CN108819400B - 一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法 - Google Patents

一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法 Download PDF

Info

Publication number
CN108819400B
CN108819400B CN201810666100.6A CN201810666100A CN108819400B CN 108819400 B CN108819400 B CN 108819400B CN 201810666100 A CN201810666100 A CN 201810666100A CN 108819400 B CN108819400 B CN 108819400B
Authority
CN
China
Prior art keywords
free energy
heat
gibbs free
preparing
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810666100.6A
Other languages
English (en)
Other versions
CN108819400A (zh
Inventor
滕超
刘健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201810666100.6A priority Critical patent/CN108819400B/zh
Publication of CN108819400A publication Critical patent/CN108819400A/zh
Application granted granted Critical
Publication of CN108819400B publication Critical patent/CN108819400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及导热材料的制备,属于材料加工领域。一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法,使二维纳米材料分散液平面液膜内部的二维纳米材料定向排列,固化为成各向异性薄膜,叠加后热压成型,得到各向异性的导热块体材料。内部二维纳米粒子热震荡传热效率更高,速度更快。特别是在温差较高时,相比于其它内部纳米颗粒无序排列的导热材料,本发明制备的块体导热材料能够降低微观层面二维纳米颗粒的横向无效热震动,提高纳米粒子的纵向热震荡频率,提升热传递效率,其热传递系数达到5300W/(m·K)。

Description

一种利用吉布斯自由能诱导制备各向异性导热块体材料的 方法
技术领域
本发明涉及导热材料的制备,尤其涉及一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法。
背景技术
随着信息时代的发展,集成电子设备成为信息化的物质基础。集成电路内在厘米级别的空间范围内集成百万级别的逻辑电门进行快速计算,单位功率密度非常高,电能向热能的转化速率快,单位时间集成电路发热量大,升温迅速。如不及时移除集成电路内部产生的大量热能,会极大降低其运行效率和使用寿命,甚至会产生爆炸或烧毁。
现有技术中多采用导热硅材料进行散热,将集成电路内部产生的热量经过散热硅材料传递给散热板,进而经过水冷或风冷将热量排出集成电路。
但硅材料存在容易老化脱落、导热性能不显著,无法有效给3D堆栈结构封装的芯片散热,不能适应技术的进一步发展。
因此,一种高效导热块体材料的制备,是导热散热材料适应3D堆栈封装等新型芯片散热问题的关键。
发明内容
本发明所要解决的技术问题是提供一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法,解决现有导热材料导热效率底下的问题。
技术方案
一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法,包括:
步骤1.配制二维纳米材料分散液;
步骤2.将二维纳米材料分散液铺展成平面液膜,利用材料体系吉布斯自由能最低原理,自诱导二维纳米材料定向排列,形成均一稳定的平面液膜;
步骤3.将平面液膜固化,以使膜内部有序排列的二维纳米材料颗粒位置彼此固定,形成微观层面有序排列的各向异性薄膜;
步骤4.将各向异性薄膜叠加后热压成型,得到导热块体材料。
进一步,所述二维纳米材料分散液包括二维材料、高分子材料、分散剂、溶剂;
进一步,所述二维材料任意选自氮化硼、石墨烯、黑磷、二硒化钼、二硫化钨等二维纳米颗粒中的一种或多种;
进一步,二维纳米材料分散液中二维材料浓度为0.001mg/mL~200mg/mL;
进一步,所述二维纳米材料分散液中分散剂的含量是0~30wt%;
进一步,步骤1中自诱导平面液膜内部的二维纳米材料定向排列的温度为-78℃~5℃;
进一步,所述高分子材料选自聚乙烯醇、聚乙二醇、聚偏氟乙稀、聚对苯二甲酸乙二醇酯、聚丙烯、聚氨酯、聚酰亚胺、聚碳酸酯、聚四氟乙烯、凯夫拉纤维、聚乙烯、聚苯乙烯、聚对苯撑苯并二噁唑纤维、天然橡胶、丁基橡胶、丁苯橡胶、硅橡胶、环氧树脂、丙烯酸酯、酚醛树脂、聚醚醚酮、聚砜、聚苯硫醚、氨纶、腈纶、聚酯纤维、维尼纶等中的一种或多种;
进一步,所述分散剂任意选自胆酸钠、十二烷基苯磺酸钠、对苯乙烯磺酸钠、聚对苯乙烯磺酸钠、聚乙烯吡咯烷酮、十二烷基磺酸钠、聚苯乙烯、十六烷基三甲基溴化铵、聚乙烯醇中的一种或两种或多种;
进一步,所述溶剂选自水、环戊酮、环己酮、哌啶-1-甲醛、乙烯基吡咯烷酮、1,3-二甲基-2-咪唑啉、溴苯、氰苯、苯甲基安息香酸、N,N-二甲基丙烯基脲酮、N-乙基-2-吡咯烷酮、N-甲基吡咯烷酮、二甲乙酰胺、环己基吡咯烷酮、苄醚、异丙醇、N-辛基吡咯烷酮、二氧戊环、乙酸乙酯、1-氮萘、安息香醛、乙醇胺、酞酸二乙酯、N-十二烷基吡咯烷酮、吡啶、酞酸二甲酯、乙醇、丙酮、乙酸乙烯酯、乙二醇、甲苯、庚烷、戊烷、己烷、甲酰胺、二甲基甲酰胺、二甲基亚砜、二氯代苯、氯仿、四氢呋喃的一种或多种。
有益效果
本发明利用液膜体系吉布斯自由能最小化原理,为了提高体系稳定度,液膜内部二维纳米颗粒自发有序排列以降低体系自由能,固化后膜内部有序排列的二维纳米材料颗粒位置彼此固定,形成微观层面有序排列的各向异性薄膜,再经过叠加热压合,获得各向异性的导热块体材料。借助于有序排列的二维纳米材料,二维纳米粒子热震荡传热效率更高,速度更快。特别是在温差较高时,相比于其它内部纳米颗粒无序排列的导热材料,本发明制备的块体导热材料能够降低微观层面二维纳米颗粒的横向无效热震动,提高纳米粒子的纵向热震荡频率,提升热传递效率,其热传递系数达到5300W/(m·K)。
附图说明
图1为本发实施例1中所制备的寡层氮化硼二维纳米材料显微图;
图2为本发明实施例1制备的导热块体材料的横切面显微图;
图3为本发明实施例1制备的导热块体材料外观图。
具体实施方式
下面结合具体实施例和附图,进一步阐述本发明。
实施例1
(1)取20g氮化硼粉末为原料,另取1.0g的聚乙烯吡咯烷酮一并加入到300mL的N-甲基吡咯烷酮里(NMP),搅拌50min至完全溶解。
(3)取步骤(2)的混合液300g加入到以球或棒或段为介质的研磨设备中,研磨20h,得到浓度50mg/mL的寡层氮化硼,电子透射照片见附图1。
(4)取上述100mL的氮化硼分散液与高分子材料聚丙烯混合,加入分散剂级别当量的十二烷基苯磺酸钠,机械搅拌30min得到二维纳米材料分散液。
(5)利用旋转离心涂布法,在直径为3cm的基板上均匀附着一层平面液膜,将载有平面液膜的基板置于氮气体系下,挥发液膜中的溶剂使之逐步固化,从而将纳米薄膜内部的有序排列结构固定在薄膜内部。
(6)将步骤(5)制备的薄膜叠层堆积在一起,在热压的条件下,成功的实现氮化硼基导热块体材料的制备,见附图3。所制备的氮化硼基导热块体材料横切面显微照片见附图2,可见二维纳米材料均有序层状排列。
实施例2
(1)称取1g石墨烯粉末、1.0g的聚乙烯醇加入到100mL的N-甲基吡咯烷酮里,超声波下搅拌60min至完全分散溶解。
(4)将上述100mL的石墨烯分散液与高分子材料聚对苯二甲酸乙二醇酯混合,加入分散剂级别当量的十六烷基三甲基溴化铵,超声波下机械搅拌30min得到二维纳米材料石墨烯分散液。
(5)利用旋转离心涂布法,在直径为3cm的基板上均匀附着一层平面液膜,将载有平面液膜的基板置于氮气体系下,降低氮气氛围中溶剂相对湿度至75%,挥发液膜中的溶剂使之逐步固化,从而将纳米薄膜内部的有序排列结构固定在薄膜内部。
(6)将步骤(5)制备的薄膜叠层堆积在一起,在115℃热压的条件下,制备获得石墨烯基导热块体材料。
实施例3
裁取实施例1和2制备的导热块体材料各1*1*0.3cm2,采用DZDR-R热流法导热仪分别测定导热系数,氮化硼基导热块体材料的导热系数为5300W/(m·K),石墨烯基导热块体材料的导热系数为4900W/(m·K)。

Claims (8)

1.一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法,其特征在于,包括:
步骤1.将二维纳米材料分散液铺展成平面液膜,自诱导平面液膜内部的二维纳米材料定向排列;
步骤2.平面液膜固化为成各向异性薄膜;
步骤3.将各向异性薄膜叠加后热压成型,得到导热块体材料;
所述二维纳米材料任意选自氮化硼、石墨烯、黑磷、二硒化钼、二硫化钨二维纳米颗粒中的一种或多种;
步骤1中自诱导平面液膜内部的二维纳米材料定向排列的温度为-78℃~5℃。
2.如权利要求1所述利用吉布斯自由能诱导制备各向异性导热块体材料的方法,其特征在于,步骤1中所述二维纳米材料分散液包括二维材料、高分子材料、分散剂、溶剂。
3.如权利要求2所述利用吉布斯自由能诱导制备导热块体材料的方法,其特征在于,二维纳米材料分散液中二维材料浓度为0.001mg/mL~200mg/mL。
4.如权利要求2所述利用吉布斯自由能诱导制备各向异性导热块体材料的方法,其特征在于,所述二维纳米材料分散液中分散剂的含量是0~30wt%。
5.如权利要求2所述利用吉布斯自由能诱导制备各向异性导热块体材料的方法,其特征在于,所述高分子材料选自聚乙烯醇、聚乙二醇、聚偏氟乙稀、聚对苯二甲酸乙二醇酯、聚丙烯、聚氨酯、聚酰亚胺、聚碳酸酯、聚四氟乙烯、凯夫拉纤维、聚乙烯、聚苯乙烯、聚对苯撑苯并二噁唑纤维、天然橡胶、丁基橡胶、丁苯橡胶、硅橡胶、环氧树脂、丙烯酸酯、酚醛树脂、聚醚醚酮、聚砜、聚苯硫醚、氨纶、腈纶、聚酯纤维、维尼纶中的一种或多种。
6.如权利要求2所述利用吉布斯自由能诱导制备各向异性导热块体材料的方法,其特征在于,所述分散剂任意选自胆酸钠、十二烷基苯磺酸钠、对苯乙烯磺酸钠、聚对苯乙烯磺酸钠、聚乙烯吡咯烷酮、十二烷基磺酸钠、聚苯乙烯、十六烷基三甲基溴化铵、聚乙烯醇中的一种或多种。
7.如权利要求2所述利用吉布斯自由能诱导制备各向异性导热块体材料的方法,其特征在于,所述溶剂选自水、环戊酮、环己酮、哌啶-1-甲醛、乙烯基吡咯烷酮、1,3-二甲基-2-咪唑啉、溴苯、氰苯、苯甲基安息香酸、N,N-二甲基丙烯基脲酮、N-乙基-2-吡咯烷酮、N-甲基吡咯烷酮、二甲乙酰胺、环己基吡咯烷酮、苄醚、异丙醇、N-辛基吡咯烷酮、二氧戊环、乙酸乙酯、1-氮萘、安息香醛、乙醇胺、酞酸二乙酯、N-十二烷基吡咯烷酮、吡啶、酞酸二甲酯、乙醇、丙酮、乙酸乙烯酯、乙二醇、甲苯、庚烷、戊烷、己烷、甲酰胺、二甲基甲酰胺、二甲基亚砜、二氯代苯、氯仿、四氢呋喃的一种或多种。
8.如权利要求1所述利用吉布斯自由能诱导制备各向异性导热块体材料的方法,其特征在于,步骤1中所述平面液膜厚度为0.1~1mm。
CN201810666100.6A 2018-06-26 2018-06-26 一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法 Active CN108819400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810666100.6A CN108819400B (zh) 2018-06-26 2018-06-26 一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810666100.6A CN108819400B (zh) 2018-06-26 2018-06-26 一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法

Publications (2)

Publication Number Publication Date
CN108819400A CN108819400A (zh) 2018-11-16
CN108819400B true CN108819400B (zh) 2021-05-04

Family

ID=64138704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810666100.6A Active CN108819400B (zh) 2018-06-26 2018-06-26 一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法

Country Status (1)

Country Link
CN (1) CN108819400B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109866486B (zh) * 2019-03-08 2020-12-01 华南协同创新研究院 一种复合交叉叠层结构导热硅胶片及其制备方法
CN110330321B (zh) * 2019-07-01 2021-09-24 佛山市百瑞新材料技术有限公司 一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺
CN110713716B (zh) * 2019-11-23 2022-01-28 西北工业大学 一种高导热聚多巴胺修饰氮化硼/聚酰亚胺复合材料及其制备方法
CN112918030B (zh) * 2019-12-05 2023-08-08 中国科学院深圳先进技术研究院 一种具有平面取向的氮化硼膜及其制备方法、包含其的氮化硼复合膜、热界面材料和应用
CN111187506B (zh) * 2020-01-15 2021-12-28 青岛科技大学 一种石墨烯纳米膏制备复合材料的方法
CN113707230B (zh) * 2021-08-24 2024-07-02 西安热工研究院有限公司 一种计算液体酸解离过程吉布斯自由能变的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012000102A1 (en) * 2010-06-30 2012-01-05 The Governors Of The University Of Alberta Apparatus and method for microscope-based label-free microflutdic cytometry
CN102558765A (zh) * 2010-12-15 2012-07-11 新高电子材料(中山)有限公司 无卤阻燃高导热绝缘树脂组合物及一种散热金属基覆铜板
CN205347307U (zh) * 2015-12-30 2016-06-29 派模切(北京)有限公司 一种导热胶带
CN106189165A (zh) * 2016-07-07 2016-12-07 河北工业大学 一种高导热绝缘六方氮化硼/聚碳酸酯复合材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105692601B (zh) * 2016-01-27 2018-07-10 常州富烯科技股份有限公司 一种石墨烯块材的制备方法及得到的石墨烯块材
US10593932B2 (en) * 2016-09-20 2020-03-17 Global Graphene Group, Inc. Process for metal-sulfur battery cathode containing humic acid-derived conductive foam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012000102A1 (en) * 2010-06-30 2012-01-05 The Governors Of The University Of Alberta Apparatus and method for microscope-based label-free microflutdic cytometry
CN102558765A (zh) * 2010-12-15 2012-07-11 新高电子材料(中山)有限公司 无卤阻燃高导热绝缘树脂组合物及一种散热金属基覆铜板
CN205347307U (zh) * 2015-12-30 2016-06-29 派模切(北京)有限公司 一种导热胶带
CN106189165A (zh) * 2016-07-07 2016-12-07 河北工业大学 一种高导热绝缘六方氮化硼/聚碳酸酯复合材料的制备方法

Also Published As

Publication number Publication date
CN108819400A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
CN108819400B (zh) 一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法
Wu et al. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks
Xiao et al. Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure
Wei et al. Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance
Zhao et al. A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices
Yang et al. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization
CN109666263B (zh) 一种氮化硼/环氧树脂复合材料的制备方法及产品和应用
Zhao et al. Synchronously improved thermal conductivity and dielectric constant for epoxy composites by introducing functionalized silicon carbide nanoparticles and boron nitride microspheres
Wu et al. In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties
CN105001450A (zh) 定向高导热碳/聚合物复合材料及制备方法
CN113150544B (zh) 一种定向排列氮化硼@聚多巴胺@银杂化纳米片柔性热界面材料及其制备方法
CN103333494B (zh) 一种导热绝缘硅橡胶热界面材料及其制备方法
Choi et al. Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites
WO2022206509A1 (zh) 一种导热材料及其制作方法、半固化片、层压板、电路板
Gurijala et al. Castable and printable dielectric composites exhibiting high thermal conductivity via percolation-enabled phonon transport
CN108819388B (zh) 一种多层取向导热绝缘复合材料及其制备方法和用途
CN105504822A (zh) 一种硅橡胶垫的制备方法
Niu et al. Preparation of quasi-isotropic thermal conductive composites by interconnecting spherical alumina and 2D boron nitride flakes
Ding et al. Development of thermally conductive polymer matrix composites by foaming‐assisted networking of micron‐and submicron‐scale hexagonal boron nitride
CN103772992A (zh) 一种导热复合材料及其制备方法
CN110358255A (zh) 一种三维复合材料及其制备方法、应用和基板与电子装置
Anithambigai et al. Synthesis and thermal analysis of aluminium nitride filled epoxy composites and its effective application as thermal interface material for LED applications
CN112111153B (zh) 定向导热材料及其制备方法和应用
Zhao et al. Thermally conductive silicone composites modified by graphene-oxide aerogel beads loaded with phase change materials as efficient heat sinks
CN110964228B (zh) 一种碳化硅-氮化硼纳米片异质填料及制备方法、环氧树脂导热复合材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant