WO2021109860A1 - 氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用 - Google Patents

氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用 Download PDF

Info

Publication number
WO2021109860A1
WO2021109860A1 PCT/CN2020/129178 CN2020129178W WO2021109860A1 WO 2021109860 A1 WO2021109860 A1 WO 2021109860A1 CN 2020129178 W CN2020129178 W CN 2020129178W WO 2021109860 A1 WO2021109860 A1 WO 2021109860A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
film
interface material
thermal interface
preparation
Prior art date
Application number
PCT/CN2020/129178
Other languages
English (en)
French (fr)
Inventor
曾小亮
易鸣明
孙蓉
许建斌
韩猛
叶振强
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2021109860A1 publication Critical patent/WO2021109860A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/08Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties

Definitions

  • the invention belongs to the field of materials, and relates to a boron nitride film and a preparation method thereof, a boron nitride composite film containing the boron nitride film, a thermal interface material and applications.
  • the thermal interface material connects the heat source and the heat sink by filling the air gap to ensure that the heat generated by the electronic equipment can be effectively transferred from the heat source to the heat sink to achieve the heat dissipation effect. It plays an important role in the electronics industry.
  • Traditional thermal interface materials mainly refer to some polymer matrix filled with high thermal conductivity ceramic particles, such as aluminum nitride, alumina, etc.; the thermal conductivity is mostly 1-5W/mK.
  • traditional thermal interface materials have been unable to meet the heat dissipation problem caused by the increased power density.
  • Boron nitride has also become a common thermal interface material due to its extremely high thermal conductivity and high resistivity, and has been widely used to solve the heat dissipation problem of electronic devices.
  • the traditional application method is to directly blend boron nitride with the polymer matrix to achieve the effect of heat conduction enhancement.
  • the thermal conductivity of the resulting thermal interface material is difficult to exceed 10W/mK, and this very different performance is inconsistent with the ultra-high intrinsic thermal conductivity of boron nitride.
  • the thermal conductivity of low-dimensional materials such as boron nitride nanosheets and boron nitride nanotubes is anisotropic, and the traditional blending method is only that these anisotropic fillers are randomly distributed in the matrix. As a result, this anisotropic property is not used well.
  • the current use of boron nitride as a reinforcing phase to improve the thermal conductivity of thermal interface materials is mainly focused on constructing a planar orientation structure to achieve higher planar thermal conductivity.
  • the current methods for constructing the plane orientation structure of boron nitride mainly include vacuum filtration, chemical vapor deposition, etc.
  • the final orientation and thermal conductivity are not up to the ideal target.
  • CN106810877A discloses a thermally conductive interface material and its application.
  • the thermally conductive interface material is a composite material formed by a laminar filler and an organic polymer material matrix, wherein the laminar filler is arranged in an orderly and directional arrangement on the organic polymer In the material matrix, the weight percentage of the filler in the composite material is 20-90%.
  • this method can ensure the directional arrangement of the sheet-like materials, the preparation method is more complicated, and the mechanical properties cannot meet the application requirements.
  • CN106832877A discloses a method for preparing a vertically oriented boron nitride/polymer insulating and thermally conductive material.
  • the method first uses dopamine or a silane coupling agent to modify the surface of boron nitride nanosheets, and then combines the modified boron nitride Nanosheets are coated between two layers of high polymer, and then the above three layers of materials are pressed into a film with a certain thickness using a hot pressing process, and finally the above film is laminated into a block or wound into a cylinder; preparation method More complex and the mechanical properties of the final material cannot meet the application requirements.
  • the anisotropic boron nitride polymer thermal interface material does have high theoretical thermal conductivity. However, it is difficult to form a heat conduction path and has poor mechanical properties, making it difficult to use as a thermal interface material. Therefore, there is an urgent need to develop a thermal interface material in this field.
  • a flexible high-performance boron nitride-based thermal interface material that can ensure high thermal conductivity and maintain high mechanical properties.
  • the purpose of the present invention is to provide a boron nitride film and a preparation method thereof, a boron nitride composite film containing the boron nitride film, a thermal interface material, and applications.
  • the thermal interface material provided by the present invention has high thermal conductivity and excellent mechanical properties.
  • the present invention provides a boron nitride film, which is composed of two-dimensional boron nitride nanosheets and has a plane orientation.
  • the boron nitride film provided by the present invention has a plane orientation and a higher degree of orientation. Therefore, the boron nitride film provided by the present invention has a higher plane thermal conductivity.
  • the thickness of the two-dimensional boron nitride nanosheet is 100-200 nm, such as 120 nm, 150 nm nm, 180 nm, etc.
  • the size of the two-dimensional boron nitride nanosheet is 2-5 ⁇ m.
  • the size of the two-dimensional boron nitride nanosheet refers to the length of the plane sheet of the two-dimensional boron nitride nanosheet.
  • the selection of two-dimensional boron nitride nano-sheets with a smaller size can enhance the overall mechanical performance, so that the final boron nitride film has better mechanical strength. Therefore, the size of the two-dimensional boron nitride nanosheets is not unique, so the present invention is limited to the size range.
  • the thickness of the boron nitride film is 2-3 ⁇ m, for example, 2.2 ⁇ m, 2.5 ⁇ m, 2.8 ⁇ m, etc.
  • the present invention provides a preparation method of the boron nitride film according to the first aspect, the preparation method comprising: spreading two-dimensional boron nitride nanosheets on the surface of a carrier liquid at 500-700 rpm The carrier liquid was stirred at a stirring rate of, and then cooled to obtain a boron nitride film.
  • the two-dimensional boron nitride nanosheets are spread on the surface of the carrier liquid.
  • the interaction between the nanosheets makes it self-assembled on the boron nitride film.
  • the reason why the stirring rate is 500-700 rpm can help the nanosheets in the
  • the spreading of the carrier liquid can also precipitate a small amount of agglomerated boron nitride nanosheets. If the stirring rate is too high, the nanosheets cannot be kept on the surface of the carrier liquid. If the stirring rate is too low, the nanosheets cannot be completely on the surface of the carrier liquid. Spreading, leading to a large amount of agglomeration, and ultimately resulting in the inability to obtain the boron nitride film.
  • the added amount of the two-dimensional boron nitride nanosheets is 2-10 mg/cm 2 , for example, 3 mg/cm 2 , 4 mg/cm 2 , 5 mg/cm 2 , 6 mg /cm 2 , 7 mg/cm 2 , 8 mg/cm 2 , 9 mg/cm 2, etc., preferably 2 mg/cm 2 .
  • the addition amount of the two-dimensional boron nitride nanosheets allows it to be completely spread on the surface of the carrier liquid, and the final boron nitride film thickness is moderate. If the addition amount is too large, the two-dimensional nanosheets will agglomerate to form a precipitate. If the amount is too small, the two-dimensional boron nitride nanosheets cannot cover the entire liquid-carrying surface, resulting in a large distance between the nanosheets, and the boron nitride film cannot be obtained.
  • the carrier liquid is selected from deionized water.
  • the stirring time is 18-24 h, for example 19 h, 20 h h, 21 h, 22 h, 23 h, etc.
  • the stirring rate is 550 rpm.
  • the cooling is natural cooling, and the time is 0.5-2 min, for example, 0.8 min, 1 min, 1.2 min, 1.5 min, 1.8 min, etc.
  • the preparation method is: spreading the two-dimensional boron nitride nanosheets on the surface of the deionized water while keeping the oxygen in the deionized water at a saturated concentration, and stirring the deionized water at a stirring rate of 550 rpm 18-24 h. Stop stirring and cool down naturally for 0.5-2 h to obtain a boron nitride film.
  • the present invention provides an application of the boron nitride film according to the first aspect in a thermally conductive filler.
  • the boron nitride film of the present invention has a planar orientation structure and a higher degree of orientation, so its planar thermal conductivity is higher, and it can be used as a thermally conductive filler.
  • the present invention provides a boron nitride composite film, including the boron nitride film described in the first aspect and other polymer films.
  • the other polymer film is selected from any one or a combination of at least two of polyethylene film, polyvinyl chloride film or ethylene-vinyl acetate copolymer film, preferably polyethylene film.
  • the boron nitride film is composited with other polymer films.
  • other polymer films play a supporting role, and on the other hand, they play a role in providing better mechanical properties, so that the boron nitride composite film provided by the present invention has excellent Thermal conductivity, but also has excellent mechanical properties.
  • the polyethylene film, polyvinyl chloride film or ethylene-vinyl acetate copolymer film selected in the present invention all have a higher electrostatic adsorption force with the boron nitride film.
  • the polyethylene film and the boron nitride film It has a high electrostatic adsorption force and lattice matching, so compared with other polymer films, boron nitride film will be more uniformly dispersed on the surface of the polyethylene film, resulting in a high planar thermal conductivity composite membrane.
  • the boron nitride composite film includes a boron nitride film and a polyethylene film.
  • the boron nitride film and the polyethylene film are connected by electrostatic action.
  • the thickness of the boron nitride composite film is 0.0095-0.0120 mm, such as 0.010 mm, 0.011 mm, etc.
  • the thickness of the other polymer film is 7-9 nm, such as 8 nm.
  • the content of the boron nitride is 3-5%, such as 3.2%, 3.5%, 3.8%, 4%, 4.2%, 4.5%, 4.8% etc.
  • the boron nitride composite film provided by the present invention can achieve higher thermal conductivity when the content of boron nitride is low.
  • the present invention provides a preparation method of the boron nitride composite film according to the fourth aspect, characterized in that the preparation method is: polymerizing the boron nitride film according to the first aspect with other The film is attached to obtain the boron nitride composite film.
  • the present invention provides a thermal interface material, the constituent raw materials of the thermal interface material include at least one layer of the boron nitride composite film described in the fourth aspect.
  • the constituent raw materials of the thermal interface material include at least two layers of the boron nitride composite film described in the fourth aspect.
  • the thickness of the thermal interface material is 0.0095-0.08 mm, such as 0.01 mm, 0.02 mm, 0.03 mm, 0.04 mm, 0.05 mm, 0.06 mm, 0.07 mm, etc.
  • the present invention provides a preparation method of the thermal interface material according to the sixth aspect, the preparation method comprising:
  • the composition raw material of the thermal interface material includes a layer of boron nitride composite film, and the preparation method is: laminating the boron nitride film described in the first aspect with other polymer films to obtain the thermal interface material.
  • the final thermal interface material is the boron nitride composite film mentioned in the fourth aspect of the present invention.
  • the composition raw material of the thermal interface material includes at least two layers of boron nitride composite film, and the preparation method is: laminating at least two layers of the boron nitride composite film described in the fourth aspect to each other, and performing hot pressing and cooling to obtain the The thermal interface material.
  • the boron nitride layer of one of the boron nitride composite films abuts against the polyethylene layer of the other boron nitride composite film.
  • the multilayer composite films are first bonded to each other to form a manner in which the boron nitride layer and the polyethylene layer are spaced from each other, and then hot pressing is performed to obtain the thermal interface material.
  • the pressure of the hot pressing is 1-10 MPa, for example 2 MPa, 3 MPa, 4 MPa, 5 MPa, 6 MPa, 7 MPa, 8 MPa, 9 MPa, etc., more preferably 1 MPa.
  • the temperature of the hot pressing is 100-180°C, such as 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 165°C, 170°C, 175°C, etc., more preferably 160-180°C .
  • the present invention When the present invention is hot-pressed at 160-180°C, since the hot-pressing temperature is above the melting point of polyethylene, the polyethylene layers spaced apart from each other melt to form a whole, while the boron nitride film is still oriented in a plane orientation. Arranged in the thermal interface material, therefore, the final thermal interface material still has excellent thermal conductivity and mechanical properties.
  • the hot pressing time is 8-24 h, such as 8.5 h, 9 h, 9.5 h, 10 h, 12 h, 15 h, 18 h, 20 h, 22 h, etc., more preferably 8-10 h.
  • the cooling temperature is 12-25°C, such as 15°C, 20°C, etc.
  • the time is 2-3 h, such as 2.2 h, 2.4 h, 2.6 h, 2.8 h, etc.
  • the present invention provides a boron nitride film according to the first aspect, a boron nitride composite film according to the fourth aspect, or a thermal interface material according to the sixth aspect in an electronic device application.
  • the present invention has the following beneficial effects:
  • the boron nitride film provided by the present invention has a planar orientation and a higher degree of orientation. Therefore, the boron nitride film provided by the present invention has a higher planar thermal conductivity;
  • the boron nitride film is composited with other polymer films.
  • the other polymer films play a supporting role, and on the other hand, they play a role in providing better mechanical properties, so that the boron nitride composite film provided by the present invention is both Has excellent thermal conductivity, but also has excellent mechanical properties;
  • the preparation method of the present invention is simple, easy to operate, and suitable for industrial production
  • the thermal interface material of the present invention has high thermal conductivity and excellent mechanical properties. Among them, the thermal conductivity is above 3.4 W/m ⁇ K and the highest can reach above 8 W/m ⁇ K, and the tensile modulus is above Above 0.7 GPa, the highest can reach above 2 GPa.
  • FIG. 1 is an apparent morphology diagram of the boron nitride composite film provided by Preparation Example 1.
  • FIG. 2 is an apparent topography diagram of the thermal interface material provided in Example 1.
  • a boron nitride composite film the preparation method is as follows:
  • the area of the reaction vessel is 48 cm 2 , and the addition amount of the two-dimensional boron nitride nanosheets is 96 mg;
  • a polyethylene film (produced by Golux, USA, with a thickness of 10 ⁇ m) is bonded to the boron nitride film obtained in step (1) to obtain a boron nitride composite film.
  • Example 2 The difference from Example 1 is that the addition amount of the two-dimensional boron nitride nanosheets in step (1) is 200 mg (preparation example 2), 300 mg (preparation example 3), 400 mg (preparation example 4), 480 mg ( Preparation Example 5).
  • Example 1 The difference from Example 1 is that the polyethylene film is replaced with a polyvinyl chloride film of the same thickness (Gloss, 10 ⁇ m, Preparation Example 8), and an ethylene-vinyl acetate copolymer film (Gloss, 10 ⁇ m, Preparation Example 9). ).
  • Preparation Example 2 The difference from Preparation Example 1 is that the size of the two-dimensional boron nitride nanosheets is 5-10 ⁇ m (Comparative Preparation Example 2) and 15-25 ⁇ m (Comparative Preparation Example 3).
  • Preparation Example 1 The difference from Preparation Example 1 is that the addition amount of the two-dimensional boron nitride nanosheets is 85 mg (Comparative Preparation Example 6) and 550 mg (Comparative Preparation Example 7).
  • Figure 1 is the apparent morphology of the boron nitride composite film provided by Preparation Example 1 (the part with certain transparency in the middle of the figure is the boron nitride composite film). It can be seen from the figure that the composite film has a good surface morphology and has a certain With high transparency, the plants behind can be observed through the film, and the distribution of boron nitride is even.
  • Thickness use spiral micrometer to measure its thickness
  • the boron nitride composite film provided by the present invention has better film-forming properties, and the obtained film has a certain degree of transparency.
  • preparation examples 2-7 can all be formed, but there is a small amount of agglomeration in the film obtained in preparation example 2-6, and a small amount of boron nitride defects exist in the middle of the film in preparation example 7. .
  • Comparative Preparation Example 7 has a small amount of film formation, but a large amount of agglomeration and precipitation occurs, so it is judged as no film formation .
  • thermo interface material the preparation method is as follows:
  • the five-layer boron nitride composite film obtained in Preparation Example 1 was attached to each other to ensure the spacing distribution of the polyethylene layer and the boron nitride layer, and then hot-pressed at 160°C and 1MPa for 10 h to obtain a thermal interface material with a thickness of 70 ⁇ m.
  • Example 1 The difference from Example 1 is that the boron nitride composite film provided in Preparation Example 1 is replaced with the boron nitride composite film provided in Preparation Examples 2-7.
  • Example 8 The difference from Example 1 is that the hot pressing temperature of this example is 180°C (Example 8), 100°C (Example 9), 80°C (Example 10), and 190°C (Example 11).
  • the two-dimensional boron nitride nanosheets and polyethylene were melted and blended according to the weight ratio in Preparation Example 1 (boron nitride 3 wt%), and hot-pressed to obtain a thermal interface material with the same thickness as in Example 1.
  • the thermal interface material is prepared by the same method of alumina nanosheet and polyethylene by LB method
  • the mass percentage of alumina nanosheets is 3%.
  • thermal interface materials provided in Examples 1-11 and Comparative Examples 1-2 were characterized by the following methods:
  • Figure 2 is the apparent morphology of the thermal interface material provided in Example 1 (the part with a certain transparency in the middle of the figure is the boron nitride composite film). It can be seen from the figure that the thermal interface material has a good surface morphology and has a certain Transparency, the plants behind can be observed through the film.
  • Tensile modulus use a universal stretching machine (RGM-6001Z-2) for testing, the test conditions are: 2 mm/min, 25°C;
  • Thickness use spiral micrometer to measure
  • Example 1 70 8.5 2.0
  • Example 2 76 7.6 1.3
  • Example 3 84 7.3 0.9
  • Example 4 88 7.2 0.8
  • Example 5 92 7.2 0.8
  • Example 6 72 8.3 1.8
  • Example 8 56 6.2 0.8
  • Example 9 80 4.2 2.1
  • Example 10 92 3.4 2.2
  • Example 11 47 5.9 0.7 Comparative example 1 70 1.2 0.7 Comparative example 2 70 6.5 1.3
  • Example 1 and Example 2-5 it can be seen from the comparison between Example 1 and Example 2-5 that in the process of preparing the boron nitride film of the present invention, when the addition amount of the two-dimensional boron nitride nanosheets is 2 mg/cm 2 , the final thermal interface material is The thermal conductivity and mechanical properties are the best; from the comparison between Example 1 and Examples 6-7, it can be seen that when the stirring rate is 550 rpm, the thermal interface material finally obtained has the best thermal conductivity and mechanical properties; from Example 1 and implementation
  • the comparison of Examples 8-11 shows that when the hot pressing temperature is 160°C, the thermal interface material finally obtained has better thermal conductivity and mechanical properties; from the comparison of Example 1 and Comparative Example 1, it can be seen that the preparation method provided by the present invention is adopted The prepared thermal interface material has more excellent thermal conductivity and mechanical properties; from the comparison between Example 1 and Comparative Example 2, it can be seen that the thermal interface material finally obtained by using the boron nitride film provided by the present invention has better thermal
  • the present invention uses the above-mentioned embodiments to illustrate the boron nitride film and the preparation method thereof, the boron nitride composite film containing the boron nitride film, the thermal interface material and the application thereof, but the present invention is not limited to the above-mentioned process steps. That is to say, it does not mean that the present invention must rely on the above process steps to be implemented.
  • any improvement of the present invention, the equivalent replacement of the raw materials selected in the present invention, the addition of auxiliary components, the selection of specific methods, etc. fall within the scope of protection and disclosure of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用,所述氮化硼膜由二维氮化硼纳米片组成,具有平面取向。本发明的热界面材料具有较高的导热性能以及优异的机械性能。

Description

氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用 技术领域
本发明属于材料领域,涉及一种氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用。
背景技术
热界面材料以填充空气间隙的方式连接热源与热沉,保证电子设备在工作时产生的热量能够有效地从热源转移于热沉上以达到散热效果,在电子工业中扮演着重要的角色。传统的热界面材料主要是指一些高分子基体填充以高导热陶瓷颗粒,如氮化铝、氧化铝等;热导率大多为1-5W/mK。但是随着电子工业的快速发展,传统的热界面材料已经难以满足随之提升的功率密度带来的散热问题。
氮化硼由于其极高的热导率以及高电阻率,也成为了一种常见的热界面材料,现已被广泛用于解决电子器件的散热问题。对于热界面材料,传统的应用方式是将氮化硼直接共混与高分子基体以达到导热增强的效果。然而,所得到的热界面材料的热导率难以超过10W/mK,这种大相径庭的表现与氮化硼超高的本征热导率不符。这主要是因为像氮化硼纳米片和氮化硼纳米管这类低维材料的热导率是各向异性的,而传统的共混方式仅仅是这些各向异性填料随机分布于基体中,导致没有很好的利用这种各向异性特性。为了提高这种各向异性导热率的利用率,目前以氮化硼作为增强相来提高热界面材料的导热性能主要集中于构筑平面取向结构以达到较高的平面热导率。
目前构筑氮化硼平面取向结构的方式主要有真空抽滤,化学气相沉积法等,但是由于氮化硼自身极难分散的特性,导致最终得到的取向性以及热导率均达不到理想目标,目前制备高导热的各向异性氮化硼高分子材料仍是一个很大的难题。
此外,随着可穿戴电子产品的发展,柔性导热材料受到了越来越多的关注。柔性导热材料可以自由弯曲、卷绕、折叠,大大缩小电子产品的体积,是满足电子产品小型化和移动要求的唯一解决办法。在未来,柔性导热材料的市场需求将急剧增加。传统的导热复合材料多为环氧热塑性体,固化成型后没有柔性,无法满足可穿戴电子产品的需求。
CN106810877A公开了一种导热界面材料及其应用,该导热界面材料是由片层状填料和有机高分子材料基体形成的复合材料,其中,所述片层状填料有序定向排布于有机高分子材料基体中,所述填料在复合材料中所占的重量百分比为20-90%。该方法虽然可以保证片状材料定向排布,但是制备方法较复杂,并且机械性能无法满足应用要求。CN106832877A公开了一种垂直取向氮化硼/高聚物绝缘导热材料的制备方法,该方法首先使用多巴胺或硅烷偶联剂对氮化硼纳米片进行表面修饰,然后将上述修饰后的氮化硼纳米片涂覆在两层高聚物中间,再利用热压工艺将上述三层材料压成一定厚度的薄膜,最后将上述薄膜叠层成块体或者将其卷绕成一个圆柱体;制备方法较复杂且最后材料的机械性能无法满足应用要求。
综上,各向异性氮化硼高分子热界面材料的确拥有较高的理论导热性能,但是由于难以形成导热路径且机械性能欠佳,难以作为热界面材料使用,因此本领域亟需开发一种既能保证高导热、又能维持高机械性能的柔性高性能氮化硼基热界面材料。
技术问题
本发明的目的在于提供一种氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用。本发明提供的热界面材料具有较高的热导率并且机械性能优异。
技术解决方案
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供了一种氮化硼膜,所述氮化硼膜由二维氮化硼纳米片组成,具有平面取向。
本发明提供的氮化硼膜具有平面取向,取向度较高,因此,本发明提供的氮化硼膜具有较高的平面导热率。
在本发明中,所述二维氮化硼纳米片的厚度为100-200 nm,例如120 nm、150 nm、180 nm等。
优选地,所述二维氮化硼纳米片的尺寸为2-5 μm。
所述二维氮化硼纳米片的尺寸指的是二维氮化硼纳米片的平面片层长度。
本发明选用尺寸较小的二维氮化硼纳米片能增强整体机械性能,使最后的氮化硼膜拥有较好的机械强度。因此二维氮化硼纳米片的尺寸不唯一,所以本发明限定为尺寸范围。
优选地,所述氮化硼膜的厚度为2-3 μm,例如2.2 μm、2.5 μm、2.8 μm等。
第二方面,本发明提供了一种根据第一方面所述的氮化硼膜的制备方法,所述制备方法包括:将二维氮化硼纳米片在载液表面铺展,在500-700 rpm的搅拌速率下搅拌载液,然后冷却,得到氮化硼膜。
二维氮化硼纳米片在载液表面铺展,纳米片间的相互作用使其自组装在氮化硼薄膜,之所以在500-700 rpm的搅拌速率下搅拌,此搅拌速率可以帮助纳米片在载液的铺展,又可以使少量已经团聚的氮化硼纳米片沉淀,若搅拌速率过大,则纳米片无法保持在载液表面,若搅拌速率过小,则纳米片无法在载液表面完全铺展,而导致大量团聚,最终导致无法得到氮化硼膜。
优选地,以载液所铺展的面积计,所述二维氮化硼纳米片的加入量为2-10 mg/cm 2,例如3mg/cm 2、4mg/cm 2、5mg/cm 2、6mg/cm 2、7mg/cm 2、8mg/cm 2、9mg/cm 2等,优选2 mg/cm 2
二维氮化硼纳米片的加入量使其可以完全在载液表面铺展,且最后的得到的氮化硼膜厚度适中,若加入量过大,则二维纳米片大量团聚形成沉淀,若加入量过少,则二维氮化硼纳米片无法铺满整个载液面,导致纳米片之间间距较大,无法得到氮化硼膜。
优选地,所述载液选自去离子水。
优选地,所述搅拌的时间为18-24 h,例如19 h、20 h、21 h、22 h、23 h等。
优选地,所述搅拌速率为550 rpm。
优选地,所述冷却为自然冷却,时间为0.5-2 min,例如0.8 min、1 min、1.2 min、1.5 min、1.8 min等。
优选地,所述制备方法为:保持去离子水中氧气在饱和浓度的情况下,将二维氮化硼纳米片在去离子水表面铺展,在550 rpm的搅拌速率下搅拌去离子水18-24 h,停止搅拌,自然冷却0.5-2 h,得到氮化硼膜。
第三方面,本发明提供了一种根据第一方面所述的氮化硼膜在导热填料中的应用。
本发明的氮化硼膜具有平面取向结构,取向度较高,因此其平面热导率较高,可用作导热填料。
第四方面,本发明提供了一种氮化硼复合膜,包括第一方面所述的氮化硼膜和其他聚合物膜。
其中,所述其他聚合物膜选自聚乙烯膜、聚氯乙烯膜或乙烯-醋酸乙烯共聚物膜中的任意一种或至少两种的组合,优选聚乙烯膜。
氮化硼膜与其他聚合物膜复合,其他聚合物膜一方面起到支撑作用,另一方面起到提供较优异的机械性能的作用,使本发明提供的氮化硼复合膜既具有优异的导热性能,同时还具有优异的力学性能。
本发明选用的聚乙烯膜、聚氯乙烯膜或乙烯-醋酸乙烯共聚物膜均与氮化硼膜具有较高的静电吸附力,当优选聚乙烯膜时,由于聚乙烯膜与氮化硼膜之间具有很高的静电吸附力以及晶格匹配度,因此相比于其他高分子膜,氮化硼膜会更加均匀的分散在聚乙烯膜表面,从而得到很高的平面热导率的复合膜。
优选地,所述氮化硼复合膜包括氮化硼膜和聚乙烯膜。
优选地,所述氮化硼膜和聚乙烯膜通过静电作用连接。
优选地,所述氮化硼复合膜的厚度为0.0095-0.0120 mm,例如0.010 mm、0.011 mm等。
优选地,所述其他聚合物膜的厚度为7-9 nm,例如8 nm等。
优选地,以所述氮化硼复合膜的总质量100%计,所述氮化硼的含量为3-5%,例如3.2%、3.5%、3.8%、4%、4.2%、4.5%、4.8%等。
本发明提供的氮化硼复合膜可以在氮化硼含量较低的情况下实现较高的热导率。
第五方面,本发明提供了一种根据第四方面所述的氮化硼复合膜的制备方法,其特征在于,所述制备方法为:将第一方面所述的氮化硼膜与其他聚合物膜贴合,得到所述氮化硼复合膜。
由于氮化硼和聚乙烯、聚氯乙烯等之间具有很强的静电作用,因此,将氮化硼膜粘附在聚乙烯膜上时,二者就会因为静电作用自组装在一起,得到氮化硼复合膜。
第六方面,本发明提供了一种热界面材料,所述热界面材料的组成原料包括至少一层第四方面所述的氮化硼复合膜。
优选地,所述热界面材料的组成原料包括至少两层第四方面所述的氮化硼复合膜。
优选地,所述热界面材料的厚度为0.0095-0.08 mm,例如0.01 mm、0.02 mm、0.03 mm、0.04 mm、0.05 mm、0.06 mm、0.07 mm等。
第七方面,本发明提供了一种根据第六方面所述的热界面材料的制备方法,所述制备方法包括:
所述热界面材料的组成原料包括一层氮化硼复合膜,制备方法为:将第一方面所述的氮化硼膜与其他聚合物膜贴合,得到所述热界面材料。
当只包括一层氮化硼复合膜时,最后的热界面材料即为本发明第四方面提到的氮化硼复合膜。
所述热界面材料的组成原料包括至少两层氮化硼复合膜,制备方法为:将至少两层第四方面所述的氮化硼复合膜相互贴合,并进行热压、冷却,得到所述热界面材料。
其中,相邻两层氮化硼复合膜中,其中一个氮化硼复合膜的氮化硼层抵接于另一个氮化硼复合膜的聚乙烯层。
当包括至少两层氮化硼复合膜时,先将多层复合膜相互贴合,形成氮化硼层和聚乙烯层相互间隔的方式,然后在进行热压,得到热界面材料。
优选地,所述热压的压力为1-10 MPa,例如2 MPa、3 MPa、4 MPa、5 MPa、6 MPa、7 MPa、8 MPa、9 MPa等,进一步优选1 MPa。
优选地,所述热压的温度为100-180℃,例如110℃、120℃、130℃、140℃、150℃、160℃、165℃、170℃、175℃等,进一步优选160-180℃。
本发明在160-180℃进行热压时,由于热压温度在聚乙烯熔点以上,因此,相互间隔的聚乙烯层熔融得到一个整体,而此时的氮化硼膜依旧以平面取向的方式定向排布于热界面材料中,因此,最后得到的热界面材料依旧具有优异的热导率以及机械性能。
优选地,所述热压的时间为8-24 h,例如8.5 h、9 h、9.5 h、10 h、12 h、15 h、18 h、20 h、22 h等,进一步优选8-10 h。
优选地,所述冷却的温度为12-25℃,例如15℃、20℃等,时间为2-3 h,例如2.2 h、2.4 h、2.6 h、2.8 h等。
第八方面,本发明提供了一种根据第一方面所述的氮化硼膜、根据第四方面所述的氮化硼复合膜或根据第六方面所述的热界面材料在电子器件中的应用。
有益效果
相对于现有技术,本发明具有以下有益效果:
(1)本发明提供的氮化硼膜具有平面取向,取向度较高,因此,本发明提供的氮化硼膜具有较高的平面导热率;
(2)氮化硼膜与其他聚合物膜复合,其他聚合物膜一方面起到支撑作用,另一方面起到提供较优异的机械性能的作用,使本发明提供的氮化硼复合膜既具有优异的导热性能,同时还具有优异的力学性能;
(3)本发明的制备方法简单,容易操作,适合工业化生产;
(4)本发明的热界面材料具有较高的导热性能以及优异的机械性能,其中,导热系数在3.4 W/m·K以上,最高可达8 W/m·K以上,拉伸模量在0.7 GPa以上,最高可达2 GPa以上。
附图说明
图1是制备例1提供的氮化硼复合膜的表观形貌图。
图2是实施例1提供的热界面材料的表观形貌图。
本发明的实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
制备例1
一种氮化硼复合膜,制备方法如下:
(1)在去离子水中通入氧气,保持去离子水中氧气在饱和浓度的情况下,将96 mg二维氮化硼纳米片(厚度为100 nm,尺寸为2-5 μm)在去离子水表面铺展,在550 rpm的搅拌速率下搅拌去离子水24 h,停止搅拌,自然冷却2 min,将下层沉降的氮化硼以及去离子水去除,得到氮化硼膜;
其中,反应容器面积为48 cm 2,二维氮化硼纳米片的添加量为96 mg;
(2)将聚乙烯膜(美国高乐士公司生产,厚度为10 μm)与步骤(1)得到的氮化硼膜贴合,得到氮化硼复合膜。
制备例2-5
与实施例1的区别在于,步骤(1)二维氮化硼纳米片的添加量为200 mg(制备例2)、300 mg(制备例3)、400 mg(制备例4)、480 mg(制备例5)。
制备例6-7
与制备例1的区别在于,搅拌速率为500 rpm(制备例6)、700 rpm(制备例7)。
制备例8-9
与实施例1的区别在于,将聚乙烯膜替换为同等厚度的聚氯乙烯膜(高乐士, 10μm,制备例8)、乙烯-醋酸乙烯共聚物膜(高乐士, 10μm,制备例9)。
对比制备例1
与制备例1的区别在于,载液为乙醇。
对比制备例2-3
与制备例1的区别在于,二维氮化硼纳米片的尺寸为5-10 μm(对比制备例2)、15-25 μm(对比制备例3)。
对比制备例4-5
与制备例1的区别在于,搅拌速率为400 rpm(对比制备例4)、800 rpm(对比制备例5)。
对比制备例6-7
与制备例1的区别在于,二维氮化硼纳米片的添加量为85 mg(对比制备例6)、550 mg(对比制备例7)。
在对比制备例1-7中,均无法成膜。
性能测试1
对制备例1-9和对比制备例1-7提供的氮化硼膜进行性能表征,方法如下:
(1)表观形貌:目测;
图1为制备例1提供的氮化硼复合膜的表观形貌图(图中间具有一定透明度部分为氮化硼复合膜),由图可知,复合膜具有较好的表面形貌,具有一定的透明度,可以透过薄膜观察到后方的植物,并且氮化硼分布均匀。
(2)厚度:利用螺旋测微器测量其厚度;
测试结果见表1:
表1
样品 厚度/μm 样品 厚度/μm
制备例1 11 制备例9 10
制备例2 13 对比制备例1 -
制备例3 14 对比制备例2 -
制备例4 17 对比制备例3 -
制备例5 17 对比制备例4 -
制备例6 10 对比制备例5 -
制备例7 10 对比制备例6 -
制备例8 10 对比制备例7 -
由实施例和性能测试可知,本发明提供的氮化硼复合膜具有较好的成膜性,并且得到的膜具有一定的透明度。
在最后得到的氮化硼复合膜中,制备例2-7均可以成膜,但是制备例2-6中得到的膜中存在少量团聚现象,制备例7中的膜中间存在少量氮化硼缺陷。
由制备例1和对比制备例1-7的对比可知,不在本发明的限定范围内,均无法成膜;对比制备例7有少量成膜,但是出现大量团聚并沉淀,因此判定为不成膜。
实施例1
一种热界面材料,制备方法如下:
将制备例1得到的5层氮化硼复合膜相互贴合,保证聚乙烯层和氮化硼层间隔分布,然后在160℃、1MPa的条件下热压10 h,得到热界面材料,厚度为70μm。
实施例2-7
与实施例1的区别在于,将制备例1提供的氮化硼复合膜替换为制备例2-7提供的氮化硼复合膜。
实施例8-11
与实施例1的区别在于,本实施例的热压温度为180℃(实施例8)、100℃(实施例9)、80℃(实施例10)、190℃(实施例11)。
对比例1
将二维氮化硼纳米片与聚乙烯熔融按制备例1中的重量比共混(氮化硼3 wt%),热压得到热界面材料,厚度与实施例1相同。
对比例2
将氧化铝纳米片与聚乙烯采用相同方法进行LB法制备得到热界面材料
其中,在热界面材料中,氧化铝纳米片的质量百分含量为3%。
性能测试2
对实施例1-11和对比例1-2提供的热界面材料进行性能表征,方法如下:
(1)表观形貌:目测;
图2为实施例1提供的热界面材料的表观形貌图(图中间具有一定透明度部分为氮化硼复合膜),由图可知,热界面材料具有较好的表面形貌且具有一定的透明度,可以透过薄膜观察到后方的植物。
(2)导热系数:利用激光热导仪进行测试,30℃,3闪射点;
(3)拉伸模量:利用万能拉伸机(RGM-6001Z-2)进行测试,测试条件为;2 mm/min,25℃;
(4)厚度:利用螺旋测微器进行测量;
测试结果见表2:
表2
样品 厚度/mm 导热系数(W/m·K) 拉伸模量/GPa
实施例1 70 8.5 2.0
实施例2 76 7.6 1.3
实施例3 84 7.3 0.9
实施例4 88 7.2 0.8
实施例5 92 7.2 0.8
实施例6 72 8.3 1.8
实施例7 62 7.0 1.9
实施例8 56 6.2 0.8
实施例9 80 4.2 2.1
实施例10 92 3.4 2.2
实施例11 47 5.9 0.7
对比例1 70 1.2 0.7
对比例2 70 6.5 1.3
由实施例和性能测试可知,具有较高的导热性能以及优异的机械性能,其中,导热系数在3.4W/m·K以上,最高可达8W/m·K以上,拉伸模量在0.7 GPa以上,最高可达2 GPa以上。
由实施例1和实施例2-5的对比可知,本发明在制备氮化硼膜过程中,二维氮化硼纳米片的加入量为2 mg/cm 2时,最后得到的热界面材料的导热性能和力学性能最佳;由实施例1和实施例6-7的对比可知,当搅拌速率为550rpm时,最后得到的热界面材料的导热性能和力学性能最佳;由实施例1和实施例8-11的对比可知,当热压温度为160℃时,最后得到的热界面材料的导热性能和力学性能较好;由实施例1和对比例1对比可知,采用本发明提供的制备方法制备得到的热界面材料具有更优异的导热性能和力学性能;由实施例1和对比例2的对比可知,使用本发明提供的氮化硼膜最后得到的热界面材料具有较优的导热系数。
申请人声明,本发明通过上述实施例来说明本发明的氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种氮化硼膜,其特征在于,所述氮化硼膜由二维氮化硼纳米片组成。
  2. 根据权利要求1所述的氮化硼膜,其特征在于,所述二维氮化硼纳米片的厚度为100-200 nm;
    优选地,所述二维氮化硼纳米片的尺寸为2-5 μm;
    优选地,所述氮化硼膜的厚度为2-3 μm。
  3. 根据权利要求1或2所述的氮化硼膜的制备方法,其特征在于,所述制备方法包括:将二维氮化硼纳米片在载液表面铺展,在500-700 rpm的搅拌速率下搅拌载液,然后冷却,得到氮化硼膜。
  4. 根据权利要求3所述的制备方法,其特征在于,以载液所铺展的面积计,所述二维氮化硼纳米片的加入量为2-10 mg/cm 2,优选2 mg/cm 2
    优选地,所述载液选自去离子水;
    优选地,所述搅拌的时间为18-24 h;
    优选地,所述搅拌速率为550 rpm;
    优选地,所述冷却为自然冷却,时间为0.5-2 min;
    优选地,所述制备方法为:保持去离子水中氧气在饱和浓度的情况下,将二维氮化硼纳米片在去离子水表面铺展,在550 rpm的搅拌速率下搅拌去离子水18-24 h,停止搅拌,自然冷却0.5-2 min,得到所述氮化硼膜。
  5. 根据权利要求1或2所述的氮化硼膜在导热填料中的应用。
  6. 一种氮化硼复合膜,其特征在于,包括权利要求1或2所述的氮化硼膜和其他聚合物膜;
    其中,所述其他聚合物膜选自聚乙烯膜、聚氯乙烯膜或乙烯-醋酸乙烯共聚物膜中的任意一种或至少两种的组合,优选聚乙烯膜;
    优选地,所述氮化硼复合膜包括氮化硼膜和聚乙烯膜;
    优选地,所述氮化硼膜和聚乙烯膜通过静电作用连接;
    优选地,所述氮化硼复合膜的厚度为0.0095-0.0120 mm;
    优选地,所述其他聚合物膜的厚度为7-9 nm;
    优选地,以所述氮化硼复合膜的总质量100%计,所述氮化硼的含量为3-5%。
  7. 根据权利要求6所述的氮化硼复合膜的制备方法,其特征在于,所述制备方法为:将权利要求1或2所述的氮化硼膜与其他聚合物膜贴合,得到所述氮化硼复合膜。
  8. 一种热界面材料,其特征在于,所述热界面材料的组成原料包括至少一层权利要求6所述的氮化硼复合膜;
    优选地,所述热界面材料的组成原料包括至少两层权利要求6所述的氮化硼复合膜;
    优选地,所述热界面材料的厚度为0.0095-0.08 mm。
  9. 根据权利要求8所述的热界面材料的制备方法,其特征在于,所述制备方法包括:
    所述热界面材料的组成原料包括一层氮化硼复合膜,制备方法为:将权利要求1或2所述的氮化硼膜与其他聚合物膜贴合,得到所述热界面材料;
    所述热界面材料的组成原料包括至少两层氮化硼复合膜,制备方法为:将至少两层权利要求6所述的氮化硼复合膜相互贴合,并进行热压、冷却,得到所述热界面材料;
    其中,相邻两层氮化硼复合膜中,其中一个氮化硼复合膜的氮化硼层抵接于另一个氮化硼复合膜的聚乙烯层;
    优选地,所述热压的压力为1-10 MPa,进一步优选1 MPa;
    优选地,所述热压的温度为100-180℃,进一步优选160-180℃;
    优选地,所述热压的时间为8-24 h,进一步优选8-10 h;
    优选地,所述冷却的温度为12-25℃,时间为2-3 h。
  10. 根据权利要求1或2所述的氮化硼膜、根据权利要求6所述的氮化硼复合膜或根据权利要求8所述的热界面材料在电子器件中的应用。
PCT/CN2020/129178 2019-12-05 2020-11-16 氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用 WO2021109860A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911234121.1 2019-12-05
CN201911234121.1A CN112918030B (zh) 2019-12-05 2019-12-05 一种具有平面取向的氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用

Publications (1)

Publication Number Publication Date
WO2021109860A1 true WO2021109860A1 (zh) 2021-06-10

Family

ID=76161243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129178 WO2021109860A1 (zh) 2019-12-05 2020-11-16 氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用

Country Status (2)

Country Link
CN (1) CN112918030B (zh)
WO (1) WO2021109860A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115895262B (zh) * 2022-05-19 2023-07-18 华中科技大学 一种竖直取向结构热界面材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104844066A (zh) * 2015-03-27 2015-08-19 中国科学院深圳先进技术研究院 氮化硼纸及其制备方法
CN106744735A (zh) * 2017-04-07 2017-05-31 厦门大学 一种二维超薄氮化硼纳米片的制备方法
CN106832877A (zh) * 2016-12-26 2017-06-13 北京大学 一种垂直取向氮化硼/高聚物绝缘导热材料的制备方法
US20180230290A1 (en) * 2017-02-10 2018-08-16 E I Du Pont De Nemours And Company Thermally conductive polymer composition
CN109181301A (zh) * 2018-07-21 2019-01-11 上海大学 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278737B2 (ja) * 2008-10-24 2013-09-04 住友電気工業株式会社 放熱材料の製造方法
KR101634160B1 (ko) * 2013-09-06 2016-06-28 한국과학기술원 육방정 질화붕소 나노시트/세라믹 나노 복합 분말 및 그의 제조 방법, 및 육방정 질화붕소/세라믹 나노 복합 소재 및 그의 제조 방법
JP6284019B2 (ja) * 2014-04-03 2018-02-28 株式会社豊田中央研究所 窒化ホウ素ナノシート含有分散液及びその製造方法、窒化ホウ素ナノシート複合体及びその製造方法
US10049817B2 (en) * 2015-06-19 2018-08-14 University Of Connecticut Dielectric materials using 2D nanosheet network interlayer
CN106629688B (zh) * 2016-12-29 2019-12-03 复旦大学 温敏聚离子液体水相剥离二维材料及其应用
CN108556426B (zh) * 2017-04-21 2019-11-15 王建锋 一种无机纳米片/塑料叠层阻隔薄膜的制备方法
CN106947436B (zh) * 2017-05-10 2022-10-14 中国科学院宁波材料技术与工程研究所 一种热界面材料及其制备和应用
CN108819400B (zh) * 2018-06-26 2021-05-04 青岛科技大学 一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法
CN109913185B (zh) * 2019-03-11 2021-05-04 中国科学院合肥物质科学研究院 一种含导热膜的多层结构导热复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104844066A (zh) * 2015-03-27 2015-08-19 中国科学院深圳先进技术研究院 氮化硼纸及其制备方法
CN106832877A (zh) * 2016-12-26 2017-06-13 北京大学 一种垂直取向氮化硼/高聚物绝缘导热材料的制备方法
US20180230290A1 (en) * 2017-02-10 2018-08-16 E I Du Pont De Nemours And Company Thermally conductive polymer composition
CN106744735A (zh) * 2017-04-07 2017-05-31 厦门大学 一种二维超薄氮化硼纳米片的制备方法
CN109181301A (zh) * 2018-07-21 2019-01-11 上海大学 一种掺杂量子点功能化氮化硼聚合物导热复合膜及制备方法

Also Published As

Publication number Publication date
CN112918030A (zh) 2021-06-08
CN112918030B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
Ma et al. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: A review
Zhang et al. A facile method to prepare flexible boron nitride/poly (vinyl alcohol) composites with enhanced thermal conductivity
Hu et al. An aqueous-only, green route to exfoliate boron nitride for preparation of high thermal conductive boron nitride nanosheet/cellulose nanofiber flexible film
Zhang et al. Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites
Ma et al. Nanofibrillated Cellulose/MgO@ rGO composite films with highly anisotropic thermal conductivity and electrical insulation
Yang et al. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation
Li et al. Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability
Jiang et al. BN@ PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities
WO2021056851A1 (zh) 一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料
WO2018205924A1 (zh) 一种热界面材料及其制备和应用
CN110951254A (zh) 氮化硼复合高导热绝缘高分子复合材料及其制备方法
TWI470010B (zh) A heat-conductive sheet, a method for manufacturing the same, and a heat radiating device using a heat-conducting sheet
CN108819388B (zh) 一种多层取向导热绝缘复合材料及其制备方法和用途
WO2022056974A1 (zh) 绝缘聚乙烯醇复合导热薄膜及其制备方法
Raza et al. Effect of boron nitride addition on properties of vapour grown carbon nanofiber/rubbery epoxy composites for thermal interface applications
JP2014239227A (ja) 熱伝導シート、その製造方法及びこれを用いた放熱装置
Li et al. Improving thermal conductivity of poly (vinyl alcohol) composites by using functionalized nanodiamond
Li et al. Facile fabrication of flexible layered GO/BNNS composite films with high thermal conductivity
Wei et al. Constructing a “Pearl-Necklace-Like” architecture for enhancing thermal conductivity of composite films by electrospinning
Shang et al. High thermal conductivity of self‐healing polydimethylsiloxane elastomer composites by the orientation of boron nitride nano sheets
WO2021109860A1 (zh) 氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用
Song et al. Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites
Wang et al. Improving thermal conductivity of ethylene-vinyl acetate composites by covalent bond-connected carbon nanotubes@ boron nitride hybrids
KR20180116229A (ko) 2차원 열전도성 물질 및 이의 용도
Hu et al. Thermal management performance of polyvinyl alcohol composite with boron phosphide decorated reduced graphene oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895770

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20895770

Country of ref document: EP

Kind code of ref document: A1