WO2022227138A1 - 背光模组及显示装置 - Google Patents

背光模组及显示装置 Download PDF

Info

Publication number
WO2022227138A1
WO2022227138A1 PCT/CN2021/094536 CN2021094536W WO2022227138A1 WO 2022227138 A1 WO2022227138 A1 WO 2022227138A1 CN 2021094536 W CN2021094536 W CN 2021094536W WO 2022227138 A1 WO2022227138 A1 WO 2022227138A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
metal layer
disposed
backlight module
Prior art date
Application number
PCT/CN2021/094536
Other languages
English (en)
French (fr)
Inventor
杨勇
刘凡成
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US17/311,420 priority Critical patent/US20240012285A1/en
Publication of WO2022227138A1 publication Critical patent/WO2022227138A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs

Definitions

  • the present application relates to the field of display technology, and in particular, to a backlight module and a display device.
  • Organic Light Emitting Diodes Organic Light Emitting Diode, OLED
  • LCD liquid crystal displays
  • the direct type backlight structure is an effective means to solve the flexibility problem of the backlight module.
  • the direct-type backlight module emits light upward through a plurality of light-emitting elements to form a light source.
  • the light-emitting intensity of the area vertically corresponding to the light-emitting elements is strong, and the light-emitting intensity of the area between the light-emitting elements is weak, resulting in the backlight module.
  • the light uniformity is poor.
  • the direct-lit backlight module has a technical problem of poor distribution uniformity of light intensity.
  • the present application provides a backlight module and a display device, which are used to alleviate the problem of poor distribution uniformity of the light intensity of the light emitted by the current direct-lit backlight module.
  • the application provides a backlight module, which includes:
  • a light-emitting substrate comprising a base substrate, a plurality of light-emitting elements disposed on a first side of the base substrate, and a light scattering member disposed on the first side of the base substrate;
  • the reflective film layer is arranged on the light emitting surface of the light-emitting substrate, and a plurality of light emitting holes are arranged on the reflective film layer.
  • the light scattering member includes a plurality of protruding elements disposed on the first side of the base substrate.
  • the shape of the protruding element includes one or more of a polyhedron shape, a hemispherical shape, a semi-cylindrical shape, and a ring shape.
  • the light-emitting substrate further includes a driving circuit layer disposed on the first side of the base substrate, and the light-emitting element is disposed on the driving circuit layer.
  • the driving circuit layer includes a metal layer connected to the light-emitting element, and the light scattering member includes a protruding element disposed on the metal layer.
  • the driving circuit layer includes a first metal layer, an interlayer insulating layer disposed on the first metal layer, and a second metal layer disposed on the interlayer insulating layer, The second metal layer is connected to the light emitting element.
  • the light scattering member includes a protruding element disposed on the second metal layer.
  • the interlayer insulating layer is provided with protruding structures corresponding to the protruding elements.
  • the driving circuit layer includes a first metal layer, an interlayer insulating layer disposed on the first metal layer, a second metal layer disposed on the interlayer insulating layer, a first passivation layer disposed on the second metal layer and a third metal layer disposed on the first passivation layer, the second metal layer is connected to the third metal layer, the first passivation layer is The three metal layers are connected to the light-emitting element.
  • the light scattering member includes a protruding element disposed on the third metal layer.
  • protruding structures corresponding to the protruding elements are disposed on the first passivation layer.
  • the driving circuit layer includes a first metal layer, an interlayer insulating layer disposed on the first metal layer, a second metal layer disposed on the interlayer insulating layer, A passivation layer disposed on the second metal layer and a third metal layer disposed on the passivation layer, the second metal layer is connected to the third metal layer, and the third metal layer is connected to
  • the light emitting element is connected, and the light scattering member includes a protruding element provided on the second metal layer and a protruding element provided on the third metal layer.
  • the positions of the protruding elements on the second metal layer and the protruding elements on the third metal layer correspond one-to-one.
  • the interlayer insulating layer is provided with protruding structures corresponding to the protruding elements on the second metal layer.
  • protruding structures corresponding to protruding elements on the third metal layer are disposed on the first passivation layer.
  • the driving circuit layer further includes a second passivation layer disposed on the third metal layer;
  • the light-emitting element is disposed on the second passivation layer
  • the backlight module further includes an encapsulation layer disposed between the light-emitting substrate and the reflective film layer, and the encapsulation layer covers the light-emitting element.
  • the application also provides a backlight module, which includes:
  • the driving circuit layer is arranged on the base substrate, and the driving circuit layer includes a first metal layer, an interlayer insulating layer arranged on the first metal layer, and a third insulating layer arranged on the interlayer insulating layer.
  • Two metal layers, a first passivation layer disposed on the second metal layer, and a third metal layer disposed on the first passivation layer, the second metal layer is connected to the third metal layer ;
  • the third metal layer is provided with a protruding element;
  • a light-emitting element disposed on the driving circuit layer, the light-emitting element is connected to the third metal layer, and the protruding elements are distributed around the light-emitting element;
  • the reflective film layer is arranged in the light emitting direction of the light-emitting element, and a plurality of light emitting holes are arranged on the reflective film layer.
  • the present application also provides a display device, which includes the above-mentioned backlight module, a first substrate disposed on a light-emitting surface of the backlight module, a second substrate disposed opposite to the first substrate, and a Liquid crystal between the first substrate and the second substrate; the backlight module includes a light-emitting substrate, and the light-emitting substrate includes a light-emitting element.
  • the light-emitting substrate includes a metal layer connected to the light-emitting element, and a protruding element is disposed on the metal layer.
  • the application provides a backlight module and a display device.
  • the backlight module includes a light-emitting substrate and a reflective film layer disposed on a light-emitting surface of the light-emitting substrate.
  • the light-emitting substrate includes a base substrate and a light-emitting substrate disposed on the same surface of the base substrate.
  • the reflective film layer includes a plurality of light exit holes for light to pass through; a part of the light emitted by the light-emitting element is reflected to the light-scattering member by the reflective film layer, and is scattered by the light-scattering member, so that the light-emitting element The light intensity in the area between them is improved, thereby improving the distribution uniformity of the light intensity of the backlight module and improving the luminous performance of the backlight module.
  • FIG. 1 is a partial structural schematic diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 1a is a schematic diagram of light emission of the backlight module shown in FIG. 1 .
  • Figure 2a is a schematic diagram of the first shape of the protruding element.
  • Figure 2b is a schematic diagram of a second shape of the protruding element.
  • Figure 2c is a schematic diagram of a third shape of the protruding element.
  • Figure 2d is a schematic diagram of a fourth shape of the protruding element.
  • FIG. 3 is a partial structural schematic diagram of the first light-emitting substrate provided in the embodiment of the present application.
  • FIG. 3a is a schematic view of the structure after the original insulating layer and the photoresist layer are prepared on the gate insulating layer.
  • FIG. 3b is a schematic diagram of exposing the photoresist layer Z.
  • FIG. 3 c is a schematic structural diagram of the photoresist layer Z after exposure.
  • FIG. 3d is a schematic structural diagram of the photoresist layer Z and the original insulating layer after etching.
  • FIG. 3e is a schematic view of the structure after removing the photoresist layer on the surface of the interlayer insulating layer.
  • FIG. 4 is a schematic partial structure diagram of a second light-emitting substrate provided in an embodiment of the present application.
  • FIG. 5 is a schematic partial structure diagram of a third light-emitting substrate provided in an embodiment of the present application.
  • FIG. 6 is a schematic partial structure diagram of a fourth light-emitting substrate provided in an embodiment of the present application.
  • FIG. 7 is a schematic partial structure diagram of a fifth light-emitting substrate provided in an embodiment of the present application.
  • FIG. 8a is a light intensity distribution curve of a backlight module including two light emitting elements but not including a light scattering member.
  • FIG. 8b is a light intensity distribution curve of a backlight module including two light emitting elements and a light scattering member.
  • FIG. 9 is a schematic diagram of a partial structure of a display device provided by an embodiment of the present application.
  • Embodiments of the present application provide a backlight module and a display device
  • the backlight module includes a light-emitting substrate and a reflective film layer disposed on a light-emitting surface of the light-emitting substrate
  • the light-emitting substrate includes a base substrate and a base substrate disposed on the same surface of the base substrate
  • the light-emitting element and the light-scattering member on the light-emitting element, the reflective film layer includes a plurality of light exit holes for the light to pass through; a part of the light emitted by the light-emitting element is reflected on the light-scattering member by the reflective film layer, and this part of the light is directed by the light-scattering member to many
  • the light is scattered in each direction, so that the light intensity in the area between the light-emitting elements is improved, thereby improving the distribution uniformity of the light-emitting light intensity of the backlight module, and improving the light-emitting performance of the backlight module
  • FIG. 1 is a schematic diagram of a partial structure of a backlight module provided by an embodiment of the present application.
  • the backlight module includes a light-emitting substrate 10 and a reflective film layer 40 disposed on the light-emitting substrate 10 .
  • the light-emitting substrate 10 and the reflective film layer 40 may be in direct contact, or other structural film layers may be disposed between the light-emitting substrate 10 and the reflective film layer 40 .
  • the light emitting substrate 10 includes a base substrate, a plurality of light emitting elements L provided on a first side of the base substrate, and a light scattering member S provided on a first side of the base substrate, the light scattering member S is distributed around the light-emitting element L.
  • the light-emitting element L may be a light-emitting diode device (LED device) with a light-emitting function, a plurality of the light-emitting elements L are arranged in an array on the substrate substrate according to a certain arrangement rule, and the light-emitting element L is the backlight.
  • the light source device in the module is a light-emitting diode device (LED device) with a light-emitting function
  • a plurality of the light-emitting elements L are arranged in an array on the substrate substrate according to a certain arrangement rule
  • the light-emitting element L is the backlight.
  • the light-scattering member S has a light-scattering surface, and when light strikes the light-scattering member S, the light-scattering member S will be scattered in multiple directions by the light-scattering member S, so as to improve the uniformity of light intensity distribution.
  • the reflective film layer 40 is disposed on the light-emitting surface of the light-emitting substrate 10 , and the light-emitting surface of the light-emitting substrate 10 is the surface on which the light emitted by the light-emitting element L exits from the light-emitting substrate 10 .
  • the reflective film layer 40 is provided with a plurality of light exit holes K, and the light exit holes K are the exit channels of the light emitted by the light-emitting substrate 10 . Wherein, the openings of the light exit holes K close to the light emitting elements L are smaller, and the number of distributions is small; the openings of the light exit holes K between adjacent light emitting elements L are larger, and the number of distributions is large.
  • FIG. 1 a is a schematic diagram of light-emitting of the backlight module shown in FIG. 1 .
  • the area on the reflective film layer 40 excluding the light exit hole K has a high ability to reflect light.
  • the reflective film layer will 40, when the reflected light strikes the light-emitting substrate 10 again, it will be scattered by the light scattering member S, so that the light intensity distribution between the light-emitting substrate 10 and the reflective film layer 40 is uniform.
  • the backlight module further includes an encapsulation layer 20 and a protective layer 30 disposed between the light-emitting substrate 10 and the reflective film layer 40 .
  • the encapsulation layer 20 is disposed on the light-emitting surface of the light-emitting substrate 10 for encapsulating the light-emitting element L and the light scattering member S, and the encapsulation layer 20 can be made of transparent glue.
  • the protective layer 30 is disposed on the encapsulation layer 20 and is connected to the encapsulation layer 20 and the reflective film layer 40.
  • the protective layer 30 has chemical resistance, such as acid and alkali resistance, organic solvent corrosion resistance, and so on.
  • the protective layer 30 is made of light-transmitting material.
  • the backlight module further includes an anti-scratch layer 50 disposed on the reflective film layer 40.
  • the anti-scratch layer 50 has good abrasion resistance and is used to prevent the reflective film layer 40 is worn by external forces.
  • the anti-scratch layer 50 is made of light-transmitting material.
  • the light scattering member S includes a plurality of protruding elements disposed on the first side of the base substrate, so that the light emitting substrate 10 has an uneven surface.
  • the shape of the protruding element may be a polyhedron as shown in FIG. 2a, a hemispherical shape as shown in FIG. 2b, a semi-cylindrical shape as shown in FIG. 2c, or a hemispherical shape as shown in FIG. 2d torus.
  • the hemisphere may be a hemisphere larger than a half sphere, or a hemisphere smaller than a half sphere, and the curved spherical surface of the hemisphere is a convex surface; the semicircular end surface of the semicylindrical It can be a semicircle larger than half a circle, or a semicircle smaller than a half circle; the circular ring is a three-dimensional structure with a ring structure.
  • the size of a single said raised element is between 1 micron and 100 microns.
  • the backlight module provided by the embodiments of the present application, by arranging a light scattering member on the light-emitting substrate, the light reflected by the reflective film layer back to the light-emitting substrate is scattered in multiple directions, thereby improving the light intensity in the area between the light-emitting elements, thereby increasing the light intensity in the area between the light-emitting elements.
  • the distribution uniformity of the light intensity of the backlight module is improved, and the luminous performance of the backlight module is improved.
  • FIG. 3 is a schematic partial structure diagram of the first light-emitting substrate provided by the embodiment of the present application.
  • the light-emitting substrate 10 includes a base substrate 101, a buffer layer 103 disposed on the base substrate 101 and located on a first side of the base substrate 101, a driving circuit layer disposed on the buffer layer 103, and the light-emitting element L disposed on the driving circuit layer, wherein the driving circuit layer includes a driving circuit, and the driving circuit is used for providing the light-emitting element L with a driving signal to make the light-emitting element L emit light.
  • a shielding layer 102 is further provided on the first side of the base substrate 101, and the shielding layer 102 has a light shielding function.
  • the driving circuit layer includes a semiconductor layer 104 disposed on the buffer layer 103 , a gate insulating layer 105 covering the semiconductor layer 104 , a first metal layer 106 disposed on the gate insulating layer 105 , covering The interlayer insulating layer 107 of the first metal layer 106, the second metal layer 108 arranged on the interlayer insulating layer 107, the first flat layer 109 arranged on the second metal layer 108, and the A first passivation layer 110 on the first flat layer 109 , a third metal layer 111 on the first passivation layer 110 , and a second flat layer 112 on the third metal layer 111 , and a second passivation layer 113 disposed on the second flat layer 112 .
  • the first metal layer 106 includes a gate electrode; the second metal layer 108 includes a source electrode and a drain electrode, and the source electrode and the drain electrode are insulated by the interlayer insulating layer 107 and the gate electrode Vias on the layer 105 are connected to the semiconductor layer 104 ; the third metal layer 111 is electrically connected to the second metal layer 108 through the vias on the first planarization layer 109 and the first passivation layer 110 ;
  • the light-emitting element L has opposite poles, and the opposite poles of the light-emitting element L are electrically connected to the third metal layer 111 through the via holes on the second flat layer 112 and the second passivation layer 113
  • the light-emitting function of the light-emitting element L is controlled by the driving circuit in the driving circuit layer.
  • the second metal layer 111 is a patterned metal layer, and opposite poles of the light-emitting element L are respectively electrically connected to different metal electrodes on the second metal layer 111 .
  • the semiconductor layer 104 , the gate electrode, the source electrode and the drain electrode constitute a thin film transistor device in the driving circuit.
  • the shielding layer 102 and the semiconductor layer 104 are arranged correspondingly up and down for shielding radiation light to the semiconductor layer 104 .
  • a plurality of protruding elements are provided on the surface of the interlayer insulating layer 107 away from the first metal layer 106, and the protruding elements are distributed on the light-emitting element 1 on the first metal layer 106
  • the shape of the protruding element includes one or more of polyhedron, hemispherical, semi-cylindrical and annular shape around the orthographic projection on the surface.
  • the protruding elements constitute the light scattering member S, which causes the interlayer insulating layer 107 to form an uneven surface structure.
  • the light scattering member S may be an uneven surface structure formed on the surface of the interlayer insulating layer 107 when the interlayer insulating layer 107 is fabricated.
  • the method for fabricating the light scattering member S on the interlayer insulating layer 107 may include the following steps:
  • an original insulating layer 1071 is prepared on the gate insulating layer 105 , and a photoresist layer Z is prepared on the original insulating layer 1071 .
  • the photoresist layer Z is exposed to light by using a halftone mask Y; wherein, the halftone mask Y has a semi-transparent area, and the The photoresist layer Z is exposed to a reduced thickness.
  • the surface of the photoresist layer Z forms an uneven structure; wherein, the photoresist layer Z at the concave holes has a smaller thickness and is easier to be etched.
  • the photoresist layer Z and the original insulating layer 1071 are etched through a dry etching process, so that a plurality of grooves are formed on the surface of the original insulating layer 1071 to make the original insulating layer Layer 1071 forms the interlayer insulating layer 107 .
  • the photoresist layer Z on the surface of the interlayer insulating layer 107 is removed by a developing process to form an uneven structure on the surface of the interlayer insulating layer 107 , that is, on the surface of the interlayer insulating layer 107
  • the light scattering member S is formed.
  • the light scattering member S forms a protruding structure on the surface of the interlayer insulating layer 107 , the second metal layer 108 disposed on the interlayer insulating layer 107 is elevated by the light scattering member S , a protrusion will also be formed at the position corresponding to the light scattering member S.
  • the first flat layer 109 , the first passivation layer 110 and the third metal layer 111 will also be formed at the corresponding position. The position of the light scattering member S forms a protrusion.
  • the light scattering member S and the protrusions on the second metal layer 108, the protrusions on the first flat layer 109, the protrusions on the first passivation layer 110 and the third The protrusions on the metal layer 111 all have a scattering effect on the light emitted to the surface thereof.
  • the light-emitting substrate provided in this embodiment includes a light scattering member disposed on the interlayer insulating layer, and the light scattering member scatters the light emitted to the surface thereof, thereby improving the uniformity of the intensity distribution of the light emitted by the light-emitting substrate.
  • FIG. 4 is a partial structural schematic diagram of the second light-emitting substrate provided by the embodiment of the present application.
  • the light-emitting substrate shown in FIG. 4 has the same or similar structure as the light-emitting substrate shown in FIG. 3 ; the structural features of the light-emitting substrate shown in FIG. 4 will be described below. The structure of the light-emitting substrate shown in FIG. 3 is explained.
  • the light-emitting substrate 10 includes a base substrate 101, a buffer layer 103 disposed on the base substrate 101 and located on a first side of the base substrate 101, a driving circuit layer disposed on the buffer layer 103, and the light-emitting element L disposed on the driving circuit layer, wherein the driving circuit layer includes a driving circuit, and the driving circuit is used for providing the light-emitting element L with a driving signal to make the light-emitting element L emit light.
  • a shielding layer 102 is further provided on the first side of the base substrate 101, and the shielding layer 102 has a light shielding function.
  • the driving circuit layer includes a semiconductor layer 104 disposed on the buffer layer 103 , a gate insulating layer 105 covering the semiconductor layer 104 , a first metal layer 106 disposed on the gate insulating layer 105 , covering The interlayer insulating layer 107 of the first metal layer 106, the second metal layer 108 arranged on the interlayer insulating layer 107, the first flat layer 109 arranged on the second metal layer 108, and the A first passivation layer 110 on the first flat layer 109 , a third metal layer 111 on the first passivation layer 110 , and a second flat layer 112 on the third metal layer 111 , and a second passivation layer 113 disposed on the second flat layer 112 .
  • the first metal layer 106 includes a gate electrode; the second metal layer 108 includes a source electrode and a drain electrode, and the source electrode and the drain electrode are insulated by the interlayer insulating layer 107 and the gate electrode Vias on the layer 105 are connected to the semiconductor layer 104 ; the third metal layer 111 is electrically connected to the second metal layer 108 through the vias on the first planarization layer 109 and the first passivation layer 110 ;
  • the light-emitting element L has opposite poles, and the opposite poles of the light-emitting element L are electrically connected to the third metal layer 111 through the via holes on the second flat layer 112 and the second passivation layer 113
  • the light-emitting function of the light-emitting element L is controlled by the driving circuit in the driving circuit layer.
  • a plurality of protruding elements are provided on the surface of the second metal layer 108 away from the interlayer insulating layer 107 , and the shapes of the protruding elements include polyhedral, hemispherical, semi-cylindrical and annular one or more of.
  • the protruding elements constitute a light scattering member S, which causes the second metal layer 108 to form an uneven surface structure.
  • the light scattering member S and the second metal layer 108 are made of the same material, so that the light scattering member S is fabricated at the same time as the second metal layer 108 is fabricated to simplify the process.
  • the light scattering member S may be an uneven surface structure formed on the surface of the second metal layer 108 when the second metal layer 108 is fabricated.
  • the method of fabricating the light scattering member S on the second metal layer 108 is the same as or similar to the method of fabricating the light scattering member S on the interlayer insulating layer in the above-mentioned embodiment, and will not be repeated here.
  • the light scattering member S forms a protruding structure on the surface of the second metal layer 108
  • the first flat layer 109 disposed on the second metal layer 108 is elevated by the light scattering member S
  • a protrusion will also be formed at the position corresponding to the light scattering member S.
  • the first passivation layer 110 and the third metal layer 111 will also be formed at the position corresponding to the light scattering member S. Raised.
  • the light scattering member S, the protrusions on the first flat layer 109, the protrusions on the first passivation layer 110 and the protrusions on the third metal layer 111 are all directed towards The light on its surface is scattered.
  • the light emitting substrate provided in this embodiment includes a light scattering member disposed on the second metal layer, the light scattering member scatters the light emitted to the surface thereof, thereby improving the uniformity of the intensity distribution of the light emitted by the light emitting substrate.
  • FIG. 5 is a partial structural schematic diagram of a third light-emitting substrate provided by an embodiment of the present application.
  • the light-emitting substrate shown in FIG. 5 has the same or similar structure as the light-emitting substrate shown in FIG. 3 ; the structural features of the light-emitting substrate shown in FIG. 5 will be described below. The structure of the light-emitting substrate shown in FIG. 3 is explained.
  • the light-emitting substrate 10 includes a base substrate 101, a buffer layer 103 disposed on the base substrate 101 and located on a first side of the base substrate 101, a driving circuit layer disposed on the buffer layer 103, and the light-emitting element L disposed on the driving circuit layer, wherein the driving circuit layer includes a driving circuit, and the driving circuit is used for providing the light-emitting element L with a driving signal to make the light-emitting element L emit light.
  • a shielding layer 102 is further provided on the first side of the base substrate 101, and the shielding layer 102 has a light shielding function.
  • the driving circuit layer includes a semiconductor layer 104 disposed on the buffer layer 103 , a gate insulating layer 105 covering the semiconductor layer 104 , a first metal layer 106 disposed on the gate insulating layer 105 , covering The interlayer insulating layer 107 of the first metal layer 106, the second metal layer 108 arranged on the interlayer insulating layer 107, the first flat layer 109 arranged on the second metal layer 108, and the A first passivation layer 110 on the first flat layer 109 , a third metal layer 111 on the first passivation layer 110 , and a second flat layer 112 on the third metal layer 111 , and a second passivation layer 113 disposed on the second flat layer 112 .
  • the first metal layer 106 includes a gate electrode; the second metal layer 108 includes a source electrode and a drain electrode, and the source electrode and the drain electrode are insulated by the interlayer insulating layer 107 and the gate electrode Vias on the layer 105 are connected to the semiconductor layer 104 ; the third metal layer 111 is electrically connected to the second metal layer 108 through the vias on the first planarization layer 109 and the first passivation layer 110 ;
  • the light-emitting element L has opposite poles, and the opposite poles of the light-emitting element L are electrically connected to the third metal layer 111 through the via holes on the second flat layer 112 and the second passivation layer 113
  • the light-emitting function of the light-emitting element L is controlled by the driving circuit in the driving circuit layer.
  • a plurality of protruding elements are provided on the surface of the first flat layer 109 away from the second metal layer 108 , and the shapes of the protruding elements include polyhedron, hemispherical, semi-cylindrical and annular one or more of.
  • the protruding elements constitute a light scattering member S that causes the first flat layer 109 to form an uneven surface structure.
  • the light scattering member S may be an uneven surface structure formed on the surface of the first flat layer 109 when the first flat layer 109 is fabricated.
  • the method of fabricating the light scattering member S on the first flat layer 109 is the same as or similar to the method of fabricating the light scattering member on the interlayer insulating layer in the above-mentioned embodiment, and will not be repeated here.
  • the first passivation layer 110 disposed on the first flat layer 109 is cushioned by the light scattering member S If the height is high, a protrusion will also be formed at the position corresponding to the light scattering member S, and similarly, the third metal layer 111 will also form a protrusion at the position corresponding to the light scattering member S.
  • the light scattering member S, the protrusions on the first passivation layer 110 and the protrusions on the third metal layer 111 all have a scattering effect on the light emitted to the surface thereof.
  • the light emitting substrate provided in this embodiment includes a light scattering member disposed on the first flat layer, the light scattering member scatters the light emitted to the surface thereof, thereby improving the uniformity of the intensity distribution of the light emitted by the light emitting substrate.
  • FIG. 6 is a partial structural schematic diagram of the fourth light-emitting substrate provided by the embodiment of the present application.
  • the light-emitting substrate shown in FIG. 6 has the same or similar structure as the light-emitting substrate shown in FIG. 3 ; the structural features of the light-emitting substrate shown in FIG. 6 will be described below. The structure of the light-emitting substrate shown in FIG. 3 is explained.
  • the light-emitting substrate 10 includes a base substrate 101, a buffer layer 103 disposed on the base substrate 101 and located on a first side of the base substrate 101, a driving circuit layer disposed on the buffer layer 103, and the light-emitting element L disposed on the driving circuit layer, wherein the driving circuit layer includes a driving circuit, and the driving circuit is used for providing the light-emitting element L with a driving signal to make the light-emitting element L emit light.
  • a shielding layer 102 is further provided on the first side of the base substrate 101, and the shielding layer 102 has a light shielding function.
  • the driving circuit layer includes a semiconductor layer 104 disposed on the buffer layer 103 , a gate insulating layer 105 covering the semiconductor layer 104 , a first metal layer 106 disposed on the gate insulating layer 105 , covering The interlayer insulating layer 107 of the first metal layer 106, the second metal layer 108 arranged on the interlayer insulating layer 107, the first flat layer 109 arranged on the second metal layer 108, and the A first passivation layer 110 on the first flat layer 109 , a third metal layer 111 on the first passivation layer 110 , and a second flat layer 112 on the third metal layer 111 , and a second passivation layer 113 disposed on the second flat layer 112 .
  • the first metal layer 106 includes a gate electrode; the second metal layer 108 includes a source electrode and a drain electrode, and the source electrode and the drain electrode are insulated by the interlayer insulating layer 107 and the gate electrode Vias on the layer 105 are connected to the semiconductor layer 104 ; the third metal layer 111 is electrically connected to the second metal layer 108 through the vias on the first planarization layer 109 and the first passivation layer 110 ;
  • the light-emitting element L has opposite poles, and the opposite poles of the light-emitting element L are electrically connected to the third metal layer 111 through the via holes on the second flat layer 112 and the second passivation layer 113
  • the light-emitting function of the light-emitting element L is controlled by the driving circuit in the driving circuit layer.
  • a plurality of protruding elements are provided on the surface of the first passivation layer 110 away from the first flat layer 109 , and the shapes of the protruding elements include polyhedron, hemisphere, semi-cylindrical and annular one or more of.
  • the protruding elements constitute a light scattering member S, and the light scattering member S makes the first passivation layer 110 form an uneven surface structure.
  • the light scattering member S may be an uneven surface structure formed on the surface of the first passivation layer 110 when the first passivation layer 110 is fabricated.
  • the method of fabricating the light scattering member S on the first passivation layer 110 is the same as or similar to the method of fabricating the light scattering member S on the interlayer insulating layer in the above-mentioned embodiment, and will not be repeated here.
  • the third metal layer 111 disposed on the first passivation layer 110 is blocked by the light scattering member S
  • the height of the pad will also form a protrusion at a position corresponding to the light scattering member S.
  • Both the light scattering member S and the protrusions on the third metal layer 111 have a scattering effect on the light emitted to the surface thereof.
  • the light-emitting substrate provided in this embodiment includes a light-scattering member disposed on the first passivation layer, and the light-scattering member scatters the light emitted to the surface thereof, thereby improving the uniformity of the intensity distribution of the light emitted by the light-emitting substrate .
  • FIG. 7 is a schematic partial structure diagram of a fifth light-emitting substrate provided by an embodiment of the present application.
  • the light-emitting substrate shown in FIG. 7 has the same or similar structure as the light-emitting substrate shown in FIG. 3 ; the structural features of the light-emitting substrate shown in FIG. 7 will be described below. The structure of the light-emitting substrate shown in FIG. 3 is explained.
  • the light-emitting substrate 10 includes a base substrate 101, a buffer layer 103 disposed on the base substrate 101 and located on a first side of the base substrate 101, a driving circuit layer disposed on the buffer layer 103, and the light-emitting element L disposed on the driving circuit layer, wherein the driving circuit layer includes a driving circuit, and the driving circuit is used for providing the light-emitting element L with a driving signal to make the light-emitting element L emit light.
  • a shielding layer 102 is further provided on the first side of the base substrate 101, and the shielding layer 102 has a light shielding function.
  • the driving circuit layer includes a semiconductor layer 104 disposed on the buffer layer 103 , a gate insulating layer 105 covering the semiconductor layer 104 , a first metal layer 106 disposed on the gate insulating layer 105 , covering The interlayer insulating layer 107 of the first metal layer 106, the second metal layer 108 arranged on the interlayer insulating layer 107, the first flat layer 109 arranged on the second metal layer 108, and the A first passivation layer 110 on the first flat layer 109 , a third metal layer 111 on the first passivation layer 110 , and a second flat layer 112 on the third metal layer 111 , and a second passivation layer 113 disposed on the second flat layer 112 .
  • the first metal layer 106 includes a gate electrode; the second metal layer 108 includes a source electrode and a drain electrode, and the source electrode and the drain electrode are insulated by the interlayer insulating layer 107 and the gate electrode Vias on the layer 105 are connected to the semiconductor layer 104 ; the third metal layer 111 is electrically connected to the second metal layer 108 through the vias on the first planarization layer 109 and the first passivation layer 110 ;
  • the light-emitting element L has opposite poles, and the opposite poles of the light-emitting element L are electrically connected to the third metal layer 111 through the via holes on the second flat layer 112 and the second passivation layer 113
  • the light-emitting function of the light-emitting element L is controlled by the driving circuit in the driving circuit layer.
  • a plurality of protruding elements are provided on the surface of the third metal layer 111 away from the first passivation layer 110 , and the shapes of the protruding elements include polyhedron, hemispherical, semi-cylindrical and annular one or more of.
  • the protruding elements constitute a light scattering member S, and the light scattering member S makes the third metal layer 111 form an uneven surface structure.
  • the light scattering member S and the third metal layer 111 are made of the same material, so that the light scattering member S is fabricated at the same time as the third metal layer 111 is fabricated to simplify the process.
  • the light scattering member S may be an uneven surface structure formed on the surface of the third metal layer 111 when the third metal layer 111 is fabricated.
  • the method of fabricating the light scattering member S on the third metal layer 111 is the same as or similar to the method of fabricating the light scattering member S on the interlayer insulating layer in the above-mentioned embodiment, and will not be repeated here.
  • the light-emitting substrate provided in this embodiment includes a light-scattering member disposed on the third metal layer, the light-scattering member scatters the light emitted to the surface thereof, thereby improving the uniformity of the intensity distribution of the light emitted by the light-emitting substrate.
  • FIG. 8a is a light intensity distribution curve of a backlight module including two light-emitting elements but not including a light-scattering member
  • FIG. 8b is a light-scattering unit including two light-emitting elements and including the light scattering provided by the embodiments of the present application.
  • the light intensity distribution curve of the backlight module of the component It can be seen that after the light scattering member provided by the embodiment of the present application is arranged in the backlight module, the light intensity distribution between the two light emitting elements is significantly improved, thereby significantly improving the light output uniformity of the backlight module.
  • the display device includes the backlight module provided in the above-mentioned embodiment, that is, the backlight module includes a light-emitting substrate 10 , a light-emitting substrate 10 disposed on the light-emitting substrate 10
  • the backlight module includes a light-emitting substrate 10 , a light-emitting substrate 10 disposed on the light-emitting substrate 10
  • the light-emitting substrate 10 includes a plurality of light-emitting elements L and light scattering members S, and the reflective film layer 40 is provided with a plurality of light-exit holes, and the light-exit holes are the exit channels of the light emitted by the light-emitting substrate 10 .
  • the display device further includes a first substrate 60 disposed on the light-emitting surface of the backlight module, a second substrate 80 disposed opposite to the first substrate 60, and disposed on the first substrate 60 and the second substrate. LCD between 80 and 70.
  • the embodiments of the present application provide a backlight module and a display device.
  • the backlight module includes a light-emitting substrate and a reflective film layer disposed on a light-emitting surface of the light-emitting substrate.
  • the light-emitting substrate includes a base substrate and a The light-emitting element and the light-scattering member on the same surface of the base substrate, the reflective film layer includes a plurality of light exit holes for light to pass through; a part of the light emitted by the light-emitting element is reflected on the light-scattering member by the reflective film layer, and is scattered by the light
  • the components are scattered, so that the light intensity in the area between the light-emitting elements is improved, thereby improving the distribution uniformity of the light-emitting light intensity of the backlight module, and improving the light-emitting performance of the backlight module.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

本申请提供一种背光模组及显示装置,背光模组包括发光基板和设置在发光基板的出光面上的反射膜层,发光基板包括衬底基板和设置在衬底基板同一表面上的发光元件和光散射构件,反射膜层包括多个供光线穿过的出光孔;发光元件发出的光线中的一部分经反射膜层反射至光散射构件上,并被光散射构件散射,从而使发光元件之间区域的光线强度得到提升。

Description

背光模组及显示装置
本申请要求于2021年04月28日提交中国专利局、申请号为202110465375.5、发明名称为“背光模组及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种背光模组及显示装置。
背景技术
柔性可弯曲显示技术越来越受到显示终端厂商和普通用户的青睐。有机发光二极管(Organic Light Emitting Diode,OLED)显示器具有实现柔性显示的得天独厚的结构优势,液晶显示器(Liquid Crystal Display,LCD)若实现柔性显示首先需要解决的就是背光模组的柔性问题。其中,直下式背光结构是解决背光模组柔性问题的有效手段。直下式背光模组通过多个发光元件向上发光以形成光源,如此就出现了发光元件垂直对应的区域的出光强度较强,而发光元件之间区域的出光强度较弱的问题,导致背光模组的出光均匀性较差。
技术问题
目前直下式背光模组存在出光光强的分布均匀性差的技术问题。
技术解决方案
本申请提供一种背光模组及显示装置,用于缓解目前直下式背光模组存在的出光光强的分布均匀性差的问题。
本申请提供一种背光模组,其包括:
发光基板,包括衬底基板、设置在所述衬底基板的第一侧的多个发光元件以及设置在所述衬底基板的第一侧的光散射构件;
反射膜层,设置在所述发光基板的出光面上,所述反射膜层上设置有多个出光孔。
在本申请的背光模组中,所述光散射构件包括设置在所述衬底基板的第一侧的多个凸起元件。
在本申请的背光模组中,所述凸起元件的形状包括多面体形、半球形、半圆柱形和环形中的一种或多种。
在本申请的背光模组中,所述发光基板还包括设置在所述衬底基板的第一侧的驱动电路层,所述发光元件设置在所述驱动电路层上。
在本申请的背光模组中,所述驱动电路层包括与所述发光元件连接的金属层,所述光散射构件包括设置在所述金属层上凸起元件。
在本申请的背光模组中,所述驱动电路层包括第一金属层、设置于所述第一金属层上的层间绝缘层以及设置于所述层间绝缘层上的第二金属层,所述第二金属层与所述发光元件连接。
在本申请的背光模组中,所述光散射构件包括设置于所述第二金属层上的凸起元件。
在本申请的背光模组中,所述层间绝缘层上设置有与所述凸起元件对应的凸起结构。
在本申请的背光模组中,所述驱动电路层包括第一金属层、设置于所述第一金属层上的层间绝缘层、设置于所述层间绝缘层上的第二金属层、设置于所述第二金属层上的第一钝化层以及设置于所述第一钝化层上的第三金属层,所述第二金属层与所述第三金属层连接,所述第三金属层与所述发光元件连接。
在本申请的背光模组中,所述光散射构件包括设置于所述第三金属层上的凸起元件。
在本申请的背光模组中,所述第一钝化层上设置有与所述凸起元件对应的凸起结构。
在本申请的背光模组中,所述驱动电路层包括第一金属层、设置于所述第一金属层上的层间绝缘层、设置于所述层间绝缘层上的第二金属层、设置于所述第二金属层上的钝化层以及设置于所述钝化层上的第三金属层,所述第二金属层与所述第三金属层连接,所述第三金属层与所述发光元件连接,所述光散射构件包括设置于所述第二金属层上的凸起元件和设置于所述第三金属层上的凸起元件。
在本申请的背光模组中,所述第二金属层上的凸起元件与所述第三金属层上的凸起元件的位置一一对应。
在本申请的背光模组中,所述层间绝缘层上设置有与所述第二金属层上的凸起元件对应的凸起结构。
在本申请的背光模组中,所述第一钝化层上设置有与所述第三金属层上的凸起元件对应的凸起结构。
在本申请的背光模组中,所述驱动电路层还包括设置于所述第三金属层上的第二钝化层;
所述发光元件设置在所述第二钝化层上;
所述背光模组还包括设置在所述发光基板与所述反射膜层之间的封装层,所述封装层覆盖所述发光元件。
本申请还提供一种背光模组,其包括:
衬底基板;
驱动电路层,设置于所述衬底基板上,所述驱动电路层包括第一金属层、设置于所述第一金属层上的层间绝缘层、设置于所述层间绝缘层上的第二金属层、设置于所述第二金属层上的第一钝化层以及设置于所述第一钝化层上的第三金属层,所述第二金属层与所述第三金属层连接;所述第三金属层上设置有凸起元件;
发光元件,设置于所述驱动电路层上,所述发光元件与所述第三金属层连接,所述凸起元件分布于所述发光元件的周围;
反射膜层,设置在所述发光元件的出光方向上,所述反射膜层上设置有多个出光孔。
本申请还提供一种显示装置,其包括如上所述的背光模组,以及设置在所述背光模组的出光面上的第一基板、与所述第一基板相对设置的第二基板和设置于所述第一基板与第二基板之间的液晶;所述背光模组包括发光基板,所述发光基板包括发光元件。
在本申请的显示装置中,所述发光基板包括与所述发光元件连接的金属层,所述金属层上设置有凸起元件。
有益效果
本申请提供一种背光模组及显示装置,所述背光模组包括发光基板和设置在发光基板的出光面上的反射膜层,发光基板包括衬底基板和设置在衬底基板同一表面上的发光元件和光散射构件,反射膜层包括多个供光线穿过的出光孔;发光元件发出的光线中的一部分经反射膜层反射至光散射构件上,并被光散射构件散射,从而使发光元件之间区域的光线强度得到提升,进而提高了背光模组的出光光强的分布均匀性,提升了背光模组的发光性能。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的背光模组的局部结构示意图。
图1a是图1所示的背光模组的发光示意图。
图2a是凸起元件的第一种形状示意图。
图2b是凸起元件的第二种形状示意图。
图2c是凸起元件的第三种形状示意图。
图2d是凸起元件的第四种形状示意图。
图3是本申请实施例提供的第一种发光基板的局部结构示意图。
图3a是在栅极绝缘层上制备原始绝缘层和光阻层后的结构示意图。
图3b是对光阻层Z进行曝光的示意图。
图3c是光阻层Z曝光后的结构示意图。
图3d是光阻层Z和原始绝缘层进行刻蚀后的结构示意图。
图3e是去除层间绝缘层表面的光阻层后的结构示意图。
图4是本申请实施例提供的第二种发光基板的局部结构示意图。
图5是本申请实施例提供的第三种发光基板的局部结构示意图。
图6是本申请实施例提供的第四种发光基板的局部结构示意图。
图7是本申请实施例提供的第五种发光基板的局部结构示意图。
图8a是包含两个发光元件而不包含光散射构件的背光模组的光强分布曲线。
图8b是包含两个发光元件并包含光散射构件的背光模组的光强分布曲线。
图9是本申请实施例提供的显示装置的局部结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请实施例提供一种背光模组及显示装置,所述背光模组包括发光基板和设置在发光基板的出光面上的反射膜层,发光基板包括衬底基板和设置在衬底基板同一表面上的发光元件和光散射构件,反射膜层包括多个供光线穿过的出光孔;发光元件发出的光线中的一部分经反射膜层反射至光散射构件上,该部分光线被光散射构件向多个方向散射,从而使发光元件之间区域的光线强度得到提升,进而提高了背光模组的出光光强的分布均匀性,提升了背光模组的发光性能。
请参阅图1,图1是本申请实施例提供的背光模组的局部结构示意图。所述背光模组包括发光基板10以及设置在所述发光基板10之上的反射膜层40。其中,所述发光基板10与所述反射膜层40可以直接接触,还可以是发光基板10与反射膜层40之间设置有其它结构膜层。
所述发光基板10包括衬底基板、设置在所述衬底基板的第一侧的多个发光元件L以及设置在所述衬底基板的第一侧的光散射构件S, 所述光散射构件S分布于所述发光元L件的周围。所述发光元件L可以是具有发光功能的发光二极管器件(LED器件),多个所述发光元件L在所述衬底基板上按照一定排布规律阵列设置,所述发光元件L是所述背光模组中的光源器件。所述光散射构件S具有光散射表面,光线射至所述光散射构件S上时,会被所述光散射构件S向多个方向分散射出,以提高光强分布的均匀性。
所述反射膜层40设置在所述发光基板10的出光面上,所述发光基板10的出光面即为发光元件L发射的光线从所述发光基板10上射出的表面。所述反射膜层40上设置有多个出光孔K,所述出光孔K是所述发光基板10发射的光线的射出通道。其中,靠近所述发光元件L的出光孔K的开口较小,且分布数量较少;相邻发光元件L之间的出光孔K的开口较大,且分布数量较多。
请参阅图1和图1a,图1a是图1所示的背光模组的发光示意图。所述反射膜层40上除所述出光孔K的区域具有较高的反射光线的能力,所述发光元件L发射的光线射至所述反射膜层40上时,会被所述反射膜层40反射,被反射的光线再次射至所述发光基板10上时,会被所述光散射构件S散射,从而使所述发光基板10与所述反射膜层40之间的光线强度分布均匀性提升,尤其提升了相邻所述发光元件L之间的光强分布,进而通过所述反射膜层40上的每个出光孔K射出的光线强度趋近一致,使得所述背光模组的出光均匀性提升。
可选地,请参阅图1,所述背光模组还包括设置在所述发光基板10与所述反射膜层40之间的封装层20和保护层30。所述封装层20设置在所述发光基板10的出光面上,用于对所述发光元件L和所述光散射构件S进行封装,所述封装层20可以用透明胶制作而成。所述保护层30设置在所述封装层20上,且连接所述封装层20与所述反射膜层40,所述保护层30具有耐化性,比如耐酸碱、耐有机溶剂腐蚀,所述保护层30由透光材料制作。
可选地,所述背光模组还包括设置在所述反射膜层40上的抗刮伤层50,所述抗刮伤层50具有较好的耐磨性,用于防止所述反射膜层40受到外力磨损。所述抗刮伤层50由透光材料制作。
进一步地,所述光散射构件S包括设置在所述衬底基板的第一侧的多个凸起元件,使所述发光基板10具有凹凸不平的表面。
可选地,所述凸起元件的形状可以是如图2a所示的多面体形,还可以是如图2b所示的半球形,或是如图2c所示的半圆柱形,或是如图2d圆环形。其中,所述半球形可以是大于二分之一球体的半球,还可以是小于二分之一球体的半球,所述半球形的弧形球面为凸起面;所述半圆柱形的半圆端面可以是大于二分之一圆形的半圆,还可以是小于二分之一圆形的半圆;所述圆环形是具有环状结构的三维结构体。单个所述凸起元件的尺寸在1微米至100微米之间。
本申请实施例提供的背光模组,通过在发光基板上设置光散射构件,将被反射膜层反射回发光基板的光线向多个方向散射,从而提升了发光元件之间区域的光线强度,进而提高了背光模组的出光光强的分布均匀性,提升了背光模组的发光性能。
在一种实施例中,请参阅图1和图3,其中,图3是本申请实施例提供的第一种发光基板的局部结构示意图。所述发光基板10包括衬底基板101、设置在所述衬底基板101上且位于所述衬底基板101的第一侧的缓冲层103、设置在所述缓冲层103上的驱动电路层、以及设置在所述驱动电路层上的发光元件L,其中,所述驱动电路层包括驱动电路,所述驱动电路用于为所述发光元件L提供驱动信号,使所述发光元件L发光。可选地,所述衬底基板101的第一侧还设置有遮挡层102,所述遮挡层102具有遮光作用。
所述驱动电路层包括设置于所述缓冲层103上的半导体层104、覆盖所述半导体层104的栅极绝缘层105、设置于所述栅极绝缘层105上的第一金属层106、覆盖所述第一金属层106的层间绝缘层107、设置于所述层间绝缘层107上的第二金属层108、设置在所述第二金属层108上的第一平坦层109、设置在所述第一平坦层109上的第一钝化层110、设置在所述第一钝化层110上的第三金属层111、设置于所述第三金属层111上的第二平坦层112、以及设置在所述第二平坦层112上的第二钝化层113。
其中,所述第一金属层106包括栅极;所述第二金属层108包括源极和漏极,所述源极和所述漏极通过所述层间绝缘层107和所述栅极绝缘层105上过孔与所述半导体层104连接;所述第三金属层111通过所述第一平坦层109和所述第一钝化层110上的过孔与所述第二金属层108电性连接;所述发光元件L具有相对两极,所述发光元件L的相对两极通过所述第二平坦层112和所述第二钝化层113上的过孔与所述第三金属层111电性连接,从而使所述发光元件L的发光功能受到所述驱动电路层中的驱动电路控制。其中,所述第二金属层111为图案化的金属层,所述发光元件L的相对两极分别与第二金属层111上的不同金属电极电性连接。
所述半导体层104、所述栅极、所述源极和所述漏极构成所述驱动电路中的薄膜晶体管器件,所述遮挡层102与所述半导体层104上下对应设置,用于遮挡射向所述半导体层104的光线。
进一步地,所述层间绝缘层107的远离所述第一金属层106的表面上设置有多个凸起元件,所述凸起元件分布于所述发光元件l在所述第一金属层106上的正投影的周围,所述凸起元件的形状包括多面体形、半球形、半圆柱形和环形中的一种或多种。所述凸起元件构成光散射构件S,所述光散射构件S使所述层间绝缘层107形成凹凸不平的表面结构。
可选地,所述光散射构件S可以是在制作所述层间绝缘层107时在其表面形成的凹凸不平的表面结构。
具体地,在所述层间绝缘层107上制作所述光散射构件S的方法可以包括以下步骤:
如图3a所示,在所述栅极绝缘层105上制备原始绝缘层1071,并在所述原始绝缘层1071上制备光阻层Z。
如图3b所示,采用半色调掩膜板Y对所述光阻层Z进行曝光处理;其中,所述半色调掩膜板Y上具有半透光区,与所述半透光区对应的光阻层Z被曝光而厚度减薄。
如图3c所示,经曝光处理后,所述光阻层Z表面形成凹凸不平的结构;其中,凹孔处的光阻层Z厚度较小,更容易被刻蚀。
如图3d所示,通过干刻蚀工艺对所述光阻层Z和所述原始绝缘层1071进行刻蚀,从而在所述原始绝缘层1071的表面形成多个凹槽,使所述原始绝缘层1071形成所述层间绝缘层107。
如图3e所示,通过显影工艺去除所述层间绝缘层107表面的光阻层Z,形成所述层间绝缘层107表面的凹凸不平的结构,即在所述层间绝缘层107的表面形成所述光散射构件S。
其中,对于所述光散射构件S的不同形状,可以通过不同的半色调掩膜板制作而成。
进一步地,由于所述光散射构件S在所述层间绝缘层107的表面形成凸起结构,设置在所述层间绝缘层107上的第二金属层108被所述光散射构件S垫高,也会在对应所述光散射构件S的位置形成凸起,同理,所述第一平坦层109、所述第一钝化层110和所述第三金属层111也均会在对应所述光散射构件S的位置形成凸起。其中,所述光散射构件S及所述第二金属层108上的凸起、所述第一平坦层109上的凸起、所述第一钝化层110上的凸起和所述第三金属层111上的凸起均会对射向其表面的光线产生散射作用。
本实施例提供的发光基板包括设置在所述层间绝缘层上的光散射构件,该光散射构件将射向其表面的光线散射出去,从而提升所述发光基板发出光线的强度分布均匀性。
在一种实施例中,请参阅图1和图4,其中,图4是本申请实施例提供的第二种发光基板的局部结构示意图。图4所示的发光基板与图3所示的发光基板具有相同或相似的结构;下面对图4所示的发光基板的结构特征进行说明,其中未详述之处,请参照上面对图3所示的发光基板的结构说明。
所述发光基板10包括衬底基板101、设置在所述衬底基板101上且位于所述衬底基板101的第一侧的缓冲层103、设置在所述缓冲层103上的驱动电路层、以及设置在所述驱动电路层上的发光元件L,其中,所述驱动电路层包括驱动电路,所述驱动电路用于为所述发光元件L提供驱动信号,使所述发光元件L发光。可选地,所述衬底基板101的第一侧还设置有遮挡层102,所述遮挡层102具有遮光作用。
所述驱动电路层包括设置于所述缓冲层103上的半导体层104、覆盖所述半导体层104的栅极绝缘层105、设置于所述栅极绝缘层105上的第一金属层106、覆盖所述第一金属层106的层间绝缘层107、设置于所述层间绝缘层107上的第二金属层108、设置在所述第二金属层108上的第一平坦层109、设置在所述第一平坦层109上的第一钝化层110、设置在所述第一钝化层110上的第三金属层111、设置于所述第三金属层111上的第二平坦层112、以及设置在所述第二平坦层112上的第二钝化层113。
其中,所述第一金属层106包括栅极;所述第二金属层108包括源极和漏极,所述源极和所述漏极通过所述层间绝缘层107和所述栅极绝缘层105上过孔与所述半导体层104连接;所述第三金属层111通过所述第一平坦层109和所述第一钝化层110上的过孔与所述第二金属层108电性连接;所述发光元件L具有相对两极,所述发光元件L的相对两极通过所述第二平坦层112和所述第二钝化层113上的过孔与所述第三金属层111电性连接,从而使所述发光元件L的发光功能受到所述驱动电路层中的驱动电路控制。
进一步地,所述第二金属层108的远离所述层间绝缘层107的表面上设置有多个凸起元件,所述凸起元件的形状包括多面体形、半球形、半圆柱形和环形中的一种或多种。所述凸起元件构成光散射构件S,所述光散射构件S使所述第二金属层108形成凹凸不平的表面结构。
可选地,所述光散射构件S与所述第二金属层108由相同材料构成,从而在制作所述第二金属层108的同时制作所述光散射构件S,以简化工艺。
可选地,所述光散射构件S可以是在制作所述第二金属层108时在其表面形成的凹凸不平的表面结构。
具体地,在所述第二金属层108上制作所述光散射构件S的方法,与上述实施例在层间绝缘层上制作光散射构件的方法相同或相似,此处不再赘述。
进一步地,由于所述光散射构件S在所述第二金属层108的表面形成凸起结构,设置在所述第二金属层108上的第一平坦层109被所述光散射构件S垫高,也会在对应所述光散射构件S的位置形成凸起,同理,所述第一钝化层110和所述第三金属层111也均会在对应所述光散射构件S的位置形成凸起。其中,所述光散射构件S及所述第一平坦层109上的凸起、所述第一钝化层110上的凸起和所述第三金属层111上的凸起均会对射向其表面的光线产生散射作用。
本实施例提供的发光基板包括设置在所述第二金属层上的光散射构件,该光散射构件将射向其表面的光线散射出去,从而提升所述发光基板发出光线的强度分布均匀性。
在一种实施例中,请参阅图1和图5,其中,图5是本申请实施例提供的第三种发光基板的局部结构示意图。图5所示的发光基板与图3所示的发光基板具有相同或相似的结构;下面对图5所示的发光基板的结构特征进行说明,其中未详述之处,请参照上面对图3所示的发光基板的结构说明。
所述发光基板10包括衬底基板101、设置在所述衬底基板101上且位于所述衬底基板101的第一侧的缓冲层103、设置在所述缓冲层103上的驱动电路层、以及设置在所述驱动电路层上的发光元件L,其中,所述驱动电路层包括驱动电路,所述驱动电路用于为所述发光元件L提供驱动信号,使所述发光元件L发光。可选地,所述衬底基板101的第一侧还设置有遮挡层102,所述遮挡层102具有遮光作用。
所述驱动电路层包括设置于所述缓冲层103上的半导体层104、覆盖所述半导体层104的栅极绝缘层105、设置于所述栅极绝缘层105上的第一金属层106、覆盖所述第一金属层106的层间绝缘层107、设置于所述层间绝缘层107上的第二金属层108、设置在所述第二金属层108上的第一平坦层109、设置在所述第一平坦层109上的第一钝化层110、设置在所述第一钝化层110上的第三金属层111、设置于所述第三金属层111上的第二平坦层112、以及设置在所述第二平坦层112上的第二钝化层113。
其中,所述第一金属层106包括栅极;所述第二金属层108包括源极和漏极,所述源极和所述漏极通过所述层间绝缘层107和所述栅极绝缘层105上过孔与所述半导体层104连接;所述第三金属层111通过所述第一平坦层109和所述第一钝化层110上的过孔与所述第二金属层108电性连接;所述发光元件L具有相对两极,所述发光元件L的相对两极通过所述第二平坦层112和所述第二钝化层113上的过孔与所述第三金属层111电性连接,从而使所述发光元件L的发光功能受到所述驱动电路层中的驱动电路控制。
进一步地,所述第一平坦层109的远离所述第二金属层108的表面上设置有多个凸起元件,所述凸起元件的形状包括多面体形、半球形、半圆柱形和环形中的一种或多种。所述凸起元件构成光散射构件S,所述光散射构件S使所述第一平坦层109形成凹凸不平的表面结构。
可选地,所述光散射构件S可以是在制作所述第一平坦层109时在其表面形成的凹凸不平的表面结构。
具体地,在所述第一平坦层109上制作所述光散射构件S的方法,与上述实施例在层间绝缘层上制作光散射构件的方法相同或相似,此处不再赘述。
进一步地,由于所述光散射构件S在所述第一平坦层109的表面形成凸起结构,设置在所述第一平坦层109上的第一钝化层110被所述光散射构件S垫高,也会在对应所述光散射构件S的位置形成凸起,同理,所述第三金属层111也均会在对应所述光散射构件S的位置形成凸起。其中,所述光散射构件S及所述第一钝化层110上的凸起和所述第三金属层111上的凸起均会对射向其表面的光线产生散射作用。
本实施例提供的发光基板包括设置在所述第一平坦层上的光散射构件,该光散射构件将射向其表面的光线散射出去,从而提升所述发光基板发出光线的强度分布均匀性。
在一种实施例中,请参阅图1和图6,其中,图6是本申请实施例提供的第四种发光基板的局部结构示意图。图6所示的发光基板与图3所示的发光基板具有相同或相似的结构;下面对图6所示的发光基板的结构特征进行说明,其中未详述之处,请参照上面对图3所示的发光基板的结构说明。
所述发光基板10包括衬底基板101、设置在所述衬底基板101上且位于所述衬底基板101的第一侧的缓冲层103、设置在所述缓冲层103上的驱动电路层、以及设置在所述驱动电路层上的发光元件L,其中,所述驱动电路层包括驱动电路,所述驱动电路用于为所述发光元件L提供驱动信号,使所述发光元件L发光。可选地,所述衬底基板101的第一侧还设置有遮挡层102,所述遮挡层102具有遮光作用。
所述驱动电路层包括设置于所述缓冲层103上的半导体层104、覆盖所述半导体层104的栅极绝缘层105、设置于所述栅极绝缘层105上的第一金属层106、覆盖所述第一金属层106的层间绝缘层107、设置于所述层间绝缘层107上的第二金属层108、设置在所述第二金属层108上的第一平坦层109、设置在所述第一平坦层109上的第一钝化层110、设置在所述第一钝化层110上的第三金属层111、设置于所述第三金属层111上的第二平坦层112、以及设置在所述第二平坦层112上的第二钝化层113。
其中,所述第一金属层106包括栅极;所述第二金属层108包括源极和漏极,所述源极和所述漏极通过所述层间绝缘层107和所述栅极绝缘层105上过孔与所述半导体层104连接;所述第三金属层111通过所述第一平坦层109和所述第一钝化层110上的过孔与所述第二金属层108电性连接;所述发光元件L具有相对两极,所述发光元件L的相对两极通过所述第二平坦层112和所述第二钝化层113上的过孔与所述第三金属层111电性连接,从而使所述发光元件L的发光功能受到所述驱动电路层中的驱动电路控制。
进一步地,所述第一钝化层110的远离所述第一平坦层109的表面上设置有多个凸起元件,所述凸起元件的形状包括多面体形、半球形、半圆柱形和环形中的一种或多种。所述凸起元件构成光散射构件S,所述光散射构件S使所述第一钝化层110形成凹凸不平的表面结构。
可选地,所述光散射构件S可以是在制作所述第一钝化层110时在其表面形成的凹凸不平的表面结构。
具体地,在所述第一钝化层110上制作所述光散射构件S的方法,与上述实施例在层间绝缘层上制作光散射构件的方法相同或相似,此处不再赘述。
进一步地,由于所述光散射构件S在所述第一钝化层110的表面形成凸起结构,设置在所述第一钝化层110上的第三金属层111被所述光散射构件S垫高,也会在对应所述光散射构件S的位置形成凸起。所述光散射构件S及所述第三金属层111上的凸起均会对射向其表面的光线产生散射作用。
本实施例提供的发光基板包括设置在所述第一钝化层上的光散射构件,该光散射构件将射向其表面的光线散射出去,从而提升所述发光基板发出光线的强度分布均匀性。
在一种实施例中,请参阅图1和图7,其中,图7是本申请实施例提供的第五种发光基板的局部结构示意图。图7所示的发光基板与图3所示的发光基板具有相同或相似的结构;下面对图7所示的发光基板的结构特征进行说明,其中未详述之处,请参照上面对图3所示的发光基板的结构说明。
所述发光基板10包括衬底基板101、设置在所述衬底基板101上且位于所述衬底基板101的第一侧的缓冲层103、设置在所述缓冲层103上的驱动电路层、以及设置在所述驱动电路层上的发光元件L,其中,所述驱动电路层包括驱动电路,所述驱动电路用于为所述发光元件L提供驱动信号,使所述发光元件L发光。可选地,所述衬底基板101的第一侧还设置有遮挡层102,所述遮挡层102具有遮光作用。
所述驱动电路层包括设置于所述缓冲层103上的半导体层104、覆盖所述半导体层104的栅极绝缘层105、设置于所述栅极绝缘层105上的第一金属层106、覆盖所述第一金属层106的层间绝缘层107、设置于所述层间绝缘层107上的第二金属层108、设置在所述第二金属层108上的第一平坦层109、设置在所述第一平坦层109上的第一钝化层110、设置在所述第一钝化层110上的第三金属层111、设置于所述第三金属层111上的第二平坦层112、以及设置在所述第二平坦层112上的第二钝化层113。
其中,所述第一金属层106包括栅极;所述第二金属层108包括源极和漏极,所述源极和所述漏极通过所述层间绝缘层107和所述栅极绝缘层105上过孔与所述半导体层104连接;所述第三金属层111通过所述第一平坦层109和所述第一钝化层110上的过孔与所述第二金属层108电性连接;所述发光元件L具有相对两极,所述发光元件L的相对两极通过所述第二平坦层112和所述第二钝化层113上的过孔与所述第三金属层111电性连接,从而使所述发光元件L的发光功能受到所述驱动电路层中的驱动电路控制。
进一步地,所述第三金属层111的远离所述第一钝化层110的表面上设置有多个凸起元件,所述凸起元件的形状包括多面体形、半球形、半圆柱形和环形中的一种或多种。所述凸起元件构成光散射构件S,所述光散射构件S使所述第三金属层111形成凹凸不平的表面结构。
可选地,所述光散射构件S与所述第三金属层111由相同材料构成,从而在制作所述第三金属层111的同时制作所述光散射构件S,以简化工艺。
可选地,所述光散射构件S可以是在制作所述第三金属层111时在其表面形成的凹凸不平的表面结构。
具体地,在所述第三金属层111上制作所述光散射构件S的方法,与上述实施例在层间绝缘层上制作光散射构件的方法相同或相似,此处不再赘述。
本实施例提供的发光基板包括设置在所述第三金属层上的光散射构件,该光散射构件将射向其表面的光线散射出去,从而提升所述发光基板发出光线的强度分布均匀性。
请参阅图8a和图8b,图8a是包含两个发光元件而不包含光散射构件的背光模组的光强分布曲线,图8b是包含两个发光元件并包含本申请实施例提供的光散射构件的背光模组的光强分布曲线。可见,背光模组中设置本申请实施例提供的光散射构件后,在两个发光元件之间的光强分布明显提高,从而使背光模组的出光均匀性得到显著提升。
本申请实施例还提供一种显示装置,请参阅图9,所述显示装置包括上述实施例提供的背光模组,即所述背光模组包括发光基板10、设置在所述发光基板10上的封装层20、设置在所述封装层20上的保护层30、设置在所述保护层30上的反射膜层40、以及设置在所述反射膜层40上的抗刮伤层50。所述发光基板10包括多个发光元件L和光散射构件S,所述反射膜层40上设置有多个出光孔,所述出光孔是所述发光基板10发射的光线的射出通道。
所述显示装置还包括设置在所述背光模组的出光面上的第一基板60、与所述第一基板60相对设置的第二基板80和设置于所述第一基板60与第二基板80之间的液晶70。
综上所述,本申请实施例提供一种背光模组及显示装置,所述背光模组包括发光基板和设置在发光基板的出光面上的反射膜层,发光基板包括衬底基板和设置在衬底基板同一表面上的发光元件和光散射构件,反射膜层包括多个供光线穿过的出光孔;发光元件发出的光线中的一部分经反射膜层反射至光散射构件上,并被光散射构件散射,从而使发光元件之间区域的光线强度得到提升,进而提高了背光模组的出光光强的分布均匀性,提升了背光模组的发光性能。
需要说明的是,虽然本申请以具体实施例揭露如上,但上述实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种背光模组,其包括:
    发光基板,包括衬底基板、设置在所述衬底基板的第一侧的多个发光元件以及设置在所述衬底基板的第一侧的光散射构件,所述光散射构件分布于所述发光元件的周围;
    反射膜层,设置在所述发光基板的出光面上,所述反射膜层上设置有多个出光孔。
  2. 根据权利要求1所述的背光模组,其中,所述光散射构件包括设置在所述衬底基板的第一侧的多个凸起元件。
  3. 根据权利要求2所述的背光模组,其中,所述凸起元件的形状包括多面体形、半球形、半圆柱形和环形中的一种或多种。
  4. 根据权利要求1所述的背光模组,其中,所述发光基板还包括设置在所述衬底基板的第一侧的驱动电路层,所述发光元件设置在所述驱动电路层上。
  5. 根据权利要求4所述的背光模组,其中,所述驱动电路层包括与所述发光元件连接的金属层,所述光散射构件包括设置在所述金属层上凸起元件。
  6. 根据权利要求5所述的背光模组,其中,所述凸起元件分布于所述发光元件在所述金属层上的正投影的周围。
  7. 根据权利要求4所述的背光模组,其中,所述驱动电路层包括第一金属层、设置于所述第一金属层上的层间绝缘层以及设置于所述层间绝缘层上的第二金属层,所述第二金属层与所述发光元件连接。
  8. 根据权利要求7所述的背光模组,其中,所述光散射构件包括设置于所述第二金属层上的凸起元件。
  9. 根据权利要求8所述的背光模组,其中,所述层间绝缘层上设置有与所述凸起元件对应的凸起结构。
  10. 根据权利要求4所述的背光模组,其中,所述驱动电路层包括第一金属层、设置于所述第一金属层上的层间绝缘层、设置于所述层间绝缘层上的第二金属层、设置于所述第二金属层上的第一钝化层以及设置于所述第一钝化层上的第三金属层,所述第二金属层与所述第三金属层连接,所述第三金属层与所述发光元件连接。
  11. 根据权利要求10所述的背光模组,其中,所述光散射构件包括设置于所述第三金属层上的凸起元件。
  12. 根据权利要求11所述的背光模组,其中,所述第一钝化层上设置有与所述凸起元件对应的凸起结构。
  13. 根据权利要求4所述的背光模组,其中,所述驱动电路层包括第一金属层、设置于所述第一金属层上的层间绝缘层、设置于所述层间绝缘层上的第二金属层、设置于所述第二金属层上的第一钝化层以及设置于所述第一钝化层上的第三金属层,所述第二金属层与所述第三金属层连接,所述第三金属层与所述发光元件连接,所述光散射构件包括设置于所述第二金属层上的凸起元件和设置于所述第三金属层上的凸起元件。
  14. 根据权利要求13所述的背光模组,其中,所述第二金属层上的凸起元件与所述第三金属层上的凸起元件的位置一一对应。
  15. 根据权利要求13所述的背光模组,其中,所述层间绝缘层上设置有与所述第二金属层上的凸起元件对应的凸起结构。
  16. 根据权利要求13所述的背光模组,其中,所述第一钝化层上设置有与所述第三金属层上的凸起元件对应的凸起结构。
  17. 根据权利要求13所述的背光模组,其中,所述驱动电路层还包括设置于所述第三金属层上的第二钝化层;
    所述发光元件设置在所述第二钝化层上;
    所述背光模组还包括设置在所述发光基板与所述反射膜层之间的封装层,所述封装层覆盖所述发光元件。
  18. 一种背光模组,其包括:
    衬底基板;
    驱动电路层,设置于所述衬底基板上,所述驱动电路层包括第一金属层、设置于所述第一金属层上的层间绝缘层、设置于所述层间绝缘层上的第二金属层、设置于所述第二金属层上的第一钝化层以及设置于所述第一钝化层上的第三金属层,所述第二金属层与所述第三金属层连接;所述第三金属层上设置有凸起元件;
    发光元件,设置于所述驱动电路层上,所述发光元件与所述第三金属层连接,所述凸起元件分布于所述发光元件的周围;
    反射膜层,设置在所述发光元件的出光方向上,所述反射膜层上设置有多个出光孔。
  19. 一种显示装置,其包括:权利要求1所述的背光模组,以及设置在所述背光模组的出光面上的第一基板、与所述第一基板相对设置的第二基板和设置于所述第一基板与第二基板之间的液晶;所述背光模组包括发光基板,所述发光基板包括发光元件。
  20. 根据权利要求19所述的显示装置,其中,所述发光基板包括与所述发光元件连接的金属层,所述金属层上设置有凸起元件。
PCT/CN2021/094536 2021-04-28 2021-05-19 背光模组及显示装置 WO2022227138A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/311,420 US20240012285A1 (en) 2021-04-28 2021-05-19 Backlight module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110465375.5 2021-04-28
CN202110465375.5A CN113192997B (zh) 2021-04-28 2021-04-28 背光模组及显示装置

Publications (1)

Publication Number Publication Date
WO2022227138A1 true WO2022227138A1 (zh) 2022-11-03

Family

ID=76979692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094536 WO2022227138A1 (zh) 2021-04-28 2021-05-19 背光模组及显示装置

Country Status (3)

Country Link
US (1) US20240012285A1 (zh)
CN (1) CN113192997B (zh)
WO (1) WO2022227138A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115963663A (zh) * 2022-12-29 2023-04-14 深圳创维-Rgb电子有限公司 背光模组及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504775A (zh) * 2002-12-05 2004-06-16 ��ʽ��������Զ�֯�������� 光学元件和平面照明单元以及液晶显示单元
CN104298001A (zh) * 2014-10-10 2015-01-21 深圳市华星光电技术有限公司 直下式背光模组及其制造方法
CN110459556A (zh) * 2018-05-08 2019-11-15 乐金显示有限公司 发光显示装置
CN111308778A (zh) * 2018-12-11 2020-06-19 乐金显示有限公司 背光单元及包括背光单元的显示装置
CN111856812A (zh) * 2019-04-30 2020-10-30 喜星电子株式会社 背光装置用面光源模块及其制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035566A1 (ja) * 2008-09-23 2010-04-01 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
JP6314297B1 (ja) * 2017-04-15 2018-04-25 株式会社サムス 電子部品モジュール装置及びその製造方法
CN107656398A (zh) * 2017-10-13 2018-02-02 惠州市华星光电技术有限公司 液晶显示器及其背光模组
TWI669545B (zh) * 2018-02-23 2019-08-21 友達光電股份有限公司 顯示裝置及其背光模組
CN109085719B (zh) * 2018-08-10 2021-03-16 Tcl华星光电技术有限公司 直下式led背光源
CN108983499A (zh) * 2018-09-19 2018-12-11 武汉华星光电技术有限公司 背光模组
KR102591775B1 (ko) * 2018-10-01 2023-10-24 삼성전자주식회사 백라이트유닛 및 이를 포함하는 액정표시장치
CN110703501A (zh) * 2019-10-29 2020-01-17 深圳市华星光电半导体显示技术有限公司 发光基板、背光模组及显示面板
CN111028714A (zh) * 2019-12-26 2020-04-17 惠州市华星光电技术有限公司 一种背板结构以及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504775A (zh) * 2002-12-05 2004-06-16 ��ʽ��������Զ�֯�������� 光学元件和平面照明单元以及液晶显示单元
CN104298001A (zh) * 2014-10-10 2015-01-21 深圳市华星光电技术有限公司 直下式背光模组及其制造方法
CN110459556A (zh) * 2018-05-08 2019-11-15 乐金显示有限公司 发光显示装置
CN111308778A (zh) * 2018-12-11 2020-06-19 乐金显示有限公司 背光单元及包括背光单元的显示装置
CN111856812A (zh) * 2019-04-30 2020-10-30 喜星电子株式会社 背光装置用面光源模块及其制作方法

Also Published As

Publication number Publication date
CN113192997B (zh) 2022-10-04
CN113192997A (zh) 2021-07-30
US20240012285A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
TWI588984B (zh) 顯示裝置
CN210536818U (zh) 一种Micro LED微投影装置
WO2022012226A1 (zh) 背光模组及其设计方法、显示装置
JP2008021650A (ja) 直下方式バックライト装置
US11437447B2 (en) Display device and manufacturing method thereof
CN102194980A (zh) 发光器件封装和包括发光器件封装的照明系统
CN111584571A (zh) 屏下摄像头显示面板及其制备方法
WO2020238841A1 (zh) 显示基板及其制造方法、显示面板
CN110085621B (zh) 电子设备、显示面板、驱动背板及其制造方法
CN109244115B (zh) 一种oled显示面板及其制作方法,以及显示装置
US11289685B2 (en) Display panel with patterned light absorbing layer, and manufacturing method thereof
US20170133564A1 (en) Emissive Display with Light Management System
JP7289849B2 (ja) 多層バス電極を含む発光ダイオードアレイ、および、その製造方法
JP2010192347A (ja) 光源モジュール、並びにこれを用いた照明装置,液晶表示装置、及び映像表示装置
CN213071143U (zh) 显示面板及电子设备
WO2022227138A1 (zh) 背光模组及显示装置
CN113724578A (zh) 电子装置
WO2019184327A1 (zh) 基板及其制作方法、电子装置
CN113410276A (zh) 阵列基板及其制备方法、显示装置
TWI489625B (zh) 有機發光顯示面板及其製作方法
WO2024000995A1 (zh) 显示面板及其制备方法和显示装置
TWI462348B (zh) 發光裝置及其製法
CN113589590A (zh) 一种背光模组以及显示装置
US20220344554A1 (en) Backplane, backlight source, display device and manufacturing method of backplane
TW202133366A (zh) 顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17311420

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938609

Country of ref document: EP

Kind code of ref document: A1