WO2022225213A1 - 수중 기초 구조물 시공 방법 - Google Patents

수중 기초 구조물 시공 방법 Download PDF

Info

Publication number
WO2022225213A1
WO2022225213A1 PCT/KR2022/004368 KR2022004368W WO2022225213A1 WO 2022225213 A1 WO2022225213 A1 WO 2022225213A1 KR 2022004368 W KR2022004368 W KR 2022004368W WO 2022225213 A1 WO2022225213 A1 WO 2022225213A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
pipe
concrete
pedestal
guide pole
Prior art date
Application number
PCT/KR2022/004368
Other languages
English (en)
French (fr)
Inventor
김상기
Original Assignee
(주)유주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유주 filed Critical (주)유주
Publication of WO2022225213A1 publication Critical patent/WO2022225213A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to a method for constructing an underwater foundation structure for supporting an offshore structure such as a large storage facility, a wind power plant, a tidal or wave power plant, and the like.
  • an upper structure including a turbine and blades on the water surface, an underwater basic structure on which the upper structure is supported, and a ground fixing part for fixing the underwater basic structure to the underwater ground are included.
  • the underwater foundation structure as described above should be installed on the underwater ground, but the underwater ground is not flat but uneven and irregular.
  • the underwater foundation structure since the lower part of the underwater foundation structure is only fixed to the ground by a separate pile, etc., the underwater foundation structure receives a lateral load due to a strong current, etc. In order to solve this problem, Although the weight is increased and the size is increased, there is a problem that not only the installation cost increases, but also the lateral load increases with the increase of the surface area.
  • the present invention has been devised to solve the problems of the prior art as described above, and the underwater foundation structure construction that can be installed according to the designed verticality of the upper structure by allowing the underwater foundation structure to be installed in an accurate horizontal state on the irregular underwater ground I would like to suggest a method.
  • the present invention is to propose a method for constructing an underwater foundation structure that can be firmly coupled to the underwater ground as a whole while minimizing the lateral load caused by the strong current.
  • the present invention is a pipe extending in the vertical direction, and includes a plurality of pipes for a first block having a female thread formed at the bottom and a first frame connecting the plurality of pipes for the first block to each other.
  • a plurality of horizontal alignment comprising a pipe for a pedestal projecting downward from the lower end of the pipe for the first block and having an upper end for shaft coupling formed at the upper end and a ground support plate extending outward in the radial direction from the lower end of the pipe for the pedestal
  • the present invention can be installed according to the verticality in which the upper structure is designed so that the underwater foundation structure is installed in an accurate horizontal state on the irregular underwater ground.
  • the present invention minimizes the lateral load caused by the strong current, while the entire underwater foundation structure can be firmly coupled to the underwater ground.
  • FIG. 1 is a cross-sectional view of a foundation block assembly according to a first embodiment of the present invention
  • Figure 2 is an exploded cross-sectional view of Figure 1;
  • FIG. 3 is a perspective view of the pedestal for leveling of FIG. 1;
  • FIG. 4 is a cross-sectional view of a guide pole according to a first embodiment of the present invention.
  • FIG. 5 is a perspective view of FIG. 4;
  • FIG. 6 is a cross-sectional view of an upper block according to a first embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of a state in which the basic block assembly arrangement step according to the first embodiment of the present invention is performed.
  • FIG. 8 is a conceptual diagram of a state in which the horizontal alignment step is performed after FIG. 7;
  • FIG. 9 is a conceptual diagram of a state in which the upper block installation step is performed after FIG. 8;
  • 10 and 11 are conceptual views of a state of performing the foundation concrete formation step after FIG. 9;
  • FIG. 12 is a conceptual view of a state in which the guide pawl removal step is performed after FIG. 11;
  • FIG. 13 is a conceptual view of a state in which the ground hole formation step is performed after FIG. 12;
  • FIG. 14 is a conceptual view of a state in which the concrete pillar forming step is performed after FIG. 13;
  • FIG. 15 is a conceptual diagram of a state in which the upper structure installation step is performed after FIG. 14;
  • FIG. 16 is a cross-sectional view of a foundation block assembly according to a second embodiment of the present invention.
  • 17 is a cross-sectional view of an upper block according to a second embodiment of the present invention.
  • FIG. 19 is a conceptual diagram of a state in which the horizontal alignment step is performed after FIG. 18;
  • FIG. 20 is a conceptual diagram of a state in which the upper block installation step is performed after FIG. 19;
  • FIG. 21 is a conceptual view of a state in which the foundation concrete formation step is performed after FIG. 20;
  • FIG. 22 is a conceptual view of a state in which the guide pawl removal step and the ground hole formation step are performed after FIG. 21;
  • FIG. 23 is a conceptual view of a state in which the concrete pillar forming step is performed after FIG. 22;
  • FIG. 24 is a conceptual view of a state in which the upper structure installation step is performed after FIG. 23 .
  • Figure 1 is a cross-sectional view of a foundation block assembly according to a first embodiment of the present invention
  • Figure 2 is an exploded cross-sectional view of Figure 1
  • Figure 3 is a perspective view of the leveling pedestal of Figure 1
  • Figure 4 is the first embodiment of the present invention
  • FIG. 5 is a perspective view of FIG. 4
  • FIG. 6 is a cross-sectional view of an upper block according to a first embodiment of the present invention
  • FIGS. 7 to 15 are a first embodiment of the present invention
  • the foundation block assembly 100 including the foundation block 110, the pedestal 120 for leveling, and the rubber plate 130 for the cover (see FIGS. 1 to 3).
  • the basic block 110 includes a plurality of pipes 111 for the first block, and a first frame 112 connecting the plurality of pipes 111 for the first block to each other.
  • the first block for the pipe 111 is in the form of a pipe extending in the vertical direction, and a female screw 111a is formed in the lower portion.
  • the first frame 112 includes a first upper plate frame 112a made of concrete and a first lower plate frame 112b made of concrete.
  • the lower end of the pipe 111 for the first block extends to the lower surface of the first lower plate frame 112b and the upper end extends upwardly so that the upper end protrudes upward from the upper surface of the first upper plate frame 112a.
  • a pedestal 120 for horizontal alignment is provided for each pipe 111 for the first block. Therefore, the pedestal 120 for horizontal alignment is provided in plurality.
  • Each of the pedestals 120 for leveling consists of a pedestal pipe 121 and a ground support plate 122 .
  • the pipe 121 for the pedestal is in the form of a pipe extending in the vertical direction, and the male screw 121a screwed with the female screw 111a of the pipe 111 for the first block is formed at the lower portion, and a plurality of the male screws 121a are formed at the lower portion. of the concrete injection hole 121b is formed.
  • the lower end of the pedestal pipe 121 protrudes downward from the lower end of the first block pipe 111 (specifically, the lower surface of the first lower plate frame 112b).
  • the upper end of the pedestal pipe 121 is formed with an upper end for shaft coupling (121c) for shaft coupling.
  • the shaft coupling upper end 121c is a portion where the shaft coupling lower end 141 of the guide pole 140 is coupled to rotate in conjunction with the guide pole 140 to rotate.
  • the upper end for shaft coupling (121c) is processed so that irregularities are repeated in a sawtooth shape along the upper main surface of the pipe 121 for the pedestal.
  • the ground support plate 122 is in the form of a horizontal plate extending radially outward from the lower end of the support pipe 121 .
  • the ground support plate 122 is a portion for contacting the underwater ground.
  • a rubber plate 130 for a cover is provided at the lower end of the base block 110 .
  • the rubber plate 130 for the cover is provided to form the base concrete 132 to be described later.
  • the rubber plate 130 for the cover is a rubber plate whose shape can be freely deformed.
  • the rubber plate 130 for the cover is provided along the edge of the first lower plate frame (112b).
  • a guide pole 140 as shown in FIGS. 4 and 5 is prepared.
  • the guide pole 140 is in the form of a pipe extending in the vertical direction, and the lower end 141 for shaft coupling is formed at the lower end.
  • the lower end 141 for shaft coupling is a portion for shaft coupling to the upper end 121c for shaft coupling of the pipe 121 for the pedestal. will be.
  • the upper block 200 as shown in FIG. 6 is prepared.
  • the upper block 200 includes a plurality of pipes 210 for a second block and a second frame 220 connecting the plurality of pipes 210 for a second block to each other.
  • the second block for the pipe 210 is in the form of a pipe extending in the vertical direction.
  • the second frame 220 includes a second upper plate frame 221 made of concrete and a second lower plate frame 222 made of concrete.
  • the pipe 210 for the second block has a lower end extending to the lower surface of the second lower plate frame 222 and an upper end extending to the upper surface of the second upper plate frame 221 .
  • the pipe 210 for the second block has a shape in which the lower part is expanded compared to the upper part. Therefore, the pipe for the second block 210 may be divided into a pipe 211 for a second block 211 of a relatively small diameter at the top and a pipe 212 for a second block 212 with a relatively large diameter at the bottom.
  • the diameter of the pipe 211 for the 2-1 block is the same as the diameter of the pipe 111 for the first block, and the diameter of the pipe 212 for the 2-2 block is the upper end of the pipe 111 for the first block. has a diameter for being inserted and seated.
  • the foundation block assembly 100 is in a state that cannot be maintained horizontally.
  • the guide pawl installation step may be performed prior to performing the foundation block assembly placement step.
  • the guide pole installation step is to insert the guide pole 140 into the pipe 111 for the first block of the foundation block assembly 100 .
  • the guide pole 140 is installed so that the lower end 141 for shaft coupling of the guide pole 140 is shaft coupled to the upper end 121c for shaft coupling of the pedestal 120 for horizontal alignment.
  • the guide pole 140 in the base block assembly arrangement step is the underwater ground 10 together with the base block assembly 100 as shown in FIG. 7 . is placed on
  • the guide pole installation step may be performed after the foundation block assembly arrangement step is performed.
  • the guide pole 140 should be installed on the foundation block assembly 100 disposed in the water.
  • the guide pole 140 is rotated to rotate the guide pole 140 and the pedestal 120 for horizontal alignment by shaft coupling, and the pedestal for horizontal alignment 120 rotates while the pipe for the first block (111) by screwing with the female screw 111a, the pedestal 120 for leveling is advanced to the lower side, and the ground support plate 122 of the pedestal for leveling 120 is supported on the underwater ground 10 while the foundation block assembly (100) is leveled (see FIG. 8).
  • the operation of rotating the guide pole 140 may be performed in a separate barge.
  • the auxiliary work plate is placed on the upper block 200 or on the upper block 200, and the guide pole 140 is rotated on the auxiliary work plate. may do it
  • the guide pole 140 can be rotated in a state in which the foundation block 110 is hung on a crane in the water (that is, the foundation block 110 is not in contact with the underwater ground 10). .
  • the upper block 200 is placed on the upper part of the guide pole 140 , and then the upper block 200 is lowered to install the upper block 200 on the upper part of the base block assembly 100 . .
  • the upper block 200 is installed in a state in which the guide pole 140 is inserted into the pipe 210 for the second block of the upper block 200 .
  • the second lower plate frame 222 of the upper block 200 is seated on the upper portion of the first upper plate frame 112a of the basic block 110, and the pipe 212 for the 2nd-2 block of the upper block 200 is ) is inserted into the pipe 111 for the first block of the foundation block 110, the upper block 200 can be stably maintained in the installed state.
  • the upper block installation step may be performed after the leveling step or before the leveling step. That is, in some cases, the upper block may be installed first and a leveling step may be performed.
  • FIG. 10 After FIG. 9 , first, as shown in FIG. 10 , a plurality of fixing stones 131 are dropped and installed on the upper portion of the rubber plate 130 for the cover.
  • the fixing stone 131 is for fixing the rubber plate 130 for the cover.
  • the concrete injected and cured is underwater concrete that can be cured even in water.
  • the foundation block 110 through the concrete injection hose (not shown) in the upper part of the upper block 200, the foundation block 110 through the concrete injection hole 121b of the pedestal 120 for leveling. Concrete is injected into the outer space of the pedestal 120 for leveling protruding to the lower part of the Concrete is injected into the space surrounded by the concrete, and then the concrete is cured to form the base concrete 132 .
  • the underwater ground 10 is drilled to form the ground perforation 11 in the underwater ground 10 .
  • the ground perforation 11 is formed in the underwater ground located under the pipe 121 for the pedestal.
  • the step of forming the ground perforation may be performed after the step of removing the guide pawl, but the step of forming the ground perforation may be performed before the step of removing the guide pawl.
  • the concrete pillar 300 is formed as shown in FIG. 14 .
  • the concrete column forming step consists of inserting the concrete column forming part 300 through the pedestal pipe 121 to the ground perforation part 11 .
  • the concrete pillar forming unit 300 includes a metal reinforcement member 301 extending in the vertical direction, a waterproofing membrane 302 surrounding the lower and side portions of the metal reinforcement member 301 , and a waterproofing membrane 302 inside. It is made by including the injected unhardened concrete (303, referred to as "fresh concrete”.).
  • the metal reinforcing member 301 may be a general reinforcing bar assembly or an H-beam, a steel pipe, etc. may be adopted, and the shape may be variously changed, and the metal reinforcing member 301 will reinforce the strength of concrete.
  • the waterproofing film 302 is formed by the pressure of the unhardened concrete 303 by the upper block 200, the foundation block 110, and the pedestal for leveling. (120), the unhardened concrete 303 is cured while in close contact with the underwater ground 10, the pipe 210 for the second block of the upper block 200 and the pipe 111 for the first block of the foundation block 110 ) and a concrete column 300 extending in the vertical direction along the pipe 121 and the ground perforation 11 for the pedestal of the pedestal 120 for leveling is formed.
  • the underwater foundation structure is a foundation block 110, a pedestal 120 for leveling, a rubber plate 130 for a cover, a plurality of fixing stones 131, a foundation concrete 132, and an upper block ( 200) and a structure including a plurality of concrete pillars 300 .
  • this underwater foundation structure is strongly fixed to the underwater ground 10 by the foundation concrete 132 and the concrete pillar 300, while the area receiving the lateral load is minimized, so that the overall compact design is possible. do.
  • it is an offshore wind power plant including a turbine and blades as an upper structure.
  • a large storage facility, wind power generation facility, tidal or wave power generation facility, etc. may be installed as the upper structure.
  • Figure 16 is a cross-sectional view of the foundation block assembly according to the second embodiment of the present invention
  • Figure 17 is a cross-sectional view of the upper block according to the second embodiment of the present invention
  • Figures 18 to 24 are the second embodiment of the present invention
  • the base block assembly 100 of this embodiment includes a base block 110 , a pedestal 120 for leveling, and a rubber plate 130 for a cover (see FIG. 16 ).
  • the basic block 110 includes a plurality of pipes 111 for the first block, and a first frame 112 connecting the plurality of pipes 111 for the first block to each other.
  • the first block for the pipe 111 is in the form of a pipe extending in the vertical direction, and a female screw 111a is formed in the lower portion.
  • the first block for the pipe 111 has a first expanded pipe portion 111b formed on the upper portion.
  • the first expanded pipe portion 111b is formed in a structure for inserting and seating the pipe 210 for the second block of the upper block 200 to be described later.
  • a clamping member 111c for clamping the pipe 210 for the second block of the inserted upper block 200 is provided in the first expanded pipe portion 111b.
  • the clamping member 111c includes a clamp and a spring supporting the clamp.
  • the first frame 112 includes a first lower plate frame 112b made of a metal plate and a plurality of section steel members 112c.
  • the upper block 200 as shown in FIG. 17 is prepared.
  • the upper block 200 includes a plurality of pipes 210 for a second block and a second frame 220 connecting the plurality of pipes 210 for a second block to each other.
  • the second frame 220 is made of a section member such as an angle or a channel.
  • the foundation block assembly 100 is disposed on the underwater ground 10 in a state in which the guide pole 140 is already installed.
  • the pedestal 120 for leveling is advanced to the lower side, and the ground support plate 122 of the pedestal 120 for leveling is supported on the underwater ground 10 while the foundation block assembly ( 100) (see FIG. 19).
  • the upper block 200 is placed on the upper part of the guide pole 140 , and then the upper block 200 is lowered to install the upper block 200 on the upper part of the base block assembly 100 . .
  • the underwater ground 10 is concrete in the space covered by the rubber plate 130 for the cover. is injected and cured to form the base concrete 132 .
  • the underwater ground 10 is drilled to form the ground perforation 11 in the underwater ground 10 .
  • the concrete pillar 300 is formed as shown in FIG. 23 .
  • the present invention can be used to construct underwater foundation structures for supporting offshore structures such as large storage facilities, wind power plants, tidal or wave power plants, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Mechanical Engineering (AREA)
  • Foundations (AREA)

Abstract

본 발명은, 불규칙한 수중 지반에 수중 기초 구조물이 정확히 수평 상태로 설치되기 위한 것으로, 기초 블록과 상부 블록이 기초 콘크리트와 복수의 콘크리트 기둥에 의하여 지지되는 수중 기초 구조물을 시공하기 위한 방법을 제공하며, 기초 블록 조립체 배치 단계, 가이드 폴 설치 단계, 수평 맞춤 단계, 상부 블록 설치 단계, 기초 콘크리트 형성 단계, 가이드 폴 제거 단계, 지반 천공부 형성 단계, 콘크리트 기둥 형성 단계를 포함한다.

Description

수중 기초 구조물 시공 방법
본 발명은 대형 저장시설, 풍력발전 시설, 조력 또는 파력 발전 시설 등과 같은 해상 구조물을 지지하기 위한 수중 기초 구조물을 시공하기 위한 방법에 관한 것이다.
대형 저장시설, 풍력발전 시설, 조력 또는 파력 발전 시설 등과 같은 해상 구조물이 해상에 건설되는 사례가 늘어나고 있으며, 이러한 해상 구조물을 설치하기 위해서는 해상 구조물을 지지하는 수중 기초 구조물이 수중 지반에 고정되도록 설치되어야 한다.
해상풍력발전의 경우, 수면 위의 터빈과 날개 등을 포함하는 상부 구조물과, 상부 구조물이 지지되는 수중의 기초 구조물과, 수중의 기초 구조물을 수중 지반에 고정하는 지반 고정부 등으로 이루어진다.
상기와 같은 수중 기초 구조물은 수중 지반에 설치하여야 하나, 수중 지반은 평평하지 않고 울퉁불퉁하여 불규칙한 것이 일반적이다.
이와 같은 불규칙한 수중 지반에 수중 기초 구조물이 설치되면 수중 기초 구조물 및 그 상부의 상부 구조물의 설계 수직도를 확보하기 어렵다는 문제가 있다.
종래에는 수중 지반이 불규칙한 경우, 잠수부와 수중 중장비를 동원하여 불규칙한 수중 지반을 정리하여 평평하게 만든 후에 수중 기초 구조물을 설치하나, 이와 같은 방식은 큰 비용이 소요될 뿐만 아니라, 수심이 깊은 곳의 경우에는 잠수부들의 작업에 따른 안전사고 위험이 증가하는 등, 많은 작업상의 어려움이 존재한다.
또한 종래의 기술에서 수중 기초 구조물은 별도의 파일 등에 의하여 그 하부가 지반에 고정될 뿐이므로, 수중 기초 구조물은 강한 해류 등으로 인하여 횡방향 하중을 받게 되며, 이러한 문제를 해결하기 위하여 수중 기초 구조물의 중량을 높이고 대형화하나 이는 설치비가 증가할 뿐만 아니라 표면적의 증대로 횡방향 하중 또한 함께 증가한다는 문제가 있다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 불규칙한 수중 지반에 수중 기초 구조물이 정확히 수평 상태로 설치되도록 하여 그 상부 구조물이 설계된 수직도에 따라 설치될 수 있는 수중 기초 구조물 시공 방법을 제안하고자 한다.
또한 본 발명은 강한 해류에 의한 횡방향 하중을 최소화하면서도 수중 기초 구조물 전체가 수중 지반에 견고히 결합될 수 있는 수중 기초 구조물 시공 방법을 제안하고자 한다.
상기의 과제를 해결하기 위하여 본 발명은, 상하방향으로 연장되는 파이프 형태로서 하부에 암나사가 형성된 복수의 제1블록용 파이프와 상기 복수의 제1블록용 파이프를 서로 연결하는 제1프레임을 포함하는 기초 블록과, 상기 기초 블록의 하단부에 마련되는 덮개용 고무판과, 상하방향으로 연장되는 파이프 형태로서 하부에 상기 암나사와 나사 결합되는 수나사가 형성되며 상기 수나사의 하부에 콘크리트 주입공이 형성되며 하단이 상기 제1블록용 파이프의 하단으로부터 하부로 돌출되며 상단부에 축결합을 위한 축결합용 상단부가 형성된 받침대용 파이프와 상기 받침대용 파이프의 하단부에서 방사상 방향 외측으로 연장되는 지반 받침판을 포함하는 복수의 수평 맞춤용 받침대를 포함하는 기초 블록 조립체를 준비하는 기초 블록 조립체 준비 단계 ; 상하방향으로 연장되는 파이프 형태로서 하단부에 상기 받침대용 파이프의 축결합용 상단부에 축결합되기 위한 축결합용 하단부가 형성된 가이드 폴을 준비하는 가이드 폴 준비 단계 ; 상하방향으로 연장되는 파이프 형태의 복수의 제2블록용 파이프와 상기 복수의 제2블록용 파이프를 서로 연결하는 제2프레임을 포함하는 상부 블록을 준비하는 상부 블록 준비 단계 ; 상기 기초 블록 조립체 준비 단계 이후, 수중 지반에 상기 기초 블록 조립체를 배치하는 기초 블록 조립체 배치 단계 ; 상기 가이드 폴 준비 단계 이후, 상기 가이드 폴의 축결합용 하단부가 상기 수평 맞춤용 받침대의 축결합용 상단부에 축결합되도록 상기 가이드 폴을 상기 제1블록용 파이프에 삽입하는 가이드 폴 설치 단계 ; 상기 기초 블록 조립체 배치 단계 및 상기 가이드 폴 설치 단계 이후, 상기 가이드 폴을 회전시켜 축결합에 의하여 상기 가이드 폴과 상기 수평 맞춤용 받침대가 연동하여 회전하며, 상기 수평 맞춤용 받침대의 받침대용 파이프가 회전하면서 상기 제1블록용 파이프의 암나사와의 나사 결합에 의하여 상기 수평 맞춤용 받침대가 하부로 전진하여 상기 기초 블록 조립체의 수평을 맞추는 수평 맞춤 단계 ; 상기 기초 블록 조립체 배치 단계 및 상기 가이드 폴 설치 단계 이후, 상기 상부 블록을 상기 가이드 폴의 상부에 위치시킨 후 상기 상부 블록을 하강시켜 상기 상부 블록의 제2블록용 파이프에 상기 가이드 폴이 삽입된 상태로 상기 상부 블록을 상기 기초 블록 조립체의 상부에 설치하는 상부 블록 설치 단계 ; 상기 수평 맞춤 단계 이후, 상기 덮개용 고무판의 상부에 복수의 고정용 사석을 설치한 후, 상기 수평 맞춤용 받침대의 콘크리트 주입공을 통하여 상기 수중 지반이 상기 덮개용 고무판에 의하여 덮인 공간에 콘크리트를 주입 및 양생하여 기초 콘크리트를 형성하는 기초 콘크리트 형성 단계 ; 상기 상부 블록 설치 단계 이후, 상기 가이드 폴을 제거하는 가이드 폴 제거 단계 ; 상기 기초 콘크리트 형성 단계 이후, 상기 받침대용 파이프의 내부를 통하여 상기 받침대용 파이프 하부에 위치한 수중 지반을 천공하여 수중 지반에 지반 천공부를 형성하는 지반 천공부 형성 단계 ; 상기 지반 천공부 형성 단계 이후, 상하방향으로 연장되는 형태의 금속 보강부재와 상기 금속 보강부재의 하부 및 측부를 감싸는 방수막과 상기 방수막 내부에 주입되는 미경화 콘크리트를 포함하여 이루어지는 콘크리트 기둥 형성부를 상기 받침대용 파이프를 통하여 상기 지반 천공부까지 삽입하고 상기 미경화 콘크리트의 압력에 의하여 상기 방수막이 상기 상부 블록, 상기 기초 블록, 상기 수평 맞춤용 받침대, 상기 수중 지반에 밀착되면서 상기 미경화 콘크리트가 양생되어, 상기 상부 블록의 제2블록용 파이프와 상기 기초 블록의 제1블록용 파이프와 상기 수평 맞춤용 받침대의 받침대용 파이프와 상기 지반 천공부를 따라 상하방향으로 연장되는 콘크리트 기둥을 형성하는 콘크리트 기둥 형성 단계 ; 를 포함하는 것을 특징으로 한다.
상기와 같이 본 발명은, 불규칙한 수중 지반에 수중 기초 구조물이 정확히 수평 상태로 설치되도록 하여 그 상부 구조물이 설계된 수직도에 따라 설치될 수 있다.
또한 본 발명은 강한 해류에 의한 횡방향 하중을 최소화하면서도 수중 기초 구조물 전체가 수중 지반에 견고히 결합될 수 있다.
도 1은 본 발명의 제1실시례에 의한 기초 블록 조립체의 단면도,
도 2는 도 1의 분리 단면도,
도 3은 도 1의 수평 맞춤용 받침대의 사시도,
도 4는 본 발명의 제1실시례에 의한 가이드 폴의 단면도,
도 5는 도 4의 사시도,
도 6은 본 발명의 제1실시례에 의한 상부 블록의 단면도,
도 7은 본 발명의 제1실시례에 의한 기초 블록 조립체 배치 단계를 수행한 상태의 개념도,
도 8은 도 7 이후 수평 맞춤 단계를 수행한 상태의 개념도,
도 9는 도 8 이후 상부 블록 설치 단계를 수행한 상태의 개념도,
도 10 및 도 11은 도 9 이후 기초 콘크리트 형성 단계를 수행하는 상태의 개념도,
도 12는 도 11 이후 가이드 폴 제거 단계를 수행한 상태의 개념도,
도 13은 도 12 이후 지반 천공부 형성 단계를 수행한 상태의 개념도,
도 14는 도 13 이후 콘크리트 기둥 형성 단계를 수행한 상태의 개념도,
도 15는 도 14 이후 상부 구조물 설치 단계를 수행한 상태의 개념도,
도 16은 본 발명의 제2실시례에 의한 기초 블록 조립체의 단면도,
도 17은 본 발명의 제2실시례에 의한 상부 블록의 단면도,
도 18은 본 발명의 제2실시례에 의한 기초 블록 조립체 배치 단계를 수행한 상태의 개념도,
도 19는 도 18 이후 수평 맞춤 단계를 수행한 상태의 개념도,
도 20은 도 19 이후 상부 블록 설치 단계를 수행한 상태의 개념도,
도 21은 도 20 이후 기초 콘크리트 형성 단계를 수행한 상태의 개념도,
도 22는 도 21 이후 가이드 폴 제거 단계 및 지반 천공부 형성 단계를 수행한 상태의 개념도,
도 23은 도 22 이후 콘크리트 기둥 형성 단계를 수행한 상태의 개념도,
도 24는 도 23 이후 상부 구조물 설치 단계를 수행한 상태의 개념도.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 부여하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
I. 제1실시례
먼저 본 발명에 의한 제1실시례를 설명한다.
도 1은 본 발명의 제1실시례에 의한 기초 블록 조립체의 단면도이며, 도 2는 도 1의 분리 단면도이며, 도 3은 도 1의 수평 맞춤용 받침대의 사시도이며, 도 4는 본 발명의 제1실시례에 의한 가이드 폴의 단면도이며, 도 5는 도 4의 사시도이며, 도 6은 본 발명의 제1실시례에 의한 상부 블록의 단면도이며, 도 7 내지 도 15는 본 발명의 제1실시례에 의한 수중 기초 구조물 설치 과정을 순서대로 표현한 개념도들이다.
(1) 기초 블록 조립체 준비 단계
먼저 기초 블록(110), 수평 맞춤용 받침대(120), 덮개용 고무판(130)을 포함하는 기초 블록 조립체(100)를 준비한다(도 1 내지 도 3 참조).
기초 블록(110)은 복수의 제1블록용 파이프(111)와, 복수의 제1블록용 파이프(111)를 서로 연결하는 제1프레임(112)를 포함한다.
제1블록용 파이프(111)는 상하방향으로 연장되는 파이프 형태로서 하부에 암나사(111a)가 형성되어 있다.
본 실시례에서 제1프레임(112)은 콘크리트로 된 제1상판 프레임(112a)과 콘크리트로 된 제1하판 프레임(112b)으로 이루어진다.
제1블록용 파이프(111)는 하단이 제1하판 프레임(112b)의 하면까지 연장되며 상단이 제1상판 프레임(112a)의 상면으로부터 상부로 돌출되도록 상부로 연장된다.
제1블록용 파이프(111)마다 수평 맞춤용 받침대(120)가 마련된다. 따라서 수평 맞춤용 받침대(120)는 복수로 마련된다.
각각의 수평 맞춤용 받침대(120)는 받침대용 파이프(121)와 지반 받침판(122)으로 이루어진다.
받침대용 파이프(121)는 상하방향으로 연장되는 파이프 형태로서 하부에 제1블록용 파이프(111)의 암나사(111a)와 나사 결합되는 수나사(121a)가 형성되며, 수나사(121a)의 하부에 복수의 콘크리트 주입공(121b)이 형성되어 있다.
또한 받침대용 파이프(121)의 하단은 제1블록용 파이프(111)의 하단(구체적으로는 제1하판 프레임(112b)의 하면)으로부터 하부로 돌출된다.
받침대용 파이프(121)의 상단부에는 축결합을 위한 축결합용 상단부(121c)가 형성되어 있다. 축결합용 상단부(121c)는 가이드 폴(140)의 축결합용 하단부(141)가 결합되어 가이드 폴(140)과 함께 연동하여 회전되도록 축 결합되는 부위이다.
축결합용 상단부(121c)는 받침대용 파이프(121)의 상단 주면을 따라 톱니 모양으로 요철이 반복되도록 가공한 것이다.
지반 받침판(122)은 받침대용 파이프(121)의 하단부에서 방사상 방향 외측으로 연장되는 수평판 형태이다.
지반 받침판(122)은 수중 지반과 접하기 위한 부위이다.
기초 블록(110)의 하단부에 덮개용 고무판(130)이 마련된다. 덮개용 고무판(130)은 후술하는 기초 콘크리트(132)를 형성하기 위하여 마련되는 것이다.
덮개용 고무판(130)은 그 형태가 자유롭게 변형될 수 있는 고무판이다.
본 실시례에서 덮개용 고무판(130)은, 제1하판 프레임(112b)의 가장자리를 따라 마련된다.
(2) 가이드 폴 준비 단계
도 4 및 도 5와 같은 가이드 폴(140)을 준비한다.
가이드 폴(140)은 상하방향으로 연장되는 파이프 형태로서 하단부에 축결합용 하단부(141)가 형성되어 있다.
축결합용 하단부(141)는 받침대용 파이프(121)의 축결합용 상단부(121c)에 축결합되기 위한 부위로서, 받침대용 파이프(121)의 하단 주면을 따라 톱니 모양으로 요철이 반복되도록 가공한 것이다.
(3) 상부 블록 준비 단계
도 6과 같은 상부 블록(200)을 준비한다.
상부 블록(200)은 복수의 제2블록용 파이프(210)와, 복수의 제2블록용 파이프(210)를 서로 연결하는 제2프레임(220)를 포함한다.
제2블록용 파이프(210)는 상하방향으로 연장되는 파이프 형태이다.
본 실시례에서 제2프레임(220)은 콘크리트로 된 제2상판 프레임(221)과 콘크리트로 된 제2하판 프레임(222)으로 이루어진다.
제2블록용 파이프(210)는 하단이 제2하판 프레임(222)의 하면까지 연장되며 상단이 제2상판 프레임(221)의 상면까지 연장된다.
아울러 제2블록용 파이프(210)는 하부가 상부에 비하여 확관된 형태를 가진다. 따라서 제2블록용 파이프(210)는 상부의 비교적 작은 직경의 제2-1블록용 파이프(211)와 하부의 비교적 큰 직경의 제2-2블록용 파이프(212)로 구분될 수 있다.
제2-1블록용 파이프(211)의 직경은 제1블록용 파이프(111)의 직경과 동일하며, 제2-2블록용 파이프(212)의 직경은 제1블록용 파이프(111)의 상단부가 삽입되어 안착되기 위한 직경을 가진다.
(4) 기초 블록 조립체 배치 단계
도 7과 같이 수중 지반(10)에 기초 블록 조립체(100)를 배치하는 기초 블록 조립체 배치 단계를 수행한다.
이때 수중 지반(10)은 평평한 상태가 아니므로 기초 블록 조립체(100)는 수평이 유지될 수 없는 상태이다.
(5) 가이드 폴 설치 단계
기초 블록 조립체 배치 단계를 수행하기 이전에 가이드 폴 설치 단계를 수행할 수 있다.
가이드 폴 설치 단계는 가이드 폴(140)을 기초 블록 조립체(100)의 제1블록용 파이프(111)에 삽입하는 것이다.
이때 가이드 폴(140)의 축결합용 하단부(141)가 수평 맞춤용 받침대(120)의 축결합용 상단부(121c)에 축결합되도록 가이드 폴(140)을 설치한다.
이와 같이 기초 블록 조립체 배치 단계를 수행하기 이전에 가이드 폴(140)을 설치하면, 기초 블록 조립체 배치 단계에서 가이드 폴(140)은 도 7과 같이 기초 블록 조립체(100)와 함께 수중 지반(10)에 배치된다.
실시례에 따라서는 기초 블록 조립체 배치 단계를 수행한 이후에 가이드 폴 설치 단계를 수행할 수도 있다. 이 경우 수중에 배치된 기초 블록 조립체(100)에 가이드 폴(140)을 설치하여야 한다.
(6) 수평 맞춤 단계
도 7 이후, 가이드 폴(140)을 회전시켜 축결합에 의하여 가이드 폴(140)과 수평 맞춤용 받침대(120)가 연동하여 회전하며, 수평 맞춤용 받침대(120)가 회전하면서 제1블록용 파이프(111)의 암나사(111a)와의 나사 결합에 의하여 수평 맞춤용 받침대(120)가 하부로 전진하여 수평 맞춤용 받침대(120)의 지반 받침판(122)이 수중 지반(10)에 지지되면서 기초 블록 조립체(100)의 수평을 맞춘다(도 8 참조).
이는 각각의 수평 맞춤용 받침대(120)에 대하여 수행한다.
가이드 폴(140)을 회전시키는 작업은 별도의 바지선에서 수행할 수 있다.
경우에 따라 상부 블록(200)이 수면 위까지 이미 설치된 상태라면 상부 블록(200)의 위, 또는 상부 블록(200)의 상부에 보조 작업판을 배치하고 보조 작업판 위에서 가이드 폴(140)을 회전시킬 수도 있다.
수평 맞춤 단계를 수행할 때 기초 블록(110)이 수중에서 크레인 등에 걸려있는 상태(즉 기초 블록(110)이 수중 지반(10)과 접하지 않는 상태)로 가이드 폴(140)을 회전시킬 수 있다.
(7) 상부 블록 설치 단계
도 8 이후, 도 9와 같이 상부 블록(200)을 가이드 폴(140)의 상부에 위치시킨 후 상부 블록(200)을 하강시켜 상부 블록(200)을 기초 블록 조립체(100)의 상부에 설치한다.
이때 상부 블록(200)의 제2블록용 파이프(210)에 가이드 폴(140)이 삽입된 상태로 상부 블록(200)이 설치된다.
이에 의하여 상부 블록(200)의 제2하판 프레임(222)은 기초 블록(110)의 제1상판 프레임(112a)의 상부에 안착되며, 상부 블록(200)의 제2-2블록용 파이프(212)의 내부에 기초 블록(110)의 제1블록용 파이프(111)가 삽입되어, 상부 블록(200)이 설치된 상태가 안정적으로 유지될 수 있다.
상부 블록 설치 단계는 수평 맞춤 단계 이후에 수행하거나 혹은 수평 맞춤 단계 이전에 수행할 수 있다. 즉 경우에 따라서는 상부 블록을 먼저 설치하고 수평 맞춤 단계를 수행할 수도 있다.
본 실시례에서는 하나의 상부 블록(200)을 설치하는 것으로 설명하였지만, 실시례에 따라서는 복수의 상부 블록(200)을 상하방향으로 연속하여 설치할 수도 있다.
(8) 기초 콘크리트 형성 단계
도 9 이후, 먼저 도 10과 같이 덮개용 고무판(130)의 상부에 복수의 고정용 사석(131)을 투하 및 설치한다.
고정용 사석(131)은 덮개용 고무판(130)을 고정하기 위한 것이다.
덮개용 고무판(130)의 상부에 고정용 사석(131)을 설치한 후 도 11과 같이 수중 지반(10)이 덮개용 고무판(130)에 의하여 덮인 공간에 콘크리트를 주입 및 양생하여 기초 콘크리트(132)를 형성한다.
이때 주입 및 양생되는 콘크리트는 수중에서도 양생이 가능한 수중 콘크리트이다.
보다 구체적으로는, 상부 블록(200)의 상부에서 콘크리트 주입 호스(미도시)를 통하여 가이드 폴(140)을 지나 수평 맞춤용 받침대(120)의 콘크리트 주입공(121b)을 통하여 기초 블록(110)의 하부로 돌출된 수평 맞춤용 받침대(120)의 외측 공간에 콘크리트를 주입하며, 이에 의하여 덮개용 고무판(130)과 기초 블록(110)과 수평 맞춤용 받침대(120)와 수중 지반(10)에 의하여 포위되는 공간에 콘크리트가 주입되며 이후 그 콘크리트가 양생되어 기초 콘크리트(132)를 형성한다.
(9) 가이드 폴 제거 단계
도 11 이후, 가이드 폴(140)을 제거하여 도 12와 같은 상태가 된다.
(10) 지반 천공부 형성 단계
도 12 이후, 도 13과 같이 수중 지반(10)을 천공하여 수중 지반(10)에 지반 천공부(11)를 형성한다.
구체적으로는 수평 맞춤용 받침대(120)의 받침대용 파이프(121)의 내부를 통하여 수중 지반을 천공하여 받침대용 파이프(121)의 하부에 위치한 수중 지반에 지반 천공부(11)를 형성한다.
지반 천공부 형성 단계는 가이드 폴 제거 단계 이후에 수행할 수도 있지만, 지반 천공부 형성 단계는 가이드 폴 제거 단계 이전에 수행할 수도 있다.
(11) 콘크리트 기둥 형성 단계
도 13 이후, 도 14와 같이 콘크리트 기둥(300)을 형성한다.
콘크리트 기둥 형성 단계는 콘크리트 기둥 형성부(300)를 받침대용 파이프(121)를 통하여 지반 천공부(11)까지 삽입하는 것으로 이루어진다.
콘크리트 기둥 형성부(300)는, 상하방향으로 연장되는 형태의 금속 보강부재(301)와, 금속 보강부재(301)의 하부 및 측부를 감싸는 방수막(302)과, 방수막(302) 내부에 주입되는 미경화 콘크리트(303, "fresh concrete"라고 함.)를 포함하여 이루어진다.
금속 보강부재(301)는 일반적인 철근 조립체이거나 혹은 H-Beam, 강관 등이 채택될 수 있으며, 그 형태는 다양하게 변경될 수 있으며, 금속 보강부재(301)는 콘크리트의 강도를 보강하게 된다.
콘크리트 기둥 형성부(300)를 지반 천공부(11)까지 삽입하면, 미경화 콘크리트(303)의 압력에 의하여 방수막(302)이 상부 블록(200), 기초 블록(110), 수평 맞춤용 받침대(120), 수중 지반(10)에 밀착되면서 미경화 콘크리트(303)가 양생되어, 상부 블록(200)의 제2블록용 파이프(210)와 기초 블록(110)의 제1블록용 파이프(111)와 수평 맞춤용 받침대(120)의 받침대용 파이프(121)와 지반 천공부(11)를 따라 상하방향으로 연장되는 콘크리트 기둥(300)이 형성된다.
상기 및 이하에서는 콘크리트 기둥 형성부(300)와 콘크리트 기둥(300)에 동일한 번호를 부여한다. 이는 콘크리트 기둥 형성부(300)가 미경화 콘크리트(303)의 양생에 의하여 콘크리트 기둥(300)으로 형성되기 때문이다.
이에 의하여 본 발명의 일 실시예에 의한 수중 기초 구조물이 완성된다.
즉 수중 기초 구조물은, 기초 블록(110)과, 수평 맞춤용 받침대(120)와, 덮개용 고무판(130)과, 복수의 고정용 사석(131)과, 기초 콘크리트(132)와, 상부 블록(200)과, 복수의 콘크리트 기둥(300)을 포함하는 구조가 된다.
이와 같은 수중 기초 구조물은 정확히 수평을 맞춘 상태로 설치된 것이므로, 그 상부에 설치되는 구조물은 설계 수직도에 따라 정확히 설치될 수 있다.
또한 본 수중 기초 구조물은 기초 콘크리트(132)와 콘크리트 기둥(300)에 의하여 수중 기초 구조물 전체가 수중 지반(10)에 강력하게 고정되면서도 횡방향 하중을 받는 면적이 최소화되어 전체적으로 컴팩트한 설계가 가능하게 된다.
(12) 상부 구조물 설치
수중 기초 구조물이 완성된 후, 도 14와 같이 수중 기초 구조물의 상부에 각종 상부 구조물이 설치된다.
본 실시례에서는 상부 구조물로서 터빈과 날개 등을 포함하는 해상풍력발전시설이다.
경우에 따라 상부 구조물로서 대형 저장시설, 풍력발전 시설, 조력 또는 파력 발전 시설 등이 설치될 수 있다.
II. 제2실시례
다음으로 본 발명에 의한 제2실시례를 설명한다.
도 16은 본 발명의 제2실시례에 의한 기초 블록 조립체의 단면도이며, 도 17은 본 발명의 제2실시례에 의한 상부 블록의 단면도이며, 도 18 내지 도 24는 본 발명의 제2실시례에 의한 수중 기초 구조물 설치 과정을 순서대로 표현한 개념도들이다.
(1) 기초 블록 조립체 준비 단계
본 실시례의 기초 블록 조립체(100)는, 기초 블록(110), 수평 맞춤용 받침대(120), 덮개용 고무판(130)을 포함하다(도 16 참조).
기초 블록(110)은 복수의 제1블록용 파이프(111)와, 복수의 제1블록용 파이프(111)를 서로 연결하는 제1프레임(112)를 포함한다.
제1블록용 파이프(111)는 상하방향으로 연장되는 파이프 형태로서 하부에 암나사(111a)가 형성되어 있다.
제1블록용 파이프(111)는 상부에 제1확관부(111b)가 형성되어 있다.
제1확관부(111b)는 후술하는 상부 블록(200)의 제2블록용 파이프(210)가 삽입 및 안착되기 위한 구조로 형성된 것이다.
제1확관부(111b)에는 삽입된 상부 블록(200)의 제2블록용 파이프(210)를 클램핑하기 위한 클램핑부재(111c)가 마련된다. 클램핑부재(111c)는 클램프와 이를 지지하는 스프링으로 이루어진다.
본 실시례에서 제1프레임(112)은 금속판으로 된 제1하판 프레임(112b)과 복수의 형강부재(112c)로 이루어진다.
수평 맞춤용 받침대(120) 및 덮개용 고무판(130)에 대한 설명은 제1실시례를 참조하기로 하고 생략한다.
(2) 가이드 폴 준비 단계
가이드 폴(140)에 대한 설명은 제1실시례를 참조하기로 하고 생략한다.
(3) 상부 블록 준비 단계
도 17과 같은 상부 블록(200)을 준비한다.
상부 블록(200)은 복수의 제2블록용 파이프(210)와, 복수의 제2블록용 파이프(210)를 서로 연결하는 제2프레임(220)를 포함한다.
본 실시례에서 제2프레임(220)은 앵글, 찬넬 등의 형강부재로 이루어진다.
(4) 기초 블록 조립체 배치 단계
도 18과 같이 수중 지반(10)에 기초 블록 조립체(100)를 배치하는 기초 블록 조립체 배치 단계를 수행한다.
(5) 가이드 폴 설치 단계
도 18과 같이, 기초 블록 조립체(100)는 가이드 폴(140)이 이미 설치된 상태로 수중 지반(10)에 배치된다.
(6) 수평 맞춤 단계
도 18 이후, 가이드 폴(140)을 회전시켜 수평 맞춤용 받침대(120)가 하부로 전진하여 수평 맞춤용 받침대(120)의 지반 받침판(122)이 수중 지반(10)에 지지되면서 기초 블록 조립체(100)의 수평을 맞춘다(도 19 참조).
(7) 상부 블록 설치 단계
도 19 이후, 도 20와 같이 상부 블록(200)을 가이드 폴(140)의 상부에 위치시킨 후 상부 블록(200)을 하강시켜 상부 블록(200)을 기초 블록 조립체(100)의 상부에 설치한다.
(8) 기초 콘크리트 형성 단계
도 20 이후, 도 21과 같이 덮개용 고무판(130)의 상부에 복수의 고정용 사석(131)을 투하 및 설치한 후, 수중 지반(10)이 덮개용 고무판(130)에 의하여 덮인 공간에 콘크리트를 주입 및 양생하여 기초 콘크리트(132)를 형성한다.
(9) 가이드 폴 제거 단계
도 21 이후, 도 22와 같이 가이드 폴(140)을 제거한다.
(10) 지반 천공부 형성 단계
도 21 이후, 도 22와 같이 수중 지반(10)을 천공하여 수중 지반(10)에 지반 천공부(11)를 형성한다.
(11) 콘크리트 기둥 형성 단계
도 22 이후, 도 23과 같이 콘크리트 기둥(300)을 형성한다.
이에 의하여 본 발명의 일 실시예에 의한 수중 기초 구조물이 완성된다.
(12) 상부 구조물 설치
수중 기초 구조물이 완성된 후, 도 24와 같이 수중 기초 구조물의 상부에 각종 상부 구조물이 설치된다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것일 뿐 한정적이 아닌 것으로 이해되어야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 대형 저장시설, 풍력발전 시설, 조력 또는 파력 발전 시설 등과 같은 해상 구조물을 지지하기 위한 수중 기초 구조물을 시공하기 위하여 이용될 수 있다.

Claims (1)

  1. 상하방향으로 연장되는 파이프 형태로서 하부에 암나사가 형성된 복수의 제1블록용 파이프와 상기 복수의 제1블록용 파이프를 서로 연결하는 제1프레임을 포함하는 기초 블록과, 상기 기초 블록의 하단부에 마련되는 덮개용 고무판과, 상하방향으로 연장되는 파이프 형태로서 하부에 상기 암나사와 나사 결합되는 수나사가 형성되며 상기 수나사의 하부에 콘크리트 주입공이 형성되며 하단이 상기 제1블록용 파이프의 하단으로부터 하부로 돌출되며 상단부에 축결합을 위한 축결합용 상단부가 형성된 받침대용 파이프와 상기 받침대용 파이프의 하단부에서 방사상 방향 외측으로 연장되는 지반 받침판을 포함하는 복수의 수평 맞춤용 받침대를 포함하는 기초 블록 조립체를 준비하는 기초 블록 조립체 준비 단계 ;
    상하방향으로 연장되는 파이프 형태로서 하단부에 상기 받침대용 파이프의 축결합용 상단부에 축결합되기 위한 축결합용 하단부가 형성된 가이드 폴을 준비하는 가이드 폴 준비 단계 ;
    상하방향으로 연장되는 파이프 형태의 복수의 제2블록용 파이프와 상기 복수의 제2블록용 파이프를 서로 연결하는 제2프레임을 포함하는 상부 블록을 준비하는 상부 블록 준비 단계 ;
    상기 기초 블록 조립체 준비 단계 이후, 수중 지반에 상기 기초 블록 조립체를 배치하는 기초 블록 조립체 배치 단계 ;
    상기 가이드 폴 준비 단계 이후, 상기 가이드 폴의 축결합용 하단부가 상기 수평 맞춤용 받침대의 축결합용 상단부에 축결합되도록 상기 가이드 폴을 상기 제1블록용 파이프에 삽입하는 가이드 폴 설치 단계 ;
    상기 기초 블록 조립체 배치 단계 및 상기 가이드 폴 설치 단계 이후, 상기 가이드 폴을 회전시켜 축결합에 의하여 상기 가이드 폴과 상기 수평 맞춤용 받침대가 연동하여 회전하며, 상기 수평 맞춤용 받침대의 받침대용 파이프가 회전하면서 상기 제1블록용 파이프의 암나사와의 나사 결합에 의하여 상기 수평 맞춤용 받침대가 하부로 전진하여 상기 기초 블록 조립체의 수평을 맞추는 수평 맞춤 단계 ;
    상기 기초 블록 조립체 배치 단계 및 상기 가이드 폴 설치 단계 이후, 상기 상부 블록을 상기 가이드 폴의 상부에 위치시킨 후 상기 상부 블록을 하강시켜 상기 상부 블록의 제2블록용 파이프에 상기 가이드 폴이 삽입된 상태로 상기 상부 블록을 상기 기초 블록 조립체의 상부에 설치하는 상부 블록 설치 단계 ;
    상기 수평 맞춤 단계 이후, 상기 덮개용 고무판의 상부에 복수의 고정용 사석을 설치한 후, 상기 수평 맞춤용 받침대의 콘크리트 주입공을 통하여 상기 수중 지반이 상기 덮개용 고무판에 의하여 덮인 공간에 콘크리트를 주입 및 양생하여 기초 콘크리트를 형성하는 기초 콘크리트 형성 단계 ;
    상기 상부 블록 설치 단계 이후, 상기 가이드 폴을 제거하는 가이드 폴 제거 단계 ;
    상기 기초 콘크리트 형성 단계 이후, 상기 받침대용 파이프의 내부를 통하여 상기 받침대용 파이프 하부에 위치한 수중 지반을 천공하여 수중 지반에 지반 천공부를 형성하는 지반 천공부 형성 단계 ;
    상기 지반 천공부 형성 단계 이후, 상하방향으로 연장되는 형태의 금속 보강부재와 상기 금속 보강부재의 하부 및 측부를 감싸는 방수막과 상기 방수막 내부에 주입되는 미경화 콘크리트를 포함하여 이루어지는 콘크리트 기둥 형성부를 상기 받침대용 파이프를 통하여 상기 지반 천공부까지 삽입하고 상기 미경화 콘크리트의 압력에 의하여 상기 방수막이 상기 상부 블록, 상기 기초 블록, 상기 수평 맞춤용 받침대, 상기 수중 지반에 밀착되면서 상기 미경화 콘크리트가 양생되어, 상기 상부 블록의 제2블록용 파이프와 상기 기초 블록의 제1블록용 파이프와 상기 수평 맞춤용 받침대의 받침대용 파이프와 상기 지반 천공부를 따라 상하방향으로 연장되는 콘크리트 기둥을 형성하는 콘크리트 기둥 형성 단계 ;
    를 포함하는 것을 특징으로 하는 수중 기초 구조물 시공 방법.
PCT/KR2022/004368 2021-04-20 2022-03-29 수중 기초 구조물 시공 방법 WO2022225213A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0050819 2021-04-20
KR1020210050819A KR102304303B1 (ko) 2021-04-20 2021-04-20 수중 기초 구조물 시공 방법

Publications (1)

Publication Number Publication Date
WO2022225213A1 true WO2022225213A1 (ko) 2022-10-27

Family

ID=77926265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004368 WO2022225213A1 (ko) 2021-04-20 2022-03-29 수중 기초 구조물 시공 방법

Country Status (2)

Country Link
KR (1) KR102304303B1 (ko)
WO (1) WO2022225213A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304303B1 (ko) * 2021-04-20 2021-09-23 (주)유주 수중 기초 구조물 시공 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146305A (ja) * 1992-11-11 1994-05-27 Nippon Steel Corp 水中基礎およびその据付方法
JPH08277536A (ja) * 1995-04-05 1996-10-22 Hakko Sangyo Kk コンクリート製品の施工方法、コンクリート製品及び埋込インサート
KR20170080051A (ko) * 2015-12-31 2017-07-10 한준수 조류발전 지지구조 시스템
KR20180131179A (ko) * 2017-05-31 2018-12-10 현대건설주식회사 조류발전장치용 지지구조물 및 이의 설치방법
KR102022341B1 (ko) * 2019-02-28 2019-09-18 김상기 수중 콘크리트 블록 구조물 시공 방법
KR102304303B1 (ko) * 2021-04-20 2021-09-23 (주)유주 수중 기초 구조물 시공 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403455B1 (ko) 2014-03-14 2014-06-03 한국건설기술연구원 해저지반 수평정착 구조를 가지는 중력식 수중기초 구조물 및 그 시공방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146305A (ja) * 1992-11-11 1994-05-27 Nippon Steel Corp 水中基礎およびその据付方法
JPH08277536A (ja) * 1995-04-05 1996-10-22 Hakko Sangyo Kk コンクリート製品の施工方法、コンクリート製品及び埋込インサート
KR20170080051A (ko) * 2015-12-31 2017-07-10 한준수 조류발전 지지구조 시스템
KR20180131179A (ko) * 2017-05-31 2018-12-10 현대건설주식회사 조류발전장치용 지지구조물 및 이의 설치방법
KR102022341B1 (ko) * 2019-02-28 2019-09-18 김상기 수중 콘크리트 블록 구조물 시공 방법
KR102304303B1 (ko) * 2021-04-20 2021-09-23 (주)유주 수중 기초 구조물 시공 방법

Also Published As

Publication number Publication date
KR102304303B1 (ko) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2022225213A1 (ko) 수중 기초 구조물 시공 방법
WO2021182795A1 (ko) 수중 콘크리트 블록 구조물 시공방법
WO2018221933A1 (ko) 지반 굴착기용 케이싱 가이드 장치 및 이를 이용한 굴착방법
US7467910B2 (en) Prefabricated structure made of reinforced concrete with an integrated removable handling system
WO2020145483A1 (ko) 구조물 시공방법
WO2022225210A1 (ko) 수중 기초 구조물 시공 방법
WO2020162665A1 (ko) 풍력 발전기 설치, 분리 장치 및 이를 이용한 시공 방법
WO2023068614A1 (ko) 해저면의 모노파일 관입용 지그 어셈블리 및 이것을 이용한 모노파일 관입 방법
WO2014027819A1 (ko) 해머 비트 및 그를 이용한 지면 천공 방법
WO2014204107A1 (ko) 다중석션파일 앵커 및 석션파일을 구비한 평판앵커
WO2009102119A1 (ko) 인상가이드가 포함된 교량 인상 장치 및 상기 교량 인상 장치를 이용한 교량 인상 공법
WO2023022457A1 (ko) 콘크리트 블록 구조물 시공 방법
WO2014193023A1 (ko) 수중 교각 기초 시공을 위한 하우징 브라켓 및 이를 이용한 수중 교각 기초 시공 방법
WO2023096253A1 (ko) 콘크리트 블록 구조물 시공 방법
WO2018038305A1 (ko) 케이슨 블록 시공 방법 및 케이슨 블록 구조체
WO2013039315A2 (ko) 종방향 강연선과 횡방향 전단키를 갖는 세그먼트 구조체 및 이를 이용한 실드터널의 구축공법
WO2021187873A1 (ko) 건축기초시스템에 있어 임플란트식 파일압입장치 및 이를 이용한 임플란트식 파일링공법
WO2015069059A1 (ko) 조적벽체의 보강장치 및 이를 이용한 조적벽체의 보강방법
WO2009142397A2 (ko) 옹벽 축조용 블록 및 이의 시공방법
JP2006348690A (ja) 既存建物の免震化改修工法
WO2012165669A1 (ko) 흙막이 가시설 구조 및 그 시공방법
JP4187887B2 (ja) 既存建物の移設免震化方法及びそれに用いる移設免震機構
WO2019017598A1 (ko) 아웃리거가 구비된 아치용 조립체, 이를 이용한 아치구조물 및 이의 시공방법
CN114753375A (zh) 应用可回收锚索的施工方法
WO2019045550A1 (ko) 조류발전용 해양구조물, 그 시공방법 및 이를 이용한 조류발전시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791913

Country of ref document: EP

Kind code of ref document: A1