WO2022027892A1 - 驱动装置、控制方法、电器设备和存储介质 - Google Patents

驱动装置、控制方法、电器设备和存储介质 Download PDF

Info

Publication number
WO2022027892A1
WO2022027892A1 PCT/CN2020/135031 CN2020135031W WO2022027892A1 WO 2022027892 A1 WO2022027892 A1 WO 2022027892A1 CN 2020135031 W CN2020135031 W CN 2020135031W WO 2022027892 A1 WO2022027892 A1 WO 2022027892A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
switch tube
control circuit
inverter
voltage
Prior art date
Application number
PCT/CN2020/135031
Other languages
English (en)
French (fr)
Inventor
龚黎明
赵小安
秦向南
付俊永
Original Assignee
美的威灵电机技术(上海)有限公司
淮安威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的威灵电机技术(上海)有限公司, 淮安威灵电机制造有限公司 filed Critical 美的威灵电机技术(上海)有限公司
Publication of WO2022027892A1 publication Critical patent/WO2022027892A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]

Definitions

  • the present application relates to the technical field of electrical equipment, and in particular, to a driving device for electrical equipment, a control method, an electrical equipment, and a computer-readable storage medium.
  • Motors and their drive controllers are widely used in the field of home appliances, especially in some products where multiple motors work at the same time, such as air-conditioning compressor motor drive control and indoor and outdoor fan motor drive control, drum drive motor of the drum washing and drying machine Drive control and drying fan drive control, according to national standards and IEC standards, these products need to meet the power factor index requirements.
  • the usual practice is to install a reactor in the motor controller or use a power factor correction (PFC) circuit to meet the power factor requirements, which is undoubtedly a burden on the motor controller, and will increase the system complexity and system cost at the same time.
  • PFC power factor correction
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the present application is to provide a drive device for electrical equipment.
  • a second aspect of the present application is to propose a control method.
  • a third aspect of the present application is to provide an electrical device.
  • a fourth aspect of the present application is to propose a computer-readable storage medium.
  • a drive device for electrical equipment includes: a first motor connected to a power supply; and a first drive control circuit, where the first drive control circuit is used to obtain a bus voltage The signal and the AC voltage signal of the first motor, the first drive control circuit can control the working mode of the first motor, and/or control the input power factor of the drive device.
  • the drive device further includes: a second motor; a second drive control circuit, the second drive control circuit is used to obtain the bus voltage signal and the AC voltage signal of the second motor, and the second drive control circuit can Control the second motor to work.
  • the first drive control circuit or the second drive control circuit includes an inverter
  • the inverter includes at least a pair of half-bridge circuits, and the upper arms of the half-bridge circuits are connected to the drive The high-voltage busbar of the device, the lower arm of the half-bridge circuit is connected to the low-voltage busbar of the drive device
  • each pair of half-bridge circuits includes: two switch tubes connected in series, and the common end between the two switch tubes is connected to the first motor or The second motor; the controller, the output end of the controller is connected to the control end of the switch tube, and the controller is used to control the switch tube to be turned on or off.
  • the driving device further includes: a rectifier circuit, which is connected between the power supply and the first motor, and the rectifier circuit is used to convert the AC signal into a pulsating DC signal.
  • the drive device further includes: a bus capacitor connected to the output end of the rectifier circuit and located between the first drive control circuit and the second drive control circuit, and the bus capacitor is used to receive the pulsating DC The signal is converted into a DC signal; the first voltage sampling circuit is connected to the output end of the bus capacitor and is electrically connected to the controller, and the first voltage sampling circuit is used to detect the bus voltage of the driving device; the second voltage sampling circuit is connected to Between the power supply and the rectifier circuit, the second voltage sampling circuit is used to detect the AC voltage of the driving device.
  • the first drive control circuit controls the working mode of the first motor, which specifically includes: acquiring a phase current command value of the first motor; determining a phase voltage command of the first motor according to the phase current command value Determine the effective vector duty cycle of the inverter according to the phase voltage command value; control the switch tube of the inverter to be turned on or off according to the effective vector duty cycle, so that the first motor drives the corresponding load of the driving device.
  • the first drive control circuit controls the working mode of the first motor, which specifically includes: controlling the switch tube of the lower bridge arm of the inverter to be turned off, so that the first motor suppresses the high-voltage bus in the high-voltage bus. current harmonics.
  • the first drive control circuit controls the power factor of the input power supply, which specifically includes: controlling the switch tube of the upper bridge arm of the inverter to turn off; acquiring the bus voltage command value of the drive device, the current bus voltage value and AC voltage phase; determine the difference between the bus voltage command value and the current value of the bus voltage; determine the zero sequence current command value of the first drive control circuit according to the difference value and the AC voltage phase; determine the inverter according to the zero sequence current command value
  • the lower bridge zero vector duty cycle of the inverter is controlled; according to the lower bridge zero vector duty cycle, the switch tube of the lower bridge arm of the inverter is controlled to be turned on or off.
  • the first drive control circuit or the second drive control circuit further includes: a current sampling circuit, which is connected between the switch tube of the lower bridge arm and the low-voltage bus, and the current sampling circuit is used to detect Inverter current.
  • the rectifier circuit includes: a first switch tube, a second switch tube, a third switch tube and a fourth switch tube, and the common terminal between the first switch tube and the second switch tube is connected The first input line of the AC signal, the common terminal between the third switch tube and the fourth switch tube is connected to the second input line of the AC signal, and the common terminal between the first switch tube and the fourth switch tube It is connected to the first motor, and the common end between the second switch tube and the third switch tube is connected to the low-voltage bus.
  • a control method is proposed, which is applicable to the driving device of the electrical equipment proposed in the first aspect.
  • the control method includes: acquiring a control instruction of the first drive control circuit; and controlling the first motor according to the control instruction operating mode and/or control the input power factor of the drive.
  • the step of controlling the working mode of the first motor according to the control instruction specifically includes: obtaining the phase current command value of the first motor according to the pulse modulation instruction of the first drive control circuit;
  • the phase current command value determines the phase voltage command value of the first motor;
  • the effective vector duty cycle of the inverter is determined according to the phase voltage command value;
  • the switching tube of the inverter is controlled to be turned on or off according to the effective vector duty cycle to
  • the first motor drives the load corresponding to the driving device.
  • the step of controlling the working mode of the first motor according to the control instruction specifically includes: controlling the switch tube of the lower bridge arm of the inverter to turn off according to the filtering instruction of the first drive control circuit , so that the first motor suppresses the current harmonics in the high-voltage bus.
  • controlling the power factor of the input power supply according to the control instruction specifically includes: controlling the switch tube of the upper bridge arm of the inverter to turn off according to the adjustment instruction of the first drive control circuit; obtaining the drive device The bus voltage command value, the bus voltage current value and the AC voltage phase according to The zero-sequence current command value determines the lower-bridge zero-vector duty cycle of the inverter; the switch tube of the lower-bridge arm of the inverter is controlled to be turned on or off according to the lower-bridge zero-vector duty cycle.
  • an electrical device comprising: a load; and a drive device of the electrical device proposed in the first aspect, the drive device is connected to the load, and the drive device is used to drive the load to run.
  • the electrical equipment includes at least one of the following: an air conditioner, a refrigerator, a washing machine, a clothes dryer, a fan, and the like.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, executes the steps of the driving apparatus for an electrical device proposed in the first aspect.
  • the first motor is connected between the power supply and the first drive control circuit
  • the first drive control circuit is used to obtain the AC voltage signal of the first motor
  • the first drive control circuit is also connected to the high voltage of the drive device. Between the busbar and the low-voltage busbar, it is used to obtain the busbar voltage signal.
  • the first drive control circuit has multiple conduction modes, and under different conduction modes, the first drive control circuit can control the working mode of the first motor and/or control the power factor of the input power supply of the drive device.
  • the traditional reactor or power factor correction (PFC) circuit is replaced by the first motor and the first drive control circuit connected to it, so as to control the power factor of the input power supply of the drive device, reduce the idle power, and then control the bus voltage of the drive device, Ensure the voltage stability of the busbar, maximize the performance of the motor, and the first drive control circuit can control the working mode of the first motor as needed while controlling the power factor of the input power supply, thereby achieving circuit simplification, cost reduction, and equipment improvement. purpose of reliability.
  • PFC power factor correction
  • FIG. 1 shows a circuit diagram of a driving device of an electrical device according to an embodiment of the present application
  • FIG. 2 shows a circuit diagram of a driving device of an electrical device according to another embodiment of the present application
  • FIG. 3 shows a circuit diagram of a driving device of an electrical device according to another embodiment of the present application
  • FIG. 4 shows a circuit diagram of a driving device of an electrical device according to another embodiment of the present application.
  • FIG. 5 shows a circuit diagram of a driving device of an electrical device according to another embodiment of the present application.
  • FIG. 6 shows a circuit diagram of a driving device of an electrical device according to another embodiment of the present application.
  • FIG. 7 shows a schematic flowchart of a control method according to an embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of a control method according to an embodiment of the present application.
  • FIG. 9 shows a schematic flowchart of a control method according to an embodiment of the present application.
  • FIG. 10 shows a schematic flowchart of a control method according to an embodiment of the present application.
  • label name label name 110 first motor 150 Rectifier circuit 120 first drive control circuit 152 first switch tube 122 first controller 154 second switch tube 124 first inverter 156 The third switch tube 126 The first current sampling circuit 158 Fourth switch tube 130 second motor 160 Bus capacitance 140 second drive control circuit 172 The first voltage sampling circuit 142 second controller 174 The second voltage sampling circuit 144 second inverter 200 power supply 146 second current sampling circuit
  • the terms “connected”, “fixed” and the like should be understood in a broad sense, for example, “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • “fixed” may be a fixed connection, a detachable connection, or an integrated; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two elements or an interaction relationship between the two elements, unless otherwise explicitly defined.
  • the following describes a driving apparatus, a control method, an electrical device, and a computer-readable storage medium of an electrical device according to some embodiments of the present application with reference to FIGS. 1 to 10 .
  • a driving apparatus for an electrical device includes: a first motor 110 and a first driving control circuit 120 .
  • the first motor 110 is connected to the power source 200 .
  • the first drive control circuit 120 is connected to the first motor 110 , and the first drive control circuit 120 is used to obtain the bus voltage signal and the AC voltage signal of the first motor 110 .
  • the first drive control circuit 120 has multiple conduction modes, and under different conduction modes, the first drive control circuit 120 can control the working mode of the first motor 110 and/or control the input power factor of the drive device.
  • the traditional reactor or power factor correction (PFC) circuit is replaced by the first motor 110 and the first drive control circuit 120 connected thereto, so as to control the power factor of the input power supply of the drive device and reduce the useless power.
  • the bus voltage of the drive device is controlled to ensure the stability of the bus voltage and maximize the performance of the motor.
  • the first drive control circuit 120 can control the working mode of the first motor 110 as required while controlling the power factor of the input power supply.
  • the drive structure of the drive itself is used to adjust the power factor, so as to achieve the purpose of simplifying the circuit, reducing the cost and improving the reliability of the equipment.
  • a driving apparatus for electrical equipment including: a first motor 110 , a second motor 130 , a first driving control circuit 120 and a second driving control circuit circuit 140.
  • the first motor 110 is connected to the power source 200 .
  • the first drive control circuit 120 is connected to the first motor 110 , and the first drive control circuit 120 is used to obtain the bus voltage signal and the AC voltage signal of the first motor 110 .
  • the first driving control circuit 120 has multiple conduction modes, and the first driving control circuit 120 can control the working mode of the first motor 110 and/or control the input power factor of the driving device under different conduction modes.
  • the second drive control circuit 140 is connected to the second motor 130 .
  • the second driving control circuit 140 is used to obtain the bus voltage signal and the AC voltage signal of the second motor 130 , and the second driving control circuit 140 can control the operation of the second motor 130 .
  • the driving device includes multiple sets of driving structures, so that the driving device can simultaneously drive different loads through the first motor 110 and the second motor 130 to realize various functions of the electrical equipment.
  • the second drive control circuit 140 acts as a subsequent stage of the first drive control circuit 120 , even if the first motor 110 is not running, the input power factor can be adjusted by the first drive control circuit 120 .
  • the load and loss of the power grid are reduced, thereby realizing the function of voltage regulation of the busbar, and ensuring the operation reliability of the second motor 130 .
  • the second motor 130 includes at least one motor, and the number of the second drive control circuits 140 is the same as that of the second motor 130 .
  • the windings of the first motor 110 and the second motor 130 may be single-phase or multi-phase.
  • the first motor 110 and the second motor 130 are three-phase, and the three-phase stator windings of the motors (each with a difference of 120 Degree of electrical angle) When alternating current is applied, a rotating magnetic field will be generated, which will cut the winding, thereby generating an induced current in the winding.
  • the first motor 110 is two-phase
  • the second motor 130 is three-phase.
  • the first motor 110 is three-phase
  • the second motor 130 is two-phase.
  • the second motor 130 includes two sets of motors.
  • the first drive control circuit 120 or the second drive control circuit 140 includes: an inverter and controller.
  • the inverter and the controller of the first drive control circuit 120 are denoted as the first inverter 124 and the first controller 122 respectively, and the inverter and the controller of the second drive control circuit 140 are denoted as the second inverter Inverter 144 and second controller 142 .
  • the inverter includes at least a pair of half-bridge circuits, each pair of half-bridge circuits includes an upper bridge arm and a lower bridge arm, the upper bridge arm is connected to the high-voltage bus of the drive device, and the lower bridge arm is connected to the low-voltage bus of the drive device. busbar.
  • Each pair of half-bridge circuits includes: two switch tubes connected in series, that is, one switch tube is arranged on the upper bridge arm and the lower bridge arm, and the common terminal (the midpoint of the upper and lower bridge arms) between the two switch tubes is connected to the first switch tube.
  • the motor 110 or the second motor 130 is connected.
  • the control end of the switch tube is connected with the output end of the controller, so as to control the switch tube to be turned on or off through the controller.
  • the control strategy of the first motor 110 or the second motor 130 is completed by the controller, which outputs a control signal to control the switch tube to be turned on or off by collecting motor operating characteristics or user instructions. Therefore, the operating mode of the first motor 110 is controlled by adjusting the conduction mode of the inverter switch tube, and/or the power factor of the input power supply of the drive device is controlled, thereby replacing the traditional reactor or power factor correction circuit. While saving energy, it ensures the voltage regulation of the busbar, realizes the purpose of simplifying the circuit, reducing costs, and improving the reliability of electrical equipment.
  • the first motor 110 and the second motor 130 include windings, the center point of the windings of the first motor 110 (the intersection of the multi-phase windings) is connected to the output end of the power supply 200 , and the phase ends of the windings of the first motor 110 (multi-phase windings)
  • the end points of each phase winding of the phase winding are respectively connected to the midpoints of the upper and lower bridge arms of the inverter of the first motor 110
  • the phase end points of the windings of the second motor 130 are respectively connected to the upper and lower bridge arms of the inverter of the second motor 130.
  • the midpoint of the lower bridge arm is connected.
  • the first drive control circuit 120 controls the working mode of the first motor 110, and specifically includes: generating a phase current command value (non-zero sequence current) of the motor according to the magnitude of the current required for the first motor 110 to operate. Calculate the effective voltage vector action time of the pulse width modulation (PWM) in one carrier cycle according to the phase current command value, that is, the effective voltage vector duty cycle.
  • PWM pulse width modulation
  • the required phase voltage is provided for the first motor 110, so that the first motor 110 drives the load corresponding to the driving device to work, and ensures the stability of the electrical equipment.
  • the second drive control circuit 140 can use the same control logic to control the operation of the second motor 130 .
  • the step of controlling the working mode of the first motor 110 according to the control instruction specifically includes: controlling the switch tube of the lower bridge arm of the inverter to turn off according to the filtering instruction of the first drive control circuit 120 .
  • the switch tube of the upper bridge arm can be controlled to be turned on, so that the first motor 110 is connected to the high-voltage bus, that is, the connection ends of the high-voltage bus of the first motor 110 and the second drive control circuit 140 are connected in series through the high-voltage bus.
  • the switch tube that controls the upper bridge arm is not turned on, and the reverse freewheeling diode of the switch tube is connected in series with the high-voltage bus connection end of the first motor 110 and the second drive control circuit 140, and then the static winding of the first motor 110 is used to replace the common mode inductance. Therefore, the current harmonics flowing into the second drive control circuit 140 through the high-voltage bus are eliminated, so that the second drive control circuit 140 has strong anti-interference ability, and the circuit structure is optimized while ensuring that the driven load can work normally. Reduce component settings and effectively reduce costs.
  • the switch tubes of the lower bridge arms in at least a pair of half-bridge circuits of the inverter can be controlled to be turned off, so that the windings of at least one phase in the multi-phase motor are used as common mode inductance to reduce current harmonics.
  • controlling the power factor of the input power supply according to the control instruction specifically includes: controlling the switch tube of the upper bridge arm of the inverter to turn off according to the adjustment instruction of the first drive control circuit 120; obtaining the busbar voltage command value of the drive device, the busbar voltage current value and AC voltage phase; determine the difference between the bus voltage command value and the bus voltage current value; determine the zero-sequence current command value of the first drive control circuit 120 according to the difference and the AC voltage phase; according to the zero-sequence current command value Determine the lower bridge zero vector duty cycle of the inverter; control the switch tube of the lower bridge arm of the inverter to turn on or off according to the lower bridge zero vector duty cycle, so that the current of the lower bridge arm of the inverter tracks the zero sequence current command to control the input power factor and bus voltage.
  • the power factor correction circuit or the reactor is replaced by the drive structure of the drive device, and no additional structure for adjusting the power factor is required, thereby reducing circuit complexity and equipment cost.
  • a drive device for electrical equipment including: a first motor 110 , a second motor 130 , a first drive control circuit 120 , and a second drive control circuit Circuit 140 , rectifier circuit 150 , bus capacitor 160 , first voltage sampling circuit 172 and second voltage sampling circuit 174 .
  • the input end of the rectifier circuit 150 is connected to the power source 200 , and the output end of the rectifier circuit 150 is connected to the first motor 110 .
  • One end of the bus capacitor 160 is connected to the upper arm of the first drive control circuit 120 and the upper arm of the second drive control circuit 140, and the other end of the bus capacitor 160 is connected to the lower arm of the first drive control circuit 120 and the second drive
  • the lower arms of the control circuit 140 are connected, and the bus capacitor 160 is located between the first driving control circuit 120 and the second driving control circuit 140 .
  • the first voltage sampling circuit 172 is connected to the output end of the bus capacitor 160 and is electrically connected to the controller.
  • the second voltage sampling circuit 174 is connected between the power source 200 and the rectifier circuit 150 .
  • the first drive control circuit 120 or the second drive control circuit 140 further includes a current sampling circuit, the current sampling circuit is connected between the switch tube of the lower bridge arm of the inverter and the low-voltage bus, wherein the current sampling of the first drive control circuit 120
  • the circuit is denoted as the first current sampling circuit 126
  • the current sampling circuit of the second driving control circuit 140 is denoted as the second current sampling circuit 146 .
  • the AC signal is converted into a pulsating DC signal by the rectifier circuit 150 to meet the power supply requirement of the load.
  • the pulsating DC signal output by the rectifier circuit 150 is converted into a DC signal through the bus capacitor 160 to meet the power supply demand of the load, and at the same time, the surge signal in the bus voltage signal is absorbed, thereby reducing the electromagnetic interference and noise flowing to the second drive control circuit 140.
  • the DC bus voltage of the driving device is detected by the first voltage sampling circuit 172 and sent to the controller, so that the controller can adjust the power factor of the input power supply according to the current value of the bus voltage, realize the bus voltage regulation function, and ensure the second motor 130 Operational reliability.
  • the AC voltage of the driving device is detected by the second voltage sampling circuit 174, so as to adjust the conduction frequency of the switch tube of the rectifier circuit 150, and a current sampling circuit is provided between the switch tube of the lower bridge arm of the inverter and the low-voltage bus bar To detect the current of each lower arm of the inverter, so as to adjust the conduction frequency of the switch tube according to the detected current, to ensure the stability of the drive control circuit, and to ensure that the related components are not damaged.
  • the rectifier circuit 150 may be replaced by at least one discrete power diode.
  • the bus capacitor 160 can be an electrolytic capacitor, and the capacitance value ranges from 10uF to 2000uF.
  • the switch tube includes at least one of the following: a field effect transistor (MOSFET), an insulated gate bipolar transistor (IGBT) and a diode.
  • MOSFET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the gate of the field effect transistor is connected to the command output end of the controller, and a reverse freewheeling diode is connected between the source and the drain of the field effect transistor.
  • the base of the insulated gate bipolar transistor is connected to the output end of the controller, and a reverse freewheeling diode is connected between the emitter and the collector of the insulated gate bipolar transistor.
  • the field effect transistor may be a depletion type field effect transistor or an enhancement type field effect transistor, or a SiC transistor or a GaN transistor.
  • the rectifier circuit 150 includes: a first switch tube 152 , a second switch tube 154 , and a third switch tube 156 and the fourth switch tube 158 .
  • the common terminal between the first switch tube 152 and the second switch tube 154 is connected to the first input line of the AC signal
  • the common terminal between the third switch tube 156 and the fourth switch tube 158 is connected to the AC signal
  • the second input line of the signal and the common terminal between the first switch tube 152 and the fourth switch tube 158 are connected to the first motor 110
  • the common terminal between the second switch tube 154 and the third switch tube 156 is connected to the first motor 110. low voltage bus.
  • the first switch 152 and the second switch 154 are connected in series, and the common terminal between the first switch 152 and the second switch 154 is connected to the first input line of the AC signal.
  • the third The switch tube 156 and the fourth switch tube 158 are connected in series, the common terminal between the third switch tube 156 and the fourth switch tube 158 is connected to the second input line of the AC signal, and the middle of the first switch tube 152 and the fourth switch tube 158
  • the point is connected to the center point of the winding of the first motor 110, and the center point of the second switch tube 154 and the third switch tube 156 is connected to the low-voltage bus, through the complementary action of the first switch tube 152 and the second switch tube 154, and the The three switching transistors 156 and the fourth switching transistor 158 perform complementary actions to realize the rectification processing of the AC signal, so as to realize the current control of the working state of the circuit, and the reliability is high.
  • the rectifier circuit 150 further includes: a filter component (not shown in the figure), connected to the common terminal between the first switch tube 152 and the fourth switch tube 158 and the connection between the second switch tube 154 and the third switch tube 156 Between the common terminals, the filter component is used to filter out the electromagnetic interference signal generated by the rectification process. Therefore, the noise and electromagnetic interference caused by the switching device in the circuit when it is in a high-frequency operation state are effectively suppressed, so that the driving device has a strong anti-interference ability, and the driving device is protected from the electromagnetic interference of the interference source to a greater extent.
  • the load driven by the drive device can work normally.
  • the filter component includes one capacitive element, or a plurality of capacitive elements connected in series and/or in parallel, the capacitive element is an X capacitor or a film capacitor, and the capacitance value of the capacitive element ranges from 0.01uF to 10uF.
  • a control method is proposed, which is applicable to the driving device of the electrical equipment proposed by the embodiment of the first aspect, and the method includes:
  • Step 302 obtaining a control instruction of the first drive control circuit
  • Step 304 according to the control instruction, control the working mode of the first motor and/or control the input power factor of the driving device.
  • the conduction mode of the first drive control circuit of the drive device can be adjusted through the control command, thereby controlling the working mode of the first motor and/or controlling the power factor of the input power supply of the drive device. Therefore, the traditional reactor or power factor correction (PFC) circuit is replaced by the first motor and the first drive control circuit connected to it, so as to achieve the purpose of simplifying the circuit, reducing the cost and improving the reliability of the equipment.
  • PFC power factor correction
  • a control method is proposed, which is applicable to the driving device of the electrical equipment provided by the embodiment of the first aspect, and the method includes:
  • Step 402 obtaining a control instruction of the first drive control circuit
  • Step 404 obtaining the phase current command value of the first motor according to the pulse modulation command of the first drive control circuit
  • Step 406 Determine the phase voltage command value of the first motor according to the phase current command value
  • Step 408 Determine the effective vector duty cycle of the inverter according to the phase voltage command value
  • Step 410 control the switch tube of the inverter to be turned on or off according to the effective vector duty cycle.
  • the controller of the first drive control circuit when the controller of the first drive control circuit receives the pulse modulation command of the first motor, it generates a phase current command value (non-zero sequence current) of the motor according to the magnitude of the current required for the first motor to operate.
  • the effective voltage vector action time of pulse width modulation (PWM) in one carrier cycle is calculated by the phase current command value, that is, the effective voltage vector duty cycle.
  • the switch tubes of the upper and lower bridge arms of the inverter are controlled to make the non-zero sequence current in the inverter track the current command value. Then, the required phase voltage is provided for the first motor, so that the load corresponding to the driving device of the first motor is driven to work, so as to ensure the working stability of the electrical equipment.
  • the lower bridge zero vector duty cycle (000 vector action time) of the inverter PWM can be determined according to the current input power factor of the drive device and the bus voltage. And subtract the effective voltage vector duty cycle and the lower bridge zero vector duty cycle from one carrier cycle to obtain the upper bridge zero vector duty cycle (111 vector action time) of the inverter PWM.
  • a control method is proposed, which is applicable to the driving device of the electrical equipment proposed in the embodiment of the first aspect, and the method includes:
  • Step 502 obtaining a control instruction of the first drive control circuit
  • Step 504 according to the filtering instruction of the first drive control circuit, control the switch tube of the lower bridge arm of the inverter to turn off.
  • the controller of the first drive control circuit when the controller of the first drive control circuit receives the filtering command of the first motor, it indicates that the first motor is not running, and controls the switch tube of the lower bridge arm of the inverter to turn off, and can also control the upper bridge at the same time.
  • the switch tube of the arm is turned on or off, so that the first motor is connected to the high-voltage bus, and the common mode inductance is replaced by the static winding of the first motor. Therefore, the current harmonics flowing into the second drive control circuit through the high-voltage busbar are eliminated, so that the second drive control circuit has strong anti-interference ability, while ensuring that the driven load can work normally, the circuit structure is optimized and the number of components is reduced. Set up, effectively reduce costs.
  • the switch tubes of the lower bridge arms in the at least one pair of half-bridge circuits of the inverter are controlled to be turned off, so that the multi-phase motor is controlled.
  • the winding of at least one phase acts as a common mode inductance to reduce current harmonics.
  • a control method is proposed, which is applicable to the driving device of the electrical equipment provided by the embodiment of the first aspect, and the method includes:
  • Step 602 obtaining a control instruction of the first drive control circuit
  • Step 604 according to the adjustment instruction of the first drive control circuit, control the switch tube of the upper bridge arm of the inverter to be turned off;
  • Step 606 acquiring the command value of the bus voltage, the current value of the bus voltage and the AC voltage phase of the drive device;
  • Step 608 determining the difference between the command value of the bus voltage and the current value of the bus voltage
  • Step 610 Determine the zero-sequence current command value of the first drive control circuit according to the difference value and the AC voltage phase;
  • Step 612 Determine the duty cycle of the lower bridge zero vector of the inverter according to the zero sequence current command value
  • Step 614 control the switch tube of the lower bridge arm of the inverter to be turned on or off according to the zero vector duty cycle of the lower bridge.
  • the controller of the first drive control circuit when the controller of the first drive control circuit receives the adjustment instruction from the first drive control circuit, it controls the switch tube of the upper bridge arm of the inverter to turn off, and obtains the bus voltage command value of the drive device, the busbar Voltage present value and AC voltage phase. According to the difference between the bus voltage command value and the current bus voltage value and the AC voltage phase, the zero sequence current command value of the first drive control circuit is calculated, and then the lower bridge zero vector duty cycle of the inverter is determined. And according to the zero vector duty cycle of the lower bridge, the switch tube action of the lower bridge arm of the inverter is controlled, so that the current of the lower bridge arm of the inverter tracks the zero sequence current command, so as to control the power factor of the input power supply and the bus voltage. It is realized that the power factor correction circuit or the reactor is replaced by the drive structure of the drive device, and no additional structure for adjusting the power factor is required, thereby reducing circuit complexity and equipment cost.
  • a motor drive control device including: a first motor 110 , a second motor 130 , a first drive control circuit 120 , a second drive Control circuit 140, AC voltage detection circuit (second voltage sampling circuit 174), rectifier circuit 150, bus capacitor 160, bus voltage detection circuit (first voltage sampling circuit 172).
  • the first drive control circuit 120 includes a first control unit (first controller 122), a first inverter circuit (first inverter 124), a first current sampling circuit 126, a first control unit and a first inverter Each switch tube of the inverter circuit is connected, the number of bridge arms of the first inverter circuit is the same as the number of phases of the first motor 110 , and the first current sampling circuit 126 can detect the current of each lower bridge arm of the first inverter circuit.
  • the second drive control circuit 140 includes a second control unit (second controller 142 ), a second inverter circuit (second inverter 144 ), a second current sampling circuit 146 , a second control unit and a second inverter circuit
  • second controller 142 The second control unit 142
  • second inverter 144 The second inverter circuit 140
  • second current sampling circuit 146 The second control circuit 140
  • Each switch tube of the second inverter circuit is connected to each other, and the number of bridge arms of the second inverter circuit is the same as the number of bridge arms of the second motor 130 .
  • the windings of the first motor 110 may be two-phase, three-phase or more phases, and the center point of the first motor 110 is connected to each phase winding of the first motor 110 .
  • the AC voltage detection circuit is located at the front end of the rectifier circuit 150 , and the bus voltage signal is located at the rear end of the bus capacitor 160 .
  • the center point of the first motor 110 is connected to the output end of the rectifier circuit 150, the phase end points of the first motor 110 are respectively connected to the midpoints of the upper and lower bridge arms of the first inverter circuit, and the upper bridge arm of the first inverter circuit is connected to the busbar
  • One end of the capacitor 160 is connected to the upper bridge arm of the second inverter circuit, the lower bridge arm of the first inverter circuit is connected to the other end of the bus capacitor 160 and the lower bridge arm of the second inverter circuit, and the phase terminals of the second motor 130 are respectively It is connected with the midpoint of the upper and lower bridge arms of the second inverter circuit.
  • the first drive control circuit 120 is connected to the first motor 110, and is used to control the normal operation of the first motor 110, while controlling the power factor of the input power supply and controlling the bus voltage, or the first motor 110 is not running, and only controls the power factor of the input power supply and controls bus voltage.
  • the second drive control circuit 140 is connected to the second motor 130 for controlling the second motor 130 to operate normally.
  • the first motor 110 and the first driving control circuit 120 are only used to control the input power factor and the bus voltage.
  • the first control unit controls the upper bridge arm switch tube of the first inverter circuit to be in an off state.
  • the first control unit generates the current command value of the lower bridge arm of the first inverter circuit according to the difference between the bus voltage command value and the current bus voltage value and the AC voltage phase.
  • the first control unit controls the duty ratio of the switch tube of the lower bridge arm of the first inverter circuit, so that the current of the lower bridge arm of the first inverter circuit tracks the current command, thereby controlling the power factor of the input power supply and the bus voltage.
  • the first control unit controls the operation of the motor through 7-segment SVPWM (Space Vector Pulse Modulation).
  • the effective voltage vector of SVPWM is calculated by the motor control module.
  • the first control unit generates a motor phase current command (non-zero sequence current) according to the size of the current required by the motor operation, and controls the effective voltage vector action time of the SVPWM of the first inverter circuit within one carrier cycle, so that the first inverter circuit
  • the non-zero sequence current tracking command is used to control the normal operation of the motor.
  • the 000 vector of SVPWM is calculated by the power factor and bus voltage control module.
  • the 111 vector of SVPWM is obtained by subtracting the effective voltage vector time and the 000 vector action time from the entire voltage vector time.
  • one of the motors and the control circuit connected to it can be used to control the power factor of the input power supply 200 and control the bus voltage, instead of the traditional reactor or power factor correction (PFC) ) circuit, and control the motor to run normally or not at the same time, so as to achieve the purpose of simplifying the circuit and reducing the cost.
  • PFC power factor correction
  • an electrical device, a load, and a drive device for the electrical device proposed in the first aspect are provided.
  • the drive is connected to the load. Therefore, the electrical equipment has all the beneficial effects of the drive device of the electrical equipment proposed in the first aspect.
  • the electrical equipment includes at least one of the following: an air conditioner, a refrigerator, a fan, a washing machine, a clothes dryer, and the like.
  • a computer-readable storage medium which stores a computer program, and when the computer program is executed by a processor, executes the steps of the control method of the second aspect embodiment. Therefore, the computer-readable storage medium has all the beneficial effects of the control method of the embodiment of the second aspect.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

一种驱动装置、控制方法、电器设备和存储介质,其中,驱动装置包括第一电机(110),与电源(200)连接;第一驱动控制电路(120),第一驱动控制电路(120)用于获取母线电压信号和第一电机(110)的交流电压信号,第一驱动控制电路(120)能够控制第一电机(110)的工作模式,和/或控制驱动装置的输入电源功率因数。该方法通过第一电机(110)和与之相连的第一驱动控制电路(120),控制输入电源功率因数,并且控制母线电压,替代传统的电抗器或者功率因数校正电路,达到电路精简的、降低成本的目的。

Description

驱动装置、控制方法、电器设备和存储介质
本申请要求于2020年08月04日提交中国国家知识产权局、申请号为“202010770814.9”、发明名称为“驱动装置、控制方法、电器设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电器设备技术领域,具体而言,涉及一种电器设备的驱动装置、一种控制方法、一种电器设备和一种计算机可读存储介质。
背景技术
电机及其驱动控制器广泛应用于家电领域,特别是有些产品里有多个电机同时工作,比如空调压缩机电机驱动控制和室内、室外风机的电机驱动控制,滚筒洗干一体机的滚筒驱动电机驱动控制和烘干风机驱动控制,根据国标以及IEC的标准,这些产品都需满足功率因数的指标要求。通常做法是在电机控制器里装入电抗器或者通过功率因数校正(PFC)电路来满足功率因数要求,这对电机控制器来说无疑是个负担,同时会增加系统复杂度,提高系统成本。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面在于提出了一种电器设备的驱动装置。
本申请的第二方面在于提出了一种控制方法。
本申请的第三方面在于提出了一种电器设备。
本申请的第四方面在于提出了一种计算机可读存储介质。
有鉴于此,根据本申请的第一方面,提出了一种电器设备的驱动装置,驱动装置包括:第一电机,与电源连接;第一驱动控制电路,第一驱动控制电路用于获取母线电压信号和第一电机的交流电压信号,第一驱动控制电路能够控制第一电机的工作模式,和/或控制驱动装置的输入电源功率因 数。
在上述技术方案中,进一步地,驱动装置还包括:第二电机;第二驱动控制电路,第二驱动控制电路用于获取母线电压信号和第二电机的交流电压信号,第二驱动控制电路能够控制第二电机工作。
在上述任一技术方案中,进一步地,第一驱动控制电路或第二驱动控制电路包括:逆变器,逆变器包括至少一对半桥电路,半桥电路的上桥臂接入于驱动装置的高压母线,半桥电路的下桥臂接入于驱动装置的低压母线,每对半桥电路包括:串联的两个开关管,两个开关管之间的公共端连接于第一电机或第二电机;控制器,控制器的输出端连接于开关管的控制端,控制器用于控制开关管导通或断开。
在上述任一技术方案中,进一步地,驱动装置还包括:整流电路,连接于电源和第一电机之间,整流电路用于将交流信号转换为脉动直流信号。
在上述任一技术方案中,进一步地,驱动装置还包括:母线电容,连接于整流电路的输出端,且位于第一驱动控制电路和第二驱动控制电路之间,母线电容用于接收脉动直流信号并转换为直流信号;第一电压采样电路,连接于母线电容的输出端,且与控制器电连接,第一电压采样电路用于检测驱动装置的母线电压;第二电压采样电路,连接于电源和整流电路之间,第二电压采样电路用于检测驱动装置的交流电压。
在上述任一技术方案中,进一步地,第一驱动控制电路控制第一电机的工作模式,具体包括:获取第一电机的相电流指令值;根据相电流指令值确定第一电机的相电压指令值;根据相电压指令值确定逆变器的有效矢量占空比;根据有效矢量占空比控制逆变器的开关管导通或关断,以使第一电机驱动驱动装置对应的负载。
在上述任一技术方案中,进一步地,第一驱动控制电路控制第一电机的工作模式,具体包括:控制逆变器下桥臂的开关管关断,以使第一电机抑制高压母线中的电流谐波。
在上述任一技术方案中,进一步地,第一驱动控制电路控制输入电源功率因数,具体包括:控制逆变器上桥臂的开关管关断;获取驱动装置的母线电压指令值、母线电压当前值和交流电压相位;确定母线电压指令值 和母线电压当前值的差值;根据差值和交流电压相位,确定第一驱动控制电路的零序电流指令值;根据零序电流指令值确定逆变器的下桥零矢量占空比;根据下桥零矢量占空比控制逆变器下桥臂的开关管导通或关断。
在上述任一技术方案中,进一步地,第一驱动控制电路或第二驱动控制电路,还包括:电流采样电路,连接于下桥臂的开关管和低压母线之间,电流采样电路用于检测逆变器的电流。
在上述任一技术方案中,进一步地,整流电路包括:第一开关管、第二开关管、第三开关管和第四开关管,第一开关管和第二开关管之间的公共端接入于交流信号的第一输入线路,第三开关管和第四开关管之间的公共端接入于交流信号的第二输入线路,以及第一开关管与第四开关管之间的公共端连接于第一电机,第二开关管与第三开关管之间的公共端接入于低压母线。
根据本申请的第二方面,提出了一种控制方法,适用于第一方面提出的电器设备的驱动装置,控制方法包括:获取第一驱动控制电路的控制指令;根据控制指令,控制第一电机的工作模式和/或控制驱动装置的输入电源功率因数。
在上述任一技术方案中,进一步地,根据控制指令,控制第一电机的工作模式的步骤,具体包括:根据第一驱动控制电路的脉冲调制指令,获取第一电机的相电流指令值;根据相电流指令值确定第一电机的相电压指令值;根据相电压指令值确定逆变器的有效矢量占空比;根据有效矢量占空比控制逆变器的开关管导通或关断,以使第一电机驱动驱动装置对应的负载。
在上述任一技术方案中,进一步地,根据控制指令,控制第一电机的工作模式的步骤,具体包括:根据第一驱动控制电路的滤波指令,控制逆变器下桥臂的开关管关断,以使第一电机抑制高压母线中的电流谐波。
在上述任一技术方案中,进一步地,根据控制指令,控制输入电源功率因数,具体包括:根据第一驱动控制电路的调节指令,控制逆变器上桥臂的开关管关断;获取驱动装置的母线电压指令值、母线电压当前值和交流电压相位;确定母线电压指令值和母线电压当前值的差值;根据差值和 交流电压相位,确定第一驱动控制电路零序电流指令值;根据零序电流指令值确定逆变器的下桥零矢量占空比;根据下桥零矢量占空比控制逆变器下桥臂的开关管导通或关断。
根据本申请的第三方面,提出了一种电器设备,包括:负载;及第一方面提出的电器设备的驱动装置,驱动装置与负载连接,驱动装置用于驱动负载运行。
进一步地,电器设备包括以下至少一种:空调器、电冰箱、洗衣机、干衣机、风扇等。
根据本申请的第四方面,提出了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时执行如第一方面提出的电器设备的驱动装置的步骤。
本申请技术方案中,第一电机连接在电源和第一驱动控制电路之间,第一驱动控制电路用于获取第一电机的交流电压信号,第一驱动控制电路还接入于驱动装置的高压母线和低压母线之间,用于获取母线电压信号。具体地,第一驱动控制电路具有多种导通模式,不同的导通模式下第一驱动控制电路能够控制第一电机的工作模式,和/或控制驱动装置的输入电源功率因数。通过第一电机和与之相连的第一驱动控制电路,替代传统的电抗器或者功率因数校正(PFC)电路,以控制驱动装置的输入电源功率因数,降低无用功,进而控制驱动装置的母线电压,保证母线电压稳压性,最大限度发挥电机性能,而且第一驱动控制电路能够在控制输入电源功率因数的同时,按需控制该第一电机的工作模式,进而达到电路精简、降低成本、提高设备可靠性的目的。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1示出了本申请一个实施例的电器设备的驱动装置的电路图;
图2示出了本申请又一个实施例的电器设备的驱动装置的电路图;
图3示出了本申请又一个实施例的电器设备的驱动装置的电路图;
图4示出了本申请又一个实施例的电器设备的驱动装置的电路图;
图5示出了本申请又一个实施例的电器设备的驱动装置的电路图;
图6示出了本申请又一个实施例的电器设备的驱动装置的电路图;
图7示出了本申请一个实施例的控制方法的流程示意图;
图8示出了本申请一个实施例的控制方法的流程示意图;
图9示出了本申请一个实施例的控制方法的流程示意图;
图10示出了本申请一个实施例的控制方法的流程示意图。
附图标号说明:
标号 名称 标号 名称
110 第一电机 150 整流电路
120 第一驱动控制电路 152 第一开关管
122 第一控制器 154 第二开关管
124 第一逆变器 156 第三开关管
126 第一电流采样电路 158 第四开关管
130 第二电机 160 母线电容
140 第二驱动控制电路 172 第一电压采样电路
142 第二控制器 174 第二电压采样电路
144 第二逆变器 200 电源
146 第二电流采样电路    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员 在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,本申请各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
下面参照图1至图10描述根据本申请一些实施例的电器设备的驱动装置、控制方法、电器设备及计算机可读存储介质。
实施例1:
如图1至图6所示,根据本申请第一方面的实施例,提出了一种电器设备的驱动装置,该驱动装置包括:第一电机110和第一驱动控制电路120。
详细地,第一电机110与电源200连接。第一驱动控制电路120与第一电机110连接,第一驱动控制电路120用于获取母线电压信号和第一电机110的交流电压信号。第一驱动控制电路120具有多种导通模式,不同 的导通模式下第一驱动控制电路120能够控制第一电机110的工作模式,和/或控制驱动装置的输入电源功率因数。
在该实施例中,通过第一电机110和与之相连的第一驱动控制电路120,替代传统的电抗器或者功率因数校正(PFC)电路,以控制驱动装置的输入电源功率因数,降低无用功。进而控制驱动装置的母线电压,保证母线电压稳压性,最大限度发挥电机性能。而且第一驱动控制电路120能够在控制输入电源功率因数的同时,还能够按需控制该第一电机110的工作模式。利用驱动本身的驱动结构进行功率因数的调节,达到电路精简、降低成本、提高设备可靠性的目的。
实施例2:
如图1至图6所示,根据本申请的一个实施例,提出了一种电器设备的驱动装置,包括:第一电机110、第二电机130、第一驱动控制电路120和第二驱动控制电路140。
详细地,第一电机110与电源200连接。第一驱动控制电路120与第一电机110连接,第一驱动控制电路120用于获取母线电压信号和第一电机110的交流电压信号。第一驱动控制电路120具有多种导通模式,不同的导通模式下第一驱动控制电路120能够控制第一电机110的工作模式,和/或控制驱动装置的输入电源功率因数。第二驱动控制电路140与第二电机130连接。第二驱动控制电路140用于获取母线电压信号和第二电机130的交流电压信号,第二驱动控制电路140能够控制第二电机130工作。
在该实施例中,驱动装置包括多组驱动结构,使得驱动装置能够通过第一电机110和第二电机130同时驱动不同的负载,实现电器设备多种不同的功能。具体地,第二驱动控制电路140作为第一驱动控制电路120的后级,即使第一电机110不运行,也能够通过第一驱动控制电路120调节输入电源功率因数。在节能的同时,减小电网负荷和损耗,进而实现母线电压稳压功能,保证第二电机130的运行可靠性。
需要说明的是,第二电机130包括至少一个电机,同样的第二驱动控制电路140的设置数量于第二电机130的电机数量相同。第一电机110和第二电机130的绕组可以是单相也可以是多相,如图1所示,第一电机110 和第二电机130为三相,电机的三相定子绕组(各相差120度电角度)通入交流电后,将产生一个旋转磁场,该旋转磁场切割绕组,从而在绕组中产生感应电流。如图3所示,第一电机110为两相,第二电机130为三相。如图4所示,第一电机110为三相,第二电机130为两相。如图5和图6所示,第二电机130包括两组电机。
实施例3:
如图1至图6所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:第一驱动控制电路120或第二驱动控制电路140包括:逆变器和控制器。其中,第一驱动控制电路120的逆变器和控制器分别记作第一逆变器124和第一控制器122,第二驱动控制电路140的逆变器和控制器分别记作第二逆变器144和第二控制器142。
详细地,逆变器包括至少一对半桥电路,每对半桥电路包括上桥臂和下桥臂,上桥臂接入于驱动装置的高压母线,下桥臂接入于驱动装置的低压母线。每对半桥电路包括:串联的两个开关管,也即上桥臂和下桥臂各设置一个开关管,两个开关管之间的公共端(上、下桥臂中点)与第一电机110或第二电机130连接。开关管的控制端与控制器的输出端连接,以通过控制器控制开关管导通或断开。
在该实施例中,第一电机110或第二电机130的控制策略由控制器完成,通过对电机运行特性或用户指令的采集,输出控制信号,以控制开关管导通或断开。从而通过调整逆变器开关管的导通模式来控制第一电机110的工作模式,和/或控制驱动装置的输入电源功率因数,进而替代传统的电抗器或者功率因数校正电路。在节能的同时,保证母线电压稳压性,实现电路精简、降低成本的目的,提高电器设备可靠性。
具体地,第一电机110和第二电机130包括绕组,第一电机110的绕组的中心点(多相绕组的交点)与电源200的输出端相连,第一电机110的绕组的相端点(多相绕组的每一相绕组的端点)分别与第一电机110的逆变器上、下桥臂中点相连,第二电机130的绕组的相端点分别与第二电机130的逆变器上、下桥臂中点相连。
进一步地,第一驱动控制电路120控制第一电机110的工作模式,具 体包括:根据第一电机110运行所需电流的大小生成电机的相电流指令值(非零序电流)。根据相电流指令值计算一个载波周期内脉冲宽度调制(PWM)的有效电压矢量作用时间,也即有效电压矢量占空比。以使逆变器中非零序电流跟踪电流指令值,进而为第一电机110提供所需的相电压,使第一电机110驱动驱动装置对应的负载工作,保证电器设备工作的稳定性。同样的,第二驱动控制电路140可采用相同的控制逻辑控制第二电机130运行。
进一步地,根据控制指令,控制第一电机110的工作模式的步骤,具体包括:根据第一驱动控制电路120的滤波指令,控制逆变器下桥臂的开关管关断。此时可以控制上桥臂的开关管导通,使得第一电机110接入高压母线,也即第一电机110与第二驱动控制电路140的高压母线连接端通过高压母线串联连接,当然也可以控制上桥臂的开关管不导通,通过开关管的反向续流二极管串联第一电机110与第二驱动控制电路140的高压母线连接端,进而通过第一电机110的静态绕组来代替共模电感。从而消除经高压母线流入第二驱动控制电路140的电流谐波,进而使第二驱动控制电路140具有较强的抗干扰能力,在确保了所驱动的负载能够正常工作的同时,优化电路结构,减少元件设置,有效降低成本。其中,当第一电机为多相电机时,可以控制逆变器的至少一对半桥电路中下桥臂的开关管关断,使得多相电机中至少一相的绕组作为共模电感来降低电流谐波。
进一步地,根据控制指令,控制输入电源功率因数,具体包括:根据第一驱动控制电路120的调节指令,控制逆变器上桥臂的开关管关断;获取驱动装置的母线电压指令值、母线电压当前值和交流电压相位;确定母线电压指令值和母线电压当前值的差值;根据差值和交流电压相位,确定第一驱动控制电路120的零序电流指令值;根据零序电流指令值确定逆变器的下桥零矢量占空比;根据下桥零矢量占空比控制逆变器下桥臂的开关管导通或关断,使逆变器下桥臂的电流跟踪零序电流指令,从而控制输入电源功率因数和母线电压。实现了通过驱动装置的驱动结构代替功率因数校正电路或电抗器,无需额外设置调节功率因数的结构,降低电路复杂度,降低设备成本。
实施例4:
如图1至图6所示,根据本申请的一个实施例,提出了一种电器设备的驱动装置,包括:第一电机110、第二电机130、第一驱动控制电路120、第二驱动控制电路140、整流电路150、母线电容160、第一电压采样电路172和第二电压采样电路174。
详细地,整流电路150的输入端连接于电源200,整流电路150的输出端连接于第一电机110。母线电容160的一端与第一驱动控制电路120的上桥臂和第二驱动控制电路140的上桥臂相连,母线电容160的另一端与第一驱动控制电路120的下桥臂和第二驱动控制电路140的下桥臂相连,且母线电容160位于第一驱动控制电路120和第二驱动控制电路140之间。第一电压采样电路172连接于母线电容160的输出端,且与控制器电连接。第二电压采样电路174连接于电源200和整流电路150之间。第一驱动控制电路120或第二驱动控制电路140还包括电流采样电路,电流采样电路连接于逆变器下桥臂的开关管和低压母线之间,其中,第一驱动控制电路120的电流采样电路记作第一电流采样电路126,第二驱动控制电路140的电流采样电路记作第二电流采样电路146。
在该实施例中,通过整流电路150将交流信号转换为脉动直流信号,以满足负载的供电需求。通过母线电容160将整流电路150输出的脉动直流信号转换为直流信号,以满足负载的供电需求,同时吸收母线电压信号中的浪涌信号,从而降低流向第二驱动控制电路140的电磁干扰和噪声。通过第一电压采样电路172检测出驱动装置的直流母线电压,并发送至控制器,以便于控制器根据母线电压当前值调节输入电源功率因数,实现母线电压稳压功能,保证第二电机130的运行可靠性。通过第二电压采样电路174检测出驱动装置的交流电压,以便于对整流电路150开关管的导通频率进行调整,通过在逆变器下桥臂的开关管和低压母线之间设置电流采样电路来检测逆变器的每一个下桥臂电流,以便于根据检测到的电流对开关管的导通频率进行调整,确保了驱动控制电路工作的稳定性,从而保证了相关元器件免于损坏。
具体地,整流电路150可以采用至少一个分立功率二极管来代替。母 线电容160可采用电解电容,容值取值范围为10uF~2000uF。
进一步地,开关管包括以下至少一种:场效应晶体管(MOSFET)、绝缘栅双极型晶体管(IGBT)和二极管中。其中,场效应晶体管的栅极连接至控制器的指令输出端,场效应晶体管的源极和漏极之间接入反向续流二极管。绝缘栅双极型晶体管的基极连接至控制器的输出端,绝缘栅双极型晶体管的发射极和集电极之间接入反向续流二极管。其中,场效应晶体管可以为耗尽型场效应晶体管或增强型场效应晶体管,也可以采用SiC晶体管或GaN晶体管。
实施例5:
如图2所示,根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地:整流电路150包括:第一开关管152、第二开关管154、第三开关管156和第四开关管158。
详细地,第一开关管152和第二开关管154之间的公共端接入于交流信号的第一输入线路,第三开关管156和第四开关管158之间的公共端接入于交流信号的第二输入线路,以及第一开关管152与第四开关管158之间的公共端连接于第一电机110,第二开关管154与第三开关管156之间的公共端接入于低压母线。
在该实施例中,第一开关管152和第二开关管154串联,且第一开关管152和第二开关管154间的公共端接入交流信号的第一输入线路,同样的,第三开关管156和第四开关管158串联,第三开关管156和第四开关管158之间的公共端接入交流信号的第二输入线路,第一开关管152与第四开关管158的中点连接于第一电机110的绕组中心点,第二开关管154与第三开关管156的中点接入于低压母线,通过第一开关管152与第二开关管154的互补动作,以及第三开关管156与第四开关管158为互补动作,实现交流信号的整流处理,以便于实现电路工作状态的电流控制,可靠性高。
进一步地,整流电路150还包括:滤波组件(图中未示出),接入第一开关管152与第四开关管158之间的公共端和第二开关管154与第三开关管156之间的公共端之间,滤波组件用于滤除整流过程产生的电磁干扰 信号。从而有效抑制了电路中开关器件在处于高频动作状态时造成的噪声和电磁干扰,使驱动装置具有较强的抗干扰能力,更大程度上地保护驱动装置不受干扰源的电磁干扰,确保了驱动装置所驱动的负载能够正常工作。
具体地,滤波组件包括一个电容元件,或多个串联和/或并联的电容元件,电容元件为X电容或薄膜电容,电容元件的容值范围为0.01uF~10uF。
实施例6:
如图7所示,根据本申请的第二方面的实施例,提出了一种控制方法,适用于第一方面的实施例提出的电器设备的驱动装置,该方法包括:
步骤302,获取第一驱动控制电路的控制指令;
步骤304,根据控制指令,控制第一电机的工作模式和/或控制驱动装置的输入电源功率因数。
在该实施例中,能够通过控制指令调整驱动装置的第一驱动控制电路的导通模式,进而控制第一电机的工作模式和/或控制驱动装置的输入电源功率因数。从而通过第一电机和与之相连的第一驱动控制电路,替代传统的电抗器或者功率因数校正(PFC)电路,达到电路精简、降低成本、提高设备可靠性的目的。
实施例7:
如图8所示,根据本申请的一个实施例,提出了一种控制方法,适用于第一方面的实施例提出的电器设备的驱动装置,该方法包括:
步骤402,获取第一驱动控制电路的控制指令;
步骤404,根据第一驱动控制电路的脉冲调制指令,获取第一电机的相电流指令值;
步骤406,根据相电流指令值确定第一电机的相电压指令值;
步骤408,根据相电压指令值确定逆变器的有效矢量占空比;
步骤410,根据有效矢量占空比控制逆变器的开关管导通或关断。
在该实施例中,第一驱动控制电路的控制器接收到第一电机的脉冲调制指令时,根据第一电机运行所需电流的大小生成电机的相电流指令值(非零序电流)。通过相电流指令值计算一个载波周期内脉冲宽度调制(PWM)的有效电压矢量作用时间,也即有效电压矢量占空比。并根据有效矢量占 空比控制逆变器上、下桥臂的开关管动作,以使逆变器中非零序电流跟踪电流指令值。进而为第一电机提供所需的相电压,使第一电机驱动驱动装置对应的负载工作,保证电器设备工作的稳定性。
进一步地,电机运行时,在逆变器进行脉冲宽度调制时,可根据驱动装置当前的输入电源功率因数和母线电压确定逆变器PWM的下桥零矢量占空比(000矢量作用时间),并将一个载波周期减去有效电压矢量占空比和下桥零矢量占空比,得到逆变器PWM的上桥零矢量占空比(111矢量作用时间)。
实施例8:
如图9所示,根据本申请的一个实施例,提出了一种控制方法,适用于第一方面的实施例提出的电器设备的驱动装置,该方法包括:
步骤502,获取第一驱动控制电路的控制指令;
步骤504,根据第一驱动控制电路的滤波指令,控制逆变器下桥臂的开关管关断。
在该实施例中,第一驱动控制电路的控制器接收到第一电机的滤波指令时,说明第一电机未运行则控制逆变器下桥臂的开关管关断,同时还可以控制上桥臂的开关管导通或不导通,使得第一电机接入高压母线,通过第一电机的静态绕组来代替共模电感。从而消除经高压母线流入第二驱动控制电路的电流谐波,进而使第二驱动控制电路具有较强的抗干扰能力,在确保了所驱动的负载能够正常工作的同时,优化电路结构,减少元件设置,有效降低成本。
进一步地,当第一电机为多相电机时,根据第一驱动控制电路的滤波指令,控制逆变器的至少一对半桥电路中的下桥臂的开关管关断,使得多相电机中至少一相的绕组作为共模电感来降低电流谐波。
实施例9:
如图10所示,根据本申请的一个实施例,提出了一种控制方法,适用于第一方面的实施例提出的电器设备的驱动装置,该方法包括:
步骤602,获取第一驱动控制电路的控制指令;
步骤604,根据第一驱动控制电路的调节指令,控制逆变器上桥臂的 开关管关断;
步骤606,获取驱动装置的母线电压指令值、母线电压当前值和交流电压相位;
步骤608,确定母线电压指令值和母线电压当前值的差值;
步骤610,根据差值和交流电压相位,确定第一驱动控制电路零序电流指令值;
步骤612,根据零序电流指令值确定逆变器的下桥零矢量占空比;
步骤614,根据下桥零矢量占空比控制逆变器下桥臂的开关管导通或关断。
在该实施例中,第一驱动控制电路的控制器接收到第一驱动控制电路的调节指令时,控制逆变器上桥臂的开关管关断,并获取驱动装置的母线电压指令值、母线电压当前值和交流电压相位。根据母线电压指令值和母线电压当前值之间的差和交流电压相位,计算第一驱动控制电路的零序电流指令值,进而确定出逆变器的下桥零矢量占空比。并根据下桥零矢量占空比控制逆变器下桥臂的开关管动作,使逆变器下桥臂的电流跟踪零序电流指令,从而控制输入电源功率因数和母线电压。实现了通过驱动装置的驱动结构代替功率因数校正电路或电抗器,无需额外设置调节功率因数的结构,降低电路复杂度,降低设备成本。
实施例10:
如图1至图6所示,根据本申请的一个具体实施例,提出了一种电机驱动控制装置,包括:包括第一电机110、第二电机130,第一驱动控制电路120、第二驱动控制电路140,交流电压检测电路(第二电压采样电路174)、整流电路150、母线电容160、母线电压检测电路(第一电压采样电路172)。
其中,第一驱动控制电路120包括第一控制单元(第一控制器122)、第一逆变电路(第一逆变器124)、第一电流采样电路126,第一控制单元和第一逆变电路的每个开关管相连,第一逆变电路的桥臂数和第一电机110的相数相同,第一电流采样电路126可以检测第一逆变电路的每一个下桥臂电流。第二驱动控制电路140包括第二控制单元(第二控制器142)、 第二逆变电路(第二逆变器144)、第二电流采样电路146,第二控制单元和第二逆变电路的每个开关管相连,第二逆变电路的桥臂数量和第二电机130的桥臂数量相同。
具体地,第一电机110的绕组可以是两相、三相或者更多相,第一电机110的中心点和第一电机110的每一相绕组都相连。
交流电压检测电路位于整流电路150前端,母线电压信号位于母线电容160后端。
第一电机110的中心点与整流电路150输出一端相连,第一电机110的相端点分别与第一逆变电路的上、下桥臂中点相连,第一逆变电路的上桥臂与母线电容160一端以及第二逆变电路的上桥臂相连,第一逆变电路的下桥臂与母线电容160另一端以及第二逆变电路的下桥臂相连,第二电机130的相端点分别与第二逆变电路的上、下桥臂中点相连。
第一驱动控制电路120和第一电机110相连,用于控制第一电机110正常运行,同时控制输入电源功率因数和控制母线电压,或者第一电机110不运行,只控制输入电源功率因数和控制母线电压。第二驱动控制电路140和第二电机130相连,用于控制第二电机130正常运行。
详细地,当第一电机110不运行时,第一电机110和第一驱动控制电路120只用来控制输入电源功率因数和母线电压。第一控制单元控制第一逆变电路上桥臂开关管处于关断状态。第一控制单元根据母线电压指令值与母线电压当前值的差值以及交流电压相位,生成第一逆变电路下桥臂的电流指令值。第一控制单元控制第一逆变电路下桥臂开关管的占空比,使第一逆变电路下桥臂的电流跟踪电流指令,从而控制输入电源功率因数和母线电压。
当第一电机110正常运行时,第一控制单元通过7段式SVPWM(空间矢量脉冲调制)控制电机运行。SVPWM的有效电压矢量由电机控制模块计算得到。第一控制单元根据电机运行所需电流的大小生成电机相电流指令(非零序电流),并控制第一逆变电路在一个载波周期内SVPWM的有效电压矢量作用时间,使第一逆变电路中非零序电流跟踪指令,从而控制电机正常运行。其中,SVPWM的000矢量由功率因数和母线电压控制 模块计算得到。SVPWM的111矢量由整个电压矢量时间减去有效电压矢量时间和000矢量作用时间得到。
在该实施例中,在多电机驱动控制系统中,可以用其中一台电机和控制与之相连的控制电路控制输入电源200功率因素并且控制母线电压,替代传统的电抗器或者功率因素校正(PFC)电路,同时控制该电机正常运行或者不运行,达到电路精简的、降低成本的目的。
实施例11:
根据本申请第三方面的实施例,提出了一种电器设备,负载和第一方面提出的电器设备的驱动装置。驱动装置与负载连接。因此该电器设备具备第一方面提出的电器设备的驱动装置的全部有益效果。
具体地,电器设备包括以下至少一种:空调器、电冰箱、风扇、洗衣机、干衣机等。
实施例12:
根据本申请第四方面的实施例,提出了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时执行如第二方面实施例的控制方法的步骤。因此该计算机可读存储介质具备第二方面实施例的控制方法的全部有益效果。
在本说明书的描述中,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性,除非另有明确的规定和限定;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (17)

  1. 一种电器设备的驱动装置,其中,所述驱动装置包括:
    第一电机,与电源连接;
    第一驱动控制电路,所述第一驱动控制电路用于获取母线电压信号和所述第一电机的交流电压信号,所述第一驱动控制电路能够控制所述第一电机的工作模式,和/或控制所述驱动装置的输入电源功率因数。
  2. 根据权利要求1所述的电器设备的驱动装置,其中,还包括:
    第二电机;
    第二驱动控制电路,所述第二驱动控制电路用于获取母线电压信号和所述第二电机的交流电压信号,所述第二驱动控制电路能够控制所述第二电机工作。
  3. 根据权利要求2所述的电器设备的驱动装置,其中,所述第一驱动控制电路或所述第二驱动控制电路包括:
    逆变器,所述逆变器包括至少一对半桥电路,所述半桥电路的上桥臂接入于所述驱动装置的高压母线,所述半桥电路的下桥臂接入于所述驱动装置的低压母线,每对所述半桥电路包括:串联的两个开关管,所述两个开关管之间的公共端连接于所述第一电机或所述第二电机;
    控制器,所述控制器的输出端连接于所述开关管的控制端,所述控制器用于控制所述开关管导通或断开。
  4. 根据权利要求3所述的电器设备的驱动装置,其中,还包括:
    整流电路,连接于所述电源和所述第一电机之间,所述整流电路用于将交流信号转换为脉动直流信号。
  5. 根据权利要求4所述的电器设备的驱动装置,其中,还包括:
    母线电容,连接于所述整流电路的输出端,且位于所述第一驱动控制电路和所述第二驱动控制电路之间,所述母线电容用于接收所述脉动直流信号并转换为直流信号;
    第一电压采样电路,连接于所述母线电容的输出端,且与所述控制器电连接,所述第一电压采样电路用于检测所述驱动装置的母线电压;
    第二电压采样电路,连接于所述电源和所述整流电路之间,所述第二电压采样电路用于检测所述驱动装置的交流电压。
  6. 根据权利要求3至5中任一项所述的电器设备的驱动装置,其中,所述第一驱动控制电路控制所述第一电机的工作模式,具体包括:
    获取所述第一电机的相电流指令值;
    根据所述相电流指令值确定所述逆变器的有效矢量占空比;
    根据所述有效矢量占空比控制所述逆变器的开关管导通或关断,以使所述第一电机驱动所述驱动装置对应的负载。
  7. 根据权利要求5所述的电器设备的驱动装置,其中,所述第一驱动控制电路控制所述输入电源功率因数,具体包括:
    控制所述逆变器上桥臂的开关管关断;
    获取所述驱动装置的母线电压指令值、母线电压当前值和交流电压相位;
    确定所述母线电压指令值和所述母线电压当前值的差值;
    根据所述差值和所述交流电压相位,确定所述第一驱动控制电路的零序电流指令值;
    根据所述零序电流指令值确定所述逆变器的下桥零矢量占空比;
    根据所述下桥零矢量占空比控制所述逆变器下桥臂的开关管导通或关断。
  8. 根据权利要求3至5中任一项所述的电器设备的驱动装置,其中,所述第一驱动控制电路控制所述第一电机的工作模式,具体包括:
    控制所述逆变器下桥臂的开关管关断,以使所述第一电机抑制所述高压母线中的电流谐波。
  9. 根据权利要求3至5中任一项所述的电器设备的驱动装置,其中,所述第一驱动控制电路或所述第二驱动控制电路,还包括:
    电流采样电路,连接于所述下桥臂的开关管和所述低压母线之间,所述电流采样电路用于检测所述逆变器的电流。
  10. 根据权利要求4或5所述的电器设备的驱动装置,其中,所述整流电路包括:
    第一开关管、第二开关管、第三开关管和第四开关管,所述第一开关管和所述第二开关管之间的公共端接入于所述交流信号的第一输入线路,所述第三开关管和所述第四开关管之间的公共端接入于所述交流信号的第二输入线路,以及所述第一开关管与所述第四开关管之间的公共端连接于 所述第一电机,所述第二开关管与所述第三开关管之间的公共端接入于所述低压母线。
  11. 一种控制方法,适用于如权利要求1至10中任一项所述的电器设备的驱动装置,其中,所述控制方法包括:
    获取所述第一驱动控制电路的控制指令;
    根据所述控制指令,控制所述第一电机的工作模式和/或控制所述驱动装置的输入电源功率因数。
  12. 根据权利要求11所述的控制方法,其中,所述第一驱动控制电路包括逆变器,所述逆变器包括至少一对半桥电路,每对所述半桥电路包括串联的开关管;所述根据所述控制指令,控制所述第一电机的工作模式的步骤,具体包括:
    根据所述第一驱动控制电路的脉冲调制指令,获取所述第一电机的相电流指令值;
    根据所述相电流指令值确定所述逆变器的有效矢量占空比;
    根据所述有效矢量占空比控制所述逆变器的开关管导通或关断,以使所述第一电机驱动所述驱动装置对应的负载。
  13. 根据权利要求11所述的控制方法,其中,所述第一驱动控制电路包括逆变器,所述逆变器包括至少一对半桥电路,每对所述半桥电路包括串联的开关管;所述根据所述控制指令,控制所述第一电机的工作模式的步骤,具体包括:
    根据所述第一驱动控制电路的滤波指令,控制所述逆变器下桥臂的开关管关断,以使所述第一电机抑制所述高压母线中的电流谐波。
  14. 根据权利要求11所述的控制方法,其中,所述第一驱动控制电路包括逆变器,所述逆变器包括至少一对半桥电路,每对所述半桥电路包括串联的开关管;根据所述控制指令,控制所述输入电源功率因数,具体包括:
    根据所述第一驱动控制电路的调节指令,控制所述逆变器上桥臂的开关管关断;
    获取所述驱动装置的母线电压指令值、母线电压当前值和交流电压相位;
    确定所述母线电压指令值和所述母线电压当前值的差值;
    根据所述差值和所述交流电压相位,确定所述第一驱动控制电路零序电流指令值;
    根据所述零序电流指令值确定所述逆变器的下桥零矢量占空比;
    根据所述下桥零矢量占空比控制所述逆变器下桥臂的开关管导通或关断。
  15. 一种电器设备,其中,包括:
    负载;
    如权利要求1至10中任一项所述的电器设备的驱动装置,所述驱动装置与所述负载连接。
  16. 根据权利要求15所述的电器设备,其中,
    所述电器设备包括以下至少一种:空调器、电冰箱、洗衣机、干衣机、风扇。
  17. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时执行如权利要求11至14中任一项所述的控制方法的步骤。
PCT/CN2020/135031 2020-08-04 2020-12-09 驱动装置、控制方法、电器设备和存储介质 WO2022027892A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010770814.9A CN114070133B (zh) 2020-08-04 2020-08-04 驱动装置、控制方法、电器设备和存储介质
CN202010770814.9 2020-08-04

Publications (1)

Publication Number Publication Date
WO2022027892A1 true WO2022027892A1 (zh) 2022-02-10

Family

ID=80119966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135031 WO2022027892A1 (zh) 2020-08-04 2020-12-09 驱动装置、控制方法、电器设备和存储介质

Country Status (2)

Country Link
CN (1) CN114070133B (zh)
WO (1) WO2022027892A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114629224A (zh) * 2022-03-24 2022-06-14 漳州科华电气技术有限公司 Ups系统直流母线电压的中点平衡控制方法及逆变器
CN114665580A (zh) * 2022-03-21 2022-06-24 中国船舶重工集团公司第七一九研究所 单相不间断电源输出稳压控制方法和系统
CN114678940A (zh) * 2022-03-21 2022-06-28 中国船舶重工集团公司第七一九研究所 电源电路可控整流模块功率控制方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040207349A1 (en) * 2003-02-12 2004-10-21 Toyoda Koki Kabushiki Kaisha Drive voltage generating apparatus and method for controlling the same
US20060091835A1 (en) * 2004-11-04 2006-05-04 Honda Motor Co., Ltd. Electric motor control apparatus
CN101461130A (zh) * 2006-05-30 2009-06-17 丰田自动车株式会社 电动机驱动控制系统及其控制方法
CN108352778A (zh) * 2015-08-28 2018-07-31 雷勃美国公司 电机控制器、驱动电路、以及用于组合的电机控制的方法
CN111404437A (zh) * 2020-03-17 2020-07-10 美的集团股份有限公司 升降压驱动方法、装置、空调器和计算机可读存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505527A (zh) * 2016-12-19 2017-03-15 广东美的制冷设备有限公司 电机驱动保护装置、过压保护方法及变频空调器
CN111313728A (zh) * 2020-03-17 2020-06-19 美的集团股份有限公司 升降压驱动电路、方法、空调器和计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040207349A1 (en) * 2003-02-12 2004-10-21 Toyoda Koki Kabushiki Kaisha Drive voltage generating apparatus and method for controlling the same
US20060091835A1 (en) * 2004-11-04 2006-05-04 Honda Motor Co., Ltd. Electric motor control apparatus
CN101461130A (zh) * 2006-05-30 2009-06-17 丰田自动车株式会社 电动机驱动控制系统及其控制方法
CN108352778A (zh) * 2015-08-28 2018-07-31 雷勃美国公司 电机控制器、驱动电路、以及用于组合的电机控制的方法
CN111404437A (zh) * 2020-03-17 2020-07-10 美的集团股份有限公司 升降压驱动方法、装置、空调器和计算机可读存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665580A (zh) * 2022-03-21 2022-06-24 中国船舶重工集团公司第七一九研究所 单相不间断电源输出稳压控制方法和系统
CN114678940A (zh) * 2022-03-21 2022-06-28 中国船舶重工集团公司第七一九研究所 电源电路可控整流模块功率控制方法和系统
CN114629224A (zh) * 2022-03-24 2022-06-14 漳州科华电气技术有限公司 Ups系统直流母线电压的中点平衡控制方法及逆变器

Also Published As

Publication number Publication date
CN114070133A (zh) 2022-02-18
CN114070133B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
WO2022027892A1 (zh) 驱动装置、控制方法、电器设备和存储介质
US10381968B2 (en) Converter pulse width modulation strategies for three phase regenerative drives
AU2009285313B2 (en) Converter circuit, and motor drive controller equipped with converter circuit, air conditioner, refrigerator, and induction cooking heater
CN109889073B (zh) 驱动控制电路和家电设备
CN109687795B (zh) Pfc电路控制方法、装置、pfc电路及电机驱动电路
GB2610545A (en) Small-capacitance power converter, and grid-side electrical-energy quality control working method and bus voltage suppression control method therefor
CN111355416A (zh) 电机驱动控制电路、驱动方法、线路板及空调器
JPH11289766A (ja) 電源装置
KR20130119338A (ko) 정류 회로 및 그것을 이용한 모터 구동 장치
CN110581653A (zh) 一种双级式矩阵变换器低压下的共模电压抑制策略
CN109889075A (zh) 驱动控制电路和家电设备
WO2022227954A1 (zh) 一种三相电源变换电路、家电设备、控制方法及装置
KR20140109165A (ko) 전력변환장치 및 이를 포함하는 공기조화기
CN110044030B (zh) 集成式空调控制器和空调器
CN109450243B (zh) Pfc电路、电机控制系统及空调器
CN112313863A (zh) 用于有源谐波滤波器的单级两电平脉冲宽度调制策略
CN109728760B (zh) 三相再生驱动器及其单相操作方法
US20210257957A1 (en) Hybrid active harmonic filter for high current drives
KR20140096627A (ko) 전력변환장치 및 이를 포함하는 공기조화기
KR20140108956A (ko) 전력변환장치 및 이를 포함하는 공기조화기
JP7348409B2 (ja) モータ駆動制御回路、駆動方法、配線板及び空調機
CN211791346U (zh) 电机驱动控制电路、线路板及空调器
WO2022095575A1 (zh) 电机驱动器、电机速度控制方法及控制系统
Takahashi et al. High power factor control for current-source type single-phase to three-phase matrix converter
CN111817548B (zh) 一种智能功率模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948006

Country of ref document: EP

Kind code of ref document: A1