WO2022228112A1 - 摄像模组 - Google Patents

摄像模组 Download PDF

Info

Publication number
WO2022228112A1
WO2022228112A1 PCT/CN2022/086337 CN2022086337W WO2022228112A1 WO 2022228112 A1 WO2022228112 A1 WO 2022228112A1 CN 2022086337 W CN2022086337 W CN 2022086337W WO 2022228112 A1 WO2022228112 A1 WO 2022228112A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
driving
carrier
camera module
friction
Prior art date
Application number
PCT/CN2022/086337
Other languages
English (en)
French (fr)
Inventor
赵波杰
叶林敏
阙嘉耀
方银丽
黄桢
傅强
洪超
袁栋立
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110454537.5A external-priority patent/CN115334212A/zh
Priority claimed from CN202110455905.8A external-priority patent/CN115334213A/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202280028965.4A priority Critical patent/CN117203970A/zh
Priority to EP22794583.9A priority patent/EP4319126A1/en
Priority to US18/288,230 priority patent/US20240205547A1/en
Publication of WO2022228112A1 publication Critical patent/WO2022228112A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present application relates to the field of camera modules, and in particular to a camera module, which adopts a novel piezoelectric actuator as a driving element to meet the driving requirements of the camera module.
  • the camera module adopts a novel piezoelectric actuator.
  • the actuator acts as a driving element to move the optical lens for optical image stabilization.
  • the piezoelectric actuator is arranged in the camera module with a reasonable arrangement scheme, so as to meet the structural design requirements and size design requirements of the camera module.
  • the existing driving element for driving the optical component is an electromagnetic motor, for example, a voice coil motor (Voice Coil Motor: VCM), a shape memory alloy actuator (Shape of Memory Alloy Actuator: SMA), and the like.
  • VCM Voice Coil Motor
  • SMA Shape of Memory Alloy Actuator
  • the existing voice coil motor and shape memory alloy driver are only suitable for driving optical components with a weight of less than 100mg, that is, if the weight of the optical lens exceeds 100mg, the existing driver will not be able to meet the application requirements of the camera module .
  • the existing voice coil motor is equipped with a coil and a magnet.
  • the internal magnetic fields will interact with each other, causing the magnets to move or shake, reducing the stability of the drive control. .
  • the new type of driver can not only meet the driving requirements for the optical performance adjustment of the camera module, but also meet the development of light weight and thinning of the camera module. need.
  • An advantage of the present application is to provide a camera module, wherein the camera module adopts a novel piezoelectric actuator as a driving element to not only provide a sufficiently large driving force, but also provide higher precision and The driving performance with longer stroke can meet the requirement of adjusting the optical performance of the camera module, for example, the requirement of optical image stabilization.
  • Another advantage of the present application is to provide a camera module, wherein the piezoelectric actuator has a relatively small size, so as to better adapt to the development trend of light and thin camera modules.
  • Another advantage of the present application is to provide a camera module, wherein the piezoelectric actuator is arranged in the camera module by adopting a reasonable arrangement scheme to meet the structure and size requirements of the camera module.
  • a camera module which includes:
  • a photosensitive assembly comprising: a circuit board and a photosensitive chip electrically connected to the circuit board;
  • the frame carrier assembly mounted on the photosensitive assembly includes a first frame carrier, a second frame carrier externally provided on the first frame carrier, and an outer frame carrier externally provided on the second frame carrier;
  • a drive assembly comprising: a first drive element, a first preload part, a second drive element and a second preload part, the first drive element and the second drive element being implemented as piezoelectric actuators, wherein , the first driving element presses against the first frame carrier in a frictional contact manner through the first pre-compression member, and is configured to drive the first frame carrier to drive the optical lens in a direction perpendicular to the moving in the plane of the optical axis to perform optical anti-shake in the first direction; wherein, the second driving element abuts against the second frame carrier in a frictional contact manner through the second preloading member, and is held by the second frame carrier. is configured to drive the second frame carrier to drive the first frame carrier to drive the optical lens to move in a plane perpendicular to the optical axis to perform optical image stabilization in a second direction, the first direction being vertical in the second direction.
  • the friction traveling wave or standing wave drives the piezoelectric motor, including: a piezoelectric active part and a friction driving part drivably connected to the piezoelectric active part, wherein in the above After the piezoelectric actuator is turned on, the friction driving part is configured to provide a driving force for driving the first frame carrier or the second frame carrier under the action of the piezoelectric active part.
  • the piezoelectric active part has a plurality of sets of first polarization regions and second polarization regions alternately arranged with each other, the first polarization regions and the second polarization regions have opposite polarization directions, wherein, after the piezoelectric actuator is turned on, the multiple groups of the first polarization regions and the second polarization regions that are alternately arranged deform in different directions to drive the
  • the friction driving part moves along a preset direction in the manner of traveling wave or standing wave, so as to provide a driving force for driving the first frame carrier or the second frame carrier.
  • the piezoelectric active part has a plurality of sets of first polarization regions and second polarization regions alternately arranged with each other, the first polarization regions and the second polarization regions have the same polarization direction, wherein, after the piezoelectric actuator is turned on, the plurality of groups of the first polarization regions and the second polarization regions alternately arranged with each other deform in different directions to drive
  • the friction driving part moves along a preset direction in the manner of traveling wave or standing wave, so as to provide a driving force for driving the first frame carrier or the second frame carrier.
  • the plurality of groups of the first polarized regions and the second polarized regions arranged alternately are on the same straight line.
  • the friction driving part includes a plurality of friction driving elements spaced apart from each other, and the first end of each friction driving element is coupled to the piezoelectric active part.
  • the plurality of friction driving elements are located in the middle region of the piezoelectric active part.
  • the piezoelectric actuator further includes: a frictional connection layer stacked on the piezoelectric active part, each of the frictional driving elements is fixed to the first end of the frictional driving element
  • the piezoelectric active part is coupled to the piezoelectric active part by means of a frictional connection layer.
  • the plurality of end surfaces of the second ends of the plurality of friction driving elements opposite to the first ends are in the same plane.
  • the driving assembly further includes a first friction actuating portion and a second friction actuating portion, and the first friction actuating portion is disposed between the first driving element and the Between the first frame carriers, the second friction actuating portion is provided between the second driving element and the second frame carrier.
  • the first friction actuating part has a first surface and a second surface opposite to the first surface, the first surface abuts against the surface of the first frame carrier , the second surface is in contact with the end surface of the second end of at least one of the friction driving elements in the plurality of friction driving elements;
  • the second friction actuating part has a third surface and a surface opposite to the third surface a fourth surface, the third surface abuts a surface of the second frame carrier, the fourth surface abuts an end face of the second end of at least one of the friction drive elements of the plurality of friction drive elements.
  • the piezoelectric actuator has a length dimension of 10 mm or less, a width dimension of 1 mm or less, and a height dimension of 1 mm or less.
  • the first driving element is clamped and disposed on the first frame carrier and the second frame carrier by the first pre-pressing member and the first friction actuating portion. Between the frame carriers, in such a way that the first drive element is in frictional contact against the first frame carrier.
  • the first driving element is located on the side of the first frame carrier.
  • the first driving element is located on the upper part of the first frame carrier.
  • the first driving element is located at the lower part of the first frame carrier.
  • the second driving element is sandwiched and disposed on the second frame carrier and the outer frame by the second pre-pressing member and the second friction actuating portion Between the carriers, the second drive element is in frictional contact against the second frame carrier in such a way that the second drive element is located on the side of the second frame carrier.
  • the second driving element is sandwiched and disposed on the second frame carrier and the lens carrier by the second pre-pressing member and the second friction actuating portion In between, in such a way, the second driving element is in frictional contact against the second frame carrier, wherein the second driving element is located on the upper part of the second frame carrier.
  • the driving assembly is further peripherally disposed on the outer frame carrier of the second frame carrier, wherein the second driving element passes through the second pre-pressing member and the second A second friction actuation portion is clamped between the second frame carrier and the outer frame carrier in such a way that the second drive element is in frictional contact against the second frame A carrier, wherein the second drive element is located at a lower portion of the second frame carrier.
  • the driving assembly further includes a first guide mechanism disposed between the first frame carrier and the second frame carrier, and a first guide mechanism disposed between the second frame carrier and the second frame carrier.
  • the second guide mechanism between the outer frame carriers.
  • the driving assembly further includes a first guide mechanism disposed between the first frame carrier and the second frame carrier, and a first guide mechanism disposed between the second frame carrier and the second frame carrier.
  • the second guide mechanism between the lens carriers.
  • the driving assembly further includes a first guide mechanism disposed between the first frame carrier and the second frame carrier, and a first guide mechanism disposed between the second frame carrier and the second frame carrier.
  • the second guide mechanism between the outer frame carriers.
  • the first pre-compression member includes a first elastic element, and the first elastic element is disposed on the piezoelectric active part of the first driving element and the second frame carrier between, the first driving element is forced against the first frame carrier in a frictional contact manner by the elastic force of the first elastic element;
  • the second preloading element includes a second elastic element, the first Two elastic elements are disposed between the piezoelectric active part of the second driving element and the outer frame carrier, so as to force the second driving element to be in frictional contact with the elastic force of the second elastic element the second frame carrier.
  • the first pre-compression member includes a first elastic element, and the first elastic element is disposed on the piezoelectric active part of the first driving element and the second frame carrier between, the first driving element is forced against the first frame carrier in a frictional contact manner by the elastic force of the first elastic element;
  • the second preloading element includes a second elastic element, the first Two elastic elements are disposed between the piezoelectric active part of the second driving element and the lens carrier, so as to force the second driving element against the lens carrier in a frictional contact manner by the elastic force of the second elastic element the second frame carrier.
  • the first pre-compression member includes a first elastic element, and the first elastic element is disposed on the piezoelectric active part of the first driving element and the second frame carrier between, the first driving element is forced against the first frame carrier in a frictional contact manner by the elastic force of the first elastic element;
  • the second preloading element includes a second elastic element, the first Two elastic elements are disposed between the piezoelectric active part of the second driving element and the outer frame carrier, so as to force the second driving element to be in frictional contact with the elastic force of the second elastic element the second frame carrier.
  • the first elastic element and the second elastic element are implemented as elastic adhesives.
  • the thickness dimension of the first elastic element and the second elastic element is between 10um and 50um.
  • the first pre-pressing component includes a first magnetic attraction element disposed on the first frame carrier and a first magnetic attraction element disposed on the second frame carrier and corresponding to the first magnetic attraction the second magnetic attraction element of the element, so as to force the first driving element against the first frame in a frictional contact manner through the magnetic attraction between the first magnetic attraction element and the second magnetic attraction element a carrier;
  • the second pre-compression component includes a third magnetic element disposed on the second frame carrier and a fourth magnetic element disposed on the outer frame carrier and corresponding to the third magnetic element, so as to The second driving element is forced against the second frame carrier in a frictional contact manner through the magnetic attraction between the third magnetic element and the magnetic element.
  • the first pre-pressing component includes a first magnetic attraction element disposed on the first frame carrier and a first magnetic attraction element disposed on the second frame carrier and corresponding to the first magnetic attraction the second magnetic attraction element of the element, so as to force the first driving element against the first frame in a frictional contact manner through the magnetic attraction between the first magnetic attraction element and the second magnetic attraction element a carrier;
  • the second pre-pressing component includes a third magnetic element disposed on the second frame carrier and a fourth magnetic element disposed on the lens carrier and corresponding to the third magnetic element, so as to pass The magnetic attraction between the first magnetic attraction element and the second magnetic attraction element forces the first driving element against the first frame carrier in a frictional contact manner.
  • the first pre-pressing component includes a first magnetic attraction element disposed on the first frame carrier and a first magnetic attraction element disposed on the second frame carrier and corresponding to the first magnetic attraction the second magnetic attraction element of the element, so as to force the first driving element against the first frame in a frictional contact manner through the magnetic attraction between the first magnetic attraction element and the second magnetic attraction element a carrier;
  • the second pre-compression component includes a third magnetic element disposed on the second frame carrier and a fourth magnetic element disposed on the outer frame carrier and corresponding to the third magnetic element, so as to The second driving element is forced against the second frame carrier in a frictional contact manner through the magnetic attraction between the third magnetic element and the magnetic element.
  • a camera module which includes:
  • a photosensitive assembly comprising: a circuit board and a photosensitive chip electrically connected to the circuit board;
  • the lens assembly held on the photosensitive path of the photosensitive assembly includes: a lens carrier and an optical lens mounted on the lens carrier, wherein the optical lens is provided with an optical axis;
  • a driving assembly comprising: a first carrying frame, a first driving element and a first preloading member, wherein the photosensitive assembly is mounted on the first carrying frame, and the first driving element is implemented as piezoelectric actuation wherein the first driving element presses against the first carrying frame in a frictional contact manner through the first pre-pressing member, and is configured to drive the first carrying frame to drive the photosensitive assembly in the In-plane movement perpendicular to the optical axis for optical image stabilization.
  • the driving assembly further includes a second carrying frame, a second driving element and a second pre-pressing component, wherein the second carrying frame is externally disposed on the first carrying frame,
  • the second drive element is embodied as a piezoelectric actuator, wherein the second drive element is in frictional contact with the second carrier frame by the second pre-compression member and is configured to drive
  • the second carrier frame drives the first carrier frame to drive the photosensitive component to move in a plane perpendicular to the optical axis to perform optical anti-shake.
  • the piezoelectric actuator includes: a piezoelectric active part and a friction driving part drivably connected to the piezoelectric active part, wherein in the piezoelectric actuator After the actuator is turned on, the friction driving part is configured to provide a driving force for driving the first carrying frame or the second carrying frame under the action of the piezoelectric active part.
  • the piezoelectric active part has a plurality of sets of first polarization regions and second polarization regions alternately arranged with each other, the first polarization regions and the second polarization regions have opposite polarization directions, wherein, after the piezoelectric actuator is turned on, the multiple groups of the first polarization regions and the second polarization regions that are alternately arranged deform in different directions to drive the
  • the friction driving part moves along a preset direction in the manner of traveling wave or standing wave, so as to provide a driving force for driving the first bearing frame or the second bearing frame.
  • the friction driving part includes a plurality of friction driving elements spaced apart from each other, and the first end of each friction driving element is coupled to the piezoelectric active part.
  • the piezoelectric actuator further includes: a frictional connection layer stacked on the piezoelectric active part, each of the frictional driving elements is fixed to the first end of the frictional driving element
  • the piezoelectric active part is coupled to the piezoelectric active part by means of a frictional connection layer.
  • the plurality of end faces of the second ends of the plurality of friction driving elements opposite to the first ends are in the same plane.
  • the driving assembly further includes a first friction actuating portion and a second friction actuating portion, and the first friction actuating portion is disposed between the first driving element and the Between the first bearing frames, the second friction actuating portion is disposed between the second driving element and the second bearing frame.
  • the first friction actuating part has a first surface and a second surface opposite to the first surface, and the first surface is in contact with the surface of the first carrying frame , the second surface is in contact with the end surface of the second end of at least one of the friction driving elements in the plurality of friction driving elements;
  • the second friction actuating part has a third surface and a surface opposite to the third surface a fourth surface, the third surface abuts against a surface of the second carrier frame, and the fourth surface abuts against an end face of the second end of at least one of the friction driving elements among the plurality of friction driving elements.
  • the first carrier frame has a first groove formed concavely on its surface, and the first friction actuating portion is disposed in the first groove; and/or, the second carrier frame has a second groove concavely formed on its surface, and the second friction actuating portion is disposed in the second groove.
  • the length of the first groove and the second groove is greater than the length dimension of the piezoelectric actuator, and the width dimension of the piezoelectric actuator is less than or equal to The width dimension of the first groove and the second groove.
  • the piezoelectric actuator has a length dimension of 20 mm or less, a width dimension of 1 mm or less, and a height dimension of 1 mm or less.
  • the first driving element is sandwiched and disposed on the first carrier frame and the second through the first pre-pressing member and the first friction actuating portion. Between the carrier frames, in such a way, the first drive element abuts against the first carrier frame in a frictional contact manner.
  • the first driving element is located at the side of the first carrying frame.
  • the first driving element is located on the upper part of the first carrying frame.
  • the first driving element is located at the lower part of the first carrying frame.
  • the driving assembly further includes an outer frame externally disposed on the second carrying frame, wherein the second driving element passes through the second pre-pressing member and the second The frictional actuation portion is sandwiched between the second carrier frame and the outer frame in such a way that the second drive element is in frictional contact against the second carrier frame, wherein , the second driving element is located on the side of the second carrying frame.
  • the second driving element is clamped and disposed on the second carrier frame and the lens carrier by the second pre-pressing member and the second friction actuating portion In this way, the second driving element abuts against the second carrying frame in a frictional contact manner, wherein the second driving element is located on the upper part of the second carrying frame.
  • the driving assembly is further peripherally disposed on the outer frame of the second carrying frame, wherein the second driving element passes through the second pre-pressing member and the second friction
  • the actuating portion is sandwiched between the second carrying frame and the outer frame, in such a way that the second driving element is in frictional contact against the second carrying frame, wherein,
  • the second drive element is located in the lower part of the second carrier frame.
  • the driving assembly further includes a first guide mechanism disposed between the first carrying frame and the second carrying frame, and a first guiding mechanism disposed between the second carrying frame and the second carrying frame.
  • the second guide mechanism between the outer frames.
  • the driving assembly further includes a first guide mechanism disposed between the first carrying frame and the second carrying frame, and a first guiding mechanism disposed between the second carrying frame and the second carrying frame.
  • the second guide mechanism between the lens carriers.
  • the driving assembly further includes a first guide mechanism disposed between the first carrying frame and the second carrying frame, and a first guiding mechanism disposed between the second carrying frame and the second carrying frame.
  • a second guide mechanism between the outer frames.
  • the first pre-compression member includes a first elastic element, and the first elastic element is disposed on the piezoelectric active part of the first driving element and the second carrying frame between, the first driving element is forced against the first bearing frame in a frictional contact manner by the elastic force of the first elastic element;
  • the second preloading element includes a second elastic element, the first Two elastic elements are disposed between the piezoelectric active part of the second driving element and the outer frame, so as to force the second driving element to abut against the outer frame in a frictional contact manner by the elastic force of the second elastic element the second carrying frame.
  • the first pre-compression member includes a first elastic element, and the first elastic element is disposed on the piezoelectric active part of the first driving element and the second carrying frame between, the first driving element is forced against the first bearing frame in a frictional contact manner by the elastic force of the first elastic element;
  • the second preloading element includes a second elastic element, the first Two elastic elements are disposed between the piezoelectric active part of the second driving element and the lens carrier, so as to force the second driving element against the lens carrier in a frictional contact manner by the elastic force of the second elastic element the second carrying frame.
  • the first pre-compression member includes a first elastic element, and the first elastic element is disposed on the piezoelectric active part of the first driving element and the second carrying frame between, the first driving element is forced against the first bearing frame in a frictional contact manner by the elastic force of the first elastic element;
  • the second preloading element includes a second elastic element, the first Two elastic elements are disposed between the piezoelectric active part of the second driving element and the outer frame, so as to force the second driving element to abut against the outer frame in a frictional contact manner by the elastic force of the second elastic element the second carrying frame.
  • the first elastic element and the second elastic element are implemented as elastic adhesives.
  • the thickness dimension of the first elastic element and the second elastic element is between 10um and 50um.
  • the first pre-pressing component includes a first magnetic attraction element disposed on the first carrying frame and a first magnetic attraction element disposed on the second carrying frame and corresponding to the first magnetic attraction the second magnetic attraction element of the element, so as to force the first driving element against the first bearing in a frictional contact manner through the magnetic attraction between the first magnetic attraction element and the second magnetic attraction element a frame;
  • the second pre-compression component includes a third magnetic attraction element disposed on the second carrier frame and a fourth magnetic attraction element disposed on the outer frame and corresponding to the third magnetic attraction element, so as to pass The magnetic attraction between the third magnetic element and the fourth magnetic element forces the second driving element against the second carrier frame in a frictional contact manner.
  • the first pre-pressing component includes a first magnetic attraction element disposed on the first carrying frame and a first magnetic attraction element disposed on the second carrying frame and corresponding to the first magnetic attraction the second magnetic attraction element of the element, so as to force the first driving element against the first bearing in a frictional contact manner through the magnetic attraction between the first magnetic attraction element and the second magnetic attraction element a frame;
  • the second pre-pressing component includes a third magnetic attraction element disposed on the second carrier frame and a fourth magnetic attraction element disposed on the lens carrier and corresponding to the third magnetic attraction element, so as to pass The magnetic attraction between the first magnetic attraction element and the second magnetic attraction element forces the first driving element against the first carrier frame in a frictional contact manner.
  • the first pre-pressing component includes a first magnetic attraction element disposed on the first carrying frame and a first magnetic attraction element disposed on the second carrying frame and corresponding to the first magnetic attraction the second magnetic attraction element of the element, so as to force the first driving element against the first bearing in a frictional contact manner through the magnetic attraction between the first magnetic attraction element and the second magnetic attraction element a frame;
  • the second pre-compression component includes a third magnetic attraction element disposed on the second carrier frame and a fourth magnetic attraction element disposed on the outer frame and corresponding to the third magnetic attraction element, so as to pass The magnetic attraction between the third magnetic element and the fourth magnetic element forces the second driving element against the second carrier frame in a frictional contact manner.
  • FIG. 1 illustrates a schematic diagram of a camera module according to an embodiment of the present application.
  • FIG. 2 illustrates a schematic diagram of a photosensitive component of the camera module according to an embodiment of the present application.
  • FIG. 3 illustrates a schematic diagram of an optical lens, a frame carrier assembly and a driving assembly of the camera module according to an embodiment of the present application.
  • FIG. 4 illustrates a schematic diagram of a piezoelectric actuator according to an embodiment of the application.
  • FIG. 5 illustrates a schematic diagram of the piezoelectric actuator after being turned on according to an embodiment of the present application.
  • FIG. 6 illustrates a schematic diagram of a variant implementation of the piezoelectric actuator according to embodiments of the present application.
  • FIG. 7 illustrates another schematic diagram of the optical lens, the frame carrier assembly, and the driving assembly of the camera module according to an embodiment of the present application.
  • FIG. 8 illustrates a schematic diagram of a variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 9 illustrates a schematic diagram of another variant implementation of the camera module according to the embodiment of the present application.
  • FIG. 10 illustrates a schematic diagram of still another variant implementation of the camera module according to the embodiment of the present application.
  • FIG. 11 illustrates a schematic diagram of still another variant implementation of the camera module according to the embodiment of the present application.
  • FIG. 12 illustrates a schematic diagram of yet another variant implementation of the camera module according to the embodiment of the present application.
  • FIG. 13 illustrates a schematic diagram of a camera module according to an embodiment of the present application.
  • FIG. 14 illustrates a schematic diagram of a photosensitive component of the camera module according to an embodiment of the present application.
  • FIG. 15 illustrates another schematic diagram of the camera module according to an embodiment of the present application.
  • FIG. 16 illustrates a schematic diagram of a piezoelectric actuator according to an embodiment of the application.
  • FIG. 17 illustrates a schematic diagram of the piezoelectric actuator after being turned on according to an embodiment of the present application.
  • FIG. 18 illustrates a schematic diagram of a variant implementation of the piezoelectric actuator according to embodiments of the present application.
  • FIG. 19 illustrates a schematic diagram of a variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 20 illustrates a schematic diagram of another variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 21 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 22 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 23 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 24 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application.
  • FIG. 25 illustrates a partial schematic diagram of still another variant implementation of the camera module according to the embodiment of the present application.
  • a camera module As shown in FIG. 1 , a camera module according to an embodiment of the present application is illustrated, which includes: a photosensitive assembly 10 , an optical lens 20 held on a photosensitive path of the photosensitive assembly 10 , a frame carrier assembly 30 , and a The driving component 40 for driving the optical lens 20 to perform optical anti-shake.
  • the photosensitive assembly 10 includes a circuit board 11 , a photosensitive chip 12 electrically connected to the circuit board 11 , and a filter held on the photosensitive path of the photosensitive chip 12 .
  • the component 13 wherein the circuit board 11 forms the mounting substrate of the photosensitive component 10 .
  • the circuit board may be implemented as a printed circuit board (Printed Circuit Board, PCB), a software combination board, or a reinforced flexible circuit board (Flexible Printed Circuit, PFC).
  • a reinforcing plate (not shown) may also be arranged under the circuit board 11, for example, a steel sheet is arranged under the circuit board, so as to strengthen all the The strength of the circuit board is improved and the heat dissipation performance of the photosensitive component is improved.
  • the photosensitive assembly 10 further includes a bracket 14 disposed on the circuit board 11 , wherein the filter element 13 is mounted on the bracket 14 to be maintained on the photosensitive path of the photosensitive chip 12 .
  • the specific implementation of the filter element 13 held on the photosensitive path of the photosensitive chip 12 is not limited by the present application.
  • the filter element 13 may be implemented as a filter element The film is coated on the surface of a certain optical lens of the zoom lens group, so as to have the effect of filtering light.
  • the photosensitive component 10 may further include a filter element bracket (not shown) installed on the bracket 14. There are diagrams), wherein the filter element 13 is held on the photosensitive path of the photosensitive chip 12 by being mounted on the filter element holder.
  • the bracket 14 may be implemented as a plastic bracket, which is attached to the circuit board 11 through an adhesive.
  • the bracket 14 may also be implemented as an integral bracket integrally formed on the circuit board 11 , such as a molded bracket, which is not limited by this application.
  • the frame carrier assembly 30 is mounted on the photosensitive assembly 10 , wherein the frame carrier assembly 30 includes an outer frame carrier mounted on the bracket 14 33 .
  • the second frame carrier 32 accommodated in the outer frame carrier 33 and the first frame carrier 31 accommodated in the second frame carrier 32 . That is, in this embodiment, the frame carrier assembly includes a first frame carrier 31 , a second frame carrier 32 externally provided on the first frame carrier 31 , and a second frame carrier 32 externally provided on the second frame carrier 32 .
  • Outer frame carrier 33 is, a first frame carrier 31 , a second frame carrier 32 externally provided on the first frame carrier 31 , and a second frame carrier 32 externally provided on the second frame carrier 32 .
  • the optical lens 20 is installed in the first frame carrier 31 , and in this way, the optical lens 20 is maintained on the photosensitive path of the photosensitive assembly 10 . That is, in this embodiment, the first frame carrier 31 forms a mounting carrier for the optical lens.
  • the second frame carrier 32 and the outer frame carrier 33 there is a gap between the second frame carrier 32 and the outer frame carrier 33, and there is a gap between the first frame carrier 31 and the second frame carrier 32, that is, , there is an available space between the second frame carrier 32 and the outer frame carrier 33, wherein the available space can be used to install a driver for driving the movement of the second carrier frame 32; the first frame carrier There is a free space between 31 and the second frame carrier 32 , wherein the free space can be used to install a drive that drives the movement of the first frame carrier 31 .
  • the selection and installation of the driver will be expanded in more detail in the subsequent description.
  • the optical lens 20 includes a lens barrel 21 and at least one optical lens 22 installed in the lens barrel 21 .
  • the resolution of the optical lens 20 is proportional to the number of the optical lenses 22 within a certain range, that is, the higher the resolution, the more the number of the optical lenses 22 .
  • the optical lens 20 can be implemented as a one-piece lens, or a split-type lens, wherein, when the optical lens 20 is implemented as a one-piece lens, the optical lens 20 includes a lens barrel 21 , all the optical lenses 22 are installed in the lens barrel 21; and when the optical lens 20 is implemented as a split optical lens, the optical lens 20 is assembled from at least two parts of a single lens.
  • the existing driving element for driving the optical component is an electromagnetic motor, for example, a voice coil motor (Voice Coil Motor: VCM), a shape memory alloy actuator (Shape of Memory Alloy Actuator: SMA), and the like.
  • VCM Voice Coil Motor
  • SMA Shape of Memory Alloy Actuator
  • the existing voice coil motor and shape memory alloy driver are only suitable for driving optical components with a weight of less than 100mg, that is, if the weight of the optical lens exceeds 100mg, the existing driver will not be able to meet the application requirements of the camera module .
  • the existing voice coil motor is equipped with a coil and a magnet.
  • the internal magnetic fields will interact with each other, causing the magnets to move or shake, reducing the stability of the drive control. .
  • the new type of driver can not only meet the driving requirements for the optical performance adjustment of the camera module, but also meet the development of light weight and thinning of the camera module. need.
  • the new driver needs to meet the following requirements: relatively larger driving force, and better driving performance (specifically including: higher-precision driving control and longer driving journey).
  • the present application proposes a piezoelectric actuator with a novel structure, which can meet the technical requirements of the camera module for the driver.
  • the piezoelectric actuator is further arranged in the camera module in an appropriate arrangement manner, so that it meets the structural design requirements and size design requirements of the camera module.
  • the piezoelectric actuator 100 according to an embodiment of the present application includes: a piezoelectric active part 110 and a friction driving part 120 drivably connected to the piezoelectric active part 110 , wherein, in the After the piezoelectric actuator 100 is turned on, the friction driving part 120 is configured to provide a driving force for driving the driven object under the action of the piezoelectric active part 110 .
  • the piezoelectric active part 110 is implemented as a piezoelectric ceramic element, which has a strip-like structure.
  • the piezoelectric active part 110 is a piezoelectric laminated structure, which has multiple groups of first polarization regions A1 and second polarization regions A2 arranged alternately with each other.
  • the first polarization regions A1 and A2 are arranged alternately.
  • the second polarization regions A2 have opposite polarization directions, wherein after the piezoelectric actuator 100 is turned on, multiple groups of the first polarization regions A1 and the second polarization regions A1 and the second polarization regions are alternately arranged.
  • the polarization area A2 is deformed in different directions to drive the friction driving part 120 to move in a predetermined direction in the manner of traveling wave or standing wave, so as to provide a driving force for driving the component, as shown in FIG. 4 .
  • the piezoelectric active part 110 has a plurality of sets of first polarized regions A1 and second polarized regions A2 arranged alternately with each other, the polarized regions A1 and The polarization directions of the polarization regions A2 are opposite.
  • multiple groups of the polarization areas A1 and A2 that alternate with each other are arranged in a side-by-side manner, that is, multiple groups of the polarization areas A1 that alternate with each other are arranged in a side-by-side manner. and the polarization area A2 is on the same straight line.
  • the piezoelectric active part 110 is electrically connected to an external excitation power supply through a wire, so that after the piezoelectric active part 110 is provided with power excitation, the piezoelectric active part 110 is powered by the reverse piezoelectric effect of the piezoelectric active part 110.
  • the electroactive part 110 is deformed. It should be understood that the deformation of the piezoelectric active part 110 will drive the friction driving part 120 to move in the manner of traveling wave or standing wave, that is, the deformation of the piezoelectric active part 110 can be transmitted to the friction
  • the driving part 120 provides driving force through the traveling wave or standing wave motion of the friction driving part 120 .
  • each group of the first polarization region A1 and the second polarization region A2 may also have the same polarization direction, wherein, in the piezoelectric actuator 100 After being turned on, by inputting alternating voltage signals to each group of the first polarization area A1 and the second polarization area A2, multiple groups of the first polarization area A1 and the first polarization area A1 and the first polarization area A1 are alternately arranged.
  • the polarization region A2 is deformed in different directions to drive the friction driving portion 120 to move along a predetermined direction in the form of a standing wave, which is not limited by the present application.
  • the friction driving part 120 includes a plurality of friction driving elements 121 spaced apart from each other, wherein the first end of each friction driving element 121 is coupled to the In the piezoelectric active part 110 , the friction driving part 120 is driveably connected to the piezoelectric active part 110 in such a manner.
  • the number of the plurality of friction driving elements 121 may be 2, 3, 4 or more, preferably, the number of the friction driving elements 121 exceeds 3 (ie, greater than or equal to 3). So that the piezoelectric actuator 100 can control the length of the piezoelectric actuator 100 while realizing the stable output of the linear driving force, so that it is suitable for being installed in a relatively small device such as a camera module. .
  • the length dimension of the piezoelectric actuator 100 is almost equal to the dimension of the piezoelectric active part 110 (and the piezoelectric active part 110 has a long strip shape). In an embodiment, the length dimension of the piezoelectric actuator 100 is less than or equal to 20 mm, preferably, the length dimension thereof is less than or equal to 10 mm.
  • the plurality of friction driving elements 121 are located in the middle region of the piezoelectric active part 110 , so that when the acted object is driven by the plurality of friction driving elements 121 , the driven object will move more smoothly and linearly.
  • the friction driving element 121 has a columnar structure, which protrudes from the upper surface of the piezoelectric active part 110 . From the outside, the piezoelectric actuator 100 has a rack shape. It should be understood that in other examples of the present application, the friction driving element 121 may also be implemented in other shapes, for example, its cross-sectional shape may be set as a trapezoid, which is not limited by the present application.
  • the at least three friction driving elements 121 are arranged equidistantly and alternately, which is conducive to improving the Driving stability of the piezoelectric actuator 100 .
  • the second ends of the plurality of friction driving elements 121 opposite to the first ends have The plurality of end faces are on the same plane, for example, in the example shown in FIG. 3 , the end faces of the second ends of the plurality of friction driving elements 121 are on the same horizontal plane. That is, in this embodiment, the end surfaces of the second ends of the plurality of friction driving elements 121 form the same plane.
  • a layer of friction material may be further applied on the plane (ie, the plane defined by the end surfaces of the second ends of the plurality of friction driving elements 121 ) to increase the frictional force .
  • a mover is usually arranged on the upper surface of the friction driving part 120 to transmit the traveling wave or standing wave provided by the friction driving part 120 through the mover. Wave-like driving force and act on the driven object. That is, a friction actuating portion 130 (the friction actuating portion 130 serving as the mover) is provided between the friction driving portion 120 and the driven object, so that when the piezoelectric actuator 100 is guided When the friction driving part 120 is turned on, the traveling wave or standing wave motion of the friction driving part 120 will drive the friction driving part 130 to move linearly.
  • the traveling or standing waves travel in opposite directions.
  • FIG. 6 illustrates a schematic diagram of a variant implementation of the piezoelectric actuator 100 according to an embodiment of the present application.
  • the piezoelectric actuator 100 further includes: a frictional connection layer 140 stacked on the piezoelectric active part 110 , each of the frictional driving elements 121 with its first One end is coupled to the piezoelectric active part 110 by being fixed to the frictional connection layer 140 .
  • the frictional driving element 121 and the frictional connection layer 140 may have a one-piece structure.
  • the frictional drive element 121 and the frictional connection layer 140 may have a split structure, ie, the two are separate components.
  • the piezoelectric actuator 100 has a relatively more optimized size.
  • the length dimension of the piezoelectric actuator 100 is less than or equal to 20 mm, preferably, the length dimension is less than or equal to 10 mm, for example, it may be 6 mm or 4.2 mm.
  • the width dimension of the piezoelectric actuator 100 is less than or equal to 1 mm, preferably, the width dimension is less than or equal to 0.7 mm.
  • the height dimension of the piezoelectric actuator 100 is less than or equal to 1 mm.
  • the height dimension of the piezoelectric actuator 100 is determined by the dimensions of the piezoelectric active part 110 and the friction driving part 120 .
  • the piezoelectric actuator 100 Compared with the traditional electromagnetic driver, the piezoelectric actuator 100 has the advantages of small size, large thrust and high precision. Quantitatively, the piezoelectric actuator 100 according to the embodiment of the present application can provide a driving force of 0.6N to 2N, which is sufficient to drive a component with a weight greater than 100 mg.
  • the piezoelectric actuator 100 has other advantages compared to the traditional electromagnetic motor solution and memory alloy motor solution, including but not limited to: a relatively small size (with Slender shape), better response accuracy, relatively simpler structure, relatively simpler drive control, high product consistency, no electromagnetic interference, relatively larger stroke, short stabilization time, relatively small weight, etc.
  • the camera module needs to be equipped with a driver that has a long driving stroke and needs to ensure better alignment accuracy.
  • a driver that has a long driving stroke and needs to ensure better alignment accuracy.
  • additional guide rods or ball guides need to be designed, and large-sized driving magnets/coils need to be adapted to the side of the lens, and balls, shrapnel, and suspension wires need to be installed.
  • Other auxiliary positioning devices in order to accommodate more components, ensure structural strength and reserve structural gaps, often lead to large lateral dimensions of the module, complex structural design, and heavy module weight.
  • the memory alloy motor solution is limited by the relatively small stroke that the memory alloy solution can provide in the same proportion, and there are reliability risks such as potential disconnection.
  • the piezoelectric actuator 100 has a relatively simple structure, and the assembly structure is simpler.
  • the size of the piezoelectric active part 110, the friction driving part 120 and other components are basically irrelevant to the size of the motion stroke, so it is used in optical zoom products.
  • the piezoelectric actuator 100 can achieve the advantages of large thrust, small size, and small weight, and at the same time, it can be designed to match a larger stroke or heavier device weight, and the integration degree in the design is also higher.
  • the piezoelectric actuator 100 pushes the object to be pushed to perform micron-scale motion in a frictional contact manner.
  • the non-contact manner of driving the object to be pushed requires the electromagnetic force to counteract the gravity, and the frictional force It has the advantages of larger thrust, larger displacement and lower power consumption, and at the same time, the control accuracy is higher.
  • the piezoelectric actuator 100 does not have a magnet coil structure, so there is no problem of magnetic interference.
  • the piezoelectric actuator 100 can be self-locked by the friction between the components, so the abnormal shaking noise of the camera module can be reduced when the optical image stabilization is performed.
  • the driving assembly 40 comprising: a first drive element 42 , a first pre-compression part 43 , a second drive element 45 , and a second pre-compression part 46 , wherein the first drive element 42 and the second drive element 45 are implemented as pressure Electric actuator 100 .
  • the optical lens 20 is mounted on the first frame carrier 31 , and the first driving element 42 passes through the first pre-compression member 43 Abuts the first frame carrier 31 in a frictional contact manner, and is configured to drive the first frame carrier 31 to drive the optical lens 20 to move in a plane perpendicular to the optical axis to perform the first frame operation.
  • the second frame carrier 32 is externally arranged on the first frame carrier 31 , wherein the second driving element 45 abuts against the second frame carrier 32 in a frictional contact manner through the second pre-pressing member 46 .
  • the first direction is perpendicular to the second direction.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction.
  • the frictional contact of the first drive element 42 against the first frame carrier 31 means that there is a pre-pressure between the frictional drive portion 120 of the first drive element 42 and the first frame carrier 31 . , so that the friction driving part 120 of the first driving element 42 can drive the first frame carrier 31 by means of friction driving.
  • the pre-pressure between the friction driving part 120 of the first driving element 42 and the first frame carrier 31 may be a direct pre-pressure or an indirect pre-pressure, wherein the direct pre-pressure represents the The friction driving part 120 of the first driving element 42 is in direct contact with the first frame carrier 31 to generate a pre-pressure therebetween; the indirect pre-pressure means that although the friction driving part of the first driving element 42 There is no direct contact between 120 and the first frame carrier 31, but there is still a pre-pressure between the two, so that the friction driving part 120 of the first driving element 42 can drive the first Frame carrier 31 .
  • the frictional contact of the second drive element 45 against the second frame carrier 32 means that there is a predetermined gap between the frictional drive portion 120 of the second drive element 45 and the second frame carrier 32 .
  • the pressure, and thus the friction driving part 120 of the second driving element 45, can drive the second frame carrier 32 by means of friction driving.
  • the pre-pressure between the friction driving portion 120 of the second driving element 45 and the second frame carrier 32 may be a direct pre-pressure or an indirect pre-pressure, wherein the direct pre-pressure represents the The frictional drive portion 120 of the second drive element 45 is in direct contact with the second frame carrier 32 to generate a pre-pressure therebetween; the indirect pre-pressure means that although the frictional drive portion of the second drive element 45 There is no direct contact between 120 and the second frame carrier 32, but there is still a pre-pressure therebetween, so that the friction driving part 120 of the second driving element 45 can drive the second frame carrier 32 by friction driving. Frame carrier 32 .
  • the first driving element 42 is clamped to the first frame carrier 31 and the first frame carrier 31 and the Between the second frame carriers 32 , in this way, the first driving element 42 abuts against the first frame carrier 31 in a frictional contact manner.
  • the first pre-compression member 43 includes a first elastic element 431 , and the first elastic element 431 is disposed on the piezoelectric active part 110 of the first driving element 42 and the Between the second frame carriers 32 , the first driving element 42 is forced against the first frame carrier 31 in a frictional contact manner by the elastic force of the first elastic element 431 .
  • the friction driving portion 120 of the first driving element 42 directly abuts against the surface of the outer side wall of the first frame carrier 31 , and accordingly, the elastic force provided by the first elastic element 431 can force the The friction driving portion 120 of the first driving element 42 abuts against the surface of the outer side wall of the first frame carrier 31 to form a friction-contact bonding relationship therebetween.
  • the friction driving part 120 of the first driving element 42 can drive the first frame carrier 31 to move along the first direction in a friction driving manner, to drive the optical lens 20 to move along the first direction to perform optical anti-shake in the first direction.
  • the first elastic element 431 is implemented as an elastic adhesive, that is, the first elastic element 431 is implemented as a glue with elasticity after curing.
  • a layer of adhesive with a thickness of 10um to 50um can be applied between the surface of the inner side wall of the second frame carrier 32 and the piezoelectric active part 110 of the first driving element 42 ,
  • the first elastic element 431 disposed between the piezoelectric active part 110 of the first driving element 42 and the second frame carrier 32 is formed after the adhesive is cured and formed.
  • the first elastic element 431 can also enable the first driving element 42 to be fixed on the surface of the inner side wall of the second frame carrier 32 while providing a pre-pressure.
  • the first elastic element 431 has a relatively high flatness, that is, when applying the adhesive, it is ensured that the applied adhesive has a relatively high flatness and uniformity as much as possible, so that the The first driving element 42 can be flatly fixed to the surface of the inner side wall of the second frame carrier 32 , thereby improving the driving stability of the first driving element 42 .
  • the second driving element 45 is clamped and disposed on the second frame carrier 32 and the outer frame by the second pre-pressing member 46 . Between the frame carriers 33 , in this way, the second drive element 45 abuts against the second frame carrier 32 in frictional contact.
  • the second pre-compression member 46 includes a second elastic element 461 , and the second elastic element 461 is disposed on the second driving element 45 Between the piezoelectric active part 110 and the outer frame carrier 33 , the second driving element 45 is forced against the second frame carrier 32 in a frictional contact manner by the elastic force of the second elastic element 461 .
  • the friction driving portion 120 of the second driving element 45 directly abuts against the surface of the outer side wall of the second frame carrier 32 , and accordingly, the elastic force provided by the second elastic element 461
  • the friction driving portion 120 of the second driving element 45 can be forced to abut against the surface of the outer side wall of the second frame carrier 32 to form a friction-contact bonding relationship therebetween.
  • the friction driving part 120 of the second driving element 45 can drive the second frame carrier 32 to move along the second direction in a friction driving manner, to drive the optical lens 20 to move along the second direction to perform optical anti-shake in the second direction.
  • the second elastic element 461 is implemented as an elastic adhesive, that is, the second elastic element 461 is implemented as a glue with elasticity after curing.
  • a layer of adhesive with a thickness of 10um to 50um can be applied between the surface of the inner side wall of the outer frame carrier 33 and the piezoelectric active part 110 of the second driving element 45 to After the adhesive is cured and formed, the second elastic element 461 disposed between the piezoelectric active part 110 of the second driving element 45 and the outer frame carrier 33 is formed.
  • the second elastic element 461 can also enable the second driving element 45 to be fixed on the surface of the inner side wall of the outer frame carrier 33 while providing a pre-pressure.
  • the second elastic element 461 has a relatively high flatness, that is, when the adhesive is applied, it is ensured that the applied adhesive has a relatively high flatness and uniformity as much as possible, so that the The second driving element 45 can be flatly fixed to the surface of the inner side wall of the outer frame carrier 33 , thereby improving the driving stability of the second driving element 45 .
  • the first elastic element 431 and the second elastic element 461 can also be implemented as elastic elements without viscosity, for example, the material itself has elasticity rubber, or springs, leaf springs, etc. that generate elasticity due to deformation, which are also not limited by this application.
  • the structural configuration of the first pre-compression member 43 and the second pre-compression member 46 can also be adjusted.
  • the first pre-pressing member 43 includes a first magnetic element 52 disposed on the first frame carrier 31 and a first magnetic element 52 disposed on the second frame carrier 32 and the second magnetic attraction element 53 corresponding to the first magnetic attraction element 52 to force the first magnetic attraction element 52 and the second magnetic attraction element 53
  • the drive element 42 bears against the first frame carrier 31 in frictional contact.
  • the first magnetic element 52 and the second magnetic element 53 refer to magnetic components that can attract each other.
  • the first magnetic element 52 can be implemented as a magnet
  • the second magnetic attraction element 53 may be implemented as a magnetic component, for example, a material made of iron, nickel, cobalt, etc.; for another example, the first magnetic attraction element 52 may be implemented as a magnet, and the second magnetic attraction element 52 may be implemented as a magnet.
  • the magnetic attraction element 53 can also be implemented as a magnet.
  • the second pre-compression member 46 includes a third magnetic attraction element 62 disposed on the second frame carrier 32 and a fourth magnetic attraction element disposed in the outer frame carrier 33 and corresponding to the third magnetic attraction element 62 .
  • Element 63 to force the second driving element 45 against the second frame carrier 32 in a frictional contact manner through the magnetic attraction between the third magnetic element 62 and the fourth magnetic element 63 .
  • the third magnetic element 62 and the fourth magnetic element 63 refer to magnetic components that can attract each other.
  • the third magnetic element 62 can be implemented as a magnet, so
  • the fourth magnetic attraction element 63 may be implemented as a magnetic component, for example, a material made of iron, nickel, cobalt and other metals; for another example, the third magnetic attraction element 62 may be implemented as a magnet, and the fourth magnetic attraction element 62 may be implemented as a magnet.
  • the magnetic attraction element 63 can also be implemented as a magnet.
  • the driving assembly 40 It further includes a first guide mechanism 48 arranged between the first frame carrier 41 and the second frame carrier 32 and a second guide mechanism 48 arranged between the second frame carrier 32 and the outer frame carrier 33 A guide mechanism 49, wherein the first guide mechanism 48 is configured to guide the first frame carrier 41 to move along the first direction, and the second guide mechanism 49 is configured to guide the first frame carrier 41 The two frame carriers 32 move along the second direction.
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as a guide rod structure.
  • the first guide mechanism 48 includes a first guide rod disposed on the outer side wall of the first frame carrier 31 and extending along the first direction, wherein two of the first guide rod The ends are fastened to the inner side walls of the second frame carrier 32 .
  • the first guide rod and the first driving element 42 are arranged opposite to each other in the same direction, so that after the first driving element 42 is turned on, the first frame carrier 31 is guided to move along the extending direction of the first guide rod, so as to improve the movement stability of the first frame carrier 31 .
  • the second guide mechanism 49 includes a second guide rod disposed on the outer side wall of the second frame carrier 32 and extending along the second direction, wherein the Both ends of the second guide rod are fixed on the inner side wall of the outer frame carrier 33 .
  • the second guide rod and the second driving element 45 are arranged opposite to each other in the same direction, so that after the second driving element 45 is turned on, the second frame carrier 32 is guided to move along the extending direction of the second guide rod, so as to improve the movement stability of the second frame carrier 32 .
  • first guide mechanism 48 and the second guide mechanism 49 can also be implemented based on other principles, for example, through a ball-rolling groove mechanism, a sliding block- The chute mechanism, etc., are not limited by this application.
  • the driving assembly 40 further includes a first friction actuating part 131 and a second friction actuating part part 132, wherein the first friction actuating part 131 is arranged between the first driving element 42 and the first frame carrier 31 and the friction driving part 120 of the first driving element 42 is in the Under the action of the first pre-compression member 43, the first friction actuating portion 131 is in contact with the first friction actuating portion 131, and the first friction actuating portion 131 is in contact with the surface of the outer side wall of the first frame carrier 31.
  • the The friction driving force provided by the first driving element 42 can act on the first frame carrier 31 through the first friction actuating portion 131 to drive the first frame carrier 31 and the optical lens 20 . move along the first direction. That is, in this variant embodiment, the pre-pressure between the frictional drive portion 120 of the first drive element 42 and the first frame carrier 31 is an indirect pre-pressure, that is, although the first drive element There is no direct contact between the friction driving part 120 of the first driving element 42 and the first frame carrier 31, but there is still a pre-pressure between the two so that the friction driving part 120 of the first driving element 42 can be driven by friction. The first frame carrier 31 is driven.
  • the second friction actuating part 132 is arranged between the second drive element 45 and the second frame carrier 32 and the friction drive part 120 of the second drive element 45 is in the second Under the action of the pre-compression member 46, the second friction actuating portion 132 is in contact with the second friction actuating portion 132, and the second friction actuating portion 132 is in contact with the surface of the outer side wall of the second frame carrier 32. In this way, all the The friction driving force provided by the second driving element 45 can act on the second frame carrier 32 through the second friction actuating portion 132 to drive the second frame carrier 32 and the first frame carrier 31 and the optical lens 20 is moved along the second direction to perform optical anti-shake in the second direction.
  • the first friction actuating portion 131 has a first surface and a second surface opposite to the first surface, wherein in the Under the action of the first pre-compression member 43 , the first surface of the first friction actuating portion 131 is in contact with the surface of the outer side wall of the first frame carrier 31 , and the second surface thereof is in contact with the plurality of friction drives.
  • the second friction actuating portion 132 has a third surface and a fourth surface opposite to the third surface, wherein, under the action of the second pre-compression member 46 , the second friction actuating The third surface of the moving part 132 is in contact with the surface of the outer side wall of the second frame carrier 32 , and the fourth surface is in contact with the second end of at least one of the friction driving elements 121 of the plurality of friction driving elements 121 .
  • the friction driving part 120 of the second driving element 45 abuts against the second friction actuating part 132 and the second friction actuating part 132 abuts against the second frame carrier 32 , In this way, the friction driving force provided by the second driving element 45 can act on the second frame carrier 32 through the second friction actuating portion 132 .
  • the first friction actuating portion 131 and the second friction actuating portion 132 are respectively provided as a separate component in the Between the first drive element 42 and the first frame carrier 31, and between the second drive element 45 and the second frame carrier 32, for example, the first friction actuation portion 131 is implemented is a separate part and is attached to the side surface of the first frame carrier 31 , or the second friction actuating part 132 is implemented as a separate part and is attached to the second frame carrier 32
  • the first friction actuating portion 131 is implemented as a layer of coating applied to the side surface of the first frame carrier 31, or the second friction actuating portion 132 is It is implemented as a layer of coating applied to the side surface of the second frame carrier 32 .
  • first friction actuating portion 131 may also be integrally formed on the surface of the outer side wall of the first frame carrier 31 , that is, the first friction actuating portion 131 and the The first first frame carrier 31 has a one-piece structure.
  • second friction actuating portion 132 may also be integrally formed on the surface of the outer side wall of the second frame carrier 32 , that is, the second friction actuating portion 132 and the The second frame carrier 32 has a one-piece structure.
  • the length of the first friction actuating portion 131 is greater than the length of the first driving element 42 and the length of the second friction actuating portion 131 is greater than that of the The length of the second drive element 43, such that when the first frame carrier 31 and the second frame carrier 32 are driven in a frictionally driven manner by the first drive element 41 and the second drive element 42, respectively , the first frame carrier 31 and the second frame carrier 32 have sufficient strokes to ensure the linearity of movement of the first frame carrier 31 and the second frame carrier 32 .
  • the length of the first friction actuating portion 131 may also be less than or equal to the length of the first driving element 42 and the length of the second friction actuating portion 132 may also be less than or equal to It is equal to the length of the second driving element 43, which is not limited by this application.
  • FIG. 9 illustrates a schematic diagram of another variant implementation of the camera module according to the embodiment of the present application.
  • the first frame carrier 31 has a first groove 310 concavely formed on its surface, and the frictional driving of the first driving element 42
  • the second frame carrier 32 has a second groove 320 formed concavely on its surface, and the friction driving portion 120 of the second driving element 45 is arranged in the first groove 310. inside the second groove 320 . That is, in this modified embodiment, the first driving element 42 is at least partially accommodated in the first groove 310, and the second driving element 45 is at least partially accommodated in the second groove in slot 320.
  • a part of the piezoelectric active part 110 of the first driving element 42 is accommodated in the first groove 310
  • a part of the piezoelectric active part 110 of the second driving element 45 is accommodated in the first groove 310 . inside the second groove 320 .
  • the first groove 310 itself forms a guide for guiding the movement of the first frame carrier 31 . guide groove. That is, in this modified embodiment, the first groove 310 not only provides an installation space for the installation of the first driving element 42, but also is formed to guide the movement of the first frame carrier 31 (or Said, regulate the guiding structure of the movement of the first driving element 42). Likewise, when the second drive element 45 drives the second frame carrier 32 within the second groove 320 , the second groove 320 itself is formed to guide the movement of the second frame carrier 32 guide groove.
  • the second groove 320 not only provides an installation space for the installation of the first driving element 42, but is also formed to guide the movement of the second frame carrier 32 (or Said, regulating the movement of the second drive element 45) of the guide structure.
  • the length dimension of the first driving element 42 and the second driving element 45 is smaller than the length dimension of the first groove 310 and the second groove 320, and the The width dimension of the first driving element 42 and the second driving element 45 is slightly smaller than or equal to the width dimension of the first groove 310 and the second groove 320 . .
  • FIG. 9 is a schematic diagram illustrating yet another variant implementation of the camera module according to an embodiment of the present application. Compared with the examples shown in FIGS. 3 and 7 , in this variant embodiment, the arrangement of the first driving element 42 and the second driving element 45 is adjusted.
  • the first driving element 42 is located at the side of the first frame carrier 31
  • the second driving element 45 is located at the second frame The side of the carrier 32 .
  • the first driving element 42 is located on the upper part of the first frame carrier 31
  • the second driving element 45 is located on the second frame carrier 32 the upper part.
  • the first driving element 42 is clamped and disposed between the upper and lower sides of the first frame carrier 31 and the second frame carrier 32 by the first pre-compression member 43 . , in this way, the first drive element 42 abuts the first frame carrier 31 in frictional contact.
  • the second driving element 45 is clamped and disposed between the second frame carrier 32 and the outer frame carrier 33 through the second pre-pressing member 46. In this way, the second driving element 45 is clamped. The element 45 bears against said second frame carrier 32 in frictional contact.
  • the drive assembly 40 further includes a first guide mechanism 48 disposed between the first frame carrier 41 and the second frame carrier 32 and a first guide mechanism 48 disposed between the second frame carrier 32 and the second frame carrier 32
  • the second guide mechanism 49 between the outer frame carriers 33 .
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as ball-roll groove mechanisms, such as Figure 11.
  • FIG. 12 illustrates a schematic diagram of yet another variant implementation of the camera module according to the embodiment of the present application. Compared with the examples shown in FIGS. 3 and 7 , in this variant embodiment, the arrangement of the first driving element 42 and the second driving element 45 is adjusted again.
  • the first driving element 42 is located at the lower part of the first frame carrier 31
  • the second driving element 45 is located in the second frame carrier lower part of 32.
  • the first driving element 42 is clamped and disposed between the upper and lower sides of the first frame carrier 31 and the second frame carrier 32 by the first pre-compression member 43 . , in this way, the first drive element 42 abuts the first frame carrier 31 in frictional contact.
  • the second driving element 45 is clamped and disposed between the second frame carrier 32 and the outer frame carrier 33 through the second pre-pressing member 46. In this way, the second driving element 45 is clamped. The element 45 bears against said second frame carrier 32 in frictional contact.
  • the drive assembly 40 further includes a first guide mechanism 48 disposed between the first frame carrier 41 and the second frame carrier 32 and a first guide mechanism 48 disposed between the second frame carrier 32 and the second frame carrier 32
  • the second guide mechanism 49 between the outer frame carriers 33 .
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as ball-roll groove mechanisms, such as Figure 12.
  • the camera module based on the embodiments of the present application is clarified, wherein the camera module adopts the piezoelectric actuator 100 as a driver, so as to not only meet the driving requirements of the camera module for optical performance adjustment, but also be able to Meet the development needs of light and thin camera modules.
  • the camera module is taken as an example of a traditional upright camera module
  • the piezoelectric actuator 100 according to the embodiments of the present application also It can be used as a driver in a periscope camera module, which is not limited by this application.
  • a camera module according to an embodiment of the present application is illustrated, which includes: a photosensitive assembly 10 , a lens assembly 20 held on a photosensitive path of the photosensitive assembly 10 , and a camera module for driving the photosensitive assembly 10 Assembly 10 to drive assembly 40 for optical image stabilization.
  • the lens assembly 20 includes a lens carrier 21 and an optical lens 22 mounted on the lens carrier 21 .
  • the optical lens 22 includes a lens barrel and at least one optical lens 22 installed in the lens barrel.
  • the optical lens 22 can be implemented as an integrated lens, or a split lens, wherein, when the optical lens 22 is implemented as an integrated lens, the optical lens 22 includes a lens barrel, All the optical lenses 22 are installed in the lens barrel; and when the optical lens 22 is implemented as a split optical lens, the optical lens 22 is assembled from at least two parts of a single lens.
  • the lens carrier 21 is a fixed carrier, that is, when the optical lens 22 is installed on the lens carrier 21, the relative relationship between the lens carrier 21 and the optical lens 22 The positional relationship does not change. It should be understood that in other examples of the present application, the lens carrier 21 may also be implemented as a driving carrier, so as to change the relative positional relationship between the optical lens 21 and the photosensitive assembly 10 through the driving carrier to Autofocus is performed, which is not limited by this application.
  • the photosensitive assembly 10 includes a circuit board 11 , a photosensitive chip 12 electrically connected to the circuit board 11 , and a filter held on the photosensitive path of the photosensitive chip 12 .
  • the component 13 wherein the circuit board 11 forms the mounting substrate of the photosensitive component 10 .
  • the circuit board may be implemented as a printed circuit board (Printed Circuit Board, PCB), a software combination board, or a reinforced flexible circuit board (Flexible Printed Circuit, PFC).
  • a reinforcing plate (not shown) may also be arranged under the circuit board 11, for example, a steel sheet is arranged under the circuit board, so as to strengthen all the The strength of the circuit board is improved and the heat dissipation performance of the photosensitive component is improved.
  • the photosensitive assembly 10 further includes a bracket 14 disposed on the circuit board 11 , wherein the filter element 13 is installed on the bracket 14 to be maintained on the photosensitive path of the photosensitive chip 12 .
  • the specific implementation of the filter element 13 held on the photosensitive path of the photosensitive chip 12 is not limited by the present application.
  • the filter element 13 may be implemented as a filter element The film is coated on the surface of a certain optical lens of the zoom lens group, so as to have the effect of filtering light.
  • the photosensitive component 10 may further include a filter element bracket (not shown) installed on the bracket 14. There are diagrams), wherein the filter element 13 is held on the photosensitive path of the photosensitive chip 12 by being mounted on the filter element holder.
  • the bracket 14 may be implemented as a plastic bracket, which is attached to the circuit board 11 through an adhesive.
  • the bracket 14 may also be implemented as an integrated bracket integrally formed on the circuit board 11 , such as a molded bracket, which is not limited by this application.
  • the existing driving element for driving the optical component is an electromagnetic motor, for example, a voice coil motor (Voice Coil Motor: VCM), a shape memory alloy actuator (Shape of Memory Alloy Actuator: SMA), and the like.
  • VCM Voice Coil Motor
  • SMA Shape of Memory Alloy Actuator
  • the existing voice coil motor and shape memory alloy driver are only suitable for driving optical components with a weight of less than 100mg, that is, if the weight of the optical lens exceeds 100mg, the existing driver will not be able to meet the application requirements of the camera module .
  • the existing voice coil motor is equipped with a coil and a magnet.
  • the internal magnetic fields will interact with each other, causing the magnets to move or shake, reducing the stability of the drive control. .
  • the new type of driver can not only meet the driving requirements for the optical performance adjustment of the camera module, but also meet the development of light weight and thinning of the camera module. need.
  • the new driver needs to meet the following requirements: relatively larger driving force, and better driving performance (specifically including: higher-precision driving control and longer driving journey).
  • the present application proposes a piezoelectric actuator with a novel structure, which can meet the technical requirements of the camera module for the driver.
  • the piezoelectric actuator is further arranged in the camera module in an appropriate arrangement manner, so that it meets the structural design requirements and size design requirements of the camera module.
  • the piezoelectric actuator 100 includes: a piezoelectric active part 110 and a friction driving part 120 drivably connected to the piezoelectric active part 110 , wherein, in the After the piezoelectric actuator 100 is turned on, the friction driving part 120 is configured to provide a driving force for driving the driven object under the action of the piezoelectric active part 110 .
  • the piezoelectric active part 110 is implemented as a piezoelectric ceramic element, which has a strip-like structure.
  • the piezoelectric active part 110 is a piezoelectric laminated structure, which has multiple groups of first polarization regions A1 and second polarization regions A2 arranged alternately with each other.
  • the first polarization regions A1 and A2 are arranged alternately.
  • the second polarization regions A2 have opposite polarization directions, wherein after the piezoelectric actuator 100 is turned on, multiple groups of the first polarization regions A1 and the second polarization regions A1 and the second polarization regions are alternately arranged.
  • the polarization area A2 is deformed in different directions to drive the friction driving part 120 to move along a preset direction in the manner of traveling wave or standing wave, so as to provide driving force for driving the component, as shown in FIG. 16 .
  • the piezoelectric active part 110 has a plurality of sets of first polarized regions A1 and second polarized regions A2 arranged alternately with each other, the polarized regions A1 and The polarization directions of the polarization regions A2 are opposite.
  • multiple groups of the polarization areas A1 and A2 that alternate with each other are arranged in a side-by-side manner, that is, multiple groups of the polarization areas A1 that alternate with each other are arranged in a side-by-side manner. and the polarization area A2 is on the same straight line.
  • the piezoelectric active part 110 is electrically connected to an external excitation power supply through a wire, so that after the piezoelectric active part 110 is provided with power excitation, the piezoelectric active part 110 is powered by the reverse piezoelectric effect of the piezoelectric active part 110.
  • the electroactive part 110 is deformed. It should be understood that the deformation of the piezoelectric active part 110 will drive the friction driving part 120 to move in the manner of traveling wave or standing wave, that is, the deformation of the piezoelectric active part 110 can be transmitted to the friction
  • the driving part 120 provides driving force through the traveling wave or standing wave motion of the friction driving part 120 .
  • each group of the first polarization region A1 and the second polarization region A2 may also have the same polarization direction, wherein, in the piezoelectric actuator 100 After being turned on, by inputting alternating voltage signals to each group of the first polarization area A1 and the second polarization area A2, multiple groups of the first polarization area A1 and the first polarization area A1 and the first polarization area A1 are alternately arranged.
  • the polarization region A2 is deformed in different directions to drive the friction driving portion 120 to move along a predetermined direction in the form of a standing wave, which is not limited by the present application.
  • the friction driving part 120 includes a plurality of friction driving elements 121 spaced apart from each other, wherein the first end of each friction driving element 121 is coupled to the In the piezoelectric active part 110 , the friction driving part 120 is driveably connected to the piezoelectric active part 110 in such a manner.
  • the number of the plurality of friction driving elements 121 may be 2, 3, 4 or more, preferably, the number of the friction driving elements 121 exceeds 3 (ie, greater than or equal to 3). So that the piezoelectric actuator 100 can control the length of the piezoelectric actuator 100 while realizing the stable output of the linear driving force, so that it is suitable for being installed in a relatively small device such as a camera module. .
  • the length dimension of the piezoelectric actuator 100 is almost equal to the dimension of the piezoelectric active part 110 (and the piezoelectric active part 110 has a long strip shape). In an embodiment, the length dimension of the piezoelectric actuator 100 is less than or equal to 20 mm, preferably, the length dimension thereof is less than or equal to 10 mm.
  • the plurality of friction driving elements 121 are located in the middle region of the piezoelectric active part 110 , so that when the acted object is driven by the plurality of friction driving elements 121 , the driven object will move more smoothly and linearly.
  • the friction driving element 121 has a columnar structure, which protrudes from the upper surface of the piezoelectric active part 110 . From the outside, the piezoelectric actuator 100 has a rack shape. It should be understood that in other examples of the present application, the friction driving element 121 may also be implemented in other shapes, for example, its cross-sectional shape may be set as a trapezoid, which is not limited by the present application.
  • the at least three friction driving elements 121 are arranged equidistantly and alternately, which is conducive to improving the Driving stability of the piezoelectric actuator 100 .
  • the second ends of the plurality of friction driving elements 121 opposite to the first ends have The plurality of end faces are on the same plane, for example, in the example shown in FIG. 15 , the end faces of the second ends of the plurality of friction driving elements 121 are on the same horizontal plane. That is, in this embodiment, the end surfaces of the second ends of the plurality of friction driving elements 121 form the same plane.
  • a layer of friction material may be further applied on the plane (ie, the plane defined by the end surfaces of the second ends of the plurality of friction driving elements 121 ) to increase the frictional force .
  • a mover is usually arranged on the upper surface of the friction driving part 120 to transmit the traveling wave or standing wave provided by the friction driving part 120 through the mover. Wave-like driving force and act on the driven object. That is, a friction actuating portion 130 (the friction actuating portion 130 serving as the mover) is provided between the friction driving portion 120 and the driven object, so that when the piezoelectric actuator 100 is guided When the friction driving part 120 is turned on, the traveling wave or standing wave motion of the friction driving part 120 will drive the friction driving part 130 to move linearly.
  • the traveling or standing waves travel in opposite directions.
  • FIG. 18 illustrates a schematic diagram of a variant implementation of the piezoelectric actuator 100 according to embodiments of the present application.
  • the piezoelectric actuator 100 further includes: a frictional connection layer 140 stacked on the piezoelectric active part 110 , and each of the frictional driving elements 121 has its first frictional driving element 121 .
  • One end is coupled to the piezoelectric active part 110 by being fixed to the frictional connection layer 140 .
  • the frictional drive element 121 and the frictional connection layer 140 may have a one-piece structure.
  • the frictional drive element 121 and the frictional connection layer 140 may have a split structure, ie, the two are separate components.
  • the piezoelectric actuator 100 has a relatively more optimized size.
  • the length dimension of the piezoelectric actuator 100 is less than or equal to 20 mm, preferably, the length dimension is less than or equal to 10 mm, for example, it may be 6 mm or 4.2 mm.
  • the width dimension of the piezoelectric actuator 100 is less than or equal to 1 mm, preferably, the width dimension is less than or equal to 0.7 mm.
  • the height dimension of the piezoelectric actuator 100 is less than or equal to 1 mm.
  • the height dimension of the piezoelectric actuator 100 is determined by the dimensions of the piezoelectric active part 110 and the friction driving part 120 .
  • the piezoelectric actuator 100 Compared with the traditional electromagnetic driver, the piezoelectric actuator 100 has the advantages of small size, large thrust and high precision. Quantitatively, the piezoelectric actuator 100 according to the embodiment of the present application can provide a driving force of 0.6N to 2N, which is sufficient to drive a component with a weight greater than 100 mg.
  • the piezoelectric actuator 100 has other advantages compared to the traditional electromagnetic motor solution and memory alloy motor solution, including but not limited to: a relatively small size (with Slender shape), better response accuracy, relatively simpler structure, relatively simpler drive control, high product consistency, no electromagnetic interference, relatively larger stroke, short stabilization time, relatively small weight, etc.
  • the camera module needs to be equipped with a driver that has a long driving stroke and needs to ensure better alignment accuracy.
  • a driver that has a long driving stroke and needs to ensure better alignment accuracy.
  • additional guide rods or ball guides need to be designed, and large-sized driving magnets/coils need to be adapted to the side of the lens, and balls, shrapnel, and suspension wires need to be installed.
  • Other auxiliary positioning devices in order to accommodate more components, ensure structural strength and reserve structural gaps, often lead to large lateral dimensions of the module, complex structural design, and heavy module weight.
  • the memory alloy motor solution is limited by the relatively small stroke that the memory alloy solution can provide in the same proportion, and there are reliability risks such as potential disconnection.
  • the piezoelectric actuator 100 has a relatively simple structure, and the assembly structure is simpler.
  • the size of the piezoelectric active part 110, the friction driving part 120 and other components are basically irrelevant to the size of the motion stroke, so it is used in optical zoom products.
  • the piezoelectric actuator 100 can achieve the advantages of large thrust, small size, and small weight, and at the same time, it can be designed to match a larger stroke or heavier device weight, and the integration degree in the design is also higher.
  • the piezoelectric actuator 100 pushes the object to be pushed to perform micron-scale motion in a frictional contact manner.
  • the non-contact manner of driving the object to be pushed requires the electromagnetic force to counteract the gravity, and the frictional force It has the advantages of greater thrust, greater displacement and lower power consumption, and at the same time, the control accuracy is higher, and high-precision continuous zoom can be achieved.
  • the piezoelectric actuator 100 does not have a magnet coil structure, so there is no problem of magnetic interference.
  • the piezoelectric actuator 100 can be self-locked by the friction between the components, so the abnormal shaking noise of the camera module can be reduced when the optical image stabilization is performed.
  • the driving assembly 40 including: a first carrying frame 41, a first driving element 42, a first preloading part 43, a second carrying frame 44, a second driving element 45, a second preloading part 46 and an outer frame 47, wherein the first A drive element 42 and the second drive element 45 are implemented as piezoelectric actuators 100 .
  • the photosensitive assembly 10 is mounted on the first carrier frame 41 , and the first driving element 42 passes through the first pre-pressing member 43 . Abuts the first carrier frame 41 in a frictional contact manner, and is configured to drive the first carrier frame 41 to drive the photosensitive assembly 10 to move in a plane perpendicular to the optical axis to perform a first Optical image stabilization in the direction.
  • the second bearing frame 44 is externally disposed on the first bearing frame 41 , wherein the second driving element 45 is pressed against the second bearing frame 44 in a frictional contact manner through the second pre-pressing member 46 .
  • the first direction is perpendicular to the second direction.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction.
  • the fact that the first driving element 42 is in frictional contact against the first carrying frame 41 means that there is a pre-pressure between the friction driving part 120 of the first driving element 42 and the first carrying frame 41 , so that the friction driving part 120 of the first driving element 42 can drive the first carrying frame 41 by means of friction driving.
  • the pre-pressure between the friction driving part 120 of the first driving element 42 and the first bearing frame 41 may be a direct pre-pressure or an indirect pre-pressure, wherein the direct pre-pressure represents the The friction driving part 120 of the first driving element 42 is in direct contact with the first carrier frame 41 to generate a pre-pressure therebetween; the indirect pre-pressure means that although the friction driving part of the first driving element 42 There is no direct contact between 120 and the first carrying frame 41, but there is still a pre-pressure between the two, so that the friction driving part 120 of the first driving element 42 can drive the first The carrier frame 41 .
  • the fact that the second driving element 45 is in frictional contact against the second carrying frame 44 means that there is a predetermined gap between the friction driving part 120 of the second driving element 45 and the second carrying frame 44 .
  • the pressure, and then the friction driving part 120 of the second driving element 45 can drive the second carrier frame 44 by means of friction driving.
  • the pre-pressure between the friction driving part 120 of the second driving element 45 and the second bearing frame 44 may be a direct pre-pressure or an indirect pre-pressure, wherein the direct pre-pressure represents the The friction driving part 120 of the second driving element 45 is in direct contact with the second carrier frame 44 to generate a pre-pressure therebetween; the indirect pre-pressure means that although the friction driving part of the second driving element 45 There is no direct contact between 120 and the second carrier frame 44, but there is still a pre-pressure between the two, so that the friction driving part 120 of the second driving element 45 can drive the second driving element 45 through friction driving. Carrying frame 44 .
  • the first driving element 42 is clamped and disposed on the first carrier frame 41 and the second carrier by the first preloading member 43 . Between the frames 44 , in this way, the first driving element 42 abuts against the first carrying frame 41 in a frictional contact manner.
  • the first pre-compression member 43 includes a first elastic element 431 , and the first elastic element 431 is disposed on the piezoelectric active part 110 of the first driving element 42 and the Between the second bearing frames 44 , the first driving element 42 is forced against the first bearing frame 41 in a frictional contact manner by the elastic force of the first elastic element 431 .
  • the friction driving part 120 of the first driving element 42 directly abuts against the surface of the outer side wall of the first bearing frame 41 , and accordingly, the elastic force provided by the first elastic element 431 can force the The friction driving portion 120 of the first driving element 42 abuts against the surface of the outer side wall of the first bearing frame 41 to form a frictional contact bonding relationship therebetween.
  • the friction driving part 120 of the first driving element 42 can drive the first carrier frame 41 to move in the first direction in a friction driving manner, To drive the photosensitive assembly 10 to move along the first direction to perform optical anti-shake in the first direction.
  • the first elastic element 431 is implemented as an elastic adhesive, that is, the first elastic element 431 is implemented as a glue with elasticity after curing.
  • a layer of adhesive with a thickness of 10um to 50um can be applied between the surface of the inner side wall of the second carrier frame 44 and the piezoelectric active part 110 of the first driving element 42 ,
  • the first elastic element 431 disposed between the piezoelectric active part 110 of the first driving element 42 and the second carrying frame 44 is formed after the adhesive is cured and formed.
  • the first elastic element 431 can also enable the first driving element 42 to be fixed to the surface of the inner side wall of the second bearing frame 44 while providing a pre-pressure.
  • the first elastic element 431 has a relatively high flatness, that is, when applying the adhesive, it is ensured that the applied adhesive has a relatively high flatness and uniformity as much as possible, so that the The first driving element 42 can be flatly fixed to the surface of the inner side wall of the second carrying frame 44 , thereby improving the driving stability of the first driving element 42 .
  • the second driving element 45 is clamped and disposed between the second carrying frame 44 and the outer frame 47 by the second preloading member 46 . Meanwhile, in this way, the second drive element 45 abuts against the second carrier frame 44 in a frictional contact manner. Also, it should be noted that, as shown in FIG. 13 , the lens carrier of the lens assembly is carried on the outer frame 47 .
  • the second pre-compression member 46 includes a second elastic element 461 , and the second elastic element 461 is arranged on the piezoelectric of the second driving element 45 . Between the active part 110 and the outer frame 47 , the second driving element 45 is forced against the second bearing frame 44 in a frictional contact manner by the elastic force of the second elastic element 461 .
  • the friction driving portion 120 of the second driving element 45 directly abuts against the surface of the outer side wall of the second bearing frame 44 , and accordingly, the elastic force provided by the second elastic element 461
  • the friction driving part 120 of the second driving element 45 can be forced to abut against the surface of the outer side wall of the second bearing frame 44 to form a frictional contact bonding relationship therebetween.
  • the friction driving part 120 of the second driving element 45 can drive the second carrier frame 44 to move in the second direction in a friction driving manner, To drive the photosensitive assembly 10 to move along the second direction to perform optical anti-shake in the second direction.
  • the second elastic element 461 is implemented as an elastic adhesive, that is, the second elastic element 461 is implemented as a glue with elasticity after curing.
  • a layer of adhesive with a thickness of 10um to 50um can be applied between the surface of the inner side wall of the outer frame 47 and the piezoelectric active part 110 of the second driving element 45 to After the adhesive is cured and formed, the second elastic element 461 disposed between the piezoelectric active part 110 of the second driving element 45 and the outer frame 47 is formed.
  • the second elastic element 461 can also enable the second driving element 45 to be fixed to the surface of the inner side wall of the outer frame 47 while providing a pre-pressure.
  • the second elastic element 461 has a relatively high flatness, that is, when the adhesive is applied, it is ensured that the applied adhesive has a relatively high flatness and uniformity as much as possible, so that the The second driving element 45 can be flatly fixed to the surface of the inner side wall of the outer frame 47 , thereby improving the driving stability of the second driving element 45 .
  • the first elastic element 431 and the second elastic element 461 can also be implemented as elastic elements without viscosity, for example, the material itself has elasticity rubber, or springs, leaf springs, etc. that generate elasticity due to deformation, which are also not limited by this application.
  • the driving assembly 40 It further includes a first guide mechanism 48 arranged between the first bearing frame 41 and the second bearing frame 44 and a second guide mechanism 48 arranged between the second bearing frame 44 and the outer frame 47 A guide mechanism 49, wherein the first guide mechanism 48 is configured to guide the first carrier frame 41 to move along the first direction, and the second guide mechanism 49 is configured to guide the second The carrier frame 44 moves along the second direction.
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as guide rod structures.
  • the first guide mechanism 48 includes a first guide rod disposed on the outer side wall of the first bearing frame 41 and extending along the first direction, wherein two of the first guide rods The ends are fixed on the inner side wall of the second carrier frame 44 .
  • the first guide rod and the first driving element 42 are arranged opposite to the same direction, so that after the first driving element 42 is turned on, the first carrying frame 41 is guided to move along the extending direction of the first guide rod, so as to improve the movement stability of the first carrying frame 41 .
  • the second guide mechanism 49 includes a second guide rod disposed on the outer side wall of the second carrying frame 44 and extending along the second direction, wherein the Both ends of the second guide rod are fixed to the inner side wall of the outer frame 47 .
  • the second guide rod and the second driving element 45 are arranged opposite to the same direction, so that after the second driving element 45 is turned on, the second carrying frame 44 is guided to move along the extending direction of the second guide rod, so as to improve the movement stability of the second carrying frame 44 .
  • first guide mechanism 48 and the second guide mechanism 49 can also be implemented based on other principles, for example, through a ball-rolling groove mechanism, a sliding block- The chute mechanism, etc., are not limited by this application.
  • the driving assembly 40 further includes a first friction actuating part 131 and a The second friction actuating portion 132, wherein the first friction actuating portion 131 is provided between the first driving element 42 and the first carrying frame 41 and the friction driving of the first driving element 42 Under the action of the first pre-compression member 43, the first friction actuating portion 120 is in contact with the first friction actuating portion 131, and the first friction actuating portion 131 is in contact with the surface of the outer side wall of the first bearing frame 41, In this way, the friction driving force provided by the first driving element 42 can act on the first bearing frame 41 through the first friction actuating portion 131 to drive the first bearing frame 41 and the The photosensitive assembly 10 moves along the first direction.
  • the pre-pressure between the friction driving portion 120 of the first driving element 42 and the first carrying frame 41 is an indirect pre-pressure, that is, although the first driving element There is no direct contact between the friction driving part 120 of the first driving element 42 and the first bearing frame 41, but there is still a pre-pressure between the two so that the friction driving part 120 of the first driving element 42 can be driven by friction.
  • the first carrier frame 41 is driven.
  • the second friction actuating portion 132 is provided between the second driving element 45 and the second carrier frame 44 and the friction driving portion 120 of the second driving element 45 is located between the second driving element 45 and the second carrier frame 44 .
  • the second friction actuating portion 132 is in contact with the second friction actuating portion 132, and the second friction actuating portion 132 is in contact with the surface of the outer side wall of the second carrying frame 44. In this way, all the The friction driving force provided by the second driving element 45 can act on the second bearing frame 44 through the second friction actuating portion 132 to drive the second bearing frame 44 and the first bearing frame 41 and the photosensitive assembly 10 is moved along the second direction to perform optical anti-shake in the second direction.
  • the first friction actuating part 131 has a first surface and a second surface opposite to the first surface, wherein, in the first pre- Under the action of the pressing member 43 , the first surface of the first friction actuating portion 131 abuts against the surface of the outer side wall of the first bearing frame 41 , and the second surface thereof abuts against the plurality of friction driving elements 121 .
  • the second friction actuating portion 132 has a third surface and a fourth surface opposite to the third surface, wherein, under the action of the second pre-compression member 46 , the second friction actuating The third surface of the movable portion 132 is in contact with the surface of the outer side wall of the second carrying frame 44 , and the fourth surface is in contact with the second end of at least one of the friction driving elements 121 of the plurality of friction driving elements 121 .
  • the friction driving part 120 of the second driving element 45 abuts against the second friction actuating part 132 and the second friction actuating part 132 abuts against the second bearing frame 44 , In this way, the friction driving force provided by the second driving element 45 can act on the second bearing frame 44 through the second friction actuating portion 132 .
  • the first friction actuating portion 131 and the second friction actuating portion 132 are respectively provided as a separate component in the first friction actuating portion 131 .
  • the first friction actuating portion 131 is implemented as a A separate part and attached to the side surface of the first carrier frame 41
  • the second friction actuating portion 132 is implemented as a separate part and attached to the side of the second carrier frame 44
  • the first friction actuating portion 131 is implemented as a layer of coating applied to the side surface of the first bearing frame 41
  • the second friction actuating portion 132 is implemented as A layer of coating is applied to the side surface of the second carrier frame 44 .
  • first friction actuating portion 131 may also be integrally formed on the surface of the outer side wall of the first carrying frame 41 , that is, the first friction actuating portion 131 and the The first bearing frame 41 has an integrated structure.
  • second friction actuating portion 132 may also be integrally formed on the surface of the outer side wall of the second carrying frame 44 , that is, the second friction actuating portion 132 and the The second carrier frame 44 has a one-piece structure.
  • the length of the first friction actuating portion 131 is greater than the length of the first driving element 42 and the length of the second friction actuating portion 131 is greater than that of the The length of the second driving element 43, such that when the first and second carrying frames 41 and 44 are driven in a frictional driving manner by the first and second driving elements 41 and 42, respectively , the first bearing frame 41 and the second bearing frame 44 have sufficient strokes to ensure the linearity of movement of the first bearing frame 41 and the second bearing frame 44 .
  • the length of the first friction actuating portion 131 may also be less than or equal to the length of the first driving element 42 and the length of the second friction actuating portion 132 may also be less than or equal to It is equal to the length of the second driving element 43, which is not limited by this application.
  • FIG. 20 illustrates a schematic diagram of another variant implementation of the camera module according to an embodiment of the present application.
  • the first carrier frame 41 has a first groove 410 concavely formed on the surface thereof, and the friction driving portion 120 of the first driving element 42 is is arranged in the first groove 410;
  • the second carrier frame 44 has a second groove 440 concavely formed on its surface, and the friction driving portion 120 of the second driving element 45 is arranged in the first groove 440. inside the two grooves 440 . That is, in this variant embodiment, the first driving element 42 is at least partially accommodated in the first groove 410, and the second driving element 45 is at least partially accommodated in the second groove in slot 440.
  • a part of the piezoelectric active part 110 of the first driving element 42 is accommodated in the first groove 410
  • a part of the piezoelectric active part 110 of the second driving element 45 is accommodated in the inside the second groove 440 .
  • the first groove 410 itself forms a guide for guiding the movement of the first carrier frame 41 . guide groove. That is, in this variant embodiment, the first groove 410 not only provides an installation space for the installation of the first driving element 42, but also is formed to guide the movement of the first carrying frame 41 (or Said, regulate the guiding structure of the movement of the first driving element 42). Likewise, when the second driving element 45 drives the second carrier frame 44 within the second groove 440 , the second groove 440 itself is formed to guide the movement of the second carrier frame 44 guide groove.
  • the second groove 440 not only provides an installation space for the installation of the first driving element 42, but also is formed to guide the movement of the second carrier frame 44 (or Said, regulating the movement of the second drive element 45) of the guide structure.
  • the length dimension of the first driving element 42 and the second driving element 45 is smaller than the length dimension of the first groove 410 and the second groove 440, and the The width dimension of the first driving element 42 and the second driving element 45 is slightly smaller than or equal to the width dimension of the first groove 410 and the second groove 440 .
  • FIG. 21 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application.
  • the first carrier frame 41 has a first groove 410 concavely formed on the surface thereof, and the first friction actuating portion 131 is provided in the
  • the second bearing frame 44 has a second groove 440 recessed on its surface, and the second friction actuating portion 132 is disposed in the second groove 440 . That is, in this variant embodiment, the first driving element 42 is at least partially accommodated in the first groove 410, and the second driving element 45 is at least partially accommodated in the second groove in slot 440.
  • a part of the piezoelectric active part 110 of the first driving element 42 is accommodated in the first groove 410
  • a part of the piezoelectric active part 110 of the second driving element 45 is accommodated in the first groove 410 . inside the second groove 440 .
  • the first groove 410 itself forms a guide for guiding the movement of the first carrier frame 41 . guide groove. That is, in this variant embodiment, the first groove 410 not only provides an installation space for the installation of the first driving element 42, but also is formed to guide the movement of the first carrying frame 41 (or Said, regulate the guiding structure of the movement of the first driving element 42). Likewise, when the second driving element 45 drives the second carrier frame 44 within the second groove 440 , the second groove 440 itself is formed to guide the movement of the second carrier frame 44 guide groove.
  • the second groove 440 not only provides an installation space for the installation of the first driving element 42, but also is formed to guide the movement of the second carrier frame 44 (or Said, regulating the movement of the second drive element 45) of the guide structure.
  • the length dimension of the first driving element 42 and the second driving element 45 is smaller than the length dimension of the first groove 410 and the second groove 440, and the The width dimension of the first driving element 42 and the second driving element 45 is slightly smaller than or equal to the width dimension of the first groove 410 and the second groove 440 .
  • FIG. 22 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application. Compared with the example shown in FIG. 13 , in this modified embodiment, the arrangement of the first driving element 42 and the second driving element 45 is adjusted.
  • the first driving element 42 is located on the side of the first carrier frame 41
  • the second driving element 45 is located on the second carrier The side of the frame 44 .
  • the first driving element 42 is located on the upper part of the first carrying frame 41
  • the second driving element 45 is located on the second carrying frame 44 . the upper part.
  • the first driving element 42 is clamped and disposed between the first carrier frame 41 and the second carrier frame 44 through the first pre-compression member 43 up and down , in this way, the first driving element 42 abuts against the first carrying frame 41 in a frictional contact manner.
  • the second driving element 45 is clamped and disposed between the second carrier frame 44 and the lens assembly 20 through the second preloading member 46. In this way, the second driving element 45 abuts the second carrier frame 44 in frictional contact.
  • the outer frame 47 can also be provided with an inner extension arm, so that the second driving element 45 is clamped and disposed on the second driving element 45 by the second pre-pressing member 46 . Between the upper and lower sides of the carrier frame 44 and the outer frame 47.
  • the drive assembly 40 further includes a first guide mechanism 48 disposed between the first carrying frame 41 and the second carrying frame 44 and a first guiding mechanism 48 disposed between the second carrying frame and the outer frame 44 .
  • the second guide mechanism 49 between the frames 47 .
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as ball-roll groove mechanisms, as shown in FIG. 23 shown.
  • FIG. 24 illustrates a schematic diagram of yet another variant implementation of the camera module according to an embodiment of the present application. Compared with the example shown in FIG. 13 , in this variant embodiment, the arrangement of the first driving element 42 and the second driving element 45 is adjusted again.
  • the first driving element 42 is located at the lower part of the first carrying frame 41, and the second driving element 45 is located in the second carrying frame The lower part of 44.
  • the first driving element 42 is clamped and disposed between the first carrier frame 41 and the second carrier frame 44 through the first pre-compression member 43 up and down , in this way, the first driving element 42 abuts against the first carrying frame 41 in a frictional contact manner.
  • the second driving element 45 is clamped and disposed between the second carrying frame 44 and the outer frame 47 by the second pre-compression member 46. In this way, the second driving element 45 abuts the second carrier frame 44 in frictional contact.
  • the drive assembly 40 further includes a first guide mechanism 48 disposed between the first carrying frame 41 and the second carrying frame 44 and a first guiding mechanism 48 disposed between the second carrying frame and the outer frame 44 .
  • the second guide mechanism 49 between the frames 47 .
  • the first guide mechanism 48 and the second guide mechanism 49 are implemented as ball-roll groove mechanisms, as shown in FIG. 23 shown.
  • the structural configuration of the first pre-compression member 43 and the second pre-compression member 46 can also be adjusted.
  • the first pre-pressing member 43 includes a first magnetic element 52 disposed on the first carrying frame 41 and a first magnetic element 52 disposed on the second carrying frame 44 and the second magnetic attraction element 53 corresponding to the first magnetic attraction element 52 to force the first magnetic attraction element 52 and the second magnetic attraction element 53 through the magnetic attraction effect
  • the drive element 42 is in frictional contact against the first carrier frame 41 .
  • the first magnetic element 52 and the second magnetic element 53 refer to magnetic components that can attract each other.
  • the first magnetic element 52 can be implemented as a magnet
  • the second magnetic attraction element 53 may be implemented as a magnetic component, for example, a material made of iron, nickel, cobalt, etc.; for another example, the first magnetic attraction element 52 may be implemented as a magnet, and the second magnetic attraction element 52 may be implemented as a magnet.
  • the magnetic attraction element 53 can also be implemented as a magnet.
  • the second pre-compression member 46 includes a third magnetic element 62 disposed on the second carrier frame 44 and a fourth magnetic element 62 disposed in the lens assembly 20 and corresponding to the third magnetic element 62 . 63 , to force the second driving element 45 against the second carrying frame 44 in a frictional contact manner through the magnetic attraction between the third magnetic element 62 and the fourth magnetic element 63 .
  • the third magnetic element 62 and the fourth magnetic element 63 refer to magnetic components that can attract each other.
  • the third magnetic element 62 can be implemented as a magnet, so
  • the fourth magnetic attraction element 63 may be implemented as a magnetic component, for example, a material made of iron, nickel, cobalt and other metals; for another example, the third magnetic attraction element 62 may be implemented as a magnet, and the fourth magnetic attraction element 62 may be implemented as a magnet.
  • the magnetic attraction element 63 can also be implemented as a magnet.
  • the camera module based on the embodiments of the present application is clarified, wherein the camera module adopts the piezoelectric actuator 100 as a driver, so as to not only meet the driving requirements of the camera module for optical performance adjustment, but also be able to Meet the development needs of light and thin camera modules.
  • the camera module is taken as an example of a traditional upright camera module
  • the piezoelectric actuator 100 according to the embodiments of the present application also It can be used as a driver in a periscope camera module, which is not limited by this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)

Abstract

公开了一种摄像模组,其采用新型的压电致动器作为驱动元件来满足摄像模组的驱动要求,具体地,所述摄像模组采用新型的压电致动器作为驱动元件来移动光学镜头来进行光学防抖。并且,以合理的布设方案将所述压电致动器布设于所述摄像模组内,以同时摄像模组的结构设计要求和尺寸设计要求。

Description

摄像模组 技术领域
本申请涉及摄像模组领域,尤其涉及一种摄像模组,其采用新型的压电致动器作为驱动元件来满足摄像模组的驱动要求,具体地,所述摄像模组采用新型的压电致动器作为驱动元件来移动光学镜头来进行光学防抖。并且,以合理的布设方案将所述压电致动器布设于所述摄像模组内,以同时摄像模组的结构设计要求和尺寸设计要求。
背景技术
随着移动电子设备的普及,被用于移动电子设备的用于帮助使用者获取影像(例如,视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
为了满足越来越广泛的市场需求,高像素、大芯片、小尺寸是现有摄像模组不可逆转的发展趋势。随着感光芯片朝着高像素和大芯片的方向发展,与感光芯片适配的光学部件(例如,滤光元件、光学镜头)的尺寸也逐渐增大,这给用于驱动光学部件以进行光学性能调整(例如,光学对焦、光学防抖等)的驱动元件带来的新的挑战。
具体地,现有的用于驱动光学部件的驱动元件为电磁式马达,例如,音圈马达(Voice Coil Motor:VCM)、形状记忆合金驱动器(Shape of Memory Alloy Actuator:SMA)等。然而,随着光学部件尺寸增加而导致的重量增加,现有的电磁式马达已逐渐无法提供足够的驱动力来驱动光学部件移动。量化来看,现有的音圈马达和形状记忆合金驱动器仅适于驱动重量小于100mg的光学部件,也就是,如果光学镜头的重量超过100mg,现有的驱动器将无法满足摄像模组的应用需求。
此外,随着移动终端设备朝着小型化和薄型化的方向发展,驱动元件内部的部件布设密度也随之提高。相应地,现有的音圈马达内部设有线圈和磁 铁,当两个磁铁距离过近(小于7mm),其内部磁场会产生相互影响,导致磁铁产生位移或抖动,降低其驱动控制的稳定性。
因此,需要一种适配的用于摄像模组的新型驱动方案,且,新型的驱动器不仅能满足摄像模组对于光学性能调整的驱动要求,且能够满足摄像模组轻型化和薄型化的发展需求。
发明内容
本申请的一优势在于提供了一种摄像模组,其中,所述摄像模组采用新型的压电致动器作为驱动元件以不仅能够提供足够大的驱动力,而且,能够提供精度更高和行程更长的驱动性能,以满足所述摄像模组的光学性能调整的需求,例如,光学防抖的需求。
本申请的另一优势在于提供了一种摄像模组,其中,所述压电致动器具有相对较小的尺寸,以更好地适配于摄像模组轻型化和薄型化的发展趋势。
本申请的又一优势在于提供了一种摄像模组,其中,采用合理的布设方案将所述压电致动器布设于所述摄像模组中,以满足摄像模组的结构和尺寸要求。
通过下面的描述,本申请的其它优势和特征将会变得显而易见,并可以通过权利要求书中特别指出的手段和组合得到实现。
为实现上述至少一优势,本申请提供一种摄像模组,其包括:
感光组件,包括:线路板和电连接于所述线路板的感光芯片;
安装于所述感光组件上的框架载体组件,包括第一框架载体、外设于所述第一框架载体的第二框架载体和外设于所述第二框架载体的外框架载体;
以被安装于所述框架组件的第一框架载体内的方式被保持于所述感光组件的感光路径上的光学镜头,所述光学镜头设有一光轴;以及
驱动组件,包括:第一驱动元件、第一预压部件、第二驱动元件和第二预压部件,所述第一驱动元件和所述第二驱动元件被实施为压电致动器,其中,所述第一驱动元件通过所述第一预压部件以摩擦接触的方式抵向所述第一框架载体,并被配置为驱动所述第一框架载体以带动所述光学镜头在垂直于所述光轴的平面内移动以进行在第一方向的光学防抖;其中,所述第二驱动元件通过所述第二预压部件以摩擦接触的方式抵向所述第二框架载体,并 被配置为驱动所述第二框架载体以带动第一框架载体进行带动所述光学镜头在垂直于所述光轴的平面内移动以在第二方向上的进行光学防抖,所述第一方向垂直于所述第二方向。
在根据本申请的摄像模组中,所述摩擦行波或驻波驱动压电马达,包括:压电主动部和可传动地连接于所述压电主动部的摩擦驱动部,其中,在所述压电致动器被导通后,所述摩擦驱动部在所述压电主动部作用下被配置为提供用于驱动所述第一框架载体或所述第二框架载体的驱动力。
在根据本申请的摄像模组中,所述压电主动部具有多组相互交替设置的第一极化区域和第二极化区域,所述第一极化区域和所述第二极化区域具有相反的极化方向,其中,在所述压电致动器被导通后,相互交替设置的多组所述第一极化区域和所述第二极化区域发生不同方向的形变以带动所述摩擦驱动部以行波或驻波的方式沿着预设方向运动,以提供用于驱动第一框架载体或所述第二框架载体的驱动力。
在根据本申请的摄像模组中,所述压电主动部具有多组相互交替设置的第一极化区域和第二极化区域,所述第一极化区域和所述第二极化区域具有相同的极化方向,其中,在所述压电致动器被导通后,相互交替设置的多组所述第一极化区域和所述第二极化区域发生不同方向的形变以带动所述摩擦驱动部以行波或驻波的方式沿着预设方向运动,以提供用于驱动第一框架载体或所述第二框架载体的驱动力。
在根据本申请的摄像模组中,多组相互交替设置的所述第一极化区域和所述第二极化区域处于同一直线上。
在根据本申请的摄像模组中,所述摩擦驱动部包括多个相互间隔设置的摩擦驱动元件,每个所述摩擦驱动元件的第一端耦接于所述压电主动部。
在根据本申请的摄像模组中,所述多个摩擦驱动元件位于所述压电主动部的中部区域。
在根据本申请的摄像模组中,所述压电致动器进一步包括:叠置于所述压电主动部的摩擦连接层,每个所述摩擦驱动元件以其第一端固定于所述摩擦连接层的方式被耦接于所述压电主动部。
在根据本申请的摄像模组中,所述多个摩擦驱动元件的与所述第一端相对的第二端的多个端面处于同一平面。
在根据本申请的摄像模组中,所述驱动组件进一步包括第一摩擦作动部 和第二摩擦作动部,所述第一摩擦作动部被设置于所述第一驱动元件和所述第一框架载体之间,所述第二摩擦作动部被设置于所述第二驱动元件和所述第二框架载体之间。
在根据本申请的摄像模组中,所述第一摩擦作动部具有第一表面和与所述第一表面相对的第二表面,所述第一表面抵触于所述第一框架载体的表面,所述第二表面抵触于所述多个摩擦驱动元件中至少一个所述摩擦驱动元件的第二端的端面;所述第二摩擦作动部具有第三表面和与所述第三表面相对的第四表面,所述第三表面抵触于所述第二框架载体的表面,所述第四表面抵触于所述多个摩擦驱动元件中至少一个所述摩擦驱动元件的第二端的端面。
在根据本申请的摄像模组中,所述压电致动器的长度尺寸小于等于10mm、其宽度尺寸小于等于1mm、以及,其高度尺寸小于等于1mm。
在根据本申请的摄像模组中,所述第一驱动元件通过所述第一预压部件和所述第一摩擦作动部被夹持地设置于所述第一框架载体和所述第二框架载体之间,通过这样的方式,所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一框架载体的侧部。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一框架载体的上部。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一框架载体的下部。
在根据本申请的摄像模组中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二框架载体和所述外框架载体之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的侧部。
在根据本申请的摄像模组中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二框架载体和所述镜头载体之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的上部。
在根据本申请的摄像模组中,所述驱动组件进一步外设于所述第二框架 载体的外框架载体,其中,所述第二驱动元件通过所述第二预压部件和所述第二第二摩擦作动部被夹持地设置于所述第二框架载体和所述外框架载体之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的下部。
在根据本申请的摄像模组中,所述驱动组件进一步包括设置于所述第一框架载体和所述第二框架载体之间的第一导引机构和设置于所述第二框架载体和所述外框架载体之间的第二导引机构。
在根据本申请的摄像模组中,所述驱动组件进一步包括设置于所述第一框架载体和所述第二框架载体之间的第一导引机构和设置于所述第二框架载体和所述镜头载体之间的第二导引机构。
在根据本申请的摄像模组中,所述驱动组件进一步包括设置于所述第一框架载体和所述第二框架载体之间的第一导引机构和设置于所述第二框架载体和所述外框架载体之间的第二导引机构。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述外框架载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述镜头载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压元件包括第二弹性元件,所 述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述外框架载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体。
在根据本申请的摄像模组中,所述第一弹性元件和所述第二弹性元件被实施为具有弹性的黏着剂。
在根据本申请的摄像模组中,所述第一弹性元件和所述第二弹性元件的厚度尺寸为10um至50um之间。
在根据本申请的摄像模组中,所述第一预压部件包括设置于所述第一框架载体的第一磁吸元件和设置于所述第二框架载体且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压部件包括设置于所述第二框架载体的第三磁吸元件和设置于所述外框架载体且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述磁吸元件之间的磁吸作用迫使所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体。
在根据本申请的摄像模组中,所述第一预压部件包括设置于所述第一框架载体的第一磁吸元件和设置于所述第二框架载体且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压部件包括设置于所述第二框架载体的第三磁吸元件和设置于所述镜头载体且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体。
在根据本申请的摄像模组中,所述第一预压部件包括设置于所述第一框架载体的第一磁吸元件和设置于所述第二框架载体且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压部件包括设置于所述第二框架载体的第三磁吸元件和设置于所述外框架载体且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述磁吸元件之间的磁吸作用迫使所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体。
根据本申请的又一方面,还提供一种摄像模组,其包括:
感光组件,包括:线路板和电连接于所述线路板的感光芯片;
被保持于所述感光组件的感光路径上的镜头组件,包括:镜头载体和安装于所述镜头载体的光学镜头,其中,所述光学镜头设有一光轴;以及
驱动组件,包括:第一承载框架、第一驱动元件和第一预压部件,其中,所述感光组件被安装于所述第一承载框架,所述第一驱动元件被实施为压电致动器,其中,所述第一驱动元件通过所述第一预压部件以摩擦接触的方式抵向所述第一承载框架,并被配置为驱动所述第一承载框架以带动所述感光组件在垂直于所述光轴的平面内移动以进行光学防抖。
在根据本申请的摄像模组中,所述驱动组件进一步包括第二承载框架、第二驱动元件和第二预压部件,其中,所述第二承载框架外设于所述第一承载框架,所述第二驱动元件被实施为压电致动器,其中,所述第二驱动元件通过所述第二预压部件以摩擦接触的方式抵向所述第二承载框架,并被配置为驱动所述第二承载框架以带动第一承载框架进行带动所述感光组件在垂直于所述光轴的平面内移动以进行光学防抖。
在根据本申请的摄像模组中,所述压电致动器,包括:压电主动部和可传动地连接于所述压电主动部的摩擦驱动部,其中,在所述压电致动器被导通后,所述摩擦驱动部在所述压电主动部作用下被配置为提供用于驱动所述第一承载框架或所述第二承载框架的驱动力。
在根据本申请的摄像模组中,所述压电主动部具有多组相互交替设置的第一极化区域和第二极化区域,所述第一极化区域和所述第二极化区域具有相反的极化方向,其中,在所述压电致动器被导通后,相互交替设置的多组所述第一极化区域和所述第二极化区域发生不同方向的形变以带动所述摩擦驱动部以行波或驻波的方式沿着预设方向运动,以提供用于驱动第一承载框架或所述第二承载框架的驱动力。
在根据本申请的摄像模组中,所述摩擦驱动部包括多个相互间隔设置的摩擦驱动元件,每个所述摩擦驱动元件的第一端耦接于所述压电主动部。
在根据本申请的摄像模组中,所述压电致动器进一步包括:叠置于所述压电主动部的摩擦连接层,每个所述摩擦驱动元件以其第一端固定于所述摩擦连接层的方式被耦接于所述压电主动部。
在根据本申请的摄像模组中,所述多个摩擦驱动元件的与所述第一端相 对的第二端的多个端面处于同一平面。
在根据本申请的摄像模组中,所述驱动组件进一步包括第一摩擦作动部和第二摩擦作动部,所述第一摩擦作动部被设置于所述第一驱动元件和所述第一承载框架之间,所述第二摩擦作动部被设置于所述第二驱动元件和所述第二承载框架之间。
在根据本申请的摄像模组中,所述第一摩擦作动部具有第一表面和与所述第一表面相对的第二表面,所述第一表面抵触于所述第一承载框架的表面,所述第二表面抵触于所述多个摩擦驱动元件中至少一个所述摩擦驱动元件的第二端的端面;所述第二摩擦作动部具有第三表面和与所述第三表面相对的第四表面,所述第三表面抵触于所述第二承载框架的表面,所述第四表面抵触于所述多个摩擦驱动元件中至少一个所述摩擦驱动元件的第二端的端面。
在根据本申请的摄像模组中,所述第一承载框架具有凹陷地形成于其表面的第一凹槽,所述第一摩擦作动部被设置于所述第一凹槽内;和/或,所述第二承载框架具有凹陷地形成于其表面的第二凹槽,所述第二摩擦作动部被设置于所述第二凹槽内。
在根据本申请的摄像模组中,所述第一凹槽和所述第二凹槽的长度大于所述压电致动器的长度尺寸,所述压电致动器的宽度尺寸小于或等于所述第一凹槽和所述第二凹槽的宽度尺寸。
在根据本申请的摄像模组中,所述压电致动器的长度尺寸小于等于20mm、其宽度尺寸小于等于1mm、以及,其高度尺寸小于等于1mm。
在根据本申请的摄像模组中,所述第一驱动元件通过所述第一预压部件和所述第一摩擦作动部被夹持地设置于所述第一承载框架和所述第二承载框架之间,通过这样的方式,所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一承载框架的侧部。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一承载框架的上部。
在根据本申请的摄像模组中,所述第一驱动元件位于所述第一承载框架的下部。
在根据本申请的摄像模组中,所述驱动组件进一步包括外设于所述第二承载框架的外框架,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述外框架之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架,其中,所述第二驱动元件位于所述第二承载框架的侧部。
在根据本申请的摄像模组中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述镜头载体之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架,其中,所述第二驱动元件位于所述第二承载框架的上部。
在根据本申请的摄像模组中,所述驱动组件进一步外设于所述第二承载框架的外框架,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述外框架之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架,其中,所述第二驱动元件位于所述第二承载框架的下部。
在根据本申请的摄像模组中,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述外框架之间的第二导引机构。
在根据本申请的摄像模组中,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述镜头载体之间的第二导引机构。
在根据本申请的摄像模组中,,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述外框架之间的第二导引机构。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述外框架之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所 述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述镜头载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架。
在根据本申请的摄像模组中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述外框架之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架。
在根据本申请的摄像模组中,所述第一弹性元件和所述第二弹性元件被实施为具有弹性的黏着剂。
在根据本申请的摄像模组中,所述第一弹性元件和所述第二弹性元件的厚度尺寸为10um至50um之间。
在根据本申请的摄像模组中,所述第一预压部件包括设置于所述第一承载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述外框架且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架。
在根据本申请的摄像模组中,所述第一预压部件包括设置于所述第一承载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述镜头载体且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第一 磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架。
在根据本申请的摄像模组中,所述第一预压部件包括设置于所述第一承载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述外框架且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1图示了根据本申请实施例的摄像模组的示意图。
图2图示了根据本申请实施例的所述摄像模组的感光组件的示意图。
图3图示了根据本申请实施例的所述摄像模组的光学镜头、框架载体组件和驱动组件的示意图。
图4图示了根据申请实施例的压电致动器的示意图。
图5图示了根据本申请实施例的所述压电致动器在被导通后的示意图。
图6图示了根据本申请实施例的所述压电致动器的一个变形实施的示意图。
图7图示了根据本申请实施例的所述摄像模组的所述光学镜头、所述框架载体组件和所述驱动组件的另一示意图。
图8图示了根据本申请实施例的所述摄像模组的一个变形实施的示意图。
图9图示了根据本申请实施例的所述摄像模组的另一个变形实施的示意图。
图10图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。
图11图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。
图12图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。
图13图示了根据本申请实施例的摄像模组的示意图。
图14图示了根据本申请实施例的所述摄像模组的感光组件的示意图。
图15图示了根据本申请实施例的所述摄像模组的另一示意图。
图16图示了根据申请实施例的压电致动器的示意图。
图17图示了根据本申请实施例的所述压电致动器在被导通后的示意图。
图18图示了根据本申请实施例的所述压电致动器的一个变形实施的示意图。
图19图示了根据本申请实施例的所述摄像模组的一个变形实施的示意图。
图20图示了根据本申请实施例的所述摄像模组的另一个变形实施的示意图。
图21图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。
图22图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。
图23图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。
图24图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。
图25图示了根据本申请实施例的所述摄像模组的又一个变形实施的局部示意图。
具体实施方式
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
示例性摄像模组
如图1所示,根据本申请实施例的摄像模组被阐明,其包括:感光组件10、被保持于所述感光组件10的感光路径上的光学镜头20、框架载体组件30,以及,用于驱动所述光学镜头20以进行光学防抖的驱动组件40。
如图2所示,在该实施例中,所述感光组件10包括线路板11、电连接于所述线路板11的感光芯片12和被保持于所述感光芯片12的感光路径上的滤光元件13,其中,所述线路板11形成所述感光组件10的安装基板。所述线路板可以被实施为印刷电路板(Printed Circuit Board,PCB)、软件结合板、或者被补强后的柔性电路板(Flexible Printed Circuit,PFC)。并且,在一些示例中,还可以在所述线路板11的下方设置补强板(未有图示意),例如,在所述线路板的下方设置钢片,以通过所述钢片来加强所述线路板的强度且提高所述感光组件的散热性能。
进一步地,在如图2所示意的示例中,所述感光组件10,进一步包括设置于所述线路板11的支架14,其中,所述滤光元件13被安装于所述支架14上以被保持于所述感光芯片12的感光路径上。在本申请其他示例中,所述滤光元件13被保持于所述感光芯片12的感光路径上的具体实施方式并不为本申请所局限,例如,所述滤光元件13可被实施为滤波膜并涂覆于所述变焦透镜组的某一光学透镜的表面,以起到滤光的效果,再如,所述感光组件10可进一步包括安装于所述支架14的滤光元件支架(未有图示意),其中,所述滤光元件13以被安装于所述滤光元件支架的方式被保持于所述感光芯片12的感光路径上。
在本申请实施例的一个具体示例中,所述支架14可被实施为塑料支架,其通过黏着剂附着于所述线路板11上。在本申请实施例的其他示例中,所述支架14还可以被实施为一体地成型于所述线路板11的一体式支架,例如模塑支架,对此,并不为本申请所局限。
如图1所示,在本申请实施例中,所述框架载体组件30被安装于所述感光组件10上,其中,所述框架载体组件30,包括安装于所述支架14上的外框架载体33、被收容于所述外框架载体33内的第二框架载体32和被收容于所述第二框架载体32内的第一框架载体31。也就是,在该实施例中,所述框架载体组件,包括第一框架载体31、外设于所述第一框架载体31的第二框架载体32和外设于所述第二框架载体32的外框架载体33。
特别地,在该实施例中,所述光学镜头20被安装于所述第一框架载体31内,通过这样的方式,所述光学镜头20被保持于所述感光组件10的感光路径上。也就是,在该实施例中,所述第一框架载体31形成所述光学镜头的安装载体。
并且,在本申请实施例中,所述第二框架载体32与所述外框架载体33之间存在间隙,所述第一框架载体31与所述第二框架载体32之间存在间隙,也就是,所述第二框架载体32与所述外框架载体33之间存在可用空间,其中,该可用空间可用于安装用于驱动所述第二载体框32架移动的驱动器;所述第一框架载体31与所述第二框架载体32之间存在可用空间,其中,该可用空间可用于安装驱动所述第一框架载体31移动的驱动器。这里,关于驱动器的选择和安装会在后续的描述中更为详细地展开。
如图1所示,在本申请实施例中,所述光学镜头20包括镜筒21和被安装于所述镜筒21内的至少一光学透镜22。本领域普通技术人员应知晓,所述光学镜头20的解像力在一定范围内与光学透镜22的数量成正比,也就是,解像力越高,所述光学透镜22的数量越多。在具体实施中,所述光学镜头20可被实施为一体式镜头,或者,分体式镜头,其中,当所述光学镜头20被实施为一体式镜头时,所述光学镜头20包含一个镜筒21,所有的所述光学透镜22被安装于所述镜筒21内;而当所述光学镜头20被实施为分体式光学镜头,所述光学镜头20由至少两部分镜头单体组装而成。
如前所述,为了满足越来越广泛的市场需求,高像素、大芯片、小尺寸是现有摄像模组不可逆转的发展趋势。随着感光芯片朝着高像素和大芯片的方向发展,与感光芯片适配的光学部件(例如,滤光元件、光学镜头)的尺寸也逐渐增大,这给用于驱动光学部件以进行光学性能调整(例如,光学对焦、光学防抖等)的驱动元件带来的新的挑战。
具体地,现有的用于驱动光学部件的驱动元件为电磁式马达,例如,音 圈马达(Voice Coil Motor:VCM)、形状记忆合金驱动器(Shape of Memory Alloy Actuator:SMA)等。然而,随着光学部件尺寸增加而导致的重量增加,现有的电磁式马达已逐渐无法提供足够的驱动力来驱动光学部件移动。量化来看,现有的音圈马达和形状记忆合金驱动器仅适于驱动重量小于100mg的光学部件,也就是,如果光学镜头的重量超过100mg,现有的驱动器将无法满足摄像模组的应用需求。
此外,随着移动终端设备朝着小型化和薄型化的方向发展,驱动元件内部的部件布设密度也随之提高。相应地,现有的音圈马达内部设有线圈和磁铁,当两个磁铁距离过近(小于7mm),其内部磁场会产生相互影响,导致磁铁产生位移或抖动,降低其驱动控制的稳定性。
因此,需要一种适配的用于摄像模组的新型驱动方案,且,新型的驱动器不仅能满足摄像模组对于光学性能调整的驱动要求,且能够满足摄像模组轻型化和薄型化的发展需求。
也就是,对于摄像模组模组而言,新型的驱动器需满足如下要求:相对更大的驱动力,以及,更优的驱动性能(具体地包括:更高精度的驱动控制和更长的驱动行程)。同时,除了需要寻找满足新技术要求的驱动器以外,在选择新驱动器时还需要考虑所选择的驱动器能够适应于当下摄像模组轻型化和薄型化的发展趋势。
经研究和试验,本申请提出了一种具有新型结构的压电致动器,该压电致动器能够满足所述摄像模组对于驱动器的技术要求。并且,进一步地采用合适的布置方式将所述压电致动器布置于所述摄像模组内,以使得其满足所述摄像模组的结构设计要求和尺寸设计要求。
图4图示了根据申请实施例的压电致动器的示意图。如图4所示,根据本申请实施例的所述压电致动器100,包括:压电主动部110和可传动地连接于所述压电主动部110的摩擦驱动部120,其中,在所述压电致动器100被导通后,所述摩擦驱动部120在所述压电主动部110作用下被配置为提供用于驱动被驱动对象的驱动力。
具体地,在该实施例中,所述压电主动部110被实施为压电陶瓷元件,其具有条状结构。如图4所示,所述压电主动部110为压电层叠结构,其具有多组相互交替设置的第一极化区域A1和第二极化区域A2,所述第一极 化区域A1和所述第二极化区域A2具有相反的极化方向,其中,在所述压电致动器100被导通后,相互交替设置的多组所述第一极化区域A1和所述第二极化区域A2发生不同方向的形变以带动所述摩擦驱动部120以行波或驻波的方式沿着预设方向运动,以提供用于驱动部件的驱动力,如图4所示。
更具体地,进一步参考图5,在该实施例中,所述压电主动部110具有多组相互交替设置的第一极化区域A1和第二极化区域A2,所述极化区域A1和所述极化区域A2的极化方向相反。这里,应注意到,在该实施例中,多组相互交替的所述极化区域A1和所述极化区域A2以并排的方式进行布置,即,多组相互交替的所述极化区域A1和所述极化区域A2处于同一直线上。并且,所述压电主动部110通过导线被电连接于外部激励电源,从而在给所述压电主动部110提供电源激励后,通过所述压电主动部110的逆压电效应所述压电主动部110发生形变。应可以理解,所述压电主动部110的形变将带动所述摩擦驱动部120以行波或驻波的方式运动,也就是,所述压电主动部110的形变能够被传递至所述摩擦驱动部120,以通过所述摩擦驱动部120的行波或驻波运动提供驱动力。
值得一提的是,在本申请其他示例中,每组所述第一极化区域A1和第二极化区域A2也可以具有相同的极化方向,其中,在所述压电致动器100被导通后,通过给每组所述第一极化区域A1和所述第二极化区域A2输入交替的电压信号,相互交替设置的多组所述第一极化区域A1和所述第二极化区域A2发生不同方向的形变以带动所述摩擦驱动部120以驻波的方式沿着预设方向运动,对此,并不为本申请所局限。
进一步地,在该实施例中,如图4所示,所述摩擦驱动部120包括多个相互间隔设置的摩擦驱动元件121,其中,每个所述摩擦驱动元件121的第一端耦接于所述压电主动部110,通过这样的方式使得所述摩擦驱动部120可传动地连接于所述压电主动部110。这里,所述多个摩擦驱动元件121的数量可以为2、3、4或者更多,优选地,所述摩擦驱动元件121的数量超过3(即,大于等于3),通过这样的数量配置,使得在实现所述压电致动器100稳定输出线性驱动力的同时还能控制所述压电致动器100的长度尺寸,使其适于装入摄像模组等体积相对较小的器件中。在该实施例中,所述压电致动器100的长度尺寸几近等于所述压电主动部110的尺寸(而所述 压电主动部110具有长条状),量化来看,在该实施例中,所述压电致动器100的长度尺寸小于等于20mm,优选地,其长度尺寸小于等于10mm。
更优选地,在该实施例中,所述多个摩擦驱动元件121位于所述压电主动部110的中部区域,这样在通过所述多个摩擦驱动元件121驱动被作用对象时,被驱动对象的移动会更加平稳且线性度更佳。
应注意到,在该实施例中,所述摩擦驱动元件121具有柱状结构,其突出于所述压电主动部110的上表面。从外表来看,所述压电致动器100具有齿条状。应可以理解,在本申请其他示例中,所述摩擦驱动元件121还可以被实施为其他形状,例如,其截面形状可被设置为梯形,对此,并不为本申请所局限。
值得一提的是,当所述摩擦驱动元件121的数量超过2个时,即大于等于3时,优选地,所述至少3个摩擦驱动元件121等距地相间设置,这样有利于提升所述压电致动器100的驱动稳定性。
进一步地,如图4所示,在该实施例中,当所述压电致动器100未被导通时,所述多个摩擦驱动元件121的与所述第一端相对的第二端的多个端面处于同一平面,例如,在如图3所示意的示例中,所述多个摩擦驱动元件121的第二端的端面处于同一水平面上。也就是,在该实施例中,所述多个摩擦驱动元件121的第二端的端面形成同一平面。相应地,在本申请一些实施例中,可进一步地在该平面上(即,在所述多个摩擦驱动元件121的第二端的端面所界定的平面)施加一层摩擦材料,以增加摩擦力。
值得一提的是,在实际应用中,通常还会在所述摩擦驱动部120的上表面设置一个动子,以通过所述动子来传递所述摩擦驱动部120所提供的行波或驻波式驱动力并作用于被驱动对象。也就是,在所述摩擦驱动部120和被驱动对象之间设置摩擦作动部130(所述摩擦作动部130充当所述动子),这样,当所述压电致动器100被导通时,所述摩擦驱动部120的行波或驻波式运动将驱动所述摩擦作动部130直线运动,具体地,所述摩擦作动部130的直线运动方向与所述摩擦驱动部120的行波或驻波前进方向相反。
为了确保所述摩擦驱动部120所提供的行波或驻波式驱动力能作用于所述摩擦作动部130,在安装的过程中,需确保所述摩擦作动部130和所述压电致动器100之间施加一定的预压力,以使得所述摩擦驱动部120能够与所述摩擦作动部130相抵触,这样,所述摩擦驱动部120所提供的行波 或驻波式驱动力才能更有效率地传递至所述摩擦作动部130。
图6图示了根据本申请实施例的所述压电致动器100的一个变形实施的示意图。如图6所示,在该实施例中,所述压电致动器100进一步包括:叠置于所述压电主动部110的摩擦连接层140,每个所述摩擦驱动元件121以其第一端固定于所述摩擦连接层140的方式被耦接于所述压电主动部110,通过这样的方式,所述压电主动部110的形变能够通过所述摩擦连接层140更好地传递至所述摩擦驱动部120。特别地,在该实施例中,所述摩擦驱动元件121与所述摩擦连接层140可具有一体式结构。当然,在一些示例中,所述摩擦驱动元件121和所述摩擦连接层140可具有分体式结构,即,两者为单独的部件。
进一步地,在本申请实施例中,所述压电致动器100具有相对更优化的尺寸。量化来看,所述压电致动器100的长度尺寸小于等于20mm,优选地,长度尺寸小于等于10mm,例如,可以是6mm或者4.2mm。所述压电致动器100的宽度尺寸小于等于1mm,优选地,宽度尺寸小于等于0.7mm。所述压电致动器100的高度尺寸小于等于1mm,这里,所述所述压电致动器100的高度尺寸由所述压电主动部110和所述摩擦驱动部120的尺寸决定。
相较于传统的电磁式驱动器,所述压电致动器100具有体积小、推力大,精度高的优势。量化来看,根据本申请实施例的所述压电致动器100能够提供的驱动力大小为0.6N至2N,其足以驱动重量大于100mg的部件。
除了能够提供相对较大的驱动力以外,相较于传统的电磁式马达方案和记忆合金马达方案,所述压电致动器100还具有其他优势,包括但不限于:尺寸相对较小(具有细长状),响应精度更佳,结构相对更为简单,驱动控制相对更为简单,产品一致性高,没有电磁干扰,具有相对更大的行程,稳定时间短,重量相对较小等。
具体来说,所述摄像模组需要其所配置的驱动器具有驱动行程较长且需要保证较好的对准精度等特征。在现有的音圈马达方案中,为了保证运动线性度需要额外设计导杆或滚珠导轨,同时需要在镜头侧部适配大尺寸的驱动磁铁/线圈等,同时需要设置滚珠、弹片、悬丝等辅助定位装置,为容纳较多的部件、保障结构强度和预留结构间隙,往往导致模组横向尺寸偏大,且结构设计复杂,模组重量较重。而记忆合金马达方案,受限于记忆合金方案同比例能够提供的行程相对较少,同时存在潜在断线等可靠性风险。
而所述压电致动器100具有相对较为简单的结构,组装结构更加简单,另外其压电主动部110、摩擦驱动部120等元件大小与运动行程大小基本无关,因此在光学变焦类产品中所述压电致动器100可以实现大推力、小尺寸,小重量等优势,同时匹配更大行程或更重器件重量进行设计,设计中的集成度也更高。
进一步地,所述压电致动器100以摩擦接触的方式推动待推动对象进行微米级运动,其相较于电磁式方案非接触的方式驱动待推动对象需要依靠电磁力抵消重力,摩擦力的方式,具有更大推力,更大位移和更低功耗的优势,同时控制精度更高。而且在存在多个马达机构时,所述压电致动器100不存在磁铁线圈结构,无磁干扰问题。另外,所述压电致动器100可依靠部件之间的摩擦力自锁,因此可以降低所述摄像模组在进行光学防抖时的晃动异响。
在选择以所述压电致动器100作为驱动器来驱动所述感光组件10以进行光学防抖后,具体地,如图3和图7所示,在该实施例中,所述驱动组件40,包括:第一驱动元件42、第一预压部件43、第二驱动元件45、第二预压部件46,其中,所述第一驱动元件42和所述第二驱动元件45被实施为压电致动器100。
相应地,如图3和图7所示,在该实施例中,所述光学镜头20被安装于所述第一框架载体31,所述第一驱动元件42通过所述第一预压部件43以摩擦接触的方式抵向所述第一框架载体31,并被配置为驱动所述第一框架载体31以带动所述光学镜头20在垂直于所述光轴的平面内移动以进行在第一方向上的光学防抖。所述第二框架载体32外设于所述第一框架载体31,其中,所述第二驱动元件45通过所述第二预压部件46以摩擦接触的方式抵向所述第二框架载体32,并被配置为驱动所述第二框架载体32以带动第一框架载体31进行带动所述光学镜头20在垂直于所述光轴的平面内移动以进行在第二方向上的光学防抖,所述第一方向与所述第二方向垂直。在一个示例中,所述第一方向为X轴方向,所述第二方向为Y轴方向。
这里,所述第一驱动元件42以摩擦接触的方式抵向所述第一框架载体31表示:所述第一驱动元件42的摩擦驱动部120与所述第一框架载体31之间具有预压力,以使得所述第一驱动元件42的摩擦驱动部120能通过摩擦驱动的方式来驱动所述第一框架载体31。并且,所述第一驱动元件42的摩擦驱动部120与所述第一框架载体31之间的预压力可以是直接的预压 力也可以是间接的预压力,其中,直接的预压力表示所述第一驱动元件42的摩擦驱动部120与所述第一框架载体31之间直接接触,以在两者之间产生预压力;间接的预压力表示虽然所述第一驱动元件42的摩擦驱动部120与所述第一框架载体31之间不直接接触,但两者之间仍存在预压力以使得所述第一驱动元件42的摩擦驱动部120能通过摩擦驱动的方式来驱动所述第一框架载体31。
相应地,所述第二驱动元件45以摩擦接触的方式抵向所述第二框架载体32表示:所述第二驱动元件45的摩擦驱动部120与所述第二框架载体32之间具有预压力,进而所述第二驱动元件45的摩擦驱动部120能通过摩擦驱动的方式来驱动所述第二框架载体32。并且,所述第二驱动元件45的摩擦驱动部120与所述第二框架载体32之间的预压力可以是直接的预压力也可以是间接的预压力,其中,直接的预压力表示所述第二驱动元件45的摩擦驱动部120与所述第二框架载体32之间直接接触,以在两者之间产生预压力;间接的预压力表示虽然所述第二驱动元件45的摩擦驱动部120与所述第二框架载体32之间不直接接触,但两者之间仍存在预压力以使得所述第二驱动元件45的摩擦驱动部120能通过摩擦驱动的方式来驱动所述第二框架载体32。
更具体地,该实施例中,如图3和图7所示,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一框架载体31和所述第二框架载体32之间,通过这样的方式,所述第一驱动元件42以摩擦接触的方式抵向所述第一框架载体31。
相应地,在该实施例中,所述第一预压部件43包括第一弹性元件431,所述第一弹性元件431被设置于所述第一驱动元件42的压电主动部110和所述第二框架载体32之间,以通过所述第一弹性元件431的弹力迫使所述第一驱动元件42以摩擦接触的方式抵向所述第一框架载体31。在该实施例中,所述第一驱动元件42的摩擦驱动部120直接抵触于所述第一框架载体31的外侧壁的表面,相应地,所述第一弹性元件431所提供的弹力能够迫使所述第一驱动元件42的所述摩擦驱动部120抵触于所述第一框架载体31的外侧壁的表面,以在两者之间形成摩擦接触的结合关系。这样,在所述第一驱动元件42被导通后,所述第一驱动元件42的所述摩擦驱动部120能以摩擦驱动的方式驱动所述第一框架载体31沿着第一方向移动,以带动 所述光学镜头20沿着所述第一方向移动以进行在所述第一方向上的光学防抖。
在本申请一个具体示例中,所述第一弹性元件431被实施为具有弹性的黏着剂,也就是,所述第一弹性元件431被实施为固化后具有弹性的胶水。相应地,在安装过程中,可在所述第二框架载体32的内侧壁的表面和所述第一驱动元件42的压电主动部110之间施加一层厚度为10um至50um的黏着剂,以在所述黏着剂固化成型后形成设置于所述第一驱动元件42的压电主动部110和所述第二框架载体32之间的所述第一弹性元件431。应可以理解,在该示例中,所述第一弹性元件431在提供预压力的同时,还能够使得所述第一驱动元件42被固定于所述第二框架载体32的内侧壁的表面。优选地,所述第一弹性元件431具有相对较高的平整度,即,在施加所述黏着剂时,尽可能地保证所施加的黏着剂具有相对较高的平整度且均匀度,从而使得所述第一驱动元件42能够平整地被固定于所述第二框架载体32的内侧壁的表面,进而提升所述第一驱动元件42驱动的稳定性。
相应地,该实施例中,如图3和图7所示,所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二框架载体32和所述外框架载体33之间,通过这样的方式,所述第二驱动元件45以摩擦接触的方式抵向所述第二框架载体32。
进一步地,如图3和图7所示,在该实施例中,所述第二预压部件46包括第二弹性元件461,所述第二弹性元件461被设置于所述第二驱动元件45的压电主动部110和所述外框架载体33之间,以通过所述第二弹性元件461的弹力迫使所述第二驱动元件45以摩擦接触的方式抵向所述第二框架载体32。相应地,该实施例中,所述第二驱动元件45的摩擦驱动部120直接抵触于所述第二框架载体32的外侧壁的表面,相应地,所述第二弹性元件461所提供的弹力能够迫使所述第二驱动元件45的所述摩擦驱动部120抵触于所述第二框架载体32的外侧壁的表面,以在两者之间形成摩擦接触的结合关系。这样,在所述第二驱动元件45被导通后,所述第二驱动元件45的所述摩擦驱动部120能以摩擦驱动的方式驱动所述第二框架载体32沿着第二方向移动,以带动所述光学镜头20沿着所述第二方向移动以进行在所述第二方向上的光学防抖。
在本申请一个具体示例中,所述第二弹性元件461被实施为具有弹性的 黏着剂,也就是,所述第二弹性元件461被实施为固化后具有弹性的胶水。相应地,在安装过程中,可在所述外框架载体33的内侧壁的表面和所述第二驱动元件45的压电主动部110之间施加一层厚度为10um至50um的黏着剂,以在所述黏着剂固化成型后形成设置于所述第二驱动元件45的压电主动部110和所述外框架载体33之间的所述第二弹性元件461。应可以理解,在该示例中,所述第二弹性元件461在提供预压力的同时,还能够使得所述第二驱动元件45被固定于所述外框架载体33的内侧壁的表面。优选地,所述第二弹性元件461具有相对较高的平整度,即,在施加所述黏着剂时,尽可能地保证所施加的黏着剂具有相对较高的平整度且均匀度,从而使得所述第二驱动元件45能够平整地被固定于所述外框架载体33的内侧壁的表面,进而提升所述第二驱动元件45驱动的稳定性。
值得一提的是,在本申请其他实施例中,所述第一弹性元件431和所述第二弹性元件461也可以被实施为不具有黏性的弹性元件,例如,材料自身特征本身存在弹性的橡胶,或者,由于形变而产生弹性的弹簧、板簧等,对此,同样并不为本申请所局限。
值得一提的是,在本申请的其他变形实施例中,所述第一预压部件43和所述第二预压部件46的结构配置也可以做出调整。具体地,如图8所示,在本申请其他示例中,所述第一预压部件43包括设置于所述第一框架载体31的第一磁吸元件52和设置于所述第二框架载体32且对应于所述第一磁吸元件52的第二磁吸元件53,以通过所述第一磁吸元件52和所述第二磁吸元件53之间的磁吸作用迫使所述第一驱动元件42以摩擦接触的方式抵向所述第一框架载体31。
在该变形实施中,所述第一磁吸元件52和所述第二磁吸元件53是指能够相互吸引的磁吸组件,例如,所述第一磁吸元件52可被实施为磁体,所述第二磁吸元件53可被实施为磁性部件,例如,由铁、镍、钴等金属制成的材料;再如,所述第一磁吸元件52可被实施为磁体,所述第二磁吸元件53也可被实施为磁体。
所述第二预压部件46包括设置于所述第二框架载体32的第三磁吸元件62和设置于所述外框架载体33且对应于所述第三磁吸元件62的第四磁吸元件63,以通过所述第三磁吸元件62和所述第四磁吸元件63之间的磁吸作用迫使所述第二驱动元件45以摩擦接触的方式抵向所述第二框架载 体32。
在该变形实施中,所述第三磁吸元件62和所述第四磁吸元件63是指能够相互吸引的磁吸组件,例如,所述第三磁吸元件62可被实施为磁体,所述第四磁吸元件63可被实施为磁性部件,例如,由铁、镍、钴等金属制成的材料;再如,所述第三磁吸元件62可被实施为磁体,所述第四磁吸元件63也可被实施为磁体。
为了使得所述第一驱动元件42和所述第二驱动元件45能够更为平稳地驱动所述第一框架载体31和所述第二框架载体32,如图3所示,所述驱动组件40进一步包括设置于所述第一框架载体41和所述第二框架载体32之间的第一导引机构48和设置于所述第二框架载体32和所述外框架载体33之间的第二导引机构49,其中,所述第一导引机构48被配置为引导所述第一框架载体41沿着所述第一方向移动,所述第二导引机构49被配置为引导所述第二框架载体32沿着所述第二方向移动。
更具体地,如图3和图7所示,在该实施例中,所述第一导引机构48和所述第二导引机构49被实施为导杆结构。相应地,所述第一导引机构48包括被设置于所述第一框架载体31的外侧壁且沿着所述第一方向延伸的第一导杆,其中,所述第一导杆的两端部被固定于所述第二框架载体32的内侧壁上。特别地,在该实施例中,所述第一导杆与所述第一驱动元件42同向相对地设置,这样,在所述第一驱动元件42被导通后,所述第一框架载体31被导引沿着所述第一导杆延伸的方向进行移动,以提高所述第一框架载体31的移动稳定性。
相应地,在该实施例中,所述第二导引机构49包括被设置于所述第二框架载体32的外侧壁且沿着所述第二方向延伸的第二导杆,其中,所述第二导杆的两端部被固定于所述外框架载体33的内侧壁上。特别地,在该实施例中,所述第二导杆与所述第二驱动元件45同向相对地设置,这样,在所述第二驱动元件45被导通后,所述第二框架载体32被导引沿着所述第二导杆延伸的方向进行移动,以提高所述第二框架载体32的移动稳定性。
值得一提的是,在本申请其他实施例中,所述第一导引机构48和所述第二导引机构49还能够基于其他原理实现,例如,通过滚珠-滚槽机构、滑块-滑槽机构等,对此,并不为本申请所局限。
为了优化所述第一驱动元件42和所述第二驱动元件45的驱动性能, 如图3和图7所示,所述驱动组件40进一步包括第一摩擦作动部131和第二摩擦作动部132,其中,所述第一摩擦作动部131被设置于所述第一驱动元件42和所述第一框架载体31之间并且所述第一驱动元件42的摩擦驱动部120在所述第一预压部件43的作用下抵触于所述第一摩擦作动部131,所述第一摩擦作动部131抵触于所述第一框架载体31的外侧壁的表面,通过这样的方式使得所述第一驱动元件42所提供的摩擦驱动力能够藉由所述第一摩擦作动部131作用于所述第一框架载体31,以带动所述第一框架载体31和所述光学镜头20沿着所述第一方向移动。也就是,在该变形实施例中,所述第一驱动元件42的摩擦驱动部120与所述第一框架载体31之间的预压力是间接的预压力,即,虽然所述第一驱动元件42的摩擦驱动部120与所述第一框架载体31之间不直接接触,但两者之间仍存在预压力以使得所述第一驱动元件42的摩擦驱动部120能通过摩擦驱动的方式来驱动所述第一框架载体31。
相应地,所述第二摩擦作动部132被设置于所述第二驱动元件45和所述第二框架载体32之间并且所述第二驱动元件45的摩擦驱动部120在所述第二预压部件46的作用下抵触于所述第二摩擦作动部132且所述第二摩擦作动部132抵触于所述第二框架载体32的外侧壁的表面,通过这样的方式,使得所述第二驱动元件45所提供的摩擦驱动力能够藉由所述第二摩擦作动部132作用于所述第二框架载体32以带动所述第二框架载体32、所述第一框架载体31和所述光学镜头20沿着所述第二方向移动,以进行在第二方向上的光学防抖。
更具体地,如图3和图7所示,在该实施例中,所述第一摩擦作动部131具有第一表面和与所述第一表面相对的第二表面,其中,在所述第一预压部件43的作用下,所述第一摩擦作动部131的第一表面抵触于所述第一框架载体31的外侧壁的表面,其第二表面抵触于所述多个摩擦驱动元件121中至少一个所述摩擦驱动元件121的第二端的端面,通过这样的方式,所述第一驱动元件42的摩擦驱动部120抵触于所述第一摩擦作动部131且所述第一摩擦作动部131抵触于所述第一框架载体31,通过这样的方式使得所述第一驱动元件42所提供的摩擦驱动力能够藉由所述第一摩擦作动部131作用于所述第一框架载体31。相应地,所述第二摩擦作动部132具有第三表面和与所述第三表面相对的第四表面,其中,在所述第二预压部件46的 作用下,所述第二摩擦作动部132的第三表面抵触于所述第二框架载体32的外侧壁的表面,所述第四表面抵触于所述多个摩擦驱动元件121中至少一个所述摩擦驱动元件121的第二端的端面,通过这样的方式,所述第二驱动元件45的摩擦驱动部120抵触于所述第二摩擦作动部132且所述第二摩擦作动部132抵触于所述第二框架载体32,通过这样的方式使得,所述第二驱动元件45所提供的摩擦驱动力能够藉由所述第二摩擦作动部132作用于所述第二框架载体32。
值得一提的是,虽然在如图3和图7所示意的实施例中,所述第一摩擦作动部131和所述第二摩擦作动部132作为一个单独的部件被分别设置于所述第一驱动元件42和所述第一框架载体31之间,以及,所述第二驱动元件45和所述第二框架载体32之间,例如,所述第一摩擦作动部131被实施为一个单独的部件并被贴附于所述第一框架载体31的侧表面,或者,所述第二摩擦作动部132被实施为一个单独的部件被贴附于所述第二框架载体32的侧表面,再如,所述第一摩擦作动部131被实施为一层涂覆于所述第一框架载体31的侧表面的涂层,或者,所述第二摩擦作动部132被实施为一层涂覆于所述第二框架载体32的侧表面的涂层。应可以理解,在本申请其他示例中,所述第一摩擦作动部131也可一体成型于所述第一框架载体31的外侧壁的表面,即,所述第一摩擦作动部131与所述第一第一框架载体31具有一体式结构。当然,在本申请其他示例中,所述第二摩擦作动部132也可一体成型于所述第二框架载体32的外侧壁的表面,即,所述第二摩擦作动部132与所述第二框架载体32具有一体式结构。
还值得一提的是,在该变形实施例中,所述第一摩擦作动部131的长度大于所述第一驱动元件42的长度且所述第二摩擦作动部131的长度大于所述第二驱动元件43的长度,这样,在通过所述第一驱动元件41和所述第二驱动元件42分别以摩擦驱动的方式驱动所述第一框架载体31和所述第二框架载体32时,所述第一框架载体31和所述第二框架载体32具有足够的行程,以保证所述第一框架载体31和所述第二框架载体32的移动线性度。当然,在本申请其他示例中,所述第一摩擦作动部131的长度也可以小于或者等于所述第一驱动元件42的长度且所述第二摩擦作动部132的长度也可以小于或者等于所述第二驱动元件43的长度,对此,并不为本申请所局限。
图9图示了根据本申请实施例的所述摄像模组的另一个变形实施的示意图。相较于图3和图7所示意的示例,在该变形示例中,所述第一框架载体31具有凹陷地形成于其表面的第一凹槽310,所述第一驱动元件42的摩擦驱动部120被设置于所述第一凹槽310内;所述第二框架载体32具有凹陷地形成于其表面的第二凹槽320,所述第二驱动元件45的摩擦驱动部120被设置于所述第二凹槽320内。也就是,在该变形实施例中,所述第一驱动元件42被至少部分地收容于所述第一凹槽310内,所述第二驱动元件45被至少部分地收容于所述第二凹槽320内。优选的,所述第一驱动元件42的压电主动部110的一部分被收容于所述第一凹槽310内,所述第二驱动元件45的压电主动部110的一部分被收容于所述第二凹槽320内。
这样,当所述第一驱动元件42在所述第一凹槽310内驱动所述第一框架载体31时,所述第一凹槽310自身形成用于引导所述第一框架载体31移动的引导槽。也就是,在该变形实施例中,所述第一凹槽310不仅为所述第一驱动元件42的安装提供安装空间,同时,其自身形成用于引导所述第一框架载体31移动(或者说,规范所述第一驱动元件42的运动)的导引结构。同样地,当所述第二驱动元件45在所述第二凹槽320内驱动所述第二框架载体32时,所述第二凹槽320自身形成用于引导所述第二框架载体32移动的引导槽。也就是,在该变形实施例中,所述第二凹槽320不仅为所述第一驱动元件42的安装提供安装空间,同时,其自身形成用于引导所述第二框架载体32移动(或者说,规范所述第二驱动元件45的运动)的导引结构。
特别地,在该变形实施例中,所述第一驱动元件42和所述第二驱动元件45的长度尺度小于所述第一凹槽310和所述第二凹槽320的长度尺寸,所述第一驱动元件42和所述第二驱动元件45宽度尺寸略小于或等于所述第一凹槽310和所述第二凹槽320的宽度尺寸。。
图9图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。相较于图3和图7所示意的示例,在该变形实施例中,所述第一驱动元件42和所述第二驱动元件45的设置方式发生了调整。
具体地,在如图3和图7所示意的示例中,所述第一驱动元件42位于所述第一框架载体31的侧部,且,所述第二驱动元件45位于所述第二框架载体32的侧部。相对地,如图10所示,在该变形实施例中,所述第一驱 动元件42位于所述第一框架载体31的上部,且所述第二驱动元件45位于所述第二框架载体32的上部。
在该变形实施的一个具体示例中,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一框架载体31和所述第二框架载体32上下之间,通过这样的方式,所述第一驱动元件42以摩擦接触的方式抵向所述第一框架载体31。所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二框架载体32和所述外框架载体33上下之间,通过这样的方式,所述第二驱动元件45以摩擦接触的方式抵向所述第二框架载体32。
相一致地,所述驱动组件40进一步包括设置于所述第一框架载体41和所述第二框架载体32之间的第一导引机构48和设置于所述第二框架载体32和所述外框架载体33之间的第二导引机构49。但与如图3和图7所示意的示例不同的是,在该变形实施例中,所述第一导引机构48和所述第二导引机构49被实施为滚珠-滚槽机构,如图11所示。
图12图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。相较于图3和图7所示意的示例,在该变形实施例中,所述第一驱动元件42和所述第二驱动元件45的设置方式再次发生了调整。
具体地,如图12所示,在该变形实施例中,所述第一驱动元件42位于所述第一框架载体31的下部,且,所述第二驱动元件45位于所述第二框架载体32的下部。
在该变形实施的一个具体示例中,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一框架载体31和所述第二框架载体32上下之间,通过这样的方式,所述第一驱动元件42以摩擦接触的方式抵向所述第一框架载体31。所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二框架载体32和所述外框架载体33上下之间,通过这样的方式,所述第二驱动元件45以摩擦接触的方式抵向所述第二框架载体32。
相一致地,所述驱动组件40进一步包括设置于所述第一框架载体41和所述第二框架载体32之间的第一导引机构48和设置于所述第二框架载体32和所述外框架载体33之间的第二导引机构49。但与如图3和图7所示意的示例不同的是,在该变形实施例中,所述第一导引机构48和所述第 二导引机构49被实施为滚珠-滚槽机构,如图12所示。
综上,基于本申请实施例的所述摄像模组被阐明,其中,所述摄像模组采用压电致动器100作为驱动器以不仅能满足摄像模组对于光学性能调整的驱动要求,且能够满足摄像模组轻型化和薄型化的发展需求。
虽然,在本申请实施例中,以所述摄像模组为传统的直立式摄像模组为示例,本领域普通技术人员应可以理解,根据本申请实施例的所述压电致动器100也可以作为驱动器被应用于潜望式摄像模组中,对此,并不为本申请所局限。
示例性摄像模组
如图13所示,根据本申请实施例的摄像模组被阐明,其包括:感光组件10、被保持于所述感光组件10的感光路径上的镜头组件20,以及,用于驱动所述感光组件10以进行光学防抖的驱动组件40。
相应地,所述镜头组件20包括镜头载体21和安装于所述镜头载体21的光学镜头22。在该实施例中,所述光学镜头22包括镜筒和被安装于所述镜筒内的至少一光学透镜22。本领域普通技术人员应知晓,所述光学镜头20的解像力在一定范围内与光学透镜22的数量成正比,也就是,解像力越高,所述光学透镜22的数量越多。在具体实施中,所述光学镜头22可被实施为一体式镜头,或者,分体式镜头,其中,当所述光学镜头22被实施为一体式镜头时,所述光学镜头22包含一个镜筒,所有的所述光学透镜22被安装于所述镜筒内;而当所述光学镜头22被实施为分体式光学镜头,所述光学镜头22由至少两部分镜头单体组装而成。
并且,在该实施例中,所述镜头载体21为固定载体,即,当所述光学镜头22被安装于所述镜头载体21时,所述镜头载体21和所述光学镜头22之间的相对位置关系不会发生改变。应可以理解,在本申请其他示例中,所述镜头载体21还可以被实施为驱动载体,以通过所述驱动载体来改变所述光学镜头21与所述感光组件10之间的相对位置关系来进行自动对焦,对此,并不为本申请所局限。
如图14所示,在该实施例中,所述感光组件10包括线路板11、电连接于所述线路板11的感光芯片12和被保持于所述感光芯片12的感光路径上的滤光元件13,其中,所述线路板11形成所述感光组件10的安装基 板。所述线路板可以被实施为印刷电路板(Printed Circuit Board,PCB)、软件结合板、或者被补强后的柔性电路板(Flexible Printed Circuit,PFC)。并且,在一些示例中,还可以在所述线路板11的下方设置补强板(未有图示意),例如,在所述线路板的下方设置钢片,以通过所述钢片来加强所述线路板的强度且提高所述感光组件的散热性能。
进一步地,在如图14所示意的示例中,所述感光组件10,进一步包括设置于所述线路板11的支架14,其中,所述滤光元件13被安装于所述支架14上以被保持于所述感光芯片12的感光路径上。在本申请其他示例中,所述滤光元件13被保持于所述感光芯片12的感光路径上的具体实施方式并不为本申请所局限,例如,所述滤光元件13可被实施为滤波膜并涂覆于所述变焦透镜组的某一光学透镜的表面,以起到滤光的效果,再如,所述感光组件10可进一步包括安装于所述支架14的滤光元件支架(未有图示意),其中,所述滤光元件13以被安装于所述滤光元件支架的方式被保持于所述感光芯片12的感光路径上。
在本申请实施例的一个具体示例中,所述支架14可被实施为塑料支架,其通过黏着剂附着于所述线路板11上。在本申请实施例的其他示例中,所述支架14还可以被实施为一体地成型于所述线路板11的一体式支架,例如模塑支架,对此,并不为本申请所局限。
如前所述,为了满足越来越广泛的市场需求,高像素、大芯片、小尺寸是现有摄像模组不可逆转的发展趋势。随着感光芯片朝着高像素和大芯片的方向发展,与感光芯片适配的光学部件(例如,滤光元件、光学镜头)的尺寸也逐渐增大,这给用于驱动光学部件以进行光学性能调整(例如,光学对焦、光学防抖等)的驱动元件带来的新的挑战。
具体地,现有的用于驱动光学部件的驱动元件为电磁式马达,例如,音圈马达(Voice Coil Motor:VCM)、形状记忆合金驱动器(Shape of Memory Alloy Actuator:SMA)等。然而,随着光学部件尺寸增加而导致的重量增加,现有的电磁式马达已逐渐无法提供足够的驱动力来驱动光学部件移动。量化来看,现有的音圈马达和形状记忆合金驱动器仅适于驱动重量小于100mg的光学部件,也就是,如果光学镜头的重量超过100mg,现有的驱动器将无法满足摄像模组的应用需求。
此外,随着移动终端设备朝着小型化和薄型化的方向发展,驱动元件内部的部件布设密度也随之提高。相应地,现有的音圈马达内部设有线圈和磁铁,当两个磁铁距离过近(小于7mm),其内部磁场会产生相互影响,导致磁铁产生位移或抖动,降低其驱动控制的稳定性。
因此,需要一种适配的用于摄像模组的新型驱动方案,且,新型的驱动器不仅能满足摄像模组对于光学性能调整的驱动要求,且能够满足摄像模组轻型化和薄型化的发展需求。
也就是,对于摄像模组模组而言,新型的驱动器需满足如下要求:相对更大的驱动力,以及,更优的驱动性能(具体地包括:更高精度的驱动控制和更长的驱动行程)。同时,除了需要寻找满足新技术要求的驱动器以外,在选择新驱动器时还需要考虑所选择的驱动器能够适应于当下摄像模组轻型化和薄型化的发展趋势。
经研究和试验,本申请提出了一种具有新型结构的压电致动器,该压电致动器能够满足所述摄像模组对于驱动器的技术要求。并且,进一步地采用合适的布置方式将所述压电致动器布置于所述摄像模组内,以使得其满足所述摄像模组的结构设计要求和尺寸设计要求。
图16图示了根据申请实施例的压电致动器的示意图。如图16所示,根据本申请实施例的所述压电致动器100,包括:压电主动部110和可传动地连接于所述压电主动部110的摩擦驱动部120,其中,在所述压电致动器100被导通后,所述摩擦驱动部120在所述压电主动部110作用下被配置为提供用于驱动被驱动对象的驱动力。
具体地,在该实施例中,所述压电主动部110被实施为压电陶瓷元件,其具有条状结构。如图16所示,所述压电主动部110为压电层叠结构,其具有多组相互交替设置的第一极化区域A1和第二极化区域A2,所述第一极化区域A1和所述第二极化区域A2具有相反的极化方向,其中,在所述压电致动器100被导通后,相互交替设置的多组所述第一极化区域A1和所述第二极化区域A2发生不同方向的形变以带动所述摩擦驱动部120以行波或驻波的方式沿着预设方向运动,以提供用于驱动部件的驱动力,如图16所示。
更具体地,进一步参考图17,在该实施例中,所述压电主动部110具有多组相互交替设置的第一极化区域A1和第二极化区域A2,所述极化区域 A1和所述极化区域A2的极化方向相反。这里,应注意到,在该实施例中,多组相互交替的所述极化区域A1和所述极化区域A2以并排的方式进行布置,即,多组相互交替的所述极化区域A1和所述极化区域A2处于同一直线上。并且,所述压电主动部110通过导线被电连接于外部激励电源,从而在给所述压电主动部110提供电源激励后,通过所述压电主动部110的逆压电效应所述压电主动部110发生形变。应可以理解,所述压电主动部110的形变将带动所述摩擦驱动部120以行波或驻波的方式运动,也就是,所述压电主动部110的形变能够被传递至所述摩擦驱动部120,以通过所述摩擦驱动部120的行波或驻波运动提供驱动力。
值得一提的是,在本申请其他示例中,每组所述第一极化区域A1和第二极化区域A2也可以具有相同的极化方向,其中,在所述压电致动器100被导通后,通过给每组所述第一极化区域A1和所述第二极化区域A2输入交替的电压信号,相互交替设置的多组所述第一极化区域A1和所述第二极化区域A2发生不同方向的形变以带动所述摩擦驱动部120以驻波的方式沿着预设方向运动,对此,并不为本申请所局限。
进一步地,在该实施例中,如图16所示,所述摩擦驱动部120包括多个相互间隔设置的摩擦驱动元件121,其中,每个所述摩擦驱动元件121的第一端耦接于所述压电主动部110,通过这样的方式使得所述摩擦驱动部120可传动地连接于所述压电主动部110。这里,所述多个摩擦驱动元件121的数量可以为2、3、4或者更多,优选地,所述摩擦驱动元件121的数量超过3(即,大于等于3),通过这样的数量配置,使得在实现所述压电致动器100稳定输出线性驱动力的同时还能控制所述压电致动器100的长度尺寸,使其适于装入摄像模组等体积相对较小的器件中。在该实施例中,所述压电致动器100的长度尺寸几近等于所述压电主动部110的尺寸(而所述压电主动部110具有长条状),量化来看,在该实施例中,所述压电致动器100的长度尺寸小于等于20mm,优选地,其长度尺寸小于等于10mm。
更优选地,在该实施例中,所述多个摩擦驱动元件121位于所述压电主动部110的中部区域,这样在通过所述多个摩擦驱动元件121驱动被作用对象时,被驱动对象的移动会更加平稳且线性度更佳。
应注意到,在该实施例中,所述摩擦驱动元件121具有柱状结构,其突出于所述压电主动部110的上表面。从外表来看,所述压电致动器100具 有齿条状。应可以理解,在本申请其他示例中,所述摩擦驱动元件121还可以被实施为其他形状,例如,其截面形状可被设置为梯形,对此,并不为本申请所局限。
值得一提的是,当所述摩擦驱动元件121的数量超过2个时,即大于等于3时,优选地,所述至少3个摩擦驱动元件121等距地相间设置,这样有利于提升所述压电致动器100的驱动稳定性。
进一步地,如图16所示,在该实施例中,当所述压电致动器100未被导通时,所述多个摩擦驱动元件121的与所述第一端相对的第二端的多个端面处于同一平面,例如,在如图15所示意的示例中,所述多个摩擦驱动元件121的第二端的端面处于同一水平面上。也就是,在该实施例中,所述多个摩擦驱动元件121的第二端的端面形成同一平面。相应地,在本申请一些实施例中,可进一步地在该平面上(即,在所述多个摩擦驱动元件121的第二端的端面所界定的平面)施加一层摩擦材料,以增加摩擦力。
值得一提的是,在实际应用中,通常还会在所述摩擦驱动部120的上表面设置一个动子,以通过所述动子来传递所述摩擦驱动部120所提供的行波或驻波式驱动力并作用于被驱动对象。也就是,在所述摩擦驱动部120和被驱动对象之间设置摩擦作动部130(所述摩擦作动部130充当所述动子),这样,当所述压电致动器100被导通时,所述摩擦驱动部120的行波或驻波式运动将驱动所述摩擦作动部130直线运动,具体地,所述摩擦作动部130的直线运动方向与所述摩擦驱动部120的行波或驻波前进方向相反。
为了确保所述摩擦驱动部120所提供的行波或驻波式驱动力能作用于所述摩擦作动部130,在安装的过程中,需确保所述摩擦作动部130和所述压电致动器100之间施加一定的预压力,以使得所述摩擦驱动部120能够与所述摩擦作动部130相抵触,这样,所述摩擦驱动部120所提供的行波或驻波式驱动力才能更有效率地传递至所述摩擦作动部130。
图18图示了根据本申请实施例的所述压电致动器100的一个变形实施的示意图。如图18所示,在该实施例中,所述压电致动器100进一步包括:叠置于所述压电主动部110的摩擦连接层140,每个所述摩擦驱动元件121以其第一端固定于所述摩擦连接层140的方式被耦接于所述压电主动部110,通过这样的方式,所述压电主动部110的形变能够通过所述摩擦连接层140更好地传递至所述摩擦驱动部120。特别地,在该实施例中,所述摩 擦驱动元件121与所述摩擦连接层140可具有一体式结构。当然,在一些示例中,所述摩擦驱动元件121和所述摩擦连接层140可具有分体式结构,即,两者为单独的部件。
进一步地,在本申请实施例中,所述压电致动器100具有相对更优化的尺寸。量化来看,所述压电致动器100的长度尺寸小于等于20mm,优选地,长度尺寸小于等于10mm,例如,可以是6mm或者4.2mm。所述压电致动器100的宽度尺寸小于等于1mm,优选地,宽度尺寸小于等于0.7mm。所述压电致动器100的高度尺寸小于等于1mm,这里,所述所述压电致动器100的高度尺寸由所述压电主动部110和所述摩擦驱动部120的尺寸决定。
相较于传统的电磁式驱动器,所述压电致动器100具有体积小、推力大,精度高的优势。量化来看,根据本申请实施例的所述压电致动器100能够提供的驱动力大小为0.6N至2N,其足以驱动重量大于100mg的部件。
除了能够提供相对较大的驱动力以外,相较于传统的电磁式马达方案和记忆合金马达方案,所述压电致动器100还具有其他优势,包括但不限于:尺寸相对较小(具有细长状),响应精度更佳,结构相对更为简单,驱动控制相对更为简单,产品一致性高,没有电磁干扰,具有相对更大的行程,稳定时间短,重量相对较小等。
具体来说,所述摄像模组需要其所配置的驱动器具有驱动行程较长且需要保证较好的对准精度等特征。在现有的音圈马达方案中,为了保证运动线性度需要额外设计导杆或滚珠导轨,同时需要在镜头侧部适配大尺寸的驱动磁铁/线圈等,同时需要设置滚珠、弹片、悬丝等辅助定位装置,为容纳较多的部件、保障结构强度和预留结构间隙,往往导致模组横向尺寸偏大,且结构设计复杂,模组重量较重。而记忆合金马达方案,受限于记忆合金方案同比例能够提供的行程相对较少,同时存在潜在断线等可靠性风险。
而所述压电致动器100具有相对较为简单的结构,组装结构更加简单,另外其压电主动部110、摩擦驱动部120等元件大小与运动行程大小基本无关,因此在光学变焦类产品中所述压电致动器100可以实现大推力、小尺寸,小重量等优势,同时匹配更大行程或更重器件重量进行设计,设计中的集成度也更高。
进一步地,所述压电致动器100以摩擦接触的方式推动待推动对象进行微米级运动,其相较于电磁式方案非接触的方式驱动待推动对象需要依靠电 磁力抵消重力,摩擦力的方式,具有更大推力,更大位移和更低功耗的优势,同时控制精度更高,可实现高精度连续变焦。而且在存在多个马达机构时,所述压电致动器100不存在磁铁线圈结构,无磁干扰问题。另外,所述压电致动器100可依靠部件之间的摩擦力自锁,因此可以降低所述摄像模组在进行光学防抖时的晃动异响。
在选择以所述压电致动器100作为驱动器来驱动所述感光组件10以进行光学防抖后,具体地,如图13和图15所示,在该实施例中,所述驱动组件40,包括:第一承载框架41、第一驱动元件42、第一预压部件43、第二承载框架44、第二驱动元件45、第二预压部件46和外框架47,其中,所述第一驱动元件42和所述第二驱动元件45被实施为压电致动器100。
相应地,如图13和图15所示,在该实施例中,所述感光组件10被安装于所述第一承载框架41,所述第一驱动元件42通过所述第一预压部件43以摩擦接触的方式抵向所述第一承载框架41,并被配置为驱动所述第一承载框架41以带动所述感光组件10在垂直于所述光轴的平面内移动以进行在第一方向上的光学防抖。所述第二承载框架44外设于所述第一承载框架41,其中,所述第二驱动元件45通过所述第二预压部件46以摩擦接触的方式抵向所述第二承载框架44,并被配置为驱动所述第二承载框架44以带动第一承载框架41进行带动所述感光组件10在垂直于所述光轴的平面内移动以进行在第二方向上的光学防抖,所述第一方向与所述第二方向垂直。在一个示例中,所述第一方向为X轴方向,所述第二方向为Y轴方向。
这里,所述第一驱动元件42以摩擦接触的方式抵向所述第一承载框架41表示:所述第一驱动元件42的摩擦驱动部120与所述第一承载框架41之间具有预压力,以使得所述第一驱动元件42的摩擦驱动部120能通过摩擦驱动的方式来驱动所述第一承载框架41。并且,所述第一驱动元件42的摩擦驱动部120与所述第一承载框架41之间的预压力可以是直接的预压力也可以是间接的预压力,其中,直接的预压力表示所述第一驱动元件42的摩擦驱动部120与所述第一承载框架41之间直接接触,以在两者之间产生预压力;间接的预压力表示虽然所述第一驱动元件42的摩擦驱动部120与所述第一承载框架41之间不直接接触,但两者之间仍存在预压力以使得所述第一驱动元件42的摩擦驱动部120能通过摩擦驱动的方式来驱动所述第一承载框架41。
相应地,所述第二驱动元件45以摩擦接触的方式抵向所述第二承载框架44表示:所述第二驱动元件45的摩擦驱动部120与所述第二承载框架44之间具有预压力,进而所述第二驱动元件45的摩擦驱动部120能通过摩擦驱动的方式来驱动所述第二承载框架44。并且,所述第二驱动元件45的摩擦驱动部120与所述第二承载框架44之间的预压力可以是直接的预压力也可以是间接的预压力,其中,直接的预压力表示所述第二驱动元件45的摩擦驱动部120与所述第二承载框架44之间直接接触,以在两者之间产生预压力;间接的预压力表示虽然所述第二驱动元件45的摩擦驱动部120与所述第二承载框架44之间不直接接触,但两者之间仍存在预压力以使得所述第二驱动元件45的摩擦驱动部120能通过摩擦驱动的方式来驱动所述第二承载框架44。
更具体地,该实施例中,如图15所示,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一承载框架41和所述第二承载框架44之间,通过这样的方式,所述第一驱动元件42以摩擦接触的方式抵向所述第一承载框架41。
相应地,在该实施例中,所述第一预压部件43包括第一弹性元件431,所述第一弹性元件431被设置于所述第一驱动元件42的压电主动部110和所述第二承载框架44之间,以通过所述第一弹性元件431的弹力迫使所述第一驱动元件42以摩擦接触的方式抵向所述第一承载框架41。在该实施例中,所述第一驱动元件42的摩擦驱动部120直接抵触于所述第一承载框架41的外侧壁的表面,相应地,所述第一弹性元件431所提供的弹力能够迫使所述第一驱动元件42的所述摩擦驱动部120抵触于所述第一承载框架41的外侧壁的表面,以在两者之间形成摩擦接触的结合关系。这样,在所述第一驱动元件42被导通后,所述第一驱动元件42的所述摩擦驱动部120能以摩擦驱动的方式驱动所述第一承载框架41沿着第一方向移动,以带动所述感光组件10沿着所述第一方向移动以进行在所述第一方向上的光学防抖。
在本申请一个具体示例中,所述第一弹性元件431被实施为具有弹性的黏着剂,也就是,所述第一弹性元件431被实施为固化后具有弹性的胶水。相应地,在安装过程中,可在所述第二承载框架44的内侧壁的表面和所述第一驱动元件42的压电主动部110之间施加一层厚度为10um至50um的 黏着剂,以在所述黏着剂固化成型后形成设置于所述第一驱动元件42的压电主动部110和所述第二承载框架44之间的所述第一弹性元件431。应可以理解,在该示例中,所述第一弹性元件431在提供预压力的同时,还能够使得所述第一驱动元件42被固定于所述第二承载框架44的内侧壁的表面。优选地,所述第一弹性元件431具有相对较高的平整度,即,在施加所述黏着剂时,尽可能地保证所施加的黏着剂具有相对较高的平整度且均匀度,从而使得所述第一驱动元件42能够平整地被固定于所述第二承载框架44的内侧壁的表面,进而提升所述第一驱动元件42驱动的稳定性。
相应地,该实施例中,如图15所示,所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二承载框架44和所述外框架47之间,通过这样的方式,所述第二驱动元件45以摩擦接触的方式抵向所述第二承载框架44。并且,应注意到,如图13所示,所述镜头组件的镜头载体承载于所述外框架47上。
进一步地,如图15所示,在该实施例中,所述第二预压部件46包括第二弹性元件461,所述第二弹性元件461被设置于所述第二驱动元件45的压电主动部110和所述外框架47之间,以通过所述第二弹性元件461的弹力迫使所述第二驱动元件45以摩擦接触的方式抵向所述第二承载框架44。相应地,该实施例中,所述第二驱动元件45的摩擦驱动部120直接抵触于所述第二承载框架44的外侧壁的表面,相应地,所述第二弹性元件461所提供的弹力能够迫使所述第二驱动元件45的所述摩擦驱动部120抵触于所述第二承载框架44的外侧壁的表面,以在两者之间形成摩擦接触的结合关系。这样,在所述第二驱动元件45被导通后,所述第二驱动元件45的所述摩擦驱动部120能以摩擦驱动的方式驱动所述第二承载框架44沿着第二方向移动,以带动所述感光组件10沿着所述第二方向移动以进行在所述第二方向上的光学防抖。
在本申请一个具体示例中,所述第二弹性元件461被实施为具有弹性的黏着剂,也就是,所述第二弹性元件461被实施为固化后具有弹性的胶水。相应地,在安装过程中,可在所述外框架47的内侧壁的表面和所述第二驱动元件45的压电主动部110之间施加一层厚度为10um至50um的黏着剂,以在所述黏着剂固化成型后形成设置于所述第二驱动元件45的压电主动部110和所述外框架47之间的所述第二弹性元件461。应可以理解,在该示 例中,所述第二弹性元件461在提供预压力的同时,还能够使得所述第二驱动元件45被固定于所述外框架47的内侧壁的表面。优选地,所述第二弹性元件461具有相对较高的平整度,即,在施加所述黏着剂时,尽可能地保证所施加的黏着剂具有相对较高的平整度且均匀度,从而使得所述第二驱动元件45能够平整地被固定于所述外框架47的内侧壁的表面,进而提升所述第二驱动元件45驱动的稳定性。
值得一提的是,在本申请其他实施例中,所述第一弹性元件431和所述第二弹性元件461也可以被实施为不具有黏性的弹性元件,例如,材料自身特征本身存在弹性的橡胶,或者,由于形变而产生弹性的弹簧、板簧等,对此,同样并不为本申请所局限。
为了使得所述第一驱动元件42和所述第二驱动元件45能够更为平稳地驱动所述第一承载框架41和所述第二承载框架44,如图15所示,所述驱动组件40进一步包括设置于所述第一承载框架41和所述第二承载框架44之间的第一导引机构48和设置于所述第二承载框架44和所述外框架47之间的第二导引机构49,其中,所述第一导引机构48被配置为引导所述第一承载框架41沿着所述第一方向移动,所述第二导引机构49被配置为引导所述第二承载框架44沿着所述第二方向移动。
更具体地,如图15所示,在该实施例中,所述第一导引机构48和所述第二导引机构49被实施为导杆结构。相应地,所述第一导引机构48包括被设置于所述第一承载框架41的外侧壁且沿着所述第一方向延伸的第一导杆,其中,所述第一导杆的两端部被固定于所述第二承载框架44的内侧壁上。特别地,在该实施例中,所述第一导杆与所述第一驱动元件42相对同向地设置,这样,在所述第一驱动元件42被导通后,所述第一承载框架41被导引沿着所述第一导杆延伸的方向进行移动,以提高所述第一承载框架41的移动稳定性。
相应地,在该实施例中,所述第二导引机构49包括被设置于所述第二承载框架44的外侧壁且沿着所述第二方向延伸的第二导杆,其中,所述第二导杆的两端部被固定于所述外框架47的内侧壁上。特别地,在该实施例中,所述第二导杆与所述第二驱动元件45相对同向地设置,这样,在所述第二驱动元件45被导通后,所述第二承载框架44被导引沿着所述第二导杆延伸的方向进行移动,以提高所述第二承载框架44的移动稳定性。
值得一提的是,在本申请其他实施例中,所述第一导引机构48和所述第二导引机构49还能够基于其他原理实现,例如,通过滚珠-滚槽机构、滑块-滑槽机构等,对此,并不为本申请所局限。
为了优化所述第一驱动元件42和所述第二驱动元件45的驱动性能,在本申请的其他示例中,如图19所示,所述驱动组件40进一步包括第一摩擦作动部131和第二摩擦作动部132,其中,所述第一摩擦作动部131被设置于所述第一驱动元件42和所述第一承载框架41之间并且所述第一驱动元件42的摩擦驱动部120在所述第一预压部件43的作用下抵触于所述第一摩擦作动部131,所述第一摩擦作动部131抵触于所述第一承载框架41的外侧壁的表面,通过这样的方式使得所述第一驱动元件42所提供的摩擦驱动力能够藉由所述第一摩擦作动部131作用于所述第一承载框架41,以带动所述第一承载框架41和所述感光组件10沿着所述第一方向移动。也就是,在该变形实施例中,所述第一驱动元件42的摩擦驱动部120与所述第一承载框架41之间的预压力是间接的预压力,即,虽然所述第一驱动元件42的摩擦驱动部120与所述第一承载框架41之间不直接接触,但两者之间仍存在预压力以使得所述第一驱动元件42的摩擦驱动部120能通过摩擦驱动的方式来驱动所述第一承载框架41。
相应地,所述第二摩擦作动部132被设置于所述第二驱动元件45和所述第二承载框架44之间并且所述第二驱动元件45的摩擦驱动部120在所述第二预压部件46的作用下抵触于所述第二摩擦作动部132且所述第二摩擦作动部132抵触于所述第二承载框架44的外侧壁的表面,通过这样的方式,使得所述第二驱动元件45所提供的摩擦驱动力能够藉由所述第二摩擦作动部132作用于所述第二承载框架44以带动所述第二承载框架44、所述第一承载框架41和所述感光组件10沿着所述第二方向移动,以进行在第二方向上的光学防抖。
更具体地,如图13所示,在该实施例中,所述第一摩擦作动部131具有第一表面和与所述第一表面相对的第二表面,其中,在所述第一预压部件43的作用下,所述第一摩擦作动部131的第一表面抵触于所述第一承载框架41的外侧壁的表面,其第二表面抵触于所述多个摩擦驱动元件121中至少一个所述摩擦驱动元件121的第二端的端面,通过这样的方式,所述第一驱动元件42的摩擦驱动部120抵触于所述第一摩擦作动部131且所述第 一摩擦作动部131抵触于所述第一承载框架41,通过这样的方式使得所述第一驱动元件42所提供的摩擦驱动力能够藉由所述第一摩擦作动部131作用于所述第一承载框架41。相应地,所述第二摩擦作动部132具有第三表面和与所述第三表面相对的第四表面,其中,在所述第二预压部件46的作用下,所述第二摩擦作动部132的第三表面抵触于所述第二承载框架44的外侧壁的表面,所述第四表面抵触于所述多个摩擦驱动元件121中至少一个所述摩擦驱动元件121的第二端的端面,通过这样的方式,所述第二驱动元件45的摩擦驱动部120抵触于所述第二摩擦作动部132且所述第二摩擦作动部132抵触于所述第二承载框架44,通过这样的方式使得,所述第二驱动元件45所提供的摩擦驱动力能够藉由所述第二摩擦作动部132作用于所述第二承载框架44。
值得一提的是,虽然在如图16所示意的变形实施例中,所述第一摩擦作动部131和所述第二摩擦作动部132作为一个单独的部件被分别设置于所述第一驱动元件42和所述第一承载框架41之间,以及,所述第二驱动元件45和所述第二承载框架44之间,例如,所述第一摩擦作动部131被实施为一个单独的部件并被贴附于所述第一承载框架41的侧表面,或者,所述第二摩擦作动部132被实施为一个单独的部件被贴附于所述第二承载框架44的侧表面,再如,所述第一摩擦作动部131被实施为一层涂覆于所述第一承载框架41的侧表面的涂层,或者,所述第二摩擦作动部132被实施为一层涂覆于所述第二承载框架44的侧表面的涂层。应可以理解,在本申请其他示例中,所述第一摩擦作动部131也可一体成型于所述第一承载框架41的外侧壁的表面,即,所述第一摩擦作动部131与所述第一承载框架41具有一体式结构。当然,在本申请其他示例中,所述第二摩擦作动部132也可一体成型于所述第二承载框架44的外侧壁的表面,即,所述第二摩擦作动部132与所述第二承载框架44具有一体式结构。
还值得一提的是,在该变形实施例中,所述第一摩擦作动部131的长度大于所述第一驱动元件42的长度且所述第二摩擦作动部131的长度大于所述第二驱动元件43的长度,这样,在通过所述第一驱动元件41和所述第二驱动元件42分别以摩擦驱动的方式驱动所述第一承载框架41和所述第二承载框架44时,所述第一承载框架41和所述第二承载框架44具有足够的行程,以保证所述第一承载框架41和所述第二承载框架44的移动线性 度。当然,在本申请其他示例中,所述第一摩擦作动部131的长度也可以小于或者等于所述第一驱动元件42的长度且所述第二摩擦作动部132的长度也可以小于或者等于所述第二驱动元件43的长度,对此,并不为本申请所局限。
图20图示了根据本申请实施例的所述摄像模组的另一个变形实施的示意图。相较于图16所示意的示例,在该变形示例中,所述第一承载框架41具有凹陷地形成于其表面的第一凹槽410,所述第一驱动元件42的摩擦驱动部120被设置于所述第一凹槽410内;所述第二承载框架44具有凹陷地形成于其表面的第二凹槽440,所述第二驱动元件45的摩擦驱动部120被设置于所述第二凹槽440内。也就是,在该变形实施例中,所述第一驱动元件42被至少部分地收容于所述第一凹槽410内,所述第二驱动元件45被至少部分地收容于所述第二凹槽440内。优选地,所述第一驱动元件42的压电主动部110的一部分被收容于所述第一凹槽410内,所述第二驱动元件45的压电主动部110的一部分被收容于所述第二凹槽440内。
这样,当所述第一驱动元件42在所述第一凹槽410内驱动所述第一承载框架41时,所述第一凹槽410自身形成用于引导所述第一承载框架41移动的引导槽。也就是,在该变形实施例中,所述第一凹槽410不仅为所述第一驱动元件42的安装提供安装空间,同时,其自身形成用于引导所述第一承载框架41移动(或者说,规范所述第一驱动元件42的运动)的导引结构。同样地,当所述第二驱动元件45在所述第二凹槽440内驱动所述第二承载框架44时,所述第二凹槽440自身形成用于引导所述第二承载框架44移动的引导槽。也就是,在该变形实施例中,所述第二凹槽440不仅为所述第一驱动元件42的安装提供安装空间,同时,其自身形成用于引导所述第二承载框架44移动(或者说,规范所述第二驱动元件45的运动)的导引结构。
特别地,在该变形实施例中,所述第一驱动元件42和所述第二驱动元件45的长度尺度小于所述第一凹槽410和所述第二凹槽440的长度尺寸,所述第一驱动元件42和所述第二驱动元件45宽度尺寸略小于或等于所述第一凹槽410和所述第二凹槽440的宽度尺寸。
图21图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。相较于图19所示意的示例,在该变形示例中,所述第一承载框架41 具有凹陷地形成于其表面的第一凹槽410,所述第一摩擦作动部131被设置于所述第一凹槽410内;所述第二承载框架44具有凹陷地形成于其表面的第二凹槽440,所述第二摩擦作动部132被设置于所述第二凹槽440内。也就是,在该变形实施例中,所述第一驱动元件42被至少部分地收容于所述第一凹槽410内,所述第二驱动元件45被至少部分地收容于所述第二凹槽440内。优选的,所述第一驱动元件42的压电主动部110的一部分被收容于所述第一凹槽410内,所述第二驱动元件45的压电主动部110的一部分被收容于所述第二凹槽440内。
这样,当所述第一驱动元件42在所述第一凹槽410内驱动所述第一承载框架41时,所述第一凹槽410自身形成用于引导所述第一承载框架41移动的引导槽。也就是,在该变形实施例中,所述第一凹槽410不仅为所述第一驱动元件42的安装提供安装空间,同时,其自身形成用于引导所述第一承载框架41移动(或者说,规范所述第一驱动元件42的运动)的导引结构。同样地,当所述第二驱动元件45在所述第二凹槽440内驱动所述第二承载框架44时,所述第二凹槽440自身形成用于引导所述第二承载框架44移动的引导槽。也就是,在该变形实施例中,所述第二凹槽440不仅为所述第一驱动元件42的安装提供安装空间,同时,其自身形成用于引导所述第二承载框架44移动(或者说,规范所述第二驱动元件45的运动)的导引结构。
特别地,在该变形实施例中,所述第一驱动元件42和所述第二驱动元件45的长度尺度小于所述第一凹槽410和所述第二凹槽440的长度尺寸,所述第一驱动元件42和所述第二驱动元件45宽度尺寸略小于或等于所述第一凹槽410和所述第二凹槽440的宽度尺寸。
图22图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。相较于图13所示意的示例,在该变形实施例中,所述第一驱动元件42和所述第二驱动元件45的设置方式发生了调整。
具体地,在如图13和图15所示意的示例中,所述第一驱动元件42位于所述第一承载框架41的侧部,且,所述第二驱动元件45位于所述第二承载框架44的侧部。相对地,如图22所示,在该变形实施例中,所述第一驱动元件42位于所述第一承载框架41的上部,且所述第二驱动元件45位于所述第二承载框架44的上部。
在该变形实施的一个具体示例中,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一承载框架41和所述第二承载框架44上下之间,通过这样的方式,所述第一驱动元件42以摩擦接触的方式抵向所述第一承载框架41。所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二承载框架44和所述镜头组件20上下之间,通过这样的方式,所述第二驱动元件45以摩擦接触的方式抵向所述第二承载框架44。当然,在该变形实施例中,也可以将所述外框架47设置一内延伸臂,使得所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二承载框架44和外框架47上下之间.
相一致地,所述驱动组件40进一步包括设置于所述第一承载框架41和所述第二承载框架44之间的第一导引机构48和设置于所述第二承载框架和所述外框架47之间的第二导引机构49。但与图13和图15所示意的示例不同的是,在该变形实施例中,所述第一导引机构48和所述第二导引机构49被实施为滚珠-滚槽机构,如图23所示。
图24图示了根据本申请实施例的所述摄像模组的又一个变形实施的示意图。相较于图13所示意的示例,在该变形实施例中,所述第一驱动元件42和所述第二驱动元件45的设置方式再次发生了调整。
具体地,如图24所示,在该变形实施例中,所述第一驱动元件42位于所述第一承载框架41的下部,且,所述第二驱动元件45位于所述第二承载框架44的下部。
在该变形实施的一个具体示例中,所述第一驱动元件42通过所述第一预压部件43被夹持地设置于所述第一承载框架41和所述第二承载框架44上下之间,通过这样的方式,所述第一驱动元件42以摩擦接触的方式抵向所述第一承载框架41。所述第二驱动元件45通过所述第二预压部件46被夹持地设置于所述第二承载框架44和所述外框架47上下之间,通过这样的方式,所述第二驱动元件45以摩擦接触的方式抵向所述第二承载框架44。
相一致地,所述驱动组件40进一步包括设置于所述第一承载框架41和所述第二承载框架44之间的第一导引机构48和设置于所述第二承载框架和所述外框架47之间的第二导引机构49。但与图13和图15所示意的示例不同的是,在该变形实施例中,所述第一导引机构48和所述第二导引机构49被实施为滚珠-滚槽机构,如图23所示。
值得一提的是,在本申请的其他变形实施例中,所述第一预压部件43和所述第二预压部件46的结构配置也可以做出调整。具体地,如图25所示,在本申请其他示例中,所述第一预压部件43包括设置于所述第一承载框架41的第一磁吸元件52和设置于所述第二承载框架44且对应于所述第一磁吸元件52的第二磁吸元件53,以通过所述第一磁吸元件52和所述第二磁吸元件53之间的磁吸作用迫使所述第一驱动元件42以摩擦接触的方式抵向所述第一承载框架41。
在该变形实施中,所述第一磁吸元件52和所述第二磁吸元件53是指能够相互吸引的磁吸组件,例如,所述第一磁吸元件52可被实施为磁体,所述第二磁吸元件53可被实施为磁性部件,例如,由铁、镍、钴等金属制成的材料;再如,所述第一磁吸元件52可被实施为磁体,所述第二磁吸元件53也可被实施为磁体。
所述第二预压部件46包括设置于所述第二承载框架44的第三磁吸元件62和设置于所述镜头组件20且对应于所述第三磁吸元件62的第四磁吸元件63,以通过所述第三磁吸元件62和所述第四磁吸元件63之间的磁吸作用迫使所述第二驱动元件45以摩擦接触的方式抵向所述第二承载框架44。
在该变形实施中,所述第三磁吸元件62和所述第四磁吸元件63是指能够相互吸引的磁吸组件,例如,所述第三磁吸元件62可被实施为磁体,所述第四磁吸元件63可被实施为磁性部件,例如,由铁、镍、钴等金属制成的材料;再如,所述第三磁吸元件62可被实施为磁体,所述第四磁吸元件63也可被实施为磁体。
综上,基于本申请实施例的所述摄像模组被阐明,其中,所述摄像模组采用压电致动器100作为驱动器以不仅能满足摄像模组对于光学性能调整的驱动要求,且能够满足摄像模组轻型化和薄型化的发展需求。
虽然,在本申请实施例中,以所述摄像模组为传统的直立式摄像模组为示例,本领域普通技术人员应可以理解,根据本申请实施例的所述压电致动器100也可以作为驱动器被应用于潜望式摄像模组中,对此,并不为本申请所局限。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (61)

  1. 一种摄像模组,其特征在于,包括:
    感光组件,包括:线路板和电连接于所述线路板的感光芯片;
    被保持于所述感光组件的感光路径上的镜头组件,包括:镜头载体和安装于所述镜头载体的光学镜头,其中,所述光学镜头设有一光轴;以及
    驱动组件,包括:第一承载框架、第一驱动元件和第一预压部件,其中,所述感光组件被安装于所述第一承载框架,所述第一驱动元件被实施为压电致动器,其中,所述第一驱动元件通过所述第一预压部件以摩擦接触的方式抵向所述第一承载框架,并被配置为驱动所述第一承载框架以带动所述感光组件在垂直于所述光轴的平面内移动以进行光学防抖。
  2. 根据权利要求1所述的摄像模组,其中,所述驱动组件进一步包括第二承载框架、第二驱动元件和第二预压部件,其中,所述第二承载框架外设于所述第一承载框架,所述第二驱动元件被实施为压电致动器,其中,所述第二驱动元件通过所述第二预压部件以摩擦接触的方式抵向所述第二承载框架,并被配置为驱动所述第二承载框架以带动第一承载框架进行带动所述感光组件在垂直于所述光轴的平面内移动以进行光学防抖。
  3. 根据权利要求2所述的摄像模组,其中,所述压电致动器,包括:压电主动部和可传动地连接于所述压电主动部的摩擦驱动部,其中,在所述压电致动器被导通后,所述摩擦驱动部在所述压电主动部作用下被配置为提供用于驱动所述第一承载框架或所述第二承载框架的驱动力。
  4. 根据权利要求3所述的摄像模组,其中,所述压电主动部具有多组相互交替设置的第一极化区域和第二极化区域,所述第一极化区域和所述第二极化区域具有相反的极化方向,其中,在所述压电致动器被导通后,相互交替设置的多组所述第一极化区域和所述第二极化区域发生不同方向的形变以带动所述摩擦驱动部以行波或驻波的方式沿着预设方向运动,以提供用于驱动第一承载框架或所述第二承载框架的驱动力。
  5. 根据权利要求4所述的摄像模组,其中,所述摩擦驱动部包括多个相互间隔设置的摩擦驱动元件,每个所述摩擦驱动元件的第一端耦接于所述压电主动部。
  6. 根据权利要求5所述的摄像模组,其中,所述压电致动器进一步包括:叠置于所述压电主动部的摩擦连接层,每个所述摩擦驱动元件以其第一端固定于所述摩擦连接层的方式被耦接于所述压电主动部。
  7. 根据权利要求6所述的摄像模组,其中,所述多个摩擦驱动元件的与所述第一端相对的第二端的多个端面处于同一平面。
  8. 根据权利要求7所述的摄像模组,其中,所述驱动组件进一步包括第一摩擦作动部和第二摩擦作动部,所述第一摩擦作动部被设置于所述第一驱动元件和所述第一承载框架之间,所述第二摩擦作动部被设置于所述第二驱动元件和所述第二承载框架之间。
  9. 根据权利要求8所述的摄像模组,其中,所述第一摩擦作动部具有第一表面和与所述第一表面相对的第二表面,所述第一表面抵触于所述第一承载框架的表面,所述第二表面抵触于所述多个摩擦驱动元件中至少一个所述摩擦驱动元件的第二端的端面;所述第二摩擦作动部具有第三表面和与所述第三表面相对的第四表面,所述第三表面抵触于所述第二承载框架的表面,所述第四表面抵触于所述多个摩擦驱动元件中至少一个所述摩擦驱动元件的第二端的端面。
  10. 根据权利要求9所述的摄像模组,其中,所述第一承载框架具有凹陷地形成于其表面的第一凹槽,所述第一摩擦作动部被设置于所述第一凹槽内;和/或,所述第二承载框架具有凹陷地形成于其表面的第二凹槽,所述第二摩擦作动部被设置于所述第二凹槽内。
  11. 根据权利要求9所述的摄像模组,其中,所述第一凹槽和所述第二凹槽的长度大于所述压电致动器的长度尺寸,所述压电致动器的宽度尺寸小 于或等于所述第一凹槽和所述第二凹槽的宽度尺寸。
  12. 根据权利要求3所述的摄像模组,其中,所述压电致动器的长度尺寸小于等于20mm、其宽度尺寸小于等于1mm、以及,其高度尺寸小于等于1mm。
  13. 根据权利要求8所述的摄像模组,其中,所述第一驱动元件通过所述第一预压部件和所述第一摩擦作动部被夹持地设置于所述第一承载框架和所述第二承载框架之间,通过这样的方式,所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架。
  14. 根据权利要求13所述的摄像模组,其中,所述第一驱动元件位于所述第一承载框架的侧部。
  15. 根据权利要求13所述的摄像模组,其中,所述第一驱动元件位于所述第一承载框架的上部。
  16. 根据权利要求13所述的摄像模组,其中,所述第一驱动元件位于所述第一承载框架的下部。
  17. 根据权利要求14所述的摄像模组,其中,所述驱动组件进一步包括外设于所述第二承载框架的外框架,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述外框架之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架,其中,所述第二驱动元件位于所述第二承载框架的侧部。
  18. 根据权利要求15所述的摄像模组,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述镜头载体之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架,其中,所述第二驱动元件位于所述第二承载框架的上部。
  19. 根据权利要求16所述的摄像模组,其中,所述驱动组件进一步外设于所述第二承载框架的外框架,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二承载框架和所述外框架之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架,其中,所述第二驱动元件位于所述第二承载框架的下部。
  20. 根据权利要求17所述的摄像模组,其中,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述外框架之间的第二导引机构。
  21. 根据权利要求18所述的摄像模组,其中,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述镜头载体之间的第二导引机构。
  22. 根据权利要求19所述的摄像模组,其中,所述驱动组件进一步包括设置于所述第一承载框架和所述第二承载框架之间的第一导引机构和设置于所述第二承载框架和所述外框架之间的第二导引机构。
  23. 根据权利要求20所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述外框架之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架。
  24. 根据权利要求21所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架;所述第二预压元件包括第 二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述镜头载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架。
  25. 根据权利要求22所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二承载框架之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述外框架之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架。
  26. 根据权利要求23至25任一所述的摄像模组,其中,所述第一弹性元件和所述第二弹性元件被实施为具有弹性的黏着剂。
  27. 根据权利要求26所述的摄像模组,其中,所述第一弹性元件和所述第二弹性元件的厚度尺寸为10um至50um之间。
  28. 根据权利要求20所述的摄像模组,其中,所述第一预压部件包括设置于所述第一承载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述外框架且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架。
  29. 根据权利要求21所述的摄像模组,其中,所述第一预压部件包括设置于所述第一承载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向 所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述镜头载体且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架。
  30. 根据权利要求22所述的摄像模组,其中,所述第一预压部件包括设置于所述第一承载框架的第一磁吸元件和设置于所述第二承载框架且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一承载框架;所述第二预压部件包括设置于所述第二承载框架的第三磁吸元件和设置于所述外框架且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件以摩擦接触的方式抵向所述第二承载框架。
  31. 一种摄像模组,其特征在于,包括:
    感光组件,包括:线路板和电连接于所述线路板的感光芯片;
    安装于所述感光组件上的框架载体组件,包括第一框架载体和外设于所述第一框架载体的第二框架载体;
    以被安装于所述框架组件的第一框架载体内的方式被保持于所述感光组件的感光路径上的光学镜头,所述光学镜头设有一光轴;以及
    驱动组件,包括:第一驱动元件和第一预压部件,所述第一驱动元件被实施为压电致动器,其中,所述第一驱动元件通过所述第一预压部件以摩擦接触的方式抵向所述第一框架载体,并被配置为驱动所述第一框架载体以带动所述光学镜头在垂直于所述光轴的平面内移动以进行在第一方向的光学防抖。
  32. 根据权利要求31所述的摄像模组,其中,所述框架载体组件进一步包括外设于所述第二框架载体的外框架载体,所述驱动组件进一步包括第二驱动元件和第二预压部件,所述第二驱动元件被实施为所述压电致动器,其中,所述第二驱动元件通过所述第二预压部件以摩擦接触的方式抵向所述第二框架载体,并被配置为驱动所述第二框架载体以带动第一框架载体进行 带动所述光学镜头在垂直于所述光轴的平面内移动以在第二方向上的进行光学防抖,所述第一方向垂直于所述第二方向。
  33. 根据权利要求32所述的摄像模组,其中,所述压电致动器,包括:压电主动部和可传动地连接于所述压电主动部的摩擦驱动部,其中,在所述压电致动器被导通后,所述摩擦驱动部在所述压电主动部作用下被配置为提供用于驱动所述第一框架载体或所述第二框架载体的驱动力。
  34. 根据权利要求33所述的摄像模组,其中,所述压电主动部具有多组相互交替设置的第一极化区域和第二极化区域,所述第一极化区域和所述第二极化区域具有相反的极化方向,其中,在所述压电致动器被导通后,相互交替设置的多组所述第一极化区域和所述第二极化区域发生不同方向的形变以带动所述摩擦驱动部以行波或驻波的方式沿着预设方向运动,以提供用于驱动第一框架载体或所述第二框架载体的驱动力。
  35. 根据权利要求33所述的摄像模组,其中,所述压电主动部具有多组相互交替设置的第一极化区域和第二极化区域,所述第一极化区域和所述第二极化区域具有相同的极化方向,其中,在所述压电致动器被导通后,相互交替设置的多组所述第一极化区域和所述第二极化区域发生不同方向的形变以带动所述摩擦驱动部以行波或驻波的方式沿着预设方向运动,以提供用于驱动第一框架载体或所述第二框架载体的驱动力。
  36. 根据权利要求34或35所述的摄像模组,其中,多组相互交替设置的所述第一极化区域和所述第二极化区域处于同一直线上。
  37. 根据权利要求35所述的摄像模组,其中,所述摩擦驱动部包括多个相互间隔设置的摩擦驱动元件,每个所述摩擦驱动元件的第一端耦接于所述压电主动部。
  38. 根据权利要求37所述的摄像模组,其中,所述多个摩擦驱动元件位于所述压电主动部的中部区域。
  39. 根据权利要求37所述的摄像模组,其中,所述压电致动器进一步包括:叠置于所述压电主动部的摩擦连接层,每个所述摩擦驱动元件以其第一端固定于所述摩擦连接层的方式被耦接于所述压电主动部。
  40. 根据权利要求37所述的摄像模组,其中,所述多个摩擦驱动元件的与所述第一端相对的第二端的多个端面处于同一平面。
  41. 根据权利要求38所述的摄像模组,其中,所述驱动组件进一步包括第一摩擦作动部和第二摩擦作动部,所述第一摩擦作动部被设置于所述第一驱动元件和所述第一框架载体之间,所述第二摩擦作动部被设置于所述第二驱动元件和所述第二框架载体之间。
  42. 根据权利要求41所述的摄像模组,其中,所述第一摩擦作动部具有第一表面和与所述第一表面相对的第二表面,所述第一表面抵触于所述第一框架载体的表面,所述第二表面抵触于所述多个摩擦驱动元件中至少一个所述摩擦驱动元件的第二端的端面;所述第二摩擦作动部具有第三表面和与所述第三表面相对的第四表面,所述第三表面抵触于所述第二框架载体的表面,所述第四表面抵触于所述多个摩擦驱动元件中至少一个所述摩擦驱动元件的第二端的端面。
  43. 根据权利要求33所述的摄像模组,其中,所述压电致动器的长度尺寸小于等于10mm、其宽度尺寸小于等于1mm、以及,其高度尺寸小于等于1mm。
  44. 根据权利要求41所述的摄像模组,其中,所述第一驱动元件通过所述第一预压部件和所述第一摩擦作动部被夹持地设置于所述第一框架载体和所述第二框架载体之间,通过这样的方式,所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体。
  45. 根据权利要求44所述的摄像模组,其中,所述第一驱动元件位于 所述第一框架载体的侧部。
  46. 根据权利要求44所述的摄像模组,其中,所述第一驱动元件位于所述第一框架载体的上部。
  47. 根据权利要求44所述的摄像模组,其中,所述第一驱动元件位于所述第一框架载体的下部。
  48. 根据权利要求45所述的摄像模组,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二框架载体和所述外框架载体之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的侧部。
  49. 根据权利要求46所述的摄像模组,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二框架载体和所述外框架载体之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的上部。
  50. 根据权利要求47所述的摄像模组,其中,所述驱动组件进一步包括外设于所述第二框架载体的外框架载体,其中,所述第二驱动元件通过所述第二预压部件和所述第二摩擦作动部被夹持地设置于所述第二框架载体和所述外框架载体之间,通过这样的方式,所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体,其中,所述第二驱动元件位于所述第二框架载体的下部。
  51. 根据权利要求48所述的摄像模组,其中,所述驱动组件进一步包括设置于所述第一框架载体和所述第二框架载体之间的第一导引机构和设置于所述第二框架载体和所述外框架载体之间的第二导引机构。
  52. 根据权利要求49所述的摄像模组,其中,所述驱动组件进一步包括设置于所述第一框架载体和所述第二框架载体之间的第一导引机构和设置于所述第二框架载体和所述镜头载体之间的第二导引机构。
  53. 根据权利要求50所述的摄像模组,其中,所述驱动组件进一步包括设置于所述第一框架载体和所述第二框架载体之间的第一导引机构和设置于所述第二框架载体和所述外框架载体之间的第二导引机构。
  54. 根据权利要求51所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述外框架载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体。
  55. 根据权利要求52所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述外框架载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体。
  56. 根据权利要求53所述的摄像模组,其中,所述第一预压部件包括第一弹性元件,所述第一弹性元件被设置于所述第一驱动元件的压电主动部和所述第二框架载体之间,以通过所述第一弹性元件的弹力迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压元件包括第二弹性元件,所述第二弹性元件被设置于所述第二驱动元件的压电主动部和所述外框架载体之间,以通过所述第二弹性元件的弹力迫使所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体。
  57. 根据权利要求54至56任一所述的摄像模组,其中,所述第一弹性元件和所述第二弹性元件被实施为具有弹性的黏着剂。
  58. 根据权利要求57所述的摄像模组,其中,所述第一弹性元件和所述第二弹性元件的厚度尺寸为10um至50um之间。
  59. 根据权利要求51所述的摄像模组,其中,所述第一预压部件包括设置于所述第一框架载体的第一磁吸元件和设置于所述第二框架载体且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压部件包括设置于所述第二框架载体的第三磁吸元件和设置于所述外框架载体且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体。
  60. 根据权利要求52所述的摄像模组,其中,所述第一预压部件包括设置于所述第一框架载体的第一磁吸元件和设置于所述第二框架载体且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压部件包括设置于所述第二框架载体的第三磁吸元件和设置于所述外框架载体且对应于所述第三磁吸元件的第四磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体。
  61. 根据权利要求53所述的摄像模组,其中,所述第一预压部件包括设置于所述第一框架载体的第一磁吸元件和设置于所述第二框架载体且对应于所述第一磁吸元件的第二磁吸元件,以通过所述第一磁吸元件和所述第二磁吸元件之间的磁吸作用迫使所述第一驱动元件以摩擦接触的方式抵向所述第一框架载体;所述第二预压部件包括设置于所述第二框架载体的第三磁吸元件和设置于所述外框架载体且对应于所述第三磁吸元件的第四磁吸 元件,以通过所述第三磁吸元件和所述第四磁吸元件之间的磁吸作用迫使所述第二驱动元件以摩擦接触的方式抵向所述第二框架载体。
PCT/CN2022/086337 2021-04-26 2022-04-12 摄像模组 WO2022228112A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280028965.4A CN117203970A (zh) 2021-04-26 2022-04-12 摄像模组
EP22794583.9A EP4319126A1 (en) 2021-04-26 2022-04-12 Camera module
US18/288,230 US20240205547A1 (en) 2021-04-26 2022-04-12 Camera module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110454537.5A CN115334212A (zh) 2021-04-26 2021-04-26 摄像模组
CN202110455905.8 2021-04-26
CN202110455905.8A CN115334213A (zh) 2021-04-26 2021-04-26 摄像模组
CN202110454537.5 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022228112A1 true WO2022228112A1 (zh) 2022-11-03

Family

ID=83846645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086337 WO2022228112A1 (zh) 2021-04-26 2022-04-12 摄像模组

Country Status (4)

Country Link
US (1) US20240205547A1 (zh)
EP (1) EP4319126A1 (zh)
CN (1) CN117203970A (zh)
WO (1) WO2022228112A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201477278U (zh) * 2009-08-03 2010-05-19 一品国际科技股份有限公司 压电式自动对焦镜头模块
US20100309323A1 (en) * 2009-06-03 2010-12-09 Samsung Electronics Co., Ltd. Optical image stabilizer for camera lens module
CN111262471A (zh) * 2020-02-17 2020-06-09 北京大学 圆环形压电驱动器及压电马达
CN111578079A (zh) * 2020-04-14 2020-08-25 睿恩光电有限责任公司 压电式相机模块转动装置、相机装置及电子设备
CN211531170U (zh) * 2020-03-25 2020-09-18 南昌欧菲光电技术有限公司 镜头组件、摄像模组及电子设备
CN112492175A (zh) * 2020-12-08 2021-03-12 维沃移动通信有限公司 摄像模组
CN212935798U (zh) * 2020-09-24 2021-04-09 辽宁中蓝光电科技有限公司 用于摄像镜头驱动的压电式直线驱动器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100309323A1 (en) * 2009-06-03 2010-12-09 Samsung Electronics Co., Ltd. Optical image stabilizer for camera lens module
CN201477278U (zh) * 2009-08-03 2010-05-19 一品国际科技股份有限公司 压电式自动对焦镜头模块
CN111262471A (zh) * 2020-02-17 2020-06-09 北京大学 圆环形压电驱动器及压电马达
CN211531170U (zh) * 2020-03-25 2020-09-18 南昌欧菲光电技术有限公司 镜头组件、摄像模组及电子设备
CN111578079A (zh) * 2020-04-14 2020-08-25 睿恩光电有限责任公司 压电式相机模块转动装置、相机装置及电子设备
CN212935798U (zh) * 2020-09-24 2021-04-09 辽宁中蓝光电科技有限公司 用于摄像镜头驱动的压电式直线驱动器
CN112492175A (zh) * 2020-12-08 2021-03-12 维沃移动通信有限公司 摄像模组

Also Published As

Publication number Publication date
CN117203970A (zh) 2023-12-08
EP4319126A1 (en) 2024-02-07
US20240205547A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
US7839586B2 (en) Lens driving module
US7969670B2 (en) Lens driving module
TW200823594A (en) Lens module
US20240210811A1 (en) Camera module
WO2022228112A1 (zh) 摄像模组
WO2022214084A1 (zh) 潜望式摄像模组和可变焦摄像模组
CN115268167A (zh) 摄像模组
CN115334213A (zh) 摄像模组
CN115334212A (zh) 摄像模组
WO2022166921A1 (zh) 可变焦摄像模组
CN115379074B (zh) 光学致动器及相应的摄像模组
CN115268008B (zh) 可变焦摄像模组
WO2022166922A1 (zh) 可变焦摄像模组和潜望式摄像模组
WO2022233289A1 (zh) 摄像模组、光学致动器、感光组件及其制造方法
CN114885088B (zh) 摄像模组及其光学防抖方法和电子设备
CN115268166A (zh) 摄像模组
WO2023051132A1 (zh) 摄像头模组及电子设备
WO2023051117A1 (zh) 驱动装置、摄像头模组以及电子设备
CN114942505B (zh) 可变焦摄像模组
WO2023051118A1 (zh) 驱动器及其制作方法、驱动装置、摄像头模组、电子设备
CN115914782A (zh) 防抖驱动组件和摄像模组
WO2023040904A1 (zh) 防抖驱动组件和摄像模组及防抖方法、用于驱动镜头的驱动组件及其组装方法和摄像模组
CN115225780A (zh) 可变焦摄像模组
WO2022166924A1 (zh) 摄像模组及终端设备
WO2024061006A1 (zh) 驱动组件和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280028965.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18288230

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022794583

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022794583

Country of ref document: EP

Effective date: 20231027

NENP Non-entry into the national phase

Ref country code: DE