WO2022227463A1 - 一种柔性导热绝缘粘性相变散热片及其制备方法与电池热管理系统 - Google Patents
一种柔性导热绝缘粘性相变散热片及其制备方法与电池热管理系统 Download PDFInfo
- Publication number
- WO2022227463A1 WO2022227463A1 PCT/CN2021/127800 CN2021127800W WO2022227463A1 WO 2022227463 A1 WO2022227463 A1 WO 2022227463A1 CN 2021127800 W CN2021127800 W CN 2021127800W WO 2022227463 A1 WO2022227463 A1 WO 2022227463A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase change
- heat sink
- change heat
- insulating
- flexible
- Prior art date
Links
- 230000008859 change Effects 0.000 title claims abstract description 45
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 230000017525 heat dissipation Effects 0.000 title abstract description 11
- 229910052582 BN Inorganic materials 0.000 claims abstract description 29
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000012188 paraffin wax Substances 0.000 claims abstract description 20
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 14
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 14
- 239000004793 Polystyrene Substances 0.000 claims abstract description 5
- 229920002223 polystyrene Polymers 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 238000007731 hot pressing Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 5
- 238000000498 ball milling Methods 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000012782 phase change material Substances 0.000 abstract description 45
- 239000002131 composite material Substances 0.000 abstract description 27
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052744 lithium Inorganic materials 0.000 abstract description 4
- 238000010292 electrical insulation Methods 0.000 abstract description 2
- 239000000945 filler Substances 0.000 abstract description 2
- 229920003023 plastic Polymers 0.000 abstract 1
- 239000004033 plastic Substances 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 16
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011231 conductive filler Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920000307 polymer substrate Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920013657 polymer matrix composite Polymers 0.000 description 1
- 239000011160 polymer matrix composite Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/651—Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
- C08L91/06—Waxes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/617—Types of temperature control for achieving uniformity or desired distribution of temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/653—Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/659—Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
- C08K2003/382—Boron-containing compounds and nitrogen
- C08K2003/385—Binary compounds of nitrogen with boron
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the field of preparation and application of high thermal conductivity composite phase change materials, and in particular relates to a flexible thermal conduction and insulating viscous phase change heat sink, a preparation method thereof, and a battery thermal management system.
- Lithium batteries are widely used in digital products and electric vehicle power systems. However, a large amount of heat is generated during the operation of the lithium battery, which will cause the temperature of the battery to rise, resulting in a decrease in the performance and safety of the battery. Therefore, the lithium battery needs to be controlled by thermal management to be in the best working range: 20 ⁇ 55°C, and the temperature difference between the batteries is less than 5°C.
- Phase change material is a material that can absorb a large amount of heat during the solid-liquid phase transition and maintain a constant temperature, so it can be used to absorb battery heat and control battery temperature.
- the general phase change material turns into liquid after solid-liquid phase change, and has fluidity, which is extremely inconvenient to use.
- phase change materials usually have low thermal conductivity, about 0.2 ⁇ 0.6 W/m ⁇ K, the heat dissipation effect is poor during use, and the temperature of the battery and the temperature difference between the batteries are high.
- phase change material preparing a high thermal conductivity shaped composite phase change material, increasing the thermal conductivity of the phase change material, and at the same time overcoming the liquid phase flow generated by the solid-liquid phase transition process of the phase change material can improve the ease of use of the phase change material.
- the preparation of high thermal conductivity shaped composite phase change materials is mainly obtained by adsorbing phase change materials such as paraffin through porous media with high thermal conductivity such as expanded graphite.
- phase change materials such as paraffin
- expanded graphite is a powder material.
- CN201910951534.5 discloses a preparation method of a paraffin-SEBS thermoplastic elastomer composite phase change material.
- the flexible composite phase change material prepared by the method has strong adsorption capacity and large phase change enthalpy.
- CN111607362A and CN110137626A disclose two flexible and high thermal conductivity phase change materials applied to battery thermal management.
- two methods of adding thermal conductivity are materials with conductive properties such as expanded graphite, so that the phase change material has no insulation properties, and the application of phase change heat sinks in battery thermal management will increase the risk of battery short circuit.
- phase change material in the existing thermal management structure of the phase change material, it is necessary to first prepare the phase change material block, and then drill holes for the battery, and then insert the battery into the pores. Not only is the operation complicated, but the phase change material and the battery surface are only in incomplete contact on the surface, and there is no force between the two, so they cannot be closely attached. During continuous use, the battery and the phase change material will lose contact due to thermal stress such as expansion and contraction, or be affected by vibration, resulting in the inability to transfer heat in time, resulting in a decline in the performance of the heat sink.
- the present invention provides a preparation method of a viscous composite phase-change heat sink with flexibility, excellent thermal conductivity and electrical insulation properties, in order to overcome the problems of liquid leakage, poor thermal conductivity and poor battery fit in traditional phase change materials.
- a flexible high thermal conductivity insulating viscous phase change heat sink and a battery thermal management system are provided.
- the composite phase-change material heat sink of the present invention has the following characteristics: paraffin is used as the phase-change material base material, and the phase-change temperature is 30-55°C. At the same time, it has the characteristics of high thermal conductivity, insulation, flexibility and viscosity, the thermal conductivity is higher than 2.5 W/m ⁇ K, and the resistivity is higher than 18000 ⁇ m. When the temperature is lower than the transformation temperature, the Shore hardness is 80HA, and when the temperature is higher than the transformation temperature, the Shore hardness is less than 15HA.
- the phase change enthalpy of the composite phase change material is higher than 150 kJ/kg, and the density is 850 ⁇ 950 kg/m 3 .
- a flexible heat-conducting insulating viscous phase-change heat sink calculated by mass percentage, comprising the following components: 65-75% paraffin, 10-20% polystyrene-polyethylene-polybutylene-polystyrene, 10-20% Boron nitride, 1 ⁇ 3% polyvinyl alcohol.
- the thermal conductivity of the phase change heat sink is higher than 2.5 W/m ⁇ K, the resistivity is higher than 18000 ⁇ m, and when the temperature is higher than the phase change temperature of the phase change heat sink, the Shore hardness is less than 15HA.
- the phase-change temperature of the phase-change heat sink is 30-55°C
- the phase-change enthalpy is greater than 150 kJ/kg
- the density is 850-950 kg/m 3 .
- the average particle size of the boron nitride is 5-10 ⁇ m, and the circular and elliptical laminated sheet-like structures are obtained by plasma ball milling.
- the morphology and size of the thermally conductive filler boron nitride in the present invention has a great influence on the thermal conductivity of the composite material, so it needs to be rounded and elliptical laminated sheet-like structures by plasma ball milling, with an average particle size of 5-10 ⁇ m.
- the specific gravity of BN needs to be strictly controlled. If the content of thermally conductive filler is too low or too high, the thermal conductive network cannot be formed, and the thermal conductivity improvement effect is not good. If it is too high, the thermal elastomer network will collapse and cannot be formed.
- the thickness of the phase change heat sink is 2-4 mm.
- the preparation method of the above-mentioned flexible thermally conductive insulating viscous phase change heat sink comprises the following steps:
- Material melt mixing first mix polystyrene-polyethylene-polybutylene-polystyrene and boron nitride, and then add melted paraffin liquid and stir;
- Hot pressing into a block preheat the mixture obtained in step (1) at a temperature of 130-135 °C, and perform hot pressing at a pressure of 10-14 MPa;
- the paraffin liquid in step (1) is prepared by melting paraffin in an oven with a temperature of 20-30°C higher than its melting point.
- the stirring temperature in step (1) is 70-90° C.
- the stirring time is 0.5-1.5 hours.
- the hot pressing time in step (2) is 10-15 minutes, and the preheating time is 1-3 minutes.
- the coating in step (3) is mechanical coating.
- the phase change heat sink is directly attached to the surface of a single or multiple batteries, and the battery shape is a cylindrical, cuboid hard shell or a soft pack.
- this material has higher thermal conductivity, and it can effectively reduce the temperature rise and temperature difference during battery operation when applied to battery thermal management;
- the phase change material is composited with a polymer substrate prepared by a conductive thermal conductivity enhancer such as graphite.
- a conductive thermal conductivity enhancer such as graphite.
- the material uses a special morphology of insulating and thermally conductive filler boron nitride to build a thermally conductive network, which not only has high thermal conductivity, but also has high resistivity at the same time. , The insulation performance is good, and the heat sink will not be short-circuited even if it is in contact with the battery electrode during use.
- Figure 1 is a structural diagram of boron nitride morphology control
- FIG. 2 is a schematic diagram of the heat dissipation structure of the flexible high thermal conductivity insulating viscous phase change heat sink of Embodiment 1 applied to a cylindrical battery;
- FIG. 3 is a schematic diagram of the heat dissipation structure of the flexible, high thermal conductivity, insulating and viscous phase change heat sink of Embodiment 2 applied to a rectangular parallelepiped battery.
- To prepare the mixed material Melt the paraffin in an oven with a temperature 20°C higher than its melting point. Put 10 ⁇ 20% SEBS and 10 ⁇ 20% boron nitride in a beaker, stir evenly, then add 65 ⁇ 75% paraffin liquid, and mix evenly. The mixture was heated, melted and adsorbed in a 70° C. oven, and stirred regularly for 1 hour to obtain a mixture. Store in an oven at 60 ⁇ 70°C for later use.
- Hot pressing into a block Add the mixed material into a mold at room temperature, and place it in a flat vulcanization tablet press with a temperature of 130 ⁇ 135°C under no pressure for 2 minutes to preheat. Then, after hot pressing at a pressure of 10 ⁇ 14MPa for 10 minutes, the pressure was released, and a flexible high thermal conductivity insulating phase change sheet with a thickness of 2 ⁇ 4mm and a density of 850 ⁇ 950 kg/m3 was taken out.
- Coating of viscous substrates Using a mechanical coating device, 1 ⁇ 3% PVA solution is uniformly coated on the surface of the phase change material.
- the above-mentioned boron nitride is milled into circular and elliptical laminated sheet structures by plasma ball milling, with an average particle size of 5-10 ⁇ m.
- the obtained boron nitride particle morphology control structure diagram is shown in Figure 1.
- the mass fraction of 65% paraffin with a melting point of 44 °C, 17.5% SEBS, 15% boron nitride and 2.5% PVA solution was used to prepare a composite phase change heat sink with a density of 950 kg/ m3 .
- phase change enthalpy of the prepared phase change material is 156 kJ/kg, the thermal conductivity is 3.0 W/m ⁇ K, and the resistivity is 20085 ⁇ m.
- phase change heat sinks 1 with a thickness of 2 mm were attached to the surface of 15 cylindrical batteries 2 in a serpentine shape, as shown in Figure 2.
- the battery is discharged at a rate of 1C at a 25°C environment.
- the phase change material reduces the maximum temperature of the battery by 5.2°C and the maximum temperature difference between batteries by 3.1°C.
- the mass fraction of 70% paraffin with a melting point of 52 °C, 17.5% SEBS, 10% boron nitride and 2.5% PVA solution was used to prepare a composite phase change heat sink with a density of 950 kg/ m3 .
- phase change enthalpy of the prepared phase change material is 168 kJ/kg
- thermal conductivity is 2.5 W/m ⁇ K
- resistivity is 18586 ⁇ m.
- the battery was discharged at a rate of 2C at 25°C.
- the phase change material reduced the maximum temperature of the battery by 10.2°C, and the maximum temperature difference between the batteries was reduced by 2.6°C.
- the mass fraction of 65% paraffin with the melting point of 44 °C, 27.5% SEBS, 5% boron nitride and 2.5% PVA solution was used to prepare a composite phase change heat sink with a density of 950 kg/ m3 .
- the mass fraction of 65% paraffin with a melting point of 44 °C, 22.5% SEBS, 10% boron nitride and 2.5% PVA solution was used to prepare a composite phase change heat sink with a density of 950 kg/ m3 .
- the mass fraction of 65% paraffin with a melting point of 44 °C, 12.5% SEBS, 20% boron nitride and 2.5% PVA solution was used to prepare a composite phase change heat sink with a density of 950 kg/ m3 .
- the mass fraction of 65% paraffin with melting point of 44 °C, 7.5% SEBS, 25% boron nitride and 2.5% PVA solution was used to prepare a composite phase change heat sink with a density of 950 kg/ m3 .
- the mass fraction of 65% paraffin, 32.5% SEBS and 2.5% PVA solution with a melting point of 44 °C was used to prepare a composite phase change heat sink with a density of 950 kg/ m3 .
- Example 7 Numbering Phase change material content (%) SEBS content (%) Boron Nitride Content (%) PVA content (%)
- SEBS content % Boron Nitride Content (%)
- PVA content %
- Example 7 65 32.5 0 2.5
- Example 3 65 27.5 5
- Example 4 65 22.5 10
- Example 1 65 17.5 15
- Example 5 65 12.5 20
- Example 6 65 7.5 25 2.5
- the thermal conductivity of the composite phase change sheet was only 1.0 W/m ⁇ K, and the thermal conductivity was insufficient.
- the content of boron nitride is 25%, many cracks are produced on the surface of the phase change sheet and are easily broken, so that a smooth surface cannot be formed and it is difficult to use.
- the thermal conductivity of the phase change material is 2 ⁇ 3 W/m ⁇ K, and it has a complete and smooth plane.
- phase change sheet prepared above is applied to the heat dissipation of cylindrical batteries.
- the battery discharge rate is 1.5C
- the phase change sheets with boron nitride content of 10, 15, and 20% are respectively lower than those without boron nitride.
- the temperature rise of the battery is 0.5/0.8/1.2°C, and the temperature difference between the batteries decreases by 1.5/2.3/2.7°C.
- phase change sheet prepared above is applied to the heat dissipation of the rectangular parallelepiped battery.
- the battery discharge rate is 6C
- the phase change sheet with boron nitride content of 10, 15, and 20% is added to reduce the battery performance compared with the phase change sheet without boron nitride.
- the temperature rise is 4.5/5.8/6.7°C, and the temperature difference between cells decreases by 2.1/2.6/3.3°C.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Algebra (AREA)
- Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Secondary Cells (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开了一种柔性导热绝缘粘性相变散热片及其制备方法与电池热管理系统;所述相变散热片按质量百分比计,包括以下组分:65~75%石蜡,10~20%聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯,10~20%氮化硼,1~3%聚乙烯醇。本发明使用弹性塑料为相变材料提供柔性支撑基材,采用椭圆/圆形层叠片状氮化硼作为传热填料,从而使得最终制备得到的复合材料具有优异的导热性能和电绝缘性能。且制备出的薄片具有柔性,可广泛应用于圆柱电池、长方体硬壳电池、软包电池等不同形状锂电池的热管理,制备方法简单、使用方便。
Description
本发明属于高导热复合相变材料制备与应用领域,具体涉及一种柔性导热绝缘粘性相变散热片及其制备方法与电池热管理系统。
锂电池在数码产品、电动车电源系统中大量使用。然而,锂电池工作过程中产生大量的热,会造成电池温度升高,导致电池性能与安全性下降。因此锂电池需要通过热管理控制其温度处于最佳工作范围:20~55℃,而且电池间温差小于5℃。
相变材料是一种能够能在固液相变过程中吸收大量热且温度保持恒定不变的材料,因此可用于吸收电池热量、控制电池温度。然而一般的相变材料固液相变后变成液体,具有流动性,使用极为不便。而且相变材料通常热导率较低,约0.2~0.6
W/m·K,使用过程中散热效果较差,电池的温度和电池之间的温差较高。
因此,制备高导热定型复合相变材料,增加相变材料热导率,同时克服相变材料固液相变过程产生的液相流动,能够提高相变材料的易用程度。
目前制备高导热定型复合相变材料主要通过膨胀石墨等高导热多孔介质吸附石蜡等相变材料得到,但是膨胀石墨是粉体材料,制备得到的定型复合相变材料尽管不存在液相泄露且热导率高,但复合相变材料受撞击时易碎裂。
将相变材料与高分子基材复合是另一种制备定型复合相变材料的主要方法,相比膨胀石墨等粉体材料,高分子基材制备的定型材料同样不存在液漏问题,而且机械性能较好,可赋予其良好的柔韧性或弹性。CN201910951534.5公开了一种石蜡‑SEBS热塑性弹性体复合相变材料的制备方法,利用该方法制备的柔性复合相变材料吸附能力强,相变焓值大。
但是高分子基复合相变材料的热导率低,应用于电池散热的性能较差。为了提高高分子基体复合相变材料热导率,CN111607362A和CN110137626A公开了两种柔性高导热相变材料应用于电池热管理,然而为了提高复合相变材料的热导率,两种方法添加的导热填料都为膨胀石墨等具有导电特性的材料,从而使相变材料不具有绝缘性,相变散热片应用于电池热管理会增加电池短路的风险。
而且,现有相变材料热管理结构需要先制备相变材料块体,然后通过钻孔等方式留出电池孔位,再将电池插入孔隙中。不仅操作复杂,而且相变材料与电池表面仅在表面不完全接触,两者之间不存在作用力,无法紧密贴合。电池与相变材料会在连续使用过程中因膨胀、收缩等热应力的作用,或者受到震动的影响失去接触,从而导致热量无法及时传递,造成散热片性能的下降。
因此,开发基于高分子基体的定型复合相变材料有利于实现相变材料在电池散热中的应用,但是为了解决高分子基材定型复合相变材料存在的问题,需要在保证其绝缘性的前提下赋予其高导热特性,同时增加材料在表面的粘性,使其与电池之间更好地贴合。
本发明为了克服传统相变材料存在液漏、导热性能差与电池贴合不紧密等问题,提供了一种具有柔性和优异导热性能和电绝缘性能的粘性复合相变散热片的制备方法。同时提供了一种柔性高导热绝缘粘性相变散热片和电池热管理系统。
本发明所述复合相变材料散热片具有以下特点:采用石蜡作为相变材料基材,相变温度30~55℃。同时具有高导热、绝缘、柔性和粘性等特性,热导率高于2.5 W/m·K,电阻率大于18000 Ω·m。其温度低于相变温度时,邵氏硬度为80HA,高于相变温度时,邵氏硬度小于15HA。复合相变材料相变焓高于150 kJ/kg,密度为850~950 kg/m
3。
本发明的目的通过以下技术方案实现:
一种柔性导热绝缘粘性相变散热片,按质量百分比计,包括以下组分:65~75%石蜡,10~20%聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯,10~20%氮化硼,1~3%聚乙烯醇。
优选的,所述相变散热片的热导率高于2.5 W/m·K,电阻率大于18000 Ω·m,温度高于相变散热片的相变温度时,邵氏硬度小于15HA。
优选的,所述相变散热片的相变温度为30~55℃,相变焓大于150 kJ/kg,密度为850~950
kg/m
3。
优选的,所述的氮化硼的平均粒径为5~10μm,通过等离子球磨加工获得的圆形及椭圆形层叠片状结构。本发明中导热填料氮化硼形貌尺寸对复合材料导热性能影响巨大,因此需要通过等离子球磨至圆形及椭圆形层叠片状结构,平均粒径5~10μm。且BN比重需严格控制,导热填料含量过低或过高,会导致导热网络不能形成,导热系数改善效果不佳,过高会导致热弹性体网络塌陷,无法成形。
优选的,所述相变散热片的厚度为2~4mm。
上述的柔性导热绝缘粘性相变散热片的制备方法,包括以下步骤:
(1) 物料熔融混合:首先将聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯与氮化硼混合,再添加已融化的石蜡液体搅拌;
(2) 热压成块:将步骤(1)所得的混合物料在温度为130~135℃的温度下预热,以压力10~14MPa进行热压;
(3) 粘性基材涂覆:将聚乙烯醇溶液涂覆至步骤(2)所得的块体表面。
优选的,步骤(1)所述石蜡液体为石蜡置于温度高于其熔点20~30℃的烘箱中融化制得。
优选的,步骤(1)所述搅拌的温度为70~90℃,所述搅拌的时间为0.5-1.5小时。
优选的,步骤(2)所述热压的时间为10~15分钟,所述预热的时间为1-3分钟。
优选的,步骤(3)所述涂覆为机械涂覆。
上述的柔性导热绝缘粘性相变散热片的电池热管理系统,所述相变散热片直接贴附于单个或多个电池表面,所述电池形状为圆柱形、长方体硬壳或软包。
本发明提供方法制备得到的柔性高导热绝缘粘性散热片的优势在于:
(1) 同时具有高导热、绝缘、柔性以及粘性等特性,可应用于动力电池、数码电池的热管理;
(2) 自身柔软,可任意变形,而且具有良好粘附力,可紧密贴附于包括圆柱、长方体及软包等任意形状电池表面,达到电池散热的目的。贴附过程简单方便,不需要事先制备相变材料块体再进行机械加工为电池加工出孔位,有利于电池模组快速装配;
(3) 较普通的高分子基材复合相变材料,该材料具有更高热导率,应用于电池热管理能有效降低电池工作过程中的温升和温差;
与采用石墨等导电的导热增强剂制备的高分子基材复合相变材料,该材料采用了特殊形貌的绝缘导热填料氮化硼构建导热网络,不仅具有高热导率,而且同时具有高电阻率,绝缘性能良好,该散热片使用过程中即使与电池电极接触也不会短路。
图1为氮化硼形貌控制结构图;
图2为实施例1的柔性高导热绝缘粘性相变散热片应用于圆柱电池散热结构示意图;
图3为实施例2的柔性高导热绝缘粘性相变散热片应用于长方体电池散热结构示意图。
下面通过具体实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
本发明所述柔性高导热绝缘粘性相变散热片的制备步骤如下:
配置混合物料:将石蜡置于温度高于其熔点20℃的烘箱中融化备用。将质量分数10~20%SEBS与10~20%的氮化硼置于烧杯中,搅拌均匀,再添加质量分数65~75%的石蜡液体,混合均匀。置于70℃烘箱中加热融化吸附,定时搅拌1小时,得到混合物料。于60~70℃烘箱中贮存备用。
热压成块:将混合物料加入到常温状态制模模具中,在无压力条件下置于温度为130~135℃的平板硫化压片机中预热2分钟。接着以压力10~14MPa进行热压10分钟后,卸压,取出厚度为2~4mm、密度为850~950 kg/m³的柔性高导热绝缘相变薄片。
粘性基材涂覆:采用机械涂覆装置,将1~3%的PVA溶液均匀涂覆至相变材料表面。
上述氮化硼通过等离子球磨至圆形及椭圆形层叠片状结构,平均粒径5~10μm。所得氮化硼颗粒形貌控制结构图如图1所示。
实施例
1
按照上述方法将质量分数为65%熔点为44℃石蜡、17.5%SEBS与15%氮化硼以及2.5%PVA溶液制备密度为950 kg/m
3复合相变散热片。
制备得到的相变材料相变焓为156 kJ/kg,热导率为3.0 W/m·K,电阻率为20085 Ω·m。
将3片2 mm厚的相变散热片1如图 2所示,蛇形贴附于15个圆柱电池2表面。
电池在25℃环境下以1C倍率放电,相比未使用相变材料电池模组,相变材料将电池最高温度降低5.2℃,电池间最大温差降低3.1℃。
实施例
2
按照上述方法将质量分数为70%熔点为52℃石蜡、17.5%SEBS与10%氮化硼以及2.5%PVA溶液制备密度为950 kg/m
3复合相变散热片。
制备得到的相变材料相变焓为168 kJ/kg,热导率为2.5 W/m·K,电阻率为18586 Ω·m。
将4片4 mm厚的矩形相变散热片1如图 3所示,贴附于3个长方体硬壳电池3表面。
电池在25℃环境下以2C倍率放电,相比未使用相变材料电池模组,相变材料将电池最高温度降低10.2 ℃,电池间最大温差降低2.6 ℃。
实施例
3
按照上述方法将质量分数为65%熔点为44℃石蜡、27.5%SEBS与5%氮化硼以及2.5%PVA溶液制备密度为950 kg/m
3复合相变散热片。
实施例
4
按照上述方法将质量分数为65%熔点为44℃石蜡、22.5%SEBS与10%氮化硼以及2.5%PVA溶液制备密度为950 kg/m
3复合相变散热片。
实施例
5
按照上述方法将质量分数为65%熔点为44℃石蜡、12.5%SEBS与20%氮化硼以及2.5%PVA溶液制备密度为950 kg/m
3复合相变散热片。
实施例
6
按照上述方法将质量分数为65%熔点为44℃石蜡、7.5%SEBS与25%氮化硼以及2.5%PVA溶液制备密度为950 kg/m
3复合相变散热片。
实施例
7
按照上述方法将质量分数为65%熔点为44℃石蜡、32.5%SEBS以及2.5%PVA溶液制备密度为950 kg/m
3复合相变散热片。
实施例1、3-7制备的复合相变散热片的原料比例如表1,进一步证明氮化硼含量对性能的影响。
编号 | 相变材料含量(%) | SEBS含量(%) | 氮化硼含量(%) | PVA含量(%) |
实施例7 | 65 | 32.5 | 0 | 2.5 |
实施例3 | 65 | 27.5 | 5 | 2.5 |
实施例4 | 65 | 22.5 | 10 | 2.5 |
实施例1 | 65 | 17.5 | 15 | 2.5 |
实施例5 | 65 | 12.5 | 20 | 2.5 |
实施例6 | 65 | 7.5 | 25 | 2.5 |
经测试发现,当氮化硼含量为5%时,复合相变片热导率仅1.0 W/m·K,热导率不足。当氮化硼含量为25%时,相变片表面产生众多裂痕且易碎裂,无法形成光滑表面,难以使用。当氮化硼含量为10%~20%之间,相变材料热导率2~3 W/m·K,而且具有完整光滑的平面。
将以上制备的相变片应用于圆柱形电池散热,当电池放电倍率1.5C时,添加氮化硼含量为10、15、20%的相变片分别比不添加氮化硼的相变片降低电池的温升0.5/0.8/1.2℃,电池间温差降低1.5/2.3/2.7℃。
将以上制备的相变片应用于长方体电池散热,当电池放电倍率6C时,添加氮化硼含量为10、15、20%的相变片分别比不添加氮化硼的相变片降低电池的温升4.5/5.8/6.7℃,电池间温差降低2.1/2.6/3.3℃。
以上实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
- 一种柔性导热绝缘粘性相变散热片,其特征在于,按质量百分比计,包括以下组分:65~75%石蜡,10~20%聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯,10~20%氮化硼,1~3%聚乙烯醇。
- 根据权利要求1所述的柔性导热绝缘粘性相变散热片,其特征在于,所述相变散热片的热导率高于2.5 W/m·K,电阻率大于18000 Ω·m,温度高于相变散热片的相变温度时,邵氏硬度小于15HA。
- 根据权利要求1所述的柔性导热绝缘粘性相变散热片,其特征在于,所述相变散热片的相变温度为30~55℃,相变焓大于150 kJ/kg,密度为850~950 kg/m 3。
- 根据权利要求1所述的柔性导热绝缘粘性相变散热片,其特征在于,所述的氮化硼的平均粒径为5~10μm,通过等离子球磨加工获得的圆形及椭圆形层叠片状结构。
- 根据权利要求1所述的柔性导热绝缘粘性相变散热片,其特征在于,所述相变散热片的厚度为2~4mm。
- 权利要求1-5任一项所述的柔性导热绝缘粘性相变散热片的制备方法,其特征在于,包括以下步骤:(1)物料熔融混合:首先将聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯与氮化硼混合,再添加已融化的石蜡液体搅拌;(2)热压成块:将步骤(1)所得的混合物料在温度为130~135℃的温度下预热,以压力10~14MPa进行热压;(3)粘性基材涂覆:将聚乙烯醇溶液涂覆至步骤(2)所得的块体表面。
- 根据权利要求6所述的制备方法,其特征在于,步骤(1)所述石蜡液体为石蜡置于温度高于其熔点20~30℃的烘箱中融化制得。
- 根据权利要求6所述的制备方法,其特征在于,步骤(1)所述搅拌的温度为70~90℃,所述搅拌的时间为0.5-1.5小时。
- 根据权利要求6所述的制备方法,其特征在于,步骤(2)所述热压的时间为10~15分钟,所述预热的时间为1-3分钟。
- 一种基于权利要求1-5任一项所述的柔性导热绝缘粘性相变散热片的电池热管理系统,其特征在于,所述相变散热片直接贴附于单个或多个电池表面,所述电池形状为圆柱形、长方体硬壳或软包。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/557,289 US20240213580A1 (en) | 2021-04-25 | 2021-10-31 | Flexible, heat-conducting, insulating, and viscous phase change heat dissipation sheet, and preparation method therefor and battery thermal management system thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110447141.8A CN113150565B (zh) | 2021-04-25 | 2021-04-25 | 一种柔性导热绝缘粘性相变散热片及其制备方法与电池热管理系统 |
CN202110447141.8 | 2021-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022227463A1 true WO2022227463A1 (zh) | 2022-11-03 |
Family
ID=76870292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/127800 WO2022227463A1 (zh) | 2021-04-25 | 2021-10-31 | 一种柔性导热绝缘粘性相变散热片及其制备方法与电池热管理系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240213580A1 (zh) |
CN (1) | CN113150565B (zh) |
WO (1) | WO2022227463A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113150565B (zh) * | 2021-04-25 | 2022-09-27 | 华南理工大学 | 一种柔性导热绝缘粘性相变散热片及其制备方法与电池热管理系统 |
CN113571805A (zh) * | 2021-08-05 | 2021-10-29 | 北京工业大学 | 一种电动汽车圆柱形锂电池的蛇形通道散热器 |
CN115260996A (zh) * | 2022-08-18 | 2022-11-01 | 广东嘉拓新能源科技有限公司 | 一种柔性复合相变材料及其制备方法和电池 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003027207A1 (en) * | 2001-09-21 | 2003-04-03 | 3M Innovative Properties Company | Thermoconductive composition |
US20030220432A1 (en) * | 2002-04-15 | 2003-11-27 | James Miller | Thermoplastic thermally-conductive interface articles |
CN1580116A (zh) * | 2003-08-15 | 2005-02-16 | 台盐实业股份有限公司 | 散热界面材料组成 |
TW200505984A (en) * | 2003-08-05 | 2005-02-16 | Taiwan Salt Company | Thermal interface material composition |
US20050072334A1 (en) * | 2003-10-07 | 2005-04-07 | Saint-Gobain Performance Plastics, Inc. | Thermal interface material |
US20180079946A1 (en) * | 2010-02-23 | 2018-03-22 | Laird Technologies, Inc. | Materials including thermally reversible gels |
CN109401729A (zh) * | 2018-10-22 | 2019-03-01 | 广东工业大学 | 一种电池热管理系统用导热定型相变材料及其制备方法 |
US20190375939A1 (en) * | 2018-06-07 | 2019-12-12 | Rogers Corporation | Thermal management phase-change composition, methods of manufacture thereof, and articles containing the composition |
CN110713728A (zh) * | 2019-10-08 | 2020-01-21 | 郑州轻工业学院 | 一种石蜡-sebs热塑性弹性体复合相变材料的制备方法 |
CN111607362A (zh) * | 2020-07-01 | 2020-09-01 | 广东工业大学 | 一种高导热柔性相变材料的制备方法及电池模组 |
CN113150565A (zh) * | 2021-04-25 | 2021-07-23 | 华南理工大学 | 一种柔性导热绝缘粘性相变散热片及其制备方法与电池热管理系统 |
WO2021149078A1 (en) * | 2020-01-22 | 2021-07-29 | JAIN, Samit | A composite phase change material and its method of preparation thereof |
-
2021
- 2021-04-25 CN CN202110447141.8A patent/CN113150565B/zh active Active
- 2021-10-31 US US18/557,289 patent/US20240213580A1/en active Pending
- 2021-10-31 WO PCT/CN2021/127800 patent/WO2022227463A1/zh active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003027207A1 (en) * | 2001-09-21 | 2003-04-03 | 3M Innovative Properties Company | Thermoconductive composition |
US20030220432A1 (en) * | 2002-04-15 | 2003-11-27 | James Miller | Thermoplastic thermally-conductive interface articles |
TW200505984A (en) * | 2003-08-05 | 2005-02-16 | Taiwan Salt Company | Thermal interface material composition |
CN1580116A (zh) * | 2003-08-15 | 2005-02-16 | 台盐实业股份有限公司 | 散热界面材料组成 |
US20050072334A1 (en) * | 2003-10-07 | 2005-04-07 | Saint-Gobain Performance Plastics, Inc. | Thermal interface material |
US20180079946A1 (en) * | 2010-02-23 | 2018-03-22 | Laird Technologies, Inc. | Materials including thermally reversible gels |
US20190375939A1 (en) * | 2018-06-07 | 2019-12-12 | Rogers Corporation | Thermal management phase-change composition, methods of manufacture thereof, and articles containing the composition |
CN109401729A (zh) * | 2018-10-22 | 2019-03-01 | 广东工业大学 | 一种电池热管理系统用导热定型相变材料及其制备方法 |
CN110713728A (zh) * | 2019-10-08 | 2020-01-21 | 郑州轻工业学院 | 一种石蜡-sebs热塑性弹性体复合相变材料的制备方法 |
WO2021149078A1 (en) * | 2020-01-22 | 2021-07-29 | JAIN, Samit | A composite phase change material and its method of preparation thereof |
CN111607362A (zh) * | 2020-07-01 | 2020-09-01 | 广东工业大学 | 一种高导热柔性相变材料的制备方法及电池模组 |
CN113150565A (zh) * | 2021-04-25 | 2021-07-23 | 华南理工大学 | 一种柔性导热绝缘粘性相变散热片及其制备方法与电池热管理系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113150565B (zh) | 2022-09-27 |
CN113150565A (zh) | 2021-07-23 |
US20240213580A1 (en) | 2024-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022227463A1 (zh) | 一种柔性导热绝缘粘性相变散热片及其制备方法与电池热管理系统 | |
CN107722417B (zh) | 复合高导热缓冲辐照交联聚乙烯泡棉及其制备方法 | |
KR20020002257A (ko) | 열 전도성 시트 및 이것의 제조 방법 | |
CN115411457A (zh) | 一种锂离子电池隔膜及其制备方法和应用 | |
WO2017166955A1 (zh) | 真空袋压成型组件及真空袋压成型方法、纤维复合材料 | |
CN212231980U (zh) | 一种石墨烯-碳纳米管复合导热垫片 | |
CN104519723A (zh) | 一种石墨烯基导热片 | |
CN114539788B (zh) | 一种高焓值柔性相变复合材料薄膜及其制备方法 | |
CN109627781B (zh) | 一种有机硅石墨复合热界面材料及其制备方法和应用 | |
KR20160063821A (ko) | 간접냉각식 배터리 모듈용 계면 플레이트 및 그 제조방법 | |
CN106025289B (zh) | 一种石墨烯集流体的制备方法 | |
WO2020232773A1 (zh) | 一种高垂直导热率聚苯硫醚复合材料薄片及其制备方法 | |
WO2018129899A1 (zh) | 防爆易拆解安全的胶带及其制备方法 | |
CN212519814U (zh) | 一种pi基材相变型导热垫片 | |
CN112778562A (zh) | 一种高效导热界面材料及其制备方法、应用 | |
WO2021035649A1 (zh) | 一种树脂型相变储能材料及其制备方法 | |
CN209843694U (zh) | 一种复合导热石墨膜 | |
CN209515926U (zh) | 基于相变材料板的对置双电池组 | |
CN106752998A (zh) | 无基材导热双面胶 | |
CN115181549B (zh) | 一种基于结晶性反式橡胶的相变储能导热膜材料及其制备方法 | |
WO2021109860A1 (zh) | 氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用 | |
CN218314770U (zh) | 一种带柔性导热层的均热板 | |
CN111675880A (zh) | 一种新型软性绝缘导热垫 | |
CN116218237B (zh) | 一种石墨烯相变导热片及其制备方法 | |
CN109860945A (zh) | 基于相变材料板的对置双电池组及相变材料板的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21938926 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18557289 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21938926 Country of ref document: EP Kind code of ref document: A1 |