WO2022227954A1 - 一种三相电源变换电路、家电设备、控制方法及装置 - Google Patents

一种三相电源变换电路、家电设备、控制方法及装置 Download PDF

Info

Publication number
WO2022227954A1
WO2022227954A1 PCT/CN2022/082564 CN2022082564W WO2022227954A1 WO 2022227954 A1 WO2022227954 A1 WO 2022227954A1 CN 2022082564 W CN2022082564 W CN 2022082564W WO 2022227954 A1 WO2022227954 A1 WO 2022227954A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
voltage
phase power
conversion circuit
discharge module
Prior art date
Application number
PCT/CN2022/082564
Other languages
English (en)
French (fr)
Inventor
龙谭
赵鸣
黄招彬
文先仕
韦东
黄正辉
Original Assignee
佛山市顺德区美的电子科技有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区美的电子科技有限公司, 广东美的制冷设备有限公司 filed Critical 佛山市顺德区美的电子科技有限公司
Publication of WO2022227954A1 publication Critical patent/WO2022227954A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present application relates to air-conditioning control technology, and in particular, to a three-phase power conversion circuit, household electrical appliances, and a control method and device.
  • the three-phase power supply outputs the high-voltage DC bus voltage after passing through the rectifier circuit, and the compressor load is connected to the high-voltage DC bus voltage; while the fan load does not take power from the high-voltage DC bus voltage, but supplies power through another independent phase voltage rectification.
  • the load of this phase is higher than the other two phases, and the current harmonics of this phase are significantly larger, the three-phase current is unbalanced, and it is difficult to meet the requirements of the International Electrotechnical Commission (International Electrotechnical Commission). , IEC) harmonic requirements.
  • the embodiments of the present application are expected to provide a three-phase power conversion circuit, a household appliance, a control method, and an apparatus.
  • a three-phase power conversion circuit including: a three-phase power supply, a power rectifier module, a first capacitor, a second capacitor, a first half-bus load, and a discharge module; wherein,
  • the three-phase AC input terminal of the power rectifier module is connected to the three-phase power supply, and the positive and negative DC output terminals are connected in parallel with the first capacitor and the second capacitor connected in series with each other;
  • Both ends of the first capacitor are connected in parallel with the first half-bus load
  • the discharge module includes at least one of the following: a second discharge module connected in parallel with both ends of the second capacitor, and a third discharge module connected in parallel with the positive and negative DC output terminals;
  • the discharge module is configured to control the discharge module to work in a discharge state when the voltage of the first capacitor and/or the second capacitor is greater than or equal to a first voltage threshold, so as to control the first capacitor and/or or the voltage of the second capacitor is reduced to less than the second voltage threshold;
  • the first voltage threshold is greater than or equal to the second voltage threshold.
  • the discharge module further includes a first discharge module with two ends of the first capacitor connected in parallel.
  • the three-phase power conversion circuit further includes a second half-bus load, and both ends of the second capacitor are connected in parallel with the second half-bus load;
  • the discharge module includes: a first discharge module connected in parallel at both ends of the first capacitor, a second discharge module connected in parallel at both ends of the second capacitor, and a third discharge module connected in parallel with the positive and negative DC output terminals. two;
  • the discharge module includes: a third discharge module connected in parallel with the positive and negative DC output terminals.
  • the three-phase power conversion circuit further includes a full bus load, and the positive and negative DC output terminals are connected in parallel with the full bus load.
  • the power rectifier module includes: a three-phase rectifier bridge and a bidirectional switch assembly,
  • the three-phase rectifier bridge includes a first bridge arm, a second bridge arm and a third bridge arm that are connected in parallel;
  • the bidirectional switch assembly includes a first bidirectional switch, a second bidirectional switch and a third bidirectional switch, the first bidirectional switch One end of the bidirectional switch is connected to the midpoint of the first bridge arm, one end of the second bidirectional switch is connected to the midpoint of the second bridge arm, and one end of the third bidirectional switch is connected to the midpoint of the third bridge arm. midpoint;
  • the other end of the first bidirectional switch, the other end of the second bidirectional switch, and the other end of the third bidirectional switch are all connected to the common terminal between the first capacitor and the second capacitor.
  • the three-phase power conversion circuit further includes: a controller, and the discharge module includes a power switch tube and a power consumption device connected in series with each other;
  • the controller is connected to the control terminal of the power switch tube, and is used to adjust the duty cycle of the power switch tube when the voltage of the first capacitor and/or the voltage of the second capacitor is greater than a voltage threshold , the power switch tube is controlled to be in a closed state, so that the power consumption device works.
  • the power switch tube includes one of a metal-oxide semiconductor field effect transistor, an insulated gate bipolar transistor, a triode, and a thyristor;
  • the power consumption device includes at least one of a resistor, a motor, and a compressor.
  • a household appliance comprising the three-phase power conversion circuit according to any one of the foregoing first aspects.
  • a method for controlling a three-phase power conversion circuit includes the three-phase power conversion circuit according to any one of the foregoing first aspects; the method includes:
  • the target capacitor is the first capacitor or/and the second capacitor in the three-phase power conversion circuit
  • the target capacitor voltage is greater than or equal to the first voltage threshold, and a start-up control signal is generated
  • the discharge module is controlled to work in a discharge state, so as to control the target capacitor voltage to decrease to be less than a second voltage threshold; wherein the first voltage threshold is greater than or equal to the second voltage threshold.
  • the discharge module includes a power switch tube and a power consumption device connected in series;
  • the target capacitor voltage is greater than or equal to the first voltage threshold, and a start-up control signal is generated, including:
  • the target capacitor voltage is greater than or equal to the first voltage threshold, the duty cycle of the switch module of the discharge module is set according to the voltage range where the target capacitor voltage is located, and the start-up control signal is generated;
  • the controlling the discharge module to work in a discharge state according to the start-up control signal includes:
  • the power switch tube is controlled to be in a closed state.
  • the target capacitor is the first capacitor or the second capacitor not connected to the half-bus load in the three-phase power conversion circuit
  • the first capacitor threshold is set according to the withstand voltage value of the first capacitor or the upper limit value of the full bus voltage
  • the first capacitor threshold is set according to the withstand voltage value of the second capacitor or the upper limit value of the full bus voltage.
  • the three-phase power conversion circuit further includes a full bus load, and the positive and negative DC output terminals are connected in parallel with the full bus load;
  • the method also includes:
  • the discharge circuit When the full bus load is turned on and the first half bus load is turned off, the discharge circuit is controlled to be in a closed state, or the discharge circuit is controlled to be in a low power working state.
  • a control device for a three-phase power conversion circuit comprising: a processor and a memory configured to store a computer program that can be executed on the processor,
  • the processor is configured to execute the steps of the aforementioned method when running the computer program.
  • a computer storage medium having a computer program stored thereon, wherein the computer program, when executed by a processor, implements the steps of the aforementioned method.
  • Embodiments of the present application provide a three-phase power conversion circuit, home appliance, control method and device, including: a three-phase power supply, a power supply rectifier module, a first capacitor, a second capacitor, a first half-bus load, a discharge module, and The controller; wherein, the three-phase AC input end of the power rectifier module is connected to the three-phase power supply, the positive and negative DC output ends are connected in parallel with a first capacitor and a second capacitor connected in series with each other; both ends of the first capacitor are connected in parallel with the first half-bus load, discharging
  • the module includes at least one of the following: a second discharge module connected in parallel at both ends of the second capacitor, and a third discharge module connected in parallel with the positive and negative DC output terminals; a discharge module for the voltage of the first capacitor and/or the second capacitor greater than or equal to At the first voltage threshold, the discharging module is controlled to work in a discharging state, so as to control the voltage of the first capacitor and/or the second capacitor
  • the discharge operation can be performed when the voltage of the second capacitor rises, the voltage of the second capacitor can be reduced, the overvoltage problem of the half-bus load can be avoided when the half-bus load is operated alone, and the half-bus load can be ensured safe operation.
  • 1 is a first topology diagram of a three-phase power conversion circuit in an embodiment of the application
  • FIG. 2 is a second topology diagram of a three-phase power conversion circuit in an embodiment of the application
  • FIG. 3 is a third topology diagram of a three-phase power conversion circuit in an embodiment of the application.
  • FIG. 4 is a fourth topology diagram of a three-phase power conversion circuit in an embodiment of the application.
  • FIG. 5 is a fifth topology diagram of a three-phase power conversion circuit in an embodiment of the application.
  • FIG. 6 is a sixth topology diagram of a three-phase power conversion circuit in an embodiment of the application.
  • FIG. 7 is a first topology diagram of a discharge module in an embodiment of the present application.
  • FIG. 8 is a second topology diagram of the discharge module in the embodiment of the application.
  • FIG. 9 is a third topology diagram of the discharge module in the embodiment of the application.
  • FIG. 10 is a seventh topology diagram of a three-phase power conversion circuit in an embodiment of the application.
  • 11 is an eighth topology diagram of a three-phase power conversion circuit in an embodiment of the application.
  • FIG. 12 is a first schematic flowchart of a control method of a three-phase power conversion circuit in an embodiment of the application
  • FIG. 13 is a second schematic flowchart of a control method for a three-phase power conversion circuit in an embodiment of the present application
  • FIG. 14 is a schematic diagram of the composition and structure of a control device of a three-phase power conversion circuit in an embodiment of the present application.
  • FIG. 1 is a first topology diagram of a three-phase power conversion circuit in an embodiment of the application.
  • the three-phase power conversion circuit includes: a three-phase power supply 10 , a power rectifier module 11 , a first capacitor 12 , a second Capacitor 13, first half bus load 14 and discharge module; wherein,
  • the three-phase AC input terminal of the power rectifier module 11 is connected to the three-phase power supply 10, and the positive and negative DC output terminals are connected in parallel with the first capacitor 12 and the second capacitor 13 in series;
  • Both ends of the first capacitor 12 are connected in parallel with the first half-bus load 14;
  • the discharge module includes at least one of the following: a second discharge module 151 connected in parallel with both ends of the second capacitor, and a third discharge module 152 connected in parallel with the positive and negative DC output terminals;
  • the discharge module is configured to control the discharge module to work in a discharge state when the voltage of the first capacitor 12 and/or the second capacitor 13 is greater than a voltage threshold, so as to control the first capacitor 12 and/or The voltage of the second capacitor 13 is reduced to less than the voltage threshold;
  • the first voltage threshold is greater than or equal to the second voltage threshold.
  • the three-phase AC source of the three-phase power supply 10 is connected to the three-phase AC input terminal of the rectifier module 11 through the inductance devices L1 , L2 and L3 respectively.
  • the power rectifier module 11 includes: a three-phase rectifier bridge and a bidirectional switch assembly,
  • the three-phase rectifier bridge includes a first bridge arm, a second bridge arm and a third bridge arm that are connected in parallel;
  • the bidirectional switch assembly includes a first bidirectional switch, a second bidirectional switch and a third bidirectional switch, the first bidirectional switch One end of the bidirectional switch is connected to the midpoint of the first bridge arm, one end of the second bidirectional switch is connected to the midpoint of the second bridge arm, and one end of the third bidirectional switch is connected to the midpoint of the third bridge arm. midpoint;
  • the other end of the first bidirectional switch, the other end of the second bidirectional switch, and the other end of the third bidirectional switch are all connected to the common terminal between the first capacitor and the second capacitor.
  • the first bridge arm includes a first diode D1 and a second diode D2
  • the second bridge arm includes a third diode D3 and a fourth diode D4
  • the third bridge arm includes a fifth diode D5 and the sixth diode D6.
  • the first bidirectional switch, the second bidirectional switch and the third bidirectional switch in the bidirectional switch assembly may all include two power switch tubes connected in reverse series, and diodes are connected in reverse parallel to the two power switch tubes.
  • the first bidirectional switch includes a first IGBT module T1 and a second IGBT module T2
  • the second bidirectional switch includes a third IGBT module T3 and a fourth IGBT module T4
  • the third bidirectional switch includes a fifth IGBT module T5 and a third IGBT module T5.
  • the positive and negative DC output terminals specifically include a positive bus terminal and a negative bus terminal, and the positive bus terminal is sequentially connected to the negative bus terminal through the first capacitor C1 and the second capacitor C2.
  • full busbar in the embodiment of the present application refers to the positive and negative busbars connected in series with two-stage electrolytic capacitors in a high-voltage DC bus filter circuit using two-stage electrolytic capacitors in series (between points P and N in between the two-stage capacitors in series), half-bus, refers to the high-voltage DC bus filter circuit using two-stage capacitors in series, between the midpoint of the two-stage capacitors in series (point O in Figure 1) and the positive bus (point P in Figure 1) is the upper Half-bus, between the midpoint of the two-stage capacitor in series and the negative bus (point N in Figure 1) is the lower half-bus, and the upper and lower half-buses are both half-buses.
  • the first capacitor C1 is the upper bus capacitor
  • the first half bus load is the upper bus load
  • the second capacitor C2 is the lower bus capacitor
  • FIG. 1 is not used to limit the connection position of the capacitor of the present application.
  • the first capacitor C1 can also be connected to the lower bus as a lower bus capacitor
  • the second capacitor C2 can also be connected to the upper bus as an upper bus capacitor, that is, the bus ends are sequentially connected through the second capacitor C2 and the first capacitor C1 to the Negative bus terminal.
  • the discharge module when both ends of the first capacitor are connected in parallel with the first half-bus load, can be selected and set in the following order: (1) the second capacitor 13 not connected to the half-bus load is connected in parallel with the second discharge module 151; (2) a third discharge module 152 connected in parallel with the positive and negative DC output terminals (as shown in FIG. 2); (3) a second discharge module connected in parallel at both ends of the second capacitor 13 not connected to the half-bus load 151, and a third discharge module 152 connected in parallel at the positive and negative DC output terminals (as shown in FIG. 2).
  • the second capacitor When the first half bus load 14 operates alone, the second capacitor inevitably has a slow voltage rise, and the limit of its voltage rise is the full bus voltage value during uncontrolled rectification (in the case of 380V RMS input, the value is 537V, Greater than the maximum allowable voltage of existing common electrolytic capacitors (450V). Therefore, 1) when the full bus load does not work or fails to work, the first half bus load cannot run for a long time; 2) when the full bus load is suddenly turned off or changes rapidly, the first capacitor voltage is difficult to control in time, which may lead to the first half bus load.
  • the second capacitor has an overvoltage phenomenon or even fails. Therefore, by adding a discharge module, a discharge operation can be performed when the voltage of the second capacitor rises, thereby reducing the voltage of the second capacitor to a safe voltage range, avoiding overvoltage and not being affected by the full bus load.
  • the discharge module further includes a first discharge module 153 connected in parallel with both ends of the first capacitor. That is, the discharge module may include at least two of the first discharge module 153 , the second discharge module 151 and the third discharge module 152 .
  • the three-phase power conversion circuit further includes a second half-bus load 16, and both ends of the second capacitor 13 are connected in parallel with the second half-bus load 16.
  • the discharge module can be selected and set in the following order: (1) The discharge module includes the first capacitor 12 in parallel at both ends Both ends of the first discharge module 153 and the second discharge module 151 of the second capacitor 13 are connected in parallel, as shown in FIG. 4 . (2) The discharge module includes a second discharge module 151 for simultaneously controlling the first capacitor voltage and the second capacitor voltage to be within a safe voltage range. (3) The discharge module includes: a first discharge module 153 and a third discharge module 152 ; (4) The discharge module includes: a second discharge module 151 and a third discharge module 152 .
  • the selection priority of the third and the fourth is the same.
  • the three-phase power conversion circuit further includes a full bus load 17 , and the positive and negative DC output terminals are connected in parallel with the full bus load 17 . As shown in Figure 5.
  • the first capacitor C1 can also be connected to the lower bus as a lower bus capacitor, and the second capacitor C2 can also be connected to the upper bus as an upper bus capacitor, that is, the bus ends are sequentially connected to the Negative bus terminal.
  • the first half-bus load 14 is connected in parallel with both ends of the first capacitor 12 as a lower bus load.
  • the positions of the first capacitor and the second capacitor in FIG. 1 to FIG. 5 can be reversed, that is, the first capacitor C1 is the lower bus capacitor, and the second capacitor C2 is the upper bus capacitor.
  • the above-mentioned three-phase power conversion circuit is applied to an air conditioner.
  • the half-bus load can be a DC fan, which is rectified by an independent channel of phase voltage to supply power, and the full-bus load can be a DC compressor, which is connected to the high-voltage DC bus voltage.
  • the DC fan is the load of the lower bus capacitor of the air conditioner.
  • the discharge module includes a power switch tube and a power-consuming device connected in series with each other (as shown in FIG. 7 ); by controlling the on-off of the power switch tube to control the operation of the power-consuming device, the power-consuming device can be operated easily.
  • the discharge module is in discharge state.
  • the power-consuming device may be any one or more power-consuming devices in the air conditioner.
  • the multiple power-consuming devices are connected in series or in parallel.
  • the power switch tube includes a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), an Insulated Gate Bipolar Transistor (IGBT), a triode, and a thyristor.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • a thyristor a Metal-Oxide-Semiconductor Field-Effect Transistor
  • the power consumption device includes at least one of a resistor, a motor, and a compressor.
  • the power consuming devices are resistors.
  • the power consuming device is a motor or a compressor.
  • terminals 1 and 2 are two ends of the discharge module, and terminal 3 is the control terminal of the power switch tube.
  • the three-phase power conversion circuit of the present application further includes: a controller 18,
  • the controller 18 is connected to the control terminal of the power switch tube, and is used to adjust the duty cycle of the power switch tube when the voltage of the first capacitor and/or the voltage of the second capacitor is greater than a voltage threshold ratio, the power switch tube is controlled to be in a closed state, so that the power consumption device works.
  • the fan load is powered by the lower bus capacitor C2
  • the discharge module is powered by the upper bus capacitor C1
  • the compressor load is powered by the full bus capacitor.
  • the full bus load includes the power switch tube (i.e. the Intelligent Power Module (IPM1) and the compressor, and the first half bus load includes the power switch tube (i.e. IPM2) and the fan.
  • the controller is also connected with the IPM1 and IPM2
  • the control terminal is connected to control the start and stop of the fan and compressor by controlling IPM1 and IPM2.
  • the controller 18 is also connected to the control terminals of the IGBT modules T1 to T6, and is used to determine the voltage value of the upper busbar capacitor voltage U1, the lower busbar capacitor voltage U2, the phase current Iabc, the phase voltage Uabc, the full busbar reference voltage Udcref, the lower busbar capacitor voltage U2
  • the bus capacitor reference voltage U1ref (or the upper bus capacitor reference voltage U2ref) calculates the duty cycle of each phase power switch tube (such as an IGBT module), and then controls the action of the three-phase switch.
  • the fan load is powered by the lower bus capacitor C2
  • the compressor load is powered by the full bus capacitor, or there is no compressor load
  • the discharge module ie the third discharge module
  • the discharge module is powered by the full bus capacitor.
  • a mapping relationship between at least one voltage range and a duty cycle may also be preset, and a target voltage range where the target capacitor voltage is located is determined according to the preset at least one voltage range; The target duty cycle corresponding to the target voltage range.
  • the duty cycle can be flexibly set according to the rise degree of the capacitor voltage, a higher voltage rise corresponds to a higher duty cycle, and a lower voltage rise corresponds to a lower duty cycle, thereby improving the control accuracy of the discharge module.
  • the discharge operation can be performed when the voltage of the second capacitor rises, the voltage of the second capacitor can be reduced, and the problem of overvoltage when the half-bus load is operated alone can be avoided. , to ensure the safe operation of the half-bus load.
  • the embodiments of the present application also provide a household appliance, including: any of the above three-phase power conversion circuits.
  • the household appliance may be an air conditioner, a refrigerator, or the like.
  • the embodiments of the present application further provide a control method for a three-phase power conversion circuit, and the three-phase power conversion circuit is any of the three-phase power conversion circuits in the embodiments of the present application, As shown in Figure 12, the method includes:
  • Step 1201 Obtain a target capacitor voltage; wherein, the target capacitor is the first capacitor or/and the second capacitor in the three-phase power conversion circuit;
  • Step 1202 The target capacitor voltage is greater than or equal to a first voltage threshold, and a start-up control signal is generated;
  • the target capacitor voltage continues to be monitored.
  • the target capacitor is a first capacitor or a second capacitor in the three-phase power conversion circuit that is not connected to a half-bus load; when the target capacitor is the first capacitor, the first capacitor threshold is based on The withstand voltage value of the first capacitor, or the upper limit value of the full bus voltage is set; when the target capacitor is the second capacitor, the first capacitor threshold value is based on the withstand voltage value of the second capacitor, or the full bus voltage. Voltage upper limit value setting.
  • the full busbar in the embodiment of the present application refers to the positive and negative busbars connected in series with two-stage electrolytic capacitors in a high-voltage DC bus filter circuit using two-stage electrolytic capacitors in series (between points P and N in Included in the high-voltage DC bus filter circuit using two-stage capacitors in series, between the midpoint of the two-stage capacitors in series (point O in Figure 1) and the positive bus (point P in Figure 1) is the upper half bus, two-stage Between the midpoint of the capacitor series and the negative busbar (point N in Figure 1) is the lower half busbar, and the upper half busbar and the lower half busbar are both half busbars.
  • the first capacitor C1 is the upper bus capacitor
  • the first half bus load is the upper bus load
  • the second capacitor C2 is the lower bus capacitor
  • FIG. 1 is not used to limit the connection position of the capacitor of the present application.
  • the first capacitor C1 can also be connected to the lower bus as a lower bus capacitor
  • the second capacitor C2 can also be connected to the upper bus as an upper bus capacitor, that is, the bus ends are sequentially connected through the second capacitor C2 and the first capacitor C1 to the Negative bus terminal.
  • the upper bus capacitor reference voltage U1ref and the upper bus capacitor actual voltage U1 can be compared to determine whether the upper bus capacitor is overvoltage, and the lower bus capacitor reference voltage U2ref and the lower bus capacitor actual voltage can be compared. U2, to judge whether the lower bus capacitor is over-voltage, so as to control the discharge module.
  • the actual voltage U1 of the upper bus capacitor and the upper and lower limit values of the upper bus capacitor voltage (or the upper and lower limit values of the target full bus voltage) can be compared, Thereby controlling the discharge module.
  • the upper half bus has a half bus load (which can be understood as the first capacitor in parallel with the first half bus load)
  • the actual voltage U2 of the lower bus capacitor, the upper and lower limits of the lower bus capacitor voltage (or the upper and lower limits of the target full bus voltage) can be compared. ) to control the discharge module.
  • the start-up control signal is used to control the discharge module to be in a discharge state.
  • the discharge module includes a power switch tube and a power consumption device connected in series;
  • the target capacitor voltage is greater than or equal to the first voltage threshold, and a start-up control signal is generated, including:
  • the target capacitor voltage is greater than or equal to the first voltage threshold, the duty cycle of the switch module of the discharge module is set according to the voltage range where the target capacitor voltage is located, and the start-up control signal is generated;
  • the controlling the discharge module to work in a discharge state according to the start-up control signal includes:
  • the power switch tube is controlled to be in a closed state.
  • the switching duty ratio of the discharge module is calculated by the reference voltage and the actual value of the half-bus capacitor not connected to the half-bus load, and then the on-off of the switch of the discharge circuit is controlled.
  • the switching duty cycle of the discharge module is calculated by the reference voltage and the actual value of the half-bus capacitor that is not connected to the half-bus load, and then control is performed.
  • the switch of the discharge loop is turned on and off until the capacitor voltage is less than the lower limit value of the reference voltage.
  • the on-off of the switch of the discharge circuit is controlled through a preset duty ratio.
  • Step 1203 Control the discharge module to work in a discharge state according to the start-up control signal, so as to control the target capacitor voltage to be reduced to less than a second voltage threshold; wherein the first voltage threshold is greater than or equal to the second voltage threshold voltage threshold.
  • the discharge module is used for overvoltage protection of the half-bus capacitors.
  • the three-phase power conversion circuit further includes a full bus load, and the positive and negative DC output terminals are connected in parallel with the full bus load; the method further includes: the full bus load is turned on, the first When the half-bus load is turned off, the discharge circuit is controlled to be in a closed state, or the discharge circuit is controlled to be in a low-power working state.
  • the discharge circuit is closed or its power is adjusted to the lowest state, so as to reduce the power consumption of the system.
  • the full bus load when the full bus load is turned on, the half bus load is turned on, and the ratio of the full bus load power to the half bus load is lower than the value K1, or when the full bus load is turned off and the half bus load is working, it can be determined according to the The actual voltage U1 of the upper bus capacitor (or the actual voltage U2 of the lower bus capacitor) calculates the duty cycle of the power switch of the discharge circuit.
  • the full bus load when the full bus load is determined to be on and the power is sufficient, the full bus load can be used instead of the discharge module to control the voltage of the half bus capacitor not connected to the half bus load.
  • the setting of the duty cycle of the switch module of the discharge module according to the voltage range where the target capacitor voltage is located includes:
  • the target duty cycle corresponding to the target voltage range is determined.
  • any one of the above control methods can be specifically applied when the first half-bus load is turned on, the full-bus load is turned on, and the ratio of the full-bus load to the first half-bus load is lower than At a preset ratio, or the first half-bus load is turned on, and the full-bus load is turned off.
  • the execution subject of steps 1201 to 1203 may be the processor of the controller.
  • control method is illustrated below by taking the three-phase power conversion circuit as shown in Fig. 2 and Fig. 3 as an example. At this time, the upper busbar capacitor is connected to the load, and the lower busbar capacitor is not connected to the load. Lifting, as shown in Figure 13, the control method may specifically include:
  • Step 1301 Obtain the lower bus capacitor voltage
  • Step 1302 Check whether the lower bus capacitor voltage is greater than or equal to the first voltage threshold, if yes, go to Step 1303; if not, go back to Step 1301;
  • the first voltage threshold value may be determined according to the withstand voltage value of the upper busbar capacitor, or determined according to the maximum voltage value of all busbar voltage values, or a preset default value.
  • Step 1303 Generate a start-up control signal, and control the discharge module to work in a discharge state.
  • Step 1301 is replaced by obtaining the upper bus capacitor voltage
  • step 1302 is replaced by judging whether the upper bus capacitor voltage is greater than or equal to the first voltage threshold, the first voltage threshold at this time can be determined according to the withstand voltage value of the upper bus capacitor, or according to the full bus The maximum voltage value of the voltage value is determined, or the default value is preset.
  • the discharge module can also be replaced with a third discharge module connected in parallel with the positive and negative DC output terminals.
  • the third discharge module can perform overvoltage protection for the unconnected load capacitor, and can also perform overvoltage protection for the load capacitor connected to the other end. .
  • the embodiment of the present application also provides a control device for a three-phase power conversion circuit, and the control device is used to control any three-phase power conversion circuit in the embodiment of the present application.
  • the control device includes: a processor 1401 and a memory 1402 configured to store a computer program that can be executed on the processor;
  • the processor 1401 is configured to execute the method steps in the foregoing embodiments when running a computer program.
  • bus system 1403 is used to realize the connection communication between these components.
  • bus system 1403 also includes a power bus, a control bus, and a status signal bus.
  • the various buses are labeled as bus system 1403 in FIG. 14 .
  • the above-mentioned processor may be an application specific integrated circuit (ASIC, Application Specific Integrated Circuit), a digital signal processing device (DSPD, Digital Signal Processing Device), a programmable logic device (PLD, Programmable Logic Device), field programmable At least one of a programmable gate array (Field-Programmable Gate Array, FPGA), a controller, a microcontroller, and a microprocessor.
  • ASIC Application Specific Integrated Circuit
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the electronic device used to implement the above processor function may also be other, which is not specifically limited in the embodiment of the present application.
  • the above-mentioned memory can be a volatile memory (volatile memory), such as random access memory (RAM, Random-Access Memory); or a non-volatile memory (non-volatile memory), such as read-only memory (ROM, Read-Only Memory) Memory), flash memory (flash memory), hard disk (HDD, Hard Disk Drive) or solid-state drive (SSD, Solid-State Drive); or a combination of the above types of memory, and provide instructions and data to the processor.
  • volatile memory such as random access memory (RAM, Random-Access Memory
  • non-volatile memory such as read-only memory (ROM, Read-Only Memory) Memory), flash memory (flash memory), hard disk (HDD, Hard Disk Drive) or solid-state drive (SSD, Solid-State Drive
  • SSD Solid-State Drive
  • the device can be applied to household appliances equipped with the above-mentioned three-phase power conversion circuit, such as air conditioners, refrigerators and other equipment.
  • an embodiment of the present application further provides a computer-readable storage medium, such as a memory including a computer program, and the computer program can be executed by a processor of a household appliance to complete the aforementioned control method for a three-phase power conversion circuit A step of.
  • a computer-readable storage medium such as a memory including a computer program
  • first, second, third, etc. may be used in this application to describe various information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from one another, and are not necessarily used to describe a particular order or sequence.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present invention.
  • the unit described above as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may all be integrated into one processing unit, or each unit may be separately used as a unit, or two or more units may be integrated into one unit; the above integration
  • the unit can be implemented either in the form of hardware or in the form of hardware plus software functional units.
  • the present application discloses a three-phase power conversion circuit, home appliance equipment, control method and device, including: a three-phase AC input end of a power rectifier module is connected to a three-phase power supply, and positive and negative DC output ends are connected in parallel with a first capacitor and a second capacitor connected in series with each other. Two capacitors; both ends of the first capacitor are connected in parallel with the first half-bus load, and the discharge module includes at least one of the following: a second discharge module connected in parallel with both ends of the second capacitor, and a third discharge module connected in parallel with the positive and negative DC output terminals; the discharge module, It is used to operate in a discharge state to control the voltage of the first capacitor and/or the second capacitor to decrease to less than the second voltage threshold.
  • the discharge operation can be performed when the voltage of the second capacitor rises, the voltage of the second capacitor can be reduced, the overvoltage problem of the half-bus load can be avoided when the half-bus load is operated alone, and the half-bus load can be ensured safe operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本申请公开了一种三相电源变换电路、家电设备、控制方法及装置,包括:电源整流模块的三相交流输入端连接三相电源,正负直流输出端并联相互串联的第一电容和第二电容;第一电容的两端并联第一半母线负载,放电模块包括以下至少一个:第二电容两端并联的第二放电模块,正负直流输出端并联的第三放电模块;放电模块,用于工作在放电状态,以控制第一电容和/或第二电容的电压降低到小于第二电压阈值。这样,通过为未接负载的第二电容配置放电模块,能够在第二电容电压抬升时进行放电操作,降低第二电容电压,避免半母线负载单独运行时出现过压问题,保证半母线负载的安全运行。

Description

一种三相电源变换电路、家电设备、控制方法及装置
相关申请的交叉引用
本申请基于申请号为202110456018.2、申请日为2021年04月26日、发明创造名称为“一种三相电源变换电路、家电设备、控制方法及装置”的在先中国专利申请提出,并要求该在先中国专利申请的优先权,该在先中国专利申请的全部内容在此以全文引入的方式引入本申请作为参考。
技术领域
本申请涉及空调控制技术,尤其涉及一种三相电源变换电路、家电设备、控制方法及装置。
背景技术
在三相电源供电的高能效变频空调系统中,除了变频压缩机负载外,还有直流风机负载,有的空调系统带一个直流风机,有的系统带有两个直流风机甚至更多。
三相电源经过整流电路后输出高压直流母线电压,压缩机负载接在高压直流母线电压上;而风机负载不是从高压直流母线电压上取电,而是通过另外独立的一路相电压整流后供电。采用独立的一路相电压整流后给风机负载供电,导致这一相的负载高于另外两相,并且该相电流谐波明显更大,三相电流不平衡、难以满足国际电工委员会(International Electrotechnical Commission,IEC)谐波要求。
发明内容
为解决上述技术问题,本申请实施例期望提供一种三相电源变换电路、 家电设备、控制方法及装置。
本申请的技术方案是这样实现的:
第一方面,提供了一种三相电源变换电路,包括:三相电源、电源整流模块、第一电容、第二电容、第一半母线负载和放电模块;其中,
所述电源整流模块的三相交流输入端连接所述三相电源,正负直流输出端并联相互串联的所述第一电容和所述第二电容;
所述第一电容的两端并联所述第一半母线负载,
所述放电模块包括以下至少一个:所述第二电容两端并联的第二放电模块,所述正负直流输出端并联的第三放电模块;
所述放电模块,用于在所述第一电容和/或所述第二电容的电压大于或者等于第一电压阈值时控制所述放电模块工作在放电状态,以控制所述第一电容和/或所述第二电容的电压降低到小于第二电压阈值;
其中,所述第一电压阈值大于或者等于所述第二电压阈值。
上述方案中,所述放电模块还包括所述第一电容两端并联的第一放电模块。
上述方案中,所述三相电源变换电路还包括第二半母线负载,所述第二电容的两端并联所述第二半母线负载;
所述放电模块包括:所述第一电容两端并联的第一放电模块、所述第二电容两端并联的第二放电模块和所述正负直流输出端并联的第三放电模块中的任意两个;
或者,所述放电模块包括:所述正负直流输出端并联的第三放电模块。
上述方案中,所述三相电源变换电路还包括全母线负载,所述正负直流输出端并联所述全母线负载。
上述方案中,所述电源整流模块包括:三相整流桥和双向开关组件,
所述三相整流桥包括相互并联的第一桥臂、第二桥臂和第三桥臂;所 述双向开关组件包括第一双向开关、第二双向开关和第三双向开关,所述第一双向开关的一端连接所述第一桥臂的中点,所述第二双向开关的一端连接所述第二桥臂的中点,所述第三双向开关的一端连接所述第三桥臂的中点;
所述第一双向开关的另一端、所述第二双向开关的另一端、所述第三双向开关的另一端均连接于所述第一电容和所述第二电容之间的公共端。
上述方案中,所述三相电源变换电路还包括:控制器,所述放电模块包括相互串联的功率开关管和耗电器件;
所述控制器与所述功率开关管的控制端相连,用于在所述第一电容的电压和/或所述第二电容的电压大于电压阈值时,调整所述功率开关管的占空比,控制所述功率开关管处于闭合状态,使得所述耗电器件工作。
上述方案中,所述功率开关管包括金属-氧化物半导体场效应晶体管、绝缘栅双极型晶体管、三极管、晶闸管中的一项;
所述耗电器件包括电阻、电机、压缩机中的至少一项。
第二方面,提供了一种家电设备,所述家电设备包括如前述第一方面任一项所述的三相电源变换电路。
第三方面,提供了一种三相电源变换电路的控制方法,所述三相电源变换电路包括如前述第一方面任一项所述的三相电源变换电路;所述方法包括:
获取目标电容电压;其中,目标电容为所述三相电源变换电路中的第一电容或/和第二电容,
所述目标电容电压大于或者等于第一电压阈值,生成启动控制信号;
根据所述启动控制信号,控制所述放电模块工作在放电状态,以控制所述目标电容电压降低到小于第二电压阈值;其中,所述第一电压阈值大于或者等于所述第二电压阈值。
上述方案中,所述放电模块包括相互串联的功率开关管和耗电器件;
所述目标电容电压大于或者等于第一电压阈值,生成启动控制信号,包括:
所述目标电容电压大于或者等于所述第一电压阈值,根据所述目标电容电压所在的电压范围设置所述放电模块的开关模组的占空比,生成所述启动控制信号;
所述根据所述启动控制信号,控制所述放电模块工作在放电状态,包括:
根据所述启动控制信号,控制所述功率开关管处于闭合状态。
上述方案中,所述目标电容为所述三相电源变换电路中未接半母线负载的第一电容或第二电容;
所述目标电容为第一电容时,所述第一电容阈值根据所述第一电容的耐压值,或者全母线电压上限值设定;
所述目标电容为第二电容时,所述第一电容阈值根据所述第二电容的耐压值,或者全母线电压上限值设定。
上述方案中,所述三相电源变换电路还包括全母线负载,所述正负直流输出端并联所述全母线负载;
所述方法还包括:
所述全母线负载开启,所述第一半母线负载关闭时,控制所述放电回路处于关闭状态,或者控制所述放电回路处于低功率工作状态。
第四方面,提供了一种三相电源变换电路的控制装置,包括:处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
其中,所述处理器配置为运行所述计算机程序时,执行前述方法的步骤。
第五方面,提供了一种计算机存储介质,其上存储有计算机程序,其 中,该计算机程序被处理器执行时实现前述方法的步骤。
本申请实施例中提供了一种三相电源变换电路、家电设备、控制方法及装置,包括:三相电源、电源整流模块、第一电容、第二电容、第一半母线负载、放电模块和控制器;其中,电源整流模块的三相交流输入端连接三相电源,正负直流输出端并联相互串联的第一电容和第二电容;第一电容的两端并联第一半母线负载,放电模块包括以下至少一个:第二电容两端并联的第二放电模块,正负直流输出端并联的第三放电模块;放电模块,用于在第一电容和/或第二电容的电压大于或者等于第一电压阈值时控制放电模块工作在放电状态,以控制第一电容和/或第二电容的电压降低到小于第二电压阈值。这样,通过为未接负载的第二电容配置放电模块,能够在第二电容电压抬升时进行放电操作,降低第二电容电压,避免半母线负载单独运行时出现过压问题,保证半母线负载的安全运行。
附图说明
图1为本申请实施例中三相电源变换电路的第一拓扑图;
图2为本申请实施例中三相电源变换电路的第二拓扑图;
图3为本申请实施例中三相电源变换电路的第三拓扑图;
图4为本申请实施例中三相电源变换电路的第四拓扑图;
图5为本申请实施例中三相电源变换电路的第五拓扑图;
图6为本申请实施例中三相电源变换电路的第六拓扑图;
图7为本申请实施例中放电模块的第一拓扑图;
图8为本申请实施例中放电模块的第二拓扑图;
图9为本申请实施例中放电模块的第三拓扑图;
图10为本申请实施例中三相电源变换电路的第七拓扑图;
图11为本申请实施例中三相电源变换电路的第八拓扑图;
图12为本申请实施例中三相电源变换电路的控制方法的第一流程示意 图;
图13为本申请实施例中三相电源变换电路的控制方法的第二流程示意图;
图14为本申请实施例中三相电源变换电路的控制装置的组成结构示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
图1为本申请实施例中三相电源变换电路的第一拓扑图,如图1所示,三相电源变换电路,包括:三相电源10、电源整流模块11、第一电容12、第二电容13、第一半母线负载14和放电模块;其中,
所述电源整流模块11的三相交流输入端连接所述三相电源10,正负直流输出端并联相互串联的所述第一电容12和所述第二电容13;
所述第一电容12的两端并联所述第一半母线负载14;
所述放电模块包括以下至少一个:所述第二电容两端并联的第二放电模块151,所述正负直流输出端并联的第三放电模块152;
所述放电模块,用于在所述第一电容12和/或所述第二电容13的电压大于电压阈值时控制所述放电模块工作在放电状态,以控制所述第一电容12和/或所述第二电容13的电压降低到小于电压阈值;
其中,所述第一电压阈值大于或者等于所述第二电压阈值。
在图1这一实施例中,三相电源10三相交流源分别通过电感器件L1、L2和L3连接至整流模块11的三相交流输入端。
在图1这一实施例中,所述电源整流模块11包括:三相整流桥和双向开关组件,
所述三相整流桥包括相互并联的第一桥臂、第二桥臂和第三桥臂;所述双向开关组件包括第一双向开关、第二双向开关和第三双向开关,所述第一双向开关的一端连接所述第一桥臂的中点,所述第二双向开关的一端连接所述第二桥臂的中点,所述第三双向开关的一端连接所述第三桥臂的中点;
所述第一双向开关的另一端、所述第二双向开关的另一端、所述第三双向开关的另一端均连接于所述第一电容和所述第二电容之间的公共端。通过控制双向开关组件中每路双向开关的通断,实现电感的充电和放电操作。
其中,第一桥臂包括第一二极管D1和第二二极管D2,第二桥臂包括第三二极管D3和第四二极管D4,第三桥臂包括第五二极管D5和第六二极管D6。
双向开关组件中的第一双向开关、第二双向开关和第三双向开关,均可以包括两个反向串联的功率开关管,并且两个功率开关管均反向并联有二极管。示例性地,第一双向开关包括第一IGBT模块T1和第二IGBT模块T2,第二双向开关包括第三IGBT模块T3和第四IGBT模块T4,第三双向开关包括第五IGBT模块T5和第六IGBT模块T6。
正负直流输出端具体包括正母线端和负母线端,正母线端依次通过第一电容C1和第二电容C2连接至负母线端。
需要说明的是,本申请实施例中的全母线,是指在采用两级电解电容串联的高压直流母线滤波电路中,两级电解电容串联的正负母线(图1中P点和N点之间),半母线,是指在采用两级电容串联的高压直流母线滤波电路中,两级电容串联的中点(图1中O点)与正母线(图1中P点)之间为上半母线,两级电容串联的中点到负母线(图1中N点)之间为下半母线,上半母线和下半母线均为半母线。示例性地,第一电容C1和第二电容 C2串联的中点与正母线端之间为上半母线,第一电容C1和第二电容C2串联的中点与负母线端之间为下半母线。
需要说明的是,图1中第一电容C1为上母线电容,第一半母线负载作为上母线负载,第二电容C2为下母线电容,但图1并不是用来限定本申请电容的连接位置,本申请实施例中第一电容C1也可以连接下母线作为下母线电容,第二电容C2也可以连接上母线作为上母线电容,即母线端依次通过第二电容C2和第一电容C1连接至负母线端。
在一些实施例中,在第一电容两端并联有第一半母线负载时,放电模块可以按照以下先后顺序选择设置:(1)未接半母线负载的第二电容13两端并联第二放电模块151;(2)在所述正负直流输出端并联的第三放电模块152(如图2所示);(3)在未接半母线负载的第二电容13两端并联第二放电模块151,并且在所述正负直流输出端并联的第三放电模块152(如图2所示)。
在第一半母线负载14单独运行时,第二电容不可避免存在缓慢电压抬升,其电压抬升的极限为不控整流时的全母线电压值(380V有效值输入的情况下,该值为537V,大于现有常用电解电容最大允许电压450V)。因此,1)对于全母线负载不工作或发生故障无法工作时,第一半母线负载不能长期运行;2)全母线负载的突然关闭或急速变化时,第一电容电压难以及时控制,可能导致第二电容出现过压现象甚至失效。因此,通过增加放电模块,能够在第二电容电压抬升时,进行放电操作,从而将第二电容电压降低至安全电压范围,避免过压现象,且不受全母线负载的影响。
在一些实施例中,所述放电模块还包括所述第一电容两端并联的第一放电模块153。也就是说,放电模块可以包括:第一放电模块153、第二放电模块151和第三放电模块152中的至少两个。
如图4所示,在一些实施例中,三相电源变换电路还包括第二半母线 负载16,所述第二电容13的两端并联所述第二半母线负载16。
当三相电源变换电路同时包含第一半母线负载14和第二半母线负载16时,放电模块可以按照以下先后顺序选择设置:(1)所述放电模块包括所述第一电容12两端并联的第一放电模块153和第二电容13两端并联的第二放电模块151,如图4所示。(2)放电模块包括第二放电模块151,用于同时控制第一电容电压和第二电容电压位于安全电压范围。(3)放电模块包括:第一放电模块153和第三放电模块152;(4)放电模块包括:第二放电模块151和第三放电模块152。
需要说明的是,当三相电源变换电路同时包含第一半母线负载和第二半母线负载时,第(3)种和第(4)种的选择优先级相同。
在一些实施例中,所述三相电源变换电路还包括全母线负载17,所述正负直流输出端并联所述全母线负载17。如图5所示。
在一些实施例中,第一电容C1也可以连接下母线作为下母线电容,第二电容C2也可以连接上母线作为上母线电容,即母线端依次通过第二电容C2和第一电容C1连接至负母线端。如图6所示,所述第一半母线负载14并联在第一电容12的两端,作为下母线负载。且图1至图5中第一电容和第二电容的位置都可以对调,即第一电容C1为下母线电容,第二电容C2为上母线电容。应当理解采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。
示例性地,上述三相电源变换电路应用于空调器,半母线负载可以为直流风机,通过独立的一路相电压整流后供电,全母线负载可以为直流压缩机,接在高压直流母线电压上。在一实施例中,直流风机为空调器的下母线电容的负载。
在一些实施例中,所述放电模块包括相互串联的功率开关管和耗电器件(如图7所示);通过控制功率开关管的通断来控制耗电器件工作,耗电 器件工作时便是放电模块处于放电状态。
实际应用中,耗电器件可以为空调器中任意一个或多个耗电的器件,当包含多个耗电器件时,多个耗电器件串联或者并联。
示例性地,所述功率开关管包括金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)、绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、三极管、晶闸管中的一项;所述耗电器件包括电阻、电机、压缩机中的至少一项。如图8所示,耗电器件为电阻。如图9所示,耗电器件为电机或压缩机。
图7至图9中,1端和2端为放电模块的两端,3为功率开关管的控制端。
如图10所示,本申请三相电源变换电路还包括:控制器18,
所述控制器18与所述功率开关管的控制端相连,用于在所述第一电容的电压和/或所述第二电容的电压大于电压阈值时,调整所述功率开关管的占空比,控制所述功率开关管处于闭合状态,使得所述耗电器件工作。
图10中风机负载取电于下母线电容C2,放电模块取电于上母线电容C1,压缩机负载取电于全母线电容。当C1电压抬升到C1的最大耐压值(即C1对应的第一电压阈值)之上时,放电模块处于放电状态,从而拉低C1的电压。
图10中全母线负载包括功率开关管(即智能功率模块(Intelligent Power Module,IPM1)和压缩机,第一半母线负载包括功率开关管(即IPM2)和风机。控制器还与IPM1和IPM2的控制端相连,通过控制IPM1和IPM2来控制风机和压缩器启动和关闭。
实际应用中,控制器18还与IGBT模块T1至T6的控制端相连,用于根据上母线电容电压值U1、下母线电容电压U2、相电流Iabc、相电压Uabc、全母线参考电压Udcref、下母线电容参考电压U1ref(或上母线电容参考电 压U2ref)计算每相功率开关管(比如IGBT模块)的占空比,进而控制三相开关的动作。
如图11所示,风机负载取电于下母线电容C2,压缩机负载取电于全母线电容,也可以没有压缩机负载,放电模块(即第三放电模块)取电于全母线电容。当C1电压抬升到C1的最大耐压值(即C1对应的第一电压阈值)之上时,放电模块处于放电状态,从而拉低C1的电压。
在一些实施例中,还可以预先设置至少一种电压范围和占空比的映射关系,根据预设的至少一种电压范围,确定所述目标电容电压所在的目标电压范围;根据映射关系,确定所述目标电压范围对应的目标占空比。如此,可以根据电容电压的抬升程度灵活设置占空比,电压抬升较高对应较高占空比,电压抬升较低对应较低占空比,从而提高放电模块的控制精度。
采用上述三相电源变换电路,通过为未接负载的第二电容配置放电模块,能够在第二电容电压抬升时进行放电操作,降低第二电容电压,避免半母线负载单独运行时出现过压问题,保证半母线负载的安全运行。
本申请实施例还提供了一种家电设备,包括:上述任一种三相电源变换电路。所述家电设备可以为空调器、冰箱等设备。
基于上述任一项三相电源变换电路,本申请实施例还提供了一种三相电源变换电路的控制方法,该三相电源变换电路为本申请实施例中任一种三相电源变换电路,如图12所示,该方法包括:
步骤1201:获取目标电容电压;其中,目标电容为所述三相电源变换电路中的第一电容或/和第二电容;
步骤1202:所述目标电容电压大于或者等于第一电压阈值,生成启动控制信号;
这里,目标电容电压小于第一电压阈值,则继续监控目标电容电压。
在一些实施例中,所述目标电容为所述三相电源变换电路中未接半母 线负载的第一电容或第二电容;所述目标电容为第一电容时,所述第一电容阈值根据所述第一电容的耐压值,或者全母线电压上限值设定;所述目标电容为第二电容时,所述第一电容阈值根据所述第二电容的耐压值,或者全母线电压上限值设定。
需要说明的是,本申请实施例中的全母线,是指在采用两级电解电容串联的高压直流母线滤波电路中,两级电解电容串联的正负母线(图1中P点和N点之间)包括在采用两级电容串联的高压直流母线滤波电路中,两级电容串联的中点(图1中O点)与正母线(图1中P点)之间为上半母线,两级电容串联的中点到负母线(图1中N点)之间为下半母线,上半母线和下半母线均为半母线。示例性地,第一电容C1和第二电容C2串联的中点与正母线端之间为上半母线,第一电容C1和第二电容C2串联的中点与负母线端之间为下半母线。
需要说明的是,图1中第一电容C1为上母线电容,第一半母线负载作为上母线负载,第二电容C2为下母线电容,但图1并不是用来限定本申请电容的连接位置,本申请实施例中第一电容C1也可以连接下母线作为下母线电容,第二电容C2也可以连接上母线作为上母线电容,即母线端依次通过第二电容C2和第一电容C1连接至负母线端。
也就是说,在对目标电容电压进行监控时,可以比较上母线电容参考电压U1ref和上母线电容实际电压U1,判断上母线电容是否过压,比较下母线电容参考电压U2ref、下母线电容实际电压U2,,判断下母线电容是否过压,从而控制放电模块。
当下半母线具有半母线负载(可以理解为第二电容并联第二半母线负载)时,可以比较上母线电容实际电压U1、上母线电容电压上下限值(或目标全母线电压上下限值),从而控制放电模块。
同样当上半母线具有半母线负载(可以理解为第一电容并联第一半母 线负载)时,可以比较下母线电容实际电压U2、下母线电容电压上下限值(或目标全母线电压上下限值),从而控制放电模块。
这里,启动控制信号用于控制放电模块处于放电状态。
在一些实施例中,所述放电模块包括相互串联的功率开关管和耗电器件;
所述目标电容电压大于或者等于第一电压阈值,生成启动控制信号,包括:
所述目标电容电压大于或者等于所述第一电压阈值,根据所述目标电容电压所在的电压范围设置所述放电模块的开关模组的占空比,生成所述启动控制信号;
所述根据所述启动控制信号,控制所述放电模块工作在放电状态,包括:
根据所述启动控制信号,控制所述功率开关管处于闭合状态。
也就是说,通过未接半母线负载的半母线电容的参考电压和实际值计算放电模块的开关占空比,进而控制放电回路的开关通断。
示例性地,在未接半母线负载的半母线电容电压超过参考电压上限值时,通过未接半母线负载的半母线电容的参考电压和实际值计算放电模块的开关占空比,进而控制放电回路的开关通断,直到该电容电压小于参考电压下限值。
或者,在未接半母线负载的半母线电容电压超过参考电压上限值时,通过预设的占空比,控制放电回路的开关通断。
步骤1203:根据所述启动控制信号,控制所述放电模块工作在放电状态,以控制所述目标电容电压降低到小于第二电压阈值;其中,所述第一电压阈值大于或者等于所述第二电压阈值。
也就是说,放电模块用于对半母线电容进行过压保护。
在一些实施例中,所述三相电源变换电路还包括全母线负载,所述正负直流输出端并联所述全母线负载;所述方法还包括:所述全母线负载开启,所述第一半母线负载关闭时,控制所述放电回路处于关闭状态,或者控制所述放电回路处于低功率工作状态。
这里,在全母线负载开启,半母线负载关闭时,放电回路关闭或调节其功率至最低状态,以减小系统的功耗。
实际应用中,全母线负载开启、半母线负载开启、全母线负载功率与半母线负载的比值低于值K1的情况下,或者,全母线负载关闭、半母线负载工作的情况下,均可以根据上母线电容实际电压U1(或下母线电容实际电压U2)计算放电回路的功率开关的占空比。
在一些实施例中,在全母线负载确定开启且功率足够的情况下,可用全母线负载替代放电模块,对未接半母线负载的半母线电容电压进行控制。
所述根据所述目标电容电压所在的电压范围设置所述放电模块的开关模组的占空比,包括:
根据预设的至少一种电压范围,确定所述目标电容电压所在的目标电压范围;
根据电压范围和占空比的映射关系,确定所述目标电压范围对应的目标占空比。
在一些实施例中,上述任一种控制方法具体可以应用在所述第一半母线负载开启,所述全母线负载开启,且所述全母线负载与所述第一半母线负载的比值低于预设比值时,或者所述第一半母线负载开启,所述全母线负载关闭。
这里,步骤1201至步骤1203的执行主体可以为控制器的处理器。
下面以图2和图3这种三相电源变换电路为例对控制方法进行举例说明,此时上母线电容接负载,下母线电容未接负载,在上母线负载运行时, 下母线电容出现电压抬升,如图13所示,该控制方法具体可以包括:
步骤1301:获取下母线电容电压;
步骤1302:下母线电容电压是否大于或者等于第一电压阈值,如果是,执行步骤1303;如果否,返回步骤1301;
这里,第一电压阈值可以根据上母线电容的耐压值确定,或者根据全母线电压值的最大电压值确定,或者预设默认值。
步骤1303:生成启动控制信号,并控制所述放电模块工作在放电状态。
需要说明的是,上母线电容未接负载,下母线电容接负载,在下母线负载运行时,下母线电容出现电压抬升。步骤1301替换为获取上母线电容电压,步骤1302替换为判断上母线电容电压是否大于或者等于第一电压阈值,此时的第一电压阈值可以根据上母线电容的耐压值确定,或者根据全母线电压值的最大电压值确定,或者预设默认值。
需要说明的是,放电模块还可以替换为正负直流输出端并联的第三放电模块,第三放电模块可以对未接负载电容进行过压保护,也可以对另一端接负载电容进行过压保护。
为实现本申请实施例的方法,基于同一发明构思本申请实施例还提供了一种三相电源变换电路的控制装置,该控制装置用于控制本申请实施例中任一种三相电源变换电路实现电源电压变换,如图14所示,该控制装置包括:处理器1401和配置为存储能够在处理器上运行的计算机程序的存储器1402;
其中,处理器1401配置为运行计算机程序时,执行前述实施例中的方法步骤。
当然,实际应用时,如图14所示,该装置中的各个组件通过总线系统1403耦合在一起。可理解,总线系统1403用于实现这些组件之间的连接通信。总线系统1403除包括数据总线之外,还包括电源总线、控制总线和状 态信号总线。但是为了清楚说明起见,在图14中将各种总线都标为总线系统1403。
在实际应用中,上述处理器可以为特定用途集成电路(ASIC,Application Specific Integrated Circuit)、数字信号处理装置(DSPD,Digital Signal Processing Device)、可编程逻辑装置(PLD,Programmable Logic Device)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本申请实施例不作具体限定。
上述存储器可以是易失性存储器(volatile memory),例如随机存取存储器(RAM,Random-Access Memory);或者非易失性存储器(non-volatile memory),例如只读存储器(ROM,Read-Only Memory),快闪存储器(flash memory),硬盘(HDD,Hard Disk Drive)或固态硬盘(SSD,Solid-State Drive);或者上述种类的存储器的组合,并向处理器提供指令和数据。
该装置可以应用于具备上述三相电源变换电路的家电设备,比如,空调器、冰箱等设备。
在示例性实施例中,本申请实施例还提供了一种计算机可读存储介质,例如包括计算机程序的存储器,计算机程序可由家电设备的处理器执行,以完成前述三相电源变换电路的控制方法的步骤。
应当理解,在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。本申请中表述“具有”、“可以具有”、“包括”和“包含”、或者“可以包括”和“可以包含”在本文中 可以用于指示存在对应的特征(例如,诸如数值、功能、操作或组件等元素),但不排除附加特征的存在。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,不必用于描述特定的顺序或先后次序。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和设备,可以通过其它的方式实现。以上所描述的实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。
工业实用性
本申请公开了一种三相电源变换电路、家电设备、控制方法及装置,包括:电源整流模块的三相交流输入端连接三相电源,正负直流输出端并联相互串联的第一电容和第二电容;第一电容的两端并联第一半母线负载,放电模块包括以下至少一个:第二电容两端并联的第二放电模块,正负直流输出端并联的第三放电模块;放电模块,用于工作在放电状态,以控制第一电容和/或第二电容的电压降低到小于第二电压阈值。这样,通过为未接负载的第二电容配置放电模块,能够在第二电容电压抬升时进行放电操作,降低第二电容电压,避免半母线负载单独运行时出现过压问题,保证半母线负载的安全运行。

Claims (14)

  1. 一种三相电源变换电路,其中,包括:三相电源、电源整流模块、第一电容、第二电容、第一半母线负载和放电模块;其中,
    所述电源整流模块的三相交流输入端连接所述三相电源,正负直流输出端并联相互串联的所述第一电容和所述第二电容;
    所述第一电容的两端并联所述第一半母线负载,
    所述放电模块包括以下至少一个:所述第二电容两端并联的第二放电模块,所述正负直流输出端并联的第三放电模块;
    所述放电模块,用于在所述第一电容和/或所述第二电容的电压大于或者等于第一电压阈值时控制所述放电模块工作在放电状态,以控制所述第一电容和/或所述第二电容的电压降低到小于第二电压阈值;
    其中,所述第一电压阈值大于或者等于所述第二电压阈值。
  2. 根据权利要求1所述的三相电源变换电路,其中,所述放电模块还包括所述第一电容两端并联的第一放电模块。
  3. 根据权利要求1所述的三相电源变换电路,其中,所述三相电源变换电路还包括第二半母线负载,所述第二电容的两端并联所述第二半母线负载;
    所述放电模块包括:所述第一电容两端并联的第一放电模块、所述第二电容两端并联的第二放电模块和所述正负直流输出端并联的第三放电模块中的任意两个;
    或者,所述放电模块包括:所述正负直流输出端并联的第三放电模块。
  4. 根据权利要求1所述的三相电源变换电路,其中,所述三相电源变换电路还包括全母线负载,所述正负直流输出端并联所述全母线负载。
  5. 根据权利要求1所述的三相电源变换电路,其中,所述电源整流模块包括:三相整流桥和双向开关组件,
    所述三相整流桥包括相互并联的第一桥臂、第二桥臂和第三桥臂;所述双向开关组件包括第一双向开关、第二双向开关和第三双向开关,所述第一双向开关的一端连接所述第一桥臂的中点,所述第二双向开关的一端连接所述第二桥臂的中点,所述第三双向开关的一端连接所述第三桥臂的中点;
    所述第一双向开关的另一端、所述第二双向开关的另一端、所述第三双向开关的另一端均连接于所述第一电容和所述第二电容之间的公共端。
  6. 根据权利要求1-5任一项所述的三相电源变换电路,其中,所述三相电源变换电路还包括:控制器,所述放电模块包括相互串联的功率开关管和耗电器件;
    所述控制器与所述功率开关管的控制端相连,用于在所述第一电容的电压和/或所述第二电容的电压大于电压阈值时,调整所述功率开关管的占空比,控制所述功率开关管处于闭合状态,使得所述耗电器件工作。
  7. 根据权利要求6所述的三相电源变换电路,其中,
    所述功率开关管包括金属-氧化物半导体场效应晶体管、绝缘栅双极型晶体管、三极管、晶闸管中的一项;
    所述耗电器件包括电阻、电机、压缩机中的至少一项。
  8. 一种家电设备,其中,所述家电设备包括如权利要求1-7任一项所述的三相电源变换电路。
  9. 一种三相电源变换电路的控制方法,其中,所述三相电源变换电路包括如权利要求1-7任一项的所述的三相电源变换电路;所述方法包括:
    获取目标电容电压;其中,目标电容为所述三相电源变换电路中的第一电容或/和第二电容,
    所述目标电容电压大于或者等于第一电压阈值,生成启动控制信号;
    根据所述启动控制信号,控制所述放电模块工作在放电状态,以控制 所述目标电容电压降低到小于第二电压阈值;其中,所述第一电压阈值大于或者等于所述第二电压阈值。
  10. 根据权利要求9所述的方法,其中,所述放电模块包括相互串联的功率开关管和耗电器件;
    所述目标电容电压大于或者等于第一电压阈值,生成启动控制信号,包括:
    所述目标电容电压大于或者等于所述第一电压阈值,根据所述目标电容电压所在的电压范围设置所述放电模块的开关模组的占空比,生成所述启动控制信号;
    所述根据所述启动控制信号,控制所述放电模块工作在放电状态,包括:
    根据所述启动控制信号,控制所述功率开关管处于闭合状态。
  11. 根据权利要求9所述的方法,其中,所述目标电容为所述三相电源变换电路中未接半母线负载的第一电容或第二电容;
    所述目标电容为第一电容时,所述第一电容阈值根据所述第一电容的耐压值,或者全母线电压上限值设定;
    所述目标电容为第二电容时,所述第一电容阈值根据所述第二电容的耐压值,或者全母线电压上限值设定。
  12. 根据权利要求9所述的方法,其中,所述三相电源变换电路还包括全母线负载,所述正负直流输出端并联所述全母线负载;
    所述方法还包括:
    所述全母线负载开启,所述第一半母线负载关闭时,控制所述放电回路处于关闭状态,或者控制所述放电回路处于低功率工作状态。
  13. 一种三相电源变换电路的控制装置,其中,所述控制装置包括:处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器配置为运行所述计算机程序时,执行权利要求9至12任一项所述方法的步骤。
  14. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现权利要求9至12任一项所述的方法的步骤。
PCT/CN2022/082564 2021-04-26 2022-03-23 一种三相电源变换电路、家电设备、控制方法及装置 WO2022227954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110456018.2 2021-04-26
CN202110456018.2A CN115250075A (zh) 2021-04-26 2021-04-26 一种三相电源变换电路、家电设备、控制方法及装置

Publications (1)

Publication Number Publication Date
WO2022227954A1 true WO2022227954A1 (zh) 2022-11-03

Family

ID=83697536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082564 WO2022227954A1 (zh) 2021-04-26 2022-03-23 一种三相电源变换电路、家电设备、控制方法及装置

Country Status (2)

Country Link
CN (1) CN115250075A (zh)
WO (1) WO2022227954A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117997101A (zh) * 2022-10-31 2024-05-07 广东美的制冷设备有限公司 电子设备及其控制方法、装置和存储介质
CN115932514A (zh) * 2022-12-27 2023-04-07 江苏吉泰科电气有限责任公司 一种绝缘检测方法及电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021824A (ja) * 2014-07-15 2016-02-04 ダイキン工業株式会社 電源装置
CN107342698A (zh) * 2017-08-24 2017-11-10 浙江大学 一种带平衡桥臂的三相四线零电压开关整流器电路及其调制方法
CN110612658A (zh) * 2017-01-12 2019-12-24 雷诺股份公司 双向蓄电电池组的充电器
CN212305171U (zh) * 2020-09-30 2021-01-05 重庆美的制冷设备有限公司 电子电路和空调器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021824A (ja) * 2014-07-15 2016-02-04 ダイキン工業株式会社 電源装置
CN110612658A (zh) * 2017-01-12 2019-12-24 雷诺股份公司 双向蓄电电池组的充电器
CN107342698A (zh) * 2017-08-24 2017-11-10 浙江大学 一种带平衡桥臂的三相四线零电压开关整流器电路及其调制方法
CN212305171U (zh) * 2020-09-30 2021-01-05 重庆美的制冷设备有限公司 电子电路和空调器

Also Published As

Publication number Publication date
CN115250075A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2022227954A1 (zh) 一种三相电源变换电路、家电设备、控制方法及装置
CN109494973B (zh) Pfc控制方法、装置、pfc电路及电机驱动电路
AU2012236587B2 (en) System and method for off-line UPS
CN110311544B (zh) 过流保护方法、压缩机控制装置和空调器
CN109687795B (zh) Pfc电路控制方法、装置、pfc电路及电机驱动电路
CN110567094B (zh) 一种空调系统断电保护的控制方法、装置及空调器
JP2023052955A (ja) 運転制御方法、回路、家電機器及びコンピュータ読み取り可能な記憶媒体
CN105553250A (zh) 一种功率因数校正电路
WO2022027892A1 (zh) 驱动装置、控制方法、电器设备和存储介质
CN210007614U (zh) 驱动控制电路和家电设备
CN112019029B (zh) 运行控制方法、电路、家电设备及计算机可读存储介质
CN110044030B (zh) 集成式空调控制器和空调器
WO2022228016A1 (zh) 电子设备的控制方法、装置、电子设备、计算机存储介质和程序
JP6146316B2 (ja) 空気調和機
KR20140096627A (ko) 전력변환장치 및 이를 포함하는 공기조화기
CN209930126U (zh) 驱动控制电路和家电设备
WO2021209036A1 (zh) 电机驱动控制电路、驱动方法、线路板及空调器
CN110137913B (zh) 一种变频设备pfc控制方法、控制装置及变频设备
CN204063282U (zh) 空调系统
JP2020096527A (ja) 直流電源装置および空気調和機
JP2016213978A (ja) 電源回路及びそれを備える空気調和機
CN107070252B (zh) 一种变频回路及变频空调机
CN218733926U (zh) 一种降压驱动电源、双电机驱动电路及电子设备
CN113708612B (zh) 变频空调室外控制器的功率器件散热方法
CN203571947U (zh) 一种基于z源变换器的变频空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794430

Country of ref document: EP

Kind code of ref document: A1