pair 1117 is determined as a positive electrode and the other electrode is determined as a negative electrode during the polarization process.
  • the driving circuit system 120 includes a first driving circuit 121 and a second driving circuit 122 , and the first driving circuit 121 is electrically connected to the first electrode pair 1115 and the The third electrode pair 1117 and the second driving circuit 122 are electrically connected to the second electrode pair 1116 and the fourth electrode pair 1118 , wherein the first driving circuit 121 and the second driving circuit 122 may be It is a full-bridge drive circuit, or other drive circuits.
  • the driving circuit system 120 has four kinds of output circuit vibration signals: 124(1)-124(4), wherein the output circuit vibration signals may be as shown in FIG. 3 .
  • the ultrasonic square wave vibration signal can also be other signals, for example, a sinusoidal signal.
  • the piezoelectric plate structure 111 has two bending modes: mode 1 and mode 2, wherein each of the mode 1 and the mode 2 has different resonance frequencies.
  • the vibration amplitude of the bending mode of the piezoelectric plate structure 111 depends on the vibration frequency of the output circuit vibration signal. Specifically, when the driving circuit system 120 applies a circuit vibration signal to the piezoelectric plate structure 111 at the resonance frequency for one of the two bending modes (eg, the resonance frequency of Mode 1), for the piezoelectric plate structure 111
  • the vibrational amplitudes of the flexural modes operating at the resonant frequency are fully amplified, and are only partially amplified for the other flexural modes operating at partial resonance.
  • the piezoelectric plate structure 111 when the vibration frequency of the circuit vibration signal output by the first drive circuit 121 is the first resonance frequency, the piezoelectric plate structure 111 resonates in its height direction and partially resonates in its depth direction. , so that the piezoelectric plate structure 111 moves in a two-dimensional trajectory along a preset direction by bending and vibrating in two directions; wherein, when the vibration frequency of the circuit vibration signal input by the second drive circuit 122 is When the second resonant frequency is the second resonance frequency, the piezoelectric plate structure 111 resonates in its depth direction and partially resonates in its height direction, so that the piezoelectric plate structure 111 bends and vibrates in two directions. It moves in a two-dimensional trajectory along a preset direction.
  • the first driving circuit 121 and the second driving circuit 122 can output 4 circuit vibration signals: 124(1)-124(4) .
  • the voltage of the circuit vibration signal is 2.8V
  • each of the four vibration signals has a vibration frequency, which is substantially equal to any one of the two bending modes of the piezoelectric plate structure 111 .
  • the resonance frequency ie the vibration frequency is substantially equal to the first resonance frequency or the second resonance frequency.
  • the circuit vibration signals from outputs 124(1)-124(2) are phase-shifted by the drive circuitry 120 relative to the circuit vibration signals from outputs 124(3)-124(4) by about 0 degrees to 90 degrees, It is thus exclusive to move in one of two directions.
  • the drive circuitry 120 adjusts the outputs 124(1)-124(2) to be phase-shifted to about -180 degrees to -90 degrees relative to the outputs 124(3)-124(4) to move in opposite directions (ie, both the opposite of the directions) to move the movable member.
  • FIG. 4D to 4F illustrate schematic diagrams of the piezoelectric actuator 100 moving in a first mode according to an embodiment of the present application. As shown in Figures 4D to 4F, this bending mode is due to the application of circuit vibration signals from outputs 124(1)-124(2) of different stages to the first piezoelectric region 1111 and the said first piezoelectric region 1111 having opposite polarities The third piezoelectric region 1113 is generated. When the piezoelectricity of all electrodes is 0, FIG. 4D shows the situation when the piezoelectric plate structure 111 is at rest.
  • 4G to 4I illustrate schematic diagrams of the piezoelectric actuator 100 moving in a second mode according to an embodiment of the present application.
  • this bending mode is due to the application of vibration signals from the outputs 124(3)-124(4) of different stages to the second piezoelectric region 1112 and the second piezoelectric region 1112 having opposite polarities
  • Four piezoelectric regions 1114 are produced.
  • FIG. 4G shows the situation when the piezoelectric plate structure 111 is at rest.
  • the voltage difference between outputs 124(3) and 124(4) is positive, the length of the second piezoelectric region 1112 decreases and the length of the fourth piezoelectric region 1114 increases, so that the piezoelectric
  • the plate structure 111 is bent as shown in Figure 4H.
  • the voltage difference between outputs 124(3) and 124(4) is negative, the length of the second piezoelectric region 1112 increases and the length of the fourth piezoelectric region 1114 decreases, so that the voltage The electric plate structure is bent as shown in Figure 4I.
  • the actuation system 110 forms an elliptical track-like two-dimensional trajectory, that is, the drive circuit system 120
  • the rotation direction of the actuating system 110 on the elliptical orbital path can be controlled according to the phase difference value, so that the actuating system 110 can drive the acted object at a relatively smaller and more precise step speed.
  • FIG. 4J illustrates another schematic diagram of the piezoelectric plate structure 111 of the piezoelectric actuator 100 according to an embodiment of the present application.
  • the actuating system 110 further includes a friction driving part 112 fixed to the piezoelectric plate structure 111 , wherein the friction driving part 112 is adapted to be frictionally coupled on the acted object to drive the acted object to move along a predetermined direction through friction.
  • the piezoelectric actuator 100 is usually provided with preloading parts 43 / 46 .
  • the pre-compression member 43/46 provides a pre-pressure between the piezoelectric actuator 100 and the object to be acted upon, so that the friction driving part 112 of the piezoelectric actuator 100 can be frictionally coupled to the object to be acted upon.
  • the acting object is used to drive the acted object to move in a predetermined direction through friction, as shown in FIG. 4L .
  • the friction driving part 112 includes at least one contact pad, which can be fixed to the piezoelectric plate structure 111 along the depth direction, or can be fixed to the piezoelectric plate along the height direction Structure 111.
  • the at least one contact pad may have a hemispherical shape, of course, other shapes, such as a semi-cylindrical shape, a stage body, a rectangle, etc. are also possible.
  • the at least one contact pad is made of materials with better friction performance and durability, for example, metal oxide materials (eg, zirconia, alumina, etc.).
  • the piezoelectric actuator 100 has the advantages of small size, large thrust, and high precision.
  • the piezoelectric actuator 100 according to the embodiment of the present application can provide a driving force of 0.6N to 2N, which is sufficient to drive a component with a weight greater than 100 mg.
  • the piezoelectric actuator 100 has other advantages compared to the traditional electromagnetic motor solution and memory alloy motor solution, including but not limited to: a relatively small size (with Slender shape), better response accuracy, relatively simpler structure, relatively simpler drive control, high product consistency, no electromagnetic interference, relatively larger stroke, short stabilization time, relatively small weight, etc.
  • the camera module needs to be equipped with a driver that has a long driving stroke and needs to ensure better alignment accuracy.
  • a driver that has a long driving stroke and needs to ensure better alignment accuracy.
  • additional guide rods or ball guides need to be designed, and large-sized driving magnets/coils need to be adapted to the side of the lens, and balls, shrapnel, and suspension wires need to be installed.
  • Other auxiliary positioning devices in order to accommodate more components, ensure structural strength and reserve structural gaps, often lead to large lateral dimensions of the module, complex structural design, and heavy module weight.
  • the memory alloy motor solution is limited by the relatively small stroke that the memory alloy solution can provide in the same proportion, and there are reliability risks such as potential disconnection.
  • the piezoelectric actuator 100 has a relatively simple structure, the assembly structure is simpler, and the size of its components is basically independent of the movement stroke of the piezoelectric actuator 100 , so the piezoelectric actuator 100 It can achieve the advantages of large thrust, small size, and small weight, and at the same time, it can be designed to match the larger stroke or heavier device weight, and the integration in the design is also higher.
  • the piezoelectric actuator 100 pushes the object to be pushed to perform micron-scale motion in a frictional contact manner.
  • the non-contact manner of driving the object to be pushed requires the electromagnetic force to counteract the gravity, and the frictional force It has the advantages of larger thrust, larger displacement and lower power consumption, and at the same time, the control accuracy is higher.
  • the piezoelectric actuator 100 does not have a magnet coil structure, so there is no problem of magnetic interference.
  • the piezoelectric actuator 100 can be self-locked by the friction force between the components, so the abnormal shaking noise of the camera module can be reduced when the optical anti-shake is performed.
  • the driving assembly 40 including: a first carrying frame 41, a first driving element 42, a first preloading part 43, a second carrying frame 44, a second driving element 45, a second preloading part 46 and an outer frame 47, wherein the first A drive element 42 and the second drive element 45 are implemented as piezoelectric actuators 100 as described above.
  • the photosensitive assembly 10 is mounted on the first carrying frame 41 , and the first driving element 42 passes through the first pre-pressing member 43 .
  • the second carrying frame 44 is externally arranged on the first carrying frame 41 , wherein the second driving element 45 is frictionally coupled to the second carrying frame 44 through the second pre-compression member 46 , and is configured to move along the second direction in a two-dimensional trajectory in a plane perpendicular to the optical axis in a bending vibration in two directions after being driven to drive the second carrier frame 44 by friction
  • the first carrying frame 41 is driven to drive the photosensitive element 10 to move in a plane perpendicular to the optical axis to perform optical image stabilization in a second direction, the first direction being perpendicular to the second direction.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction.
  • the first driving element 42 is frictionally coupled to the first carrying frame 41, including: the first driving element 42 has a direct frictional action with the first carrying frame 41, and the first driving Indirect friction between the element 42 and the first carrier frame 41 (ie, although there is no direct friction between the first drive element 42 and the first carrier frame 41, the first drive element The friction driving force generated by 42 can act on the first bearing frame 41).
  • the second drive element 43 is frictionally coupled between the second carrier frame 44 and the outer frame 47 , including: the second drive element 43 is directly connected to the second carrier frame 44 friction, and indirect friction between the second drive element 43 and the second carrier frame 44 (ie, although there is no direct frictional force, but the frictional driving force generated by the second driving element 44 can act on the second carrying frame 44).
  • the first driving element 42 is clamped and disposed on the first carrying frame 41 and the second carrying frame 41 by the first preloading member 43 . Between the frames 44 , the first drive element 42 is frictionally coupled to the first carrier frame 41 in such a way.
  • the first pre-compression member 43 includes a first elastic element 431 , and the first elastic element 431 is disposed on the piezoelectric plate structure 111 of the first driving element 42 and the Between the second bearing frames 44 , the first driving element 42 is frictionally coupled to the first bearing frame 41 by the elastic force of the first elastic element 431 .
  • the friction driving portion 112 of the first driving element 42 directly abuts against the surface of the outer side wall of the first bearing frame 41 , and accordingly, the elastic force provided by the first elastic element 431 can The friction driving portion 112 of the first driving element 42 is forced to abut against the surface of the outer side wall of the first bearing frame 41 to form a frictional contact bonding relationship therebetween.
  • the friction driving part 112 of the first driving element 42 can drive the first carrier frame 41 to move in the first direction in a friction driving manner, To drive the photosensitive assembly 10 to move along the first direction to perform optical anti-shake in the first direction.
  • the first elastic element 431 is implemented as an elastic adhesive, that is, the first elastic element 431 is implemented as a glue with elasticity after curing.
  • a layer of adhesive with a thickness of 10um to 50um can be applied between the surface of the inner side wall of the second carrier frame 44 and the piezoelectric plate structure 111 of the first driving element 42 .
  • the first elastic element 431 disposed between the piezoelectric plate structure 111 of the first driving element 42 and the second supporting frame 44 is formed after the adhesive is cured and formed.
  • the first elastic element 431 can also enable the first driving element 42 to be fixed to the surface of the inner side wall of the second bearing frame 44 while providing a pre-pressure.
  • the first elastic element 431 has a relatively high flatness, that is, when applying the adhesive, it is ensured that the applied adhesive has a relatively high flatness and uniformity as much as possible, so that the The first driving element 42 can be flatly fixed to the surface of the inner side wall of the second carrying frame 44 , thereby improving the driving stability of the first driving element 42 .
  • the second driving element 45 is clamped and disposed between the second carrying frame 44 and the outer frame 47 by the second preloading member 46 .
  • the second drive element 45 is frictionally coupled to the second carrier frame 44 .
  • the lens carrier 21 of the lens assembly 20 is carried on the outer frame 47 .
  • the second pre-compression member 46 includes a second elastic element 461 , and the second elastic element 461 is arranged on the piezoelectric of the second driving element 45 . Between the plate structure 111 and the outer frame 47 , the second driving element 45 is frictionally coupled to the second bearing frame 44 by the elastic force of the second elastic element 461 .
  • the friction driving portion 112 of the second driving element 45 directly abuts against the surface of the outer side wall of the second carrying frame 44 , and accordingly, the second elastic element 461
  • the provided elastic force can force the friction driving portion 112 of the second driving element 45 to abut against the surface of the outer side wall of the second bearing frame 44 to form a frictional contact bonding relationship therebetween.
  • the friction driving part 112 of the second driving element 45 can drive the second carrier frame 44 to move in the second direction in a friction driving manner, To drive the photosensitive assembly 10 to move along the second direction to perform optical anti-shake in the second direction.
  • the second elastic element 461 is implemented as an elastic adhesive, that is, the second elastic element 461 is implemented as a glue with elasticity after curing.
  • a layer of adhesive with a thickness of 10um to 50um can be applied between the surface of the inner side wall of the outer frame 47 and the piezoelectric plate structure 111 of the second driving element 45 to After the adhesive is cured and formed, the second elastic element 461 disposed between the piezoelectric plate structure 111 of the second driving element 45 and the outer frame 47 is formed.
  • the second elastic element 461 can also enable the second driving element 45 to be fixed to the surface of the inner side wall of the outer frame 47 while providing a pre-pressure.
  • the second elastic element 461 has a relatively high flatness, that is, when the adhesive is applied, it is ensured that the applied adhesive has a relatively high flatness and uniformity as much as possible, so that the The second driving element 45 can be flatly fixed to the surface of the inner side wall of the outer frame 47 , thereby improving the driving stability of the second driving element 45 .
  • the first elastic element 431 and the second elastic element 461 can also be implemented as elastic elements without viscosity, for example, the material itself has elasticity rubber, or springs, leaf springs, etc. that generate elasticity due to deformation, which are also not limited by this application.
  • the structural configuration of the first pre-compression member 43 and the second pre-compression member 46 can also be adjusted.
  • the first pre-compression member 43 includes a first magnetic element 52 disposed on the first carrying frame 41 and a first magnetic element 52 disposed on the second carrying frame 44 and corresponding to the second magnetic element 53 of the first magnetic element 52 to force the first driving element 42 through the magnetic attraction between the first magnetic element 52 and the second magnetic element 53 Frictionally coupled to the first carrier frame 41 .
  • the second pre-compression member 46 includes a third magnetic element 62 disposed on the second carrier frame 44 and a fourth magnetic element 62 disposed on the lens carrier 21 and corresponding to the third magnetic element 62 . 63 , so as to force the second driving element 45 to be frictionally coupled to the second carrier frame 44 through the magnetic attraction between the third magnetic element 62 and the fourth magnetic element 63 .
  • the first magnetic element 52 and the second magnetic element 53 refer to magnetic components that can attract each other.
  • the first magnetic element 52 can be implemented as a magnet, so
  • the second magnetic attraction element 53 may be implemented as a magnetic component, for example, a material made of iron, nickel, cobalt, etc.; for another example, the first magnetic attraction element 52 may be implemented as a magnet, and the second magnetic attraction element 52 may be implemented as a magnet.
  • the magnetic attraction element 53 can also be implemented as a magnet.
  • the third magnetic element 62 and the fourth magnetic element 63 refer to magnetic components that can attract each other.
  • the third magnetic element 62 can be implemented as a magnet, so
  • the fourth magnetic attraction element 63 may be implemented as a magnetic component, for example, a material made of iron, nickel, cobalt and other metals; for another example, the third magnetic attraction element 62 may be implemented as a magnet, and the fourth magnetic attraction element 62 may be implemented as a magnet.
  • the magnetic attraction element 63 can also be implemented as a magnet.
  • the driving assembly 40 It further includes a first guide mechanism 48 arranged between the first bearing frame 41 and the second bearing frame 44 and a second guide mechanism 48 arranged between the second bearing frame 44 and the outer frame 47 A guide mechanism 49, wherein the first guide mechanism 48 is configured to guide the first carrier frame 41 to move along the first direction, and the second guide mechanism 49 is configured to guide the second The carrier frame 44 moves along the second direction.
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as guide rod structures.
  • the first guide mechanism 48 includes a first guide rod disposed on the outer side wall of the first bearing frame 41 and extending along the first direction, wherein two of the first guide rods The ends are fixed on the inner side wall of the second carrier frame 44 .
  • the first guide rod and the first driving element 42 are arranged opposite to each other in the same direction, so that after the first driving element 42 is turned on, the first carrying frame 41 is guided to move along the extending direction of the first guide rod, so as to improve the movement stability of the first carrying frame 41 .
  • the second guide mechanism 49 includes a second guide rod disposed on the outer side wall of the second carrying frame 44 and extending along the second direction, wherein the Both ends of the second guide rod are fixed to the inner side wall of the outer frame 47 .
  • the second guide rod and the second driving element 45 are arranged opposite to each other in the same direction, so that after the second driving element 45 is turned on, the second carrying frame 44 is guided to move along the extending direction of the second guide rod, so as to improve the movement stability of the second carrying frame 44 .
  • first guide mechanism 48 and the second guide mechanism 49 can also be implemented based on other principles, for example, through a ball-rolling groove mechanism, a sliding block- The chute mechanism, etc., are not limited by this application.
  • the driving assembly 40 further includes a first friction actuating portion 131 and the second friction actuating portion 132, wherein the first friction actuating portion 131 is provided between the first driving element 42 and the first carrying frame 41 and the first driving element 42 is
  • the friction driving part 112 is in contact with the first friction actuating part 131 under the action of the first pre-compression member 43
  • the first friction actuating part 131 is in contact with the outer side wall of the first bearing frame 41 .
  • the friction driving force provided by the first driving element 42 can act on the first bearing frame 41 through the first friction actuating part 131 to drive the first bearing frame 41 and the photosensitive assembly 10 move along the first direction.
  • the pre-pressure between the friction driving portion 112 of the first driving element 42 and the first carrying frame 41 is an indirect pre-pressure, that is, although the first driving element There is no direct contact between the friction driving part 112 of the first driving element 42 and the first bearing frame 41, but there is still a pre-pressure between the two, so that the friction driving part 112 of the first driving element 42 can be driven by friction.
  • the first carrier frame 41 is driven.
  • the second friction actuating portion 132 is disposed between the second driving element 45 and the second carrier frame 44 and the friction driving portion 112 of the second driving element 45 is located between the second driving element 45 and the second carrier frame 44 .
  • the second friction actuating portion 132 is in contact with the second friction actuating portion 132, and the second friction actuating portion 132 is in contact with the surface of the outer side wall of the second carrying frame 44. In this way, all the The friction driving force provided by the second driving element 45 can act on the second bearing frame 44 through the second friction actuating portion 132 to drive the second bearing frame 44 and the first bearing frame 41 and the photosensitive assembly 10 is moved along the second direction to perform optical anti-shake in the second direction.
  • the first friction actuating portion 131 has a first surface and a second surface opposite to the first surface, wherein, in the first pre- Under the action of the pressing member 43 , the first surface of the first friction actuating portion 131 abuts against the surface of the outer side wall of the first bearing frame 41 , and the second surface thereof abuts against the plurality of friction driving elements 121 .
  • the second friction actuating portion 132 has a third surface and a fourth surface opposite to the third surface, wherein, under the action of the second pre-compression member 46 , the second friction actuating The third surface of the movable portion 132 is in contact with the surface of the outer side wall of the second carrying frame 44 , and the fourth surface is in contact with the second end of at least one of the friction driving elements 121 of the plurality of friction driving elements 121 .
  • the friction driving portion 112 of the second driving element 45 abuts against the second friction actuating portion 132 and the second friction actuating portion 132 abuts against the second bearing frame 44 , In this way, the friction driving force provided by the second driving element 45 can act on the second bearing frame 44 through the second friction actuating portion 132 .
  • first friction actuating portion 131 and the second friction actuating portion 132 are respectively provided as a separate component in the first drive Between the element 42 and the first carrier frame 41, and between the second drive element 45 and the second carrier frame 44, for example, the first friction actuating part 131 is implemented as a single component and is attached to the side surface of the first carrier frame 41, or the second friction actuating portion 132 is implemented as a separate component and attached to the side surface of the second carrier frame 44,
  • the first friction actuating portion 131 is implemented as a layer of coating applied to the side surface of the first bearing frame 41, or the second friction actuating portion 132 is implemented as a layer A coating applied to the side surface of the second carrier frame 44 .
  • first friction actuating portion 131 may also be integrally formed on the surface of the outer side wall of the first carrying frame 41 , that is, the first friction actuating portion 131 and the The first bearing frame 41 has an integrated structure.
  • second friction actuating portion 132 may also be integrally formed on the surface of the outer side wall of the second carrying frame 44 , that is, the second friction actuating portion 132 and the The second carrier frame 44 has a one-piece structure.
  • FIG. 6 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application. Compared with the example shown in FIG. 1 , in this variant embodiment, the arrangement of the first driving element 42 and the second driving element 45 is adjusted.
  • the first driving element 42 is located on the side of the first carrier frame 41
  • the second driving element 45 is located on the second carrier The side of the frame 44 .
  • the first driving element 42 is located on the upper part of the first carrying frame 41
  • the second driving element 45 is located on the second carrying frame 44 . the upper part.
  • the first driving element 42 is clamped and disposed between the first carrier frame 41 and the second carrier frame 44 through the first pre-compression member 43 up and down , in this way, the first drive element 42 is frictionally coupled to the first carrier frame 41 .
  • the second driving element 45 is clamped and disposed between the second carrier frame 44 and the lens carrier 21 through the second pre-compression member 46 . In this way, the second driving element 45 is frictionally coupled to the second carrier frame 44 .
  • the driving assembly 40 further includes a first guide mechanism 48 disposed between the first carrying frame 41 and the second carrying frame 44 and a first guiding mechanism 48 disposed between the second carrying frame 44 and the second carrying frame 44 .
  • the second guide mechanism 49 between the outer frames 47 .
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as ball-roll groove mechanisms, as shown in FIG. 7 is shown.
  • FIG. 8 is a schematic diagram illustrating yet another variant implementation of the camera module according to an embodiment of the present application. Compared with the example shown in FIG. 1 , in this variant embodiment, the arrangement of the first driving element 42 and the second driving element 45 is adjusted again.
  • the first driving element 42 is located at the lower part of the first carrying frame 41
  • the second driving element 45 is located in the second carrying frame The lower part of 44.
  • the first driving element 42 is clamped and disposed between the first carrier frame 41 and the second carrier frame 44 through the first pre-compression member 43 up and down , in this way, the first drive element 42 is frictionally coupled to the first carrier frame 41 .
  • the second driving element 45 is clamped and disposed between the second carrying frame 44 and the outer frame 47 by the second pre-compression member 46. In this way, the second driving element 45 is frictionally coupled to the second carrier frame 44 .
  • the driving assembly 40 further includes a first guide mechanism 48 disposed between the first carrying frame 41 and the second carrying frame 44 and a first guiding mechanism 48 disposed between the second carrying frame 44 and the second carrying frame 44 .
  • the second guide mechanism 49 between the outer frames 47 .
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as ball-roll groove mechanisms, as shown in FIG. 8 shown.
  • the camera module based on the embodiments of the present application is clarified, wherein the camera module adopts the piezoelectric actuator 100 as a driver, so as to not only meet the driving requirements of the camera module for optical performance adjustment, but also be able to Meet the development needs of light and thin camera modules.
  • the camera module is taken as an example of a traditional upright camera module
  • the piezoelectric actuator 100 according to the embodiments of the present application also It can be used as a driver in a periscope camera module, which is not limited by this application.
  • a camera module As shown in FIG. 9 , a camera module according to an embodiment of the present application is illustrated, which includes: a photosensitive assembly 10 , an optical lens 20 held on a photosensitive path of the photosensitive assembly 10 , a frame carrier assembly 30 , and a The driving component 40 for driving the optical lens 20 to perform optical anti-shake.
  • the photosensitive assembly 10 includes a circuit board 11 , a photosensitive chip 12 electrically connected to the circuit board 11 , and a filter held on the photosensitive path of the photosensitive chip 12 .
  • the component 13 wherein the circuit board 11 forms the mounting substrate of the photosensitive component 10 .
  • the circuit board may be implemented as a printed circuit board (Printed Circuit Board, PCB), a software combination board, or a reinforced flexible circuit board (Flexible Printed Circuit, PFC).
  • a reinforcing plate (not shown) may also be arranged under the circuit board 11, for example, a steel sheet is arranged under the circuit board, so as to strengthen all the The strength of the circuit board is improved and the heat dissipation performance of the photosensitive component is improved.
  • the photosensitive assembly 10 further includes a bracket 14 disposed on the circuit board 11 , wherein the filter element 13 is mounted on the bracket 14 to be maintained on the photosensitive path of the photosensitive chip 12 .
  • the specific implementation of the filter element 13 held on the photosensitive path of the photosensitive chip 12 is not limited by the present application.
  • the filter element 13 may be implemented as a filter element The film is coated on the surface of a certain optical lens of the optical lens, so as to have the effect of filtering light.
  • the photosensitive component 10 may further include a filter element bracket (not shown) mounted on the bracket 14. Schematic diagram), wherein the filter element 13 is held on the photosensitive path of the photosensitive chip 12 by being mounted on the filter element holder.
  • the bracket 14 may be implemented as a plastic bracket, which is attached to the circuit board 11 through an adhesive.
  • the bracket 14 may also be implemented as an integrated bracket integrally formed on the circuit board 11 , such as a molded bracket, which is not limited by this application.
  • the frame carrier assembly 30 is mounted on the photosensitive assembly 10 , wherein the frame carrier assembly 30 includes an outer frame carrier mounted on the bracket 14 33 .
  • the second frame carrier 32 accommodated in the outer frame carrier 33 and the first frame carrier 31 accommodated in the second frame carrier 32 . That is, in this embodiment, the frame carrier assembly includes a first frame carrier 31 , a second frame carrier 32 externally provided on the first frame carrier 31 , and a second frame carrier 32 externally provided on the second frame carrier 32 .
  • Outer frame carrier 33 is, a first frame carrier 31 , a second frame carrier 32 externally provided on the first frame carrier 31 , and a second frame carrier 32 externally provided on the second frame carrier 32 .
  • the optical lens 20 is installed in the first frame carrier 31 , and in this way, the optical lens 20 is maintained on the photosensitive path of the photosensitive assembly 10 . That is, in this embodiment, the first frame carrier 31 forms a mounting carrier for the optical lens.
  • the second frame carrier 32 and the outer frame carrier 33 there is a gap between the second frame carrier 32 and the outer frame carrier 33, and there is a gap between the first frame carrier 31 and the second frame carrier 32, that is, , there is an available space between the second frame carrier 32 and the outer frame carrier 33, wherein the available space can be used to install a driver for driving the second carrier frame 32 to move; the first frame carrier There is an available space between 31 and the second frame carrier 32 , wherein the available space can be used to install a drive that drives the movement of the first frame carrier 31 .
  • the selection and installation of the driver will be expanded in more detail in the subsequent description.
  • the optical lens 22 includes a lens barrel 21 and at least one optical lens 22 installed in the lens barrel 21 .
  • the resolution of the optical lens 20 is proportional to the number of the optical lenses 22 within a certain range, that is, the higher the resolution, the more the number of the optical lenses 22 .
  • the optical lens 20 can be implemented as a one-piece lens, or a split-type lens, wherein, when the optical lens 20 is implemented as a one-piece lens, the optical lens 20 includes a lens barrel 21 , all the optical lenses 22 are installed in the lens barrel 21; and when the optical lens 20 is implemented as a split optical lens, the optical lens 20 is assembled from at least two parts of a single lens.
  • the existing driving element for driving the optical component is an electromagnetic motor, for example, a voice coil motor (Voice Coil Motor: VCM), a shape memory alloy actuator (Shape of Memory Alloy Actuator: SMA), and the like.
  • VCM Voice Coil Motor
  • SMA Shape of Memory Alloy Actuator
  • the existing voice coil motor and shape memory alloy driver are only suitable for driving optical components with a weight of less than 100mg, that is, if the weight of the optical lens exceeds 100mg, the existing driver will not be able to meet the application requirements of the camera module .
  • the existing voice coil motor is equipped with a coil and a magnet.
  • the internal magnetic fields will interact with each other, causing the magnets to move or shake, reducing the stability of the drive control. .
  • the new type of driver can not only meet the driving requirements for the optical performance adjustment of the camera module, but also meet the development of light weight and thinning of the camera module. need.
  • the new driver needs to meet the following requirements: relatively larger driving force, and better driving performance (specifically including: higher-precision driving control and longer driving journey).
  • the present application proposes a piezoelectric actuator with a novel structure, which can meet the technical requirements of the camera module for the driver.
  • the piezoelectric actuator is further arranged in the camera module in an appropriate arrangement manner, so that it meets the structural design requirements and size design requirements of the camera module.
  • the piezoelectric actuator 100 includes: an actuation system 110 and a driving circuit system 120 , wherein the actuation system 110 controls the driving circuit system 120
  • the lower part moves in a two-dimensional trajectory along a preset direction in the manner of bending vibration in two directions.
  • the piezoelectric actuator 100 is a high-efficiency semi-resonant drive system, and after being turned on, the actuation system 110 of the piezoelectric actuator 100 can move along two It moves in a two-dimensional trajectory along a preset direction in the manner of bending vibration in one direction, so as to frictionally couple and move the acted object along the preset direction.
  • the actuating system 110 includes a piezoelectric plate structure 111 and a friction driving part 112 fixed on the piezoelectric plate structure 111 .
  • the piezoelectric plate structure 111 may be symmetrical or asymmetrical.
  • the piezoelectric plate structure 111 has a first side surface extending along its depth direction and a second side surface extending along its height direction and adjacent to the first side surface, wherein the piezoelectric plate
  • the structure 111 has a first resonance frequency along its depth direction (eg, D as illustrated in FIG. 12A ) and a second resonance frequency along its height direction (eg, H as illustrated in FIG. 12A ).
  • the height dimension of the piezoelectric plate structure 111 is greater than the depth dimension thereof, that is, the second resonance frequency is greater than the first resonance frequency.
  • the piezoelectric plate structure 111 includes at least one piezoelectric layer formed together.
  • the thickness of the piezoelectric plate structure 111 ranges from 5um to 40um.
  • the at least one piezoelectric layer structure may be a single piezoelectric layer, or may include a plurality of piezoelectric layers stacked together (for example, a plurality of piezoelectric layers that are co-fired together). parallel piezoelectric layers).
  • multiple piezoelectric layers can achieve similar effects under the premise of applying a smaller voltage.
  • the piezoelectric plate structure 111 includes a first piezoelectric region 1111 , a second piezoelectric region 1112 and a third piezoelectric region 1113 formed on the second side surface, And, a fourth piezoelectric region 1114 formed on the first side surface, wherein the second piezoelectric region 1112 is located between the first piezoelectric region 1111 and the third piezoelectric region 1113, and all the The fourth piezoelectric region 1114 is adjacent to the second piezoelectric region 1112 .
  • the piezoelectric plate structure 111 further includes a first electrode pair 1115 electrically connected to the first piezoelectric region 1111 , a second electrode pair 1116 electrically connected to the second piezoelectric region 1112 , and a second electrode pair 1116 electrically connected to the second piezoelectric region 1112 .
  • the third electrode pair 1117 of the third piezoelectric region 1113 is electrically connected to the fourth electrode pair 1118 of the fourth piezoelectric region 1114 . That is, in the example illustrated in FIG. 9 , the piezoelectric plate structure 111 includes four piezoelectric regions and four electrode pairs electrically connected to the four piezoelectric regions, respectively.
  • the piezoelectric plate structure 111 may include other numbers of piezoelectric regions and electrode pairs, which are not limited by the present application.
  • one of the first piezoelectric region 1111 and the third piezoelectric region 1113, and/or the second piezoelectric region 1112 and the One of the fourth piezoelectric regions 1114 may be passive, which may reduce the drive amplitude but not alter the operation of the actuation system 110 .
  • the first piezoelectric region 1111 , the second piezoelectric region 1112 , the third piezoelectric region 1113 and the fourth piezoelectric region 1114 The polarities produced by the neutralization, thus forming the positive and negative electrodes.
  • the first piezoelectric region 1111 is polarized during fabrication such that one electrode of the first electrode pair 1115 corresponding to the first piezoelectric region 1111 forms a negative electrode (eg, as shown in FIG. 12A ) A-), the other electrode forms the positive electrode (eg, A+ as illustrated in FIG.
  • the third piezoelectric region 1113 is polarized during the manufacturing process so as to correspond to the third piezoelectric region 1113 In the third electrode pair 1117 of , one electrode forms a negative electrode (eg, B- as illustrated in FIG. 12A ), and the other electrode forms a positive electrode (eg, B+ as illustrated in FIG. 12A ); the second piezoelectric region 1112 is polarized during fabrication such that one electrode of the second electrode pair 1116 corresponding to the second piezoelectric region 1112 forms the negative electrode (eg, C- as illustrated in FIG. 12A ) and the other electrode forms the positive electrode (eg, C+ as illustrated in FIG.
  • each electrode of the first electrode pair 1115 and/or the second electrode pair 1116 and/or the third electrode pair 1117 and/or the second electrode pair 1116 has "L" type.
  • one electrode in the first electrode pair 1115 is coupled and interlaced with one inner electrode of each piezoelectric layer of the first piezoelectric region 1111 , so The other electrode of the first electrode pair 1115 is alternately connected to the inner electrode of the first piezoelectric region 1111 opposite to each piezoelectric layer, wherein during the polarization process, the first electrode pair 1115 One electrode was identified as the positive electrode and the other electrode was identified as the negative electrode.
  • One electrode of the second electrode pair 1116 is coupled and cross-connected to one internal electrode of each piezoelectric layer of the second piezoelectric region 1112, and the other electrode of the second electrode pair 1116 is cross-connected to The inner electrodes of the second piezoelectric region 1112 opposite to each piezoelectric layer, wherein one electrode of the second electrode pair 1116 is determined as a positive electrode and the other electrode is determined as a negative electrode during the polarization process.
  • One electrode of the third electrode pair 1117 is coupled and cross-connected to one internal electrode of each piezoelectric layer of the third piezoelectric region 1113, and the other electrode of the third electrode pair 1117 is cross-connected to The inner electrodes of the third piezoelectric region 1113 opposite to each piezoelectric layer, wherein one electrode of the third electrode pair 1117 is determined as a positive electrode and the other electrode is determined as a negative electrode during the polarization process.
  • One electrode of the third electrode pair 1117 is coupled and cross-connected to one internal electrode of each piezoelectric layer of the third piezoelectric region 1113, and the other electrode of the third electrode pair 1117 is cross-connected to The inner electrodes of the third piezoelectric region 1113 opposite to each piezoelectric layer, wherein one electrode of the third electrode pair 1117 is determined as a positive electrode and the other electrode is determined as a negative electrode during the polarization process.
  • the driving circuit system 120 includes a first driving circuit 121 and a second driving circuit 122 , and the first driving circuit 121 is electrically connected to the first electrode pair 1115 and the The third electrode pair 1117 and the second driving circuit 122 are electrically connected to the second electrode pair 1116 and the fourth electrode pair 1118 , wherein the first driving circuit 121 and the second driving circuit 122 may be It is a full-bridge drive circuit, or other drive circuits.
  • the driving circuit system 120 has four kinds of output circuit vibration signals: 124(1)-124(4), wherein the output circuit vibration signals may be as shown in FIG. 12C
  • the ultrasonic square wave vibration signal can also be other signals, for example, a sinusoidal signal.
  • the piezoelectric plate structure 111 has two bending modes: mode 1 and mode 2, wherein each of the mode 1 and the mode 2 has different resonance frequencies.
  • the vibration amplitude of the bending mode of the piezoelectric plate structure 111 depends on the vibration frequency of the output circuit vibration signal. Specifically, when the driving circuit system 120 applies a circuit vibration signal to the piezoelectric plate structure 111 at the resonance frequency for one of the two bending modes (eg, the resonance frequency of Mode 1), for the piezoelectric plate structure 111
  • the vibrational amplitudes of the flexural modes operating at the resonant frequency are fully amplified, and are only partially amplified for the other flexural modes operating at partial resonance.
  • the piezoelectric plate structure 111 when the vibration frequency of the circuit vibration signal output by the first drive circuit 121 is the first resonance frequency, the piezoelectric plate structure 111 resonates in its height direction and partially resonates in its depth direction. , so that the piezoelectric plate structure 111 moves in a two-dimensional trajectory along a preset direction by bending and vibrating in two directions; wherein, when the vibration frequency of the circuit vibration signal input by the second drive circuit 122 is When the second resonant frequency is the second resonance frequency, the piezoelectric plate structure 111 resonates in its depth direction and partially resonates in its height direction, so that the piezoelectric plate structure 111 bends and vibrates in two directions. Move in a two-dimensional trajectory along a preset direction.
  • each of the four vibration signals has a vibration frequency, which is substantially equal to any one of the two bending modes of the piezoelectric plate structure 111 .
  • the resonance frequency, ie the vibration frequency is substantially equal to the first resonance frequency or the second resonance frequency.
  • the circuit vibration signals from outputs 124(1)-124(2) are phase-shifted by the drive circuitry 120 relative to the circuit vibration signals from outputs 124(3)-124(4) by about 0 degrees to 90 degrees, to move in one of two directions.
  • the drive circuitry 120 adjusts the outputs 124(1)-124(2) to be phase-shifted to about -180 degrees to -90 degrees relative to the outputs 124(3)-124(4) to move in opposite directions (ie, both the opposite of the directions) to move the movable member.
  • FIGS. 12D-12F illustrate schematic diagrams of the piezoelectric actuator 100 moving in a first mode according to an embodiment of the present application.
  • this bending mode is due to the application of circuit vibration signals from outputs 124(1)-124(2) of different stages to the first piezoelectric region 1111 and the first piezoelectric region 1111 having opposite polarities
  • the third piezoelectric region 1113 is generated.
  • FIG. 12D shows the situation when the piezoelectric plate structure 111 is at rest.
  • 12G to 12I illustrate schematic diagrams of the piezoelectric actuator 100 moving in a second mode according to an embodiment of the present application.
  • this bending mode is due to the application of vibration signals from outputs 124(3)-124(4) of different stages to the second piezoelectric region 1112 and the second piezoelectric region 1112 having opposite polarities
  • Four piezoelectric regions 1114 are produced.
  • FIG. 12G shows the situation when the piezoelectric plate structure 111 is at rest.
  • the voltage difference between outputs 124(3) and 124(4) is positive, the length of the second piezoelectric region 1112 decreases and the length of the fourth piezoelectric region 1114 increases, so that the piezoelectric
  • the plate structure 111 is bent as shown in Figure 12H.
  • the voltage difference between outputs 124(3) and 124(4) is negative, the length of the second piezoelectric region 1112 increases and the length of the fourth piezoelectric region 1114 decreases, so that the voltage The electric plate structure is bent as shown in Figure 12I.
  • the actuating system 110 forms an elliptical orbit-like two-dimensional trajectory, that is, the driving circuit system 120
  • the rotation direction of the actuating system 110 on the elliptical orbital path can be controlled according to the phase difference value, so that the actuating system 110 can drive the acted object at a relatively smaller and more precise step speed.
  • FIG. 12J illustrates another schematic diagram of the piezoelectric plate structure 111 of the piezoelectric actuator 100 according to an embodiment of the present application.
  • the actuating system 110 further includes a friction driving part 112 fixed to the piezoelectric plate structure 111 , wherein the friction driving part 112 is adapted to be frictionally coupled on the acted object to drive the acted object to move along a predetermined direction through friction.
  • the friction driving part 112 is adapted to be frictionally coupled to the actuated object, as shown in FIG.
  • the piezoelectric actuator 100 is usually equipped with preloading parts 43 / 46 , the The pre-compression member 43/46 provides a pre-pressure between the piezoelectric actuator 100 and the object to be acted upon, so that the friction driving part 112 of the piezoelectric actuator 100 can be frictionally coupled to the object to be acted upon.
  • the acting object is used to drive the acted object to move in a predetermined direction through friction, as shown in FIG. 12L .
  • the friction driving part 112 includes at least one contact pad, which can be fixed to the piezoelectric plate structure 111 along the depth direction, or can be fixed to the piezoelectric plate along the height direction Structure 111.
  • the at least one contact pad may have a hemispherical shape, of course, other shapes, such as a semi-cylindrical shape, a stage body, a rectangle, etc. are also possible.
  • the at least one contact pad is made of materials with better friction performance and durability, for example, metal oxide materials (eg, zirconia, alumina, etc.).
  • the piezoelectric actuator 100 has the advantages of small size, large thrust, and high precision.
  • the piezoelectric actuator 100 according to the embodiment of the present application can provide a driving force of 0.6N to 2N, which is sufficient to drive a component with a weight greater than 100 mg.
  • the piezoelectric actuator 100 has other advantages compared to the traditional electromagnetic motor solution and memory alloy motor solution, including but not limited to: a relatively small size (with Slender shape), better response accuracy, relatively simpler structure, relatively simpler drive control, high product consistency, no electromagnetic interference, relatively larger stroke, short stabilization time, relatively small weight, etc.
  • the camera module needs to be equipped with a driver that has a long driving stroke and needs to ensure better alignment accuracy.
  • a driver that has a long driving stroke and needs to ensure better alignment accuracy.
  • additional guide rods or ball guides need to be designed, and large-sized driving magnets/coils need to be adapted to the side of the lens, and balls, shrapnel, and suspension wires need to be installed.
  • Other auxiliary positioning devices in order to accommodate more components, ensure structural strength and reserve structural gaps, often lead to large lateral dimensions of the module, complex structural design, and heavy module weight.
  • the memory alloy motor solution is limited by the relatively small stroke that the memory alloy solution can provide in the same proportion, and there are reliability risks such as potential disconnection.
  • the piezoelectric actuator 100 has a relatively simple structure, and the assembly structure is simpler. In addition, the size of its components is basically independent of the movement stroke of the piezoelectric actuator 100, so it is used in optical anti-shake products.
  • the piezoelectric actuator 100 can achieve the advantages of large thrust, small size, and small weight, and at the same time, it can be designed to match a larger stroke or heavier device weight, and the integration degree in the design is also higher.
  • the piezoelectric actuator 100 pushes the object to be pushed to perform micron-scale motion in a frictional contact manner.
  • the non-contact manner of driving the object to be pushed requires the electromagnetic force to counteract the gravity, and the frictional force It has the advantages of greater thrust, greater displacement and lower power consumption, and at the same time, the control accuracy is higher, and high-precision optical image stabilization can be achieved.
  • the piezoelectric actuator 100 does not have a magnet coil structure, so there is no problem of magnetic interference.
  • the piezoelectric actuator 100 can be self-locked by the friction between the components, so the abnormal shaking noise of the camera module can be reduced when the optical image stabilization is performed.
  • the driving assembly 40 comprising: a first drive element 42 , a first pre-compression part 43 , a second drive element 45 , and a second pre-compression part 46 , wherein the first drive element 42 and the second drive element 45 are implemented as pressure Electric actuator 100 .
  • the optical lens 20 is mounted on the first frame carrier 31 , and the first driving element 42 passes through the first preloading member 43 is frictionally coupled to said first frame carrier 31 and is configured to, after being driven, follow a two-dimensional trajectory along a first direction in a plane perpendicular to the optical axis in a flexural vibration in both directions The movement thus drives the first frame carrier 31 through friction to drive the optical lens 20 to move in a plane perpendicular to the optical axis to perform optical anti-shake in the first direction.
  • the second frame carrier 32 is arranged externally to the first frame carrier 31 , wherein the second drive element 45 is frictionally coupled to the second frame carrier 32 via the second preloading member 46 , and is configured to move along a second direction in a two-dimensional trajectory in a plane perpendicular to the optical axis in a manner of bending vibration in two directions after being driven to drive the second frame carrier 32 by friction
  • the optical lens 20 is driven to move in a plane perpendicular to the optical axis by driving the first frame carrier 31 to perform optical image stabilization in a second direction, and the first direction is perpendicular to the second direction.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction.
  • the first driving element 42 is frictionally coupled to the first frame carrier 31, including: the first driving element 42 has a direct frictional action with the first frame carrier 31, and the first driving Indirect friction between the element 42 and the first frame carrier 31 (ie, although there is no direct friction between the first drive element 42 and the first frame carrier 31, the first drive element The friction driving force generated by 42 can act on the first frame carrier 31).
  • the second drive element 45 is frictionally coupled between the second frame carrier 32 and the outer frame carrier 33 including: the second drive element 45 and the second frame carrier 32 direct frictional action, and indirect frictional action between the second drive element 45 and the second frame carrier 32 (ie, although there is no direct frictional action between the second drive element 45 and the second frame carrier 32 frictional force, but the frictional driving force generated by the second driving element 44 can act on the second frame carrier 32)
  • the first driving element 42 is sandwiched between the first frame carrier 31 and the first frame carrier 31 and the Between the second frame carriers 32 , the first drive element 42 is frictionally coupled to the first frame carrier 31 in such a way.
  • the first pre-compression member 43 includes a first elastic element 431 , and the first elastic element 431 is disposed on the piezoelectric plate structure 111 of the first driving element 42 and the Between the second frame carriers 32 , the first driving element 42 is frictionally coupled to the first frame carrier 31 by the elastic force of the first elastic element 431 .
  • the friction driving portion 112 of the first driving element 42 directly abuts against the surface of the outer side wall of the first frame carrier 31 , and accordingly, the elastic force provided by the first elastic element 431 can force the The friction driving portion 112 of the first driving element 42 abuts against the surface of the outer side wall of the first frame carrier 31 to form a frictional contact bonding relationship therebetween.
  • the friction driving part 112 of the first driving element 42 can drive the first frame carrier 31 to move along the first direction in a friction driving manner, to drive the optical lens 20 to move along the first direction to perform optical anti-shake in the first direction.
  • the first elastic element 431 is implemented as an elastic adhesive, that is, the first elastic element 431 is implemented as a glue with elasticity after curing.
  • a layer of adhesive with a thickness of 10um to 50um can be applied between the surface of the inner side wall of the second frame carrier 32 and the piezoelectric plate structure 111 of the first driving element 42 ,
  • the first elastic element 431 disposed between the piezoelectric plate structure 111 of the first driving element 42 and the second frame carrier 32 is formed after the adhesive is cured and formed.
  • the first elastic element 431 can also enable the first driving element 42 to be fixed on the surface of the inner side wall of the second frame carrier 32 while providing a pre-pressure.
  • the first elastic element 431 has relatively high flatness, that is, when applying the adhesive, it is ensured that the applied adhesive has relatively high flatness and uniformity as much as possible, and a thickness of The adhesive of 10um to 50um can improve the flatness of the adhesive, so that the first driving element 42 can be flatly fixed on the surface of the inner side wall of the second frame carrier 32, and then the first driving element 42 can be flatly fixed on the surface of the inner side wall of the second frame carrier Stability of the driving of the driving element 42 .
  • the second driving element 45 is clamped and disposed on the second frame carrier 32 and the outer frame by the second pre-pressing member 46 . Between the frame carriers 33 , the second drive element 45 is frictionally coupled to the second frame carrier 32 in this way.
  • the second pre-compression member 46 includes a second elastic element 461 , and the second elastic element 461 is disposed on the second driving element 45 Between the piezoelectric plate structure 111 and the outer frame carrier 33 , the second driving element 45 is frictionally coupled to the second frame carrier 32 by the elastic force of the second elastic element 461 .
  • the friction driving portion 112 of the second driving element 45 directly abuts against the surface of the outer side wall of the second frame carrier 32 , and accordingly, the elastic force provided by the second elastic element 461
  • the friction driving portion 112 of the second driving element 45 can be forced to abut against the surface of the outer side wall of the second frame carrier 32 to form a friction-contact bonding relationship therebetween.
  • the friction driving part 112 of the second driving element 45 can drive the second frame carrier 32 to move in the second direction in a friction driving manner, to drive the optical lens 20 to move along the second direction to perform optical anti-shake in the second direction.
  • the second elastic element 461 is implemented as an elastic adhesive, that is, the second elastic element 461 is implemented as a glue with elasticity after curing.
  • a layer of adhesive with a thickness of 10um to 50um can be applied between the surface of the inner sidewall of the outer frame carrier 33 and the piezoelectric plate structure 111 of the second driving element 45 to After the adhesive is cured and formed, the second elastic element 461 disposed between the piezoelectric plate structure 111 of the second driving element 45 and the outer frame carrier 33 is formed.
  • the second elastic element 461 can also enable the second driving element 45 to be fixed on the surface of the inner side wall of the outer frame carrier 33 while providing a pre-pressure.
  • the second elastic element 461 has a relatively high flatness, that is, when applying the adhesive, try to ensure that the applied adhesive has relatively high flatness and uniformity, and the thickness is The adhesive of 10um to 50um can improve the flatness of the adhesive, so that the second driving element 45 can be flatly fixed on the surface of the inner side wall of the outer frame carrier 33, thereby improving the second driving element 45 Stability of element 45 actuation.
  • the first elastic element 431 and the second elastic element 461 can also be implemented as elastic elements without viscosity, for example, the material itself has elasticity rubber, or springs, leaf springs, etc. that generate elasticity due to deformation, which are also not limited by this application.
  • the structural configuration of the first pre-compression member 43 and the second pre-compression member 46 can also be adjusted.
  • the first pre-pressing component 43 includes a first magnetic element 52 disposed on the first frame carrier 31 and a first magnetic element 52 disposed on the second frame carrier 44 and the second magnetic attraction element 53 corresponding to the first magnetic attraction element 52 to force the first magnetic attraction element 52 and the second magnetic attraction element 53 through the magnetic attraction effect
  • the drive element 42 is frictionally coupled to the first frame carrier 31 .
  • the first magnetic attraction element 52 and the second magnetic attraction element 53 refer to magnetic attraction components that can attract each other.
  • the first magnetic attraction element 52 can be implemented as A magnet
  • the second magnetic attraction element 53 can be implemented as a magnetic component, for example, a material made of iron, nickel, cobalt and other metals; for another example, the first magnetic attraction element 52 can be implemented as a magnet, so The second magnetic attraction element 53 can also be implemented as a magnet.
  • the second pre-compression member 46 includes a third magnetic attraction element 62 disposed on the second frame carrier 32 and a fourth magnetic attraction element disposed in the outer frame carrier 33 and corresponding to the third magnetic attraction element 62 .
  • element 63 to force the second driving element 45 to be frictionally coupled to the second frame carrier 32 through the magnetic attraction between the third magnetic element 62 and the fourth magnetic element 63 .
  • the third magnetic element 62 and the fourth magnetic element 63 refer to magnetic components that can attract each other.
  • the third magnetic element 62 can be implemented as a magnet, so
  • the fourth magnetic attraction element 63 may be implemented as a magnetic component, for example, a material made of iron, nickel, cobalt and other metals; for another example, the third magnetic attraction element 62 may be implemented as a magnet, and the fourth magnetic attraction element 62 may be implemented as a magnet.
  • the magnetic attraction element 63 can also be implemented as a magnet.
  • the The drive assembly 40 further includes a first guide mechanism 48 arranged between the first frame carrier 31 and the second frame carrier 32 and a first guide mechanism 48 arranged between the second frame carrier and the outer frame carrier 33 .
  • a second guide mechanism 49 wherein the first guide mechanism 48 is configured to guide the first frame carrier 31 to move along the first direction, the second guide mechanism 49 is configured to guide the The second frame carrier 32 moves along the second direction.
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as guide rod structures.
  • the first guide mechanism 48 includes a first guide rod disposed on the outer side wall of the first frame carrier 31 and extending along the first direction, wherein two of the first guide rod The ends are fastened to the inner side walls of the second frame carrier 32 .
  • the first guide rod is disposed opposite to the first driving element 42, so that after the first driving element 42 is turned on, the first frame carrier 31 is The guide moves along the extending direction of the first guide rod, so as to improve the movement stability of the first frame carrier 31 .
  • the second guide mechanism 49 includes a second guide rod disposed on the outer side wall of the second frame carrier 32 and extending along the second direction, wherein the Both ends of the second guide rod are fixed on the inner side wall of the outer frame carrier 33 .
  • the second guide rod is disposed opposite to the second driving element 45, so that after the second driving element 45 is turned on, the second frame carrier 32 is The guide moves along the extending direction of the second guide rod, so as to improve the movement stability of the second frame carrier 32 .
  • first guide mechanism 48 and the second guide mechanism 49 can also be implemented based on other principles, for example, through a ball-rolling groove mechanism, a sliding block- The chute mechanism, etc., are not limited by this application.
  • the driving assembly 40 further includes a first friction actuating portion 131 and a second friction actuating portion 132, wherein the first friction actuating portion 131 is provided between the first driving element 42 and the first frame carrier 31 and the first driving element 42 is
  • the friction driving part 112 is in contact with the first friction actuating part 131 under the action of the first pre-compression member 43
  • the first friction actuating part 131 is in contact with the outer side wall of the first frame carrier 31 .
  • the friction driving force provided by the first driving element 42 can act on the first frame carrier 31 through the first friction actuating portion 131 to drive the first frame carrier 31 and the optical lens 20 move along the first direction.
  • the pre-pressure between the frictional drive portion 112 of the first drive element 42 and the first frame carrier 31 is an indirect pre-pressure, that is, although the first drive element There is no direct contact between the friction driving part 112 of the first driving element 42 and the first frame carrier 31, but there is still a pre-pressure between the two, so that the friction driving part 112 of the first driving element 42 can be driven by friction.
  • the first frame carrier 31 is driven.
  • the second friction actuating part 132 is arranged between the second driving element 45 and the second frame carrier 32 and the friction driving part 112 of the second driving element 45 is in the second Under the action of the pre-compression member 46, the second friction actuating portion 132 is in contact with the second friction actuating portion 132, and the second friction actuating portion 132 is in contact with the surface of the outer side wall of the second frame carrier 32. In this way, all the The friction driving force provided by the second driving element 45 can act on the second frame carrier 32 through the second friction actuating portion 132 to drive the second frame carrier 32 and the first frame carrier 31 and the optical lens 20 is moved along the second direction to perform optical anti-shake in the second direction.
  • the first friction actuating portion 131 has a first surface and a second surface opposite to the first surface, wherein in the first Under the action of the pre-pressing member 43 , the first surface of the first friction actuating portion 131 abuts against the surface of the outer side wall of the first frame carrier 31 , and the second surface thereof abuts against the plurality of friction driving elements 121 .
  • the moving part 131 is in contact with the first frame carrier 31 , in this way, the friction driving force provided by the first driving element 42 can act on the first frame through the first friction moving part 131 carrier 31.
  • the second friction actuating portion 132 has a third surface and a fourth surface opposite to the third surface, wherein, under the action of the second pre-compression member 46 , the second friction actuating The third surface of the moving part 132 is in contact with the surface of the outer side wall of the second frame carrier 32 , and the fourth surface is in contact with the second end of at least one of the friction driving elements 121 of the plurality of friction driving elements 121 .
  • the friction driving portion 112 of the second driving element 45 abuts against the second friction actuating portion 132 and the second friction actuating portion 132 abuts against the second frame carrier 32 , In this way, the friction driving force provided by the second driving element 45 can act on the second frame carrier 32 through the second friction actuating portion 132 .
  • the first friction actuating part 131 and the second friction actuating part 132 are respectively provided as a separate component in the Between the first drive element 42 and the first frame carrier 31, and between the second drive element 45 and the second frame carrier 32, for example, the first friction actuation portion 131 is implemented is a separate part and is attached to the side surface of the first frame carrier 31 , or the second friction actuating part 132 is implemented as a separate part and is attached to the second frame carrier 32
  • the first friction actuating portion 131 is implemented as a layer of coating applied to the side surface of the first frame carrier 31, or the second friction actuating portion 132 is It is implemented as a layer of coating applied to the side surface of the second frame carrier 32 .
  • first friction actuating portion 131 may also be integrally formed on the surface of the outer side wall of the first frame carrier 31 , that is, the first friction actuating portion 131 and the The first first frame carrier 31 has a one-piece structure.
  • second friction actuating portion 132 may also be integrally formed on the surface of the outer side wall of the second frame carrier 32 , that is, the second friction actuating portion 132 and the The second frame carrier 32 has a one-piece structure.
  • the first frame carrier 31 has a first groove 310 concavely formed on its surface, and the first friction actuation The portion 131 is disposed in the first groove 310 .
  • the first friction actuating portion 131 is adapted to the shape and size of the first groove 310 , so that the first friction actuating portion 131 can fit in the first in the groove 310.
  • the second frame carrier 32 has a second groove 320 concavely formed on the surface thereof, and the second friction actuating portion 132 is disposed in the first groove 320 .
  • the second friction actuating portion 132 is adapted to the shape and size of the second groove 320 , so that the second friction actuating portion 132 can fit in the second groove 320 in the groove 320.
  • FIG. 14 illustrates a schematic diagram of a variant implementation of the camera module according to an embodiment of the present application.
  • the first groove 310 has a relatively larger size, so that the first driving element 42 can be partially accommodated in the first groove 310 .
  • the shape of the first groove 310 matches the shape of the first driving element 42 , and the piezoelectric plate structure 111 of the first driving element 42 is suitable for is at least partially received in the first groove, so that when the first driving element 42 drives the first frame carrier 31 in the first groove 310, the first groove 310 itself forms a guide groove for guiding the movement of the first drive element 42 .
  • the first groove 310 not only provides an installation space for the installation of the first driving element 42, but also is formed to guide the first driving element 42 to move (or Said, regulate the guiding structure of the movement of the first driving element 42).
  • the second groove 320 has a relatively larger size, so that the second driving element 45 can be partially received within the second groove 320 .
  • the shape of the second groove 320 matches the shape of the second driving element 45 , and the piezoelectric plate structure 111 of the second driving element 45 is suitable for is at least partially received in the first groove, so that when the second driving element 45 drives the first frame carrier 31 in the second groove 320, the second groove The 320 itself forms a guide groove for guiding the movement of the second drive element 45 .
  • the second groove 320 not only provides an installation space for the installation of the second driving element 45, but also is formed to guide the movement of the second driving element 45 (or Said, regulating the movement of the second drive element 45) of the guide structure.
  • the second groove 320 itself is formed to guide the movement of the second frame carrier 32 guide groove. That is, in this variant embodiment, the second groove 320 not only provides an installation space for the installation of the second driving element 45, but is also formed to guide the movement of the second frame carrier 32 (or Said, regulating the movement of the second drive element 45) of the guide structure.
  • FIG. 15 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application.
  • the first frame carrier 31 has a first groove 310 concavely formed on its side surface and extending laterally
  • the second frame carrier 32 has a concavely formed in The second groove 320 extends laterally and laterally.
  • the shape and size configuration of the first groove 310 and the second groove 320 are adjusted.
  • the size and shape of the first groove 310 are configured such that the friction driving portion 112 of the first driving element 42 can fit within the first groove 310 .
  • the size and shape of the second groove 320 are configured such that the friction driving portion 112 of the second driving element 45 can be fitted into the second groove 451 . That is, in this embodiment, the first groove 310 not only forms an accommodating groove for accommodating the first friction actuating portion 131 , but also forms a friction driving portion for guiding the first driving element 42 . 112; the second groove 320 not only forms a receiving groove for receiving the second friction actuating part 132, but also forms a guiding groove for guiding the friction driving part 112 of the second driving element 45 .
  • the first groove 441 has a reduced diameter
  • the second groove 320 has a reduced diameter. That is, in this modified embodiment, the aperture size of the first groove 310 is gradually reduced along the width direction of the first frame carrier 31 toward the direction away from the first driving element 42, and, The diameter of the second groove 45 gradually decreases along the width direction of the second frame carrier 32 toward the direction away from the second driving element 45 .
  • the friction driving parts 112 of the first driving element 42 and the second driving element 45 may wear.
  • the friction driving portion 112 of the first driving element 42 will extend further into the first groove 310
  • the friction driving portion 112 of the second driving element 45 will extend to the inner part of the second groove 320 .
  • the friction driving portion 112 of the first driving element 42 can re-contact the first friction actuating portion 131 disposed in the first groove 310 , and the friction driving portion 112 of the second driving element 45
  • the friction driving part 112 can be in contact with the second friction actuating part 132 disposed in the second groove 320 again, and in this way, the first driving element 42 and the second driving element can be extended
  • the service life of 45 that is, the service life of the camera module is extended.
  • FIG. 16 illustrates a schematic diagram of still another variant implementation of the camera module according to the embodiment of the present application. Compared with the example shown in FIG. 9 , in this variant embodiment, the arrangement of the first driving element 42 and the second driving element 45 is adjusted.
  • the first driving element 42 is located on the side of the first frame carrier 31
  • the second driving element 45 is located on the side of the second frame carrier 32 . side.
  • the first driving element 42 is located on the upper part of the first frame carrier 31
  • the second driving element 45 is located on the second frame carrier 32 the upper part.
  • the first driving element 42 is clamped and disposed between the upper and lower sides of the first frame carrier 31 and the second frame carrier 32 by the first pre-compression member 43 . , in this way, the first drive element 42 is frictionally coupled to the first frame carrier 31 .
  • the second driving element 45 is clamped and disposed between the second frame carrier 32 and the outer frame carrier 33 through the second pre-pressing member 46. In this way, the second driving element 45 is clamped.
  • the element 45 is frictionally coupled to the second frame carrier 32 .
  • the drive assembly 40 further includes a first guide mechanism 48 disposed between the first frame carrier 31 and the second frame carrier 32 and a first guide mechanism 48 disposed between the second frame carrier and the outer frame The second guide mechanism 49 between the frame carriers 33 .
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as ball-roll groove mechanisms, as shown in FIG. 16 shown.
  • FIG. 17 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application. Compared with the example shown in FIG. 9 , in this variant embodiment, the arrangement of the first driving element 42 and the second driving element 45 is adjusted again.
  • the first driving element 42 is located at the lower part of the first frame carrier 31
  • the second driving element 45 is located in the second frame carrier lower part of 32.
  • the first driving element 42 is clamped and disposed between the upper and lower sides of the first frame carrier 31 and the second frame carrier 32 by the first pre-compression member 43 . , in this way, the first drive element 42 is frictionally coupled to the first frame carrier 31 .
  • the second driving element 45 is clamped and disposed between the second frame carrier 32 and the outer frame carrier 33 through the second pre-pressing member 46. In this way, the second driving element 45 is clamped.
  • the element 45 is frictionally coupled to the second frame carrier 32 .
  • the drive assembly 40 further includes a first guide mechanism 48 disposed between the first frame carrier 31 and the second frame carrier 32 and a first guide mechanism 48 disposed between the second frame carrier and the outer frame The second guide mechanism 49 between the frame carriers 33 .
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as ball-roll groove mechanisms, such as shown in Figure 17.
  • the camera module based on the embodiments of the present application is clarified, wherein the camera module adopts the piezoelectric actuator 100 as a driver, so as to not only meet the driving requirements of the camera module for optical performance adjustment, but also be able to Meet the development needs of light and thin camera modules.
  • the camera module is taken as an example of a traditional upright camera module
  • the piezoelectric actuator 100 according to the embodiments of the present application also It can be used as a driver in a periscope camera module, which is not limited by this application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Studio Devices (AREA)

Abstract

一种摄像模组,其包括:感光组件(10)、被保持于感光组件(10)的感光路径上的镜头组件(20),镜头组件(20)设有一光轴,以及,驱动组件(40),包括:第一承载框架(41)、第一驱动元件(42)和第一预压部件(43),其中,感光组件(10)被安装于第一承载框架(41),第一驱动元件(42)被实施为压电致动器(100),其中,第一驱动元件(42)通过第一预压部件(43)被摩擦地耦合于第一承载框架(41),并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹移动,以此通过摩擦来驱动第一承载框架(41),以带动感光组件(10)在垂直于光轴的平面内以第一方向移动以进行光学防抖。

Description

摄像模组 技术领域
本申请涉及摄像模组领域,尤其涉及一种摄像模组,其采用新型的压电致动器作为驱动元件来满足所述摄像模组的光学防抖需求。并且,采用合理的布设方案将所述压电致动器布设于所述摄像模组中,以进一步满足所述摄像模组的结构和尺寸要求。
背景技术
随着移动电子设备的普及,被用于移动电子设备的用于帮助使用者获取影像(例如,视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
为了满足越来越广泛的市场需求,高像素、大芯片、小尺寸是现有摄像模组不可逆转的发展趋势。随着感光芯片朝着高像素和大芯片的方向发展,与感光芯片适配的光学部件(例如,滤光元件、光学镜头)的尺寸也逐渐增大,这给用于驱动光学部件以进行光学性能调整(例如,光学对焦、光学防抖等)的驱动元件带来的新的挑战。
具体地,现有的用于驱动光学部件的驱动元件为电磁式马达,例如,音圈马达(Voice Coil Motor:VCM)、形状记忆合金驱动器(Shape of Memory Alloy Actuator:SMA)等。然而,随着光学部件尺寸增加而导致的重量增加,现有的电磁式马达已逐渐无法提供足够的驱动力来驱动光学部件移动。量化来看,现有的音圈马达和形状记忆合金驱动器仅适于驱动重量小于100mg的光学部件,也就是,如果光学部件的重量超过100mg,现有的驱动器将无法满足摄像模组的应用需求。
此外,随着移动终端设备朝着小型化和薄型化的方向发展,驱动元件内部的部件布设密度也随之提高。相应地,现有的音圈马达内部设有线圈和磁铁,当两个磁铁距离过近(小于7mm),其内部磁场会产生相互影响,导致磁 铁产生位移或抖动,降低其驱动控制的稳定性。
因此,需要一种适配的用于摄像模组的新型驱动方案,且,新型的驱动器不仅能满足摄像模组对于光学性能调整的驱动要求,且能够满足摄像模组轻型化和薄型化的发展需求。
发明内容
本申请的一优势在于提供了一种摄像模组,其中,所述摄像模组采用新型的压电致动器作为驱动元件以不仅能够提供足够大的驱动力,而且,能够提供精度更高和行程更长的驱动性能,以满足所述摄像模组的光学性能调整的需求,例如,光学防抖的需求。
本申请的另一优势在于提供了一种摄像模组,其中,所述压电致动器具有相对较小的尺寸,以更好地适配于摄像模组轻型化和薄型化的发展趋势。
本申请的又一优势在于提供了一种摄像模组,其中,采用合理的布设方案将所述压电致动器布设于所述摄像模组中,以满足摄像模组的结构和尺寸要求。
通过下面的描述,本申请的其它优势和特征将会变得显而易见,并可以通过权利要求书中特别指出的手段和组合得到实现。
为实现上述至少一优势,本申请提供一种摄像模组,其包括:
感光组件,包括:线路板和电连接于所述线路板的感光芯片;
被保持于所述感光组件的感光路径上的镜头组件,包括:镜头载体和安装于所述镜头载体的光学镜头,其中,所述光学镜头设有一光轴;以及
驱动组件,包括:第一承载框架、第一驱动元件和第一预压部件,其中,所述感光组件被安装于所述第一承载框架,所述第一驱动元件被实施为压电致动器,其中,所述第一驱动元件通过所述第一预压部件被摩擦地耦合于所述第一承载框架并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹运动沿着第一方向移动以此通过摩擦来驱动所述第一承载框架以带动所述感光组件在垂直于所述光轴的平面内以所述第一方向移动以进行光学防抖。
在根据本申请的摄像模组中,所述驱动组件进一步包括第二承载框架、第二驱动元件和第二预压部件,其中,所述第二承载框架外设于所述第一承 载框架,所述第二驱动元件被实施为压电致动器,其中,所述第二驱动元件通过所述第二预压部分摩擦地耦合于所述第二承载框架并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹沿着第二方向移动以此通过摩擦来驱动所述第二承载框架以带动第一承载框架进行带动所述感光组件在垂直于所述光轴的平面内以所述第二方向移动以进行光学防抖,所述第一方向垂直于所述第二方向。
在根据本申请的摄像模组中,所述压电致动器,包括:致动系统和驱动电路系统,其中,所述致动系统在所述驱动电路系统的控制下以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动。
在根据本申请的摄像模组中,所述致动系统,包括:压电板结构和固定于所述压电板结构的摩擦驱动部,所述摩擦驱动部摩擦地耦接于所述第一承载框架或所述第二承载框架。
在根据本申请的摄像模组中,所述压电板结构具有沿着其深度方向延伸的第一侧表面和沿着其高度方向延伸的且与所述第一侧表面相邻的第二侧表面,其中,所述压电板结构沿着其深度方向具有第一共振频率且沿着其高度方向具有第二共振频率,其中,所述第二共振频率大于所述第一共振频率。
在根据本申请的摄像模组中,所述压电板结构包括形成于所述第二侧表面的第一压电区域、第二压电区域和第三压电区域,以及,形成于所述第一侧表面的第四压电区域,其中,所述第二压电区域位于所述第一压电区域和所述第三压电区域区间,且所述第四压电区域与所述第二压电区域相邻的;其中,所述压电板结构进一步包括电连接于所述第一压电区域的第一电极对、电连接于所述第二压电区域的第二电极对、电连接于所述第三压电区域的第三电极对和电连接于所述第四电连接区域的第四电极对。
在根据本申请的摄像模组中,所述驱动电路系统包括第一驱动电路和第二驱动电路,所述第一驱动电路电连接于所述第一电极对和所述第三电极对,所述第二驱动电路电连接于所述第二电极对和所述第四电极对;其中,所述第一驱动电路和所述第二驱动电路输出的电路振动信号振动频率等于所述第一共振频率或所述第二共振频率。
在根据本申请的摄像模组中,当所述第一驱动电路输出的电路振动信号的振动频率为所述第一共振频率时,所述压电板结构在其高度方向发生共振且在其深度方向发生部分共振,以使得所述压电板结构以沿着两个方向弯曲 振动的方式沿着预设方向呈二维轨迹运动;其中,当所述第二驱动电路所输入的电路振动信号的振动频率为所述第二共振频率时,所述压电板结构在其深度方向发生共振且在其高度方向发生部分共振,以使得所述压电板结构以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动。
在根据本申请的摄像模组中,所述驱动组件进一步包括第一摩擦作动部和第二摩擦作动部,所述第一摩擦作动部被夹持地设置于所述第一驱动元件和所述第一承载框架之间,以通过所述第一摩擦作动部和所述第一预压部件使得所述第一驱动元件被摩擦地耦合于所述第一承载框架;所述第二摩擦作动部被夹持地设置于所述第二驱动元件和所述第二承载框架之间,以通过所述第二预压部件和所述第二摩擦作动部使得所述第二驱动元件被摩擦地耦接于所述第二承载框架。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一承载框架的侧部。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一承载框架的上部。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一承载框架的下部。
在根据本申请的摄像模组中,所述驱动组件进一步外设于所述第二承载框架的外框架,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述外框架之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二承载框架,其中,所述第二驱动元件位于所述第二承载框架的侧部。
在根据本申请的摄像模组中,所述驱动组件进一步外设于所述第二承载框架的外框架,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述镜头载体之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二承载框架,其中,所述第二驱动元件位于所述第二承载框架的上部。
在根据本申请的摄像模组中,所述驱动组件进一步外设于所述第二承载框架的外框架,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述外框架之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二承载框架,其中,所述 第二驱动元件位于所述第二承载框架的下部。
在根据本申请的摄像模组中,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述外框架之间的第二导引机构。
在根据本申请的摄像模组中,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述镜头载体之间的第二导引机构。
在根据本申请的摄像模组中,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述外框架之间的第二导引机构。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述外框架之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述镜头载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱 动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述外框架之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
在根据本申请的摄像模组中,所述第一弹性元件和所述第二弹性元件被实施为具有弹性的黏着剂。
在根据本申请的摄像模组中,所述第一弹性元件和所述第二弹性元件的厚度尺寸为10um至50um之间。
在根据本申请的摄像模组中,所述第一预压部件包括设置于所述第一承载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述外框架且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
在根据本申请的摄像模组中,所述第一预压部件包括设置于所述第一承载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述镜头载体且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
在根据本申请的摄像模组中,所述第一预压部件包括设置于所述第一承 载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述外框架且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
根据本申请的另一方面,本申请提供一种摄像模组,其包括:
感光组件,包括:线路板和电连接于所述线路板的感光芯片;
被安装于所述感光组件的框架载体组件,其中,所述框架载体组件包括包括第一框架载体;
以被安装于所述第一框架载体内的方式被保持于所述感光组件的感光路径上的光学镜头,所述光学镜头设有一光轴;以及
驱动组件,包括:第一驱动元件和第一预压部件,所述第一驱动元件被实施为压电致动器,其中,所述第一驱动元件通过所述第一预压部件被摩擦地耦合于所述第一框架载体并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹沿着运动,以此通过摩擦来驱动所述第一框架载体以带动所述光学镜头在垂直于该光轴的第一方向上移动。
在根据本申请的摄像模组中,所述框架组件进一步包括外设于所述第一框架载体的第二框架载体和外设于所述第二框架载体的外框架载体,其中,所述驱动组件进一步包括第二驱动元件和第二预压部件,所述第二驱动元件被实施为所述压电致动器,其中,所述第二驱动元件通过所述第二预压部分摩擦地耦合于所述第二框架载体并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹沿着运动,以此通过摩擦来驱动所述第二框架载体以带动所述第一框架载体进而带动所述光学镜头在垂直于该光轴的第二方向上移动,所述第二方向垂直于所述第一方向。
在根据本申请的摄像模组中,所述压电致动器,包括:致动系统和驱动电路系统,其中,所述致动系统在所述驱动电路系统的控制下以沿着两个方 向弯曲振动的方式沿着预设方向呈二维轨迹运动。
在根据本申请的摄像模组中,所述致动系统,包括:压电板结构和固定于所述压电板结构的摩擦驱动部,所述摩擦驱动部摩擦地耦接于所述第一框架载体或所述第二框架载体。
在根据本申请的摄像模组中,所述压电板结构具有沿着其深度方向延伸的第一侧表面和沿着其高度方向延伸的且与所述第一侧表面相邻的第二侧表面,其中,所述压电板结构沿着其深度方向具有第一共振频率且沿着其高度方向具有第二共振频率,其中,所述第二共振频率大于所述第一共振频率。
在根据本申请的摄像模组中,所述压电板结构包括形成于所述第二侧表面的第一压电区域、第二压电区域和第三压电区域,以及,形成于所述第一侧表面的第四压电区域,其中,所述第二压电区域位于所述第一压电区域和所述第三压电区域区间,且所述第四压电区域与所述第二压电区域相邻的;其中,所述压电板结构进一步包括电连接于所述第一压电区域的第一电极对、电连接于所述第二压电区域的第二电极对、电连接于所述第三压电区域的第三电极对和电连接于所述第四电连接区域的第四电极对。
在根据本申请的摄像模组中,所述驱动电路系统包括第一驱动电路和第二驱动电路,所述第一驱动电路电连接于所述第一电极对和所述第三电极对,所述第二驱动电路电连接于所述第二电极对和所述第四电极对;其中,所述第一驱动电路和所述第二驱动电路输出的电路振动信号振动频率等于所述第一共振频率或所述第二共振频率。
在根据本申请的摄像模组中,当所述第一驱动电路输出的电路振动信号的振动频率为所述第一共振频率时,所述压电板结构在其高度方向发生共振且在其深度方向发生部分共振,以使得所述压电板结构以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动;其中,当所述第二驱动电路所输入的电路振动信号的振动频率为所述第二共振频率时,所述压电板结构在其深度方向发生共振且在其高度方向发生部分共振,以使得所述压电板结构以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动。
在根据本申请的摄像模组中,所述驱动组件进一步包括第一摩擦作动部和第二摩擦作动部,所述第一摩擦作动部被夹持地设置于所述第一驱动元件的摩擦驱动部和所述第一框架载体之间,以通过所述第一摩擦作动部和所述第一预压部件所述第一驱动元件被摩擦地耦合于所述第一框架载体;所述第 二摩擦作动部被夹持地设置于所述第二驱动元件的摩擦驱动部和所述第二框架载体之间,以通过所述第二预压部件和所述第二摩擦作动部所述第二驱动元件被摩擦地耦接于所述第二框架载体。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一框架载体的侧部。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一框架载体的上部。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一框架载体的下部。
在根据本申请的摄像模组中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二框架载体和所述外框架载体之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的侧部。
在根据本申请的摄像模组中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二框架载体和所述镜头载体之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的上部。
在根据本申请的摄像模组中,所述驱动组件进一步外设于所述第二框架载体的外框架载体,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二框架载体和所述外框架载体之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的下部。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部,通过这样的方式,所述第一驱动元件摩擦地耦接于所述第一框架载体;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述外框架载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部,通过这样的方式,所述第二驱动元件摩擦地耦接于所述第二框架载体。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部,通过这样的方式,所述第一驱动元件摩擦地耦接于所述第一框架载体;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述镜头载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部,通过这样的方式,所述第二驱动元件摩擦地耦接于所述第二框架载体。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部,通过这样的方式,所述第一驱动元件摩擦地耦接于所述第一框架载体;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述外框架载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部,通过这样的方式,所述第二驱动元件摩擦地耦接于所述第二框架载体。
在根据本申请的摄像模组中,所述第一弹性元件和所述第二弹性元件被实施为具有弹性的黏着剂。
在根据本申请的摄像模组中,所述第一弹性元件和所述第二弹性元件的厚度尺寸为10um至50um之间。
在根据本申请的摄像模组中,所述第一预压部件包括设置于所述第一框架载体的第一磁吸元件和设置于所述第二框架载体且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部,通过这样的方式,所述第一驱动元件摩擦地耦接于所述第一框架载体;所述第二预压部件包括设置于所述第二框架载体的第三磁吸元件和设置于所述外框架载体且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部,通过这样的方式,所述第二驱动元件摩擦地 耦接于所述第二框架载体。
在根据本申请的摄像模组中,所述第一框架载体包括凹陷地形成于其表面的第一凹槽,所述第一摩擦作动部被设置于所述第一凹槽内,其中,所述第一凹槽形成用于引导所述第一驱动元件的所述摩擦驱动部移动的引导槽。
在根据本申请的摄像模组中,所述第二框架载体包括凹陷地形成于其表面的第二凹槽,所述第二摩擦作动部被设置于所述第二凹槽内,其中,所述第二凹槽形成用于引导所述第二驱动元件的所述摩擦驱动部移动的引导槽。
在根据本申请的摄像模组中,所述第一凹槽具有减缩的口径,和/或,所述第二凹槽具有减缩的口径。
在根据本申请的摄像模组中,所述驱动组件进一步包括设置于所述第一框架载体和所述第二框架载体之间的第一导引机构和设置于所述第二框架载体和所述外框架载体之间的第二导引机构。
在根据本申请的摄像模组中,所述驱动组件进一步包括设置于所述第一框架载体和所述第二框架载体之间的第一导引机构和设置于所述第二框架载体和所述外框架载体之间的第二导引机构
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1图示了根据本申请实施例的摄像模组的示意图。
图2图示了根据本申请实施例的所述摄像模组的感光组件的示意图。
图3图示了根据本申请实施例的所述摄像模组的另一示意图。
图4A图示了根据申请实施例的压电致动器的示意图。
图4B图示了根据本申请实施例的所述压电致动器的压电板结构的示意 图。
图4C图示了根据本申请实施例的所述压电致动器的驱动电路系统的示意图。
图4D至图4F图示了根据本申请实施例的所述压电致动器以第一模式运动的示意图。
图4G至图4I图示了根据本申请实施例的所述压电致动器以第二模式运动的示意图。
图4J图示了根据本申请实施例的所述压电致动器的压电板结构的另一示意图。
图4K图示了根据本申请实施例的所述压电致动器作用于被移动对象的示意图。
图4L图示了根据本申请实施例的所述压电致动器的移动示意图。
图5图示了根据本申请实施例的所述摄像模组的一个变形实施的示意图。
图6图示了根据本申请实施例的所述摄像模组的另一个变形实施例的示意图。
图7图示了根据本申请实施例的所述摄像模组的该另一个变形实施的示意图。
图8图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。
图9图示了根据本申请实施例的摄像模组的示意图。
图10图示了根据本申请实施例的所述摄像模组的感光组件的示意图。
图11A图示了根据本申请实施例的所述摄像模组的光学镜头、框架载体组件和驱动组件的示意图之一。
图11B图示了根据本申请实施例的所述摄像模组的光学镜头、框架载体组件和驱动组件的示意图之二。
图11C图示了根据本申请实施例的所述摄像模组的光学镜头、框架载体组件和驱动组件的示意图之三。
图12A图示了根据申请实施例的压电致动器的示意图。
图12B图示了根据本申请实施例的所述压电致动器的压电板结构的示意图。
图12C图示了根据本申请实施例的所述压电致动器的驱动电路系统的 输出信号的示意图。
图12D至图12F图示了根据本申请实施例的所述压电致动器以第一模式运动的示意图。
图12G至图12I图示了根据本申请实施例的所述压电致动器以第二模式运动的示意图。
图12J图示了根据本申请实施例的所述压电致动器的压电板结构的另一示意图。
图12K图示了根据本申请实施例的所述压电致动器作用于被移动对象的示意图。
图12L图示了根据本申请实施例的所述压电致动器的移动示意图。
图13图示了根据本申请实施例的所述摄像模组的一个变形实施的示意图。
图14图示了根据本申请实施例的所述摄像模组的另一个变形实施的示意图。
图15图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。
图16图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。
图17图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。
具体实施方式
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
示例性摄像模组
如图1所示,根据本申请实施例的摄像模组被阐明,其包括:感光组件10、被保持于所述感光组件10的感光路径上的镜头组件20,以及,用于驱动所述感光组件10以进行光学防抖的驱动组件40。
相应地,所述镜头组件20包括镜头载体21和安装于所述镜头载体21的光学镜头22。在该实施例中,所述光学镜头22包括镜筒和被安装于所述 镜筒内的至少一光学透镜。本领域普通技术人员应知晓,所述光学镜头20的解像力在一定范围内与光学透镜的数量成正比,也就是,解像力越高,所述光学透镜的数量越多。在具体实施中,所述光学镜头22可被实施为一体式镜头,或者,分体式镜头,其中,当所述光学镜头22被实施为一体式镜头时,所述光学镜头22包含一个镜筒,所有的所述光学透镜被安装于所述镜筒内;而当所述光学镜头22被实施为分体式光学镜头,所述光学镜头22由至少两部分镜头单体组装而成。
并且,在该实施例中,所述镜头载体21为固定载体,即,当所述光学镜头22被安装于所述镜头载体21时,所述镜头载体21和所述光学镜头22之间的相对位置关系不会发生改变。应可以理解,在本申请其他示例中,所述镜头载体21还可以被实施为驱动载体,以通过所述驱动载体来改变所述光学镜头21与所述感光组件10之间的相对位置关系来进行自动对焦,对此,并不为本申请所局限。
如图2所示,在该实施例中,所述感光组件10包括线路板11、电连接于所述线路板11的感光芯片12和被保持于所述感光芯片12的感光路径上的滤光元件13,其中,所述线路板11形成所述感光组件10的安装基板。所述线路板可以被实施为印刷电路板(Printed Circuit Board,PCB)、软件结合板、或者被补强后的柔性电路板(Flexible Printed Circuit,PFC)。并且,在一些示例中,还可以在所述线路板11的下方设置补强板(未有图示意),例如,在所述线路板的下方设置钢片,以通过所述钢片来加强所述线路板的强度且提高所述感光组件的散热性能。
进一步地,在如图2所示意的示例中,所述感光组件10,进一步包括设置于所述线路板11的支架14,其中,所述滤光元件13被安装于所述支架14上以被保持于所述感光芯片12的感光路径上。在本申请其他示例中,所述滤光元件13被保持于所述感光芯片12的感光路径上的具体实施方式并不为本申请所局限,例如,所述滤光元件13可被实施为滤波膜并涂覆于所述透镜组的某一光学透镜的表面,以起到滤光的效果,再如,所述感光组件10可进一步包括安装于所述支架14的滤光元件支架(未有图示意),其中,所述滤光元件13以被安装于所述滤光元件支架的方式被保持于所述感光芯片12的感光路径上。
在本申请实施例的一个具体示例中,所述支架14可被实施为塑料支架, 其通过黏着剂附着于所述线路板11上。在本申请实施例的其他示例中,所述支架14还可以被实施为一体地成型于所述线路板11的一体式支架,例如模塑支架,对此,并不为本申请所局限。
如前所述,为了满足越来越广泛的市场需求,高像素、大芯片、小尺寸是现有摄像模组不可逆转的发展趋势。随着感光芯片朝着高像素和大芯片的方向发展,与感光芯片适配的光学部件(例如,滤光元件、光学镜头)的尺寸也逐渐增大,这给用于驱动光学部件以进行光学性能调整(例如,光学对焦、光学防抖等)的驱动元件带来的新的挑战。
具体地,现有的用于驱动光学部件的驱动元件为电磁式马达,例如,音圈马达(Voice Coil Motor:VCM)、形状记忆合金驱动器(Shape of Memory Alloy Actuator:SMA)等。然而,随着光学部件尺寸增加而导致的重量增加,现有的电磁式马达已逐渐无法提供足够的驱动力来驱动光学部件移动。量化来看,现有的音圈马达和形状记忆合金驱动器仅适于驱动重量小于100mg的光学部件,也就是,如果光学部件的重量超过100mg,现有的驱动器将无法满足摄像模组的应用需求。
此外,随着移动终端设备朝着小型化和薄型化的方向发展,驱动元件内部的部件布设密度也随之提高。相应地,现有的音圈马达内部设有线圈和磁铁,当两个磁铁距离过近(小于7mm),其内部磁场会产生相互影响,导致磁铁产生位移或抖动,降低其驱动控制的稳定性。
因此,需要一种适配的用于摄像模组的新型驱动方案,且,新型的驱动器不仅能满足摄像模组对于光学性能调整的驱动要求,且能够满足摄像模组轻型化和薄型化的发展需求。
也就是,对于摄像模组模组而言,新型的驱动器需满足如下要求:相对更大的驱动力,以及,更优的驱动性能(具体地包括:更高精度的驱动控制和更长的驱动行程)。同时,除了需要寻找满足新技术要求的驱动器以外,在选择新驱动器时还需要考虑所选择的驱动器能够适应于当下摄像模组轻型化和薄型化的发展趋势。
经研究和试验,本申请提出了一种具有新型结构的压电致动器,该压电致动器能够满足所述摄像模组对于驱动器的技术要求。并且,进一步地采用合适的布置方式将所述压电致动器布置于所述摄像模组内,以使得其满足所 述摄像模组的结构设计要求和尺寸设计要求。
图4A至图4L图示了根据申请实施例的压电致动器的示意图。如图4A所示,根据本申请实施例的所述压电致动器100,包括:致动系统110和驱动电路系统120,其中,所述致动系统110在所述驱动电路系统120的控制下以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动。特别地,在该实施例中,所述压电致动器100是一种高效的半共振驱动系统,在被导通后,所述压电致动器100的致动系统110以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动,以摩擦地耦合并沿着该预设方向移动被作用对象。
如图4A所示,在该实施例中,所述致动系统110包括压电板结构111和固定于所述压电板结构111的摩擦驱动部112。这里,所述压电板结构111可以是对称的,也可以是不对称的。所述压电板结构111具有沿着其深度方向延伸的第一侧表面和沿着其高度方向延伸的且与所述第一侧表面相邻的第二侧表面,其中,所述压电板结构111沿着其深度方向(例如,如图4A中所示意的D)具有第一共振频率且沿着其高度方向(例如,如图4A中所示意的H)具有第二共振频率。通常,所述压电板结构111的高度尺寸大于其深度尺寸,也就是,所述第二共振频率大于所述第一共振频率。
如图4B所示,在该实施例中,所述压电板结构111包括形成在一起的至少一压电层。所述压电板结构111的厚度尺寸的范围为5um至40um。特别地,在本申请实施例中,所述至少一压电层结构可以为单一压电层,也可以包括多个叠置在一起的多个压电层(例如,是共烧在一起的多个平行压电层)。这里,与单一压电层相比,多个压电层可以在施加较小的电压的前提下就达到相近的效果。
如图4A所示,在该实施例中,所述压电板结构111包括形成于所述第二侧表面的第一压电区域1111、第二压电区域1112和第三压电区域1113,以及,形成于所述第一侧表面的第四压电区域1114,其中,所述第二压电区域1112位于所述第一压电区域1111和所述第三压电区域1113区间,且所述第四压电区域1114与所述第二压电区域1112相邻的。并且,所述压电板结构111进一步包括电连接于所述第一压电区域1111的第一电极对1115、电连接于所述第二压电区域1112的第二电极对1116、电连接于所述第三压电区域1113的第三电极对1117和电连接于所述第四压电区域1114 的第四电极对1118。也就是,在如图1所示意的示例中,所述压电板结构111包括4个压电区域以及分别与所述4个压电区域电连接的四个电极对。当然,在本申请其他示例中,所述压电板结构111可以包括其他数量的压电区域和电极对,对此,并不为本申请所局限。
并且,在本申请的其他一些示例中,所述第一压电区域1111和所述第三压电区域1113中的一个压电区域,和/或,所述第二压电区域1112和所述第四压电区域1114中的一个可以是无源的,这可以降低驱动振幅,但不会改变所述致动系统110的运行。
进一步地,在本申请实施例中,所述第一压电区域1111、所述第二压电区域1112、所述第三压电区域1113和所述第四压电区域1114具有通过在制造过程中极化而产生的极性,从而形成正极和负极。具体地,所述第一压电区域1111在制造过程中极化,以使得对应于所述第一压电区域1111的第一电极对1115中一个电极形成负极(例如,如图4A中所示意的A-),另一个电极形成正极(例如,如图4A中所示意的A+);所述第三压电区域1113在制造过程中极化,以使得对应于所述第三压电区域1113的第三电极对1117中一个电极形成负极(例如,如图4A中所示意的B-),另一个电极形成正极(例如,如图4A中所示意的B+);所述第二压电区域1112在制造过程中极化,以使得对应于所述第二压电区域1112的第二电极对1116中一个电极形成负极(例如,如图4A中所示意的C-),另一个电极形成正极(例如,如图4A中所示意的C+);所述第四压电区域1114在制造过程中极化,以使得对应于所述第四压电区域1114的第四电极对1118中一个电极形成负极(例如,如图4A中所示意的D-),另一个电极形成正极(例如,如图4A中所示意的D+)。应注意到在该实施例中,所述第一电极对1115和/或所述第二电极对1116和/或所述第三电极对1117和/或所述第二电极对1116中各个电极具有“L”型。
如图4A和图4B所示,在该实施例中,所述第一电极对1115中一个电极与所述第一压电区域1111的每个压电层的一个内部电极耦合并交错连接,所述第一电极对1115中另外一个电极被交错地连接于所述第一压电区域1111的与每个压电层相对的内部电极,其中,在极化过程中所述第一电极对1115的一个电极被确定为正极,另一个电极被确定为负极。所述第二电极对1116中一个电极与所述第二压电区域1112的每个压电层的一个内部电极耦 合并交错连接,所述第二电极对1116中另外一个电极被交错地连接于所述第二压电区域1112的与每个压电层相对的内部电极,其中,在极化过程中所述第二电极对1116的一个电极被确定为正极,另一个电极被确定为负极。所述第三电极对1117中一个电极与所述第三压电区域1113的每个压电层的一个内部电极耦合并交错连接,所述第三电极对1117中另外一个电极被交错地连接于所述第三压电区域1113的与每个压电层相对的内部电极,其中,在极化过程中所述第三电极对1117的一个电极被确定为正极,另一个电极被确定为负极。所述第三电极对1117中一个电极与所述第三压电区域1113的每个压电层的一个内部电极耦合并交错连接,所述第三电极对1117中另外一个电极被交错地连接于所述第三压电区域1113的与每个压电层相对的内部电极,其中,在极化过程中所述第三电极对1117的一个电极被确定为正极,另一个电极被确定为负极。
进一步参考图4A,在该实施例中,所述驱动电路系统120包括第一驱动电路121和第二驱动电路122,所述第一驱动电路121电连接于所述第一电极对1115和所述第三电极对1117,所述第二驱动电路122电连接于所述第二电极对1116和所述第四电极对1118,其中,所述第一驱动电路121和所述第二驱动电路122可以是全桥驱动电路,也可以是其他驱动电路。特别地,在该实施例中,所述驱动电路系统120具有4种输出电路振动信号:124(1)-124(4),其中,所述输出电路振动信号可以是如图3所示出的超声方波振动信号,也可以是其他信号,例如,正弦曲线状信号。
在所述压电致动器100工作中,所述压电板结构111具有两种弯曲模式:模式1和模式2,其中,模式1和模式2各自具有不同的共振频率。所述压电板结构111的弯曲模式的振动幅值取决于所述输出的电路振动信号的振动频率。具体地,当所述驱动电路系统120在对于两种弯曲模式中的一种的共振频率下(例如,模式1的共振频率)施加电路振动信号至所述压电板结构111时,对于在其共振频率下运行的弯曲模式的振动幅值全部放大,且对于在部分共振运行的其他弯曲模式仅仅被部分放大。更明确地,当所述第一驱动电路121输出的电路振动信号的振动频率为所述第一共振频率时,所述压电板结构111在其高度方向发生共振且在其深度方向发生部分共振,以使得所述压电板结构111以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动;其中,当所述第二驱动电路122所输入的电路振动信号的 振动频率为所述第二共振频率时,所述压电板结构111在其深度方向发生共振且在其高度方向发生部分共振,以使得所述压电板结构111以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动。
更具体地,在如图4A和图4C所示意的示例中,来自所述第一驱动电路121和所述第二驱动电路122能够输出4中电路振动信号:124(1)-124(4)。在该实施例中,所述电路振动信号的电压为2.8V,4种振动信号各自具有振动频率,该振动频率基本上等于所述压电板结构111的两种弯曲模式中其中任意一种的共振频率,即,该振动频率基本上等于所述第一共振频率或所述第二共振频率。另外,来自输出124(1)-124(2)的电路振动信号由所述驱动电路系统120相对于来自输出124(3)-124(4)的电路振动信号相移约0度至90度,从而以沿两种方向中的一种方向移动作用独享。当所述驱动电路系统120调节输出124(1)-124(2)相对于输出124(3)-124(4)相移到约-180度至-90度,以沿相对方向(即两种方向中的相对的另一种方向)移动可移动构件。
图4D至图4F图示了根据本申请实施例的所述压电致动器100以第一模式运动的示意图。如图4D至图4F所示,该弯曲模式是由于来自不同阶段的输出124(1)-124(2)的电路振动信号施加至具有相反极性的所述第一压电区域1111和所述第三压电区域1113而产生的。当所有电极的压电为0时,图4D示出了所述压电板结构111静止时的情况。当输出124(1)和124(2)之间的电压差为正时,所述第一压电区域1111的长度增加,而所述第三压电区域1113的长度减小,使得所述压电板如图4E所示弯曲。当输出124(1)和124(2)之间的电压差是负时,所述第一压电区域1111的长度减小,而所述第三压电区域1113的长度增加,使得所述压电板板结构如图4F所示弯曲。
图4G至图4I图示了根据本申请实施例的所述压电致动器100以第二模式运动的示意图。
如图4G至图4I所示,该弯曲模式是由于来自不同阶段的输出124(3)-124(4)的振动信号施加至具有相反极性的所述第二压电区域1112和所述第四压电区域1114而产生的。当所有电极的压电为0时,图4G示出了所述压电板结构111静止时的情况。当输出124(3)和124(4)之间的电压差是正时,所述第二压电区域1112的长度减小,而所述第四压电区域1114的长度增加,使得所述压电板结构111如图4H所示弯曲。当输出124(3)和 124(4)之间的电压差是负时,所述第二压电区域1112的长度增加,而所述第四压电区域1114的长度减小,使得所述压电板板结构如图4I所示弯曲。
相应地,当将如图3中所示意的输出电路振动信号施加至所述致动系统110时,所述致动系统110形成椭圆轨道状的二维轨迹,也就是,所述驱动电路系统120能够根据相位差值控制所述致动系统110在该椭圆轨道路径上旋转的方向,使得所述致动系统110能够以相对更小且更精确的步进速度驱动被作用对象。
图4J图示了根据本申请实施例的所述压电致动器100的压电板结构111的另一示意图。如图4J所示,在本申请实施例中,所述致动系统110进一步包括固定于所述压电板结构111的摩擦驱动部112,其中,所述摩擦驱动部112适于可摩擦地耦合于被作用对象以通过摩擦来驱动该被作用对象沿着预定方向移动。为了使得所述摩擦驱动部112能够摩擦地耦接于该被作用对象,如图4K所示,在安装过程中,通常为所述压电致动器100配置预压部件43/46,所述预压部件43/46提供所述压电致动器100和该被作用对象之间的预压力,以使得所述压电致动器100的摩擦驱动部112能够可摩擦地耦接于该被作用对象,以通过摩擦来驱动该被作用对象沿着预定方向移动,如图4L所示。
特别地,在该实施例中,所述摩擦驱动部112包括至少一接触垫,其可沿着深度方向固定于所述压电板结构111,也可以沿着高度方向固定于所述压电板结构111。在该实施例中,所述至少一接触垫可以具有半球形,当然,也可以是其他形状,例如,半圆柱形、台体、长方形等。优选地,所述至少一接触垫由具有较佳摩擦性能和耐久性能的材料制成,例如,可以有金属氧化物材料制成(例如,氧化锆、氧化铝等)。
值得一提的是,相较于传统的电磁式驱动器,所述压电致动器100具有体积小、推力大,精度高的优势。量化来看,根据本申请实施例的所述压电致动器100能够提供的驱动力大小为0.6N至2N,其足以驱动重量大于100mg的部件。
除了能够提供相对较大的驱动力以外,相较于传统的电磁式马达方案和记忆合金马达方案,所述压电致动器100还具有其他优势,包括但不限于:尺寸相对较小(具有细长状),响应精度更佳,结构相对更为简单,驱动控制相对更为简单,产品一致性高,没有电磁干扰,具有相对更大的行程,稳 定时间短,重量相对较小等。
具体来说,所述摄像模组需要其所配置的驱动器具有驱动行程较长且需要保证较好的对准精度等特征。在现有的音圈马达方案中,为了保证运动线性度需要额外设计导杆或滚珠导轨,同时需要在镜头侧部适配大尺寸的驱动磁铁/线圈等,同时需要设置滚珠、弹片、悬丝等辅助定位装置,为容纳较多的部件、保障结构强度和预留结构间隙,往往导致模组横向尺寸偏大,且结构设计复杂,模组重量较重。而记忆合金马达方案,受限于记忆合金方案同比例能够提供的行程相对较少,同时存在潜在断线等可靠性风险。
而所述压电致动器100具有相对较为简单的结构,组装结构更加简单,另外其元件大小与所述压电致动器100的运动行程大小基本无关,因此所述压电致动器100可以实现大推力、小尺寸,小重量等优势,同时匹配更大行程或更重器件重量进行设计,设计中的集成度也更高。
进一步地,所述压电致动器100以摩擦接触的方式推动待推动对象进行微米级运动,其相较于电磁式方案非接触的方式驱动待推动对象需要依靠电磁力抵消重力,摩擦力的方式,具有更大推力,更大位移和更低功耗的优势,同时控制精度更高。而且在存在多个马达机构时,所述压电致动器100不存在磁铁线圈结构,无磁干扰问题。另外,所述压电致动器100可依靠部件之间的摩擦力自锁,因此可以降低所述可摄像模组在进行光学防抖时的晃动异响。
在选择以所述压电致动器100作为驱动器来驱动所述感光组件10以进行光学防抖后,具体地,如图1和图3所示,在该实施例中,所述驱动组件40,包括:第一承载框架41、第一驱动元件42、第一预压部件43、第二承载框架44、第二驱动元件45、第二预压部件46和外框架47,其中,所述第一驱动元件42和所述第二驱动元件45被实施为如上所述的压电致动器100。
相应地,如图1和图3所示,在该实施例中,所述感光组件10被安装于所述第一承载框架41,所述第一驱动元件42通过所述第一预压部件43被摩擦地耦接于所述第一承载框架41,并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹运动沿着第一方向移动以此通过摩擦来驱动所述第一承载框架41以带动所述感光组件10在垂直于所述光轴的平面内以所述第一方向移动以进行光学防抖。所述第二 承载框架44外设于所述第一承载框架41,其中,所述第二驱动元件45通过所述第二预压部件46被摩擦地耦接于所述第二承载框架44,并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹沿着第二方向移动以此通过摩擦来驱动所述第二承载框架44以带动第一承载框架41进行带动所述感光组件10在垂直于所述光轴的平面内移动以进行在第二方向上的光学防抖,所述第一方向与所述第二方向垂直。在一个示例中,所述第一方向为X轴方向,所述第二方向为Y轴方向。
这里,所述第一驱动元件42摩擦地耦接于所述第一承载框架41,包括:所述第一驱动元件42与所述第一承载框架41直接摩擦作用,以及,所述第一驱动元件42和所述第一承载框架41之间间接摩擦作用(即,虽然所述第一驱动元件42与所述第一承载框架41之间不存在直接的摩擦力,但所述第一驱动元件42所产生的摩擦驱动力能作用于所述第一承载框架41)。相一致地,所述第二驱动元件43摩擦地耦接于所述第二承载框架44和所述外框架47之间,包括:所述第二驱动元件43与所述第二承载框架44直接摩擦作用,以及,所述第二驱动元件43和所述第二承载框架44之间间接摩擦作用(即,虽然所述第二驱动元件43与所述第二承载框架44之间不存在直接的摩擦力,但所述第二驱动元件44所产生的摩擦驱动力能作用于所述第二承载框架44)。
更具体地,该实施例中,如图3所示,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一承载框架41和所述第二承载框架44之间,通过这样的方式使得所述第一驱动元件42被摩擦地耦接于所述第一承载框架41。
相应地,在该实施例中,所述第一预压部件43包括第一弹性元件431,所述第一弹性元件431被设置于所述第一驱动元件42的压电板结构111和所述第二承载框架44之间,以通过所述第一弹性元件431的弹力迫使所述第一驱动元件42摩擦地耦接于所述第一承载框架41。在本申请一个示例中,所述第一驱动元件42的摩擦驱动部112直接抵触于所述第一承载框架41的外侧壁的表面,相应地,所述第一弹性元件431所提供的弹力能够迫使所述第一驱动元件42的所述摩擦驱动部112抵触于所述第一承载框架41的外侧壁的表面,以在两者之间形成摩擦接触的结合关系。这样,在所述第一驱动元件42被导通后,所述第一驱动元件42的所述摩擦驱动部112能以 摩擦驱动的方式驱动所述第一承载框架41沿着第一方向移动,以带动所述感光组件10沿着所述第一方向移动以进行在所述第一方向上的光学防抖。
在本申请一个具体示例中,所述第一弹性元件431被实施为具有弹性的黏着剂,也就是,所述第一弹性元件431被实施为固化后具有弹性的胶水。相应地,在安装过程中,可在所述第二承载框架44的内侧壁的表面和所述第一驱动元件42的压电板结构111之间施加一层厚度为10um至50um的黏着剂,以在所述黏着剂固化成型后形成设置于所述第一驱动元件42的压电板结构111和所述第二承载框架44之间的所述第一弹性元件431。应可以理解,在该示例中,所述第一弹性元件431在提供预压力的同时,还能够使得所述第一驱动元件42被固定于所述第二承载框架44的内侧壁的表面。优选地,所述第一弹性元件431具有相对较高的平整度,即,在施加所述黏着剂时,尽可能地保证所施加的黏着剂具有相对较高的平整度且均匀度,从而使得所述第一驱动元件42能够平整地被固定于所述第二承载框架44的内侧壁的表面,进而提升所述第一驱动元件42驱动的稳定性。
相应地,该实施例中,如图3所示,所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二承载框架44和所述外框架47之间,通过这样的方式,所述第二驱动元件45摩擦地耦接于所述第二承载框架44。并且,应注意到,如图1所示,所述镜头组件20的镜头载体21承载于所述外框架47上。
进一步地,如图3所示,在该实施例中,所述第二预压部件46包括第二弹性元件461,所述第二弹性元件461被设置于所述第二驱动元件45的压电板结构111和所述外框架47之间,以通过所述第二弹性元件461的弹力迫使所述第二驱动元件45摩擦地耦接于所述第二承载框架44。相应地,在本申请一个具体的示例中,所述第二驱动元件45的摩擦驱动部112直接抵触于所述第二承载框架44的外侧壁的表面,相应地,所述第二弹性元件461所提供的弹力能够迫使所述第二驱动元件45的所述摩擦驱动部112抵触于所述第二承载框架44的外侧壁的表面,以在两者之间形成摩擦接触的结合关系。这样,在所述第二驱动元件45被导通后,所述第二驱动元件45的所述摩擦驱动部112能以摩擦驱动的方式驱动所述第二承载框架44沿着第二方向移动,以带动所述感光组件10沿着所述第二方向移动以进行在所述第二方向上的光学防抖。
在本申请一个具体示例中,所述第二弹性元件461被实施为具有弹性的黏着剂,也就是,所述第二弹性元件461被实施为固化后具有弹性的胶水。相应地,在安装过程中,可在所述外框架47的内侧壁的表面和所述第二驱动元件45的压电板结构111之间施加一层厚度为10um至50um的黏着剂,以在所述黏着剂固化成型后形成设置于所述第二驱动元件45的压电板结构111和所述外框架47之间的所述第二弹性元件461。应可以理解,在该示例中,所述第二弹性元件461在提供预压力的同时,还能够使得所述第二驱动元件45被固定于所述外框架47的内侧壁的表面。优选地,所述第二弹性元件461具有相对较高的平整度,即,在施加所述黏着剂时,尽可能地保证所施加的黏着剂具有相对较高的平整度且均匀度,从而使得所述第二驱动元件45能够平整地被固定于所述外框架47的内侧壁的表面,进而提升所述第二驱动元件45驱动的稳定性。
值得一提的是,在本申请其他实施例中,所述第一弹性元件431和所述第二弹性元件461也可以被实施为不具有黏性的弹性元件,例如,材料自身特征本身存在弹性的橡胶,或者,由于形变而产生弹性的弹簧、板簧等,对此,同样并不为本申请所局限。
值得一提的是,在本申请的其他变形实施例中,所述第一预压部件43和所述第二预压部件46的结构配置也可以做出调整。例如,在如图5所示意的变形实施中,所述第一预压部件43包括设置于所述第一承载框架41的第一磁吸元件52和设置于所述第二承载框架44且对应于所述第一磁吸元件52的第二磁吸元件53,以通过所述第一磁吸元件52和所述第二磁吸元件53之间的磁吸作用迫使所述第一驱动元件42摩擦地耦接于所述第一承载框架41。所述第二预压部件46包括设置于所述第二承载框架44的第三磁吸元件62和设置于所述镜头载体21且对应于所述第三磁吸元件62的第四磁吸元件63,以通过所述第三磁吸元件62和所述第四磁吸元件63之间的磁吸作用迫使所述第二驱动元件45摩擦地耦接于所述第二承载框架44。
在该变形实施中,所述第一磁吸元件52和所述第二磁吸元件53是指能够相互吸引的磁吸组件,例如,所述第一磁吸元件52可被实施为磁体,所述第二磁吸元件53可被实施为磁性部件,例如,由铁、镍、钴等金属制成的材料;再如,所述第一磁吸元件52可被实施为磁体,所述第二磁吸元 件53也可被实施为磁体。在该变形实施中,所述第三磁吸元件62和所述第四磁吸元件63是指能够相互吸引的磁吸组件,例如,所述第三磁吸元件62可被实施为磁体,所述第四磁吸元件63可被实施为磁性部件,例如,由铁、镍、钴等金属制成的材料;再如,所述第三磁吸元件62可被实施为磁体,所述第四磁吸元件63也可被实施为磁体。
为了使得所述第一驱动元件42和所述第二驱动元件45能够更为平稳地驱动所述第一承载框架41和所述第二承载框架44,如图3所示,所述驱动组件40进一步包括设置于所述第一承载框架41和所述第二承载框架44之间的第一导引机构48和设置于所述第二承载框架44和所述外框架47之间的第二导引机构49,其中,所述第一导引机构48被配置为引导所述第一承载框架41沿着所述第一方向移动,所述第二导引机构49被配置为引导所述第二承载框架44沿着所述第二方向移动。
更具体地,如图3所示,在该实施例中,所述第一导引机构48和所述第二导引机构49被实施为导杆结构。相应地,所述第一导引机构48包括被设置于所述第一承载框架41的外侧壁且沿着所述第一方向延伸的第一导杆,其中,所述第一导杆的两端部被固定于所述第二承载框架44的内侧壁上。特别地,在该实施例中,所述第一导杆与所述第一驱动元件42同向相对地设置,这样,在所述第一驱动元件42被导通后,所述第一承载框架41被导引沿着所述第一导杆延伸的方向进行移动,以提高所述第一承载框架41的移动稳定性。
相应地,在该实施例中,所述第二导引机构49包括被设置于所述第二承载框架44的外侧壁且沿着所述第二方向延伸的第二导杆,其中,所述第二导杆的两端部被固定于所述外框架47的内侧壁上。特别地,在该实施例中,所述第二导杆与所述第二驱动元件45同向相对地设置,这样,在所述第二驱动元件45被导通后,所述第二承载框架44被导引沿着所述第二导杆延伸的方向进行移动,以提高所述第二承载框架44的移动稳定性。
值得一提的是,在本申请其他实施例中,所述第一导引机构48和所述第二导引机构49还能够基于其他原理实现,例如,通过滚珠-滚槽机构、滑块-滑槽机构等,对此,并不为本申请所局限。
为了优化所述第一驱动元件42和所述第二驱动元件45的驱动性能,在本申请实施例中,如图1至图3所示,所述驱动组件40进一步包括第一 摩擦作动部131和第二摩擦作动部132,其中,所述第一摩擦作动部131被设置于所述第一驱动元件42和所述第一承载框架41之间并且所述第一驱动元件42的摩擦驱动部112在所述第一预压部件43的作用下抵触于所述第一摩擦作动部131,所述第一摩擦作动部131抵触于所述第一承载框架41的外侧壁的表面,通过这样的方式使得所述第一驱动元件42所提供的摩擦驱动力能够藉由所述第一摩擦作动部131作用于所述第一承载框架41,以带动所述第一承载框架41和所述感光组件10沿着所述第一方向移动。也就是,在该变形实施例中,所述第一驱动元件42的摩擦驱动部112与所述第一承载框架41之间的预压力是间接的预压力,即,虽然所述第一驱动元件42的摩擦驱动部112与所述第一承载框架41之间不直接接触,但两者之间仍存在预压力以使得所述第一驱动元件42的摩擦驱动部112能通过摩擦驱动的方式来驱动所述第一承载框架41。
相应地,所述第二摩擦作动部132被设置于所述第二驱动元件45和所述第二承载框架44之间并且所述第二驱动元件45的摩擦驱动部112在所述第二预压部件46的作用下抵触于所述第二摩擦作动部132且所述第二摩擦作动部132抵触于所述第二承载框架44的外侧壁的表面,通过这样的方式,使得所述第二驱动元件45所提供的摩擦驱动力能够藉由所述第二摩擦作动部132作用于所述第二承载框架44以带动所述第二承载框架44、所述第一承载框架41和所述感光组件10沿着所述第二方向移动,以进行在第二方向上的光学防抖。
更具体地,如图1所示,在该实施例中,所述第一摩擦作动部131具有第一表面和与所述第一表面相对的第二表面,其中,在所述第一预压部件43的作用下,所述第一摩擦作动部131的第一表面抵触于所述第一承载框架41的外侧壁的表面,其第二表面抵触于所述多个摩擦驱动元件121中至少一个所述摩擦驱动元件121的第二端的端面,通过这样的方式,所述第一驱动元件42的摩擦驱动部112抵触于所述第一摩擦作动部131且所述第一摩擦作动部131抵触于所述第一承载框架41,通过这样的方式使得所述第一驱动元件42所提供的摩擦驱动力能够藉由所述第一摩擦作动部131作用于所述第一承载框架41。相应地,所述第二摩擦作动部132具有第三表面和与所述第三表面相对的第四表面,其中,在所述第二预压部件46的作用下,所述第二摩擦作动部132的第三表面抵触于所述第二承载框架44的外 侧壁的表面,所述第四表面抵触于所述多个摩擦驱动元件121中至少一个所述摩擦驱动元件121的第二端的端面,通过这样的方式,所述第二驱动元件45的摩擦驱动部112抵触于所述第二摩擦作动部132且所述第二摩擦作动部132抵触于所述第二承载框架44,通过这样的方式使得,所述第二驱动元件45所提供的摩擦驱动力能够藉由所述第二摩擦作动部132作用于所述第二承载框架44。
值得一提的是,虽然在如图1所示意的示例中,所述第一摩擦作动部131和所述第二摩擦作动部132作为一个单独的部件被分别设置于所述第一驱动元件42和所述第一承载框架41之间,以及,所述第二驱动元件45和所述第二承载框架44之间,例如,所述第一摩擦作动部131被实施为一个单独的部件并被贴附于所述第一承载框架41的侧表面,或者,所述第二摩擦作动部132被实施为一个单独的部件被贴附于所述第二承载框架44的侧表面,再如,所述第一摩擦作动部131被实施为一层涂覆于所述第一承载框架41的侧表面的涂层,或者,所述第二摩擦作动部132被实施为一层涂覆于所述第二承载框架44的侧表面的涂层。应可以理解,在本申请其他示例中,所述第一摩擦作动部131也可一体成型于所述第一承载框架41的外侧壁的表面,即,所述第一摩擦作动部131与所述第一承载框架41具有一体式结构。当然,在本申请其他示例中,所述第二摩擦作动部132也可一体成型于所述第二承载框架44的外侧壁的表面,即,所述第二摩擦作动部132与所述第二承载框架44具有一体式结构。
图6图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。相较于图1所示意的示例,在该变形实施例中,所述第一驱动元件42和所述第二驱动元件45的设置方式发生了调整。
具体地,在如图1和图3所示意的示例中,所述第一驱动元件42位于所述第一承载框架41的侧部,且,所述第二驱动元件45位于所述第二承载框架44的侧部。相对地,如图6所示,在该变形实施例中,所述第一驱动元件42位于所述第一承载框架41的上部,且所述第二驱动元件45位于所述第二承载框架44的上部。
在该变形实施的一个具体示例中,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一承载框架41和所述第二承载框架44上下之间,通过这样的方式,所述第一驱动元件42摩擦地耦接于所述第一 承载框架41。所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二承载框架44和所述镜头载体21上下之间,通过这样的方式,所述第二驱动元件45摩擦地耦接于所述第二承载框架44。
相一致地,所述驱动组件40进一步包括设置于所述第一承载框架41和所述第二承载框架44之间的第一导引机构48和设置于所述第二承载框架44和所述外框架47之间的第二导引机构49。但与图1和图3所示意的示例不同的是,在该变形实施例中,所述第一导引机构48和所述第二导引机构49被实施为滚珠-滚槽机构,如图7所示。
图8图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。相较于图1所示意的示例,在该变形实施例中,所述第一驱动元件42和所述第二驱动元件45的设置方式再次发生了调整。
具体地,如图8所示,在该变形实施例中,所述第一驱动元件42位于所述第一承载框架41的下部,且,所述第二驱动元件45位于所述第二承载框架44的下部。
在该变形实施的一个具体示例中,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一承载框架41和所述第二承载框架44上下之间,通过这样的方式,所述第一驱动元件42摩擦地耦接于所述第一承载框架41。所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二承载框架44和所述外框架47上下之间,通过这样的方式,所述第二驱动元件45摩擦地耦接于所述第二承载框架44。
相一致地,所述驱动组件40进一步包括设置于所述第一承载框架41和所述第二承载框架44之间的第一导引机构48和设置于所述第二承载框架44和所述外框架47之间的第二导引机构49。但与图1和图3所示意的示例不同的是,在该变形实施例中,所述第一导引机构48和所述第二导引机构49被实施为滚珠-滚槽机构,如图8所示。
综上,基于本申请实施例的所述摄像模组被阐明,其中,所述摄像模组采用压电致动器100作为驱动器以不仅能满足摄像模组对于光学性能调整的驱动要求,且能够满足摄像模组轻型化和薄型化的发展需求。
虽然,在本申请实施例中,以所述摄像模组为传统的直立式摄像模组为示例,本领域普通技术人员应可以理解,根据本申请实施例的所述压电致动 器100也可以作为驱动器被应用于潜望式摄像模组中,对此,并不为本申请所局限。
示例性摄像模组
如图9所示,根据本申请实施例的摄像模组被阐明,其包括:感光组件10、被保持于所述感光组件10的感光路径上的光学镜头20、框架载体组件30,以及,用于驱动所述光学镜头20以进行光学防抖的驱动组件40。
如图10所示,在该实施例中,所述感光组件10包括线路板11、电连接于所述线路板11的感光芯片12和被保持于所述感光芯片12的感光路径上的滤光元件13,其中,所述线路板11形成所述感光组件10的安装基板。所述线路板可以被实施为印刷电路板(Printed Circuit Board,PCB)、软件结合板、或者被补强后的柔性电路板(Flexible Printed Circuit,PFC)。并且,在一些示例中,还可以在所述线路板11的下方设置补强板(未有图示意),例如,在所述线路板的下方设置钢片,以通过所述钢片来加强所述线路板的强度且提高所述感光组件的散热性能。
进一步地,在如图10所示意的示例中,所述感光组件10,进一步包括设置于所述线路板11的支架14,其中,所述滤光元件13被安装于所述支架14上以被保持于所述感光芯片12的感光路径上。在本申请其他示例中,所述滤光元件13被保持于所述感光芯片12的感光路径上的具体实施方式并不为本申请所局限,例如,所述滤光元件13可被实施为滤波膜并涂覆于所述光学镜头的某一光学透镜的表面,以起到滤光的效果,再如,所述感光组件10可进一步包括安装于所述支架14的滤光元件支架(未有图示意),其中,所述滤光元件13以被安装于所述滤光元件支架的方式被保持于所述感光芯片12的感光路径上。
在本申请实施例的一个具体示例中,所述支架14可被实施为塑料支架,其通过黏着剂附着于所述线路板11上。在本申请实施例的其他示例中,所述支架14还可以被实施为一体地成型于所述线路板11的一体式支架,例如模塑支架,对此,并不为本申请所局限。
如图9所示,在本申请实施例中,所述框架载体组件30被安装于所述感光组件10上,其中,所述框架载体组件30,包括安装于所述支架14上的外框架载体33、被收容于所述外框架载体33内的第二框架载体32和被 收容于所述第二框架载体32内的第一框架载体31。也就是,在该实施例中,所述框架载体组件,包括第一框架载体31、外设于所述第一框架载体31的第二框架载体32和外设于所述第二框架载体32的外框架载体33。
特别地,在该实施例中,所述光学镜头20被安装于所述第一框架载体31内,通过这样的方式,所述光学镜头20被保持于所述感光组件10的感光路径上。也就是,在该实施例中,所述第一框架载体31形成所述光学镜头的安装载体。
并且,在本申请实施例中,所述第二框架载体32与所述外框架载体33之间存在间隙,所述第一框架载体31与所述第二框架载体32之间存在间隙,也就是,所述第二框架载体32与所述外框架载体33之间存在可用空间,其中,该可用空间可用于安装用于驱动所述第二载体框32架移动的驱动器;所述第一框架载体31与所述第二框架载体32之间存在可用空间,其中,该可用空间可用于安装驱动所述第一框架载体31移动的驱动器。这里,关于驱动器的选择和安装会在后续的描述中更为详细地展开。
如图9所示,在本申请实施例中,所述光学镜头22包括镜筒21和被安装于所述镜筒21内的至少一光学透镜22。本领域普通技术人员应知晓,所述光学镜头20的解像力在一定范围内与光学透镜22的数量成正比,也就是,解像力越高,所述光学透镜22的数量越多。在具体实施中,所述光学镜头20可被实施为一体式镜头,或者,分体式镜头,其中,当所述光学镜头20被实施为一体式镜头时,所述光学镜头20包含一个镜筒21,所有的所述光学透镜22被安装于所述镜筒21内;而当所述光学镜头20被实施为分体式光学镜头,所述光学镜头20由至少两部分镜头单体组装而成。
如前所述,为了满足越来越广泛的市场需求,高像素、大芯片、小尺寸是现有摄像模组不可逆转的发展趋势。随着感光芯片朝着高像素和大芯片的方向发展,与感光芯片适配的光学部件(例如,滤光元件、光学镜头)的尺寸也逐渐增大,这给用于驱动光学部件以进行光学性能调整(例如,光学对焦、光学防抖等)的驱动元件带来的新的挑战。
具体地,现有的用于驱动光学部件的驱动元件为电磁式马达,例如,音圈马达(Voice Coil Motor:VCM)、形状记忆合金驱动器(Shape of Memory Alloy Actuator:SMA)等。然而,随着光学部件尺寸增加而导致的重量增加,现有的电磁式马达已逐渐无法提供足够的驱动力来驱动光学部件移动。 量化来看,现有的音圈马达和形状记忆合金驱动器仅适于驱动重量小于100mg的光学部件,也就是,如果光学镜头的重量超过100mg,现有的驱动器将无法满足摄像模组的应用需求。
此外,随着移动终端设备朝着小型化和薄型化的方向发展,驱动元件内部的部件布设密度也随之提高。相应地,现有的音圈马达内部设有线圈和磁铁,当两个磁铁距离过近(小于7mm),其内部磁场会产生相互影响,导致磁铁产生位移或抖动,降低其驱动控制的稳定性。
因此,需要一种适配的用于摄像模组的新型驱动方案,且,新型的驱动器不仅能满足摄像模组对于光学性能调整的驱动要求,且能够满足摄像模组轻型化和薄型化的发展需求。
也就是,对于摄像模组模组而言,新型的驱动器需满足如下要求:相对更大的驱动力,以及,更优的驱动性能(具体地包括:更高精度的驱动控制和更长的驱动行程)。同时,除了需要寻找满足新技术要求的驱动器以外,在选择新驱动器时还需要考虑所选择的驱动器能够适应于当下摄像模组轻型化和薄型化的发展趋势。
经研究和试验,本申请提出了一种具有新型结构的压电致动器,该压电致动器能够满足所述摄像模组对于驱动器的技术要求。并且,进一步地采用合适的布置方式将所述压电致动器布置于所述摄像模组内,以使得其满足所述摄像模组的结构设计要求和尺寸设计要求。
图12A至图12L图示了根据申请实施例的压电致动器的示意图。如图12A所示,根据本申请实施例的所述压电致动器100,包括:致动系统110和驱动电路系统120,其中,所述致动系统110在所述驱动电路系统120的控制下以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动。特别地,在该实施例中,所述压电致动器100是一种高效的半共振驱动系统,在被导通后,所述压电致动器100的致动系统110以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动,以摩擦地耦合并沿着该预设方向移动被作用对象。
如图12A所示,在该实施例中,所述致动系统110包括压电板结构111和固定于所述压电板结构111的摩擦驱动部112。这里,所述压电板结构111可以是对称的,也可以是不对称的。所述压电板结构111具有沿着其深 度方向延伸的第一侧表面和沿着其高度方向延伸的且与所述第一侧表面相邻的第二侧表面,其中,所述压电板结构111沿着其深度方向(例如,如图12A中所示意的D)具有第一共振频率且沿着其高度方向(例如,如图12A中所示意的H)具有第二共振频率。通常,所述压电板结构111的高度尺寸大于其深度尺寸,也就是,所述第二共振频率大于所述第一共振频率。
如图12B所示,在该实施例中,所述压电板结构111包括形成在一起的至少一压电层。所述压电板结构111的厚度尺寸的范围为5um至40um。特别地,在本申请实施例中,所述至少一压电层结构可以为单一压电层,也可以包括多个叠置在一起的多个压电层(例如,是共烧在一起的多个平行压电层)。这里,与单一压电层相比,多个压电层可以在施加较小的电压的前提下就达到相近的效果。
如图12A所示,在该实施例中,所述压电板结构111包括形成于所述第二侧表面的第一压电区域1111、第二压电区域1112和第三压电区域1113,以及,形成于所述第一侧表面的第四压电区域1114,其中,所述第二压电区域1112位于所述第一压电区域1111和所述第三压电区域1113区间,且所述第四压电区域1114与所述第二压电区域1112相邻的。并且,所述压电板结构111进一步包括电连接于所述第一压电区域1111的第一电极对1115、电连接于所述第二压电区域1112的第二电极对1116、电连接于所述第三压电区域1113的第三电极对1117和电连接于所述第四压电区域1114的第四电极对1118。也就是,在如图9所示意的示例中,所述压电板结构111包括4个压电区域以及分别与所述4个压电区域电连接的四个电极对。当然,在本申请其他示例中,所述压电板结构111可以包括其他数量的压电区域和电极对,对此,并不为本申请所局限。
并且,在本申请的其他一些示例中,所述第一压电区域1111和所述第三压电区域1113中的一个压电区域,和/或,所述第二压电区域1112和所述第四压电区域1114中的一个可以是无源的,这可以降低驱动振幅,但不会改变所述致动系统110的运行。
进一步地,在本申请实施例中,所述第一压电区域1111、所述第二压电区域1112、所述第三压电区域1113和所述第四压电区域1114具有通过在制造过程中极化而产生的极性,从而形成正极和负极。具体地,所述第一压电区域1111在制造过程中极化,以使得对应于所述第一压电区域1111 的第一电极对1115中一个电极形成负极(例如,如图12A中所示意的A-),另一个电极形成正极(例如,如图12A中所示意的A+);所述第三压电区域1113在制造过程中极化,以使得对应于所述第三压电区域1113的第三电极对1117中一个电极形成负极(例如,如图12A中所示意的B-),另一个电极形成正极(例如,如图12A中所示意的B+);所述第二压电区域1112在制造过程中极化,以使得对应于所述第二压电区域1112的第二电极对1116中一个电极形成负极(例如,如图12A中所示意的C-),另一个电极形成正极(例如,如图12A中所示意的C+);所述第四压电区域1114在制造过程中极化,以使得对应于所述第四压电区域1114的第四电极对1118中一个电极形成负极(例如,如图12A中所示意的D-),另一个电极形成正极(例如,如图12A中所示意的D+)。应注意到在该实施例中,所述第一电极对1115和/或所述第二电极对1116和/或所述第三电极对1117和/或所述第二电极对1116中各个电极具有“L”型。
如图12A和图12B所示,在该实施例中,所述第一电极对1115中一个电极与所述第一压电区域1111的每个压电层的一个内部电极耦合并交错连接,所述第一电极对1115中另外一个电极被交错地连接于所述第一压电区域1111的与每个压电层相对的内部电极,其中,在极化过程中所述第一电极对1115的一个电极被确定为正极,另一个电极被确定为负极。所述第二电极对1116中一个电极与所述第二压电区域1112的每个压电层的一个内部电极耦合并交错连接,所述第二电极对1116中另外一个电极被交错地连接于所述第二压电区域1112的与每个压电层相对的内部电极,其中,在极化过程中所述第二电极对1116的一个电极被确定为正极,另一个电极被确定为负极。所述第三电极对1117中一个电极与所述第三压电区域1113的每个压电层的一个内部电极耦合并交错连接,所述第三电极对1117中另外一个电极被交错地连接于所述第三压电区域1113的与每个压电层相对的内部电极,其中,在极化过程中所述第三电极对1117的一个电极被确定为正极,另一个电极被确定为负极。所述第三电极对1117中一个电极与所述第三压电区域1113的每个压电层的一个内部电极耦合并交错连接,所述第三电极对1117中另外一个电极被交错地连接于所述第三压电区域1113的与每个压电层相对的内部电极,其中,在极化过程中所述第三电极对1117的一个电极被确定为正极,另一个电极被确定为负极。
进一步参考图12A,在该实施例中,所述驱动电路系统120包括第一驱动电路121和第二驱动电路122,所述第一驱动电路121电连接于所述第一电极对1115和所述第三电极对1117,所述第二驱动电路122电连接于所述第二电极对1116和所述第四电极对1118,其中,所述第一驱动电路121和所述第二驱动电路122可以是全桥驱动电路,也可以是其他驱动电路。特别地,在该实施例中,所述驱动电路系统120具有4种输出电路振动信号:124(1)-124(4),其中,所述输出电路振动信号可以是如图12C所示出的超声方波振动信号,也可以是其他信号,例如,正弦曲线状信号。
在所述压电致动器100工作中,所述压电板结构111具有两种弯曲模式:模式1和模式2,其中,模式1和模式2各自具有不同的共振频率。所述压电板结构111的弯曲模式的振动幅值取决于所述输出的电路振动信号的振动频率。具体地,当所述驱动电路系统120在对于两种弯曲模式中的一种的共振频率下(例如,模式1的共振频率)施加电路振动信号至所述压电板结构111时,对于在其共振频率下运行的弯曲模式的振动幅值全部放大,且对于在部分共振运行的其他弯曲模式仅仅被部分放大。更明确地,当所述第一驱动电路121输出的电路振动信号的振动频率为所述第一共振频率时,所述压电板结构111在其高度方向发生共振且在其深度方向发生部分共振,以使得所述压电板结构111以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动;其中,当所述第二驱动电路122所输入的电路振动信号的振动频率为所述第二共振频率时,所述压电板结构111在其深度方向发生共振且在其高度方向发生部分共振,以使得所述压电板结构111以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹移动。
更具体地,在如图12A和图12C所示意的示例中,来自所述第一驱动电路121和所述第二驱动电路122能够输出4种电路振动信号:124(1)-124(4)。在该实施例中,所述电路振动信号的电压为2.8V,4种振动信号各自具有振动频率,该振动频率基本上等于所述压电板结构111的两种弯曲模式中其中任意一种的共振频率,即,该振动频率基本上等于所述第一共振频率或所述第二共振频率。另外,来自输出124(1)-124(2)的电路振动信号由所述驱动电路系统120相对于来自输出124(3)-124(4)的电路振动信号相移约0度至90度,从而以沿两种方向中的一种方向移动。当所述驱动电路系统120调节输出124(1)-124(2)相对于输出124(3)-124(4)相移到约-180度至 -90度,以沿相对方向(即两种方向中的相对的另一种方向)移动可移动构件。
图12D至图12F图示了根据本申请实施例的所述压电致动器100以第一模式运动的示意图。如图12D至图12F所示,该弯曲模式是由于来自不同阶段的输出124(1)-124(2)的电路振动信号施加至具有相反极性的所述第一压电区域1111和所述第三压电区域1113而产生的。当所有电极的压电为0时,图12D示出了所述压电板结构111静止时的情况。当输出124(1)和124(2)之间的电压差为正时,所述第一压电区域1111的长度增加,而所述第三压电区域1113的长度减小,使得所述压电板如图12E所示弯曲。当输出124(1)和124(2)之间的电压差是负时,所述第一压电区域1111的长度减小,而所述第三压电区域1113的长度增加,使得所述压电板板结构如图12F所示弯曲。
图12G至图12I图示了根据本申请实施例的所述压电致动器100以第二模式运动的示意图。
如图12G至图12I所示,该弯曲模式是由于来自不同阶段的输出124(3)-124(4)的振动信号施加至具有相反极性的所述第二压电区域1112和所述第四压电区域1114而产生的。当所有电极的压电为0时,图12G示出了所述压电板结构111静止时的情况。当输出124(3)和124(4)之间的电压差是正时,所述第二压电区域1112的长度减小,而所述第四压电区域1114的长度增加,使得所述压电板结构111如图12H所示弯曲。当输出124(3)和124(4)之间的电压差是负时,所述第二压电区域1112的长度增加,而所述第四压电区域1114的长度减小,使得所述压电板板结构如图12I所示弯曲。
相应地,当将如图11中所示意的输出电路振动信号施加至所述致动系统110时,所述致动系统110形成椭圆轨道状的二维轨迹,也就是,所述驱动电路系统120能够根据相位差值控制所述致动系统110在该椭圆轨道路径上旋转的方向,使得所述致动系统110能够以相对更小且更精确的步进速度驱动被作用对象。
图12J图示了根据本申请实施例的所述压电致动器100的压电板结构111的另一示意图。如图12J所示,在本申请实施例中,所述致动系统110进一步包括固定于所述压电板结构111的摩擦驱动部112,其中,所述摩擦 驱动部112适于可摩擦地耦合于被作用对象以通过摩擦来驱动该被作用对象沿着预定方向移动。为了使得所述摩擦驱动部112能够摩擦地耦接于该被作用对象,如图12K所示,在安装过程中,通常为所述压电致动器100配置预压部件43/46,所述预压部件43/46提供所述压电致动器100和该被作用对象之间的预压力,以使得所述压电致动器100的摩擦驱动部112能够可摩擦地耦接于该被作用对象,以通过摩擦来驱动该被作用对象沿着预定方向移动,如图12L所示。
特别地,在该实施例中,所述摩擦驱动部112包括至少一接触垫,其可沿着深度方向固定于所述压电板结构111,也可以沿着高度方向固定于所述压电板结构111。在该实施例中,所述至少一接触垫可以具有半球形,当然,也可以是其他形状,例如,半圆柱形、台体、长方形等。优选地,所述至少一接触垫由具有较佳摩擦性能和耐久性能的材料制成,例如,可以有金属氧化物材料制成(例如,氧化锆、氧化铝等)。
值得一提的是,相较于传统的电磁式驱动器,所述压电致动器100具有体积小、推力大,精度高的优势。量化来看,根据本申请实施例的所述压电致动器100能够提供的驱动力大小为0.6N至2N,其足以驱动重量大于100mg的部件。
除了能够提供相对较大的驱动力以外,相较于传统的电磁式马达方案和记忆合金马达方案,所述压电致动器100还具有其他优势,包括但不限于:尺寸相对较小(具有细长状),响应精度更佳,结构相对更为简单,驱动控制相对更为简单,产品一致性高,没有电磁干扰,具有相对更大的行程,稳定时间短,重量相对较小等。
具体来说,所述摄像模组需要其所配置的驱动器具有驱动行程较长且需要保证较好的对准精度等特征。在现有的音圈马达方案中,为了保证运动线性度需要额外设计导杆或滚珠导轨,同时需要在镜头侧部适配大尺寸的驱动磁铁/线圈等,同时需要设置滚珠、弹片、悬丝等辅助定位装置,为容纳较多的部件、保障结构强度和预留结构间隙,往往导致模组横向尺寸偏大,且结构设计复杂,模组重量较重。而记忆合金马达方案,受限于记忆合金方案同比例能够提供的行程相对较少,同时存在潜在断线等可靠性风险。
而所述压电致动器100具有相对较为简单的结构,组装结构更加简单,另外其元件大小与所述压电致动器100的运动行程大小基本无关,因此在光 学防抖类产品中所述压电致动器100可以实现大推力、小尺寸,小重量等优势,同时匹配更大行程或更重器件重量进行设计,设计中的集成度也更高。
进一步地,所述压电致动器100以摩擦接触的方式推动待推动对象进行微米级运动,其相较于电磁式方案非接触的方式驱动待推动对象需要依靠电磁力抵消重力,摩擦力的方式,具有更大推力,更大位移和更低功耗的优势,同时控制精度更高,可实现高精度光学防抖。而且在存在多个马达机构时,所述压电致动器100不存在磁铁线圈结构,无磁干扰问题。另外,所述压电致动器100可依靠部件之间的摩擦力自锁,因此可以降低所述摄像模组在进行光学防抖时的晃动异响。
在选择以所述压电致动器100作为驱动器来驱动所述感光组件10以进行光学防抖后,具体地,如图11A和图15所示,在该实施例中,所述驱动组件40,包括:第一驱动元件42、第一预压部件43、第二驱动元件45、第二预压部件46,其中,所述第一驱动元件42和所述第二驱动元件45被实施为压电致动器100。
相应地,如图11A和图15所示,在该实施例中,所述光学镜头20被安装于所述第一框架载体31,所述第一驱动元件42通过所述第一预压部件43被摩擦地耦接于所述第一框架载体31,并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹沿着第一方向移动以此通过摩擦来驱动所述第一框架载体31以带动所述光学镜头20在垂直于所述光轴的平面内移动以进行在第一方向上的光学防抖。所述第二框架载体32外设于所述第一框架载体31,其中,所述第二驱动元件45通过所述第二预压部件46被摩擦地耦接于所述第二框架载体32,并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹沿着第二方向移动以此通过摩擦来驱动所述第二框架载体32以带动第一框架载体31进行带动所述光学镜头20在垂直于所述光轴的平面内移动以进行在第二方向上的光学防抖,所述第一方向与所述第二方向垂直。在一个示例中,所述第一方向为X轴方向,所述第二方向为Y轴方向。
这里,所述第一驱动元件42摩擦地耦接于所述第一框架载体31,包括:所述第一驱动元件42与所述第一框架载体31直接摩擦作用,以及,所述第一驱动元件42和所述第一框架载体31之间间接摩擦作用(即,虽然所述第一驱动元件42与所述第一框架载体31之间不存在直接的摩擦力,但 所述第一驱动元件42所产生的摩擦驱动力能作用于所述第一框架载体31)。相一致地,所述第二驱动元件45摩擦地耦接于所述第二框架载体32和所述外框架载体33之间,包括:所述第二驱动元件45与所述第二框架载体32直接摩擦作用,以及,所述第二驱动元件45和所述第二框架载体32之间间接摩擦作用(即,虽然所述第二驱动元件45与所述第二框架载体32之间不存在直接的摩擦力,但所述第二驱动元件44所产生的摩擦驱动力能作用于所述第二框架载体32)
更具体地,该实施例中,如图11A至图11C所示,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一框架载体31和所述第二框架载体32之间,通过这样的方式,所述第一驱动元件42被摩擦地耦接于所述第一框架载体31。
相应地,在该实施例中,所述第一预压部件43包括第一弹性元件431,所述第一弹性元件431被设置于所述第一驱动元件42的压电板结构111和所述第二框架载体32之间,以通过所述第一弹性元件431的弹力迫使所述第一驱动元件42被摩擦地耦接于所述第一框架载体31。在该实施例中,所述第一驱动元件42的摩擦驱动部112直接抵触于所述第一框架载体31的外侧壁的表面,相应地,所述第一弹性元件431所提供的弹力能够迫使所述第一驱动元件42的所述摩擦驱动部112抵触于所述第一框架载体31的外侧壁的表面,以在两者之间形成摩擦接触的结合关系。这样,在所述第一驱动元件42被导通后,所述第一驱动元件42的所述摩擦驱动部112能以摩擦驱动的方式驱动所述第一框架载体31沿着第一方向移动,以带动所述光学镜头20沿着所述第一方向移动以进行在所述第一方向上的光学防抖。
在本申请一个具体示例中,所述第一弹性元件431被实施为具有弹性的黏着剂,也就是,所述第一弹性元件431被实施为固化后具有弹性的胶水。相应地,在安装过程中,可在所述第二框架载体32的内侧壁的表面和所述第一驱动元件42的压电板结构111之间施加一层厚度为10um至50um的黏着剂,以在所述黏着剂固化成型后形成设置于所述第一驱动元件42的压电板结构111和所述第二框架载体32之间的所述第一弹性元件431。应可以理解,在该示例中,所述第一弹性元件431在提供预压力的同时,还能够使得所述第一驱动元件42被固定于所述第二框架载体32的内侧壁的表面。优选地,所述第一弹性元件431具有相对较高的平整度,即,在施加所述黏 着剂时,尽可能地保证所施加的黏着剂具有相对较高的平整度且均匀度,采用厚度为10um至50um的黏着剂即可以提升黏着剂的平整度,从而使得所述第一驱动元件42能够平整地被固定于所述第二框架载体32的内侧壁的表面,进而提升所述第一驱动元件42驱动的稳定性。
相应地,该实施例中,如图11A至图11C所示,所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二框架载体32和所述外框架载体33之间,通过这样的方式,所述第二驱动元件45被摩擦地耦接于所述第二框架载体32。
进一步地,如图11A至图11C所示,在该实施例中,所述第二预压部件46包括第二弹性元件461,所述第二弹性元件461被设置于所述第二驱动元件45的压电板结构111和所述外框架载体33之间,以通过所述第二弹性元件461的弹力迫使所述第二驱动元件45被摩擦地耦接于所述第二框架载体32。相应地,该实施例中,所述第二驱动元件45的摩擦驱动部112直接抵触于所述第二框架载体32的外侧壁的表面,相应地,所述第二弹性元件461所提供的弹力能够迫使所述第二驱动元件45的所述摩擦驱动部112抵触于所述第二框架载体32的外侧壁的表面,以在两者之间形成摩擦接触的结合关系。这样,在所述第二驱动元件45被导通后,所述第二驱动元件45的所述摩擦驱动部112能以摩擦驱动的方式驱动所述第二框架载体32沿着第二方向移动,以带动所述光学镜头20沿着所述第二方向移动以进行在所述第二方向上的光学防抖。
在本申请一个具体示例中,所述第二弹性元件461被实施为具有弹性的黏着剂,也就是,所述第二弹性元件461被实施为固化后具有弹性的胶水。相应地,在安装过程中,可在所述外框架载体33的内侧壁的表面和所述第二驱动元件45的压电板结构111之间施加一层厚度为10um至50um的黏着剂,以在所述黏着剂固化成型后形成设置于所述第二驱动元件45的压电板结构111和所述外框架载体33之间的所述第二弹性元件461。应可以理解,在该示例中,所述第二弹性元件461在提供预压力的同时,还能够使得所述第二驱动元件45被固定于所述外框架载体33的内侧壁的表面。优选地,所述第二弹性元件461具有相对较高的平整度,即,在施加所述黏着剂时,尽可能地保证所施加的黏着剂具有相对较高的平整度且均匀度,采用厚度为10um至50um的黏着剂即可以提升黏着剂的平整度,从而使得所述第 二驱动元件45能够平整地被固定于所述外框架载体33的内侧壁的表面,进而提升所述第二驱动元件45驱动的稳定性。
值得一提的是,在本申请其他实施例中,所述第一弹性元件431和所述第二弹性元件461也可以被实施为不具有黏性的弹性元件,例如,材料自身特征本身存在弹性的橡胶,或者,由于形变而产生弹性的弹簧、板簧等,对此,同样并不为本申请所局限。
值得一提的是,在本申请的其他变形实施例中,所述第一预压部件43和所述第二预压部件46的结构配置也可以做出调整。具体地,如图13所示,在本申请其他示例中,所述第一预压部件43包括设置于所述第一框架载体31的第一磁吸元件52和设置于所述第二框架载体44且对应于所述第一磁吸元件52的第二磁吸元件53,以通过所述第一磁吸元件52和所述第二磁吸元件53之间的磁吸作用迫使所述第一驱动元件42被摩擦地耦接于所述第一框架载体31。
相应地,在该变形实施中,所述第一磁吸元件52和所述第二磁吸元件53是指能够相互吸引的磁吸组件,例如,所述第一磁吸元件52可被实施为磁体,所述第二磁吸元件53可被实施为磁性部件,例如,由铁、镍、钴等金属制成的材料;再如,所述第一磁吸元件52可被实施为磁体,所述第二磁吸元件53也可被实施为磁体。
所述第二预压部件46包括设置于所述第二框架载体32的第三磁吸元件62和设置于所述外框架载体33且对应于所述第三磁吸元件62的第四磁吸元件63,以通过所述第三磁吸元件62和所述第四磁吸元件63之间的磁吸作用迫使所述第二驱动元件45被摩擦地耦接于所述第二框架载体32。
在该变形实施中,所述第三磁吸元件62和所述第四磁吸元件63是指能够相互吸引的磁吸组件,例如,所述第三磁吸元件62可被实施为磁体,所述第四磁吸元件63可被实施为磁性部件,例如,由铁、镍、钴等金属制成的材料;再如,所述第三磁吸元件62可被实施为磁体,所述第四磁吸元件63也可被实施为磁体。
为了使得所述第一驱动元件42和所述第二驱动元件45能够更为平稳地驱动所述第一框架载体31和所述第二框架载体32,如图11A至图11C所示,所述驱动组件40进一步包括设置于所述第一框架载体31和所述第二框架载体32之间的第一导引机构48和设置于所述第二框架载体和所述 外框架载体33之间的第二导引机构49,其中,所述第一导引机构48被配置为引导所述第一框架载体31沿着所述第一方向移动,所述第二导引机构49被配置为引导所述第二框架载体32沿着所述第二方向移动。
更具体地,如图11A至图11C所示,在该实施例中,所述第一导引机构48和所述第二导引机构49被实施为导杆结构。相应地,所述第一导引机构48包括被设置于所述第一框架载体31的外侧壁且沿着所述第一方向延伸的第一导杆,其中,所述第一导杆的两端部被固定于所述第二框架载体32的内侧壁上。特别地,在该实施例中,所述第一导杆与所述第一驱动元件42相对地设置,这样,在所述第一驱动元件42被导通后,所述第一框架载体31被导引沿着所述第一导杆延伸的方向进行移动,以提高所述第一框架载体31的移动稳定性。
相应地,在该实施例中,所述第二导引机构49包括被设置于所述第二框架载体32的外侧壁且沿着所述第二方向延伸的第二导杆,其中,所述第二导杆的两端部被固定于所述外框架载体33的内侧壁上。特别地,在该实施例中,所述第二导杆与所述第二驱动元件45相对地设置,这样,在所述第二驱动元件45被导通后,所述第二框架载体32被导引沿着所述第二导杆延伸的方向进行移动,以提高所述第二框架载体32的移动稳定性。
值得一提的是,在本申请其他实施例中,所述第一导引机构48和所述第二导引机构49还能够基于其他原理实现,例如,通过滚珠-滚槽机构、滑块-滑槽机构等,对此,并不为本申请所局限。
为了优化所述第一驱动元件42和所述第二驱动元件45的驱动性能,在本申请实施例中,如图11A至图11C所示,所述驱动组件40进一步包括第一摩擦作动部131和第二摩擦作动部132,其中,所述第一摩擦作动部131被设置于所述第一驱动元件42和所述第一框架载体31之间并且所述第一驱动元件42的摩擦驱动部112在所述第一预压部件43的作用下抵触于所述第一摩擦作动部131,所述第一摩擦作动部131抵触于所述第一框架载体31的外侧壁的表面,通过这样的方式使得所述第一驱动元件42所提供的摩擦驱动力能够藉由所述第一摩擦作动部131作用于所述第一框架载体31,以带动所述第一框架载体31和所述光学镜头20沿着所述第一方向移动。也就是,在该变形实施例中,所述第一驱动元件42的摩擦驱动部112与所述第一框架载体31之间的预压力是间接的预压力,即,虽然所述第一 驱动元件42的摩擦驱动部112与所述第一框架载体31之间不直接接触,但两者之间仍存在预压力以使得所述第一驱动元件42的摩擦驱动部112能通过摩擦驱动的方式来驱动所述第一框架载体31。
相应地,所述第二摩擦作动部132被设置于所述第二驱动元件45和所述第二框架载体32之间并且所述第二驱动元件45的摩擦驱动部112在所述第二预压部件46的作用下抵触于所述第二摩擦作动部132且所述第二摩擦作动部132抵触于所述第二框架载体32的外侧壁的表面,通过这样的方式,使得所述第二驱动元件45所提供的摩擦驱动力能够藉由所述第二摩擦作动部132作用于所述第二框架载体32以带动所述第二框架载体32、所述第一框架载体31和所述光学镜头20沿着所述第二方向移动,以进行在第二方向上的光学防抖。
更具体地,如图11A至图11C,在该实施例中,所述第一摩擦作动部131具有第一表面和与所述第一表面相对的第二表面,其中,在所述第一预压部件43的作用下,所述第一摩擦作动部131的第一表面抵触于所述第一框架载体31的外侧壁的表面,其第二表面抵触于所述多个摩擦驱动元件121中至少一个所述摩擦驱动元件121的第二端的端面,通过这样的方式,所述第一驱动元件42的摩擦驱动部112抵触于所述第一摩擦作动部131且所述第一摩擦作动部131抵触于所述第一框架载体31,通过这样的方式使得所述第一驱动元件42所提供的摩擦驱动力能够藉由所述第一摩擦作动部131作用于所述第一框架载体31。相应地,所述第二摩擦作动部132具有第三表面和与所述第三表面相对的第四表面,其中,在所述第二预压部件46的作用下,所述第二摩擦作动部132的第三表面抵触于所述第二框架载体32的外侧壁的表面,所述第四表面抵触于所述多个摩擦驱动元件121中至少一个所述摩擦驱动元件121的第二端的端面,通过这样的方式,所述第二驱动元件45的摩擦驱动部112抵触于所述第二摩擦作动部132且所述第二摩擦作动部132抵触于所述第二框架载体32,通过这样的方式使得,所述第二驱动元件45所提供的摩擦驱动力能够藉由所述第二摩擦作动部132作用于所述第二框架载体32。
值得一提的是,虽然在如图11A至图11C所示意的实施例中,所述第一摩擦作动部131和所述第二摩擦作动部132作为一个单独的部件被分别设置于所述第一驱动元件42和所述第一框架载体31之间,以及,所述第 二驱动元件45和所述第二框架载体32之间,例如,所述第一摩擦作动部131被实施为一个单独的部件并被贴附于所述第一框架载体31的侧表面,或者,所述第二摩擦作动部132被实施为一个单独的部件被贴附于所述第二框架载体32的侧表面,再如,所述第一摩擦作动部131被实施为一层涂覆于所述第一框架载体31的侧表面的涂层,或者,所述第二摩擦作动部132被实施为一层涂覆于所述第二框架载体32的侧表面的涂层。应可以理解,在本申请其他示例中,所述第一摩擦作动部131也可一体成型于所述第一框架载体31的外侧壁的表面,即,所述第一摩擦作动部131与所述第一第一框架载体31具有一体式结构。当然,在本申请其他示例中,所述第二摩擦作动部132也可一体成型于所述第二框架载体32的外侧壁的表面,即,所述第二摩擦作动部132与所述第二框架载体32具有一体式结构。
进一步地,如图9和图11A至图11C所示,在本申请实施例中,所述第一框架载体31具有凹陷地形成于其表面的第一凹槽310,所述第一摩擦作动部131被设置于所述第一凹槽310。优选地,所述第一摩擦作动部131与所述第一凹槽310的形状和尺寸相适配,以使得所述第一摩擦作动部131能够适配地嵌合于所述第一凹槽310内。同样地,所述第二框架载体32具有凹陷地形成于其表面的第二凹槽320,所述第二摩擦作动部132被设置于所述第一凹槽320。优选地,所述第二摩擦作动部132与所述第二凹槽320的形状和尺寸相适配,以使得所述第二摩擦作动部132能够适配地嵌合于所述第二凹槽320内。
图14图示了根据本申请实施例的所述摄像模组的一个变形实施的示意图。相较于图9所示意的示例,如图14所示,在该变形实施例中,所述第一凹槽310具有相对更大的尺寸,以使得所述第一驱动元件42能够被部分收容于所述第一凹槽310内。更明确地,在该变形实施例中,所述第一凹槽310的形状与所述第一驱动元件42的形状相适配,并且,所述第一驱动元件42的压电板结构111适于至少部分地被收容于所述第一凹槽内,这样,当所述第一驱动元件42在所述第一凹槽310内驱动所述第一框架载体31时,所述第一凹槽310自身形成用于引导所述第一驱动元件42移动的引导槽。也就是,在该变形实施例中,所述第一凹槽310不仅为所述第一驱动元件42的安装提供安装空间,同时,其自身形成用于引导所述第一驱动元件42移动(或者说,规范所述第一驱动元件42的运动)的导引结构。
相一致地,在该变形实施例中,所述第二凹槽320具有相对更大的尺寸,以使得所述第二驱动元件45能够被部分收容于所述第二凹槽320内。更明确地,在该变形实施例中,所述第二凹槽320的形状与所述第二驱动元件45的形状相适配,并且,所述第二驱动元件45的压电板结构111适于至少部分地被收容于所述第一凹槽内,这样,当所述第二驱动元件45在所述第二凹槽320内驱动所述第一框架载体31时,所述第二凹槽320自身形成用于引导所述第二驱动元件45移动的引导槽。也就是,在该变形实施例中,所述第二凹槽320不仅为所述第二驱动元件45的安装提供安装空间,同时,其自身形成用于引导所述第二驱动元件45移动(或者说,规范所述第二驱动元件45的运动)的导引结构。
同样地,当所述第二驱动元件45在所述第二凹槽320内驱动所述第二框架载体32时,所述第二凹槽320自身形成用于引导所述第二框架载体32移动的引导槽。也就是,在该变形实施例中,所述第二凹槽320不仅为所述第二驱动元件45的安装提供安装空间,同时,其自身形成用于引导所述第二框架载体32移动(或者说,规范所述第二驱动元件45的运动)的导引结构。
图15图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。如图15所示,在该变形实施例中,所述第一框架载体31具有凹陷地形成于其侧表面且横向延伸的第一凹槽310,所述第二框架载体32具有凹陷地形成于其侧表面且横向延伸的第二凹槽320。
特别地,相较于图9和图15所示意的示例,在该变形实施例中,所述第一凹槽310和所述第二凹槽320的形状和尺寸配置做出调整。具体地,所述第一凹槽310的尺寸和形状配置使得所述第一驱动元件42的摩擦驱动部112能够嵌合于所述第一凹槽310内。同时,所述第二凹槽320的尺寸和形状配置使得所述第二驱动元件45的摩擦驱动部112能够嵌合于所述第二凹槽内451。也就是,在该实施例中,所述第一凹槽310不仅形成用于收容所述第一摩擦作动部131的收容槽,还形成用于引导所述第一驱动元件42的摩擦驱动部112的引导槽;所述第二凹槽320不仅形成用于收容所述第二摩擦作动部132的收容槽,还形成用于引导所述第二驱动元件45的摩擦驱动部112的引导槽。
并且,在该变形实施例中,所述第一凹槽441具有减缩的口径,和/或, 所述第二凹槽320具有减缩的口径。也就是,在该变形实施例中,所述第一凹槽310的口径尺寸沿着所述第一框架载体31的宽度方向,向远离所述第一驱动元件42的方向逐渐减小,以及,所述第二凹槽45的口径尺寸沿着所述第二框架载体32的宽度方向,向远离所述第二驱动元件45的方向逐渐减小。
应可以理解,在所述第一驱动元件42和所述第二驱动元件45工作一段时间后,所述第一驱动元件42和所述第二驱动元件45的摩擦驱动部112可能会发生磨损。相应地,在所述第一预压部件43和所述第二预压部件46的作用下,所述第一驱动元件42的摩擦驱动部112会往所述第一凹槽310更内处延伸,所述第二驱动元件45的摩擦驱动部112会往所述第二凹槽320更内处延伸,这样,由于所述第一凹槽310具有减缩的口径,和所述第二凹槽320具有减缩的口径,所述第一驱动元件42的摩擦驱动部112能够重新抵触于设置于所述第一凹槽310内的所述第一摩擦作动部131,所述第二驱动元件45的摩擦驱动部112能够重新抵触于设置于所述第二凹槽320内的所述第二摩擦作动部132,通过这样的方式,能延长所述第一驱动元件42和所述第二驱动元件45的使用寿命,即,延长了所述摄像模组的使用寿命。
图16图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。相较于图9所示意的示例,在该变形实施例中,所述第一驱动元件42和所述第二驱动元件45的设置方式发生了调整。
具体地,在如图9所示意的示例中,所述第一驱动元件42位于所述第一框架载体31的侧部,且,所述第二驱动元件45位于所述第二框架载体32的侧部。相对地,如图16所示,在该变形实施例中,所述第一驱动元件42位于所述第一框架载体31的上部,且所述第二驱动元件45位于所述第二框架载体32的上部。
在该变形实施的一个具体示例中,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一框架载体31和所述第二框架载体32上下之间,通过这样的方式,所述第一驱动元件42被摩擦地耦接于所述第一框架载体31。所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二框架载体32和所述外框架载体33上下之间,通过这样的方式,所述第二驱动元件45被摩擦地耦接于所述第二框架载体32。
相一致地,所述驱动组件40进一步包括设置于所述第一框架载体31和所述第二框架载体32之间的第一导引机构48和设置于所述第二框架载体和所述外框架载体33之间的第二导引机构49。但与图10和图15所示意的示例不同的是,在该变形实施例中,所述第一导引机构48和所述第二导引机构49被实施为滚珠-滚槽机构,如图16所示。
图17图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。相较于图9所示意的示例,在该变形实施例中,所述第一驱动元件42和所述第二驱动元件45的设置方式再次发生了调整。
具体地,如图17所示,在该变形实施例中,所述第一驱动元件42位于所述第一框架载体31的下部,且,所述第二驱动元件45位于所述第二框架载体32的下部。
在该变形实施的一个具体示例中,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一框架载体31和所述第二框架载体32上下之间,通过这样的方式,所述第一驱动元件42被摩擦地耦接于所述第一框架载体31。所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二框架载体32和所述外框架载体33上下之间,通过这样的方式,所述第二驱动元件45被摩擦地耦接于所述第二框架载体32。
相一致地,所述驱动组件40进一步包括设置于所述第一框架载体31和所述第二框架载体32之间的第一导引机构48和设置于所述第二框架载体和所述外框架载体33之间的第二导引机构49。但与如图11和图15所示意的示例不同的是,在该变形实施例中,所述第一导引机构48和所述第二导引机构49被实施为滚珠-滚槽机构,如图17所示。
综上,基于本申请实施例的所述摄像模组被阐明,其中,所述摄像模组采用压电致动器100作为驱动器以不仅能满足摄像模组对于光学性能调整的驱动要求,且能够满足摄像模组轻型化和薄型化的发展需求。
虽然,在本申请实施例中,以所述摄像模组为传统的直立式摄像模组为示例,本领域普通技术人员应可以理解,根据本申请实施例的所述压电致动器100也可以作为驱动器被应用于潜望式摄像模组中,对此,并不为本申请所局限。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只 作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (51)

  1. 一种摄像模组,其特征在于,包括:
    感光组件,包括:线路板和电连接于所述线路板的感光芯片;
    被保持于所述感光组件的感光路径上的镜头组件,包括:镜头载体和安装于所述镜头载体的光学镜头,其中,所述光学镜头设有一光轴;以及
    驱动组件,包括:第一承载框架、第一驱动元件和第一预压部件,其中,所述感光组件被安装于所述第一承载框架,所述第一驱动元件被实施为压电致动器,其中,所述第一驱动元件通过所述第一预压部件被摩擦地耦合于所述第一承载框架并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹运动,以此通过摩擦来驱动所述第一承载框架以带动所述感光组件在垂直于所述光轴的平面内以第一方向移动以进行光学防抖。
  2. 根据权利要求1所述的摄像模组,其中,所述驱动组件进一步包括第二承载框架、第二驱动元件和第二预压部件,其中,所述第二承载框架外设于所述第一承载框架,所述第二驱动元件被实施为压电致动器,其中,所述第二驱动元件通过所述第二预压部分摩擦地耦合于所述第二承载框架并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹运动,以此通过摩擦来驱动所述第二承载框架以带动第一承载框架进行带动所述感光组件在垂直于所述光轴的平面内以第二方向移动以进行光学防抖,所述第一方向垂直于所述第二方向。
  3. 根据权利要求2所述的摄像模组,其中,所述压电致动器,包括:致动系统和驱动电路系统,其中,所述致动系统在所述驱动电路系统的控制下以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹移动。
  4. 根据权利要求3所述的摄像模组,其中,所述致动系统,包括:压电板结构和固定于所述压电板结构的摩擦驱动部,所述摩擦驱动部摩擦地耦接于所述第一承载框架或所述第二承载框架。
  5. 根据权利要求4所述的摄像模组,其中,所述压电板结构具有沿着其深度方向延伸的第一侧表面和沿着其高度方向延伸的且与所述第一侧表面相邻的第二侧表面,其中,所述压电板结构沿着其深度方向具有第一共振频率且沿着其高度方向具有第二共振频率,其中,所述第二共振频率大于所述第一共振频率。
  6. 根据权利要求5所述的摄像模组,其中,所述压电板结构包括形成于所述第二侧表面的第一压电区域、第二压电区域和第三压电区域,以及,形成于所述第一侧表面的第四压电区域,其中,所述第二压电区域位于所述第一压电区域和所述第三压电区域区间,且所述第四压电区域与所述第二压电区域相邻的;其中,所述压电板结构进一步包括电连接于所述第一压电区域的第一电极对、电连接于所述第二压电区域的第二电极对、电连接于所述第三压电区域的第三电极对和电连接于所述第四电连接区域的第四电极对。
  7. 根据权利要求6所述的摄像模组,其中,所述驱动电路系统包括第一驱动电路和第二驱动电路,所述第一驱动电路电连接于所述第一电极对和所述第三电极对,所述第二驱动电路电连接于所述第二电极对和所述第四电极对;其中,所述第一驱动电路和所述第二驱动电路输出的电路振动信号振动频率等于所述第一共振频率或所述第二共振频率。
  8. 根据权利要求7所述的摄像模组,其中,当所述第一驱动电路输出的电路振动信号的振动频率为所述第一共振频率时,所述压电板结构在其高度方向发生共振且在其深度方向发生部分共振,以使得所述压电板结构以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动;其中,当所述第二驱动电路所输入的电路振动信号的振动频率为所述第二共振频率时,所述压电板结构在其深度方向发生共振且在其高度方向发生部分共振,以使得所述压电板结构以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动。
  9. 根据权利要求8所述的摄像模组,其中,所述驱动组件进一步包括第一摩擦作动部和第二摩擦作动部,所述第一摩擦作动部被夹持地设置于所 述第一驱动元件和所述第一承载框架之间,以通过所述第一摩擦作动部和所述第一预压部件使得所述第一驱动元件被摩擦地耦合于所述第一承载框架;所述第二摩擦作动部被夹持地设置于所述第二驱动元件和所述第二承载框架之间,以通过所述第二预压部件和所述第二摩擦作动部使得所述第二驱动元件被摩擦地耦接于所述第二承载框架。
  10. 根据权利要求9所述的摄像模组,其中,所述第一驱动元件位于所述第一承载框架的侧部。
  11. 根据权利要求9所述的摄像模组,其中,所述第一驱动元件位于所述第一承载框架的上部。
  12. 根据权利要求9所述的摄像模组,其中,所述第一驱动元件位于所述第一承载框架的下部。
  13. 根据权利要求10所述的摄像模组,其中,所述驱动组件进一步外设于所述第二承载框架的外框架,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述外框架之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二承载框架,其中,所述第二驱动元件位于所述第二承载框架的侧部。
  14. 根据权利要求11所述的摄像模组,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述镜头载体之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二承载框架,其中,所述第二驱动元件位于所述第二承载框架的上部。
  15. 根据权利要求12所述的摄像模组,其中,所述驱动组件进一步外设于所述第二承载框架的外框架,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述外框架之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二承 载框架,其中,所述第二驱动元件位于所述第二承载框架的下部。
  16. 根据权利要求13所述的摄像模组,其中,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述外框架之间的第二导引机构。
  17. 根据权利要求14所述的摄像模组,其中,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述镜头载体之间的第二导引机构。
  18. 根据权利要求15所述的摄像模组,其中,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述外框架之间的第二导引机构。
  19. 根据权利要求13所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述外框架之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
  20. 根据权利要求14所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述镜头载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱 动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
  21. 根据权利要求15所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述外框架之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
  22. 根据权利要求19至21任一所述的摄像模组,其中,所述第一弹性元件和所述第二弹性元件被实施为具有弹性的黏着剂。
  23. 根据权利要求22所述的摄像模组,其中,所述第一弹性元件和所述第二弹性元件的厚度尺寸为10um至50um之间。
  24. 根据权利要求13所述的摄像模组,其中,所述第一预压部件包括设置于所述第一承载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述外框架且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
  25. 根据权利要求14所述的摄像模组,其中,所述第一预压部件包括 设置于所述第一承载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述镜头载体且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
  26. 根据权利要求15所述的摄像模组,其中,所述第一预压部件包括设置于所述第一承载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述外框架且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二承载框架。
  27. 一种摄像模组,其特征在于,包括:
    感光组件,包括:线路板和电连接于所述线路板的感光芯片;
    被安装于所述感光组件的框架载体组件,其中,所述框架载体组件包括包括第一框架载体和外设于所述第一框架载体的第二框架载体;
    以被安装于所述第一框架载体内的方式被保持于所述感光组件的感光路径上的光学镜头,所述光学镜头设有一光轴;以及
    驱动组件,包括:第一驱动元件和第一预压部件,所述第一驱动元件被实施为压电致动器,其中,所述第一驱动元件通过所述第一预压部件被摩擦地耦合于所述第一框架载体并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹运动,以此通过摩擦来驱动所 述第一框架载体以带动所述光学镜头在垂直于该光轴的第一方向上移动。
  28. 根据权利要求27所述的摄像模组,其中,所述框架组件进一步包括外设于所述第二框架载体的外框架载体,其中,所述驱动组件进一步包括第二驱动元件和第二预压部件,所述第二驱动元件被实施为所述压电致动器,其中,所述第二驱动元件通过所述第二预压部分摩擦地耦合于所述第二框架载体并被配置为在被驱动后以沿着两个方向弯曲振动的方式在垂直于该光轴的平面内呈二维轨迹运动,以此通过摩擦来驱动所述第二框架载体以带动所述第一框架载体进而带动所述光学镜头在垂直于该光轴的第二方向上移动,所述第二方向垂直于所述第一方向。
  29. 根据权利要求28所述的摄像模组,其中,所述压电致动器,包括:致动系统和驱动电路系统,其中,所述致动系统在所述驱动电路系统的控制下以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动。
  30. 根据权利要求29所述的摄像模组,其中,所述致动系统,包括:压电板结构和固定于所述压电板结构的摩擦驱动部,所述摩擦驱动部摩擦地耦接于所述第一框架载体或所述第二框架载体。
  31. 根据权利要求30所述的摄像模组,其中,所述压电板结构具有沿着其深度方向延伸的第一侧表面和沿着其高度方向延伸的且与所述第一侧表面相邻的第二侧表面,其中,所述压电板结构沿着其深度方向具有第一共振频率且沿着其高度方向具有第二共振频率,其中,所述第二共振频率大于所述第一共振频率。
  32. 根据权利要求31所述的摄像模组,其中,所述压电板结构包括形成于所述第二侧表面的第一压电区域、第二压电区域和第三压电区域,以及,形成于所述第一侧表面的第四压电区域,其中,所述第二压电区域位于所述第一压电区域和所述第三压电区域区间,且所述第四压电区域与所述第二压电区域相邻的;其中,所述压电板结构进一步包括电连接于所述第一压电区域的第一电极对、电连接于所述第二压电区域的第二电极对、电连接于所述 第三压电区域的第三电极对和电连接于所述第四电连接区域的第四电极对。
  33. 根据权利要求32所述的摄像模组,其中,所述驱动电路系统包括第一驱动电路和第二驱动电路,所述第一驱动电路电连接于所述第一电极对和所述第三电极对,所述第二驱动电路电连接于所述第二电极对和所述第四电极对;其中,所述第一驱动电路和所述第二驱动电路输出的电路振动信号振动频率等于所述第一共振频率或所述第二共振频率。
  34. 根据权利要求33所述的摄像模组,其中,当所述第一驱动电路输出的电路振动信号的振动频率为所述第一共振频率时,所述压电板结构在其高度方向发生共振且在其深度方向发生部分共振,以使得所述压电板结构以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动;其中,当所述第二驱动电路所输入的电路振动信号的振动频率为所述第二共振频率时,所述压电板结构在其深度方向发生共振且在其高度方向发生部分共振,以使得所述压电板结构以沿着两个方向弯曲振动的方式沿着预设方向呈二维轨迹运动。
  35. 根据权利要求34所述的摄像模组,其中,所述驱动组件进一步包括第一摩擦作动部和第二摩擦作动部,所述第一摩擦作动部被夹持地设置于所述第一驱动元件的摩擦驱动部和所述第一框架载体之间,以通过所述第一摩擦作动部和所述第一预压部件所述第一驱动元件被摩擦地耦合于所述第一框架载体;所述第二摩擦作动部被夹持地设置于所述第二驱动元件的摩擦驱动部和所述第二框架载体之间,以通过所述第二预压部件和所述第二摩擦作动部所述第二驱动元件被摩擦地耦接于所述第二框架载体。
  36. 根据权利要求35所述的摄像模组,其中,所述第一驱动元件位于所述第一框架载体的侧部。
  37. 根据权利要求35所述的摄像模组,其中,所述第一驱动元件位于所述第一框架载体的上部。
  38. 根据权利要求35所述的摄像模组,其中,所述第一驱动元件位于所述第一框架载体的下部。
  39. 根据权利要求36所述的摄像模组,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二框架载体和所述外框架载体之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的侧部。
  40. 根据权利要求37所述的摄像模组,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二框架载体和所述外框架载体之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的上部。
  41. 根据权利要求38所述的摄像模组,其中,所述驱动组件进一步外设于所述第二框架载体的外框架载体,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二框架载体和所述外框架载体之间,通过这样的方式,所述第二驱动元件被摩擦地耦接于所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的下部。
  42. 根据权利要求39所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部通过这样的方式所述第一驱动元件摩擦地耦接于所述第一框架载体;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述外框架载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部通过这样的方式所述第二驱动元件摩擦地耦接于所述第二框架载体。
  43. 根据权利要求40所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部,通过这样的方式,所述第一驱动元件摩擦地耦接于所述第一框架载体;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述镜头载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部,通过这样的方式,所述第二驱动元件摩擦地耦接于所述第二框架载体。
  44. 根据权利要求41所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电板结构和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部,通过这样的方式,所述第一驱动元件摩擦地耦接于所述第一框架载体;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电板结构和所述外框架载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部,通过这样的方式,所述第二驱动元件摩擦地耦接于所述第二框架载体。
  45. 根据权利要求42至44任一所述的摄像模组,其中,所述第一弹性元件和所述第二弹性元件被实施为具有弹性的黏着剂。
  46. 根据权利要求45所述的摄像模组,其中,所述第一弹性元件和所述第二弹性元件的厚度尺寸为10um至50um之间。
  47. 根据权利要求38至40任一所述的摄像模组,其中,所述第一预压部件包括设置于所述第一框架载体的第一磁吸元件和设置于所述第二框架载体且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件的摩擦驱动部抵向所述第一摩擦作动部,通过这样的方式,所述第一驱动元件摩擦地耦接 于所述第一框架载体;所述第二预压部件包括设置于所述第二框架载体的第三磁吸元件和设置于所述外框架载体且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件的摩擦驱动部抵向所述第二摩擦作动部,通过这样的方式,所述第二驱动元件摩擦地耦接于所述第二框架载体。
  48. 根据权利要求35所述的摄像模组,其中,所述第一框架载体包括凹陷地形成于其表面的第一凹槽,所述第一摩擦作动部被设置于所述第一凹槽内,其中,所述第一凹槽形成用于引导所述第一驱动元件的引导槽。
  49. 根据权利要求48所述的摄像模组,其中,所述第二框架载体包括凹陷地形成于其表面的第二凹槽,所述第二摩擦作动部被设置于所述第二凹槽内,其中,所述第二凹槽形成用于引导所述第二驱动元件移动的引导槽。
  50. 根据权利要求49所述的摄像模组,其中,所述第一凹槽具有减缩的口径,和/或,所述第二凹槽具有减缩的口径。
  51. 根据权利要求35所述的摄像模组,其中,所述驱动组件进一步包括设置于所述第一框架载体和所述第二框架载体之间的第一导引机构和设置于所述第二框架载体和所述外框架载体之间的第二导引机构。
PCT/CN2022/086333 2021-04-30 2022-04-12 摄像模组 WO2022228111A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22794582.1A EP4318118A1 (en) 2021-04-30 2022-04-12 Camera module
CN202280028966.9A CN117501176A (zh) 2021-04-30 2022-04-12 摄像模组

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110482636.4A CN115268166A (zh) 2021-04-30 2021-04-30 摄像模组
CN202110482664.6A CN115268167A (zh) 2021-04-30 2021-04-30 摄像模组
CN202110482636.4 2021-04-30
CN202110482664.6 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022228111A1 true WO2022228111A1 (zh) 2022-11-03

Family

ID=83846644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086333 WO2022228111A1 (zh) 2021-04-30 2022-04-12 摄像模组

Country Status (3)

Country Link
EP (1) EP4318118A1 (zh)
CN (1) CN117501176A (zh)
WO (1) WO2022228111A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2620797A (en) * 2022-07-22 2024-01-24 Cambridge Mechatronics Ltd Actuator assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000307937A (ja) * 1999-04-22 2000-11-02 Ricoh Co Ltd 撮像装置
CN101067709A (zh) * 2006-05-02 2007-11-07 三星Techwin株式会社 图像抖动校正设备和方法
JP2011227427A (ja) * 2010-04-02 2011-11-10 Tdk Corp レンズ駆動装置
WO2015001952A1 (ja) * 2013-07-04 2015-01-08 コニカミノルタ株式会社 レンズ駆動装置
JP2020170088A (ja) * 2019-04-03 2020-10-15 キヤノン株式会社 撮像装置、異物除去方法、およびプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000307937A (ja) * 1999-04-22 2000-11-02 Ricoh Co Ltd 撮像装置
CN101067709A (zh) * 2006-05-02 2007-11-07 三星Techwin株式会社 图像抖动校正设备和方法
JP2011227427A (ja) * 2010-04-02 2011-11-10 Tdk Corp レンズ駆動装置
WO2015001952A1 (ja) * 2013-07-04 2015-01-08 コニカミノルタ株式会社 レンズ駆動装置
JP2020170088A (ja) * 2019-04-03 2020-10-15 キヤノン株式会社 撮像装置、異物除去方法、およびプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2620797A (en) * 2022-07-22 2024-01-24 Cambridge Mechatronics Ltd Actuator assembly

Also Published As

Publication number Publication date
EP4318118A1 (en) 2024-02-07
CN117501176A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
JP2013513821A (ja) レンズアクチュエータモジュール
EP2216837A1 (en) Piezoelectric motor
CN109586609B (zh) 振动波致动器、成像装置和使用振动波致动器的台装置
US9247140B2 (en) Vibration-type driving unit, two-dimensional driving apparatus, image-blur correction apparatus, interchangeable lens, image capturing apparatus, and automatic stage
WO2022228111A1 (zh) 摄像模组
JP4739357B2 (ja) 駆動装置、それを備えた撮像装置、及び撮像機器
KR101653826B1 (ko) 초음파 모터 및 그 제조 방법
CN115268167A (zh) 摄像模组
CN115379074A (zh) 光学致动器及相应的摄像模组
WO2022228112A1 (zh) 摄像模组
WO2022214084A1 (zh) 潜望式摄像模组和可变焦摄像模组
CN115268166A (zh) 摄像模组
CN115268008B (zh) 可变焦摄像模组
CN115499560A (zh) 摄像模组
WO2024087956A1 (zh) 驱动单元、压电马达、摄像模组和电子设备
WO2022233289A1 (zh) 摄像模组、光学致动器、感光组件及其制造方法
WO2022143651A1 (zh) 压电马达、摄像模组及电子设备
WO2024037631A1 (zh) 压电马达及其摄像模组
CN115334212A (zh) 摄像模组
CN115334213A (zh) 摄像模组
WO2023051132A1 (zh) 摄像头模组及电子设备
CN217985166U (zh) 马达、摄像模组和终端设备
CN114885088B (zh) 摄像模组及其光学防抖方法和电子设备
WO2023051117A1 (zh) 驱动装置、摄像头模组以及电子设备
WO2023051118A1 (zh) 驱动器及其制作方法、驱动装置、摄像头模组、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280028966.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18288707

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022794582

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022794582

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE