WO2022166921A1 - 可变焦摄像模组 - Google Patents

可变焦摄像模组 Download PDF

Info

Publication number
WO2022166921A1
WO2022166921A1 PCT/CN2022/075177 CN2022075177W WO2022166921A1 WO 2022166921 A1 WO2022166921 A1 WO 2022166921A1 CN 2022075177 W CN2022075177 W CN 2022075177W WO 2022166921 A1 WO2022166921 A1 WO 2022166921A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
camera module
driving element
driving
drive
Prior art date
Application number
PCT/CN2022/075177
Other languages
English (en)
French (fr)
Inventor
袁栋立
王启
周胄
郑程倡
熊实
沈耀栋
王海涛
廖书伟
吴志涵
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110182408.5A external-priority patent/CN114942505B/zh
Priority claimed from CN202110172134.1A external-priority patent/CN114942504A/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202280010559.5A priority Critical patent/CN116802538A/zh
Publication of WO2022166921A1 publication Critical patent/WO2022166921A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens

Definitions

  • the present application relates to the field of camera modules, and in particular, to a variable-focus camera module, wherein the variable-focus camera module adopts a piezoelectric actuator as a driver to provide a sufficiently large driving force and relatively better driving performance.
  • a reasonable arrangement scheme is adopted to arrange the piezoelectric actuator in the variable-focus camera module, so as to satisfy the structural and size design requirements of the variable-focus camera module.
  • the existing driving element for driving the optical lens is an electromagnetic motor, for example, a voice coil motor (Voice Coil Motor: VCM), a shape memory alloy actuator (Shape of Memory Alloy Actuator: SMA), and the like.
  • a voice coil motor Voice Coil Motor: VCM
  • a shape memory alloy actuator Shape of Memory Alloy Actuator: SMA
  • the existing voice coil motor and shape memory alloy driver are only suitable for driving optical lenses with a weight of less than 100mg, that is, if the weight of the optical lens exceeds 100mg, the existing drivers will not be able to meet the application requirements of the camera module .
  • the camera module configured in the terminal device is also required to realize the function of zoom shooting, for example, the requirement for long-range shooting is realized through optical zoom.
  • the optical zoom camera module not only includes a lens with a larger size and weight, that is, requires the driver to provide a larger driving force, but also requires The drive used to drive the lens movement provides drive performance with higher precision and longer travel.
  • the above technical requirements cannot be met by the existing electromagnetic drive motors. Meanwhile, the existing electromagnetic actuator also has the problem of electromagnetic interference.
  • An advantage of the present application is to provide a zoom camera module, wherein the zoom camera module adopts a piezoelectric actuator as a driver to not only provide a sufficiently large driving force, but also provide higher precision And the driving performance with a longer stroke can meet the optical performance adjustment requirements of the variable-focus camera module.
  • Another advantage of the present application is to provide a zoom camera module, wherein the piezoelectric actuator is arranged in the zoom camera module by adopting a reasonable arrangement scheme, so as to satisfy the requirements of making the zoom camera module
  • the camera module meets its structural and size design requirements.
  • Yet another advantage of the present application is to provide a zoom camera module, wherein at least a part of the piezoelectric actuator is arranged in a space that was originally unused in the zoom camera module, so that all the The space in the zoom camera module can be used more fully, and the compactness of the space layout of the zoom camera module can be improved.
  • a zoom camera module which includes:
  • a zoom lens group with an optical axis including: a fixed part, a zoom part and a focus part;
  • a drive assembly comprising: a drive housing, a first carrier in the drive housing, a second carrier, a first drive element and a second drive element;
  • the zooming part is installed in the first carrier
  • the focusing part is installed in the second carrier
  • the first driving element is configured to drive the first carrier to drive the zooming
  • the part moves along the direction set by the optical axis
  • the second driving element is configured to drive the second carrier to drive the focusing part to move along the direction set by the optical axis
  • the first drive element and/or the second drive element are implemented as piezoelectric actuators
  • At least one first receiving channel is provided between the bottom surface of the drive housing and the bottom surface of the first carrier, and between the bottom surface of the drive housing and the bottom surface of the second carrier
  • There is at least one second accommodating channel wherein at least a part of the piezoelectric actuator is disposed in at least one of the first accommodating channel or at least one of the second accommodating channel.
  • the first driving element is implemented as a first piezoelectric actuator
  • the second driving element is implemented as a second piezoelectric actuator
  • At least part of the first piezoelectric actuator is disposed in the first receiving channel, and at least part of the second piezoelectric actuator is disposed in the in the second containment channel.
  • the first piezoelectric actuator includes a first piezoelectric active part, a first driven shaft drivably coupled to the first piezoelectric active part, And, a first drive part tightly matched with the first driven shaft, wherein, under the action of the first piezoelectric active part and the first driven shaft, the first drive part is configured to The first carrier is driven to move along the direction set by the optical axis;
  • the second piezoelectric actuating part includes a second piezoelectric active part, which is drivably coupled to the second piezoelectric a second driven shaft of the driving part, and a second driving part tightly matched with the second driven shaft, wherein, under the action of the second piezoelectric driving part and the second driven shaft, the second driving part is configured to drive the second carrier to move along the direction set by the optical axis;
  • At least a part of the first driven shaft of the first piezoelectric actuator extends in the first receiving channel, and at least a part of the second driven shaft of the second piezoelectric actuator extends in the in the second receiving channel.
  • the first piezoelectric actuator and the second piezoelectric actuator are disposed on the first side of the optical axis.
  • the first piezoelectric actuator and the second piezoelectric actuator are respectively disposed on the first side of the optical axis and on the first side Opposite second side.
  • the first piezoelectric actuator and the second piezoelectric actuator are disposed in opposite directions.
  • the first piezoelectric actuator and the second piezoelectric actuator are arranged in the same direction.
  • the first piezoelectric actuator and the second piezoelectric actuator have the same installation height with respect to the bottom surface of the drive housing.
  • the first piezoelectric actuator and the second piezoelectric actuator are arranged in opposite directions or in the same direction.
  • the first piezoelectric actuator and the second piezoelectric actuator have the same installation height with respect to the bottom surface of the drive housing.
  • the first piezoelectric active part of the first piezoelectric actuator is adjacent to the second piezoelectric active part of the second piezoelectric actuator.
  • the first driven shaft of the first piezoelectric actuator is adjacent to the second driven shaft of the second piezoelectric actuator.
  • the first piezoelectric active part of the first piezoelectric actuator is mounted on the first side wall of the drive housing, and the second piezoelectric actuator A second piezoelectric active portion of the actuator is attached to a second side wall of the drive housing opposite the first side wall.
  • the driving assembly further includes a guide structure disposed on a second side of the optical axis opposite to the first side, the guide structure being configured to guide The focusing portion and the zooming portion move in a direction set by the optical axis.
  • the guide structure includes: a first support portion and a second support portion formed on the drive housing at intervals, and a first support portion is erected on the first support At least one guide rod between the first carrier and the second support part and passing through the first carrier and the second carrier, the guide rod is parallel to the optical axis, so that the first carrier and the second carrier The carrier can be guided to move in a direction set by the guide rod parallel to the optical axis.
  • the driving assembly further includes a first guide mechanism and a second guide mechanism, wherein the first guide mechanism is configured to guide the zoom portion along the The direction set by the optical axis is moved, and the second guide mechanism is configured to guide the focus portion to move along the direction set by the optical axis.
  • the first guide mechanism includes a first mounting portion and a second mounting portion, and a first mounting portion and a second mounting portion that are spanned between the first mounting portion and the second mounting portion and pass through.
  • at least one first guide rod of the first carrier the first guide rod being parallel to the optical axis, so that the first carrier can be guided along the first guide rod parallel to the optical axis
  • the guide rod moves in the direction set by the guide rod;
  • the second guide mechanism includes a third installation part and a fourth installation part, and a third installation part and a fourth installation part that is spanned between the third installation part and the fourth installation part and penetrates through the first installation part.
  • At least one second guide rod of two carriers the second guide rod is parallel to the optical axis, so that the second carrier can be guided along the first guide rod parallel to the optical axis. Move in the set direction.
  • the first guide rod and the second guide rod are flush with each other.
  • the height of the first guide rod and the second guide rod relative to the bottom surface of the drive housing is the same as that of the first driven shaft and the second guide rod.
  • the driven shaft is flush with the mounting height of the bottom surface of the drive housing.
  • the first guide mechanism includes at least one ball arranged between the first carrier and the drive housing, and is arranged on the first carrier and a receiving groove for receiving the at least one ball between the driving housing.
  • the first guide mechanism includes: at least one slider disposed between the first carrier and the drive housing, and disposed on the drive A slide rail between the casing and the first carrier is suitable for the sliding of the at least one slider.
  • the second guide mechanism includes at least one ball arranged between the second carrier and the drive housing, and is arranged on the second carrier and a receiving groove for receiving the at least one ball between the driving housing.
  • the second guide mechanism includes: at least one sliding block disposed between the second carrier and the drive housing, and disposed on the drive A sliding rail between the casing and the second carrier is suitable for the sliding of the at least one slider.
  • the first carrier includes a first carrier base and a first extension arm and a second extension arm integrally extending upward from the first carrier base, respectively, so as to A first mounting cavity for mounting the zoom portion and a first opening communicating with the first mounting cavity are formed between the first carrier base, the first extension arm and the second extension arm.
  • one of the at least one first accommodating channel is formed on the side surface of the first carrier base, and the bottom surface of the first extending arm is and the bottom surface of the drive housing
  • the other one of the at least one first receiving channel is formed on the side surface of the first carrier base, and the bottom surface of the second extending arm and the bottom surface of the drive housing.
  • the second carrier includes a second carrier base and a third extension arm and a fourth extension arm integrally extending upward from the second carrier base, respectively, so as to A second mounting cavity for mounting the focusing portion and a second opening communicating with the second mounting cavity are formed between the second carrier base, the third extending arm and the fourth extending arm.
  • one of the at least one second accommodating channel is formed on the side surface of the second carrier base, and the bottom surface of the third extending arm is and the bottom surface of the drive housing, the other one of the at least one second receiving channel is formed on the side surface of the second carrier base, and the bottom surface of the fourth extending arm and the bottom surface of the drive housing.
  • the magnitude of the driving force generated by the piezoelectric actuator is 0.6N to 2N.
  • the first accommodating channel and the second accommodating channel are lower than the optical axis.
  • the installation height of the first driven shaft and the second driven shaft relative to the bottom surface of the drive housing is lower than that of the optical axis relative to the The height of the bottom surface of the drive housing.
  • the piezoelectric active part includes an electrode plate and at least one piezoelectric substrate stacked on the electrode plate.
  • the at least one piezoelectric substrate includes a first piezoelectric substrate and a second piezoelectric substrate, and the electrode plate is sandwiched between the first piezoelectric substrate and the second piezoelectric substrate. between the second piezoelectric substrates.
  • variable-focus camera module further comprises: a light blocking element disposed on the photosensitive path of the photosensitive component.
  • variable-focus camera module further comprises: a light turning element for turning the imaging light to the zoom lens group.
  • variable-focus camera module further comprises: a third driving element for driving the light turning element.
  • the zoom portion and the focus portion are disposed adjacent to each other.
  • the zoom portion is located between the fixed portion and the focus portion.
  • the focusing portion is located between the fixed portion and the zoom portion.
  • a zoom camera module which includes:
  • a zoom lens group with an optical axis including: a fixed part, a zoom part and a focus part;
  • a drive assembly comprising: a drive housing, a first carrier in the drive housing, a second carrier, a first drive assembly and a second drive assembly, wherein the zoom portion is mounted in the first carrier, The focusing portion is mounted within the second carrier, and the first drive assembly is configured to simultaneously drive the first carrier from a first side and a second side of the first carrier relative to the optical axis
  • the carrier drives the zooming part to move along the direction set by the optical axis
  • the second driving component is configured to drive the second carrier to drive the focusing part to move along the optical axis set move in the direction.
  • the first driving assembly includes a first driving element and a second driving element, the first driving element and the second driving element being implemented as piezoelectric actuators, wherein , the first driving element is configured to drive the first carrier from the first side of the first carrier to drive the zoom portion to move along the direction set by the optical axis, the second driving The element is configured to drive the first carrier from the second side of the first carrier to move the zoom portion along a direction set by the optical axis.
  • the piezoelectric actuator includes a piezoelectric active part, a driven shaft drivably connected to the piezoelectric active part and extending from the piezoelectric active part, and A driving part tightly fitted to the driven shaft, wherein the driving part is configured to drive the first carrier along the optical axis under the action of the piezoelectric active part and the driven shaft. Move in the set direction.
  • variable-focus camera module In the variable-focus camera module according to the present application, a first receiving channel on the first side of the first carrier and a first receiving channel on the the second accommodating channel on the second side of the first carrier, wherein the driving part of the first driving element is arranged in the first accommodating channel, and the driving part of the second driving element is arranged in the in the second containment channel.
  • At least a part of the driven shaft of the first driving element extends in the first receiving channel, and at least a part of the driven shaft of the second driving element extends in the in the second receiving channel.
  • the first carrier includes a first carrier base and a first extension arm and a second extension arm integrally extending upward from the first carrier base, respectively, so as to A first installation cavity for installing the zoom part and a first opening communicated with the first installation cavity are formed between the first carrier base, the first extension arm and the second extension arm, wherein the The first accommodating channel is formed on the side surface of the first carrier base, between the bottom surface of the first extension arm and the bottom surface of the drive housing, and the second accommodating channel is formed in the first The side surface of the carrier base, between the bottom surface of the second extension arm and the bottom surface of the drive housing.
  • the driving part of the first driving element is mounted on the bottom surface of the first extension arm, and the driving part of the second driving element is mounted on the second Extend the bottom surface of the arm.
  • variable-focus camera module the first driving element and the second driving element are arranged in the same direction.
  • variable-focus camera module the first driving element and the second driving element are arranged in opposite directions.
  • both the first driving element and the second driving element are arranged in a first arrangement direction.
  • both the first driving element and the second driving element are arranged in a second arrangement direction.
  • the piezoelectric active part of the first driving element is mounted on the first side wall of the driving housing
  • the piezoelectric active part of the second driving element is mounted on the first side wall of the drive housing
  • the driving housing includes a first mounting portion and a second mounting portion that are symmetrically arranged in the middle thereof with respect to the optical axis, wherein the pressure of the first driving element
  • the electroactive part is mounted on the first side wall of the first mounting part
  • the piezoelectric active part of the second driving element is mounted on the first side wall of the second mounting part.
  • the piezoelectric active part of the first driving element and the piezoelectric active part of the second driving element are flush with each other in the height direction of the driving housing.
  • the driven shaft of the first driving element and the driven shaft of the second driving element are flush with each other in the height direction of the driving housing.
  • the driven axis of the first driving element and the driven axis of the second driving element are symmetrically arranged on the first side of the first carrier with respect to the optical axis side and the second side of the first carrier.
  • the driving part of the first driving element and the driving part of the second driving element are symmetrically arranged on the first side and the first side of the first carrier with respect to the optical axis. the second side of the first carrier.
  • the second driving assembly includes a third driving element and a fourth driving element, and the third driving element and the fourth driving element are implemented as piezoelectric actuators, wherein , the third driving element is configured to drive the second carrier from the first side of the second carrier to drive the focusing portion to move along the direction set by the optical axis, the fourth driving The element is configured to drive the first carrier from the second side of the second carrier to move the focusing portion along a direction set by the optical axis.
  • the second driving assembly includes a third driving element and a fourth driving element, and the third driving element and the fourth driving element are implemented as piezoelectric actuators, wherein , the third driving element is configured to drive the second carrier from the first side of the second carrier to drive the focusing portion to move along the direction set by the optical axis, the fourth driving The element is configured to drive the first carrier from the second side of the second carrier to move the focusing portion along a direction set by the optical axis.
  • the second driving assembly includes a third driving element and a fourth driving element, and the third driving element and the fourth driving element are implemented as piezoelectric actuators, wherein , the third driving element is configured to drive the second carrier from the first side of the second carrier to drive the focusing portion to move along the direction set by the optical axis, the fourth driving The element is configured to drive the first carrier from the second side of the second carrier to move the focusing portion along a direction set by the optical axis.
  • a third receiving channel on the first side of the second carrier and a third receiving channel on the first side of the second carrier are formed between the bottom surface of the second carrier and the bottom surface of the driving housing.
  • At least a part of the driven shaft of the third driving element extends in the third receiving channel, and at least a part of the driven shaft of the fourth driving element extends in the in the fourth receiving channel.
  • the second carrier includes a second carrier base and a third extension arm and a fourth extension arm integrally extending upward from the second carrier base, respectively, so as to A second mounting cavity for mounting the focusing portion and a second opening communicating with the second mounting cavity are formed between the second carrier base, the third extending arm and the fourth extending arm, wherein the The third accommodating channel is formed on the side surface of the second carrier base, between the bottom surface of the third extension arm and the bottom surface of the drive housing, and the fourth accommodating channel is formed on the second carrier base.
  • the third driving element and the fourth driving element are arranged in the same direction.
  • both the third driving element and the fourth driving element are arranged in a first arrangement direction.
  • variable-focus camera module the third driving element and the fourth driving element are simultaneously arranged in the second arrangement direction.
  • the piezoelectric active part of the third driving element is mounted on a second side wall of the driving housing opposite to the first side wall, and the fourth side wall is The piezoelectric active portion of the drive element is mounted on the second side wall of the drive housing.
  • the piezoelectric active part of the third driving element is mounted on a second side wall of the first mounting part opposite to the first side wall, and the first side wall is The piezoelectric active portion of the four-driving element is mounted on a second side wall of the second mounting portion opposite to the first side wall.
  • the driven shaft of the third driving element and the driven shaft of the fourth driving element are flush with each other in the height direction of the driving housing.
  • the driven axis of the third driving element and the driven axis of the fourth driving element are symmetrically arranged on the second carrier with respect to the optical axis. the first side and the second side of the second carrier.
  • the driving part of the third driving element and the driving part of the fourth driving element are symmetrically arranged on the first side of the first carrier with respect to the optical axis. side and the second side of the first carrier.
  • the first accommodating channel corresponds to the third accommodating channel, and/or the second accommodating channel is aligned with the fourth accommodating channel.
  • the driven shafts of the third driving element and the fourth driving element are connected to the first driving element and the first driving element in the height direction of the driving housing.
  • the driven shafts of the two drive elements are flush with each other.
  • the driven shaft of the first driving element is aligned with the driven shaft of the third driving element in the width direction of the driving housing, and/or, The driven shaft of the second drive element is aligned with the driven shaft of the fourth drive element in the width direction of the drive housing.
  • variable-focus camera module further comprises: a light turning element for turning the imaging light to the zoom lens group.
  • variable-focus camera module further comprises: a fifth driving element for driving the light turning element.
  • the zoom portion and the focus portion are disposed adjacent to each other.
  • the zoom portion is located between the fixed portion and the focus portion.
  • the focusing portion is located between the fixed portion and the zoom portion.
  • FIG. 1 illustrates a schematic diagram of a variable-focus camera module according to an embodiment of the present application.
  • FIG. 2 illustrates a schematic diagram of an optical system of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 3 illustrates another schematic diagram of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram illustrating a specific example of a light blocking element of the variable-focus camera module according to an embodiment of the present application.
  • 5A and 5B illustrate schematic diagrams of a first driving element and a second driving element of the variable-focus camera module according to an embodiment of the present application.
  • 6A and 6B illustrate schematic diagrams of a modified embodiment of the first driving element and the second driving element of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 7A and 7B illustrate schematic diagrams of a variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 8A illustrates a schematic diagram of a variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 8B illustrates another schematic diagram of the variable-focus camera module shown in FIG. 8A .
  • FIG. 9 is a schematic diagram illustrating another variant implementation of the guide structure of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 10 illustrates a schematic diagram of yet another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 11 illustrates a schematic diagram of a variable-focus camera module according to an embodiment of the present application.
  • FIG. 12 illustrates another schematic diagram of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 13 illustrates a schematic diagram of an optical system of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram illustrating a specific example of a light blocking element of the variable-focus camera module according to an embodiment of the present application.
  • 15A and 15B illustrate schematic diagrams of piezoelectric actuators of the variable-focus camera module according to an embodiment of the present application.
  • 16A and 16B illustrate schematic diagrams of a variant implementation of the piezoelectric actuator of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 17 illustrates a schematic diagram of a variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram illustrating another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 19 illustrates a schematic diagram of yet another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 20 illustrates a schematic diagram of yet another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 21 illustrates a schematic diagram of yet another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 22 illustrates a schematic diagram of yet another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 23 illustrates a schematic diagram of yet another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • the existing driving elements used to drive various components in the camera module are electromagnetic motors, such as voice coil motors (Voice Coil Motor: VCM), shape memory alloy drivers ( Shape of Memory Alloy Actuator: SMA), etc.
  • VCM voice Coil Motor
  • SMA Shape of Memory Alloy Actuator
  • the camera module is arranged along the thickness direction of electronic devices, such as mobile phones, so the various components in the camera module tend to be thin and miniaturized.
  • the electromagnetic motor can provide sufficient driving force .
  • the structure and positional relationship of the camera module relative to the electronic device has been changed, that is, the camera module can be arranged along the length or width of the electronic device, so that the camera module It is no longer limited by the size of the electronic device in the thickness direction, so that a greater degree of freedom in size increase can be obtained.
  • the component design of the camera module also brings about an increase in the size of the component, resulting in a further increase in the weight of the component.
  • the traditional electromagnetic motor can no longer provide sufficient driving force.
  • the existing voice coil motor driver can only drive the optical lens with a weight of less than 100mg, while the memory alloy motor requires a larger Travel space setting, that is, if the weight of the components to be driven in the camera module exceeds 100mg, the existing driver will not be able to meet the application requirements of the camera module or need to increase the size of the driver to provide greater thrust, Therefore, a new generation of drive solutions must be developed for the camera module.
  • the technical route of the present application is to provide a design of a zoom camera module based on a piezoelectric actuator that can provide greater driving force, so as to meet the requirements of the new zoom camera module after the components are enlarged. Component driver requirements.
  • variable-focus camera module including: a zoom lens group, including: a fixed part, a zoom part and a focus part, wherein the zoom lens group is provided with an optical axis; a photosensitive assembly of the zoom lens group; and a drive assembly, comprising: a drive casing, at least one drive element located in the drive casing, wherein the at least one drive element is disposed on the first part of the zoom lens group
  • the side is configured to drive the zoom portion and/or the focus portion to move along the optical axis, and the at least one drive element is a piezoelectric actuator.
  • the piezoelectric actuator is used as the driving element of the zoom part and/or the focus part that needs to be moved, It is possible to drive the optical components of a zoom camera module of heavier weight, that is, optical components that weigh much more than 100 milligrams, eg, up to a weight of more than 1 gram.
  • variable-focus camera module is implemented as a variable-focus periscope camera module to describe the variable-focus camera module below.
  • the variable-focus camera module is implemented as a variable-focus periscope camera module as an example, but in other examples of the present application,
  • the zoom camera module can also be implemented as other types of camera modules, which is not limited by the present application.
  • the piezoelectric actuator is used as an example for description in the embodiment of the present application
  • the technical solution of the variable-focus camera module according to the embodiment of the present application can also be equivalently
  • the present application does not intend to limit the application to other actuators other than piezoelectric actuators that can provide a larger driving force.
  • FIG. 1 illustrates a schematic diagram of a variable-focus camera module according to an embodiment of the present application.
  • the variable-focus camera module according to the embodiment of the present application includes: a light refraction element 10 , a zoom lens group 20 , a photosensitive component 30 and a driving component 740 .
  • the light-reversing element 10 is used to receive the imaging light from the photographed object, and bend the imaging light to the zoom lens group 20 .
  • the light turning element 10 is configured to turn the imaging light from the photographed object by 90°, so that the overall height dimension of the zoom camera module can be reduced.
  • the angle of the light turning element 10 turning the imaging light may have an error within 1°, which should be understood by those of ordinary skill in the art.
  • the light-returning element 10 may be implemented as a mirror (eg, a flat mirror), or a light-returning prism (eg, a triangular prism).
  • a mirror eg, a flat mirror
  • a light-returning prism eg, a triangular prism
  • the light turning element 10 is implemented as a light turning prism
  • the light incident surface of the light turning prism and its light exit face are perpendicular to each other
  • the light reflecting surface of the light turning prism and the light incident face and all the light turning prisms are perpendicular to each other.
  • the light exit surface is inclined at an angle of 45°, so that when the imaging light enters the light turning prism in a manner perpendicular to the light incident surface, the imaging light can be turned 90° at the light reflecting surface, so that output from the light exit surface in a manner perpendicular to the light exit surface.
  • the light deflection element 10 may also be implemented as other types of optical elements, which are not limited by the present application.
  • the variable-focus camera module may further include a larger number of light-reversing elements 10 , one of the reasons is that one of the functions of introducing the light-reversing elements 10 is to turn the imaging light , so that the optical system of the zoom camera module with a longer total optical length (TTL: Total Track Length) can be folded in the structural dimension.
  • TTL Total Track Length
  • a larger number of light turning elements 10 can be provided to meet the size requirements of the zoom camera module.
  • the The light deflection element 10 is located on the image side of the variable-focus camera module or between two optical lenses.
  • the zoom lens group 20 corresponds to the light turning element 10 , and is used for receiving the imaging light from the light turning element 10 and condensing the imaging light .
  • the zoom lens group 20 includes a fixed part 21 , a zoom part 22 and a focusing part 23 along its set optical axis direction, wherein the fixed part 21 has a predetermined
  • the installation position, the zoom part 22 and the focus part 23 can be adjusted respectively relative to the position of the fixed part 21 under the action of the drive assembly 740, so as to realize the optical performance of the zoom camera module. Adjustments, including but not limited to optical focus and optical zoom functions.
  • the zoom portion 22 and the focus portion 23 can be adjusted by the drive assembly 740, so that the focal length of the zoom lens group 20 of the variable-focus camera module can be adjusted, so that objects at different distances can be clearly photographed. subject.
  • the fixing portion 21 includes a first lens barrel and at least one optical lens accommodated in the first lens barrel. Moreover, the fixed part 21 is adapted to be fixed to the non-moving part of the driving assembly 740 , so that the position of the fixed part 21 in the zoom lens group 20 remains constant.
  • the fixing portion 21 may not be provided with the first lens barrel, but only includes at least one optical lens, for example, it only includes a plurality of optical lenses that are fitted with each other lens. That is, in other examples of the application, the fixed portion 21 may be implemented as a "bare lens".
  • the zoom portion 22 includes a second lens barrel and at least one optical lens accommodated in the second lens barrel, wherein the zoom portion 22 is adapted to be driven by the driving assembly 740 to follow the
  • the zoom lens group 20 moves in the direction of the optical axis set, so as to realize the optical zoom function of the zoom camera module, so that the zoom camera module can achieve clear shooting of objects at different distances. .
  • the zoom portion 22 may not be provided with the second lens barrel, but only includes at least one optical lens, for example, it only includes a plurality of optical lenses that are fitted with each other lens. That is, in other examples of the application, the zoom portion 22 may also be implemented as a "bare lens".
  • the focusing portion 23 includes a third lens barrel and at least one optical lens accommodated in the third lens barrel, wherein the focusing portion 23 is adapted to be driven by the driving assembly 740 to move along the
  • the zoom lens group 20 moves in the direction of the optical axis, so as to realize the focusing function of the zoom camera module. More specifically, the optical focusing achieved by driving the focusing part 23 can compensate for the focus shift caused by moving the zooming part 22, thereby compensating the imaging performance of the variable-focus camera module, so that the imaging quality satisfies the requirements. Default requirements.
  • the focusing portion 23 may not be provided with the third lens barrel, and it only includes at least one optical lens, for example, it only includes a plurality of optical pieces that are fitted with each other. lens. That is, in other examples of the application, the focusing portion 23 may also be implemented as a "bare lens".
  • the fixed part 21 , the zoom part 22 and the focus part 23 of the zoom lens group 20 are arranged in sequence (that is, in the In the zoom lens group 20 , the zoom portion 22 is located between the fixed portion 21 and the focus portion 23 ), that is, the imaging light from the light-refracting element 10 is in the process of passing through the zoom lens group 20 , it will first pass through the fixed part 21 , then through the zooming part 22 , and then through the focusing part 23 .
  • the relative positional relationship between the fixed part 21 , the zooming part 22 and the focusing part 23 can also be adjusted, for example, the fixed part 21 is set on the zooming part Part 22 and the focusing part 23 , for another example, the focusing part 23 is arranged between the zooming part 22 and the fixing part 21 . It should be understood that, in the embodiment of the present application, the relative positional relationship between the fixed part 21 , the zoom part 22 and the focus part 23 can be designed according to the optical design requirements and structural design of the zoom camera module adjustment is required.
  • the focusing portion 23 and the The zoom sections 22 are arranged adjacently. That is, the position of each part in the zoom lens group 20 according to the embodiment of the present application is preferably configured such that the zoom part 22 is located between the fixed part 21 and the focusing part 23, or, all the The focusing portion 23 is located between the fixing portion 21 and the zooming portion 22 . It should be understood that the zooming portion 22 and the focusing portion 23 are parts of the zoom lens group 20 that need to be moved. Therefore, arranging the focusing portion 23 and the zooming portion 22 adjacent to each other is conducive to arranging all the The drive assembly 740 is described, and this part will be expanded in the detailed description of the drive assembly 740 .
  • the zoom lens group 20 includes one of the fixed parts 21 , one of the zoom parts 22 and one of the focusing parts 23 as an example,
  • the specific number of the fixed portion 21 , the zoom portion 22 and the focusing portion 23 is not limited by the present application, and can be selected according to The optical design requirements of the variable-focus camera module are adjusted.
  • variable-focus camera module further includes a light blocking element 50 disposed on the photosensitive path of the photosensitive assembly 30, wherein, The light blocking element 50 can at least partially block the transmission of light, so as to reduce the influence of stray light on the imaging quality of the variable-focus camera module as much as possible.
  • FIG. 4 illustrates a schematic diagram of a specific example of the light blocking element 50 of the variable-focus camera module according to an embodiment of the present application.
  • the light blocking element 50 is installed on the light exit surface of the light diverting element 10 , wherein the light blocking element 50 has a light-transmitting hole 500 , which is suitable for imaging An effective portion of the light transmits and blocks at least a portion of the stray light in the imaged light.
  • the light-transmitting hole 500 is a circular hole, so as to match the circular effective optical area of the variable focus lens group 20 and reduce the influence of stray light on the imaging quality as much as possible.
  • the light blocking element 50 may be disposed at other positions of the light redirecting element 10 , for example, the light incident surface or the light reflecting surface of the light redirecting element 10 , This is not limited by this application. It is also worth mentioning that in other examples of the present application, the light blocking element 50 may also be disposed on the photosensitive path of the photosensitive assembly 30 as an independent component, for example, disposed as an independent component on the photosensitive path. For another example, between the light refraction element 10 and the zoom lens group 20, as an independent part, is disposed between the zoom lens group 20 and the photosensitive component 30, which is not the present application limited.
  • the photosensitive component 30 corresponds to the zoom lens group 20 and is used to receive the imaging light from the zoom lens group 20 and perform imaging, wherein the The photosensitive assembly 30 includes a circuit board 31 , a photosensitive chip 32 electrically connected to the circuit board 31 , and a filter element 33 held on the photosensitive path of the photosensitive chip 32 . More specifically, in the example shown in FIGS. 1 and 2 , the photosensitive assembly 30 further includes a bracket 34 disposed on the circuit board 31 , wherein the filter element 33 is mounted on the bracket 34 to be held on the photosensitive path of the photosensitive chip 32 .
  • the specific implementation of the filter element 33 held on the photosensitive path of the photosensitive chip 32 is not limited by the present application, for example, the filter element 33 can be implemented as a filter film and coated on the surface of a certain optical lens of the zoom lens group 20 to achieve a filtering effect.
  • the photosensitive component 30 can further include a bracket 34 mounted on the The filter element holder (not shown), wherein the filter element 33 is held on the photosensitive path of the photosensitive chip 32 by being mounted on the filter element holder.
  • the new technical requirements mainly focus on two aspects: relatively larger driving force, and better driving performance (specifically including: higher-precision driving control and longer driving stroke). Moreover, in addition to finding a driver that meets the requirements of new technologies, it is also necessary to consider whether the selected driver can adapt to the current development trend of lightening and thinning of camera modules when selecting a new driver.
  • the driving assembly 740 for driving the zoom lens group 20 includes: a driving housing 741 , which is located in the driving housing 741 The first carrier 744, the second carrier 745, the first driving element 742 and the second driving element 743, wherein the zooming part 22 is installed in the first carrier 744, and the focusing part 23 is installed in the Inside the second carrier 745, the first driving element 742 is configured to drive the first carrier 744 to drive the zoom portion 22 to move along the direction set by the optical axis, the second driving element 743 is configured to drive the second carrier 745 to drive the focusing portion 23 to move along the direction set by the optical axis.
  • the first driving element 742 and/or the second driving element 743 are implemented as piezoelectric actuators, that is, the first driving element 742 and the second driving element 743 are implemented as piezoelectric actuators. At least one of the two drive elements 743 is implemented as a piezoelectric actuator.
  • the first driving element 742 and the second driving element 743 are implemented as piezoelectric actuators at the same time.
  • the definition of the first driving element 742 The piezoelectric actuator is the first piezoelectric actuator 7420
  • the piezoelectric actuator defining the second driving element 743 is the second piezoelectric actuator 7430 .
  • the first piezoelectric actuator 7420 and the second piezoelectric actuator 7430 are piezoelectric actuators of the same type.
  • FIGS. 5A and 5B illustrate schematic diagrams of a first driving element and a second driving element of the variable-focus camera module according to an embodiment of the present application.
  • the first piezoelectric actuator 7420 and the second piezoelectric actuator 7430 are implemented as the same type of piezoelectric actuator, wherein , the piezoelectric actuator 100 includes: a piezoelectric active part 110 , a driven shaft 120 drivably coupled to the piezoelectric active part 110 , and a drive closely matched with the driven shaft 120 part 130, wherein the driving part 130 is configured to drive the first carrier 744 or the second carrier 745 along the light under the action of the piezoelectric active part 110 and the driven shaft 120 The axis moves in the direction set.
  • the first piezoelectric actuator 7420 includes a first piezoelectric active part 7421 and a first driven shaft drivably coupled to the first piezoelectric active part 7421 7422, and a first driving part 7423 tightly matched with the first driven shaft 7422, wherein, under the action of the first piezoelectric active part 7421 and the first driven shaft 7422, the A driving part 7423 is configured to drive the first carrier 744 to move along the direction set by the optical axis.
  • the second piezoelectric actuator 7430 includes a second piezoelectric active portion 7431, a second driven shaft 7432 drivably coupled to the second piezoelectric active portion 7431, and a second driven shaft 7432 connected to the second piezoelectric active portion 7431.
  • a second driving part 7433 that is tightly fitted with the driven shaft 7432, wherein, under the action of the second piezoelectric active part 7431 and the second driven shaft 432, the second driving part 7433 is configured to drive the
  • the second carrier 745 moves along the direction set by the optical axis.
  • the piezoelectric active part 110 includes an electrode plate 111 and at least one piezoelectric substrate stacked on the electrode plate 111 .
  • the piezoelectric substrate is a substrate that has an inverse piezoelectric effect and shrinks or expands according to the polarization direction and the electric field direction, for example, it can be formed by using substrate polarization in the thickness direction of single crystal or polycrystalline ceramics, polymers, etc. made and used.
  • the inverse piezoelectric effect means that an electric field is applied in the polarization direction of the dielectric, and the dielectric undergoes mechanical deformation when a potential difference is generated.
  • the at least one piezoelectric substrate includes a first piezoelectric substrate 112 and a second piezoelectric substrate 113 , and the electrode plate 111 is sandwiched between the two piezoelectric substrates. between the first piezoelectric substrate 112 and the second piezoelectric substrate 113 .
  • the piezoelectric active part 110 further includes electrode layers 115 formed on the upper surface and the lower surface of the first piezoelectric substrate 112, respectively, and electrode layers 115 formed on the second piezoelectric substrate, respectively The electrode layers 115 on the upper and lower surfaces of the 113 , so as to provide the first piezoelectric substrate 112 and the second piezoelectric substrate 113 with a pulse voltage through the electrode layer 115 and the electrode plate 111 .
  • the electrode plate 111 may be composed of a plate-like element with a certain elasticity, for example, a metal plate with a certain elasticity.
  • the piezoelectric active part 110 further includes at least one electrical conduction part 114 electrically connected to the electrode plate 111 , for example, the at least one electrical conduction part 114 can be welded by means of welding It is welded to the electrode plate 111 , or the at least one electrical conduction part 114 is integrally formed with the electrode plate 111 . It is worth mentioning that when the number of the electrical conduction parts 114 is multiple, preferably, the multiple electrical conduction parts 114 are symmetrically distributed on the outer surface of the electrode plate 111 .
  • the first piezoelectric substrate 112 and the second piezoelectric substrate 113 are attached to the first side surface of the electrode plate 111 and the first side surface of the electrode plate 111 through the electrode layer 115 , respectively. the opposite second side surface.
  • the first piezoelectric substrate 112 and the second piezoelectric substrate 113 may be fixed to the electrode plate 111 in a surface-to-surface engagement, or the first piezoelectric substrate 112 and the second piezoelectric substrate 113 are attached to the electrode plate 111 by conductive silver glue.
  • the shape and size of the first piezoelectric substrate 112 and the second piezoelectric substrate 113 are similar to or consistent with the electrode plate 111 , so that the piezoelectric active part 110 has Better vibration efficiency.
  • the first piezoelectric substrate 112 , the second piezoelectric substrate 113 and the electrode plate 111 are circular plates.
  • the driven shaft 120 is fixed to the piezoelectric active part 110 , for example, attached to the center of the piezoelectric active part 110 by an adhesive.
  • the driven shaft 120 may be attached to the electrode layer 115 on the outer surface of the first piezoelectric substrate 112 through an adhesive, or may be nestedly attached to the first piezoelectric substrate through an adhesive
  • the piezoelectric active part 110 has a central hole penetrating the upper and lower surfaces thereof, and the driven shaft 120 is fitted into the central hole of the piezoelectric active part 110 by an adhesive.
  • the driven shaft 120 may be implemented as a carbon rod.
  • the cross-sectional shape of the driven shaft 120 is a circle or a
  • the driving part 130 is tightly fitted on the driven shaft 120 .
  • the driving part 130 and the driven shaft 120 are frictionally fitted, so that the driving part 130 is tightly fitted on the driven shaft 120 .
  • the driving part 130 may be implemented as a clamping mechanism for clamping the driven shaft 120, wherein the clamping mechanism may be a clamping mechanism with adjustable clamping force, Alternatively, a gripping mechanism made partly or entirely of an elastic material.
  • the electrode layer 115 exposed on the surface of the piezoelectric active part 110 is electrically connected to the positive electrode 117 of the power supply control part 116 , and the electrode plate 111 is connected to the electric conduction part 114 through the electric conduction part 114 . It is electrically connected to the negative electrode 118 of the power control part 116, so that when the power control part 116 repeatedly applies a pulse voltage to the electrode layer 115 and the electrode plate 111, the first piezoelectric substrate 112 and The second piezoelectric substrate 113 is deformed in one direction under the action of the inverse piezoelectric effect, and quickly returns to a flat plate shape under the elastic action of the electrode plate 111 .
  • the driven shaft 120 moves back and forth in the set axial direction, and since the driving part 130 and the driven shaft 120 are friction fit, when the pressure When the electro-active part 110 is deformed in one direction, the driving part 130 and the driven shaft 120 move together, and when the piezoelectric active part 110 quickly returns to its original state, the driven shaft 120 also moves in the opposite direction
  • the driving part 130 cannot follow the action of the driven shaft 120 due to the inertial effect and cannot return to the original position, and can only stay at the position. Therefore, in a deformation process, the position of the driving part 130 changes, and accordingly, by repeatedly applying the pulse voltage, the above-mentioned movement can be repeated, so that the driving part 130 is moved to the target position.
  • the piezoelectric actuator 100 includes: a piezoelectric active part 110 , a slave of the piezoelectric active part 110 drivably connected to the piezoelectric active part 110 .
  • the driven shaft 120 and the driving part 130 movably arranged on the driven shaft 120 , wherein the driving part 130 is configured to be under the action of the piezoelectric active part 110 and the driven shaft 120
  • the first carrier 44 or the second carrier 45 is driven to drive the zooming part 22 or the focusing part 23 to move along the optical axis.
  • the piezoelectric active part 110 includes a piezoelectric element 111A having a laminated structure as illustrated in FIG. 6A .
  • the piezoelectric element 111A includes a plurality of piezoelectric stretchable bodies 112A and a plurality of electrodes 113A, and the plurality of piezoelectric stretchable bodies 112A and the plurality of electrodes 113A are alternately stacked.
  • the piezoelectric element 111A can obtain a relatively large amount of deformation even when a small electric field is applied.
  • the electrodes 113A that sandwich the plurality of piezoelectric stretchable bodies 112A alternately are defined as internal electrodes, and the electrodes 113A are arranged on the surface of the piezoelectric stretchable bodies 112A and located in the pressure
  • the electrodes 113A on the upper surface and the lower surface of the electric element 111A are defined as the upper electrode and the lower electrode, respectively
  • the electrode 113A disposed on the surface of the piezoelectric stretchable body 112A and located on the side surface of the piezoelectric element 111A is defined as an upper electrode and a lower electrode, respectively.
  • side electrodes Defined as side electrodes. Accordingly, in the case of multiple layers, the electrodes 113A of the same polarity are electrically connected through the side electrodes.
  • the driven shaft 120 has a cylindrical shape and is attached to the middle area of the upper surface of the piezoelectric element 111A by an adhesive, so that the moving shaft is engaged with the piezoelectric element 111A. Electrical element 111A.
  • the shape of the moving shaft can also be adjusted, which is not limited by the present application.
  • the driven shaft 120 is made of a material containing any one of “carbon, heavy metals, carbides of heavy metals, borides of heavy metals, and nitrides of heavy metals” as a main component
  • the piezoelectric element 111A has a rectangular parallelepiped. A shape that has sides along mutually orthogonal X, Y, and Z axes, respectively.
  • the length of the piezoelectric element 111A in the X-axis direction is 1 mm
  • the length of the piezoelectric element 111A in the Y-axis direction is 1 mm
  • the length (height) of the piezoelectric element 111A in the Z-axis direction is 2 mm.
  • the piezoelectric actuator 100 shown in FIG. 6A and FIG. 6B has the advantages of small size, large thrust force, and high precision. Moreover, compared with the piezoelectric actuator 100 illustrated in FIGS. 5A and 5B , the piezoelectric active portion 110 of the piezoelectric actuator 100 illustrated in FIGS. 6A and 6B has a relatively smaller cross section The size is suitable for use in a module with compact space, but its thickness is relatively large, and the internal structure of the piezoelectric element 111A is relatively complex.
  • the piezoelectric actuator 100 can provide a relatively high driving force. More specifically, the piezoelectric actuator 100 selected in the present application can provide a driving force of 0.6N to 2N, which is sufficient to drive components with a weight greater than 100 mg.
  • the piezoelectric actuator 100 in addition to being able to provide a relatively large driving force, the piezoelectric actuator 100 also has other advantages compared to the traditional electromagnetic motor solution and memory alloy motor solution, including but not limited to: a relatively small size (with slender shape), better response accuracy, relatively simpler structure, relatively simpler drive control, high product consistency, no electromagnetic interference, relatively larger stroke, short stabilization time, relatively small weight, etc. .
  • variable-focus camera module requires the driver configured with the variable-focus camera module to have a long driving stroke and to ensure better alignment accuracy.
  • additional guide rods or ball guides need to be designed, and large-sized driving magnets/coils need to be adapted to the side of the lens, and balls, shrapnel, and suspension wires need to be installed.
  • Other auxiliary positioning devices in order to accommodate more components, ensure structural strength and reserve structural gaps, often lead to large lateral dimensions of the module, complex structural design, and heavy module weight.
  • the memory alloy motor solution is limited by the relatively small stroke that the memory alloy solution can provide in the same proportion, and there are reliability risks such as potential disconnection.
  • the piezoelectric actuator 100 has a relatively simple structure, and the assembly structure is simpler.
  • the size of the piezoelectric active part 110 , the driven shaft 120 and the driving part 130 and other active elements are basically independent of the size of the motion stroke, so in the In optical zoom products, the piezoelectric actuator 100 can achieve advantages such as large thrust, small size, and low weight, and at the same time, it can be designed to match the larger stroke or heavier device weight, and the integration degree in the design is also higher.
  • the piezoelectric actuator 100 uses the frictional force and inertia during vibration to push the object to be pushed (for example, the focusing portion 23 or the zooming portion 22 ) in a frictional contact manner to perform micron-level motion, which Compared with the electromagnetic scheme, the non-contact way to drive the object to be pushed needs to rely on the electromagnetic force to offset the gravity and friction force. It has the advantages of greater thrust, greater displacement and lower power consumption. High-precision continuous zoom. Moreover, when there are multiple motor mechanisms, the piezoelectric actuator 100 does not have a magnet coil structure, so there is no problem of magnetic interference. In addition, the piezoelectric actuator 100 can be self-locked by the friction force between the components, so the abnormal shaking noise of the zoom camera module during optical zooming can be reduced.
  • the first driving element 742 is implemented as the first piezoelectric actuator 7420 and the second driving element 743 .
  • the second driving element 743 is implemented as a second piezoelectric actuator 7430, wherein the first driving element 742 and the second driving element 743 can be electrically connected to an external power source in the following manner.
  • it can be electrically connected to the electrode layers 115 of the first driving element 742 and the second driving element 743 and the electrical conduction part 114 of the electrode plate 111 through a connection circuit, which can be implemented as a flexible board connection with or a plurality of lead wires for electrical connection with the outside through the connection circuit.
  • the piezoelectric actuator 100 is arranged in the driving housing 41 , the piezoelectric actuator 100 is adapted to be directly led out through the flexible board, so as to communicate with the circuit board 31 of the photosensitive component 30 . electrical connection.
  • the first driving element 742 and the second driving element 743 can also be directly led out through a flexible board, and are electrically connected to the circuit board 31 of the photosensitive assembly 30 .
  • at least two LDS grooves are arranged on the surface of the drive housing 741, the depth of the LDS grooves is not greater than 20-30 ⁇ m, and the width is not less than 60 ⁇ m.
  • LDS laser direct structuring
  • the surface of the LDS grooves is plated
  • a conductive plating layer for example, it can be a plating layer of nickel palladium gold
  • connect the connection circuit of the first driving element 742 and the second driving element 743 with the conductive plating layer in the LDS tank so as to lead out the circuit and be electrically connected with the circuit board 31 of the photosensitive component 30 .
  • At least two wires may be molded into the drive housing 41 through Insert Molding technology, so as to connect the connection circuit of the first drive element 742 and the second drive element 743 with the The wires are electrically connected to lead out the circuit, and are electrically connected to the circuit board 31 of the photosensitive component 30 .
  • the first driving element 742 and the second driving element 743 are implemented as the first piezoelectric actuator 7420 and the second piezoelectric actuator 7430, wherein, the first driving part 7423 of the first driving element 742 is configured to drive the first carrier 744 under the action of the first piezoelectric active part 7421 and the first driven shaft 7422, to drive the zoom part 22 to move along the optical axis; the second driving part 7433 of the second driving element 743 is located between the second piezoelectric active part 7431 and the second driven shaft 7432 Under the action, it is configured to drive the second carrier 745 to drive the focusing portion 23 to move along the optical axis direction.
  • first driving element 742 and the second driving element 743 are configured as the first piezoelectric actuator 7420 and the second piezoelectric actuator 7430, the first driving element 742 needs to be further and the second driving element 743 are arranged in the variable-focus camera module in a reasonable manner.
  • the first carrier 744 and the second carrier 745 have special structural configurations, so that when the first carrier 744 and the second carrier 744 and the second carrier After the 745 is installed on the drive housing 741, at least one first receiving channel is provided between the bottom surface of the drive housing 741 and the bottom surface of the first carrier 744.
  • the bottom surface of the drive housing 741 At least one second receiving channel is defined between the surface and the bottom surface of the second carrier 745 .
  • the spaces between the first carrier 744 and the second carrier 745 and the driving housing 741 are usually left unused.
  • the space between a carrier 744 , the second carrier 745 and the drive housing 741 is too small to be suitable for arranging other components.
  • the piezoelectric actuator 100 has an elongated shape (ie, the driven shaft 120 extends vertically outward from the piezoelectric active part 110 to have an elongated shape), in particular, the driven shaft of the piezoelectric actuator 100 120 has an elongated columnar structure.
  • the piezoelectric actuator 100 has a special structure and size configuration, preferably, in this embodiment of the present application, at least a part of the piezoelectric actuator 100 is disposed on at least one of the first The accommodating channel or at least one of the second accommodating channels.
  • the first driving element 742 is implemented as a first piezoelectric actuator 7420 and the second driving element 743 is implemented as a second piezoelectric actuator 7430
  • the first piezoelectric At least a part of the actuator 7420 is disposed in the first receiving channel 7440
  • at least a part of the second piezoelectric actuator 7430 is disposed in the second receiving channel 7450 .
  • At least a part of the first driven shaft 7422 of the first piezoelectric actuator 7420 extends in the first receiving channel 7440, and the second At least a part of the second driven shaft 7432 of the piezoelectric actuator 7430 extends into the second receiving channel 7450, that is, the first driven shaft 7422 of the first piezoelectric actuator 7420 is arranged in the second receiving channel 7450.
  • the second driven shaft 7432 of the second piezoelectric actuator 7430 is arranged in the second receiving channel 7450 .
  • the first carrier 744 includes a first carrier base 7441 , a first extension arm 7442 and a first extending arm 7442 and a first extending arm 7442 integrally extending upward from the first carrier base 7441 , respectively.
  • two first accommodating channels 7440 are formed between the first carrier 744 and the driving housing 741 , wherein one of the first accommodating channels 7440 is A channel 7440 is formed on the side surface of the first carrier base 7441, between the bottom surface of the first extension arm 7442 and the bottom surface of the driving housing 741, and another first receiving channel 7440 is formed in Between the side surface of the first carrier base 7441 , the bottom surface of the second extension arm 7443 and the bottom surface of the drive housing 741 .
  • the first driven shaft 7422 of the first piezoelectric actuator 7420 may be arranged in any one of the first receiving channels 7440 .
  • the structure of the first carrier 744 or the shape of the bottom surface of the driving housing 741 can be appropriately adjusted, so that the driving housing 741 and the Only one of the first receiving channels 7440 is formed between the first carriers 744, which is not limited by this application.
  • the second carrier 745 includes a second carrier base 7451 and a third extension arm 7452 and a third extending arm 7452 and a third extending arm 7452 integrally extending upward from the second carrier base 7451 , respectively.
  • two second accommodating channels 7450 are formed between the second carrier 745 and the driving housing 741 , wherein one of the second accommodating channels 7450 is A channel 7450 is formed on the side surface of the second carrier base 7451, between the bottom surface of the third extension arm 7452 and the bottom surface of the drive housing 741, and another second receiving channel 7450 is formed in Between the side surface of the second carrier base 7451 , the bottom surface of the fourth extension arm 7453 and the bottom surface of the drive housing 741 .
  • the second driven shaft 7432 of the second piezoelectric actuator 7430 may be arranged in any of the second receiving channels 7450 .
  • the configuration of the second carrier 745 or the bottom surface of the driving housing 41 can be appropriately adjusted, so that the driving housing 741 and the first Only one of the second receiving channels 7450 is formed between the two carriers 745 , which is not limited by this application.
  • the first accommodating channel 7440 and the second accommodating channel 7450 are lower than the optical axis, that is, when the first piezoelectric actuator 7420 When the first driven shaft 7422 is installed in the first receiving channel 7440, the height of the first driven shaft 7422 relative to the bottom surface of the drive housing 741 is lower than the relative height of the optical axis the height of the bottom surface of the drive housing 741 .
  • the second driven shaft 7432 of the second piezoelectric actuator 7430 when installed in the second receiving channel 7450, the second driven shaft 7432 is relatively opposite to the drive housing
  • the height of the bottom surface of the body 741 is also lower than the height of the optical axis relative to the bottom surface of the drive housing 741 .
  • the driving part 130 of the piezoelectric actuator 100 is also installed in the first receiving channel 7440 and the second receiving channel 7450 .
  • the driving part 130 of the piezoelectric actuator 100 may be disposed in the first housing by bonding or integrally molding on the lower surface of the first carrier 744 or the second carrier 745 inside the channel 7440 or the second receiving channel 7450 .
  • the first driving part 7413 and the second driving part 7433 are implemented with at least partially elastic and oppositely arranged two clamping plates, wherein the first The first driven shaft 7421 of a piezoelectric actuator 7420 and the second driven shaft 7432 of the second piezoelectric actuator 7430 are respectively clamped to the two clamping plates in a tight fit. in the clamping cavity.
  • the first piezoelectric actuator 7420 and the second piezoelectric actuator 7430 are activated, the first piezoelectric actuator 7420 and the second piezoelectric actuator 7430 A driving force can be applied to the bottoms of the first carrier 744 and the second carrier 745 , and the configuration of such driving positions is beneficial to reduce the difficulty of driving and improve the stability of driving.
  • the first accommodating channel 7440 is aligned with the second accommodating channel 7450 .
  • the structures of the first carrier 744 and the second carrier 745 can be appropriately adjusted, so that the first accommodating channel 7440 and the second accommodating channel 7450 are driven
  • the casing 741 is aligned in the longitudinal direction set.
  • the first receiving channel 7440 and the second receiving channel 7450 may even have the same cross-sectional shape and cross-sectional size, so as to improve the symmetry of the first carrier 744 and the second carrier 745 sex.
  • the first driving element 742 and the second driving element 743 are selected to be disposed on the first side of the optical axis, that is, the selected
  • the first piezoelectric actuator 7420 and the second piezoelectric actuator 7430 are arranged on the same side of the optical axis, so that the first driving element 742 and the second driving element 743 are on the same side of the optical axis.
  • the arrangement in the drive housing 741 is more compact and occupies less longitudinal space of the drive housing 741 .
  • the longitudinal space of the driving housing 741 refers to the space occupied by the driving housing 741 in its length direction
  • the lateral space of the driving housing 741 refers to the driving housing
  • the height space of the driving housing 741 refers to the space occupied by the driving housing 741 in its height direction.
  • the zooming portion 22 is driven by the first driving element 742 and the zooming portion 22 is driven by the first driving element 742
  • the zooming portion 22 is driven by the first driving element 742
  • the two driving elements 743 drive the focusing portion 23
  • the relative positional relationship (especially the relative inclination relationship) between the zooming portion 22 and the focusing portion 23 can be reduced, so as to improve the focusing portion 23 and the focusing portion 23.
  • the consistency between the zooming parts 22 reduces the possibility of the image quality degradation of the variable-focus camera module due to the inclination of the zooming part 22 and the focusing part 23 .
  • the first driving element 742 and the second driving element 743 are located on the same side of the optical axis, and the first driving element 742 located on the same side
  • the driving element 742 and the second driving element 743 are arranged in opposite directions, or in other words, the first driving element 742 and the second driving element 743 on the same side are arranged opposite to each other. In this way, the increase of the The compactness of the arrangement of the first driving element 742 and the second driving element 743 in the space formed by the driving housing 741 .
  • the first driving element 742 and the second driving element 743 are implemented as a piezoelectric actuator 100 , which includes a piezoelectric active part 110 and a piezoelectric active part 110 extending from the piezoelectric active part 110 .
  • the driven shaft 120 If the piezoelectric active part 110 is set as the head of the piezoelectric actuator 100, the driven shaft 120 is set as the tail of the piezoelectric actuator 100, and the piezoelectric actuator is set If the head of the piezoelectric actuator 100 is in the front and the tail is in the back, the first direction is set, and the head of the piezoelectric actuator 100 is set in the back and the tail is in the front. In this example, the first direction is set.
  • a driving element 742 is arranged in a first direction, and the second driving element 743 is arranged in a second direction. That is, in this example, the head of the first driving element 742 is adjacent to the tail of the second driving element 743 , that is, the first driven shaft of the first piezoelectric actuator 7420 7422 is adjacent to the second driven shaft 7432 of the second piezoelectric actuator 7430.
  • the first driving element 742 and the second driving element 743 have the same installation height relative to the bottom surface of the driving housing 741 , that is, the first piezoelectric
  • the actuator 7420 and the second piezoelectric actuator 7430 have the same mounting height with respect to the bottom surface of the driving housing 741 , that is, the first driving element 742 and the second driving element 743
  • the height space of the drive housing 741 can be arranged on the same straight line.
  • the consistency of the focusing portion 23 and the zooming portion 22 in the height direction set by the driving housing 741 after being driven by the first driving element 742 and the driving element is relatively better high, that is, after the zooming part 22 is driven by the first driving element 742 and the focusing part 23 is driven by the second driving element 743, the zooming part 22 and the focusing part 23 are
  • the consistency in the height direction set by the driving housing 741 is relatively higher, so as to ensure the imaging quality of the variable-focus camera module.
  • the first driving element 742 and the second driving element 743 are relatively aligned in the width direction set by the driving housing 741 . That is, more preferably, in the embodiment of the present application, the first driven shaft 7422 of the first piezoelectric actuator 7420 and the second driven shaft 7432 of the second piezoelectric actuator 7430 are mutually Align. That is, the first driving element 742 and the second driving element 743 are also aligned in the width direction of the first side of the optical axis to further increase the first driving element 742 and the second driving element 743.
  • the consistency and compactness of the spatial arrangement of the two driving elements 743 increases the consistency of the focusing portion 23 and the zooming portion 22 after being driven.
  • the first driving element 742 can be suspended by fixing the first piezoelectric active portion 7421 of the first driving element 742 to the first side wall of the driving housing 741 .
  • the first driven shaft 7422 of the first driving element 742 is fixed in the driving housing 741 and the first driven shaft 7422 of the first driving element 742 extends into the first receiving channel 7440 , for example, the first piezoelectric
  • the active part 7421 is attached to the first side wall of the driving housing 741 by an adhesive, wherein the adhesive preferably has a certain elasticity.
  • the second driving The element 743 is suspended in the driving housing 741 and the second driven shaft 7432 of the second driving element 743 extends into the second receiving channel 7450, for example, the second driving element 743
  • the second piezoelectric active part 7431 is attached to the second side wall of the driving housing 741 through an adhesive, wherein the adhesive preferably has a certain elasticity.
  • the first driving element 742 and the second driving element 743 can be arranged in different directions from each other in other ways.
  • the first driving elements 742 are arranged in the second direction
  • the second driving elements 743 are arranged in the first direction, that is, the first driving elements 742 are head-first
  • the second driving element 743 is arranged in a rearward direction and a rearward direction of the second driving element 743 . That is, in these examples, the first piezoelectric active portion 7421 of the first piezoelectric actuator 7420 is adjacent to the second piezoelectric active portion 7431 of the second piezoelectric actuator 7430 .
  • the first driving element 742 and the second driving element 743 can also be arranged in the same direction.
  • the first driving element 742 and the second driving element 743 are simultaneously arranged in the first direction, or the first driving element 742 and the second driving element 743 are simultaneously arranged in the second direction.
  • the driving assembly 740 further includes: a second side of the optical axis opposite to the first side.
  • a guide structure 746 configured to guide the focus portion 23 and the zoom portion 22 to move along the direction set by the optical axis.
  • the first driving element 742 and the second driving element 743, and the guiding structures are located on both sides of the optical axis, respectively, and by setting such positions, the The internal space of the zoom camera module is fully utilized, so as to facilitate the lightening and thinning of the zoom camera module.
  • the first driving element 742 and the second driving element 743 share a guiding structure 746 , that is, the first carrier 744 and the second carrier 745 share a guide structure 746, in this way, it is beneficial to stably maintain the relative positional relationship between the first carrier 744 and the second carrier 745, so as to stably maintain the zoom lens group 20.
  • the relative positional relationship between the focusing part 23 and the zooming part 22 is to improve the resolution capability of the zoom lens group 20 .
  • the guide structure 746 includes: a first support portion 7461 and a second support portion 7462 formed on the drive housing 741 at intervals, and, At least one guide rod 7463 spanning between the first support portion 7461 and the second support portion 7462 and passing through the first carrier 744 and the second carrier 745, the guide rod 7463 is parallel to the optical axis , so that the first carrier 744 and the second carrier 745 can be guided to move along the direction set by the guide rod 7463 parallel to the optical axis.
  • the functions of the first support portion 7461 and the second support portion 7462 are to span the guide rod 7463 .
  • the first support portion 7461 and the second support portion 7462 (eg, the first support portion 7462 ) may be mounted on the bottom surface of the drive housing 741 7461 and the second support part 7462 can be implemented as a support frame), of course, the first support part 7461 and the second support part 7462 can also be integrally formed on the bottom surface of the drive housing 741, This is not limited by this application.
  • the first support portion 7461 and the second support portion 7462 may also be implemented as at least a part of the side wall of the drive housing 741 , that is, the The two opposite side walls of the drive housing 741 form the first support portion 7461 and the second support portion 7462 .
  • the side walls of the driving housing 741 may be two opposite side walls of the driving housing 741 along the direction set by the optical axis, and/or, the side walls of the driving housing 741 are perpendicular to the two opposite side walls in the direction set by the optical axis.
  • guide rod grooves 7464 can be provided on the first support part 7461 and the second support part 7462, and on the first carrier 744 and the second carrier A guide rod channel 7465 is formed in the 745 through its two side surfaces, in this way, the guide rod 7463 can be mounted on the first support portion 7461 and the second support in a manner of being installed in the guide rod groove 464. part 7462 and pass through the guide rod passages 7465 of the first carrier 744 and the second carrier 745 at the same time. Further, in this specific example, balls and/or lubricating medium may be optionally arranged in the guide rod channels 7465 of the first carrier 744 and the second carrier 745 to reduce friction.
  • the guide rod 7463 is aligned with the driven shaft 120 of the first driving element 742 and/or the driven shaft 120 of the second driving element 743 In this way, the risk of inclination between the focusing part and the zooming part can be reduced, so as to ensure the imaging quality of the variable-focus camera module.
  • FIG. 7A illustrates a schematic diagram of a variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • the configuration of the structure of the guide structure 746 is changed.
  • the drive assembly 740 further includes a first guide mechanism 747 and a second guide mechanism 748, wherein the first guide mechanism 47 is configured to guide the zoom portion 22 moves along the direction set by the optical axis, and the second guide mechanism 748 is configured to guide the focusing portion 23 to move along the direction set by the optical axis.
  • the first guide mechanism 747 includes a first mounting portion 7471 and a second mounting portion 7472, and a first mounting portion 7471 and a second mounting portion 7472 spanned between the first mounting portion 7471 and the second mounting portion 7472 and passing through the first mounting portion 7472.
  • a guide rod 7473 moves in the direction set.
  • the second guide mechanism 748 includes a third mounting portion 7481 and a fourth mounting portion 7482 , and a third mounting portion 7481 and the fourth mounting portion 7482 and extending through the second carrier 745 .
  • At least one second guide rod 7483, the second guide rod 7483 is parallel to the optical axis, so that the second carrier 745 can be guided along the first guide rod 7473 parallel to the optical axis move in the set direction.
  • a guiding mechanism is respectively configured for the first carrier 744 and the second carrier 745 , and the guiding mechanism is realized by the principle of guiding by the guiding rod 7463 .
  • the first guide rod 7473 and the second guide rod 7483 are flush with each other, so that when passing through the first guide mechanism 747 and the second guide mechanism 748 When the movement of the first carrier 744 and the second carrier 745 is guided respectively, the consistency of the first carrier 744 and the second carrier 745 after being moved can be more effectively ensured.
  • the heights of the first guide rod 7473 and the second guide rod 7483 relative to the bottom surface of the drive housing 41 are the same as the first driven shaft 422 and all the The installation height of the second driven shaft 7432 relative to the bottom surface of the drive housing 741 is flush, as shown in FIG. 7B , which is more beneficial to ensure that the first carrier 44 and the second carrier 745 are Consistency of each other after moving.
  • FIG. 8A illustrates a schematic diagram of a variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • FIG. 8B illustrates another schematic diagram of the variable-focus camera module shown in FIG. 8A .
  • the configuration of the guide structure 746 is changed again.
  • the drive assembly 740 further includes a first guide mechanism disposed between the first carrier 744 and the drive housing 741 747 and a second guide mechanism 748 disposed between the second carrier 745 and the drive housing 741, wherein the first guide mechanism 747 is configured to guide the zoom portion 22 along the light axis moves, and the second guide mechanism 748 is configured to guide the focus portion 23 to move along the optical axis.
  • the first guide mechanism 747 includes at least one ball 7401 disposed between the first carrier 744 and the drive housing 741 , and is disposed in the first A receiving groove 7402 between the carrier 744 and the driving housing 741 for receiving the at least one ball 7401 . That is, the first guide structure 746 is the ball 7401 guide structure 746 .
  • the receiving groove 7402 may be formed on the surface of the first carrier 744 opposite to the driving housing 741 , so that the at least one ball 7401 slides in the receiving groove 7402 Or rolling, the length direction of the receiving groove 7402 is consistent with the optical axis direction.
  • the opposite surface of the first carrier 744 and the drive housing 741 may also be provided with a magnetic attraction structure that attracts each other by magnetic force, for example, a magnetic element is arranged on the first carrier 744, and a magnetic element is arranged on the drive housing.
  • a magnetic attraction element suitable for being attracted by the magnetic element is formed on the bottom surface of the body 741, so that the first carrier 744 can be attracted by the driving housing 741, and the ball 7401 can be fixed on the first carrier 744 and the drive housing 741 .
  • the second guide mechanism 748 includes at least one ball 7401 disposed between the second carrier 745 and the drive housing 741 , and is disposed on the A receiving groove 7402 between the second carrier 745 and the driving housing 741 for receiving the at least one ball 7401 . That is, in this example, the second guide structure 46 is also the ball 7401 guide structure 746 .
  • the second guide mechanism 748 of the second carrier 745 is similar to the first guide mechanism 747 of the first carrier 744 .
  • the receiving groove 7402 is formed on the opposite surface of the second carrier 745 and the driving housing 741 , so that the at least one ball 7401 slides or rolls in the receiving groove 7402 .
  • the opposite surfaces of the second carrier 745 and the drive housing 741 may also be provided with a magnetic attraction structure that attracts each other by magnetic force, for example, a magnetic element is provided on the bottom surface of the second carrier 745, A magnetic attraction element suitable for being attracted by the magnetic element is formed on the bottom surface of the drive housing 741, so that the second carrier 745 can be attracted by the drive housing 741, so that the at least one ball 7401 It is rotatably disposed between the second carrier 745 and the drive housing 741 .
  • the configuration of the first guide mechanism 747 and the second guide structure 746 are the same, and the receiving groove 7402 of the first guide structure 746 and the receiving groove of the second guide structure 746 7402 are on the same line and connected to each other, so that the inclination between the first carrier 44 and the second carrier 745 can be reduced.
  • FIG. 9 is a schematic diagram illustrating another variant implementation of the guide structure of the variable-focus camera module according to an embodiment of the present application.
  • the first guide mechanism 747 includes: at least one sliding block 7403 disposed between the first carrier 744 and the drive housing 741 , and disposed on the A sliding rail 7404 between the driving housing 741 and the first carrier 744 is suitable for the sliding of the at least one slider 7403 . That is, in this example, the first guide structure 46 is the structure of the slider 7403 and the sliding rail 7404 .
  • the sliding block 7403 is fixed on the lower surface of the first carrier 744 , and the sliding rail 7404 is formed at a corresponding position on the bottom surface of the driving housing 741 .
  • the sliding rail 7404 and the sliding block 7403 may also be arranged in other manners, for example, a sliding rail 7404 is further arranged on the lower surface of the first carrier 744 and the like.
  • a magnetic attraction structure may be provided between the first carrier 744 and the drive housing 741 , so that the first carrier 744 can be attracted to the drive housing 741 .
  • the second guide mechanism 748 includes: at least one sliding block 7403 disposed between the second carrier 745 and the drive housing 741 , and disposed on the A sliding rail 7404 between the driving housing 741 and the second carrier 745 is suitable for the sliding of the at least one slider 7403 . That is, in this example, the second guide structure 746 is the structure of the sliding block 7403 and the sliding rail 7404 .
  • the sliding block 7403 is fixed on the lower surface of the second carrier 745 , and the sliding rail 7404 is formed at a corresponding position on the bottom surface of the driving housing 741 .
  • the sliding rail 7404 and the sliding block 7403 may also be arranged in other ways, for example, a sliding rail 7404 is further arranged on the lower surface of the second carrier 745 .
  • a magnetic attraction structure may be further provided between the second carrier 745 and the drive housing 741 , so that the second carrier 745 can be attracted to the drive housing 741 .
  • the sliding block 7403 and the sliding rail 7404 between the first carrier 744 and the driving housing 741 are provided with the sliding block 7403 and the sliding rail 7404 between the second carrier 745 and the driving housing 741
  • the settings are the same, specifically the size of the slider 7403 and the size of the rail 7404.
  • the two sliding rails 7404 corresponding to the first carrier 744 and the second carrier 745 provided on the drive housing 741 are on the same straight line and can be connected to each other, so that the first carrier The inclination of 744 and the second carrier 745 can be further reduced.
  • the first driving element 742 and the second driving element 743 can also be arranged in other ways, for example, the first piezoelectric actuator 7420 and all the The second piezoelectric actuators 7430 are respectively disposed on a first side of the optical axis and a second side opposite to the first side, as shown in FIG. 10 . That is, in these examples, the first driving element 742 and the second driving element 743 are disposed on the left and right sides of the optical axis, respectively.
  • the first piezoelectric actuator 7420 and the second piezoelectric actuator 7430 are disposed in opposite directions or in the same direction. That is, in these examples, the arrangement direction of the first driving element 742 and the second driving element 743 is not limited. Likewise, the first driving element 742 and the second driving element 743 may be provided with corresponding guiding structures 46 (or guiding mechanisms), as shown in FIG. 10 . Here, since the guiding structure or the guiding mechanism has been fully discussed in the previous part, it will not be repeated here.
  • variable-focus camera module is clarified, wherein the variable-focus camera module adopts the piezoelectric actuator 100 as a driver so as not only to provide a sufficiently large driving force, but also to The driving performance with higher precision and longer stroke is provided to meet the zoom requirements of the variable-focus camera module.
  • the piezoelectric actuator 100 has a relatively small size, so as to better adapt to the development trend of lightening and thinning of the camera module.
  • the variable-focus camera module adopts a reasonable layout scheme to arrange the piezoelectric actuator 100 in the variable-focus camera module, so as to meet the structure and size requirements of the variable-focus camera module.
  • At least a part of the piezoelectric actuator 100 is arranged in the originally idle space in the variable-focus camera module, so that the The space can be used more fully, improving the compactness of the spatial arrangement of the variable-focus camera module.
  • the driving assembly 740 of the zoom camera module further includes a third driving element (not shown) for driving the third driving element of the light turning element 10 to move.
  • a third driving element (not shown) for driving the third driving element of the light turning element 10 to move.
  • the driving assembly 840 for driving the zoom lens group 20 includes: a driving housing 841 , a first A carrier 844, a second carrier 845, a first driving assembly 842 and a second driving assembly 843, wherein the zooming part 22 is installed in the first carrier 844, and the focusing part 23 is installed in the second Inside the carrier 845, the first driving component 842 is configured to drive the first carrier 844 to drive the zoom portion 22 to move along the direction set by the optical axis, and the second driving component 843 is configured In order to drive the second carrier 845 to drive the focusing portion 23 to move along the direction set by the optical axis.
  • the first driving assembly 842 is configured to simultaneously drive the first carrier 844 from the first side and the second side of the first carrier 844 relative to the optical axis so as to drive the zooming part 22 to move along the direction set by the optical axis
  • the second driving component 843 is configured to move from the second carrier 845 relative to the optical axis on the first One side and the second side simultaneously drive the second carrier 845 to drive the focusing portion 23 to move along the direction set by the optical axis.
  • the first driving assembly 842 when the first driving assembly 842 is configured to drive the first carrier simultaneously from the first side and the second side of the first carrier 844 relative to the optical axis 844 to drive the zoom portion 22 to move along the direction set by the optical axis, the first driving assembly 842 includes at least a pair of The first side and the second side of the carrier 844 relative to the optical axis simultaneously drive the first carrier 844 to drive the zoom portion 22 to move along the direction set by the optical axis.
  • the drive element is implemented as a piezoelectric actuator.
  • the second driving assembly 843 when the second driving assembly 843 is configured to drive the second carrier simultaneously from the first side and the second side of the second carrier 845 relative to the optical axis 845 to drive the focusing portion 23 to move along the direction set by the optical axis, and the second driving component 843 includes at least one pair of driving elements implemented as piezoelectric actuators to pass the at least one The piezoelectric actuator simultaneously drives the second carrier 845 from the first side and the second side of the second carrier 845 relative to the optical axis to drive the focusing portion 23 along the optical axis. Move in the set direction.
  • the first driving assembly 842 is configured to simultaneously drive the first and second sides of the first carrier 844 relative to the optical axis.
  • a carrier 844 drives the zoom portion 22 to move along the direction set by the optical axis
  • the second driving component 843 is configured to drive the zooming portion 22 from the second carrier 845 relative to the optical axis.
  • the first side and the second side simultaneously drive the second carrier 845 to drive the focusing portion 23 to move along the direction set by the optical axis.
  • the first drive assembly 842 includes a pair of drive elements implemented as piezoelectric actuators
  • the second drive assembly 843 includes a pair of drive elements implemented as piezoelectric actuators.
  • first driving assembly 842 and the second driving assembly 843 may also be configured as: one of the first driving assembly 842 and the second driving assembly 843
  • the driving component 840 is configured to provide a pair of driving forces to drive its corresponding carrier, and the other driving component 840 provides a driving force to drive its corresponding carrier, which is not limited by the present application.
  • a pair of driving elements included in the first driving assembly 842 is defined as a first driving element 8421 and a second driving element 8422, wherein the first driving element 8421 is configured to The first side of the first carrier 844 drives the first carrier 844 to drive the zoom portion 22 to move along the direction set by the optical axis, and the second driving element 8422 is configured to move from the first The second side of the carrier 844 drives the first carrier 844 to drive the zoom portion 22 to move along the direction set by the optical axis.
  • a pair of driving elements included in the second driving assembly 843 is defined as a third driving element 8431 and a fourth driving element 8432 , wherein the third driving element 8431 is configured to extend from the second carrier 845 The first side of the second carrier 845 drives the second carrier 845 to drive the focusing portion 23 to move along the direction set by the optical axis, and the fourth driving element 8432 is configured to The two sides drive the first carrier 844 to drive the focusing portion 23 to move along the direction set by the optical axis.
  • the first driving element 8421 , the second driving element 8422 , the third driving element 8431 and the fourth driving element 8432 are implemented as the piezoelectric actuator 100 .
  • the first driving element 8421, the second driving element 8422, the third driving element 8431 and the fourth driving element 8432 may be implemented as the same type of piezoelectric driver, Alternatively, it is implemented as at least two types of piezoelectric drivers, for which this application is not limited.
  • the piezoelectric actuator 100 includes: a piezoelectric active part 110 , a driven shaft 120 drivably connected to the piezoelectric active part 110 , and a driven shaft 120 connected to the driven part 110 .
  • the piezoelectric active part 110 includes an electrode plate 111 and at least one piezoelectric substrate stacked on the electrode plate 111 .
  • the piezoelectric substrate is a substrate that has an inverse piezoelectric effect and shrinks or expands according to the polarization direction and the electric field direction, for example, it can be formed by using substrate polarization in the thickness direction of single crystal or polycrystalline ceramics, polymers, etc. made and used.
  • the inverse piezoelectric effect means that an electric field is applied in the polarization direction of the dielectric, and the dielectric undergoes mechanical deformation when a potential difference is generated.
  • the at least one piezoelectric substrate includes a first piezoelectric substrate 112 and a second piezoelectric substrate 113 , and the electrode plate 111 is sandwiched between them. between the first piezoelectric substrate 112 and the second piezoelectric substrate 113 .
  • the piezoelectric active part 110 further includes electrode layers 115 formed on the upper surface and the lower surface of the first piezoelectric substrate 112, respectively, and electrode layers 115 formed on the second piezoelectric substrate, respectively The electrode layers 115 on the upper and lower surfaces of the 113 , so as to provide the first piezoelectric substrate 112 and the second piezoelectric substrate 113 with a pulse voltage through the electrode layer 115 and the electrode plate 111 .
  • the electrode plate 111 may be composed of a plate-like element with a certain elasticity, for example, a metal plate with a certain elasticity.
  • the piezoelectric active part 110 further includes at least one electrical conduction part 114 electrically connected to the electrode plate 111 , for example, the at least one electrical conduction part 114 may be It is welded to the electrode plate 111 by welding, or the at least one electrical conduction part 114 is integrally formed with the electrode plate 111 . It is worth mentioning that when the number of the electrical conduction parts 114 is multiple, preferably, the multiple electrical conduction parts 114 are symmetrically distributed on the outer surface of the electrode plate 111 .
  • the first piezoelectric substrate 112 and the second piezoelectric substrate 113 are attached to the first side surface of the electrode plate 111 and the first side surface of the electrode plate 111 through the electrode layer 115 , respectively. the opposite second side surface.
  • the first piezoelectric substrate 112 and the second piezoelectric substrate 113 may be fixed to the electrode plate 111 in a surface-to-surface engagement, or the first piezoelectric substrate 112 and the second piezoelectric substrate 113 are attached to the electrode plate 111 by conductive silver glue.
  • the shape and size of the first piezoelectric substrate 112 and the second piezoelectric substrate 113 are similar to or consistent with the electrode plate 111 , so that the piezoelectric active part 110 has Better vibration efficiency.
  • the first piezoelectric substrate 112 , the second piezoelectric substrate 113 and the electrode plate 111 are circular plates.
  • the driven shaft 120 is fixed to the piezoelectric active part 110 , for example, attached to the center of the piezoelectric active part 110 by an adhesive.
  • the driven shaft 120 may be attached to the electrode layer 115 on the outer surface of the first piezoelectric substrate 112 through an adhesive, or may be nestedly attached to the first piezoelectric substrate through an adhesive In the center hole of the electrode layer 115 on the outer surface of the substrate 112, or the first piezoelectric substrate 112 has a center hole, the driven shaft 120 is further fitted in the center of the first piezoelectric substrate 112
  • the piezoelectric active part 110 has a central hole penetrating the upper and lower surfaces thereof, and the driven shaft 120 is fitted into the central hole of the piezoelectric active part 110 by an adhesive.
  • the driven shaft 120 may be implemented as a carbon rod.
  • the cross-sectional shape of the driven shaft 120 is a circle or a polygon, preferably a
  • the driving part 130 and the driven shaft 120 are frictionally fitted, so that the driving part 130 is movably fitted on the driven shaft 120 .
  • the driving part 130 may be implemented as a clamping mechanism for clamping the driven shaft 120 , wherein, preferably, the clamping mechanism may be a clamping mechanism with adjustable clamping force, or , a clamping mechanism partially or wholly made of elastic material.
  • the electrode layer 115 exposed on the surface of the piezoelectric active part 110 is electrically connected to the positive electrode 117 of the power control part 116
  • the electrode plate 111 is electrically connected through the electrical conduction part 114 the negative electrode 118 of the power control part 116, so that when the power control part 116 repeatedly applies a pulse voltage to the electrode layer 115 and the electrode plate 111, the first piezoelectric substrate 112 and the The second piezoelectric substrate 113 deforms in one direction under the action of the inverse piezoelectric effect, and quickly returns to a flat plate shape under the elastic action of the electrode plate 111 .
  • the driven shaft 120 moves back and forth in the set axial direction, and since the driving part 130 and the driven shaft 120 are friction fit, when the pressure When the electro-active part 110 is deformed in one direction, the driving part 130 and the driven shaft 120 move together, and when the piezoelectric active part 110 quickly returns to its original state, the driven shaft 120 also moves in the opposite direction
  • the driving part 130 cannot follow the action of the driven shaft 120 due to the inertial effect and cannot return to the original position, and can only stay at the position where it is. Therefore, in a deformation process, the position of the driving part 130 changes, and accordingly, the above-mentioned movement can be repeated by repeatedly applying the pulse voltage, so that the driving part 130 is moved to the target position.
  • FIG. 16A illustrates one of the schematic diagrams of another embodiment of the piezoelectric actuator 100 according to embodiments of the present application.
  • FIG. 16B illustrates the second schematic diagram of another embodiment of the piezoelectric actuator 100 according to an embodiment of the present application.
  • the piezoelectric actuator 100 includes: a piezoelectric active part 110 , a driven shaft 120 drivably connected to the piezoelectric active part 110 , and, with The driving part 130 to which the driven shaft 120 is tightly fitted, wherein the driving part 130 is configured to drive the first carrier 844 or the first carrier 844 under the action of the piezoelectric active part 110 and the driven shaft 120 .
  • Two carriers 845 to drive the zooming part 22 or the focusing part 23 to move along the optical axis.
  • the piezoelectric active part 110 includes a piezoelectric element 111A having a laminated structure as illustrated in FIG. 6A .
  • the piezoelectric element 111A includes a plurality of piezoelectric stretching members 112A and a plurality of electrodes 113A, and the plurality of piezoelectric stretching members 112A and the plurality of electrodes 113A are alternately stacked and disposed .
  • the piezoelectric element 111A can obtain a relatively large amount of deformation even when a small electric field is applied.
  • the electrodes 113A that sandwich the plurality of piezoelectric elastic elements 112A alternately are defined as internal electrodes, and the electrodes 113A are arranged on the surface of the piezoelectric elastic elements 112A and located in the piezoelectric elastic elements 112A.
  • the electrodes 113A on the upper surface and the lower surface of the electric element 111A are defined as the upper electrode and the lower electrode, respectively, and the electrode 113A arranged on the surface of the piezoelectric stretchable member 112A and located on the side surface of the piezoelectric element 111A is Defined as side electrodes. Accordingly, in the case of multiple layers, the electrodes 113A of the same polarity are electrically connected through the side electrodes.
  • the driven shaft 120 has a cylindrical shape and is attached to the middle area of the upper surface of the piezoelectric element 111A by an adhesive, so that the driven shaft 120 is joined to the The piezoelectric element 111A is described above.
  • the shape of the driven shaft 120 can also be adjusted, which is not limited by the present application.
  • the driven shaft 120 is made of a material containing any one of “carbon, heavy metals, carbides of heavy metals, borides of heavy metals, and nitrides of heavy metals” as a main component
  • the piezoelectric element 111A has a rectangular parallelepiped. A shape that has sides along mutually orthogonal X, Y, and Z axes, respectively.
  • the length of the piezoelectric element 111A in the X-axis direction is 1 mm
  • the length of the piezoelectric element 111A in the Y-axis direction is 1 mm
  • the length (height) of the piezoelectric element 111A in the Z-axis direction is 2 mm.
  • the piezoelectric actuator 100 shown in FIGS. 16A and 16B has the advantages of small size, large thrust force, and high precision. Moreover, compared with the piezoelectric actuator 100 illustrated in FIGS. 14 and 15 , the piezoelectric active portion 110 of the piezoelectric actuator 100 illustrated in FIGS. 16A and 16B has a relatively smaller cross section The size is suitable for use in a module with compact space, but its thickness is relatively large, and at the same time, the internal structure of the piezoelectric element 111A is relatively complicated.
  • the piezoelectric actuator 100 can provide a relatively high driving force. More specifically, the piezoelectric actuator 100 selected in the present application can provide a driving force of 0.6N to 2N, which is sufficient to drive a component with a weight greater than 100 mg.
  • the piezoelectric actuator 100 in addition to being able to provide a relatively large driving force, the piezoelectric actuator 100 also has other advantages compared to the traditional electromagnetic motor solution and memory alloy motor solution, including but not limited to: a relatively small size (with slender shape), better response accuracy, relatively simpler structure, relatively simpler drive control, high product consistency, no electromagnetic interference, relatively larger stroke, short stabilization time, relatively small weight, etc. .
  • variable-focus camera module requires the driver configured with the variable-focus camera module to have a long driving stroke and to ensure better alignment accuracy.
  • additional guide rods or ball guides need to be designed, and large-sized driving magnets/coils need to be adapted to the side of the lens, and balls, shrapnel, and suspension wires need to be installed.
  • Other auxiliary positioning devices in order to accommodate more components, ensure structural strength and reserve structural gaps, often lead to large lateral dimensions of the module, complex structural design, and heavy module weight.
  • the memory alloy motor solution is limited by the relatively small stroke that the memory alloy solution can provide in the same proportion, and there are reliability risks such as potential disconnection.
  • the piezoelectric actuator 100 has a relatively simple structure, and the assembly structure is simpler.
  • the size of the piezoelectric active part 110 , the driven shaft 120 and the driving part 130 and other active elements are basically independent of the size of the motion stroke, so in the In optical zoom products, the piezoelectric actuator 100 can achieve advantages such as large thrust, small size, and low weight, and at the same time, it can be designed to match the larger stroke or heavier device weight, and the integration degree in the design is also higher.
  • the piezoelectric actuator 100 uses the frictional force and inertia during vibration to push the object to be pushed (for example, the focusing portion 23 or the zooming portion 22 ) in a frictional contact manner to perform micron-level motion, which Compared with the electromagnetic scheme, the non-contact way to drive the object to be pushed needs to rely on the electromagnetic force to offset the gravity and friction force. It has the advantages of greater thrust, greater displacement and lower power consumption. High-precision continuous zoom. Moreover, when there are multiple motor mechanisms, the piezoelectric actuator 100 does not have a magnet coil structure, so there is no problem of magnetic interference. In addition, the piezoelectric actuator 100 can be self-locked by the frictional force between the components, so the abnormal shaking noise of the zoom camera module during optical zooming can be reduced.
  • the first driving component 842 includes a first driving element 8421 and a second driving element 8422, and the first driving element 8421 and the second driving element 8422 are implemented as piezoelectric The actuator 100, wherein the first driving element 8421 is configured to drive the first carrier 844 from the first side of the first carrier 844 to drive the zoom portion 22 along the optical axis.
  • the second driving element 8422 is configured to drive the first carrier 844 from the second side of the first carrier 844 to drive the zoom portion 22 along the set of the optical axis. direction move.
  • the second drive assembly 843 includes a third drive element 8431 and a fourth drive element 8432, the third drive element 8431 and the fourth drive element 8432 being implemented as the piezoelectric actuator 100, wherein the third drive element 8431 and the fourth drive element 8432
  • the three driving elements 8431 are configured to drive the second carrier 845 from the first side of the second carrier 845 to drive the focusing portion 23 to move along the direction set by the optical axis
  • the fourth driving The element 8432 is configured to drive the first carrier 844 from the second side of the second carrier 845 to drive the focusing portion 23 to move along the direction set by the optical axis.
  • the first driving element 8421 , the second driving element 8422, the third driving element 8431 and the fourth driving element 8432 are arranged in the driving housing 841 Inside.
  • the first carrier 844 and the second carrier 845 have special structural configurations, so that when the first carrier 844 and the second carrier After the 845 is installed on the drive housing 841, a first receiving channel on the first side of the first carrier 844 is formed between the bottom surface of the first carrier 844 and the bottom surface of the drive housing 841 8441 and the second receiving channel 8442 on the second side of the first carrier 844 ; the bottom surface of the second carrier 845 and the bottom surface of the driving housing
  • the third receiving channel 8451 on the first side and the fourth receiving channel 8452 on the second side of the second carrier 845 are provided.
  • the driving part 130 of the first driving element 8421 is disposed in the first receiving channel 8441
  • the driving part 130 of the second driving element 8422 is disposed in the second receiving channel 8442
  • the driving part 130 of the third driving element 8431 is disposed in the third receiving channel 8451
  • the driving part 130 of the fourth driving element 8432 is disposed in the into the fourth receiving channel 8452.
  • the piezoelectric actuator 100 has an elongated shape as a whole (that is, the driven shaft 120 extends vertically outward from the piezoelectric active part 110 to have an elongated shape ), and, in particular, the driven shaft 120 of the piezoelectric actuator 100 has an elongated columnar structure.
  • the piezoelectric actuator 100 has a special structure and size configuration, in the example shown in FIG. 11 and FIG.
  • the first carrier 844 and the second carrier 845 are selected to be connected with the The space between the driving housings 841 is utilized for arranging the first driving element 8421, the second driving element 8422, the third driving element 8431 and the fourth driving element 8432, so that the The zoom camera module has higher space utilization and relatively higher structural compactness.
  • the driving part 130 except the first driving element 8421 is installed in the first receiving channel 8441 and the driving of the second driving element 8422
  • the part 130 is installed outside the second accommodating channel 8442, at least a part of the driven shaft 120 of the first driving element 8421 extends into the first accommodating channel 8441, and the driven shaft 120 of the second driving element 8422 At least a part of the shaft 120 extends into the second receiving channel 8442 . In this way, the space between the first carrier 844 and the second carrier 845 and the driving housing 841 can be utilized more fully.
  • the first carrier 844 includes a first carrier base 8443 and a first extension integrally extending upward from the first carrier base 8443 respectively.
  • arm 8444 and second extension arm 8445 to form a first mounting cavity for mounting the zoom portion 22 between the first carrier base 8443, the first extension arm 8444 and the second extension arm 8445 and a first opening communicated with the first installation cavity, wherein the zoom portion 22 is suitable for the first opening to be installed into the first installation cavity.
  • the first accommodating channel 8441 is formed on the side surface of the first carrier base 8443, between the bottom surface of the first extension arm 8444 and the bottom surface of the driving housing 841, the second accommodating channel 8442 It is formed between the side surface of the first carrier base 8443 , the bottom surface of the second extension arm 8445 and the bottom surface of the driving housing 841 .
  • the driving portion 130 of the first driving element 8421 is implemented with at least partially elastic and oppositely disposed two clamping plates, which are attached to the bottom surface of the first extending arm 8444 by an adhesive or integrally formed on the first extending arm 8444.
  • the driving portion 130 of the second driving element 8422 is implemented with at least partially elastic and oppositely disposed two clamping plates, which are attached to the bottom surface of the second extending arm 8445 by an adhesive or are integrally formed on the first plate.
  • the driven shafts 120 of the first driving element 8421 and the second driving element 8422 are clamped tightly in the clamping cavity formed by the two clamping plates, respectively. It is worth mentioning that, through the configuration of such a driving position, it is beneficial to reduce the difficulty of driving and to improve the stability of driving.
  • the second carrier 845 includes a second carrier base 8453 and a third extension integrally extending upward from the second carrier base 8453 respectively.
  • arm 8454 and fourth extension arm 8455 to form a second mounting cavity for mounting the focusing portion 23 between the second carrier base 8453 , the third extension arm 8454 and the fourth extension arm 8455 and a second opening communicated with the second installation cavity, wherein the focusing portion 23 is adapted to be installed into the second installation cavity from the second opening.
  • the third accommodating channel 8451 is formed on the side surface of the second carrier base 8453, between the bottom surface of the third extension arm 8454 and the bottom surface of the driving housing 841, the fourth accommodating channel 8452 It is formed between the side surface of the second carrier base 8453 , the bottom surface of the fourth extension arm 8455 and the bottom surface of the driving housing 841 .
  • the driving portion 130 of the third driving element 8431 is implemented with at least partially elastic and oppositely disposed two clamping plates, which are attached to the bottom surface of the third extending arm 8454 by an adhesive or are integrally formed on the first plate. Bottom surface of three extension arms 8454.
  • the driving portion 130 of the fourth driving element 8432 is implemented with at least partially elastic and oppositely disposed two clamping plates, which are attached to the bottom surface of the fourth extending arm 8455 by an adhesive or are integrally formed on the first extending arm 8455. Bottom surface of four extension arms 8455.
  • the driven shafts 120 of the third driving element 8431 and the fourth driving element 8432 are clamped tightly in the clamping cavity formed by the two clamping plates, respectively. It is worth mentioning that, through the configuration of such a driving position, it is beneficial to reduce the difficulty of driving and to improve the stability of driving.
  • the first receiving channel 8441 , the second receiving channel 8442 , the third receiving channel 8451 and the fourth receiving channel 8452 are lower than the light
  • the shaft that is, when the first driving element 8421, the second driving element 8422, the third driving element 8431 and the fourth driving element 8432 are respectively arranged in the first receiving channel 8441, the When inside the second accommodating channel 8442, the third accommodating channel 8451 and the fourth accommodating channel 8452, the first driving element 8421, the second driving element 8422, the third driving element 8431 and all
  • the height of the driven shaft 120 of the fourth driving element 8432 relative to the bottom surface of the driving housing 841 is lower than the height of the optical axis relative to the bottom surface of the driving housing 841 .
  • the driving part 130 of the first driving element 8421 and the driving part 130 of the second driving element 8422 are symmetrically arranged on the first carrier 844 with respect to the optical axis. one side and the second side of the first carrier 844 . More preferably, the driven shaft 120 of the first driving element 8421 and the driven shaft 120 of the second driving element 8422 are symmetrically arranged on the first side of the first carrier 844 and on all sides of the first carrier 844 with respect to the optical axis. the second side of the first carrier 844.
  • the driven shaft 120 of the first driving element 8421 and the driven shaft 120 of the second driving element 8422 are flush with each other in the height direction of the driving housing 841 .
  • the movement of the zoom portion 22 on the first side and the second side thereof is more easily synchronized and more Stable, so as to ensure the flatness of the first carrier 844 relative to the bottom surface of the driving housing 841 , so as to ensure the imaging quality of the variable-focus camera module.
  • the driving part 130 of the third driving element 8431 and the driving part 130 of the fourth driving element 8432 are symmetrically arranged on the first carrier 844 with respect to the optical axis. one side and the second side of the first carrier 844 . More preferably, the driven shaft 120 of the third driving element 8431 and the driven shaft 120 of the fourth driving element 8432 are symmetrically arranged on the first side of the second carrier 845 and on all sides of the second carrier 845 with respect to the optical axis. the second side of the second carrier 845.
  • the driven shaft 120 of the third driving element 8431 and the driven shaft 120 of the fourth driving element 8432 are flush in the height direction of the driving housing 841, so that the focusing portion 23 When driven by the third driving element 8431 and the fourth driving element 8432 at the same time, the movement of the focusing portion 23 on the first side and the second side is easier to synchronize and more stable, so as to ensure the The flatness of the second carrier 845 relative to the bottom surface of the driving housing 841 is beneficial to ensure the imaging quality of the variable-focus camera module.
  • the driven shafts 120 of the third driving element 8431 and the fourth driving element 8432 are in the height direction of the driving housing 841 and the first driving element 8421 flush with the driven shaft 120 of the second drive element 8422 . More preferably, in the embodiment of the present application, the driven shaft 120 of the first driving element 8421 is aligned with the driven shaft 120 of the third driving element 8431 in the width direction of the driving housing 841 , And/or, the driven shaft 120 of the second driving element 8422 is aligned with the driven shaft 120 of the fourth driving element 8432 in the width direction of the driving housing 841 . In this way, it is beneficial to ensure the consistency between the first carrier 844 and the second carrier 845 after being moved, so as to help ensure the imaging quality of the zoom camera module.
  • the first accommodating channel 8441 is aligned with the third accommodating channel 8451
  • the second accommodating channel 8442 is aligned with the fourth accommodating channel 8452 .
  • the driving part 130 of the piezoelectric actuator 100 is arranged in the space between the bottom surfaces of the first carrier 844 and the second carrier 845 and the bottom surface of the driving case 841 as an example.
  • the first driving element 8421 and/or the second driving element 8422 and/or the third driving element 8431 and/or the fourth driving element 8432 The driving part 130 may also be arranged at other positions of the first carrier 844 and the second carrier 845 to achieve the above-mentioned driving mode as well.
  • the driving parts 130 of the first driving element 8421 and the second driving element 8422 are arranged on the side of the first carrier 844 close to the side wall of the driving housing 841, and the The driving parts 130 of the third driving element 8431 and the fourth driving element 8432 are arranged on the side of the second carrier 845 close to the side wall of the driving housing 841 , which is not limited by the present application .
  • the first driving element 8421 and the second driving element 8422 are arranged in the same direction, and the third driving element 8431 and the third driving element 8431 are arranged in the same direction.
  • Four driving elements 8432 are arranged in the same direction, and the first driving element 8421 and the third driving element 8431 are arranged opposite to each other, and the second driving element 8422 and the fourth driving element 8432 are arranged opposite to each other.
  • the piezoelectric active part 110 of the piezoelectric actuator 100 is set as the head of the piezoelectric actuator 100
  • the driven shaft 120 is the tail of the piezoelectric actuator 100
  • the arrangement of the piezoelectric actuator 100 along the optical axis is set to have the head at the front and the tail at the back.
  • the arrangement manner is the first arrangement direction
  • the arrangement manner of the piezoelectric actuators 100 along the optical axis is set as the arrangement manner of the head at the rear and the tail at the front as the second arrangement direction.
  • both the first driving element 8421 and the second driving element 8422 are arranged in the first arrangement direction, and the third driving element 8431 and the first driving element 8431
  • the four driving elements 8432 are all arranged in the second arrangement direction, so that the first driving element 8421 and the second driving element 8422 are arranged in the same direction, and the third driving element 8431 and the fourth driving element 8431
  • the elements 8432 are arranged in the same direction, and the first driving element 8421 and the third driving element 8431 are arranged opposite to each other, and the second driving element 8422 and the fourth driving element 8432 are arranged opposite to each other.
  • the driven shaft 120 of the first drive element 8421 is adjacent to the driven shaft 120 of the third drive element 8431, and the driven shaft 120 of the second drive element 8422 is adjacent on the driven shaft 120 of the fourth driving element 8432 .
  • the zoom portion 22 and the focus portion 23 in the zoom lens group 20 are disposed adjacent to each other, so that the driven shaft 120 of the first driving element 8421 and the third
  • the driven shaft 120 of the driving element 8431 is arranged adjacent to each other
  • the driven shaft 120 of the second driving element 8422 and the driven shaft 120 of the fourth driving element 8432 are arranged adjacent to each other, so as to satisfy the On the premise of the moving strokes of the zooming part 22 and the focusing part 23, the size of the driven shaft 120 is reduced, so that the size of the piezoelectric actuator 100 is reduced, and the pressure on the pressure is reduced.
  • the travel requirements of the electric actuator 100 may be reduced.
  • the distance between the zooming portion 22 and the focusing portion 23 can be made closer, thereby reducing the difficulty of structural design of the driving assembly 840 .
  • the first driving element 8421 can be suspended and fixed to the first side wall of the driving housing 841 by fixing the piezoelectric active part 110 of the first driving element 8421 to the first side wall of the driving housing 841 .
  • the piezoelectric active part 110 of the first drive element 8421 is passed through an adhesive Attached to the first side wall of the drive housing 841 , wherein the adhesive preferably has a certain elasticity.
  • the second driving element 8422 is suspended and fixed to the Inside the drive housing 841 and the driven shaft 120 of the second drive element 8422 extends into the second receiving channel 8442, for example, the piezoelectric active part 110 of the second drive element 8422 is attached to the second drive element 8422 through an adhesive.
  • the adhesive preferably has a certain elasticity.
  • the piezoelectric active part 110 of the first driving element 8421 and the piezoelectric active part 110 of the second driving element 8422 are flush with the height direction of the driving housing 841 .
  • the piezoelectric active part 110 of the third driving element 8431 can be mounted on the second side wall of the driving housing 841 opposite to the first side wall, so that the The third driving element 8431 is suspended in the driving housing 841 and the driven shaft 120 of the third driving element 8431 extends into the third receiving channel 8451, for example, the third driving element
  • the piezoelectric active part 110 of the 8431 is attached to the second side wall of the driving housing 841 by an adhesive, wherein the adhesive preferably has a certain elasticity.
  • the fourth driving element 8432 is suspended and fixed to the The driven shaft 120 of the fourth driving element 8432 extends into the fourth receiving channel 8452 in the driving housing 841, for example, the piezoelectric active part 110 of the fourth driving element 8432 is attached by an adhesive On the second side wall of the driving housing 841 , the adhesive preferably has a certain elasticity.
  • the piezoelectric active part 110 of the third driving element 8431 is flush with the piezoelectric active part 110 of the fourth driving element 8432 in the height direction of the driving housing 841 .
  • the first driving element 8421 , the second driving element 8422 and the third driving element 8431 can also be arranged in other ways.
  • the first driving element 8421 and the second driving element 8422 are arranged in the same direction
  • the third driving element 8431 and the third driving element 8431 are arranged in the same direction.
  • both the first driving element 8421 and the second driving element 8422 are arranged in the second arrangement direction
  • the third driving element 8431 and the fourth driving element 8432 are both arranged in the first arrangement direction.
  • the piezoelectric active portion 110 of the first driving element 8421 is adjacent to the piezoelectric active portion 110 of the third driving element 8431, and the second driving element
  • the piezoelectric active portion 110 of the 8422 is adjacent to the piezoelectric active portion 110 of the fourth driving element 8432 .
  • the piezoelectric active parts 110 of the first driving element 8421 , the third driving element 8431 , the second driving element 8422 and the fourth driving element 8432 are arranged adjacent to each other in the middle of the drive housing 841 .
  • the first driving element 8421, the second driving element 8422, the third driving element 8431 and the fourth driving element 8432 are all electrically connected from the middle to the outside, so that the circuit design The structural complexity can be reduced.
  • the driving housing 841 is further provided with the The first mounting portion 7411 and the second mounting portion 7412 are symmetrically arranged in the middle of the optical axis.
  • the first driving element 8421 can be mounted on the first side wall of the first mounting portion 7411 by the piezoelectric active portion 110 of the first driving element 8421 being mounted on the first side wall of the first mounting portion 7411 .
  • the driven shaft 120 of the first driving element 8421 is suspended and fixed in the driving housing 841 and the driven shaft 120 of the first driving element 8421 extends into the first receiving channel 8441, for example, the piezoelectric active
  • the part 110 is attached to the first side wall of the first mounting part 7411 of the driving housing 841 by an adhesive, wherein the adhesive preferably has a certain elasticity.
  • the second driving element 8422 is suspended and fixed to the Inside the drive housing 841 and the driven shaft 120 of the second drive element 8422 extends into the second receiving channel 8442, for example, the piezoelectric active part 110 of the second drive element 8422 is attached to the second drive element 8422 through an adhesive.
  • the adhesive preferably has a certain elasticity.
  • the first Three driving elements 8431 are suspended and fixed in the driving housing 841 and the driven shaft 120 of the third driving element 8431 extends into the third receiving channel 8451.
  • the third driving element 8431 The piezoelectric active portion 110 is attached to the second side wall of the first mounting portion 7411 of the driving housing 841 by an adhesive, wherein the adhesive preferably has a certain elasticity.
  • the fourth driving element is driven
  • the element 8432 is suspended in the driving housing 841 and the driven shaft 120 of the fourth driving element 8432 extends into the fourth receiving channel 8452, for example, pressing the fourth driving element 8432.
  • the electro-active part 110 is attached to the second side wall of the second installation part 7412 of the driving housing 841 by an adhesive, wherein the adhesive preferably has a certain elasticity.
  • the first driving element 8421 , the second driving element 8422 and the third driving element 8431 can also be arranged in other ways.
  • the first driving element 8421 and the second driving element 8422 are arranged in the same direction
  • the third driving element 8431 and the third driving element 8431 are arranged in the same direction. are also arranged in the same direction, but, unlike the layout shown in FIG. 11 , in this variant implementation, both the first driving element 8421 and the second driving element 8422 are arranged in the first arrangement direction
  • the third driving element 8431 and the fourth driving element 8432 are both arranged in the first arrangement direction. That is, as shown in FIG.
  • the driven shaft 120 of the first driving element 8421 is adjacent to the piezoelectric active portion 110 of the third driving element 8431
  • the second driving element 8422 The driven shaft 120 of the fourth driving element 8432 is adjacent to the piezoelectric active part 110 .
  • the above-mentioned arrangement can improve the consistency between the zoom portion 22 and the focus portion 23 after being moved, so as to reduce the relative inclination production.
  • FIG. 19 illustrates a schematic diagram of yet another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • the first driving element 8421 and the second driving element 8422 are arranged in the same direction
  • the third driving element 8431 and the third driving element 8431 are also arranged in the same direction. They are arranged in the same direction, but, unlike the layout shown in FIG. 11 , in this variant implementation, the first driving element 8421 and the second driving element 8422 are both arranged in the second arrangement direction, so Both the third driving element 8431 and the fourth driving element 8432 are arranged in the second arrangement direction. That is, as shown in FIG.
  • the piezoelectric active portion 110 of the first driving element 8421 is adjacent to the driven shaft 120 of the third driving element 8431, and the second driving element 8422 The piezoelectric active part 110 is adjacent to the driven shaft 120 of the fourth driving element 8432 .
  • FIG. 20 illustrates a schematic diagram of yet another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • the first driving element 8421 and the second driving element 8422 are arranged in opposite directions, and the third driving element 8431 and the third driving element 8431 are also arranged Anisotropically set.
  • the first driving elements 8421 are arranged in the first arrangement direction
  • the second driving elements 8422 are arranged in the second arrangement direction
  • the third driving elements 8431 are arranged in the first arrangement direction
  • the fourth driving elements 8432 are arranged in the second arrangement direction.
  • FIG. 21 illustrates a schematic diagram of yet another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • the first driving element 8421 and the second driving element 8422 are arranged in opposite directions, and the third driving element 8431 and the third driving element 8431 are also arranged Anisotropically set.
  • the difference from the layout shown in FIG. 20 is that in this modified implementation, the first driving elements 8421 are arranged in a first arrangement direction, the second driving elements 8422 are arranged in a second arrangement direction, and the first driving elements 8422 are arranged in a second arrangement direction.
  • the three driving elements 8431 are arranged in the second arrangement direction, and the fourth driving elements 8432 are arranged in the first arrangement direction.
  • FIG. 22 illustrates a schematic diagram of yet another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • the first driving element 8421 and the second driving element 8422 are arranged in the same direction, and the third driving element 8431 and the third driving element 8431 are also arranged in the same direction.
  • Anisotropically set Specifically, in this variant implementation, the first driving element 8421 and the second driving element 8422 are arranged in the same direction in a first arrangement direction, the third driving element 8431 is arranged in a first arrangement direction, and the The fourth driving elements 8432 are arranged in the second arrangement direction.
  • FIG. 23 illustrates a schematic diagram of yet another variant implementation of the variable-focus camera module according to an embodiment of the present application.
  • the first driving element 8421 and the second driving element 8422 are arranged in opposite directions, and the third driving element 8431 and the third driving element 8431 are also arranged set in the same direction.
  • the first driving elements 8421 are arranged in a first arrangement direction
  • the second driving elements 8422 are arranged in a second arrangement direction
  • the elements 8432 are all arranged in the first arrangement direction.
  • the piezoelectric actuator 100 as the first driving element 8421, the second driving element 8422, the third driving element 8431 and the fourth driving element 8432
  • the The first driving element 8421, the second driving element 8422, the third driving element 8431 and the fourth driving element 8432 can be electrically connected to an external power source in the following manner.
  • connection circuit can be implemented as a flexible board connection strip or a plurality of leads, so as to be electrically connected to the outside through the connection circuit.
  • the piezoelectric actuator 100 is arranged in the driving housing 841 , the piezoelectric actuator 100 is adapted to be directly led out through the flexible board, so as to communicate with the circuit board 31 of the photosensitive component 30 . electrical connection.
  • the first driving element 8421 , the second driving element 8422 , the third driving element 8431 and the fourth driving element 8432 can also be directly exported through the soft board, and connected with The circuit board 31 of the photosensitive assembly 30 is electrically connected.
  • at least two LDS grooves are arranged on the surface of the drive housing 841, the depth of the LDS grooves is not greater than 20-30 ⁇ m, and the width is not less than 60 ⁇ m.
  • LDS laser direct structuring technology
  • the surface of the LDS grooves is plated
  • a conductive plating layer for example, it can be a plating layer of nickel palladium gold
  • connect the connection circuit of the first driving element 8421 and the second driving element 8422 with the conductive plating layer in the LDS tank so as to lead out the circuit and be electrically connected with the circuit board 31 of the photosensitive component 30 .
  • At least two wires can be molded into the drive housing 841 through Insert Molding technology, so as to connect the connection circuit of the first drive element 8421 and the second drive element 8422 with the The wires are electrically connected to lead out the circuit, and are electrically connected to the circuit board 31 of the photosensitive component 30 .
  • variable-focus camera module is clarified, wherein the variable-focus camera module adopts the piezoelectric actuator 100 as a driver so as not only to provide a sufficiently large driving force, but also to The driving performance with higher precision and longer stroke is provided to meet the zoom requirements of the variable-focus camera module.
  • the piezoelectric actuator 100 has a relatively small size, so as to better adapt to the development trend of lightening and thinning of the camera module.
  • the variable-focus camera module adopts a reasonable layout scheme to arrange the piezoelectric actuator 100 in the variable-focus camera module, so as to meet the structure and size requirements of the variable-focus camera module.
  • At least a part of the piezoelectric actuator 100 is arranged in the originally idle space in the variable-focus camera module, so that the The space can be used more fully, improving the compactness of the spatial arrangement of the variable-focus camera module.
  • variable-focus camera module provides driving force from opposite sides of the object to be driven through at least one pair of piezoelectric actuators 100, so that the movement of the object to be driven is more efficient. to be stable.
  • the driving component 840 of the variable-focus camera module further includes a fifth driving element (not shown) for driving the light turning element 10 to move,
  • the optical turning element 10 is driven to rotate by the fifth driving element, so as to realize the optical anti-shake function of the variable-focus camera module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

一种可变焦摄像模组,其包括:设有一光轴的变焦透镜组(20),包括固定部分(21)、变焦部分(22)和对焦部分(23);对应于所述变焦透镜组(20)的感光组件(30);以及,驱动组件(740),包括:驱动壳体(741)、位于所述驱动壳体内的第一载体(744)、第二载体(745)、第一驱动元件(742)和第二驱动元件(743),所述变焦部分(22)安装于所述第一载体内(744),所述对焦部分(23)安装于所述第二载体(745)内,所述第一驱动元件(742)被配置为驱动所述第一载体(744)以带动所述变焦部分(22)沿着光轴方向移动,所述第二驱动元件(743)被配置为驱动所述第二载体(745)以带动所述对焦部分(23)沿着光轴方向移动,所述第一驱动元件(742)和/或所述第二驱动元件(743)被实施为压电致动器,并且,以巧妙的布设方案将其布设于所述可变焦摄像模组中,以满足摄像模组的结构和尺寸要求。

Description

可变焦摄像模组 技术领域
本申请涉及摄像模组领域,尤其涉及可变焦摄像模组,其中,所述可变焦摄像模组采用压电致动器作为驱动器以提供足够大的驱动力和相对更佳的驱动性能。并且,采用合理的布设方案将压电致动器布设于所述可变焦摄像模组中,以满足使得所述可变焦摄像模组满足其结构和尺寸设计要求。
背景技术
随着移动电子设备的普及,被用于移动电子设备的用于帮助使用者获取影像(例如,视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
为了满足越来越广泛的市场需求,高像素、大芯片、小尺寸是现有摄像模组不可逆转的发展趋势。随着感光芯片朝着高像素和大芯片的方向发展,与感光芯片适配的光学镜头的尺寸也逐渐增大,这给用于驱动光学镜头以进行光学性能调整(例如,光学对焦、光学防抖等)的驱动元件带来的新的挑战。
具体地,现有的用于驱动光学镜头的驱动元件为电磁式马达,例如,音圈马达(Voice Coil Motor:VCM)、形状记忆合金驱动器(Shape of Memory Alloy Actuator:SMA)等。然而,随着光学镜头尺寸增加而导致的重量增加,现有的电磁式马达已逐渐无法提供足够的驱动力来驱动光学镜头移动。量化来看,现有的音圈马达和形状记忆合金驱动器仅适于驱动重量小于100mg的光学镜头,也就是,如果光学镜头的重量超过100mg,现有的驱动器将无法满足摄像模组的应用需求。
此外,随着市场需求的变化和发展,近年来还要求配置于终端设备的摄像模组能够实现变焦拍摄的功能,例如,通过光学变焦来实现远景拍摄的需求。相较于传统的摄像模组(例如,动焦摄像模组),光学变焦摄像模组不仅包括具有更大尺寸和重量的镜头,也就是,要求驱动器提供更大的驱动力,而且,还要求用于驱动镜头移动的驱动器能够提供精度更高和行程更长的驱 动性能。上述技术要求,现有的电磁式驱动马达已无法满足。同时,现有的电磁式致动器还存在电磁干扰的问题。
因此,需要一种适配的用于摄像模组的新型驱动方案,且,新型的驱动器能够满足摄像模组轻型化和薄型化的发展需求。
发明内容
本申请的一优势在于提供了一种可变焦摄像模组,其中,所述可变焦摄像模组采用压电致动器作为驱动器以不仅能够提供足够大的驱动力,而且,能够提供精度更高和行程更长的驱动性能,以满足所述可变焦摄像模组的光学性能调整需求。
本申请的又一优势在于提供了一种可变焦摄像模组,其中,采用合理的布设方案将所述压电致动器布设于所述可变焦摄像模组中,以满足使得所述可变焦摄像模组满足其结构和尺寸设计要求。
本申请的又一优势在于提供了一种可变焦摄像模组,其中,所述压电致动器的至少一部分被布设于所述可变焦摄像模组中原本被闲置的空间中,以使得所述可变焦摄像模组内的空间能够更为充分地被应用,提高所述可变焦摄像模组的空间布设的紧凑度。
通过下面的描述,本申请的其它优势和特征将会变得显而易见,并可以通过权利要求书中特别指出的手段和组合得到实现。
为实现上述至少一优势,本申请提供一种可变焦摄像模组,其包括:
设有一光轴的变焦透镜组,包括:固定部分、变焦部分和对焦部分;
对应于所述变焦透镜组的感光组件;以及
驱动组件,包括:驱动壳体、位于所述驱动壳体内的第一载体、第二载体、第一驱动元件和第二驱动元件;
其中,所述变焦部分被安装于所述第一载体内,所述对焦部分被安装于所述第二载体内,所述第一驱动元件被配置为驱动所述第一载体以带动所述变焦部分沿着所述光轴所设定的方向移动,所述第二驱动元件被配置为驱动所述第二载体以带动所述对焦部分沿着所述光轴所设定的方向移动,其中,所述第一驱动元件和/或所述第二驱动元件被实施为压电致动器;
其中,所述驱动壳体的底表面与所述第一载体的底表面之间设有至少一第一收容通道,所述驱动壳体的底表面与所述第二载体的底表面之间设有至 少一第二收容通道,其中,所述压电致动器的至少一部分被设置于至少一所述第一收容通道或者至少一所述第二收容通道内。
在根据本申请的可变焦摄像模组中,所述第一驱动元件被实施为第一压电致动器,所述第二驱动元件被实施为第二压电致动器。
在根据本申请的可变焦摄像模组中,至少部分所述第一压电致动器被设置于所述第一收容通道内,至少部分所述第二压电致动器被设置于所述第二收容通道内。
在根据本申请的可变焦摄像模组中,所述第一压电致动器包括第一压电主动部、可传动地耦接于所述第一压电主动部的第一从动轴,以及,与所述第一从动轴紧配的第一驱动部,其中,在所述第一压电主动部和所述第一从动轴的作用下,所述第一驱动部被配置为驱动所述第一载体沿着所述光轴所设定的方向移动;其中,所述第二压电致动部包括第二压电主动部、可传动地耦接于所述第二压电主动部的第二从动轴,以及,与所述第二从动轴紧配的第二驱动部,其中,在所述第二压电主动部和所述第二从动轴的作用下,所述第二驱动部被配置为驱动所述第二载体沿着所述光轴所设定的方向移动;
其中,所述第一压电致动器的第一从动轴的至少一部分延伸于所述第一收容通道内,所述第二压电致动器的第二从动轴的至少一部分延伸于所述第二收容通道内。
在根据本申请的可变焦摄像模组中,所述第一压电致动器和所述第二压电致动器被设置于所述光轴的第一侧。
在根据本申请的可变焦摄像模组中,所述第一压电致动器和所述第二压电致动器被分别设置于所述光轴的第一侧和与所述第一侧相对的第二侧。
在根据本申请的可变焦摄像模组中,所述第一压电致动器和所述第二压电致动器异向地设置。
在根据本申请的可变焦摄像模组中,所述第一压电致动器和所述第二压电致动器同向地设置。
在根据本申请的可变焦摄像模组中,所述第一压电致动器和所述第二压电致动器相对于所述驱动壳体的底表面具有相同的安装高度。
在根据本申请的可变焦摄像模组中,所述第一压电致动器和所述第二压电致动器异向地设置或者同向地设置。
在根据本申请的可变焦摄像模组中,所述第一压电致动器和所述第二压电致动器相对于所述驱动壳体的底表面具有相同的安装高度。
在根据本申请的可变焦摄像模组中,所述第一压电致动器的第一压电主动部邻近于所述第二压电致动器的第二压电主动部。
在根据本申请的可变焦摄像模组中,所述第一压电致动器的所述第一从动轴邻近于所述第二压电致动器的第二从动轴。
在根据本申请的可变焦摄像模组中,所述第一压电致动器的第一压电主动部被安装于所述驱动壳体的第一侧壁,所述第二压电致动器的第二压电主动部被附着于所述驱动壳体的与所述第一侧壁相对的第二侧壁。
在根据本申请的可变焦摄像模组中,所述驱动组件进一步包括设置于所述光轴的与所述第一侧相对的第二侧的导引结构,所述导引结构被配置为引导所述对焦部分和所述变焦部分沿着所述光轴所设定的方向移动。
在根据本申请的可变焦摄像模组中,所述导引结构,包括:相间隔地形成于所述驱动壳体的第一支撑部和第二支撑部,以及,架设于所述第一支撑部和第二支撑部之间且贯穿所述第一载体和所述第二载体的至少一导杆,所述导杆与所述光轴平行,以使得所述第一载体和所述第二载体能够被导引沿着平行于所述光轴的所述导杆所设定的方向移动。
在根据本申请的可变焦摄像模组中,所述驱动组件,进一步包括第一导引机构和第二导引机构,其中,所述第一导引机构被配置为引导所述变焦部分沿着所述光轴所设定的方向移动,所述第二导引机构被配置为引导所述对焦部分沿着所述光轴所设定的方向移动。
在根据本申请的可变焦摄像模组中,所述第一导引机构包括第一安装部和第二安装部以及架设于所述第一安装部和所述第二安装部之间的且贯穿所述第一载体的至少一第一导杆,所述第一导杆与所述光轴平行,以使得所述第一载体能够被导引沿着平行于所述光轴的所述第一导杆所设定的方向移动;所述第二导引机构包括第三安装部和第四安装部以及架设于所述第三安装部和所述第四安装部之间的且贯穿所述第二载体的至少一第二导杆,所述第二导杆与所述光轴平行,以使得所述第二载体能够被导引沿着平行于所述光轴的所述第一导杆所设定的方向移动。
在根据本申请的可变焦摄像模组中,所述第一导杆与所述第二导杆相互齐平。
在根据本申请的可变焦摄像模组中,所述第一导杆和所述第二导杆相对于所述驱动壳体的底表面的高度与所述第一从动轴和所述第二从动轴相对于所述驱动壳体的底表面的安装高度齐平。
在根据本申请的可变焦摄像模组中,所述第一导引机构,包括设置于所述第一载体和所述驱动壳体之间的至少一滚珠,以及,设置于所述第一载体和所述驱动壳体之间的用于容纳所述至少一滚珠的收容槽。
在根据本申请的可变焦摄像模组中,所述第一导引机构,包括:设置于所述第一载体和所述驱动壳体之间的至少一滑块,以及,设置于所述驱动壳体与所述第一载体之间的适于所述至少一滑块滑动的滑轨。
在根据本申请的可变焦摄像模组中,所述第二导引机构,包括设置于所述第二载体和所述驱动壳体之间的至少一滚珠,以及,设置于所述第二载体和所述驱动壳体之间的用于容纳所述至少一滚珠的收容槽。
在根据本申请的可变焦摄像模组中,所述第二导引机构,包括:设置于所述第二载体和所述驱动壳体之间的至少一滑块,以及,设置于所述驱动壳体与所述第二载体之间的适于所述至少一滑块滑动的滑轨。
在根据本申请的可变焦摄像模组中,所述第一载体包括第一载体底座和一体地自所述第一载体底座分别向上延伸的第一延长臂和第二延长臂,以在所述第一载体底座、所述第一延长臂和所述第二延长臂之间形成用于安装所述变焦部分的第一安装腔和连通于所述第一安装腔的第一开口。
在根据本申请的可变焦摄像模组中,所述至少一第一收容通道中其中一个所述第一收容通道形成于所述第一载体底座的侧表面,所述第一延长臂的底表面和所述驱动壳体的底表面之间,所述至少一第一收容通道中另一个所述第一收容通道形成于所述第一载体底座的侧表面,所述第二延长臂的底表面和所述驱动壳体的底表面之间。
在根据本申请的可变焦摄像模组中,所述第二载体包括第二载体底座和一体地自所述第二载体底座分别向上延伸的第三延长臂和第四延长臂,以在所述第二载体底座、所述第三延长臂和所述第四延长臂之间形成用于安装所述对焦部分的第二安装腔和连通于所述第二安装腔的第二开口。
在根据本申请的可变焦摄像模组中,所述至少一第二收容通道中其中一个所述第二收容通道形成于所述第二载体底座的侧表面,所述第三延长臂的底表面和所述驱动壳体的底表面之间,所述至少一第二收容通道中另一个所 述第二收容通道形成于所述第二载体底座的侧表面,所述第四延长臂的底表面和所述驱动壳体的底表面之间。
在根据本申请的可变焦摄像模组中,所述压电致动器所产生的驱动力的大小为0.6N至2N。
在根据本申请的可变焦摄像模组中,所述第一收容通道和所述第二收容通道低于所述光轴。
在根据本申请的可变焦摄像模组中,所述第一从动轴和所述第二从动轴相对于所述驱动壳体的底表面的安装高度低于所述光轴相对于所述驱动壳体的底表面的高度。
在根据本申请的可变焦摄像模组中,所述压电主动部包括电极板和叠置于所述电极板的至少一压电基板。
在根据本申请的可变焦摄像模组中,所述至少一压电基板,包括第一压电基板和第二压电基板,所述电极板被夹设于所述第一压电基板和所述第二压电基板之间。
在根据本申请的可变焦摄像模组中,所述可变焦摄像模组进一步包括:设置于所述感光组件的感光路径上的光阻挡元件。
在根据本申请的可变焦摄像模组中,所述可变焦摄像模组进一步包括:用于将成像光线转折至所述变焦透镜组的光转折元件。
在根据本申请的可变焦摄像模组中,所述可变焦摄像模组进一步包括:用于驱动所述光转折元件的第三驱动元件。
在根据本申请的可变焦摄像模组中,所述变焦部分和所述对焦部分相邻地设置。
在根据本申请的可变焦摄像模组中,所述变焦部分位于所述固定部分和所述对焦部分之间。
在根据本申请的可变焦摄像模组中,所述对焦部分位于所述固定部分和所述变焦部分之间。
根据本申请的又一方面,还提供了一种可变焦摄像模组,其包括:
设有一光轴的变焦透镜组,包括:固定部分、变焦部分和对焦部分;
对应于所述变焦透镜组的感光组件;以及
驱动组件,包括:驱动壳体、位于所述驱动壳体内的第一载体、第二载体、第一驱动组件和第二驱动组件,其中,所述变焦部分被安装于所述第一 载体内,所述对焦部分被安装于所述第二载体内,所述第一驱动组件被配置为从所述第一载体的相对于所述光轴的第一侧和第二侧同时驱动所述第一载体以带动所述变焦部分沿着所述光轴所设定的方向移动,所述第二驱动组件被配置为驱动所述第二载体以带动所述对焦部分沿着所述光轴所设定的方向移动。
在根据本申请的可变焦摄像模组中,所述第一驱动组件包括第一驱动元件和第二驱动元件,所述第一驱动元件和第二驱动元件被实施为压电致动器,其中,所述第一驱动元件被配置为从所述第一载体的第一侧驱动所述第一载体以带动所述变焦部分沿着所述光轴所设定的方向移动,所述第二驱动元件被配置为从所述第一载体的第二侧驱动所述第一载体以带动所述变焦部分沿着所述光轴所设定的方向移动。
在根据本申请的可变焦摄像模组中,所述压电致动器包括压电主动部、可传动地连接于所述压电主动部并自所述压电主动部延伸的从动轴以及紧配于所述从动轴的驱动部,其中,所述驱动部在所述压电主动部和所述从动轴的作用下被配置为驱动所述第一载体沿着所述光轴所设定的方向移动。
在根据本申请的可变焦摄像模组中,所述第一载体的底表面和所述驱动壳体的底表面之间形成位于所述第一载体的第一侧的第一收容通道和位于所述第一载体的第二侧的第二收容通道,其中,所述第一驱动元件的驱动部被设置于所述第一收容通道内,所述第二驱动元件的驱动部被设置于所述第二收容通道内。
在根据本申请的可变焦摄像模组中,所述第一驱动元件的从动轴的至少一部分延伸于所述第一收容通道内,所述第二驱动元件的从动轴的至少一部分延伸于所述第二收容通道内。
在根据本申请的可变焦摄像模组中,所述第一载体包括第一载体底座和一体地自所述第一载体底座分别向上延伸的第一延长臂和第二延长臂,以在所述第一载体底座、所述第一延长臂和所述第二延长臂之间形成用于安装所述变焦部分的第一安装腔和连通于所述第一安装腔的第一开口,其中,所述第一收容通道形成于所述第一载体底座的侧表面,所述第一延长臂的底表面和所述驱动壳体的底表面之间,所述第二收容通道形成于所述第一载体底座的侧表面,所述第二延长臂的底表面和所述驱动壳体的底表面之间。
在根据本申请的可变焦摄像模组中,所述第一驱动元件的驱动部被安装 于所述第一延长臂的底表面,所述第二驱动元件的驱动部被安装于所述第二延长臂的底表面。
在根据本申请的可变焦摄像模组中,所述第一驱动元件和所述第二驱动元件被同向地设置。
在根据本申请的可变焦摄像模组中,所述第一驱动元件和所述第二驱动元件被异向的设置。
在根据本申请的可变焦摄像模组中,所述第一驱动元件和所述第二驱动元件都以第一布置方向布置。
在根据本申请的可变焦摄像模组中,所述第一驱动元件和所述第二驱动元件都以第二布置方向布置。
在根据本申请的可变焦摄像模组中,所述第一驱动元件的压电主动部被安装于所述驱动壳体的第一侧壁,所述第二驱动元件的压电主动部被安装于所述驱动壳体的所述第一侧壁。
在根据本申请的可变焦摄像模组中,所述驱动壳体包括关于所述光轴对称地设置于其中部的第一安装部和第二安装部,其中,所述第一驱动元件的压电主动部被安装于所述第一安装部的第一侧壁,所述第二驱动元件的压电主动部被安装于所述第二安装部的第一侧壁。
在根据本申请的可变焦摄像模组中,所述第一驱动元件的压电主动部与所述第二驱动元件的压电主动部在所述驱动壳体的高度方向上齐平。
在根据本申请的可变焦摄像模组中,所述第一驱动元件的从动轴和所述第二驱动元件的从动轴在所述驱动壳体的高度方向上齐平。
在根据本申请的可变焦摄像模组中,所述第一驱动元件的从动轴与所述第二驱动元件的从动轴关于所述光轴对称地布置在所述第一载体的第一侧和所述第一载体的第二侧。
在根据本申请的可变焦摄像模组中,所述第一驱动元件的驱动部和所述第二驱动元件的驱动部关于所述光轴对称地布置在所述第一载体的第一侧和所述第一载体的第二侧。
在根据本申请的可变焦摄像模组中,所述第二驱动组件包括第三驱动元件和第四驱动元件,所述第三驱动元件和第四驱动元件被实施为压电致动器,其中,所述第三驱动元件被配置为从所述第二载体的第一侧驱动所述第二载体以带动所述对焦部分沿着所述光轴所设定的方向移动,所述第四驱动元件 被配置为从所述第二载体的第二侧驱动所述第一载体以带动所述对焦部分沿着所述光轴所设定的方向移动。
在根据本申请的可变焦摄像模组中,所述第二驱动组件包括第三驱动元件和第四驱动元件,所述第三驱动元件和第四驱动元件被实施为压电致动器,其中,所述第三驱动元件被配置为从所述第二载体的第一侧驱动所述第二载体以带动所述对焦部分沿着所述光轴所设定的方向移动,所述第四驱动元件被配置为从所述第二载体的第二侧驱动所述第一载体以带动所述对焦部分沿着所述光轴所设定的方向移动。
在根据本申请的可变焦摄像模组中,所述第二驱动组件包括第三驱动元件和第四驱动元件,所述第三驱动元件和第四驱动元件被实施为压电致动器,其中,所述第三驱动元件被配置为从所述第二载体的第一侧驱动所述第二载体以带动所述对焦部分沿着所述光轴所设定的方向移动,所述第四驱动元件被配置为从所述第二载体的第二侧驱动所述第一载体以带动所述对焦部分沿着所述光轴所设定的方向移动。
在根据本申请的可变焦摄像模组中,所述第二载体的底表面和所述驱动壳体的底表面之间形成位于所述第二载体的第一侧的第三收容通道和位于所述第二载体的第二侧的第四收容通道,其中,所述第三驱动元件的驱动部被设置于所述第三收容通道内,所述第四驱动元件的驱动部被设置于所述第四收容通道内。
在根据本申请的可变焦摄像模组中,所述第三驱动元件的从动轴的至少一部分延伸于所述第三收容通道内,所述第四驱动元件的从动轴的至少一部分延伸于所述第四收容通道内。
在根据本申请的可变焦摄像模组中,所述第二载体包括第二载体底座和一体地自所述第二载体底座分别向上延伸的第三延长臂和第四延长臂,以在所述第二载体底座、所述第三延长臂和所述第四延长臂之间形成用于安装所述对焦部分的第二安装腔和连通于所述第二安装腔的第二开口,其中,所述第三收容通道形成于所述第二载体底座的侧表面,所述第三延长臂的底表面和所述驱动壳体的底表面之间,所述第四收容通道形成于所述第二载体底座的侧表面,所述第四延长臂的底表面和所述驱动壳体的底表面之间。
在根据本申请的可变焦摄像模组中,所述第三驱动元件和所述第四驱动元件被同向地设置。
在根据本申请的可变焦摄像模组中,所述第三驱动元件和所述第四驱动元件都以第一布置方向布置。
在根据本申请的可变焦摄像模组中,所述第三驱动元件和所述第四驱动元件被同时以第二布置方向布置。
在根据本申请的可变焦摄像模组中,所述第三驱动元件的压电主动部被安装于所述驱动壳体的相对于所述第一侧壁的第二侧壁,所述第四驱动元件的压电主动部被安装于所述驱动壳体的所述第二侧壁。
在根据本申请的可变焦摄像模组中,所述第三驱动元件的压电主动部被安装于所述第一安装部的相对于所述第一侧壁的第二侧壁,所述第四驱动元件的压电主动部被安装于所述第二安装部的相对于所述第一侧壁的第二侧壁。
在根据本申请的可变焦摄像模组中,所述第三驱动元件的从动轴和所述第四驱动元件的从动轴在所述驱动壳体的高度方向上齐平。
在根据本申请的所述可变焦摄像模组中,所述第三驱动元件的从动轴与所述第四驱动元件的从动轴关于所述光轴对称地布置在所述第二载体的第一侧和所述第二载体的第二侧。
在根据本申请的所述可变焦摄像模组中,所述第三驱动元件的驱动部和所述第四驱动元件的驱动部关于所述光轴对称地布置在所述第一载体的第一侧和所述第一载体的第二侧。
在根据本申请的可变焦摄像模组中,所述第一收容通道对应于所述第三收容通道,和/或,所述第二收容通道对齐于所述第四收容通道。
在根据本申请的可变焦摄像模组中,所述第三驱动元件和所述第四驱动元件的从动轴在所述驱动壳体的高度方向上与所述第一驱动元件和所述第二驱动元件的从动轴相齐平。
在根据本申请的可变焦摄像模组中,所述第一驱动元件的从动轴在所述驱动壳体的宽度方向上与所述第三驱动元件的从动轴相对齐,和/或,所述第二驱动元件的从动轴在所述驱动壳体的宽度方向上与所述第四驱动元件的从动轴相对齐。
在根据本申请的可变焦摄像模组中,所述可变焦摄像模组进一步包括:用于将成像光线转折至所述变焦透镜组的光转折元件。
在根据本申请的可变焦摄像模组中,所述可变焦摄像模组,进一步包括: 用于驱动所述光转折元件的第五驱动元件。
在根据本申请的可变焦摄像模组中,所述变焦部分和所述对焦部分相邻地设置。
在根据本申请的可变焦摄像模组中,所述变焦部分位于所述固定部分和所述对焦部分之间。
在根据本申请的可变焦摄像模组中,所述对焦部分位于所述固定部分和所述变焦部分之间。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1图示了根据本申请实施例的可变焦摄像模组的示意图。
图2图示了根据本申请实施例的所述可变焦摄像模组的光学系统的示意图。
图3图示了根据本申请实施例的所述可变焦摄像模组的另一示意图。
图4图示了根据本申请实施例的所述可变焦摄像模组的光阻挡元件的一个具体示例的示意图。
图5A和图5B图示了根据本申请实施例的所述可变焦摄像模组的第一驱动元件和第二驱动元件的示意图。
图6A和图6B图示了根据本申请实施例的所述可变焦摄像模组的第一驱动元件和第二驱动元件的一个变形实施例的示意图。
图7A和图7B图示了根据本申请实施例的所述可变焦摄像模组的一个变形实施的示意图。
图8A图示了根据本申请实施例的所述可变焦摄像模组的一个变形实施 的示意图。
图8B图示了图8A所示意的所述可变焦摄像模组的另一示意图。
图9图示了根据本申请实施例的所述可变焦摄像模组的所述导引结构的另一变形实施的示意图。
图10图示了根据本申请实施例的所述可变焦摄像模组的又一变形实施的示意图。
图11图示了根据本申请实施例的可变焦摄像模组的示意图。
图12图示了根据本申请实施例的所述可变焦摄像模组的另一示意图。
图13图示了根据本申请实施例的所述可变焦摄像模组的光学系统的示意图。
图14图示了根据本申请实施例的所述可变焦摄像模组的光阻挡元件的一个具体示例的示意图。
图15A和图15B图示了根据本申请实施例的所述可变焦摄像模组的压电致动器的示意图。
图16A和图16B图示了根据本申请实施例的所述可变焦摄像模组的压电致动器的一个变形实施的示意图.
图17图示了根据本申请实施例的所述可变焦摄像模组的一个变形实施的示意图。
图18图示了根据本申请实施例的所述可变焦摄像模组的另一个变形实施的示意图。
图19图示了根据本申请实施例的所述可变焦摄像模组的又一个变形实施的示意图。
图20图示了根据本申请实施例的所述可变焦摄像模组的又一个变形实施的示意图。
图21图示了根据本申请实施例的所述可变焦摄像模组的又一个变形实施的示意图。
图22图示了根据本申请实施例的所述可变焦摄像模组的又一个变形实施的示意图。
图23图示了根据本申请实施例的所述可变焦摄像模组的又一个变形实施的示意图。
具体实施方式
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
申请概述
如上所述,现有的用于驱动摄像模组中的各个组件,比如光学镜头和变焦组件的驱动元件为电磁式马达,例如,音圈马达(Voice Coil Motor:VCM)、形状记忆合金驱动器(Shape of Memory Alloy Actuator:SMA)等。由于传统上,摄像模组沿着电子设备,比如手机的厚度方向设置,因此摄像模组中的各个组件以轻薄和小型化为趋势,在这种情况下,电磁式马达可以提供足够的驱动力。但是,随着潜望式摄像模组等新型的摄像模组改变了摄像模组相对于电子设备的结构和位置关系,也就是,可以沿着电子设备的长度或者宽度方向设置,使得摄像模组不再受到电子设备的厚度方向的尺寸限制,从而可以在尺寸增加方面获得更大的自由度。
并且,随着对于摄像模组的成像性能的要求提高,对于摄像模组的各个组件,尤其是变焦组件提出了更高的要求,伴随着尺寸增加方面的限制减小,为了实现更强的功能,摄像模组的组件设计也带来了组件尺寸的增大,从而导致组件的重量也进一步增大。在这种情况下,传统的电磁式马达不再能够提供足够的驱动力,量化来看,现有的音圈马达驱动器仅能够驱动重量小于100mg的光学镜头,而记忆合金马达则需要较大的行程空间设置,也就是,如果摄像模组中的待驱动的组件的重量超过100mg,现有的驱动器将无法满足摄像模组的应用需求或者需要增加非常多的驱动器尺寸,以提供较大推力,因此必须为摄像模组开发新一代的驱动方案。
基于此,本申请的技术路线是提供一种基于能够提供更大驱动力的压电致动器的可变焦摄像模组的设计,从而满足新型的可变焦摄像模组中的组件大型化之后对组件驱动力的需求。
这里,本领域技术人员可以理解的是,由于新型的可变焦摄像模组的技术要求与传统的需要实现小型化的可变焦摄像模组的技术要求完全相反,因此在针对新型的可变焦摄像模组的技术路线中,需要一整套基于新型的可变焦摄像模组的技术要求的设计方案,而不仅是简单地将新型的致动元件应用 于传统的可变焦摄像模组的设计当中。
具体地,本申请的技术方案提供了一种可变焦摄像模组,包括:变焦透镜组,包括:固定部分、变焦部分和对焦部分,其中,所述变焦透镜组设有一光轴;对应于所述变焦透镜组的感光组件;以及,驱动组件,包括:驱动壳体、位于所述驱动壳体内的至少一个驱动元件,其中,所述至少一个驱动元件被设置于所述变焦透镜组的第一侧,被配置为驱动所述变焦部分和/或所述对焦部分沿着该光轴移动,且所述至少一个驱动元件为压电致动器。
这样,通过以能够提供更大驱动力的压电致动器为基础的可变焦摄像模组的整体结构配置,将压电致动器作为需要移动的变焦部分和/或对焦部分的驱动元件,可以驱动重量更大的可变焦摄像模组的光学组件,也就是,重量远大于100毫克,例如直到重量超过1克的光学组件。并且,即使压电致动器单次形变所提供的行程有限,也可以通过叠加多次形变提供的行程的方式,来实现待移动的光学组件的较长距离的移动,且压电致动器单次形变加上恢复的时间很短,完全可以满足变焦时间上的需要。
值得注意的是,以下以根据本申请实施例的可变焦摄像模组被实施为可变焦潜望式摄像模组,来说明所述可变焦摄像模组。当然,本领域普通技术人员应可以理解,虽然在本申请实施例中,以所述可变焦摄像模组被实施为可变焦潜望式摄像模组为示例,但是,在本申请其他示例中,所述可变焦摄像模组也可以被实施为其他类型的摄像模组,对此,并不为本申请所局限。
并且,本领域技术人员可以理解的是,虽然在本申请实施例中,以压电致动器为例进行了说明,根据本申请实施例的可变焦摄像模组的技术方案也可以等效地应用于压电致动器以外的其它可以提供更大驱动力的致动器,本申请并不意在对此进行任何限制。
示例性可变焦摄像模组
图1图示了根据本申请实施例的可变焦摄像模组的示意图。如图1所示,根据本申请实施例的所述可变焦摄像模组,包括:光转折元件10、变焦透镜组20、感光组件30和驱动组件740。
相应地,如图1和图2所示,在本申请实施例中,所述光转折元件10,用于接收来自被摄目标的成像光线,并将该成像光线转折至所述变焦透镜组20。特别地,在本申请实施例中,所述光转折元件10被配置为将来自被摄 目标的成像光线进行90°的转折,以使得所述可变焦摄像模组的整体高度尺寸可得以缩减。这里,考虑到制造公差,在实际工作过程中,所述光转折元件10对成像光线进行转折的角度可能存在1°以内的误差,对此,本领域普通技术人员应可以理解。
在本申请的具体示例中,所述光转折元件10可被实施为反射镜(例如,平面反射镜),或者,光转折棱镜(例如,三棱镜)。例如,当所述光转折元件10被实施为光转折棱镜时,所述光转折棱镜的光入射面与其光出射面相互垂直且所述光转折棱镜的光反射面与所述光入射面和所述光出射面成45°角倾斜,这样,当成像光线以垂直于所述光入射面的方式进入所述光转折棱镜后,该成像光线能够在所述光反射面处发生90°转折,以垂直于所述光出射面的方式从所述光出射面输出。
当然,在本申请其他示例中,所述光转折元件10还可以被实施为其他类型的光学元件,对此,并不为本申请所局限。并且,在本申请实施例中,所述可变焦摄像模组还可以包括更多数量的光转折元件10,其一个原因在于:引入所述光转折元件10的一个作用为:对成像光线进行转折,以对具有较长光学总长(TTL:Total Track Length)的所述可变焦摄像模组的光学系统能够进行结构维度上的折叠。相应地,当所述可变焦摄像模组的光学总长(TTL)过长时,可设置更多数量的光转折元件10,以满足所述可变焦摄像模组的尺寸要求,例如可以设置所述光转折元件10于所述可变焦摄像模组的像侧或者其中两个光学透镜之间。
如图1和图2所示,在本申请实施例中,所述变焦透镜组20对应于所述光转折元件10,用于接收来自所述光转折元件10的成像光线以该成像光线进行汇聚。相应地,如图2所示,所述变焦透镜组20沿着其所设定的光轴方向,包括:固定部分21、变焦部分22和对焦部分23,其中,所述固定部分21具有预定的安装位置,所述变焦部分22和所述对焦部分23能够在所述驱动组件740的作用下相对于所述固定部分21的位置分别进行调整,从而实现所述可变焦摄像模组的光学性能的调整,包括但不限于光学对焦和光学变焦功能。例如,可通过所述驱动组件740调整所述变焦部分22和所述对焦部分23,以使得所述可变焦摄像模组的变焦透镜组20的焦距被调整,从而能够清楚地拍摄不同距离的被摄对象。
在本申请实施例中,所述固定部分21包括第一镜筒和被容置于所述第 一镜筒内的至少一光学透镜。并且,所述固定部分21适于被固定于所述驱动组件740中非移动部分,以使得所述固定部分21在所述变焦透镜组20中位置保持恒定。
值得一提的是,在本申请其他示例中,所述固定部分21也可以不设有所述第一镜筒,其仅包括至少一光学透镜,例如,其仅包括相互嵌合的多片光学透镜。也就是,在申请其他示例中,所述固定部分21可被实施为“裸镜头”。
所述变焦部分22包括第二镜筒和被容置于所述第二镜筒内的至少一光学透镜,其中,所述变焦部分22适于被所述驱动组件740所驱动以沿着所述变焦透镜组20所设定的光轴方向上进行移动,从而实现所述可变焦摄像模组的光学变焦功能,以使得所述可变焦摄像模组能够实现对不同距离的被摄目标的清晰拍摄。
值得一提的是,在本申请其他示例中,所述变焦部分22也可以不设有所述第二镜筒,其仅包括至少一光学透镜,例如,其仅包括相互嵌合的多片光学透镜。也就是,在申请其他示例中,所述变焦部分22也可被实施为“裸镜头”。
所述对焦部分23包括第三镜筒和被容置于所述第三镜筒内的至少一光学透镜,其中,所述对焦部分23适于被所述驱动组件740所驱动以沿着所述变焦透镜组20所设定的光轴方向上进行移动,从而实现所述可变焦摄像模组的对焦功能。更明确地,通过驱动所述对焦部分23所实现的光学对焦能够补偿因移动所述变焦部分22而导致的焦点偏移,从而补偿所述可变焦摄像模组的成像性能,使得其成像质量满足预设要求。
值得一提的是,在本申请其他示例中,所述对焦部分23也可以不设有所述第三镜筒,其仅包括至少一光学透镜,例如,其仅包括相互嵌合的多片光学透镜。也就是,在申请其他示例中,所述对焦部分23也可被实施为“裸镜头”。
更具体地,如图2所示,在本申请实施例中,所述变焦透镜组20的固定部分21、所述变焦部分22和所述对焦部分23被依次地设置(也就是,在所述变焦透镜组20中,所述变焦部分22位于所述固定部分21和所述对焦部分23之间),即,来自所述光转折元件10的成像光线在穿过所述变焦透镜组20的过程中,其将首先透过所述固定部分21、再透过所述变焦部分22, 然后,再穿过所述对焦部分23。
当然,在本申请的其他示例中,也可以调整所述固定部分21、所述变焦部分22和所述对焦部分23之间的相对位置关系,例如,将所述固定部分21设置于所述变焦部分22和所述对焦部分23之间,再如,将所述对焦部分23设置于所述变焦部分22和所述固定部分21之间。应可以理解,在本申请实施例中,所述固定部分21、所述变焦部分22和所述对焦部分23之间的相对位置关系可根据所述可变焦摄像模组的光学设计要求和结构设计要求进行调整。
但特别地,在本申请实施例中,考虑到所述可变焦摄像模组的结构设计(更明确地,为了利于所述驱动组件740的布设),优选地,所述对焦部分23和所述变焦部分22相邻地设置。也就是,根据本申请实施例的所述变焦透镜组20中各个部分的位置,优选地被配置为:所述变焦部分22位于所述固定部分21和所述对焦部分23之间,或者,所述对焦部分23位于所述固定部分21和所述变焦部分22之间。应可以理解,所述变焦部分22和所述对焦部分23是所述变焦透镜组20中需要移动的部分,因此,将所述对焦部分23和所述变焦部分22相邻地设置有利于布置所述驱动组件740,关于此部分将在所述驱动组件740的具体描述中展开。
还值得一提的是,在如图2所示意的示例中,虽然以所述变焦透镜组20,包括一个所述固定部分21、一个所述变焦部分22和一个所述对焦部分23为示例,但是,本领域普通技术人员应知晓,在本申请其他示例中,所述固定部分21、所述变焦部分22和所述对焦部分23的具体数量选择,并不为本申请所局限,其可根据所述可变焦摄像模组的光学设计要求进行调整。
为了对进入所述感光组件30的成像光线进行限制,在本申请一些示例中,所述可变焦摄像模组,进一步包括设置于所述感光组件30的感光路径上的光阻挡元件50,其中,所述光阻挡元件50能够至少部分地阻挡光线透过,以尽可能地减少杂散光对所述可变焦摄像模组的成像质量的影响。
图4图示了根据本申请实施例的所述可变焦摄像模组的光阻挡元件50的一个具体示例的示意图。如图4所示,在该具体示例中,所述光阻挡元件50被安装于所述光转折元件10的出光面,其中,所述光阻挡元件50具有透光孔500,其适于使成像光线中的有效部分透过并阻挡至少部分成像光线中的杂散光。优选地,所述透光孔500为圆形孔,以配合所述可变焦透镜组20 的圆形有效光学区,尽可能地减少杂散光对成像质量的影响。
值得一提的是,在本申请其他示例中,所述光阻挡元件50可被设置于所述光转折元件10的其他位置,例如,所述光转折元件10的光入射面或者光反射面,对此,并不为本申请所局限。还值得一提的是,在本申请其他示例中,所述光阻挡元件50也可以作为一个独立的部件被设置于所述感光组件30的感光路径上,例如,作为一个独立的部件被设置于所述光转折元件10和所述变焦透镜组20之间,再如,作为一个独立的部分被设置于所述变焦透镜组20和所述感光组件30之间,对此,并不为本申请所局限。
如图1和图2所示,在本申请实施例中,所述感光组件30对应于所述变焦透镜组20,用于接收来自所述变焦透镜组20的成像光线并进行成像,其中,所述感光组件30包括线路板31、电连接于所述线路板31的感光芯片32和被保持于所述感光芯片32的感光路径上的滤光元件33。更具体地,在如图1和图2所示意的示例中,所述感光组件30,进一步包括设置于所述线路板31的支架34,其中,所述滤光元件33被安装于所述支架34上以被保持于所述感光芯片32的感光路径上。
值得一提的是,在本申请其他示例中,所述滤光元件33被保持于所述感光芯片32的感光路径上的具体实施方式并不为本申请所局限,例如,所述滤光元件33可被实施为滤波膜并涂覆于所述变焦透镜组20的某一光学透镜的表面,以起到滤光的效果,再如,所述感光组件30可进一步包括安装于所述支架34的滤光元件支架(未有图示意),其中,所述滤光元件33以被安装于所述滤光元件支架的方式被保持于所述感光芯片32的感光路径上。
如前所述,为了满足越来越广泛的市场需求,高像素、大芯片、小尺寸是现有摄像模组不可逆转的发展趋势。随着所述感光芯片32朝着高像素和大芯片的方向发展,与所述感光芯片32适配的所述变焦透镜组20的尺寸也逐渐增大,这给用于驱动所述变焦透镜组20的所述对焦部分23和所述变焦部分22的驱动器提出了新的技术要求。
新的技术要求主要集中于两个方面:相对更大的驱动力,以及,更优的驱动性能(具体地包括:更高精度的驱动控制和更长的驱动行程)。并且,除了需要寻找满足新技术要求的驱动器以外,在选择新驱动器时还需要考虑所选择的驱动器能够适应于当下摄像模组轻型化和薄型化的发展趋势。
经研究和试验,本申请发明人发现选择采用压电致动器能够满足所述可 变焦摄像模组对于驱动器的技术要求。具体地,如图1和图2所示,在本申请实施例中,用于驱动所述变焦透镜组20的所述驱动组件740,包括:驱动壳体741、位于所述驱动壳体741内的第一载体744、第二载体745和第一驱动元件742和第二驱动元件743,其中,所述变焦部分22被安装于所述第一载体744内,所述对焦部分23被安装于所述第二载体745内,所述第一驱动元件742被配置为驱动所述第一载体744以带动所述变焦部分22沿着所述光轴所设定的方向移动,所述第二驱动元件743被配置为驱动所述第二载体745以带动所述对焦部分23沿着所述光轴所设定的方向移动。特别地,在本申请实施例中,所述第一驱动元件742和/或所述第二驱动元件743被实施为压电致动器,也就是,所述第一驱动元件742和所述第二驱动元件743中至少一个被实施为压电致动器。
优选地,在本申请实施例中,所述第一驱动元件742和所述第二驱动元件743同时被实施为压电致动器,为了便于说明和描述,定义所述第一驱动元件742的压电致动器为第一压电致动器7420,定义所述第二驱动元件743的压电致动器为第二压电致动器7430。并且,更优选地,在本申请实施例中,所述第一压电致动器7420和所述第二压电致动器7430为同一类型的压电致动器。
图5A和图5B图示了根据本申请实施例的所述可变焦摄像模组的第一驱动元件和第二驱动元件的示意图。如图5A和图5B所示,在本申请实施例中,所述第一压电致动器7420和所述第二压电致动器7430被实施为同一类型的压电致动器,其中,所述压电致动器100,包括:压电主动部110、可传动地耦接于所述压电主动部110的从动轴120,以及,与所述从动轴120紧配的驱动部130,其中,所述驱动部130在所述压电主动部110和所述从动轴120的作用下被配置为驱动所述第一载体744或所述第二载体745沿着所述光轴所设定的方向移动。
也就是,在本申请实施例中,所述第一压电致动器7420包括第一压电主动部7421、可传动地耦接于所述第一压电主动部7421的第一从动轴7422,以及,与所述第一从动轴7422紧配的第一驱动部7423,其中,在所述第一压电主动部7421和所述第一从动轴7422的作用下,所述第一驱动部7423被配置为驱动所述第一载体744沿着所述光轴所设定的方向移动。所述第二压电致动器7430包括第二压电主动部7431、可传动地耦接于所述第二压电 主动部7431的第二从动轴7432,以及,与所述第二从动轴7432紧配的第二驱动部7433,其中,在所述第二压电主动部7431和所述第二从动轴432的作用下,所述第二驱动部7433被配置为驱动所述第二载体745沿着所述光轴所设定的方向移动。
如图5A和图5B所示,所述压电主动部110包括电极板111和叠置于所述电极板111的至少一压电基板。所述压电基板是具有逆压电效应并且根据极化方向和电场方向收缩或膨胀的基板,例如,其可以通过在单晶或者多晶陶瓷、聚合物等在厚度方向上使用基板极化来制成并使用。这里,逆压电效应是指在电介质的极化方向施加电场,电介质在产生电势差时会发生机械变形。
更具体地,在如图5A和图5B所示意的示例中,所述至少一压电基板,包括第一压电基板112和第二压电基板113,所述电极板111被夹设于所述第一压电基板112和所述第二压电基板113之间。并且,在该示例中,所述压电主动部110进一步包括分别形成于所述第一压电基板112的上表面和下表面的电极层115,以及,分别形成于所述第二压电基板113的上表面和下表面的电极层115,以通过所述电极层115和所述电极板111为所述第一压电基板112和所述第二压电基板113提供脉冲电压。
在该示例中,所述电极板111可以由带有一定弹性的板状元件构成,例如,带有一定弹性的金属板构成。如图5A和图5B所示,所述压电主动部110,进一步包括与所述电极板111电连接的至少一电导通部位114,例如,所述至少一电导通部位114可通过焊接的方式焊接于所述电极板111,或者是所述至少一电导通部位114与所述电极板111一体形成。值得一提的是,当所述电导通部位114的数量为多个时,优选地,所述多个电导通部位114对称地分布于所述电极板111的外表面。
在该示例中,所述第一压电基板112和所述第二压电基板113分别通过所述电极层115被附着于所述电极板111的第一侧表面和与所述第一侧表面相对的第二侧表面。例如,在该示例中,所述第一压电基板112和所述第二压电基板113可以与所述电极板111以相互面与面啮合的方式固定,或者,所述第一压电基板112和所述第二压电基板113通过导电银胶被附着于所述电极板111。
优选地,在该示例中,所述第一压电基板112和所述第二压电基板113 的形状的大小与所述电极板111相近或者相一致,从而使得所述压电主动部110具有更优的振动效率。在该具体示例中,所述第一压电基板112、所述第二压电基板113和所述电极板111为圆形板。
如图5A和图5B所示,所述从动轴120被固定于所述压电主动部110,例如,通过黏着剂附着于所述压电主动部110的中心。具体地,所述从动轴120可通过黏着剂被附着于所述第一压电基板112的外表面的电极层115上,或者,通过黏着剂被嵌套地附着于所述第一压电基板112的外表面的电极层115的中心孔内,或者,所述第一压电基板112具有一中心孔,所述从动轴120进一步被嵌合于所述第一压电基板112的中心孔内,或者,所述压电主动部110具有贯穿于其上下表面的中心孔,所述从动轴120通过黏着剂被被嵌合于所述压电主动部110的中心孔内。在具体实施中,所述从动轴120可被实施为碳棒。并且,在该示例中,所述从动轴120的截面形状为圆形或者多边形,优选为圆形
如图5A和图5B所示,所述驱动部130紧配于所述从动轴120上。在该示例中,所述驱动部130与所述从动轴120通过摩擦配合,以使得所述驱动部130紧配于所述从动轴120上。更具体地,在该示例中,所述驱动部130可被实施为夹持所述从动轴120的夹持机构,其中,所述夹持机构可以是夹持力可调整的夹持机构,或者,部分或全部由弹性材料制成的夹持机构。
如图5A和图5B所示,在所述压电主动部110表面暴露的所述电极层115电连接于电源控制部位116的正电极117,所述电极板111通过所述电导通部位114被电连接于所述电源控制部位116的负电极118,这样,当所述电源控制部位116给所述电极层115和所述电极板111反复施加脉冲电压时,所述第一压电基板112和所述第二压电基板113在逆压电效应的作用下朝着一个方向变形,并在所述电极板111的弹性作用下快速恢复为平板状。在上述形变过程中,所述从动轴120在其所设定的轴方向上往返移动,而由于所述驱动部130与所述从动轴120之间为摩擦配合,因此,当所述压电主动部110向着一个方向变形时,所述驱动部130和所述从动轴120共同移动,而当所述压电主动部110快速地恢复为原状时,所述从动轴120也逆向移动而所述驱动部130则由于惯性作用无法跟随所述从动轴120的动作而未能返回原来的位置,只能停留在所在的位置。因此,在一个形变过程中,所述驱动部130的位置发生改变,相应地,通过反复施加脉冲电压,可重复上述移动, 从而使得所述驱动部130被移动至目标位置。
图6A和图6B图示了根据本申请实施例的所述可变焦摄像模组的第一驱动元件742和第二驱动元件743的一个变形实施例的示意图。如图6A和6B所示,在该变形实施中,所述压电致动器100包括:压电主动部110、可传动地连接于所述压电主动部110的压电主动部110的从动轴120,以及,可动地设置于所述从动轴120的驱动部130,其中,所述驱动部130在所述压电主动部110和所述从动轴120的作用下被配置为驱动第一载体44或所述第二载体45,以带动所述变焦部分22或所述对焦部分23沿着该光轴移动。
如图6A和6B所示,在该示例中,所述压电主动部110包括压电元件111A,所述压电元件111A具有如图6A中所示意的层叠结构。具体地,如图6A所示,所述压电元件111A包括多个压电伸缩体112A和多个电极113A,所述多个压电伸缩体112A和所述多个电极113A之间交替层叠设置。特别地,通过如上所述的层叠结构,所述压电元件111A即便在施加了很小的电场的情况下,也可获得相对较大的形变量。
在该示例中,为了便于说明,将交替地夹着多个压电伸缩体112A而成的电极113A定义为内部电极,而将配设于所述压电伸缩体112A的表面且位于所述压电元件111A的上表面和下表面的电极113A分别定义为上电极和下电极,同时,将配设于所述压电伸缩体112A的表面且位于所述压电元件111A的侧表面的电极113A定义为侧电极。相应地,在多层的情况下,相同极性的电极113A通过所述侧电极进行电连接。
如图6B所示,在该示例中,所述从动轴120具有圆柱形状并通过黏着剂附着于所述压电元件111A的上表面的中间区域,以使得所述移动轴接合于所述压电元件111A。当然,在本申请其他示例中,所述移动轴的形状也可以做出调整,对此,并不为本申请所局限。
并且,所述从动轴120由以“碳、重金属、重金属的碳化物、重金属的硼化物以及重金属的氮化物”中的任一为主要成分的材料制成,所述压电元件111A具有长方体形状,其具有分别沿着相互正交的X轴、Y轴以及Z轴的边。在该示例中,所述压电元件111A的X轴方向长度为1mm,所述压电元件111A的Y轴方向长度为1mm,所述压电元件111A的Z轴方向长度(高度)为2mm。
值得一提的是,相较于传统的电磁式驱动器,图6A和图6B所示意的所 述压电致动器100具有体积小、推力大,精度高的优势。并且,相较于图5A和图5B所示意的压电致动器100,图6A和图6B所示意的所述压电致动器100的所述压电主动部110具有相对更小的截面尺寸,适于在空间紧凑的模组中使用,但是其厚度尺寸相对较大,同时,所述压电元件111A的内部结构相对较为复杂。
相应地,根据本申请实施例的所述压电致动器100能够提供相对较高的驱动力。更明确地,本申请所选择的所述压电致动器100能够提供的驱动力大小为0.6N至2N,其足以驱动重量大于100mg的部件。
并且,除了能够提供相对较大的驱动力以外,相较于传统的电磁式马达方案和记忆合金马达方案,所述压电致动器100还具有其他优势,包括但不限于:尺寸相对较小(具有细长状),响应精度更佳,结构相对更为简单,驱动控制相对更为简单,产品一致性高,没有电磁干扰,具有相对更大的行程,稳定时间短,重量相对较小等。
具体来说,所述可变焦摄像模组需要其所配置的驱动器具有驱动行程较长且需要保证较好的对准精度等特征。在现有的音圈马达方案中,为了保证运动线性度需要额外设计导杆或滚珠导轨,同时需要在镜头侧部适配大尺寸的驱动磁铁/线圈等,同时需要设置滚珠、弹片、悬丝等辅助定位装置,为容纳较多的部件、保障结构强度和预留结构间隙,往往导致模组横向尺寸偏大,且结构设计复杂,模组重量较重。而记忆合金马达方案,受限于记忆合金方案同比例能够提供的行程相对较少,同时存在潜在断线等可靠性风险。
而所述压电致动器100具有相对较为简单的结构,组装结构更加简单,另外其压电主动部110、从动轴120和驱动部130等主动元件大小与运动行程大小基本无关,因此在光学变焦类产品中所述压电致动器100可以实现大推力、小尺寸,小重量等优势,同时匹配更大行程或更重器件重量进行设计,设计中的集成度也更高。
进一步地,所述压电致动器100利用振动时的摩擦力和惯性,以摩擦接触的方式推动待推动对象(例如,所述对焦部分23或所述变焦部分22)进行微米级运动,其相较于电磁式方案非接触的方式驱动待推动对象需要依靠电磁力抵消重力,摩擦力的方式,具有更大推力,更大位移和更低功耗的优势,同时控制精度更高,可实现高精度连续变焦。而且在存在多个马达机构时,所述压电致动器100不存在磁铁线圈结构,无磁干扰问题。另外,所述 压电致动器100可依靠部件之间的摩擦力自锁,因此可以降低所述可变焦摄像模组在进行光学变焦时的晃动异响。
在选择以所述压电致动器100为所述第一驱动元件742和所述第二驱动元件743后,即,所述第一驱动元件742被实施为第一压电致动器7420和所述第二驱动元件743被实施为第二压电致动器7430,其中,所述第一驱动元件742和所述第二驱动元件743可通过如下方式电连接于外接电源。例如,其可通过一连接电路电连接于所述第一驱动元件742和所述第二驱动元件743的电极层115以及电极板111的电导通部位114,该连接电路可被实施为软板连接带或者多条引线,以通过该连接电路与外部电连接。进一步地,当该压电致动器100设置在驱动壳体41中时,所述压电致动器100适于直接通过软板向外导出,从而与所述感光组件30的线路板31进行电连接。
在本申请其他示例中,所述第一驱动元件742和所述第二驱动元件743也可以直接通过软板向外导出,并与所述感光组件30的线路板31电连接。或者,在所述驱动壳体741的表面设置至少二LDS槽,所述LDS槽深度不大于20~30μm,宽度不小于60μm,在槽内运用LDS(激光直接成型技术),在LDS槽表面镀设导电镀层(例如可以是镍钯金的镀层),从而可以避免内部其他金属干扰,将所述第一驱动元件742和所述第二驱动元件743的连接电路与LDS槽中的导电镀层相连接,从而导出电路,并与所述感光组件30的线路板31电连接。又或者,还可以通过Insert Molding(嵌入式注塑)技术,将至少二导线成型在所述驱动壳体41中,从而将所述第一驱动元件742和所述第二驱动元件743的连接电路与导线电连接从而导出电路,并与所述感光组件30的线路板31电连接。
相应地,在本申请实施例中,所述第一驱动元件742和所述第二驱动元件743被实施为所述第一压电致动器7420和所述第二压电致动器7430,其中,所述第一驱动元件742的所述第一驱动部7423在所述第一压电主动部7421和所述第一从动轴7422的作用下被配置为驱动所述第一载体744,以带动所述变焦部分22沿着该光轴方向移动;所述第二驱动元件743的所述第二驱动部7433在所述第二压电主动部7431和所述第二从动轴7432的作用下被配置为驱动所述第二载体745,以带动所述对焦部分23沿着该光轴方向移动。
并且,在所述第一驱动元件742和所述第二驱动元件743被配置为第一 压电致动器7420和第二压电致动器7430后,进一步需将所述第一驱动元件742和所述第二驱动元件743以合理的方式布设于所述可变焦摄像模组内。
如图1和图3所示,在本申请实施例中,所述第一载体744和所述第二载体745具有特殊的结构配置,以使得当所述第一载体744和所述第二载体745被安装于所述驱动壳体741后,所述驱动壳体741的底表面与所述第一载体744的底表面之间设有至少一第一收容通道,所述驱动壳体741的底表面与所述第二载体745的底表面之间设有至少一第二收容通道。在现有的摄像模组结构布置方案中,所述第一载体744和所述第二载体745与所述驱动壳体741之间的空间通常都是被闲置的,其原因在于:所述第一载体744与所述第二载体745与所述驱动壳体741之间的空间过小,不适于布设其他部件。
然而,当所述第一驱动元件742和所述第二驱动元件743被实施为压电致动器100时,根据如上所述的压电致动器100的描述可知,所述压电致动器100具有延长状(即,所述从动轴120自所述压电主动部110垂直地向外延伸,以具有细长状),特别地,所述压电致动器100的从动轴120具有细长条柱状结构。相应地,由于所述压电致动器100具有特殊的结构与尺寸配置,优选地,在本申请实施例中,所述压电致动器100的至少一部分被设置于至少一所述第一收容通道或者至少一所述第二收容通道内。
更明确地,当所述第一驱动元件742被实施为第一压电致动器7420,所述第二驱动元件743被实施为第二压电致动器7430时,所述第一压电致动器7420的至少一部分被设置于所述第一收容通道7440内,同时,所述第二压电致动器7430的至少一部分被设置于所述第二收容通道7450内。例如,在如图1和图3所示意的示例中,所述第一压电致动器7420的第一从动轴7422的至少一部分延伸于所述第一收容通道7440内,所述第二压电致动器7430的第二从动轴7432的至少一部分延伸于所述第二收容通道7450内,即,所述第一压电致动器7420的第一从动轴7422被布设于所述第一收容通道440内,所述第二压电致动器7430的第二从动轴7432被布设于所述第二收容通道7450内。
如图1和图3所示,在本申请实施例中,所述第一载体744包括第一载体底座7441和一体地自所述第一载体底座7441分别向上延伸的第一延长臂7442和第二延长臂7443,以在所述第一载体底座7441、所述第一延长臂7442 和所述第二延长臂7443之间形成用于安装所述变焦部分22的第一安装腔7444和连通于所述第一安装腔7444的第一开口7445,其中,所述变焦部分22适于所述第一开口7445被安装入所述第一安装腔7444内。
如图1和图3所示,在该示例中,在所述第一载体744与所述驱动壳体741之间形成两个所述第一收容通道7440,其中,其中一个所述第一收容通道7440形成于所述第一载体底座7441的侧表面,所述第一延长臂7442的底表面和所述驱动壳体741的底表面之间,而另一个所述第一收容通道7440形成于所述第一载体底座7441的侧表面,所述第二延长臂7443的底表面和所述驱动壳体741的底表面之间。
应可以理解,在本申请实施例中,所述第一压电致动器7420的所述第一从动轴7422可被布设于任一所述第一收容通道7440内。并且,值得一提的是,在本申请实施例中,可适当调整所述第一载体744的结构或所述驱动壳体741的底表面的形状,以使得在所述驱动壳体741与所述第一载体744之间仅形成一个所述第一收容通道7440,对此,并不为本申请所局限。
如图1和图3所示,在本申请实施例中,所述第二载体745包括第二载体底座7451和一体地自所述第二载体底座7451分别向上延伸的第三延长臂7452和第四延长臂7453,以在所述第二载体底座7451、所述第三延长臂7452和所述第四延长臂7453之间形成用于安装所述对焦部分23的第二安装腔7454和连通于所述第二安装腔7454的第二开口7455,其中,所述对焦部分23适于从所述第二开口7455被安装入所述第二安装腔7454内。
如图1和图3所示,在该示例中,在所述第二载体745与所述驱动壳体741之间形成两个所述第二收容通道7450,其中,其中一个所述第二收容通道7450形成于所述第二载体底座7451的侧表面,所述第三延长臂7452的底表面和所述驱动壳体741的底表面之间,而另一个所述第二收容通道7450形成于所述第二载体底座7451的侧表面,所述第四延长臂7453的底表面和所述驱动壳体741的底表面之间。
应可以理解,在本申请实施例中,所述第二压电致动器7430的所述第二从动轴7432可被布设于任一所述第二收容通道7450内。并且,值得一提的是,在本申请实施例中,可适当调整所述第二载体745或所述驱动壳体41的底表面的配置,以使得在所述驱动壳体741与所述第二载体745之间仅形成一个所述第二收容通道7450,对此,并不为本申请所局限。
特别地,应注意到,在本申请实施例中,所述第一收容通道7440和所述第二收容通道7450低于所述光轴,也就是,当所述第一压电致动器7420的所述第一从动轴7422被安装于所述第一收容通道7440内时,所述第一从动轴7422相对于所述驱动壳体741的底表面的高度低于所述光轴相对于所述驱动壳体741的底表面的高度。相应地,当所述第二压电致动器7430的所述第二从动轴7432被安装于所述第二收容通道7450内时,所述第二从动轴7432相对于所述驱动壳体741的底表面的高度也低于所述光轴相对于所述驱动壳体741的底表面的高度。
并且,在本申请实施例中,所述压电致动器100的所述驱动部130同样被安装于所述第一收容通道7440和所述第二收容通道7450内。例如,所述压电致动器100的所述驱动部130可通过粘接或者一体成型于所述第一载体744或所述第二载体745的下表面的方式被设置于所述第一收容通道7440或所述第二收容通道7450内。
特别地,在如图1和图3所示意的示例中,所述第一驱动部7413和所述第二驱动部7433被实施至少部分具有弹性的且相对设置的两夹板,其中,所述第一压电致动器7420的所述第一从动轴7421和所述第二压电致动器7430的所述第二从动轴7432被分别紧配地夹设于所述两夹板所形成的夹持腔内。相应地,在所述第一压电致动器7420和所述第二压电致动器7430被启动后,所述第一压电致动器7420和所述第二压电致动器7430能够在所述第一载体744和所述第二载体745的底部施加驱动力,通过这样的驱动位置的配置,利于降低驱动难度和利于提高驱动的平稳性。
值得一提的是,优选地,在本申请实施例中,所述第一收容通道7440与所述第二收容通道7450对齐。例如,在本申请一个示例中,可适当地调整所述第一载体744和所述第二载体745的结构,以使得所述第一收容通道7440和所述第二收容通道7450在所述驱动壳体741所设定的纵向方向上对齐。在一些特殊的示例中,所述第一收容通道7440和所述第二收容通道7450甚至可具有相同的截面形状和截面尺寸,从而提升所述第一载体744和所述第二载体745的对称性。
进一步地,如图1所示,在本申请实施例中,选择将所述第一驱动元件742和所述第二驱动元件743设置于所述光轴的第一侧,也就是,选择将所述第一压电致动器7420和所述第二压电致动器7430设置于所述光轴的同一 侧,这样,所述第一驱动元件742和所述第二驱动元件743在所述驱动壳体741内的布置紧凑度更高,所占据的所述驱动壳体741的纵向空间更小。这里,所述驱动壳体741的纵向空间指的是所述驱动壳体741在其长度方向上所占据的空间,相应地,所述驱动壳体741的横向空间指的是所述驱动壳体741在其宽度方向上所占据的空间,所述驱动壳体741的高度空间指的是所述驱动壳体741在其高度方向上所占据的空间。
并且,当所述第一驱动元件742和所述第二驱动元件743被设置于所述光轴的同一侧时,在通过所述第一驱动元件742驱动所述变焦部分22和通过所述第二驱动元件743驱动所述对焦部分23时,所述变焦部分22和所述对焦部分23之间的相对位置关系(尤其是相对倾斜关系)能够得以降低,以提高所述对焦部分23和所述变焦部分22之间的一致性,减小所述可变焦摄像模组因所述变焦部分22和所述对焦部分23的倾斜而导致的成像质量下降的可能性。
进一步地,如图1和图3所示,在该示例中,所述第一驱动元件742和所述第二驱动元件743位于所述光轴的同一侧,且位于同一侧的所述第一驱动元件742和所述第二驱动元件743异向地设置,或者说,位于同一侧的所述第一驱动元件742和所述第二驱动元件743相对地设置,通过这样的方式,增加所述第一驱动元件742和所述第二驱动元件743在所述驱动壳体741所形成的空间内布置的紧凑性。在本申请实施例中,所述第一驱动元件742和所述第二驱动元件743被实施为压电致动器100,其包括压电主动部110和自所述压电主动部110延伸的从动轴120。如果设定所述压电主动部110为所述压电致动器100的头部,所述从动轴120为所述压电致动器100的尾部,并且设定所述压电致动器100的头部在前、其尾部在后为第一方向,设定所述压电致动器100的头部在后、尾部在前为第二方向,则在该示例中,所述第一驱动元件742以第一方向布置,而所述第二驱动元件743以第二方向布置。也就是,在该示例中,所述第一驱动元件742的头部邻近于所述第二驱动元件743的尾部,即,所述第一压电致动器7420的所述第一从动轴7422邻近于所述第二压电致动器7430的第二从动轴7432。
优选地,在本申请实施例中,所述第一驱动元件742和所述第二驱动元件743相对于所述驱动壳体741的底表面具有相同的安装高度,即,所述第一压电致动器7420和所述第二压电致动器7430相对于所述驱动壳体741的 底表面具有相同的安装高度,也就是,所述第一驱动元件742和所述第二驱动元件743在所述驱动壳体741的高度空间上可以被设置为处于同一直线上。这样,所述对焦部分23和所述变焦部分22在所述驱动壳体741所设定的高度方向上的在被所述第一驱动元件742和所述驱动元件所驱动后的一致性相对更高,也就是,在通过所述第一驱动元件742驱动所述变焦部分22和通过所述第二驱动元件743驱动所述对焦部分23后,所述变焦部分22和所述对焦部分23在所述驱动壳体741所设定的高度方向上的一致性相对更高,以确保所述可变焦摄像模组的成像质量。
更优选地,在本申请实施例中,所述第一驱动元件742和所述第二驱动元件743在所述驱动壳体741所设定的宽度方向上相对对齐的设置。也就是,更优选地,在本申请实施例中,所述第一压电致动器7420的第一从动轴7422和所述第二压电致动器7430的第二从动轴7432相互对齐。也就是,所述第一驱动元件742和所述第二驱动元件743在所述光轴的第一侧的宽度方向也对齐地设置,以进一步地增加所述第一驱动元件742和所述第二驱动元件743在空间布置上的一致性和紧凑性,以及,增加所述对焦部分23和所述变焦部分22在被驱动后的一致性。
在具体实施中,可通过将所述第一驱动元件742的第一压电主动部7421固定于所述驱动壳体741的第一侧壁的方式,将所述第一驱动元件742悬持地固定于所述驱动壳体741内并且所述第一驱动元件742的第一从动轴7422延伸入所述第一收容通道7440内,例如,将所述第一驱动元件742的第一压电主动部7421通过黏着剂附着于所述驱动壳体741的第一侧壁,其中,所述黏着剂优选地具有一定弹性。同时,通过将所述第二驱动元件743的第二压电主动部7431固定于所述驱动壳体741的与所述第一侧壁相对的第二侧壁的方式,将所述第二驱动元件743悬持地固定于所述驱动壳体741内并且所述第二驱动元件743的第二从动轴7432延伸入所述第二收容通道7450内,例如,将所述第二驱动元件743的第二压电主动部7431通过黏着剂附着于所述驱动壳体741的第二侧壁,其中,所述黏着剂优选地具有一定弹性。
值得一提的是,在本申请其他示例中,所述第一驱动元件742和所述第二驱动元件743能够以其他方式相互异向的设置。例如,在本申请其他示例中,所述第一驱动元件742以第二方向布置,所述第二驱动元件743以第一方向布置,即,所述第一驱动元件742以头部在前、其尾部在后的方向布置, 所述第二驱动元件743以头部在后、尾部在前的方向布置。也就是,在这些示例中,所述第一压电致动器7420的第一压电主动部7421邻近于所述第二压电致动器7430的第二压电主动部7431。
还值得一提的是,在本申请其他示例中,在所述第一驱动元件742和所述第二驱动元件743被设置于所述光轴的同一侧的前提下,所述第一驱动元件742和所述第二驱动元件743也可以同向地设置。例如,所述第一驱动元件742和所述第二驱动元件743同时以第一方向布置,或者,所述第一驱动元件742和所述第二驱动元件743同时以第二方向布置。
进一步地,在所述第一驱动元件742和所述第二驱动元件743被布置于所述光轴的同一侧的前提下,为了进一步地提高所述对焦部分23和所述变焦部分22在被驱动后的一致性,如图1和图3所示,在本申请实施例中,所述驱动组件740,进一步包括:设置于所述光轴的与所述第一侧相对的第二侧的导引结构746,所述导引结构746被配置为引导所述对焦部分23和所述变焦部分22沿着所述光轴所设定的方向移动。
应注意到,在本申请实施例中,所述第一驱动元件742和所述第二驱动元件743,以及,所述引导结构分别位于所述光轴的两侧,通过这样的位置设置,使得所述可变焦摄像模组的内部空间被充分地应用,以利于所述可变焦摄像模组的轻型化和薄型化。
如图1所示,在本申请实施例中,所述第一驱动元件742和所述第二驱动元件743共同一个导引结构746,也就是,所述第一载体744和所述第二载体745共同一个导引结构746,通过这样的方式,有利于稳定地保持所述第一载体744和所述第二载体745之间的相对位置关系,以利于稳定地保持所述变焦透镜组20的所述对焦部分23和所述变焦部分22之间的相对位置关系,以提高所述变焦透镜组20的解像能力。
更具体地,如图1所示,在该示例中,所述导引结构746,包括:相间隔地形成于所述驱动壳体741的第一支撑部7461和第二支撑部7462,以及,架设于所述第一支撑部7461和第二支撑部7462之间且贯穿所述第一载体744和所述第二载体745的至少一导杆7463,所述导杆7463与所述光轴平行,以使得所述第一载体744和所述第二载体745能够被导引沿着平行于所述光轴的所述导杆7463所设定的方向移动。
如图1所示,在该示例中,所述第一支撑部7461和所述第二支撑部7462 的作用在于架设所述导杆7463。例如,在该示例的一个具体的实施方案中,可在所述驱动壳体741的底表面上安装所述第一支撑部7461和所述第二支撑部7462(例如,所述第一支撑部7461和所述第二支撑部7462可被实施为支撑架),当然,所述第一支撑部7461和所述第二支撑部7462也可以一体成型于所述驱动壳体741的底表面上,对此,并不为本申请所局限。当然,在该示例的其他具体的实施方案中,所述第一支撑部7461和所述第二支撑部7462也可以被实施为所述驱动壳体741的侧壁的至少一部分,也就是,所述驱动壳体741的相对的两个侧壁形成所述第一支撑部7461和所述第二支撑部7462。这里,所述驱动壳体741的侧壁可以是所述驱动壳体741的沿着光轴所设定的方向的两相对的侧壁,和/或,所述驱动壳体741的垂直于所述光轴所设定的方向的两相对的侧壁。
相应地,为了允许所述导杆7463穿过,可在所述第一支撑部7461和所述第二支撑部7462上设置导杆槽7464,在所述第一载体744和所述第二载体745内形成贯穿于其两侧表面的导杆通道7465,这样,所述导杆7463能够以安装于所述导杆槽464的方式被架设于所述第一支撑部7461和所述第二支撑部7462,并同时穿过所述第一载体744和所述第二载体745的导杆通道7465。进一步地,在该具体示例中,可选择在所述第一载体744和所述第二载体745的导杆通道7465内设置滚珠和/或润滑介质,以减小摩擦。
值得一提的是,优选地,在本申请实施例中,所述导杆7463与所述第一驱动元件742的从动轴120和/或所述第二驱动元件743的从动轴120齐平,这样可以减小所述对焦部和所述变焦部之间产生倾斜的风险,以确保所述可变焦摄像模组的成像质量。
图7A图示了根据本申请实施例的所述可变焦摄像模组的一个变形实施的示意图。如图7A所示,在该变形实施例中,所述导引结构746的结构的配置发生改变。具体地,在该变形实施例中,所述驱动组件740,进一步包括第一导引机构747和第二导引机构748,其中,所述第一导引机构47被配置为引导所述变焦部分22沿着所述光轴所设定的方向移动,所述第二导引机构748被配置为引导所述对焦部分23沿着所述光轴所设定的方向移动。
更具体地,所述第一导引机构747包括第一安装部7471和第二安装部7472以及架设于所述第一安装部7471和所述第二安装部7472之间的且贯穿所述第一载体744的至少一第一导杆7473,所述第一导杆7473与所述光轴 平行,以使得所述第一载体744能够被导引沿着平行于所述光轴的所述第一导杆7473所设定的方向移动。所述第二导引机构748包括第三安装部7481和第四安装部7482以及架设于所述第三安装部7481和所述第四安装部7482之间的且贯穿所述第二载体745的至少一第二导杆7483,所述第二导杆7483与所述光轴平行,以使得所述第二载体745能够被导引沿着平行于所述光轴的所述第一导杆7473所设定的方向移动。
也就是,在该变形实施中,分别为所述第一载体744和所述第二载体745配置一个导引机构,并且,所述导引机构以导杆7463引导的原理实现。
优选地,在该变形实施例中,所述第一导杆7473与所述第二导杆7483相互齐平,这样,在通过所述第一导引机构747和所述第二导引机构748分别引导所述第一载体744和所述第二载体745的移动时,能够更为有效地确保所述第一载体744和所述第二载体745在被移动后的一致性。更优选地,在该变形实施例中,所述第一导杆7473和所述第二导杆7483相对于所述驱动壳体41的底表面的高度与所述第一从动轴422和所述第二从动轴7432相对于所述驱动壳体741的底表面的安装高度齐平,如图7B所示,这样更有利于确保所述第一载体44和所述第二载体745在被移动后的相互之间的一致性。
图8A图示了根据本申请实施例的所述可变焦摄像模组的一个变形实施的示意图。图8B图示了图8A所示意的所述可变焦摄像模组的另一示意图。如图8A和8B所示,在本该变形实施例中,所述导引结构746的配置再次发生改变。
具体地,如图8A和图8B所示,在该变形实施例中,所述驱动组件740,进一步包括设置于所述第一载体744和所述驱动壳体741之间的第一导引机构747和设置于所述第二载体745和所述驱动壳体741之间的第二导引机构748,其中,所述第一导引机构747被配置为引导所述变焦部分22沿着该光轴移动,所述第二导引机构748被配置为引导所述对焦部分23沿着该光轴移动。
如图8A和图8B所示,所述第一导引机构747,包括设置于所述第一载体744和所述驱动壳体741之间的至少一滚珠7401,以及,设置于所述第一载体744和所述驱动壳体741之间的用于容纳所述至少一滚珠7401的收容槽7402。也就是,所述第一导引结构746为滚珠7401导引结构746。
在该示例的具体实施中,可在所述第一载体744与所述驱动壳体741相对的面上形成有所述收容槽7402,使所述至少一滚珠7401在所述收容槽7402内滑动或者滚动,所述收容槽7402的长度方向上与该光轴方向相一致。所述第一载体744与所述驱动壳体741的相对的面上还可以设有通过磁力相互吸引的磁吸结构,例如在所述第一载体744上设置磁性元件,而在所述驱动壳体741的底表面上形成适于被磁性元件吸引的磁吸元件,使得所述第一载体744能够被所述驱动壳体741所吸附,并使所述滚珠7401被固定在所述第一载体744与所述驱动壳体741之间。
相应地,在如图8B所示的示例中,所述第二导引机构748,包括设置于所述第二载体745和所述驱动壳体741之间的至少一滚珠7401,以及,设置于所述第二载体745和所述驱动壳体741之间的用于容纳所述至少一滚珠7401的收容槽7402。也就是,在该示例中,所述第二导引结构46同样为滚珠7401导引结构746。
也就是,在该具体示例中,所述第二载体745的所述第二导引机构748与所述第一载体744的第一导引机构747相似。具体地,所述第二载体745与所述驱动壳体741的相对的面上形成有所述收容槽7402,使所述至少一滚珠7401在所述收容槽7402内滑动或者滚动。同样地,所述第二载体745与所述驱动壳体741的相对的面上还可以设有通过磁力相互吸引的磁吸结构,例如在所述第二载体745的底表面上设置磁性元件,而在所述驱动壳体741的底表面上形成适于被磁性元件吸引的磁吸元件,使得所述第二载体745能够被所述驱动壳体741所吸附,从而使得所述至少一滚珠7401被可滚动地设置于所述第二载体745与所述驱动壳体741之间。
优选地,所述第一导引机构747与所述第二导引结构746的配置相同,并且,所述第一导引结构746的收容槽7402与所述第二导引结构746的收容槽7402处于同一直线上且相互连接,从而使得所述第一载体44和所述第二载体745之间的倾斜度可以被降低。
图9图示了根据本申请实施例的所述可变焦摄像模组的所述导引结构的另一变形实施的示意图。如图9所示,在该示例中,所述第一导引机构747,包括:设置于所述第一载体744和所述驱动壳体741之间的至少一滑块7403,以及,设置于所述驱动壳体741与所述第一载体744之间的适于所述至少一滑块7403滑动的滑轨7404。也就是,在该示例中,所述第一导引结构46 为滑块7403和滑轨7404结构。
在该示例的一个具体实施方案中,所述滑块7403被固定于所述第一载体744的下表面,所述滑轨7404形成于所述驱动壳体741的底表面的对应位置。当然,在该示例的其他实施方案中,还可以采用其他方式设置所述滑轨7404和所述滑块7403,例如,进一步地在所述第一载体744的下表面设置滑轨7404等。进一步地,在该示例中,可以在所述第一载体744和所述驱动壳体741之间设有磁吸结构,使得所述第一载体744能够被吸附于所述驱动壳体741。
如图9所示,在该示例中,所述第二导引机构748,包括:设置于所述第二载体745和所述驱动壳体741之间的至少一滑块7403,以及,设置于所述驱动壳体741与所述第二载体745之间的适于所述至少一滑块7403滑动的滑轨7404。也就是,在该示例中,所述第二导引结构746为滑块7403和滑轨7404结构。
在该示例的一个具体实施方案中,所述滑块7403被固定于所述第二载体745的下表面,所述滑轨7404形成于所述驱动壳体741的底表面的对应位置。当然,在该示例的其他实施方案中,还可以采用其他方式设置所述滑轨7404和所述滑块7403,例如,进一步地在所述第二载体745的下表面设置滑轨7404等。进一步地,在该示例中,可进一步地在所述第二载体745和所述驱动壳体741之间设有磁吸结构,使得所述第二载体745能够被吸附于所述驱动壳体741。
优选地,所述第一载体744和所述驱动壳体741之间的滑块7403和滑轨7404设置与所述第二载体745和所述驱动壳体741之间滑块7403和滑轨7404设置相同,特别是滑块7403的尺寸以及滑轨7404的尺寸。进一步地,设置在所述驱动壳体741上的对应于所述第一载体744和所述第二载体745的两处滑轨7404处于同一直线上并可以相互连接,从而使得所述第一载体744和所述第二载体745的倾斜度可被进一步降低。
值得一提的是,在本申请其他示例中,所述第一驱动元件742和所述第二驱动元件743还能够以其他方式进行布置,例如,所述第一压电致动器7420和所述第二压电致动器7430被分别设置于所述光轴的第一侧和与所述第一侧相对的第二侧,如图10所示。也就是,在这些示例中,所述第一驱动元件742和所述第二驱动元件743分别被设置于所述光轴的左右两侧。
相应地,在这些示例中,所述第一压电致动器7420和所述第二压电致动器7430异向地设置或者同向地设置。也就是,在这些示例中,所述第一驱动元件742和所述第二驱动元件743的布设朝向并不为局限。同样地,可为所述第一驱动元件742和所述第二驱动元件743配置相应的导引结构46(或者导引机构),如图10所示。这里,因所述导引结构或所述导引机构在前面部分已充分论述,故在此不再赘述。
综上,基于本申请实施例的所述可变焦摄像模组被阐明,其中,所述可变焦摄像模组采用压电致动器100作为驱动器以不仅能够提供足够大的驱动力,而且,能够提供精度更高和行程更长的驱动性能,以满足所述可变焦摄像模组的变焦需求。
进一步地,在本申请实施例中,所述压电致动器100具有相对较小的尺寸,以更好地适配于摄像模组轻型化和薄型化的发展趋势。并且,所述可变焦摄像模组采用合理的布设方案将所述压电致动器100布设于所述可变焦摄像模组中,以满足可变焦摄像模组的结构和尺寸要求。
进一步地,在本申请实施例中,所述压电致动器100的至少一部分被布设于所述可变焦摄像模组中原本被闲置的空间中,以使得所述可变焦摄像模组内的空间能够更为充分地被应用,提高所述可变焦摄像模组的空间布设的紧凑度。
值得一提的是,在本申请其他示例中,所述可变焦摄像模组的驱动组件740,进一步包括用于驱动所述光转折元件10的第三驱动元件进行移动的第三驱动元件(未有图示意),以通过所述第三驱动元件实现所述可变焦摄像模组的光学防抖功能。
如图11和图12所示,在本申请实施例中,用于驱动所述变焦透镜组20的所述驱动组件840,包括:驱动壳体841、位于所述驱动壳体841内的第一载体844、第二载体845、第一驱动组件842和第二驱动组件843,其中,所述变焦部分22被安装于所述第一载体844内,所述对焦部分23被安装于所述第二载体845内,所述第一驱动组件842被配置为驱动所述第一载体844以带动所述变焦部分22沿着所述光轴所设定的方向移动,所述第二驱动组件843被配置为驱动所述第二载体845以带动所述对焦部分23沿着所述光 轴所设定的方向移动。
特别地,在本申请实施例中,所述第一驱动组件842被配置为从所述第一载体844的相对于所述光轴的第一侧和第二侧同时驱动所述第一载体844以带动所述变焦部分22沿着所述光轴所设定的方向移动,和/或,所述第二驱动组件843被配置为从所述第二载体845的相对于所述光轴的第一侧和第二侧同时驱动所述第二载体845以带动所述对焦部分23沿着所述光轴所设定的方向移动。
具体地,在本申请实施例中,当所述第一驱动组件842被配置为从所述第一载体844的相对于所述光轴的第一侧和第二侧同时驱动所述第一载体844以带动所述变焦部分22沿着所述光轴所设定的方向移动时,所述第一驱动组件842包括至少一对驱动元件,以通过所述至少一对驱动元件从所述第一载体844的相对于所述光轴的第一侧和第二侧同时驱动所述第一载体844以带动所述变焦部分22沿着所述光轴所设定的方向移动。特别地,在本申请实施例中,所述驱动元件被实施为压电致动器。
具体地,在本申请实施例中,当所述第二驱动组件843被配置为从所述第二载体845的相对于所述光轴的第一侧和第二侧同时驱动所述第二载体845以带动所述对焦部分23沿着所述光轴所设定的方向移动,所述第二驱动组件843包括至少一对被实施为压电致动器的驱动元件,以通过所述至少一对压电致动器从所述第二载体845的相对于所述光轴的第一侧和第二侧同时驱动所述第二载体845以带动所述对焦部分23沿着所述光轴所设定的方向移动。
在如图11和图12所示意的示例中,所述第一驱动组件842被配置为从所述第一载体844的相对于所述光轴的第一侧和第二侧同时驱动所述第一载体844以带动所述变焦部分22沿着所述光轴所设定的方向移动,同时,所述第二驱动组件843被配置为从所述第二载体845的相对于所述光轴的第一侧和第二侧同时驱动所述第二载体845以带动所述对焦部分23沿着所述光轴所设定的方向移动。并且,所述第一驱动组件842包括一对被实施为压电致动器的驱动元件,所述第二驱动组件843包括一对被实施为压电致动器的驱动元件。
应可以理解,在本申请其他示例中,所述第一驱动组件842和所述第二驱动组件843也可以被配置为:所述第一驱动组件842和所述第二驱动组件 843中其中一个驱动组件840被配置为提供一对驱动力来驱动其所对应的载体,而另一个驱动组件840则提供一个驱动力来驱动其所对应的载体,对此,并不为本申请所局限。
为了便于描述和说明,将所述第一驱动组件842所包括的一对驱动元件定义为第一驱动元件8421和第二驱动元件8422,其中,所述第一驱动元件8421被配置为从所述第一载体844的第一侧驱动所述第一载体844以带动所述变焦部分22沿着所述光轴所设定的方向移动,所述第二驱动元件8422被配置为从所述第一载体844的第二侧驱动所述第一载体844以带动所述变焦部分22沿着所述光轴所设定的方向移动。
同时,将所述第二驱动组件843所包括的一对驱动元件定义为第三驱动元件8431和第四驱动元件8432,其中,所述第三驱动元件8431被配置为从所述第二载体845的第一侧驱动所述第二载体845以带动所述对焦部分23沿着所述光轴所设定的方向移动,所述第四驱动元件8432被配置为从所述第二载体845的第二侧驱动所述第一载体844以带动所述对焦部分23沿着所述光轴所设定的方向移动。
相应地,在本申请实施例中,所述第一驱动元件8421、所述第二驱动元件8422、所述第三驱动元件8431和所述第四驱动元件8432被实施为压电致动器100。在本申请实施例中,所述第一驱动元件8421、所述第二驱动元件8422、所述第三驱动元件8431和所述第四驱动元件8432可以被实施为同一种类型的压电驱动器,或者,被实施为至少两种类型的压电驱动器,对此,本申请不作局限。
图15A和图15B图示了根据本申请实施例的所述可变焦摄像模组的所述压电致动器的示意图。如图15A和图15B所示,所述压电致动器100,包括:压电主动部110、可传动地连接于所述压电主动部110的从动轴120,以及,与所述从动轴120紧配的驱动部130,其中,所述驱动部130在所述压电主动部110和所述从动轴120的作用下被配置为驱动第一载体844或所述第二载体845,以带动所述变焦部分22或所述对焦部分23沿着该光轴移动。
在如图15A和图15B所示意的示例中,所述压电主动部110包括电极板111和叠置于所述电极板111的至少一压电基板。所述压电基板是具有逆压电效应并且根据极化方向和电场方向收缩或膨胀的基板,例如,其可以通 过在单晶或者多晶陶瓷、聚合物等在厚度方向上使用基板极化来制成并使用。这里,逆压电效应是指在电介质的极化方向施加电场,电介质在产生电势差时会发生机械变形。
更具体地,在如图15A和图15B所示意的示例中,所述至少一压电基板,包括第一压电基板112和第二压电基板113,所述电极板111被夹设于所述第一压电基板112和所述第二压电基板113之间。并且,在该示例中,所述压电主动部110进一步包括分别形成于所述第一压电基板112的上表面和下表面的电极层115,以及,分别形成于所述第二压电基板113的上表面和下表面的电极层115,以通过所述电极层115和所述电极板111为所述第一压电基板112和所述第二压电基板113提供脉冲电压。
在该示例中,所述电极板111可以由带有一定弹性的板状元件构成,例如,带有一定弹性的金属板构成。在如图15A和图15B所示意的示例中,所述压电主动部110,进一步包括与所述电极板111电连接的至少一电导通部位114,例如,所述至少一电导通部位114可通过焊接的方式焊接于所述电极板111,或者是所述至少一电导通部位114与所述电极板111一体形成。值得一提的是,当所述电导通部位114的数量为多个时,优选地,所述多个电导通部位114对称地分布于所述电极板111的外表面。
在该示例中,所述第一压电基板112和所述第二压电基板113分别通过所述电极层115被附着于所述电极板111的第一侧表面和与所述第一侧表面相对的第二侧表面。例如,在该示例中,所述第一压电基板112和所述第二压电基板113可以与所述电极板111以相互面与面啮合的方式固定,或者,所述第一压电基板112和所述第二压电基板113通过导电银胶被附着于所述电极板111。
优选地,在该示例中,所述第一压电基板112和所述第二压电基板113的形状的大小与所述电极板111相近或者相一致,从而使得所述压电主动部110具有更优的振动效率。在该具体示例中,所述第一压电基板112、所述第二压电基板113和所述电极板111为圆形板。
在如图15A和图15B所示意的示例中,所述从动轴120被固定于所述压电主动部110,例如,通过黏着剂附着于所述压电主动部110的中心。具体地,所述从动轴120可通过黏着剂被附着于所述第一压电基板112的外表面的电极层115上,或者,通过黏着剂被嵌套地附着于所述第一压电基板112 的外表面的电极层115的中心孔内,或者,所述第一压电基板112具有一中心孔,所述从动轴120进一步被嵌合于所述第一压电基板112的中心孔内,或者,所述压电主动部110具有贯穿于其上下表面的中心孔,所述从动轴120通过黏着剂被被嵌合于所述压电主动部110的中心孔内。在具体实施中,所述从动轴120可被实施为碳棒。所述从动轴120的截面形状为圆形或者多边形,优选为圆形。
在如图15A和图15B所示意的示例中,所述驱动部130与所述从动轴120通过摩擦配合,以使得所述驱动部130可活动地紧配于所述从动轴120上。在具体实施中,所述驱动部130可被实施为夹持所述从动轴120的夹持机构,其中,优选地,所述夹持机构可以是夹持力可调整的夹持机构,或者,部分或全部由弹性材料制成的夹持机构。
如图15所示,在所述压电主动部110的表面暴露的所述电极层115电连接于电源控制部位116的正电极117,所述电极板111通过所述电导通部位114被电连接于所述电源控制部位116的负电极118,这样,当所述电源控制部位116给所述电极层115和所述电极板111反复施加脉冲电压时,所述第一压电基板112和所述第二压电基板113在逆压电效应的作用下朝着一个方向变形,并在所述电极板111的弹性作用下快速恢复为平板状。在上述形变过程中,所述从动轴120在其所设定的轴方向上往返移动,而由于所述驱动部130与所述从动轴120之间为摩擦配合,因此,当所述压电主动部110向着一个方向变形时,所述驱动部130和所述从动轴120共同移动,而当所述压电主动部110快速地恢复为原状时,所述从动轴120也逆向移动而所述驱动部130则由于惯性作用无法跟随所述从动轴120的动作而未能返回原来的位置,只能停留在所在的位置。因此,在一个形变过程中,所述驱动部130的位置发生改变,相应地,通过反复施加脉冲电压,可重复上述移动,从而使得所述驱动部130被移动至目标位置。
图16A图示了根据本申请实施例的所述压电致动器100的另一个实施例的示意图之一。图16B图示了根据本申请实施例的所述压电致动器100的另一个实施例的示意图之二。如图16A和16B所示,在该示例中,所述压电致动器100包括:压电主动部110、可传动地连接于所述压电主动部110的从动轴120,以及,与所述从动轴120紧配的驱动部130,其中,所述驱动部130在所述压电主动部110和所述从动轴120的作用下被配置为驱动第一 载体844或所述第二载体845,以带动所述变焦部分22或所述对焦部分23沿着该光轴移动。
如图16A和16B所示,在该示例中,所述压电主动部110包括压电元件111A,所述压电元件111A具有如图6A中所示意的层叠结构。具体地,如图6A所示,所述压电元件111A包括多个压电伸缩件112A和多个电极113A,所述多个压电伸缩件112A和所述多个电极113A之间交替层叠设置。特别地,通过如上所述的层叠结构,所述压电元件111A即便在施加了很小的电场的情况下,也可获得相对较大的形变量。
在该示例中,为了便于说明,将交替地夹着多个压电伸缩件112A而成的电极113A定义为内部电极,而将配设于所述压电伸缩件112A的表面且位于所述压电元件111A的上表面和下表面的电极113A分别定义为上电极和下电极,同时,将配设于所述压电伸缩件112A的表面且位于所述压电元件111A的侧表面的电极113A定义为侧电极。相应地,在多层的情况下,相同极性的电极113A通过所述侧电极进行电连接。
如图16B所示,在该示例中,所述从动轴120具有圆柱形状并通过黏着剂附着于所述压电元件111A的上表面的中间区域,以使得所述从动轴120接合于所述压电元件111A。当然,在本申请其他示例中,所述从动轴120的形状也可以做出调整,对此,并不为本申请所局限。
并且,所述从动轴120由以“碳、重金属、重金属的碳化物、重金属的硼化物以及重金属的氮化物”中的任一为主要成分的材料制成,所述压电元件111A具有长方体形状,其具有分别沿着相互正交的X轴、Y轴以及Z轴的边。在该示例中,所述压电元件111A的X轴方向长度为1mm,所述压电元件111A的Y轴方向长度为1mm,所述压电元件111A的Z轴方向长度(高度)为2mm。
值得一提的是,相较于传统的电磁式驱动器,图16A和图16B所示意的所述压电致动器100具有体积小、推力大,精度高的优势。并且,相较于图14和图15所示意的压电致动器100,图16A和图16B所示意的所述压电致动器100的所述压电主动部110具有相对更小的截面尺寸,适于在空间紧凑的模组中使用,但是其厚度尺寸相对较达,同时,所述压电元件111A的内部结构相对较为复杂。
相应地,根据本申请实施例的所述压电致动器100能够提供相对较高的 驱动力。更明确地,本申请所选择的所述压电致动器100能够提供的驱动力大小为0.6N至2N,其足以驱动重量大于100mg的部件。
并且,除了能够提供相对较大的驱动力以外,相较于传统的电磁式马达方案和记忆合金马达方案,所述压电致动器100还具有其他优势,包括但不限于:尺寸相对较小(具有细长状),响应精度更佳,结构相对更为简单,驱动控制相对更为简单,产品一致性高,没有电磁干扰,具有相对更大的行程,稳定时间短,重量相对较小等。
具体来说,所述可变焦摄像模组需要其所配置的驱动器具有驱动行程较长且需要保证较好的对准精度等特征。在现有的音圈马达方案中,为了保证运动线性度需要额外设计导杆或滚珠导轨,同时需要在镜头侧部适配大尺寸的驱动磁铁/线圈等,同时需要设置滚珠、弹片、悬丝等辅助定位装置,为容纳较多的部件、保障结构强度和预留结构间隙,往往导致模组横向尺寸偏大,且结构设计复杂,模组重量较重。而记忆合金马达方案,受限于记忆合金方案同比例能够提供的行程相对较少,同时存在潜在断线等可靠性风险。
而所述压电致动器100具有相对较为简单的结构,组装结构更加简单,另外其压电主动部110、从动轴120和驱动部130等主动元件大小与运动行程大小基本无关,因此在光学变焦类产品中所述压电致动器100可以实现大推力、小尺寸,小重量等优势,同时匹配更大行程或更重器件重量进行设计,设计中的集成度也更高。
进一步地,所述压电致动器100利用振动时的摩擦力和惯性,以摩擦接触的方式推动待推动对象(例如,所述对焦部分23或所述变焦部分22)进行微米级运动,其相较于电磁式方案非接触的方式驱动待推动对象需要依靠电磁力抵消重力,摩擦力的方式,具有更大推力,更大位移和更低功耗的优势,同时控制精度更高,可实现高精度连续变焦。而且在存在多个马达机构时,所述压电致动器100不存在磁铁线圈结构,无磁干扰问题。另外,所述压电致动器100可依靠部件之间的摩擦力自锁,因此可以降低所述可变焦摄像模组在进行光学变焦时的晃动异响。
如前所述,在本申请实施例中,所述第一驱动组件842包括第一驱动元件8421和第二驱动元件8422,所述第一驱动元件8421和第二驱动元件8422被实施为压电致动器100,其中,所述第一驱动元件8421被配置为从所述第一载体844的第一侧驱动所述第一载体844以带动所述变焦部分22沿着所 述光轴所设定的方向移动,所述第二驱动元件8422被配置为从所述第一载体844的第二侧驱动所述第一载体844以带动所述变焦部分22沿着所述光轴所设定的方向移动。同时,所述第二驱动组件843包括第三驱动元件8431和第四驱动元件8432,所述第三驱动元件8431和第四驱动元件8432被实施为压电致动器100,其中,所述第三驱动元件8431被配置为从所述第二载体845的第一侧驱动所述第二载体845以带动所述对焦部分23沿着所述光轴所设定的方向移动,所述第四驱动元件8432被配置为从所述第二载体845的第二侧驱动所述第一载体844以带动所述对焦部分23沿着所述光轴所设定的方向移动。
进一步地,需为所述第一驱动元件8421、所述第二驱动元件8422和所述第三驱动元件8431和所述第四驱动元件8432选择合理的布置方式,以将其布置于所述可变焦摄像模组内并实现如上所述的驱动模式。特别地,在本申请实施例中,将所述第一驱动元件8421、所述第二驱动元件8422和所述第三驱动元件8431和所述第四驱动元件8432布置于所述驱动壳体841内。
如图11和图12所示,在本申请实施例中,所述第一载体844和所述第二载体845具有特殊的结构配置,以使得当所述第一载体844和所述第二载体845被安装于所述驱动壳体841后,所述第一载体844的底表面和所述驱动壳体841的底表面之间形成位于所述第一载体844的第一侧的第一收容通道8441和位于所述第一载体844的第二侧的第二收容通道8442;所述第二载体845的底表面和所述驱动壳体841的底表面之间形成位于所述第二载体845的第一侧的第三收容通道8451和位于所述第二载体845的第二侧的第四收容通道8452。特别地,在如图1和图2所示意的示例中,所述第一驱动元件8421的驱动部130被设置于所述第一收容通道8441内,所述第二驱动元件8422的驱动部130被设置于所述第二收容通道8442内,所述第三驱动元件8431的驱动部130被设置于所述第三收容通道8451内,所述第四驱动元件8432的驱动部130被设置于所述第四收容通道8452内。
应可以理解,在现有的摄像模组结构布置方案中,所述第一载体844和所述第二载体845与所述驱动壳体841之间的空间通常都是被闲置的,其原因在于:所述第一载体844与所述第二载体845与所述驱动壳体841之间的空间过小,不适于布设其他部件。
然而,当所述第一驱动元件8421、所述第二驱动元件8422、所述第三 驱动元件8431和所述第四驱动元件8432被实施为压电致动器100时,根据如上所述的压电致动器100的描述可知,所述压电致动器100整体具有延长状(即,所述从动轴120自所述压电主动部110垂直地向外延伸,以具有细长状),并且,特别地,所述压电致动器100的从动轴120具有细长条柱状结构。相应地,由于所述压电致动器100具有特殊的结构与尺寸配置,因此,如图11和图12所示意的示例中,选择将第一载体844和所述第二载体845与所述驱动壳体841之间的空间利用起来,用于布置所述第一驱动元件8421、所述第二驱动元件8422、所述第三驱动元件8431和所述第四驱动元件8432,以使得所述可变焦摄像模组具有更高的空间利用率且具有相对更高的结构紧凑度。
更明确地,在如图11和图12所示意的示例中,除了所述第一驱动元件8421的驱动部130被安装在所述第一收容通道8441内和所述第二驱动元件8422的驱动部130被安装于所述第二收容通道8442外,所述第一驱动元件8421的从动轴120的至少一部分延伸于所述第一收容通道8441内,所述第二驱动元件8422的从动轴120的至少一部分延伸于所述第二收容通道8442内。这样,以更为充分地利用所述第一载体844和所述第二载体845与所述驱动壳体841之间的空间。
更具体地,如图11和图12所示,在本申请实施例中,所述第一载体844包括第一载体底座8443和一体地自所述第一载体底座8443分别向上延伸的第一延长臂8444和第二延长臂8445,以在所述第一载体底座8443、所述第一延长臂8444和所述第二延长臂8445之间形成用于安装所述变焦部分22的第一安装腔和连通于所述第一安装腔的第一开口,其中,所述变焦部分22适于所述第一开口被安装入所述第一安装腔内。
所述第一收容通道8441形成于所述第一载体底座8443的侧表面,所述第一延长臂8444的底表面和所述驱动壳体841的底表面之间,所述第二收容通道8442形成于所述第一载体底座8443的侧表面,所述第二延长臂8445的底表面和所述驱动壳体841的底表面之间。
所述第一驱动元件8421的所述驱动部130被实施至少部分具有弹性的且相对设置的两夹板,其通过黏着剂附着于所述第一延长臂8444的底表面或者一体成型于所述第一延长臂8444的底表面。所述第二驱动元件8422的所述驱动部130被实施至少部分具有弹性的且相对设置的两夹板,其通过黏 着剂附着于所述第二延长臂8445的底表面或者一体成型于所述第一延长臂8444的底表面。而所述第一驱动元件8421和所述第二驱动元件8422的从动轴120分别被紧配地夹设于所述两夹板所形成的夹持腔内。值得一提的是,通过这样的驱动位置的配置,利于降低驱动难度和利于提高驱动的平稳性。
更具体地,如图11和图12所示,在本申请实施例中,所述第二载体845包括第二载体底座8453和一体地自所述第二载体底座8453分别向上延伸的第三延长臂8454和第四延长臂8455,以在所述第二载体底座8453、所述第三延长臂8454和所述第四延长臂8455之间形成用于安装所述对焦部分23的第二安装腔和连通于所述第二安装腔的第二开口,其中,所述对焦部分23适于从所述第二开口被安装入所述第二安装腔内。
所述第三收容通道8451形成于所述第二载体底座8453的侧表面,所述第三延长臂8454的底表面和所述驱动壳体841的底表面之间,所述第四收容通道8452形成于所述第二载体底座8453的侧表面,所述第四延长臂8455的底表面和所述驱动壳体841的底表面之间。
所述第三驱动元件8431的所述驱动部130被实施至少部分具有弹性的且相对设置的两夹板,其通过黏着剂附着于所述第三延长臂8454的底表面或者一体成型于所述第三延长臂8454的底表面。所述第四驱动元件8432的所述驱动部130被实施至少部分具有弹性的且相对设置的两夹板,其通过黏着剂附着于所述第四延长臂8455的底表面或者一体成型于所述第四延长臂8455的底表面。而所述第三驱动元件8431和所述第四驱动元件8432的从动轴120分别被紧配地夹设于所述两夹板所形成的夹持腔内。值得一提的是,通过这样的驱动位置的配置,利于降低驱动难度和利于提高驱动的平稳性。
特别值得一提的是,在本申请实施例中,所述第一收容通道8441、所述第二收容通道8442、所述第三收容通道8451和所述第四收容通道8452低于所述光轴,也就是,当所述第一驱动元件8421、所述第二驱动元件8422、所述第三驱动元件8431和所述第四驱动元件8432分别被布设于所述第一收容通道8441、所述第二收容通道8442、所述第三收容通道8451和所述第四收容通道8452内时,所述第一驱动元件8421、所述第二驱动元件8422、所述第三驱动元件8431和所述第四驱动元件8432的从动轴120相对于所述驱动壳体841的底表面的高度低于所述光轴相对于所述驱动壳体841的底表面的高度。
优选地,在本申请实施例中,所述第一驱动元件8421的驱动部130和所述第二驱动元件8422的驱动部130关于所述光轴对称地布置在所述第一载体844的第一侧和所述第一载体844的第二侧。更优选地,所述第一驱动元件8421的从动轴120与所述第二驱动元件8422的从动轴120关于所述光轴对称地布置在所述第一载体844的第一侧和所述第一载体844的第二侧。更优选地,在本申请实施例中,所述第一驱动元件8421的从动轴120和所述第二驱动元件8422的从动轴120在所述驱动壳体841的高度方向上齐平。这样,所述变焦部分22在被所述第一驱动元件8421和所述第二驱动元件8422同时驱动时,所述变焦部分22在其第一侧和第二侧的移动更容易同步且更为平稳,以利于保证所述第一载体844相对于所述驱动壳体841的底表面的平整度,从而利于确保所述可变焦摄像模组的成像质量。
优选地,在本申请实施例中,所述第三驱动元件8431的驱动部130和所述第四驱动元件8432的驱动部130关于所述光轴对称地布置在所述第一载体844的第一侧和所述第一载体844的第二侧。更优选地,所述第三驱动元件8431的从动轴120与所述第四驱动元件8432的从动轴120关于所述光轴对称地布置在所述第二载体845的第一侧和所述第二载体845的第二侧。更优选地,所述第三驱动元件8431的从动轴120和所述第四驱动元件8432的从动轴120在所述驱动壳体841的高度方向上齐平,这样,所述对焦部分23在被所述第三驱动元件8431和所述第四驱动元件8432同时驱动时,所述对焦部分23在其第一侧和第二侧的移动更容易同步且更为平稳,以利于保证所述第二载体845相对于所述驱动壳体841的底表面的平整度,从而利于确保所述可变焦摄像模组的成像质量。
更优选地,在本申请实施例中,所述第三驱动元件8431和所述第四驱动元件8432的从动轴120在所述驱动壳体841的高度方向上与所述第一驱动元件8421和所述第二驱动元件8422的从动轴120相齐平。更优选地,在本申请实施例中,所述第一驱动元件8421的从动轴120在所述驱动壳体841的宽度方向上与所述第三驱动元件8431的从动轴120相对齐,和/或,所述第二驱动元件8422的从动轴120在所述驱动壳体841的宽度方向上与所述第四驱动元件8432的从动轴120相对齐。这样,有利于确保所述第一载体844和所述第二载体845在被移动后相互之间的一致性,以利于确保所述可变焦摄像模组的成像质量。
优选地,本申请实施例中,所述第一收容通道8441对齐于所述第三收容通道8451,和/或,所述第二收容通道8442对齐于所述第四收容通道8452。
虽然,以上以所述压电致动器100的驱动部130布置于所述第一载体844和所述第二载体845的底表面与所述驱动壳体841的底表面之间的空间为示例,应可以理解,在本申请其他示例中,所述第一驱动元件8421和/或所述第二驱动元件8422和/或所述第三驱动元件8431和/或所述第四驱动元件8432的驱动部130还可以布置于所述第一载体844和所述第二载体845的其他位置,以同样实现上述驱动模式。例如,将所述第一驱动元件8421和所述第二驱动元件8422的驱动部130布置于所述第一载体844的靠近所述驱动壳体841的侧壁的侧部,以及,将所述第三驱动元件8431和所述第四驱动元件8432的驱动部130布置于所述第二载体845的靠近所述驱动壳体841的侧壁的侧部,对此,并不为本申请所局限。
进一步地,在如图11和图12所示意的示例中,所述第一驱动元件8421和所述第二驱动元件8422被同向地设置,以及,所述第三驱动元件8431和所述第四驱动元件8432被同向地设置,并且,所述第一驱动元件8421与所述第三驱动元件8431相对地设置,所述第二驱动元件8422和所述第四驱动元件8432相对地设置。
为了便于描述,在本申请实施例中,设定所述压电致动器100的所述压电主动部110为所述压电致动器100的头部,所述压电致动器100的所述从动轴120为所述压电致动器100的尾部,并且设定所述压电致动器100沿着所述光轴的布置方式为头部在前、其尾部在后的布置方式为第一布置方向,以及,设定所述压电致动器100沿着所述光轴的布置方式为头部在后、尾部在前的布置方式为第二布置方向。则在如图11和图12所示意的示例中,所述第一驱动元件8421和所述第二驱动元件8422都以第一布置方向布置,以及,所述第三驱动元件8431和所述第四驱动元件8432都以第二布置方向布置,以使得所述第一驱动元件8421和所述第二驱动元件8422被同向地设置,以及,所述第三驱动元件8431和所述第四驱动元件8432被同向地设置,并且,所述第一驱动元件8421与所述第三驱动元件8431相对地设置,所述第二驱动元件8422和所述第四驱动元件8432相对地设置。也就是,在该示例中,所述第一驱动元件8421的从动轴120邻近于所述第三驱动元件8431的从动轴120,和,所述第二驱动元件8422的从动轴120邻近于所述第四驱动 元件8432的从动轴120。
特别地,在该示例中,所述变焦透镜组20中所述变焦部分22和所述对焦部分23相邻地设置,以使得所述第一驱动元件8421的从动轴120与所述第三驱动元件8431的从动轴120相邻近设置,以及,所述第二驱动元件8422的从动轴120与所述第四驱动元件8432的从动轴120相邻近地设置,这样可以在满足所述变焦部分22和所述对焦部分23的移动行程的前提下,使得所述从动轴120的尺寸得以缩减,进而使得所述压电致动器100的尺寸得以降低,使对所述压电致动器100的行程要求可以降低。并且,通过上述的布置方式,可以使所述变焦部分22和所述对焦部分23之间的距离更靠近,降低所述驱动组件840的结构设计难度。
在具体实施中,可通过将所述第一驱动元件8421的压电主动部110固定于所述驱动壳体841的第一侧壁的方式,将所述第一驱动元件8421悬持地固定于所述驱动壳体841内并且所述第一驱动元件8421的从动轴120延伸入所述第一收容通道8441内,例如,将所述第一驱动元件8421的压电主动部110通过黏着剂附着于所述驱动壳体841的第一侧壁,其中,所述黏着剂优选地具有一定弹性。同时,通过将所述第二驱动元件8422的压电主动部110固定于所述驱动壳体841的所述第一侧壁的方式,将所述第二驱动元件8422悬持地固定于所述驱动壳体841内并且所述第二驱动元件8422的从动轴120延伸入所述第二收容通道8442内,例如,将所述第二驱动元件8422的压电主动部110通过黏着剂附着于所述驱动壳体841的第一侧壁,其中,所述黏着剂优选地具有一定弹性。
特别地,在本申请实施例中,所述第一驱动元件8421的压电主动部110与所述第二驱动元件8422的压电主动部110在所述驱动壳体841的高度方向上齐平。
在具体实施中,可通过将所述第三驱动元件8431的压电主动部110被安装于所述驱动壳体841的相对于所述第一侧壁的第二侧壁的方式,将所述第三驱动元件8431悬持地固定于所述驱动壳体841内并且所述第三驱动元件8431的从动轴120延伸入所述第三收容通道8451内,例如,将所述第三驱动元件8431的压电主动部110通过黏着剂附着于所述驱动壳体841的第二侧壁,其中,所述黏着剂优选地具有一定弹性。同时,通过将所述第四驱动元件8432的压电主动部110被安装于所述驱动壳体841的所述第二侧壁 的方式,将所述第四驱动元件8432悬持地固定于所述驱动壳体841内并且所述第四驱动元件8432的从动轴120延伸入所述第四收容通道8452内,例如,将所述第四驱动元件8432的压电主动部110通过黏着剂附着于所述驱动壳体841的第二侧壁,其中,所述黏着剂优选地具有一定弹性。
优选地,在本申请实施例中,所述第三驱动元件8431的压电主动部110与所述第四驱动元件8432的压电主动部110在所述驱动壳体841的高度方向上齐平。
值得一提的是,在本申请其他示例中,所述第一驱动元件8421、所述第二驱动元件8422和所述第三驱动元件8431还能够其他方式布置。例如,在如图17所示意的变形实施例中,所述第一驱动元件8421和所述第二驱动元件8422被同向地设置,所述第三驱动元件8431和所述第三驱动元件8431也被同向地设置,但是,与如图11所示意的布局方式不同的是,在该变形实施中,所述第一驱动元件8421和所述第二驱动元件8422都以第二布置方向布置,所述第三驱动元件8431和所述第四驱动元件8432都以第一布置方向布置。也就是,如图17所示,在该变形实施中,所述第一驱动元件8421的压电主动部110邻近于所述第三驱动元件8431的压电主动部110,所述第二驱动元件8422的压电主动部110邻近于所述第四驱动元件8432的压电主动部110。
相应地,在该示例中,所述第一驱动元件8421、所述第三驱动元件8431、所述第二驱动元件8422和所述第四驱动元件8432的压电主动部110相邻近地设置在所述驱动壳体841的中部。在此布置模式的前提下,所述第一驱动元件8421、所述第二驱动元件8422、所述第三驱动元件8431和所述第四驱动元件8432均从中间向外电连接,使得电路设计的结构复杂度可以被降低。
在具体实施中,为了安装所述第一驱动元件8421、所述第二驱动元件8422、所述第三驱动元件8431和所述第四驱动元件8432,所述驱动壳体841进一步设有关于所述光轴对称地设置于其中部的第一安装部7411和第二安装部7412。具体地,如图17所示,可通过所述第一驱动元件8421的压电主动部110被安装于所述第一安装部7411的第一侧壁的方式,将所述第一驱动元件8421悬持地固定于所述驱动壳体841内并且所述第一驱动元件8421的从动轴120延伸入所述第一收容通道8441内,例如,将所述第一驱动元件8421的压电主动部110通过黏着剂附着于所述驱动壳体841的所述第一 安装部7411的第一侧壁,其中,所述黏着剂优选地具有一定弹性。同时,通过将所述第二驱动元件8422的压电主动部110被安装于所述第二安装部7412的第一侧壁的方式,将所述第二驱动元件8422悬持地固定于所述驱动壳体841内并且所述第二驱动元件8422的从动轴120延伸入所述第二收容通道8442内,例如,将所述第二驱动元件8422的压电主动部110通过黏着剂附着于所述驱动壳体841的所述第二安装部7412的第一侧壁,其中,所述黏着剂优选地具有一定弹性。
进一步地,可通过将所述第三驱动元件8431的压电主动部110被安装于所述第一安装部7411的相对于所述第一侧壁的第二侧壁的方式,将所述第三驱动元件8431悬持地固定于所述驱动壳体841内并且所述第三驱动元件8431的从动轴120延伸入所述第三收容通道8451内,例如,将所述第三驱动元件8431的压电主动部110通过黏着剂附着于所述驱动壳体841的所述第一安装部7411的第二侧壁,其中,所述黏着剂优选地具有一定弹性。同时,通过将所述第四驱动元件8432的压电主动部110被安装于所述第二安装部7412的相对于所述第一侧壁的第二侧壁的方式,将所述第四驱动元件8432悬持地固定于所述驱动壳体841内并且所述第四驱动元件8432的从动轴120延伸入所述第四收容通道8452内,例如,将所述第四驱动元件8432的压电主动部110通过黏着剂附着于所述驱动壳体841的所述第二安装部7412的第二侧壁,其中,所述黏着剂优选地具有一定弹性。
当然,在本申请其他示例中,所述第一驱动元件8421、所述第二驱动元件8422和所述第三驱动元件8431还能够其他方式布置。例如,在如图8所示意的变形实施例中,所述第一驱动元件8421和所述第二驱动元件8422被同向地设置,所述第三驱动元件8431和所述第三驱动元件8431也被同向地设置,但是,与如图11所示意的布局方式不同的是,在该变形实施中,所述第一驱动元件8421和所述第二驱动元件8422都以第一布置方向布置,所述第三驱动元件8431和所述第四驱动元件8432都以第一布置方向布置。也就是,如图8所示,在该变形实施中,所述第一驱动元件8421的从动轴120邻近于所述第三驱动元件8431的压电主动部110,所述第二驱动元件8422的从动轴120邻近于所述第四驱动元件8432的压电主动部110。
值得一提的是,在该变形实施例中,通过如上所述的布置方式,可提高所述变焦部分22和所述对焦部分23在被移动后的相互之间的一致性,以减 少相对倾斜的产生。
图19图示了根据本申请实施例的所述可变焦摄像模组的又一个变形实施的示意图。在如图19所示意的变形实施例中,所述第一驱动元件8421和所述第二驱动元件8422被同向地设置,所述第三驱动元件8431和所述第三驱动元件8431也被同向地设置,但是,与如图11所示意的布局方式不同的是,在该变形实施中,所述第一驱动元件8421和所述第二驱动元件8422都以第二布置方向布置,所述第三驱动元件8431和所述第四驱动元件8432都以第二布置方向布置。也就是,如图19所示,在该变形实施中,所述第一驱动元件8421的压电主动部110邻近于所述第三驱动元件8431的从动轴120,所述第二驱动元件8422的压电主动部110邻近于所述第四驱动元件8432的从动轴120。
图20图示了根据本申请实施例的所述可变焦摄像模组的又一个变形实施的示意图。在如图20所示意的变形实施例中,所述第一驱动元件8421和所述第二驱动元件8422被异向地设置,所述第三驱动元件8431和所述第三驱动元件8431也被异向地设置。具体地,在该变形实施中,所述第一驱动元件8421以第一布置方向布置,所述第二驱动元件8422以第二布置方向布置,所述第三驱动元件8431第一布置方向布置,所述第四驱动元件8432以第二布置方向布置。
图21图示了根据本申请实施例的所述可变焦摄像模组的又一个变形实施的示意图。在如图21所示意的变形实施例中,所述第一驱动元件8421和所述第二驱动元件8422被异向地设置,所述第三驱动元件8431和所述第三驱动元件8431也被异向地设置。但与图20所示意的布局方式不同的是,在该变形实施中,所述第一驱动元件8421以第一布置方向布置,所述第二驱动元件8422以第二布置方向布置,所述第三驱动元件8431第二布置方向布置,所述第四驱动元件8432以第一布置方向布置。
图22图示了根据本申请实施例的所述可变焦摄像模组的又一个变形实施的示意图。在如图22所示意的变形实施例中,所述第一驱动元件8421和所述第二驱动元件8422被同向地设置,所述第三驱动元件8431和所述第三驱动元件8431也被异向地设置。具体地,在该变形实施中,所述第一驱动元件8421和所述第二驱动元件8422以第一布置方向被同向地布置,所述第三驱动元件8431第一布置方向布置,所述第四驱动元件8432以第二布置方 向布置。
图23图示了根据本申请实施例的所述可变焦摄像模组的又一个变形实施的示意图。在如图23所示意的变形实施例中,所述第一驱动元件8421和所述第二驱动元件8422被异向地设置,所述第三驱动元件8431和所述第三驱动元件8431也被同向地设置。具体地,在该变形实施中,所述第一驱动元件8421以第一布置方向布置,所述第二驱动元件8422以第二布置方向布置,所述第三驱动元件8431和所述第四驱动元件8432都以第一布置方向布置。
进一步地,在选择以所述压电致动器100为所述第一驱动元件8421、所述第二驱动元件8422、所述第三驱动元件8431和所述第四驱动元件8432后,所述第一驱动元件8421、所述第二驱动元件8422、所述第三驱动元件8431和所述第四驱动元件8432可通过如下方式电连接于外接电源。例如,其可通过一连接电路电连接于所述第一驱动元件8421、所述第二驱动元件8422、所述第三驱动元件8431和所述第四驱动元件8432的电极113A层115以及电极113A板111的电导通部位114,该连接电路可被实施为软板连接带或者多条引线,以通过该连接电路与外部电连接。进一步地,当该压电致动器100设置在驱动壳体841中时,所述压电致动器100适于直接通过软板向外导出,从而与所述感光组件30的线路板31进行电连接。
在本申请其他示例中,所述第一驱动元件8421、所述第二驱动元件8422、所述第三驱动元件8431和所述第四驱动元件8432也可以直接通过软板向外导出,并与所述感光组件30的线路板31电连接。或者,在所述驱动壳体841的表面设置至少二LDS槽,所述LDS槽深度不大于20~30μm,宽度不小于60μm,在槽内运用LDS(激光直接成型技术),在LDS槽表面镀设导电镀层(例如可以是镍钯金的镀层),从而可以避免内部其他金属干扰,将所述第一驱动元件8421和所述第二驱动元件8422的连接电路与LDS槽中的导电镀层相连接,从而导出电路,并与所述感光组件30的线路板31电连接。又或者,还可以通过Insert Molding(嵌入式注塑)技术,将至少二导线成型在所述驱动壳体841中,从而将所述第一驱动元件8421和所述第二驱动元件8422的连接电路与导线电连接从而导出电路,并与所述感光组件30的线路板31电连接。
综上,基于本申请实施例的所述可变焦摄像模组被阐明,其中,所述可 变焦摄像模组采用压电致动器100作为驱动器以不仅能够提供足够大的驱动力,而且,能够提供精度更高和行程更长的驱动性能,以满足所述可变焦摄像模组的变焦需求。
进一步地,在本申请实施例中,所述压电致动器100具有相对较小的尺寸,以更好地适配于摄像模组轻型化和薄型化的发展趋势。并且,所述可变焦摄像模组采用合理的布设方案将所述压电致动器100布设于所述可变焦摄像模组中,以满足可变焦摄像模组的结构和尺寸要求。
进一步地,在本申请实施例中,所述压电致动器100的至少一部分被布设于所述可变焦摄像模组中原本被闲置的空间中,以使得所述可变焦摄像模组内的空间能够更为充分地被应用,提高所述可变焦摄像模组的空间布设的紧凑度。
进一步地,在本申请实施例中,所述可变焦摄像模组通过至少一对压电致动器100分别从待驱动对象的相对的两侧提供驱动力,以使得该待驱动对象的移动更为平稳。
值得一提的是,在本申请其他示例中,所述可变焦摄像模组的驱动组件840,进一步包括用于驱动所述光转折元件10进行移动的第五驱动元件(未有图示意),例如,通过所述第五驱动元件驱动所述光转折元件10进行旋转以实现所述可变焦摄像模组的光学防抖功能。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (77)

  1. 一种可变焦摄像模组,其特征在于,包括:
    设有一光轴的变焦透镜组,包括:固定部分、变焦部分和对焦部分;
    对应于所述变焦透镜组的感光组件;以及
    驱动组件,包括:驱动壳体、位于所述驱动壳体内的第一载体、第二载体、第一驱动元件和第二驱动元件;
    其中,所述变焦部分被安装于所述第一载体内,所述对焦部分被安装于所述第二载体内,所述第一驱动元件被配置为驱动所述第一载体以带动所述变焦部分沿着所述光轴所设定的方向移动,所述第二驱动元件被配置为驱动所述第二载体以带动所述对焦部分沿着所述光轴所设定的方向移动,其中,所述第一驱动元件和/或所述第二驱动元件被实施为压电致动器;
    其中,所述驱动壳体的底表面与所述第一载体的底表面之间设有至少一第一收容通道,所述驱动壳体的底表面与所述第二载体的底表面之间设有至少一第二收容通道,其中,所述压电致动器的至少一部分被设置于至少一所述第一收容通道或者至少一所述第二收容通道内。
  2. 根据权利要求1所述的可变焦摄像模组,其中,所述第一驱动元件被实施为第一压电致动器,所述第二驱动元件被实施为第二压电致动器。
  3. 根据权利要求2所述的可变焦摄像模组,其中,至少部分所述第一压电致动器被设置于所述第一收容通道内,至少部分所述第二压电致动器被设置于所述第二收容通道内。
  4. 根据权利要求2所述的可变焦摄像模组,其中,所述第一压电致动器包括第一压电主动部、可传动地耦接于所述第一压电主动部的第一从动轴,以及,与所述第一从动轴紧配的第一驱动部,其中,在所述第一压电主动部和所述第一从动轴的作用下,所述第一驱动部被配置为驱动所述第一载体沿着所述光轴所设定的方向移动;其中,所述第二压电致动部包括第二压电主动部、可传动地耦接于所述第二压电主动部的第二从动轴,以及,与所述第二从动轴紧配的第二驱动部,其中,在所述第二压电主动部和所述第二从动 轴的作用下,所述第二驱动部被配置为驱动所述第二载体沿着所述光轴所设定的方向移动;
    其中,所述第一压电致动器的第一从动轴的至少一部分延伸于所述第一收容通道内,所述第二压电致动器的第二从动轴的至少一部分延伸于所述第二收容通道内。
  5. 根据权利要求4所述的可变焦摄像模组,其中,所述第一压电致动器和所述第二压电致动器被设置于所述光轴的第一侧。
  6. 根据权利要求4所述的可变焦摄像模组,其中,所述第一压电致动器和所述第二压电致动器被分别设置于所述光轴的第一侧和与所述第一侧相对的第二侧。
  7. 根据权利要求5所述的可变焦摄像模组,其中,所述第一压电致动器和所述第二压电致动器异向地设置。
  8. 根据权利要求5所述的可变焦摄像模组,其中,所述第一压电致动器和所述第二压电致动器同向地设置。
  9. 根据权利要求7或8所述的可变焦摄像模组,其中,所述第一压电致动器和所述第二压电致动器相对于所述驱动壳体的底表面具有相同的安装高度。
  10. 根据权利要求6所述的可变焦摄像模组,其中,所述第一压电致动器和所述第二压电致动器异向地设置或者同向地设置。
  11. 根据权利要求10所述的可变焦摄像模组,其中,所述第一压电致动器和所述第二压电致动器相对于所述驱动壳体的底表面具有相同的安装高度。
  12. 根据权利要求5所述的可变焦摄像模组,其中,所述第一压电致动 器的第一压电主动部邻近于所述第二压电致动器的第二压电主动部。
  13. 根据权利要求5所述的可变焦摄像模组,其中,所述第一压电致动器的所述第一从动轴邻近于所述第二压电致动器的第二从动轴。
  14. 根据权利要求13所述的可变焦摄像模组,其中,所述第一压电致动器的第一压电主动部被安装于所述驱动壳体的第一侧壁,所述第二压电致动器的第二压电主动部被附着于所述驱动壳体的与所述第一侧壁相对的第二侧壁。
  15. 根据权利要求12或13所述的可变焦摄像模组,其中,所述驱动组件进一步包括设置于所述光轴的与所述第一侧相对的第二侧的导引结构,所述导引结构被配置为引导所述对焦部分和所述变焦部分沿着所述光轴所设定的方向移动。
  16. 根据权利要求15所述的可变焦摄像模组,其中,所述导引结构,包括:相间隔地形成于所述驱动壳体的第一支撑部和第二支撑部,以及,架设于所述第一支撑部和第二支撑部之间且贯穿所述第一载体和所述第二载体的至少一导杆,所述导杆与所述光轴平行,以使得所述第一载体和所述第二载体能够被导引沿着平行于所述光轴的所述导杆所设定的方向移动。
  17. 根据权利要求15所述的可变焦摄像模组,其中,所述驱动组件,进一步包括第一导引机构和第二导引机构,其中,所述第一导引机构被配置为引导所述变焦部分沿着所述光轴所设定的方向移动,所述第二导引机构被配置为引导所述对焦部分沿着所述光轴所设定的方向移动。
  18. 根据权利要求17所述的可变焦摄像模组,其中,所述第一导引机构包括第一安装部和第二安装部以及架设于所述第一安装部和所述第二安装部之间的且贯穿所述第一载体的至少一第一导杆,所述第一导杆与所述光轴平行,以使得所述第一载体能够被导引沿着平行于所述光轴的所述第一导杆所设定的方向移动;所述第二导引机构包括第三安装部和第四安装部以及 架设于所述第三安装部和所述第四安装部之间的且贯穿所述第二载体的至少一第二导杆,所述第二导杆与所述光轴平行,以使得所述第二载体能够被导引沿着平行于所述光轴的所述第一导杆所设定的方向移动。
  19. 根据权利要求18所述的可变焦摄像模组,其中,所述第一导杆与所述第二导杆相互齐平。
  20. 根据权利要求18所述的可变焦摄像模组,其中,所述第一导杆和所述第二导杆相对于所述驱动壳体的底表面的高度与所述第一从动轴和所述第二从动轴相对于所述驱动壳体的底表面的安装高度齐平。
  21. 根据权利要求17所述的可变焦摄像模组,其中,所述第一导引机构,包括设置于所述第一载体和所述驱动壳体之间的至少一滚珠,以及,设置于所述第一载体和所述驱动壳体之间的用于容纳所述至少一滚珠的收容槽。
  22. 根据权利要求17所述的可变焦摄像模组,其中,所述第一导引机构,包括:设置于所述第一载体和所述驱动壳体之间的至少一滑块,以及,设置于所述驱动壳体与所述第一载体之间的适于所述至少一滑块滑动的滑轨。
  23. 根据权利要求21所述的可变焦摄像模组,其中,所述第二导引机构,包括设置于所述第二载体和所述驱动壳体之间的至少一滚珠,以及,设置于所述第二载体和所述驱动壳体之间的用于容纳所述至少一滚珠的收容槽。
  24. 根据权利要求22所述的可变焦摄像模组,其中,所述第二导引机构,包括:设置于所述第二载体和所述驱动壳体之间的至少一滑块,以及,设置于所述驱动壳体与所述第二载体之间的适于所述至少一滑块滑动的滑轨。
  25. 根据权利要求1所述的可变焦摄像模组,其中,所述第一载体包括第一载体底座和一体地自所述第一载体底座分别向上延伸的第一延长臂和第二延长臂,以在所述第一载体底座、所述第一延长臂和所述第二延长臂之间形成用于安装所述变焦部分的第一安装腔和连通于所述第一安装腔的第一开口。
  26. 根据权利要求25所述的可变焦摄像模组,其中,所述至少一第一收容通道中其中一个所述第一收容通道形成于所述第一载体底座的侧表面,所述第一延长臂的底表面和所述驱动壳体的底表面之间,所述至少一第一收容通道中另一个所述第一收容通道形成于所述第一载体底座的侧表面,所述第二延长臂的底表面和所述驱动壳体的底表面之间。
  27. 根据权利要求5所述的可变焦摄像模组,其中,所述第二载体包括第二载体底座和一体地自所述第二载体底座分别向上延伸的第三延长臂和第四延长臂,以在所述第二载体底座、所述第三延长臂和所述第四延长臂之间形成用于安装所述对焦部分的第二安装腔和连通于所述第二安装腔的第二开口。
  28. 根据权利要求27所述的可变焦摄像模组,其中,所述至少一第二收容通道中其中一个所述第二收容通道形成于所述第二载体底座的侧表面,所述第三延长臂的底表面和所述驱动壳体的底表面之间,所述至少一第二收容通道中另一个所述第二收容通道形成于所述第二载体底座的侧表面,所述第四延长臂的底表面和所述驱动壳体的底表面之间。
  29. 根据权利要求1所述的可变焦摄像模组,其中,所述压电致动器所产生的驱动力的大小为0.6N至2N。
  30. 根据权利要求1所述的可变焦摄像模组,其中,所述第一收容通道和所述第二收容通道低于所述光轴。
  31. 根据权利要求4所述的可变焦摄像模组,其中,所述第一从动轴和 所述第二从动轴相对于所述驱动壳体的底表面的安装高度低于所述光轴相对于所述驱动壳体的底表面的高度。
  32. 根据权利要求29所述的可变焦摄像模组,其中,所述压电主动部包括电极板和叠置于所述电极板的至少一压电基板。
  33. 根据权利要求32所述的可变焦摄像模组,其中,所述至少一压电基板,包括第一压电基板和第二压电基板,所述电极板被夹设于所述第一压电基板和所述第二压电基板之间。
  34. 根据权利要求1所述的可变焦摄像模组,进一步包括:用于将成像光线转折至所述变焦透镜组的光转折元件。
  35. 根据权利要求34所述的可变焦摄像模组,进一步包括:用于驱动所述光转折元件的第三驱动元件。
  36. 根据权利要求1所述的可变焦摄像模组,其中,所述变焦部分和所述对焦部分相邻地设置。
  37. 根据权利要求36所述的可变焦摄像模组,其中,所述变焦部分位于所述固定部分和所述对焦部分之间。
  38. 根据权利要求36所述的可变焦摄像模组,其中,所述对焦部分位于所述固定部分和所述变焦部分之间。
  39. 一种可变焦摄像模组,其特征在于,包括:
    设有一光轴的变焦透镜组,包括:固定部分、变焦部分和对焦部分;
    对应于所述变焦透镜组的感光组件;以及
    驱动组件,包括:驱动壳体、位于所述驱动壳体内的第一载体、第二载体、第一驱动组件和第二驱动组件,其中,所述变焦部分被安装于所述第一载体内,所述对焦部分被安装于所述第二载体内,所述第一驱动组件被配置 为从所述第一载体的相对于所述光轴的第一侧和第二侧同时驱动所述第一载体以带动所述变焦部分沿着所述光轴所设定的方向移动,所述第二驱动组件被配置为驱动所述第二载体以带动所述对焦部分沿着所述光轴所设定的方向移动。
  40. 根据权利要求39所述的可变焦摄像模组,其中,所述第一驱动组件包括第一驱动元件和第二驱动元件,所述第一驱动元件和第二驱动元件被实施为压电致动器,其中,所述第一驱动元件被配置为从所述第一载体的第一侧驱动所述第一载体以带动所述变焦部分沿着所述光轴所设定的方向移动,所述第二驱动元件被配置为从所述第一载体的第二侧驱动所述第一载体以带动所述变焦部分沿着所述光轴所设定的方向移动。
  41. 根据权利要求40所述的可变焦摄像模组,其中,所述压电致动器包括压电主动部、可传动地连接于所述压电主动部并自所述压电主动部延伸的从动轴以及紧配于所述从动轴的驱动部,其中,所述驱动部在所述压电主动部和所述从动轴的作用下被配置为驱动所述第一载体沿着所述光轴所设定的方向移动。
  42. 根据权利要求41所述的可变焦摄像模组,其中,所述第一载体的底表面和所述驱动壳体的底表面之间形成位于所述第一载体的第一侧的第一收容通道和位于所述第一载体的第二侧的第二收容通道,其中,所述第一驱动元件的驱动部被设置于所述第一收容通道内,所述第二驱动元件的驱动部被设置于所述第二收容通道内。
  43. 根据权利要求42所述的可变焦摄像模组,其中,所述第一驱动元件的从动轴的至少一部分延伸于所述第一收容通道内,所述第二驱动元件的从动轴的至少一部分延伸于所述第二收容通道内。
  44. 根据权利要求43所述的可变焦摄像模组,其中,所述第一载体包括第一载体底座和一体地自所述第一载体底座分别向上延伸的第一延长臂和第二延长臂,以在所述第一载体底座、所述第一延长臂和所述第二延长臂 之间形成用于安装所述变焦部分的第一安装腔和连通于所述第一安装腔的第一开口,其中,所述第一收容通道形成于所述第一载体底座的侧表面,所述第一延长臂的底表面和所述驱动壳体的底表面之间,所述第二收容通道形成于所述第一载体底座的侧表面,所述第二延长臂的底表面和所述驱动壳体的底表面之间。
  45. 根据权利要求44所述的可变焦摄像模组,其中,所述第一驱动元件的驱动部被安装于所述第一延长臂的底表面,所述第二驱动元件的驱动部被安装于所述第二延长臂的底表面。
  46. 根据权利要求43所述的可变焦摄像模组,其中,所述第一驱动元件和所述第二驱动元件被同向地设置。
  47. 根据权利要求43所述的可变焦摄像模组,其中,所述第一驱动元件和所述第二驱动元件被异向的设置。
  48. 根据权利要求46所述的可变焦摄像模组,其中,所述第一驱动元件和所述第二驱动元件都以第一布置方向布置。
  49. 根据权利要求46所述的可变焦摄像模组,其中,所述第一驱动元件和所述第二驱动元件都以第二布置方向布置。
  50. 根据权利要求48所述的可变焦摄像模组,其中,所述第一驱动元件的压电主动部被安装于所述驱动壳体的第一侧壁,所述第二驱动元件的压电主动部被安装于所述驱动壳体的所述第一侧壁。
  51. 根据权利要求49所述的可变焦摄像模组,其中,所述驱动壳体包括关于所述光轴对称地设置于其中部的第一安装部和第二安装部,其中,所述第一驱动元件的压电主动部被安装于所述第一安装部的第一侧壁,所述第二驱动元件的压电主动部被安装于所述第二安装部的第一侧壁。
  52. 根据权利要求50或51所述的可变焦摄像模组,其中,所述第一驱动元件的压电主动部与所述第二驱动元件的压电主动部在所述驱动壳体的高度方向上齐平。
  53. 根据权利要求52所述的可变焦摄像模组,其中,所述第一驱动元件的从动轴和所述第二驱动元件的从动轴在所述驱动壳体的高度方向上齐平。
  54. 根据权利要求53所述的可变焦摄像模组,其中,所述第一驱动元件的从动轴与所述第二驱动元件的从动轴关于所述光轴对称地布置在所述第一载体的第一侧和所述第一载体的第二侧。
  55. 根据权利要求54所述的可变焦摄像模组,其中,所述第一驱动元件的驱动部和所述第二驱动元件的驱动部关于所述光轴对称地布置在所述第一载体的第一侧和所述第一载体的第二侧。
  56. 根据权利要求41所述的可变焦摄像模组,其中,所述第二驱动组件包括第三驱动元件和第四驱动元件,所述第三驱动元件和第四驱动元件被实施为压电致动器,其中,所述第三驱动元件被配置为从所述第二载体的第一侧驱动所述第二载体以带动所述对焦部分沿着所述光轴所设定的方向移动,所述第四驱动元件被配置为从所述第二载体的第二侧驱动所述第一载体以带动所述对焦部分沿着所述光轴所设定的方向移动。
  57. 根据权利要求50所述的可变焦摄像模组,其中,所述第二驱动组件包括第三驱动元件和第四驱动元件,所述第三驱动元件和第四驱动元件被实施为压电致动器,其中,所述第三驱动元件被配置为从所述第二载体的第一侧驱动所述第二载体以带动所述对焦部分沿着所述光轴所设定的方向移动,所述第四驱动元件被配置为从所述第二载体的第二侧驱动所述第一载体以带动所述对焦部分沿着所述光轴所设定的方向移动。
  58. 根据权利要求51所述的可变焦摄像模组,其中,所述第二驱动组 件包括第三驱动元件和第四驱动元件,所述第三驱动元件和第四驱动元件被实施为压电致动器,其中,所述第三驱动元件被配置为从所述第二载体的第一侧驱动所述第二载体以带动所述对焦部分沿着所述光轴所设定的方向移动,所述第四驱动元件被配置为从所述第二载体的第二侧驱动所述第一载体以带动所述对焦部分沿着所述光轴所设定的方向移动。
  59. 根据权利要求57或58所述的可变焦摄像模组,其中,所述第二载体的底表面和所述驱动壳体的底表面之间形成位于所述第二载体的第一侧的第三收容通道和位于所述第二载体的第二侧的第四收容通道,其中,所述第三驱动元件的驱动部被设置于所述第三收容通道内,所述第四驱动元件的驱动部被设置于所述第四收容通道内。
  60. 根据权利要求59所述的可变焦摄像模组,其中,所述第三驱动元件的从动轴的至少一部分延伸于所述第三收容通道内,所述第四驱动元件的从动轴的至少一部分延伸于所述第四收容通道内。
  61. 根据权利要求60所述的可变焦摄像模组,其中,所述第二载体包括第二载体底座和一体地自所述第二载体底座分别向上延伸的第三延长臂和第四延长臂,以在所述第二载体底座、所述第三延长臂和所述第四延长臂之间形成用于安装所述对焦部分的第二安装腔和连通于所述第二安装腔的第二开口,其中,所述第三收容通道形成于所述第二载体底座的侧表面,所述第三延长臂的底表面和所述驱动壳体的底表面之间,所述第四收容通道形成于所述第二载体底座的侧表面,所述第四延长臂的底表面和所述驱动壳体的底表面之间。
  62. 根据权利要求61所述的可变焦摄像模组,其中,所述第三驱动元件和所述第四驱动元件被同向地设置。
  63. 根据权利要求62所述的可变焦摄像模组,其中,所述第三驱动元件和所述第四驱动元件都以第一布置方向布置。
  64. 根据权利要求62所述的可变焦摄像模组,其中,所述第三驱动元件和所述第四驱动元件被同时以第二布置方向布置。
  65. 根据权利要求63所述的可变焦摄像模组,其中,所述第三驱动元件的压电主动部被安装于所述驱动壳体的相对于所述第一侧壁的第二侧壁,所述第四驱动元件的压电主动部被安装于所述驱动壳体的所述第二侧壁。
  66. 根据权利要求63所述的可变焦摄像模组,其中,所述第三驱动元件的压电主动部被安装于所述第一安装部的相对于所述第一侧壁的第二侧壁,所述第四驱动元件的压电主动部被安装于所述第二安装部的相对于所述第一侧壁的第二侧壁。
  67. 根据权利要求65或66所述的可变焦摄像模组,其中,所述第三驱动元件的从动轴和所述第四驱动元件的从动轴在所述驱动壳体的高度方向上齐平。
  68. 根据权利要求67所述的可变焦摄像模组,其中,所述第三驱动元件的从动轴与所述第四驱动元件的从动轴关于所述光轴对称地布置在所述第二载体的第一侧和所述第二载体的第二侧。
  69. 根据权利要求68所述的可变焦摄像模组,其中,所述第三驱动元件的驱动部和所述第四驱动元件的驱动部关于所述光轴对称地布置在所述第一载体的第一侧和所述第一载体的第二侧。
  70. 根据权利要求67所述的可变焦摄像模组,其中,所述第一收容通道对应于所述第三收容通道,和/或,所述第二收容通道对齐于所述第四收容通道。
  71. 根据权利要求70所述的可变焦摄像模组,其中,所述第三驱动元件和所述第四驱动元件的从动轴在所述驱动壳体的高度方向上与所述第一驱动元件和所述第二驱动元件的从动轴相齐平。
  72. 根据权利要求71所述的可变焦摄像模组,其中,所述第一驱动元件的从动轴在所述驱动壳体的宽度方向上与所述第三驱动元件的从动轴相对齐,和/或,所述第二驱动元件的从动轴在所述驱动壳体的宽度方向上与所述第四驱动元件的从动轴相对齐。
  73. 根据权利要求39所述的可变焦摄像模组,进一步包括:用于将成像光线转折至所述变焦透镜组的光转折元件。
  74. 根据权利要求73所述的可变焦摄像模组,进一步包括:用于驱动所述光转折元件的第五驱动元件。
  75. 根据权利要求39所述的可变焦摄像模组,其中,所述变焦部分和所述对焦部分相邻地设置。
  76. 根据权利要求75所述的可变焦摄像模组,其中,所述变焦部分位于所述固定部分和所述对焦部分之间。
  77. 根据权利要求76所述的可变焦摄像模组,其中,所述对焦部分位于所述固定部分和所述变焦部分之间。
PCT/CN2022/075177 2021-02-08 2022-01-30 可变焦摄像模组 WO2022166921A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280010559.5A CN116802538A (zh) 2021-02-08 2022-01-30 可变焦摄像模组

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110172134.1 2021-02-08
CN202110182408.5A CN114942505B (zh) 2021-02-08 2021-02-08 可变焦摄像模组
CN202110172134.1A CN114942504A (zh) 2021-02-08 2021-02-08 可变焦摄像模组
CN202110182408.5 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022166921A1 true WO2022166921A1 (zh) 2022-08-11

Family

ID=82740887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075177 WO2022166921A1 (zh) 2021-02-08 2022-01-30 可变焦摄像模组

Country Status (2)

Country Link
CN (1) CN116802538A (zh)
WO (1) WO2022166921A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195502A1 (en) * 2004-03-04 2005-09-08 Samsung Electro-Mechanics Co., Ltd. Compact lens module
CN105071691A (zh) * 2014-08-25 2015-11-18 新思考电机有限公司 压电促动器、线性驱动装置和电子设备
CN105319663A (zh) * 2014-10-29 2016-02-10 新思考电机有限公司 透镜驱动装置、摄像头装置和电子设备
CN108562990A (zh) * 2017-12-20 2018-09-21 北京空间机电研究所 一种适用于大跨度、大负载的调焦机构
CN111384871A (zh) * 2020-04-23 2020-07-07 新思考电机有限公司 压电陶瓷驱动器夹持结构、线性驱动装置及潜望式镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195502A1 (en) * 2004-03-04 2005-09-08 Samsung Electro-Mechanics Co., Ltd. Compact lens module
CN105071691A (zh) * 2014-08-25 2015-11-18 新思考电机有限公司 压电促动器、线性驱动装置和电子设备
CN105319663A (zh) * 2014-10-29 2016-02-10 新思考电机有限公司 透镜驱动装置、摄像头装置和电子设备
CN108562990A (zh) * 2017-12-20 2018-09-21 北京空间机电研究所 一种适用于大跨度、大负载的调焦机构
CN111384871A (zh) * 2020-04-23 2020-07-07 新思考电机有限公司 压电陶瓷驱动器夹持结构、线性驱动装置及潜望式镜头

Also Published As

Publication number Publication date
CN116802538A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
US10334172B2 (en) Multi-aperture imaging device, method for producing the same and imaging system
US12010429B2 (en) Camera module and mobile terminal
WO2022214084A1 (zh) 潜望式摄像模组和可变焦摄像模组
WO2022166921A1 (zh) 可变焦摄像模组
WO2022166922A1 (zh) 可变焦摄像模组和潜望式摄像模组
CN114879336A (zh) 可变焦摄像模组
CN114942505B (zh) 可变焦摄像模组
WO2022193930A1 (zh) 潜望式摄像模组
CN114942504A (zh) 可变焦摄像模组
WO2022188640A1 (zh) 潜望式摄像模组和电子设备
CN114879335A (zh) 潜望式摄像模组
WO2022228112A1 (zh) 摄像模组
CN115268008B (zh) 可变焦摄像模组
CN115202130A (zh) 潜望式摄像模组
CN114885088B (zh) 摄像模组及其光学防抖方法和电子设备
WO2022166924A1 (zh) 摄像模组及终端设备
WO2022233289A1 (zh) 摄像模组、光学致动器、感光组件及其制造方法
WO2023040904A1 (zh) 防抖驱动组件和摄像模组及防抖方法、用于驱动镜头的驱动组件及其组装方法和摄像模组
WO2024061006A1 (zh) 驱动组件和电子设备
WO2023093855A1 (zh) 驱动组件和可变焦摄像模组
CN115225780A (zh) 可变焦摄像模组
WO2022033356A1 (zh) 超声波压电马达、摄像头模组及电子设备
US20240205547A1 (en) Camera module
US20240210811A1 (en) Camera module
CN115494684A (zh) 可变焦摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280010559.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749200

Country of ref document: EP

Kind code of ref document: A1