WO2022224694A1 - 消毒機能付き高清浄環境システムおよびその使用方法 - Google Patents

消毒機能付き高清浄環境システムおよびその使用方法 Download PDF

Info

Publication number
WO2022224694A1
WO2022224694A1 PCT/JP2022/013963 JP2022013963W WO2022224694A1 WO 2022224694 A1 WO2022224694 A1 WO 2022224694A1 JP 2022013963 W JP2022013963 W JP 2022013963W WO 2022224694 A1 WO2022224694 A1 WO 2022224694A1
Authority
WO
WIPO (PCT)
Prior art keywords
room
closed space
gas
sterilization
particle number
Prior art date
Application number
PCT/JP2022/013963
Other languages
English (en)
French (fr)
Inventor
晃 石橋
伸守 野口
月生 江藤
恭弘 島ノ江
Original Assignee
シーズテック株式会社
株式会社石橋建築事務所
飛栄建設株式会社
有限会社近代設備設計事務所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーズテック株式会社, 株式会社石橋建築事務所, 飛栄建設株式会社, 有限会社近代設備設計事務所 filed Critical シーズテック株式会社
Publication of WO2022224694A1 publication Critical patent/WO2022224694A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • F24F8/26Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media using ozone

Definitions

  • This invention relates to a highly clean environment system with a disinfection function and its usage method, and is particularly suitable for use in preventing infection of humans (humans) by pathogenic bacteria and viruses.
  • Non-Patent Document 1 In order to avoid the deterioration of the filter function due to this clogging, a method other than the filter, that is, suppression of floating dust by electrostatic spray mist has been proposed and experimentally verified (Non-Patent Document 1). In addition, viruses have been reported to be suppressed by functional mist generated by plasma ion clusters or electrostatic atomization (Non-Patent Documents 2, 3, 4). It can be said that these techniques employ a strategy of knocking off or inactivating dust and viruses floating in the air with the mist and ion clusters. Conversely, when there is dust, bacteria, etc.
  • the mist fine particles are consumed in the three-dimensional space, and all two-dimensional surfaces (walls, floors, The probability of reaching not only the ceiling, but also the desks and chairs placed in the room, and the door when going in and out of the room, especially the surfaces of the handles and knobs, etc., becomes very small.
  • the performance of sterilizing a two-dimensional surface is degraded.
  • disinfection of two-dimensional surfaces in the room mainly depends on wiping or local chemical spraying by hand, which is very time-consuming.
  • Non-Patent Document 1 which utilizes the interaction of airborne dust and viruses with intentionally introduced mist
  • a conventional room which is a fixed amount at a given time
  • It is an open system in which air is supplied and exhausted, and can be referred to as an open air flow system. That is, as shown in FIG. 1, a sterilization mist generator 502 is installed inside a room 501, and sterilization is performed by generating sterilization mist 502a. Ventilation is performed by introducing an air flow with heat from the outside (outdoor) into the interior of the room 501 at an air volume F, and then discharging the air with heat at an air volume F to the outside.
  • such conventional open systems cannot sufficiently reduce dust and viruses because the effectiveness of the germicidal mist 502a is diminished by the ventilation process.
  • a method to reduce the number of pathogenic microorganisms in the air by filtration such as filtering (sterilization), and ii) pathogenic microorganisms.
  • a method to reduce the number of pathogenic microorganisms in the air by filtration such as filtering (sterilization), and ii) pathogenic microorganisms.
  • a chemical substance acts on pathogenic microorganisms to inactivate the pathogenic microorganisms while the number remains the same.
  • Non-Patent Document 5 a novel coronavirus
  • Numerous products have been advocated as effective in removing dust and bacteria.
  • the ultimate problem at that time is that "experiments to verify the effects of these devices are conducted in a closed system with a finite volume", whereas the actual living environment such as a home (inevitably complying with laws and regulations stipulating the ventilation frequency etc.) It should be an open system.
  • Non-Patent Document 6 Non-Patent Document 6
  • the conventional room is an open system, so the above sterilization is reduced by the ventilation process.
  • the above sterilization is reduced by the ventilation process.
  • Non-Patent Document 7 is an original technology characterized by isolation and closure. Although it has been realized (Patent Documents 1, 2, and 3), the potential capabilities of this system have not yet been maximized.
  • CUSP Clean Unit System Platform
  • the problem to be solved by the present invention is to reduce the number of pathogenic microorganisms, dust, etc. floating in the room, etc., and the synergistic effect of the sterilization effect of pathogenic microorganisms.
  • a highly efficient disinfectant with a sterilization function that can easily obtain a clean space in which the number of pathogenic microorganisms, dust, etc., or the number of uninactivated pathogenic microorganisms adhering to two-dimensional surfaces such as the walls of the room is extremely suppressed. To provide a clean environment system and a method for using the same.
  • An object of the present invention is to provide a highly clean environment system with a sterilization function and a method for using the system.
  • the present invention A room or closed space that constitutes an isolated closed system with no gas mass flow exchange between the outside world and the inside, and has a membrane that does not allow particles to pass through at least a part of the interface between the outside world and the inside but allows gas molecules to pass through.
  • the "outside world” does not necessarily mean the outdoors, but means a space outside the above-mentioned room or closed space, and its form is adjacent to the above-mentioned room or closed space. It can be a room or a hallway.
  • particles include general particles such as dust particles, viruses, and bacteria. Viruses and bacteria may or may not be pathogenic.
  • This highly clean environment system with a sterilization function typically has a predetermined particle number density measured by a particle number measuring instrument when the inside of a room or closed space is cleaned by a cleaning device.
  • the sterilization device generates sterilization mist and/or sterilization gas.
  • the particle number counters may be installed at multiple locations inside the room or closed space, as required, so that the particle number density at those multiple locations can be measured.
  • the sterilizer may also be installed at a plurality of locations inside the room or closed space, as required, so that sterilization mist and/or sterilization gas can be generated from the plurality of locations.
  • a predetermined particle number density is selected as necessary, but is, for example, 1/100 or less of the particle number density in the outside world, preferably US FED 209D class 100, more preferably is the US FED 209D Class 10 particle number density.
  • the sterilization device is typically, but not limited to, a sterilization mist generator, a sterilization gas generator, or a combination thereof.
  • the sterilizing mist is selected according to need.
  • mist containing hypochlorous acid For example, mist containing hypochlorous acid, MA-T (an aqueous solution in which a very small amount of chlorite known to attack bacteria and viruses), and mists containing sodium hypochlorite.
  • the sterilization gas is selected according to need, and examples include ozone gas.
  • a particle-impermeable, gas-molecule-permeable membrane (gas exchange membrane) at least part of the interface between the outside world and the inside may be provided in a gas exchange unit (gas exchange device) or in a room or closed space. may be provided on at least part of the wall of the
  • the gas exchange unit has a box-like structure forming a closed space with at least two gas inlets and at least two gas outlets, one of the at least two gas inlets being one of the at least two gas outlets.
  • the other one of the at least two gas inlets communicates with the other one of the at least two gas outlets, and the two communication paths each form an independent flow path.
  • air introduced from the outside of the room or closed space is introduced into the box-like structure through one of the gas inlets, and is separated from each other by the membranes. While the inside air of the room or the closed space is introduced into the box-like structure from the other one of the gas inlets, and communicated with the gas inlet
  • the gas is circulated from the gas outlet to the room or closed space, where V is the volume of the room or closed space, D is the diffusion constant of oxygen in the film, and L is the thickness of the film.
  • the area A of the membrane is scaled by ⁇ (V / A) / (D / L) ⁇ , and the oxygen consumption rate inside the room or closed space is B, which is in equilibrium with the outside.
  • the area A of the membrane is at least is set to meet
  • the membrane is provided on at least part of the wall of a room or closed space
  • the room or closed space is constituted by, for example, a tent in which at least part of the wall is made of the membrane.
  • the concentration of gas molecules in a room or closed space is precisely controlled by the effect of the gas exchange membrane. Since it does not affect sterilization, sterilization can be carried out very efficiently. That is, since the concentration of gas molecules in the room or closed space is controlled by the diffusion ventilation by the gas exchange membrane, the sterilization mist exerts the maximum sterilization effect without being affected by the ventilation.
  • the energy consumption of indoor air conditioning associated with ventilation minimizes the energy consumption of indoor air conditioning, and it is possible to realize highly efficient next-generation ZEB (Net Zero Energy Building) or ZEH (Net Zero Energy House) in sterilization.
  • this invention A room or closed space that constitutes an isolated closed system with no gas mass flow exchange between the outside world and the inside, and has a membrane that does not allow particles to pass through at least a part of the interface between the outside world and the inside but allows gas molecules to pass through.
  • the sterilizing mist and/or the sterilizing gas and the sterilizing mist and/or the sterilizing gas in the room or the closed space are generated by the sterilizing device while the particle number density inside the room or the closed space is reduced.
  • Loss of sterilizing mist and/or sterilizing gas can be greatly reduced due to the reduced probability of interaction between particles inside the room or enclosed space, and on the surfaces of the interior walls and objects present inside the room or closed space.
  • the sterilizing mist and/or sterilizing gas can be efficiently delivered, thereby effectively sterilizing those walls and object surfaces.
  • the inside can be effectively disinfected, so that the clean space can be used repeatedly, safely and securely.
  • FIG. 1 is a schematic diagram showing a conventional open system
  • FIG. 1 is a schematic diagram showing a highly clean environment system with a disinfection function according to one embodiment
  • FIG. FIG. 4 is a schematic diagram showing a case where a room or closed space is a tent-type CUSP in the highly clean environment system with a disinfection function according to one embodiment
  • 1 is a schematic diagram showing a highly clean environment system with a disinfection function according to Example 1
  • FIG. FIG. 5 is a schematic diagram showing temporal changes in particle number density (particle number density is log scale) when pure water mist is jetted from a humidifier inside the room of the highly clean environment system with a disinfection function shown in FIG. 4 ;
  • FIG. 5 is a schematic diagram showing temporal changes in particle number density (particle number density is linear scale) when pure water mist is jetted from a humidifier inside the room of the highly clean environment system with a disinfection function shown in FIG. 4 ;
  • FIG. 5 is a schematic diagram showing temporal changes in particle number density (particle number density is log scale) when pure water mist is jetted from a humidifier inside the room of the highly clean environment system with a disinfection function shown in FIG. 4 ;
  • 5 is a schematic diagram showing temporal changes in humidity, temperature, and water content when pure water mist is jetted from a humidifier inside the room of the highly clean environment system with a disinfection function shown in FIG. 4;
  • FIG. 4 is a schematic diagram showing temporal changes in particle number density (particle number density is linear scale) when pure water mist is jetted from a humidifier inside the room of the highly clean environment system with a disinfection function shown in FIG. 4 ;
  • FIG. 5 is a schematic diagram showing temp
  • FIG. 5 is a schematic diagram showing temporal changes in particle number density when pure water mist and hypochlorous acid water-containing mist are sprayed inside the room of the highly clean environment system with a disinfection function shown in FIG. 4;
  • FIG. 5 is a schematic diagram showing temporal changes in particle number density when pure water mist and MA-T-containing mist are sprayed inside the room of the highly clean environment system with a disinfection function shown in FIG. 4;
  • FIG. 5 is a schematic diagram showing temporal changes in particle number density when pure water mist and city water mist are sprayed inside the room of the highly clean environment system with a disinfection function shown in FIG. 4;
  • FIG. 11 is a schematic diagram showing a highly clean environment system with a disinfection function according to Example 2; Fig. 11 is a schematic diagram showing temporal changes in particle number density including mist measured in various parts of the room when the humidifier is turned on and off inside the room of the highly clean environment system with disinfection function shown in Fig. 10 . 11 is a schematic diagram showing temporal changes in particle number density including mist measured at point C of the room when the humidifier is turned on/off inside the room of the highly clean environment system with a disinfection function shown in FIG. 10. FIG. .
  • FIG. 11 is a schematic diagram showing temporal changes in particle number density including mist measured at point B of the room when the humidifier is turned on/off inside the room of the highly clean environment system with a disinfection function shown in FIG. 10.
  • FIG. . 11 is a schematic diagram showing temporal changes in particle number density including mist measured at point D of the room when the humidifier is turned on/off inside the room of the highly clean environment system with a disinfection function shown in FIG. 10.
  • FIG. . FIG. 11 is a schematic diagram showing a box according to Example 3; 10 is a photograph substituting for a drawing taken from the front of the box according to Example 3 in a state in which shimeji mushrooms are stored inside.
  • FIG. 10 is a photograph substituting for a drawing taken obliquely from behind in a state in which shimeji mushrooms are stored inside the box according to Example 3.
  • FIG. FIG. 16B is a schematic diagram showing temporal changes in carbon dioxide concentration, temperature, and particle number density inside a box when shimeji mushrooms are stored and cultivated inside the box as shown in FIGS. 16A and 16B .
  • FIG. 2 shows a highly clean environment system with a disinfection function according to one embodiment.
  • this highly clean environment system with a disinfection function has a room or closed space 11 that constitutes an isolated closed system in which there is no gas mass flow exchange between the outside world and the inside.
  • the room or closed space 11 may be provided independently, or may be, for example, a room in a general detached house, a room in a collective housing such as an apartment, a hospital room, a nursing home room for the elderly, or the like. may be Alternatively, the room or enclosed space 101 may be a tent. People can go in and out of this room or closed space 11 .
  • the side wall of the room or closed space 11 is provided with a doorway (not shown), for example a sliding sliding door.
  • a doorway for example a sliding sliding door.
  • the room or closed space 11 is a tent, for example, a person can enter and exit by opening and closing a zipper for entry and exit provided on the side of the tent.
  • the size (width, depth, height) and shape of the interior of the room or closed space 11 are selected as required.
  • the room or closed space 11 is provided with a cleaning device that cleans the inside of this room or closed space 11 .
  • a cleaning device that cleans the inside of this room or closed space 11 .
  • the FFU 12 paired with an outlet (not shown) for returning to the interior of the closed space 11 is installed on the floor of the room or closed space 11 .
  • This FFU 12 constitutes a 100% circulation feedback system.
  • An FFU installed on the ceiling of the room or closed space 11 may be used instead of the FFU 12 .
  • a 100% circulation feedback system is configured in the room or closed space 11 that constitutes an isolated closed system, so that the inside air of the isolated closed system passes through the filter of the FFU 12 many times, so that the cleanliness is high.
  • a high degree of cleanliness expressed by the formula (3) described later can be obtained.
  • the interior background cleanliness of the room or enclosed space 11 is maintained at US FED 209D Class 10-100. After cleaning the inside of the room or closed space 11, the FFU 12 operates without load, so the filter of the FFU 12 has a long life and low maintenance cost. For this reason, it is also advantageous in terms of "energy saving".
  • At least part of the interface between the inside of the room or closed space 11 and the outside world is impermeable to dust particles and gas molecules are It consists of a permeable membrane, ie a gas exchange membrane.
  • a permeable membrane ie a gas exchange membrane.
  • the gas exchange unit 13 in which a plurality of gas exchange membranes are stacked with a space therebetween is installed on the ceiling of the room or closed space 11 is shown.
  • At least part of at least one of the walls may be constituted by a gas exchange membrane.
  • the dashed line shown inside the gas exchange unit 13 schematically shows the gas exchange membrane 13a included in the gas exchange unit 13.
  • Patent Documents 1 to 3 it is described as a gas exchange device.
  • the gas exchange unit 13 takes in the inside air of the room or the closed space 11 from the inside air recovery port, returns it to the room or the closed space 11 through the inside air passage formed by the space between the two gas exchange membranes, and draws the outside air from the outside air introduction port.
  • Oxygen and carbon dioxide gases are introduced and discharged to the outside through an internal air passage and an external air passage that are independent of the internal air passage, which consists of the space between the two gas exchange membranes, and between the internal air and the external air through the gas exchange membranes.
  • the inside air having the same oxygen concentration and carbon dioxide concentration as the outside air is returned to the room or closed space 11 .
  • a sterilizing mist generator 14 for generating sterilizing mist 14a and a particle number measuring instrument 15 for measuring the particle number density of various particles including dust and mist are installed inside the room or closed space 11.
  • the sterilizing mist generator 14 and the particle number measuring device 15 may be installed at multiple locations in the room or closed space 11 as required.
  • the particle number density as a function of time t, measured by the particle number counter 15, can be sent by wire or wirelessly to a computer (not shown) located inside or outside the room or closed space 11. It has become.
  • the particle counter 15 and the computer are connected by a wired or wireless LAN or the like.
  • a germicidal mist generator 14 is also connected to this computer.
  • a program installed in advance in this computer controls the operation of the sterilizing mist generator 14 based on the particle number density measured by the particle number measuring device 15 . This program, for example, turns on the sterilizing mist generator 14 to generate sterilizing mist when the particle number density measured by the particle number measuring device 15 falls below a predetermined reference particle number density.
  • the reference particle number density is, for example, the US FED 209D class 100 particle number density.
  • the sterilizing mist is generated after the particle number density measured by the particle number measuring device 15 has fallen below the predetermined reference particle number density and the inside of the room or closed space 11 has been cleaned. Therefore, the number density of the sterilizing mist can be monitored by the particle number measuring device 15, and the sterilizing effect of the sterilizing mist inside the room or closed space 11 can be confirmed.
  • a change in the particle number density over time measured by the particle number measuring instrument 15 can be displayed on a display (not shown) connected to a computer, and if necessary, a printer (not shown) connected to the computer. and can be saved in a storage device of the computer or an external storage device connected to the computer.
  • this highly clean environment system with disinfection function disinfects using sterilizing mist, it is basically used in an unmanned state where there are no people in the room or closed space 11 to ensure safety.
  • a sterilizing mist with a concentration that has been confirmed to be safe it may be used in an environment where people stay in a room or closed space 11 .
  • a particle number measuring device 15 measures the particle number density n(t) of various particles including dust and pathogenic microorganisms inside the room or closed space 11 . Clean and maintain the interior of the room or enclosed space 11 until the particle number density is below a reference particle number density (eg, US FED 209D Class 100). The particle number measuring device 15 is always operated.
  • the sterilization mist generator 14 is turned on to generate the sterilization mist 14a.
  • the sterilizing mist 14a since the particle number density n(t) inside the room or closed space 11 is sufficiently low, the sterilizing mist 14a is not scattered by the particles, and can It can efficiently reach surfaces such as various objects and walls inside the space 11 and sterilize pathogenic microorganisms floating in the air and pathogenic microorganisms adhering to two-dimensional surfaces such as objects and walls. .
  • the sterilization effect is confirmed by the value of n(t) measured by the particle number measuring instrument 15. That is, when the value of n(t) is less than a predetermined value compared to before sterilization, it is determined that a predetermined level of sterilization effect has been obtained, and the sterilization mist generator 14 is turned off and sterilization mist is generated. 14a ceases to occur. If the value of n(t) has not decreased below the predetermined value compared to before sterilization, the sterilization mist 14a generated by the sterilization mist generator 14 is considered to have not obtained a predetermined level of sterilization effect. continues to generate sterilization mist 14a until the value of n(t) decreases below a predetermined value compared to before sterilization. As described above, the room or closed space 11 is disinfected.
  • the room or closed space 11 After the room or closed space 11 is disinfected, people enter the room or closed space 11 to live and carry out various activities. When a person leaves the room or closed space 11 and is replaced by another person, the room or closed space 11 is sterilized as described above before entering.
  • the temporal change characteristics of the particle number density n(t) and the gas (molecule) concentration ⁇ (t) in the room or closed space 11 will be explained.
  • the room or closed space 11 is the tent-type CUSP shown in FIG. 3
  • the following explanation also holds when the room or closed space 11 is other than the tent-type CUSP.
  • the FFU 12 is installed on one side (the side to which the head of the person 102 faces when sleeping) inside a tent 101 in which at least a part of the wall is formed of a gas exchange membrane, and the other inside the tent 101
  • a particle number measuring device 15 is installed on one side of (the side to which the feet of the person 102 face when sleeping).
  • a multi-molecular concentration monitor 103 such as oxygen and carbon dioxide is installed next to the FFU 12 .
  • the gas exchange unit 13 is not installed because the gas exchange is performed through the gas exchange membrane that constitutes the tent 101 . Due to the operation of the FFU 12, air flows and circulates in the tent 101 as indicated by arrows, forming a 100% circulation feedback system. Body movements of the sleeping person 102 scatter or generate dust particles.
  • V is the volume of the tent 101
  • S is the inner surface area of the tent 101
  • is the amount of particles generated per unit area and unit time
  • F is the air volume of the FFU 12
  • is the particle collection efficiency.
  • equation (2) When t ⁇ , equation (2) is becomes. In practice, when a sufficient amount of time has passed (t>10V/ ⁇ F) after the start of operation of the FFU 12, the ultimate particle number density of formula (3) is substantially obtained.
  • the gas molecule concentration ⁇ (t) is satisfies the differential equation
  • A is the area of the gas exchange membrane forming the tent 101
  • L is the thickness of this gas exchange membrane
  • D is the diffusion constant of the gas molecule of interest (oxygen molecule etc.) in this gas exchange membrane
  • B is the tent 101.
  • Gas consumption and generation rate due to internal breathing etc. positive value for consumed oxygen, negative value for carbon dioxide and other gases released outside the body
  • ⁇ o is the relevant is the concentration of gas molecules.
  • Avogadro's number is N A
  • the gas volume per mole at the pressure ( ⁇ 1 atm) at which the system is placed is C
  • the inside of the tent 101 through the gas exchange membrane Assuming that the incoming flux of the gas of interest (oxygen, etc.) is j, the volume V ⁇ (t+ ⁇ t) of the gas at time t+ ⁇ t can be obtained using the volume V ⁇ (t) of the gas at time t as holds.
  • the air flow generated by the FFU 12 stirs the air in the inner space of the tent 101 sufficiently quickly to constitute the air
  • the third term on the right side of equation (5) is the number of molecules of the gas flowing in due to the concentration difference (concentration gradient) of the gas on both sides of the gas exchange membrane (that is, inside and outside the tent 101) (The gas enters the tent 101 not as an air flow but as diffusion of molecules, which is completely different from the phenomenon described by the above equation (5)).
  • Equation (8) is is given by where ⁇ is the number of gas molecules per unit volume inside the tent 101, and ⁇ is the differential operator in the x-axis direction, where the direction perpendicular to the gas exchange membrane is the x-axis. Since L is about three orders of magnitude smaller than the thickness of the inner space of the tent 101 and can be regarded as extremely thin, the equation (5) is can be approximated with good accuracy.
  • ⁇ 0 is ⁇ (0), which is the concentration of the gas in the external environment as in the equations (4) and (5), and is usually about 20.9% when the gas is oxygen. . (7), the differential equation is guided. The exact solution of equation (8) is Asked.
  • Another parameter that determines air quality in addition to cleanliness is the concentration of gas molecules in the air.
  • concentration of gas molecules inside the CUSP can be controlled.
  • a part of the wall of the tent 101 is made of a gas exchange membrane, so that the concentration of gas molecules inside the tent 101 can be controlled through molecular diffusion. can. That is, in the tent-type CUSP shown in FIG.
  • the ventilation air volume derived from the equation (9) F AD / L Ventilation equivalent to the mechanical ventilation air volume F can be realized according to the principle of correspondence (scaling law).
  • the oxygen concentration and carbon dioxide concentration in the tent-type CUSP can be monitored according to (3), non-contact and non-invasive time-to-time data analysis (efficient monitoring) of the patient's condition can be performed.
  • the temporal changes in oxygen concentration and carbon dioxide concentration when a candle is burned can be measured with high accuracy.
  • respiratory condition measurement of COVID-19 patients can be performed in a non-contact, non-invasive manner.
  • B is set to an appropriate negative value, the concentrations of carbon dioxide and organic molecules that serve as indicators of pathological conditions can also be described, and molecules released from the body can be analyzed.
  • B is positive if respiration consumes oxygen at rate B, but equations (9) and (10) themselves allow B to be a negative value.
  • This is a general formula that can also describe the generation of carbon dioxide.
  • FIG. 4 shows a room 201 of the highly clean environment system with disinfection function according to the first embodiment.
  • This room 201 has a rectangular parallelepiped shape with a width of about 7 m, a depth of about 4 m, and a height of about 3 m.
  • a long and narrow table 203 was installed on the floor in front of the door 202 of this room 201 in parallel with the longitudinal direction of the room 201 .
  • the height from the floor to the top surface of table 203 is about 40 cm.
  • a humidifier 204 was installed as a sterilization mist generator 14 on one end of the table 203 on the door 202 side, and a particle counter 15 was installed on the other end of the table 203 .
  • As the humidifier 204 a commercially available humidifier (SRD-BK801) was used.
  • the distance between humidifier 204 and particle counter 15 is about 60 cm.
  • a mist 204a is generated from the humidifier 204 as shown in FIG. On the floor between the side of the table 201 where the humidifier 204 is installed and the entrance door 202, three FFUs 12-1, 12-2, and 12 are arranged almost parallel to the wall where the door 202 is installed. -3 was installed.
  • a window (not shown) is provided on the wall facing the wall provided with the door 203 of the room 201, and a desk 205 is placed in front of the wall provided with this window.
  • a thermo-hygrometer 206 was placed on the center of the desk 205, and particle number measuring instruments 15-1 and 15-2 were placed on both ends.
  • the distance between the humidifier 204 and the two particle counters 15-1 and 15-2 on the desk 205 is about 4 m.
  • a commercially available Dylos DC-170 was used as the particle number counter 15-1 on the left side of the desk 205, and a commercially available MetOne HHPC3+ was used as the particle number counter 15-2 on the right side.
  • FIG. 5A shows the measurement result of the particle number density by the particle number measuring device 15-2 installed on the desk 205 when pure water mist is generated from the humidifier 204 in the highly clean environment with the sterilization function shown in FIG. indicates FIG. 5B shows the particle number density on the vertical axis on a linear scale, whereas FIG. 5A shows the particle number density on the vertical axis.
  • FIGS. 5A and 5B about 60 minutes after starting the operation of the FFUs 12-1, 12-2, and 12-3 and the measurement of the particle number density by the particle number measuring device 15-2, pure water was added.
  • the humidifier 204 After about 110 minutes, the humidifier 204 is turned off to stop generating the pure water mist, and after about 130 minutes, the humidifier 204 is turned on again to generate the pure water mist. was generated, and after about 170 minutes, the humidifier 204 was turned off to stop the generation of the pure water mist.
  • increase and decrease in particle number density (the sum of the particle number density of particles such as dust and microorganisms and the mist number density) is observed as the pure water mist is generated and stopped.
  • the operation of the FFUs 12-1, 12-2, and 12-3 in the room 201 constitutes a 100% circulation feedback system, thereby highly cleaning the room 201 (subtraction strategy succeeds Note that quantitative evaluation of such intentional generation of pure water mist (addition strategy) is possible for the first time.
  • FIG. 6A and 6B are graphs showing the results of the measurement of the data shown in FIG. 5A on a day different from the day on which pure water mist was generated from the humidifier 204 in the highly clean environment with a sterilization function shown in FIG. Measurement results of particle number density, humidity, temperature and water content by the particle number measuring device 15-2 installed on 205 are shown. As shown in FIG. 6A, about 120 minutes after starting the operation of the FFUs 12-1, 12-2, and 12-3 and the measurement of the particle number density by the particle number measuring device 15-2, pure water was added to the humidifier.
  • FIG. 6A an increase or decrease in particle number density (the sum of the particle number density of particles such as dust and microorganisms and the mist number density) is observed as the pure water mist is generated and stopped.
  • FIG. 6B shows changes in humidity, temperature, and water content corresponding to FIG. Although it is a change, follow-up can be seen.
  • FIG. 7 shows the results of the measurement of the data shown in FIGS. 5A, 6A, and 6B in the highly clean environment with a sterilization function shown in FIG. Installed on the table 203 when pure water mist and hypochlorous acid (50 ppm) containing mist are respectively generated from another humidifier 204 containing hypochlorous acid water (50 ppm) installed immediately next to it.
  • 4 shows the result of measurement of the particle number density by the particle number measuring device 15.
  • Figure 8 shows SARS (Severe Acute Respiratory Syndrome), MERS (Middle East Respiratory Syndrome), and MA-T (Non-Patent Document 5) mist, which is said to be effective against the new coronavirus.
  • MA-T Non-Patent Document 5
  • mist which is said to be effective against the new coronavirus.
  • MA-T has a different particle size distribution than pure water, and the amount of mist that reaches remote locations is large.
  • By disinfecting (fumigating) the inner surface of the room and the surface of various items installed in the room with MA-T mist it is possible to ensure the safe and safe repeated use of the clean space and the installed items. did it. Therefore, it is possible to greatly meet the medical needs for measures against infectious diseases.
  • FIG. 9 on the same day as the day when the data shown in FIG.
  • Non-Patent Document 1 instead of filtering the dust in the air with a filter, a mist is generated, and the mist and the floating dust are collided, so to speak, knocked down to obtain a clean space. It is. Conversely, if there is a lot of floating dust in the air, it is impossible to send the generated mist to a long distance. In other words, the mean free path of the mist is shortened.
  • a system with only a 100% circulatory feedback system for example, by constructing a system such as that shown in FIG.
  • the prescriptions shown in FIGS. 7 to 9 actively add mist with desired properties quantitatively and with good controllability to the highly clean space obtained by the 100% circulation feedback system. can be said to be the strategy of
  • the number of particles is measured by laser light scattering, but at the above-mentioned small molecule concentration , the refractive index does not change, and therefore the detection sensitivity is considered to be exactly the same for the four types of mist).
  • the human body when quantitatively given substances effective to the human body (especially people with pathological conditions) through mist can be quantitatively analyzed from the viewpoint of physical linear response and non-linear response. It is also possible to incorporate this into the operation mechanism of the man-machine interface.
  • FIG. 10 shows a larger-scale room 301 in the actual building (the floor has a square planar shape with one side of about 10 m, and the ceiling height is due to the open-air structure on the first and second floors of the room used in the experiment). , about 5 m, which is about twice as long as usual), is shown in Example 2, in which this highly clean environment system with a disinfection function is applied.
  • a CUSP is configured using FFUs installed on the ceiling.
  • a humidifier 204 containing pure water and a particle number measuring device 15-1 are placed on a stocker 302 with a height of about 1 m installed in one corner (point A) of a room 301.
  • a particle number measuring instrument 15-2 was installed on the seat surface of a chair 303 placed at the center B of the room 301 and having a height of about 50 cm.
  • a particle number measuring instrument 15-3 is installed on a seat surface with a height of about 50 cm, and a particle number measuring instrument 15- 4 was installed. Then, pure water mist is generated from the humidifier 204, the particle number measuring device 15-1 on the stocker 302, the particle number measuring device 15-2 on the seat surface of the chair 303, and the particle number measurement on the seat surface of the chair 304 are performed.
  • the particle number density was measured by the device 15-3 and the particle number measuring device 15-4 on the stocker 305, respectively.
  • Point E corresponds to measurements in the vicinity of humidifier 204 .
  • the particle number measuring instrument 15-1 on the stocker 302 As the particle number measuring instrument 15-1 on the stocker 302, the particle number measuring instrument 15-2 on the seat surface of the chair 303, and the particle number measuring instrument 15-3 on the seat surface of the chair 304, the commercially available MetOne HHPC3+ is used as the stocker. A commercially available Dylos DC-170 was used as the particle counter 15-4 on the 305. 11 to 14 show experimental results. 13, 12 and 14 show the particle number measuring device 15-2 (point B) when pure water mist is generated from the humidifier 204 in the highly clean environment system with sterilization function shown in FIG.
  • FIG. 11 plots together the measurement results at points B, C, and D for the total number of particles with a particle size of 0.5 ⁇ m or more for comparison.
  • FIG. 11 shows the ON/OFF timing of CUSP ON and generation of mist by the humidifier 204 .
  • FIGS. 11 to 14 after the room 301 was cleaned by the CUSP operation, turning on the mist generation clearly confirmed an increase in the number of particles (mist) derived from the humidifier 204. .
  • FIG. 11 shows the ON/OFF timing of CUSP ON and generation of mist by the humidifier 204 .
  • FIG. 15 shows a small rectangular parallelepiped with a gas exchange membrane 13a having a size of 20 cm ⁇ 10 cm on its back surface, according to the scaling law indicated by the terms F/V in equation (2) and AD/LV in equation (9).
  • Example 3 is shown in which this highly clean environment system with a disinfection function is applied to a box 401 (corresponding to the room or closed space 11) having a CUSP configuration.
  • FIG. 15 is a view of the box 401 viewed from the back.
  • Box 401 has a rectangular shape with a floor of approximately 30 cm by 40 cm and a height of approximately 30 cm.
  • a CUSP is configured using a small FFU 12 installed on the floor.
  • a box 401 contains a sterilizing mist generator 14, a particle counter 15, and a gas concentration measuring device 402 (LUTRON GC-2028) for measuring concentrations of various gases such as CO 2 , O 2 , CO, and VOCs (volatile organic compounds). , and a thermohygrometer 403 (ORION Dew Point Monitor MG40) capable of measuring temperature and humidity was installed.
  • a cultivated organism 404 to be cultivated is placed on the floor of the box 401 . In order to control the pedestal values of temperature and humidity, although not shown in FIG.
  • thermohygrometer (DT3321, manufactured by CEM) was used as an external thermometer and hygrometer. Then, after operating the FFU 12 to reduce the number of floating dust particles, a sterilizing mist such as MA-T is generated from the sterilizing mist generator 14 to disinfect all the two-dimensional surfaces in the box 401.
  • a shimeji mushroom with a weight of about 500 g was stored as an example of the cultivated organism 404 in a paper container placed on the floor, and various environmental values in the box 401 were monitored.
  • 16A and 16B show a photograph of the box 401 storing shimeji mushrooms taken from the front and a photograph taken diagonally from behind.
  • FIG. 17 shows the experimental results.
  • the metabolism of shimeji mushrooms also decreases, and the CO 2 concentration decreases as shown in the lower part of FIG. It can be seen that it decreases to about 1800 ppm. From the equations (9) and (10), the metabolic rate of shimeji mushrooms can be calculated from the amount of CO 2 generated (and the O 2 concentration [O 2 reduction amount]) in this situation, and cultivation can be performed while monitoring the metabolism of shimeji mushrooms. shown that it can be done. Thus, it was demonstrated that mushrooms such as shimeji mushrooms can be cultivated in a clean environment.
  • Example 3 based on the equations (9) and (10) (basically, by appropriately setting the area A of the gas exchange membrane 13a while paying attention to the diffusion coefficient D that differs for each molecule),
  • environmental parameters such as CO 2 concentration are properly controlled to predetermined values in a favorable growth environment of aseptic conditions brought about by reducing the number of floating dust particles and the number of bacteria It was shown that it is possible to cultivate and grow
  • the sterilizing mist generator 14 generates the sterilizing mist 14a in a state in which the particle number density inside the room or closed space 11 is reduced by the CUSP operation. Loss of the sterilizing mist 14a can be greatly reduced by reducing the probability of interaction between 14a and floating dust or the like inside the room or closed space 11.
  • the sterilizing mist 14a can be efficiently delivered to the surfaces of the objects present in the wall, thereby effectively sterilizing the walls and surfaces of the objects.
  • the inside can be effectively disinfected, so that the clean space can be used repeatedly and safely and securely.
  • Non-Patent Documents 2-4 Non-Patent Documents 2-4
  • CUSP is an isolated and closed system
  • the experimental results of the above products in a closed system can be quantitatively and strictly transplanted by considering the volume. In other words, in a room in which the technical idea of the present invention is incorporated, it becomes possible to quantitatively predict the effects of the above devices for the first time in the actual usage environment.
  • the CUSP system is an isolated closed system (closed airflow system), and because the inside and outside are always at the same pressure, in principle, there is no entry or exit of bacteria and dust that move along the airflow, and the indoor occupants are the ultimate safety. can be obtained.
  • this mechanism makes it possible to maintain a high degree of cleanliness and cultivate or raise useful food without the need for agricultural chemicals.
  • the following various advantages can be obtained. 1) As a bottom line, emergency measures for COVID-19 (accommodating multiple beds in gymnasiums, etc.), protecting people from infection during dialysis and blood donation, and mass production and mass introduction as a personal high-clean environment. It is possible. 2) Monitor the state of occupants inside the room by measuring the concentration of molecules in the space, and 3) Efficiently sterilize the room by spraying microparticles with a bactericidal effect such as hypochlorous acid according to the above mist introduction example. By doing, the clean space can be disinfected. Thereafter, treatment by oral and pulmonary introduction of active substances is also possible. Furthermore, it can be combined with a photocatalyst to remove odors.
  • the above 1) and 2) are to remove the dust and odor molecules that are originally present (in other words, to improve the air quality by protection), and 3) is to actively remove fine particles that are not originally present and exhibit good effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Ventilation (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Air Conditioning Control Device (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

殺菌機能付き高清浄環境システムは、孤立閉鎖系を構成し、かつ外界と内部との界面の少なくとも一部にガス交換膜13aを有する部屋または閉空間11と、部屋または閉空間の内部の気体を吸引する開口と、当該吸引気体を粒子数密度および分子濃度の双方に関して清浄化処理後、その全量を、再び、部屋または閉空間の内部に戻す吹き出し口とが対となって設けられている清浄化装置12と、殺菌ミストおよび/または殺菌ガスを発生させる殺菌装置14と、粒子数計測器15とを有し、部屋または閉空間11の内部を清浄化装置12により清浄化したときに粒子数計測器15により測定される粒子数密度が予め決められた粒子数密度を下回ってから殺菌装置14により殺菌ミストおよび/または殺菌ガスを発生させる。

Description

消毒機能付き高清浄環境システムおよびその使用方法
 この発明は、消毒機能付き高清浄環境システムおよびその使用方法に関し、特に、病原性の細菌やウイルス等による人間(ヒト)の感染の防止に適用して好適なものである。
 現代文明の進歩に伴い、人間活動に対して地球の有限性が無視し得なくなり、社会の「持続性」が大きな課題となっている。そうした背景にあって、人間の活動を、生産活動等の「動脈」部分から、その結果生じる副産物を処理する「静脈」部分まで、包括的に一体として対処できる清浄環境の実現が重要である。特に、新型コロナウイルス感染症(COVID-19)が世界的に猛威をふるっている現下のコロナ禍の中においては、新型コロナウィルスの浮遊を抑えた清浄空間の実現、並びに、部屋の側壁等の2次元面における新型コロナウイルスの不活化が重要となる。より一般的には、清浄環境の実現に際しては、新型コロナウイルスだけでなく、他の病原性のウイルスや細菌等の病原性微生物の浮遊を抑えた清浄空間、並びに、部屋の側壁等の2次元面におけるこれらの病原性微生物の殺菌あるいは不活化が重要である。
 在来式の清浄環境技術は、部屋あるいは閉空間と外界との間で気流としての空気のやりとりのある解放系に対するファンフィルターユニット(Fan Filter Unit:FFU)の使用に基づいており、外界から空気を導入する結果、当該FFUのフィルターは目詰まりをし続ける。
 この目詰まりによるフィルターの機能低下を避けるべく、フィルター以外の手法、即ち、静電噴霧ミストによる浮遊塵埃の抑制が提案され、実験的に検証されている(非特許文献1)。また、プラズマイオンクラスターや静電霧化により生成した機能性ミストによるウイルスの抑制も報告されている(非特許文献2、3、4)。これらの技術は、空気中を漂う塵埃およびウイルスを上記ミストやイオンクラスターにより、叩き落としたり、不活化させる戦略を取っていると言うことができる。逆に見ると、部屋の内部空間に漂う塵埃や菌等が存在する際には、当該ミスト微粒子は、3次元空間内で消費されてしまい、部屋を構成するあらゆる2次元面(壁、床、天井はもとより、部屋内に置かれた机や椅子、或いは部屋への出入りを行う際のドア、特に、その取っ手やノブの表面等)に届く確率が僅少になってしまう。2次元面の消毒の性能が落ちてしまう。静電噴霧ミストによる浮遊塵埃およびウイルスの抑制の戦略では、部屋内の2次元面の消毒は、主に拭き取りや人手による局所的な薬液噴霧等に依ることとなり、手間が非常に掛かる。
 浮遊塵埃およびウイルスと意図的に導入したミストとの相互作用を利用するという非特許文献1の原理に基づき、図1に示すように、在来式の部屋(これは、所定の時間に一定量の給気と排気がなされる解放系であり、オープンエアフローシステムということができる)において空間内の消毒および殺菌を行うことが従来より提案されている。即ち、図1に示すように、部屋501の内部に殺菌ミスト発生器502を設置し、殺菌ミスト502aを発生させることにより殺菌を行う。外界(室外)から部屋501の内部に空気流が熱を伴って風量Fで導入され、再び外界に空気流が熱を伴って風量Fで排出されることで換気が行われる。しかしながら、このような在来式の解放系においては、殺菌ミスト502aの効果が換気プロセスにより減殺されてしまうため、塵埃およびウイルスを十分に減少させることができない。
 室内に存在する病原性微生物を減らすには、まず、室内の3次元空間に漂う病原性微生物を減らし、室内の壁や室内のあらゆる物体の表面等の2次元面に付着している病原性微生物を減らす必要がある。
 3次元空間、即ち空気中を漂う病原性微生物による感染を防止するには、まずi)空気中に存在する病原性微生物の数をフィルタリング等、濾過により減らす方法(除菌)と、ii)病原性微生物に化学物質を作用させて数はそのままながら当該病原性微生物を不活化する方法(殺菌)とがある。
 2次元面に付着している病原性微生物による感染を防止するには、iii)拭き取りにより数自体を減らす方法(洗浄)と、2次元面に付着している病原性微生物に化学物質を作用させて数はそのままながら当該病原性微生物を不活化する方法(殺菌)とがある。
 新型コロナウイルスのアウトブレークを契機として、近時、室内の除菌、殺菌が重要度を増している。
 こうした背景の下、次亜塩素酸水の噴霧による殺菌を謳う装置やシステムが世の中に出回っており、検証もなされている。また、最近は、MA-T(Matching Transformation System)が新型コロナウィルス等の感染症対策として有効であるとされ、注目を集めている(非特許文献5)。これまで、数ある製品が、除塵や除菌に効果があると喧伝されてきた。その際の究極の問題は、「これらの装置の効果検証実験が有限体積の閉鎖系で行われる」のに対し、実際の家庭等の住環境は(換気回数等を規定した法令に従う必然として)解放系であることである。即ち、閉鎖系から解放系に移るとき、殺菌の効果がどれくらい減殺されるかの定量評価が(換気の実状況はケースバイケースで異なるので)なされておらず、実際上ほぼ不可能であった。また、新しい抗ウイルスおよび抗菌製品の開発も進んでいる(非特許文献6)。しかし、これらの新技術、新商品、および付随するメカニズムをより有効に作用および発現させるプラットフォームの存在が求められるが十分に応えられているとは言い難い。
 上述のように在来の部屋は解放系であるので上記の除殺菌が換気プロセスにより減殺される。殺菌および消毒の抑制について、上記のi)~iv) 、特にi)、ii) 、iv) をトータルに行う除菌法は存在しなかった。また除菌効率を常時、折に触れて、チェックできる方法もなかった。
 このような中、本発明者らは、孤立および閉鎖性を特徴とするオリジナル技術であるクリーン ユニット システム プラットフォーム(Clean Unit System Platform: CUSP)(非特許文献7)に基づいて高性能クリーン環境システムを実現したが(特許文献1、2、3)、まだ、このシステムが持つ潜在的な能力を最大限引き出せていない。
米国特許第10677483号公報 国際公開第2014/084086号公報 特許第6292563号公報
田中、葛、原、"静電噴霧ミストによるPM2.5(微小粒子) 及びウイルスの除去処理装置の開発" 、空気清浄 第57巻4号、pp.193-198(2019) [令和3年4月12日検索]、インターネット〈URL:https://corporate.jp.sharp/news/200907-a.html 〉「世界初、プラズマクラスター技術で、空気中に浮遊する「新型コロナウイルス」の減少効果を実証」 [令和3年4月12日検索]、インターネット〈URL:https://news.mynavi.jp/article/20201019-panasonic _nanoe/〉「こんな時代だから知っておきたい「ナノイー」って結局なに? 除菌・脱臭は本当にできる?」 [令和3年4月12日検索]、インターネット〈URL:https://www.panasonic.com/jp/support/consumer/appliance/jiaensosan.html 〉「次亜塩素酸空間除菌脱臭機( ジアイーノ) 」 [令和3年4月11日検索]、インターネット〈URL:https://matjapan.jp/〉「日本MA-T工業会「MA-T:Matching Transformation System、日本の独自技術で感染症対策から産業創造まで」 松村 吉信監修「抗ウイルス・抗菌製品開発~基礎、作用メカニズムから評価、認証、商品化まで」、株式会社エヌ・ティー・エス、2021年3月30日初版第一刷発行(ISBN 978-4-86043-718-3) [令和3年4月11日検索]、インターネット〈URL:https://www.amed.go.jp/koubo/02/01/0201C_00094.html〉「令和2年度「ウイルス等感染症対策技術開発事業」の採択課題 基礎研究支援「ウイルス等感染症患者用高清浄閉空間システムの飛躍的高機能化」北海道大学 石橋 晃」
 そこで、この発明が解決しようとする課題は、室内等に浮遊する病原性微生物や塵埃等の数の減少と病原性微生物の殺菌効果との相乗効果により、室内等に浮遊する不活化されていない病原性微生物や塵埃等の数、あるいは室の壁等の2次元面に付着した不活化されていない病原性微生物の数が極めて抑制された清浄な空間を容易に得ることができる殺菌機能付き高清浄環境システムおよびその使用方法を提供することである。
 この発明が解決しようとする他の課題は、上記の清浄空間を利用する人が入れ替わる際に、効果的に内部を消毒することで、当該清浄空間を繰り返し、安心および安全に利用することができる殺菌機能付き高清浄環境システムおよびその使用方法を提供することである。
 上記課題を解決するために、この発明は、
 外界と内部との間で気体のマスフローとしての交換のない孤立閉鎖系を構成し、かつ外界と内部との界面の少なくとも一部に粒子を通さず、気体分子は通す膜を有する部屋または閉空間と、
 上記部屋または閉空間に設置された、上記部屋または閉空間の内部の気体を吸引する開口と、当該吸引気体を粒子数密度および分子濃度の双方に関して清浄化処理後、その全量を、再び、上記部屋または閉空間の内部に戻す吹き出し口とが対となって設けられている清浄化装置と、
 上記部屋または閉空間の内部に設置された殺菌ミストおよび/または殺菌ガスを発生させる殺菌装置と、
 上記部屋または閉空間の内部に設置された粒子数計測器と、
を有する殺菌機能付き高清浄環境システムである。
 この殺菌機能付き高清浄環境システムにおいて、「外界」とは、必ずしも戸外という意味ではなく、上記の部屋または閉空間の外の空間という意味であり、その形態は、上記の部屋または閉空間に隣接する部屋や廊下であってもよい。また、「粒子」とは、塵埃粒子(ダスト粒子)、ウイルス、細菌等の粒子全般を含む。ウイルスおよび細菌の病原性の有無は問わない。
 この殺菌機能付き高清浄環境システムは、典型的には、部屋または閉空間の内部を清浄化装置により清浄化したときに粒子数計測器により測定される粒子数密度が予め決められた粒子数密度を下回ってから殺菌装置により殺菌ミストおよび/または殺菌ガスを発生させるように構成される。粒子数計測器は、必要に応じて、部屋または閉空間の内部の複数箇所に設置されてもよく、こうすることでそれらの複数箇所の粒子数密度を測定することができる。また、殺菌装置も、必要に応じて、部屋または閉空間の内部の複数箇所に設置されてもよく、こうすることでその複数箇所から殺菌ミストおよび/または殺菌ガスを発生させることができる。予め決められた粒子数密度(基準粒子数密度)は、必要に応じて選択されるが、例えば外界の粒子数密度の1/100以下であり、好適にはUS FED 209Dクラス100、より好適にはUS FED 209Dクラス10の粒子数密度である。こうすることで、部屋または閉空間の内部の空気中に浮遊する粒子数を大幅に減少させた状態、従って浮遊する粒子に含まれる病原性微生物(ウイルス、細菌等)の数を大幅に減少させた状態で、これらの粒子に散乱あるいは阻止されることなく、殺菌ミストまたは殺菌ガスを部屋または閉空間の内部に効果的に発生させることができる。即ち、部屋または閉空間の内部に浮遊する粒子数を大幅に減少させた状態で殺菌ミストまたは殺菌ガスを部屋または閉空間の内部に発生させることにより、殺菌ミストまたは殺菌ガスと空気中に浮遊する粒子との間の本来無用の相互作用を減少させることができ、殺菌ミストまたは殺菌ガスと残存する病原性微生物との間の相互作用確率を高くすることができ、ひいては殺菌効率の向上を図ることができる。即ち、この殺菌機能付き高清浄環境システムにおいては、在来式の解放系システムでは到底得られなかった、浮遊塵埃、ウイルス、細菌等の減少と殺菌効果との相乗効果を得ることができる。殺菌装置は、典型的には、殺菌ミスト発生器あるいは殺菌ガス発生器あるいはこれらを組み合わせたものであるが、これに限定されるものではない。殺菌ミストは、必要に応じて選択されるが、例えば、次亜塩素酸を含むミスト、MA-T(水にごく少量の亜塩素酸イオンを混ぜた水溶液で、亜塩素酸イオン(水性ラジカル)が菌やウイルスを攻撃することが知られている)を含むミスト、次亜塩素酸ナトリウムを含むミスト等が挙げられる。殺菌ガスは、必要に応じて選択されるが、例えば、オゾンガスが挙げられる。
 外界と内部との界面の少なくとも一部にある、粒子を通さず、気体分子は通す膜(ガス交換膜)は、ガス交換ユニット(ガス交換装置)に設けられることもあるし、部屋または閉空間の壁の少なくとも一部に設けられることもある。ガス交換ユニットは、少なくとも二つの気体吸入口と少なくとも二つの気体吐出口とを有する、閉空間を構成する箱状構造体を有し、上記少なくとも二つの気体吸入口の一つが、上記少なくとも二つの気体吐出口の一つと連通するとともに、上記少なくとも二つの気体吸入口の他の一つが、上記少なくとも二つの気体吐出口の他の一つと連通し、上記二つの連通路は、おのおの独立流路を形成しつつも、上記膜を以てお互いから隔てられるように構成され、上記部屋または閉空間の外界から導入される空気が上記気体吸入口の一つから上記箱状構造体に導入され、この気体吸入口と連通する上記気体吐出口から外界へと送出される一方、上記部屋または閉空間の内気が上記気体吸入口の他の一つから上記箱状構造体に導入され、この気体吸入口と連通する上記気体吐出口から上記部屋または閉空間へ還流され、上記部屋または閉空間の体積をV、上記膜中の酸素の拡散定数をD、上記膜の厚みをLとした時、上記体積Vと上記膜の面積Aとを、{(V/A)/(D/L)}でスケーリングさせて設計が行われ、上記部屋または閉空間の内部の酸素消費レートをB、外部と平衡状態にあり上記部屋または閉空間の内部で酸素消費の無い時の酸素体積をVO2、上記部屋または閉空間内における目標酸素濃度をη(η>0.18)とした時、上記膜の面積Aが、少なくとも、
Figure JPOXMLDOC01-appb-M000002
を満たすように設定されている。上記の膜が部屋または閉空間の壁の少なくとも一部に設けられる場合、部屋または閉空間は、例えば、壁の少なくとも一部が上記の膜により構成されたテントにより構成される。
 この殺菌機能付き高清浄環境システムにおいては、ガス交換膜の効果で部屋または閉空間内のガス分子濃度は精度良く制御されつつ、閉空間の内外の分子交換(拡散過程)はミスト粒子には全く影響しないので、殺菌を非常に効率的に行うことができる。即ち、ガス交換膜による拡散換気により、部屋または閉空間内のガス分子濃度を制御しているので、殺菌ミストは、換気に拠る影響を全く受けることなく、殺菌効果を最大限発揮する。換気に伴う室内空調エネルギー消費は室内空調エネルギー消費を最小化し、殺菌においても高効率の次世代ZEB(Net Zero Energy Building)あるいはZEH(Net Zero Energy House)を実現することができる。
 また、この発明は、
 外界と内部との間で気体のマスフローとしての交換のない孤立閉鎖系を構成し、かつ外界と内部との界面の少なくとも一部に粒子を通さず、気体分子は通す膜を有する部屋または閉空間と、
 上記部屋または閉空間に設置された、上記部屋または閉空間の内部の気体を吸引する開口と、当該吸引気体を粒子数密度および分子濃度の双方に関して清浄化処理後、その全量を、再び、上記部屋または閉空間の内部に戻す吹き出し口とが対となって設けられている清浄化装置と、
 上記部屋または閉空間の内部に設置された殺菌ミストおよび/または殺菌ガスを発生させる殺菌装置と、
 上記部屋または閉空間の内部に設置された粒子数計測器とを有する殺菌機能付き高清浄環境システムの使用方法であって、
 上記部屋または閉空間の内部を上記清浄化装置により清浄化したときに上記粒子数計測器により測定される粒子数密度が予め決められた粒子数密度を下回ってから上記殺菌装置により殺菌ミストおよび/または殺菌ガスを発生させる
ことを特徴とする殺菌機能付き高清浄環境システムの使用方法である。
 この殺菌機能付き高清浄環境システムの使用方法の発明においては、その性質に反しない限り、上記の殺菌機能付き高清浄環境システムの発明に関連して説明したことが成立する。
 この発明によれば、部屋または閉空間の内部の粒子数密度を減少させた状態で殺菌装置により殺菌ミストおよび/または殺菌ガスを発生させるため、殺菌ミストおよび/または殺菌ガスと部屋または閉空間の内部の粒子との間の相互作用確率が減少することにより殺菌ミストおよび/または殺菌ガスの損失を大幅に減少させることができ、部屋または閉空間の内部の壁や内部に存在する物体の表面に殺菌ミストおよび/または殺菌ガスを効率的に届けることができ、それによってそれらの壁や物体表面の殺菌を効果的に行うことができる。また、部屋または閉空間の内部の清浄空間を利用する人が入れ替わる際に、効果的に内部を消毒することができることにより、当該清浄空間を繰り返し、安心および安全に利用することができる。
従来の開放系のシステムを示す略線図である。 一実施の形態による消毒機能付き高清浄環境システムを示す略線図である。 一実施の形態による消毒機能付き高清浄環境システムにおいて部屋または閉空間がテント式CUSPである場合を示す略線図である。 実施例1による消毒機能付き高清浄環境システムを示す略線図である。 図4に示す消毒機能付き高清浄環境システムの部屋の内部で加湿器から純水ミストを噴射したときの粒子数密度の経時変化(粒子数密度はログスケール)を示す略線図である。 図4に示す消毒機能付き高清浄環境システムの部屋の内部で加湿器から純水ミストを噴射したときの粒子数密度の経時変化(粒子数密度はリニアスケール)を示す略線図である。 図4に示す消毒機能付き高清浄環境システムの部屋の内部で加湿器から純水ミストを噴射したときの粒子数密度の経時変化(粒子数密度はログスケール)を示す略線図である。 図4に示す消毒機能付き高清浄環境システムの部屋の内部で加湿器から純水ミストを噴射したときの湿度、温度および含水量の経時変化を示す略線図である。 図4に示す消毒機能付き高清浄環境システムの部屋の内部で純水ミストおよび次亜塩素酸水含有ミストを噴射したときの粒子数密度の経時変化を示す略線図である。 図4に示す消毒機能付き高清浄環境システムの部屋の内部で純水ミストおよびMA-T含有ミストを噴射したときの粒子数密度の経時変化を示す略線図である。 図4に示す消毒機能付き高清浄環境システムの部屋の内部で純水ミストおよび市水ミストを噴射したときの粒子数密度の経時変化を示す略線図である。 実施例2による消毒機能付き高清浄環境システムを示す略線図である。 図10に示す消毒機能付き高清浄環境システムの部屋の内部で加湿器をオン/オフさせたときに部屋の各部で測定されたミストを含む粒子数密度の経時変化を示す略線図である。 図10に示す消毒機能付き高清浄環境システムの部屋の内部で加湿器をオン/オフさせたときに部屋のC地点で測定されたミストを含む粒子数密度の経時変化を示す略線図である。 図10に示す消毒機能付き高清浄環境システムの部屋の内部で加湿器をオン/オフさせたときに部屋のB地点で測定されたミストを含む粒子数密度の経時変化を示す略線図である。 図10に示す消毒機能付き高清浄環境システムの部屋の内部で加湿器をオン/オフさせたときに部屋のD地点で測定されたミストを含む粒子数密度の経時変化を示す略線図である。 実施例3によるボックスを示す略線図である。 実施例3によるボックスを内部にしめじを格納した状態で正面から撮影した図面代用写真である。 実施例3によるボックスを内部にしめじを格納した状態で斜め後ろから撮影した図面代用写真である。 図16Aおよび図16Bに示すようにボックスの内部にしめじを格納して栽培を行った場合の内部の二酸化炭素濃度、温度および粒子数密度の経時変化を示す略線図である。
 以下、発明を実施するための形態(以下「実施の形態」とする)について説明する。
〈一実施の形態〉
[消毒機能付き高清浄環境システム]
 図2は一実施の形態による消毒機能付き高清浄環境システムを示す。図2に示すように、この消毒機能付き高清浄環境システムは、外界と内部との間で気体のマスフローとしての交換のない孤立閉鎖系を構成する部屋または閉空間11を有する。部屋または閉空間11は、独立して設けられたものであってもよいし、例えば一般的な戸建住宅の部屋、マンション等の集合住宅の部屋、病院の部屋、高齢者養護施設の部屋等であってもよい。あるいは、部屋または閉空間101はテントであってもよい。この部屋または閉空間11には人が出入りすることができるようになっている。そのために、例えば、部屋または閉空間11の側壁に出入り口(図示せず)、例えば、スライド式の引き戸が設けられる。あるいは、部屋または閉空間11がテントである場合には、例えば、テントの側面に設けられた出入り用のファスナーを開け閉めすることで人が出入りすることができる。部屋または閉空間11の内部の大きさ(幅、奥行、高さ)および形状は必要に応じて選ばれる。
 部屋または閉空間11には、この部屋または閉空間11の内部を清浄化する清浄化装置が設けられる。図2においては、この清浄化装置として、部屋または閉空間11の内気を取り込む開口(図示せず)と、当該吸引内気を粒子数密度および分子濃度の双方に関して清浄化処理後、その全量を部屋または閉空間11の内部に戻す吹き出し口(図示せず)とが対となって設けられたFFU12が部屋または閉空間11の床に設置されている場合が示されている。このFFU12により100%循環フィードバック系が構成されている。FFU12の代わりに部屋または閉空間11の天井に設置されるFFUを用いてもよい。このように孤立閉鎖系を構成する部屋または閉空間11において100%循環フィードバック系が構成されていることにより、孤立閉鎖系の内気がFFU12のフィルターを何度も通過するため、清浄度が高く、究極的には後述の(3)式に示す高清浄度が得られる。典型的には、部屋または閉空間11の内部のバックグラウンドの清浄度を、US FED 209Dクラス10~100に維持する。部屋または閉空間11の内部の清浄化後はFFU12は無負荷運転となるため、FFU12のフィルターの寿命が長く維持コストも安い。このため、“省エネ" 上の優位性も得られる。このように部屋または閉空間11の内部の清浄度を高く維持することにより、部屋または閉空間11の内部の人が吸引する塵埃等の粒子数を大幅に減少させることができ、人に与える負荷を大幅に軽減することができる。このため、例えば、本発明の一の矢(ウイルスからの守り)として、新型コロナウィルス感染者を高清浄の部屋または閉空間11の内部に収容することで守り、免疫系への余計な負荷をなくすことで健康回復を加速することができる。
 また、部屋または閉空間11の内部と外界との間でガス交換能力を与えるために、部屋または閉空間11の内部と外界との界面の少なくとも一部が、ダスト微粒子を通さず、気体分子は通す膜、即ちガス交換膜により構成される。ここでは、一例として、複数のガス交換膜が互いに間隔を空けて積層されたガス交換ユニット13が部屋または閉空間11の天井に設置された場合が示されているが、部屋または閉空間11の壁の少なくとも1つの少なくとも一部がガス交換膜により構成されてもよい。図2中、ガス交換ユニット13の内部に示されている破線はガス交換ユニット13に含まれるガス交換膜13aを模式的に示したものであり、このガス交換膜13aを介して部屋または閉空間11の内部と外界との間で酸素(O)分子や二酸化炭素(CO)分子等の分子が交換されるほか、熱も交換される様子が示されている。ガス交換ユニット13の詳細については、例えば、特許文献1-3に記載されている(特許文献1-3ではガス交換装置と記載されている)。ガス交換ユニット13は、部屋または閉空間11の内気を内気回収口から取り込んで二枚のガス交換膜の間の空間からなる内気通路を通して部屋または閉空間11に戻すとともに、外気導入口から外気を導入して二枚のガス交換膜の間の空間からなる、内気通路と独立した外気通路を通して外部に排出し、その間にガス交換膜を介して内気と外気との間で酸素および二酸化炭素のガス交換を行うことにより、外気と同等の酸素濃度および二酸化炭素濃度となった内気を部屋または閉空間11に戻すようになっている。
 部屋または閉空間11の内部には、殺菌ミスト14aを発生させる殺菌ミスト発生器14および塵埃やミスト等を含む各種粒子の粒子数密度を測定するための粒子数計測器15が設置されている。殺菌ミスト発生器14および粒子数計測器15は、必要に応じて、部屋または閉空間11の複数箇所に設置してもよい。このように孤立閉鎖系を構成する部屋または閉空間11に殺菌ミスト発生器14が設置されることにより、従来の“効果的な装置" の性能試験環境と同一の環境となる(これらの装置の効果検証がなされた体積と実住環境の体積とは、密度の観点から、スケーリングを以って考慮に入れる)ため、当該検証実験を以って、そのまま実生活環境で効果があると宣言できるという圧倒的な意義がある。粒子数計測器15により測定された、時間tの関数としての粒子数密度は、有線または無線で部屋または閉空間11の内部または外部に設置されたコンピュータ(図示せず)に送ることができるようになっている。例えば、粒子数計測器15とコンピュータとが有線または無線のLAN等により接続される。殺菌ミスト発生器14も、このコンピュータと接続されている。そして、このコンピュータに予め組み込まれたプログラムにより、粒子数計測器15により測定された粒子数密度に基づいて殺菌ミスト発生器14の動作が制御されるようになっている。このプログラムは、例えば、粒子数計測器15により測定された粒子数密度が予め決められた基準粒子数密度を下回ったときに殺菌ミスト発生器14をオンとして殺菌ミストを発生させるようにする。基準粒子数密度は、例えば、US FED 209Dクラス100の粒子数密度である。このように、粒子数計測器15により測定された粒子数密度が予め決められた基準粒子数密度を下回って部屋または閉空間11の内部が清浄化された後に殺菌ミストを発生させるようにしているので、粒子数計測器15により殺菌ミストの数密度をモニタリングすることができ、部屋または閉空間11の内部における殺菌ミストによる殺菌作用を確認することができる。粒子数計測器15により測定された粒子数密度の経時変化は、コンピュータに接続されたディスプレイ(図示せず)に表示することができ、必要に応じてコンピュータに接続されたプリンタ(図示せず)でプリントすることができ、コンピュータの記憶装置あるいはコンピュータに接続された外部記憶装置に保存することができるようになっている。
[消毒機能付き高清浄環境システムの使用方法]
 この消毒機能付き高清浄環境システムの使用方法を説明する。
 この消毒機能付き高清浄環境システムは、殺菌ミストを使用して消毒を行うため、基本的には、安全の確保のため、部屋または閉空間11に人がいない無人状態で使用する。ただし、安全性が確かめられた濃度の殺菌ミストを使用する場合は、部屋または閉空間11に人が滞在する環境で使用してもよい。
 まず、FFU12または部屋または閉空間11の天井に設置されるFFUの運転により部屋または閉空間11の内部を清浄化する。粒子数計測器15により部屋または閉空間11の内部の塵埃や病原性微生物等を含む各種粒子の粒子数密度n(t)を測定する。部屋または閉空間11の内部の粒子数密度が基準粒子数密度(例えば、US FED 209Dクラス100)を下回るまで清浄化し、その状態を維持する。粒子数計測器15は常時運転させておく。
 この状態で殺菌ミスト発生器14をオンとし、殺菌ミスト14aを発生させる。この場合、部屋または閉空間11の内部の粒子数密度n(t)が十分に低いため、殺菌ミスト14aは粒子により散乱等されることなく部屋または閉空間11の内部の空気中や部屋または閉空間11の内部の各種物体や壁等の表面に効率的に届き、空気中に浮遊する病原性微生物や物体や壁等の表面の2次元面に付着した病原性微生物の殺菌を行うことができる。
 こうして殺菌ミスト14aの発生により一定時間殺菌を行った後、粒子数計測器15により測定されたn(t)の値により殺菌効果を確認する。即ち、n(t)の値が殺菌を行う前に比べて予め決められた値より減少した場合は、予め決められたレベルの殺菌効果が得られたとして殺菌ミスト発生器14をオフとして殺菌ミスト14aの発生を停止する。n(t)の値が殺菌を行う前に比べて予め決められた値より減少していない場合は、予め決められたレベルの殺菌効果が得られなかったとして殺菌ミスト発生器14による殺菌ミスト14aの発生を継続し、n(t)の値が殺菌を行う前に比べて予め決められた値より減少するまで殺菌ミスト14aの発生を継続する。以上のようにして、部屋または閉空間11の消毒を行う。
 部屋または閉空間11の消毒を行った後、人が部屋または閉空間11の内部に入って生活、各種活動等を行う。部屋または閉空間11から人が退出し、替わりに別の人が入る場合は、入る前に上述のようにして部屋または閉空間11の殺菌を行う。
 ここで、部屋または閉空間11内の粒子数密度n(t)およびガス(分子) 濃度η(t)の時間変化特性について説明する。ここでは、一例として、部屋または閉空間11が図3に示すテント式CUSPである場合について説明するが、以下の説明は部屋または閉空間11がテント式CUSP以外のものである場合も成立する。
 図3に示すように、少なくとも壁の一部がガス交換膜により形成されたテント101内の一方の片側(人102が就寝する時に頭が向く側)にFFU12を設置し、テント101内の他方の片側(人102が就寝する時に足が向く側)に粒子数計測器15を設置する。FFU12の隣には酸素や二酸化炭素等の多種分子濃度モニター103を設置する。この場合、テント101を構成するガス交換膜を介してガス交換が行われるので、ガス交換ユニット13は設置されていない。FFU12の運転によりテント101内には矢印で示すように空気が流れて循環し、100%循環フィードバック系が構成される。就寝中の人102の体動により、ダスト微粒子が散乱あるいは発生する。
 粒子数密度n(t)は
Figure JPOXMLDOC01-appb-M000003
なる微分方程式を満たす。ただし、Vはテント101の体積、Sはテント101の内表面積、σは単位面積および単位時間当たりの粒子発生量、FはFFU12の風量、γは粒子捕集効率である。
 (1)式を解くと
Figure JPOXMLDOC01-appb-M000004
が求められる。ただし、t=0のときの粒子数密度n(0)=Nとした。
 t→∞のとき(2)式は
Figure JPOXMLDOC01-appb-M000005
となる。実際には、FFU12の運転を開始してから十分に時間が経った時(t>10V/γF)には実質的に(3)式の究極の粒子数密度が得られる。
 一方、ガス分子濃度η(t)は
Figure JPOXMLDOC01-appb-M000006
なる微分方程式を満たす。ただし、Aはテント101を形成するガス交換膜の面積、Lはこのガス交換膜の厚み、Dはこのガス交換膜中の注目するガス分子(酸素分子等)の拡散定数、Bはテント101の内部での呼吸等によるガス消費および発生レート(消費される酸素では正の値となり、二酸化炭素やその他の体外に放出されるガスでは負の値となる)、ηはテント101の外界の当該ガス分子濃度である。
 この孤立閉空間を構成するテント101の内部空間においては、アボガドロ数をN、系の置かれた圧力(~1気圧)における1モル当たりの気体体積をC、ガス交換膜を通してテント101の内部に入ってくる注目するガス(酸素等)のフラックスをjとすると、時刻t+δtにおける当該ガスの体積Vη(t+δt)は、時刻tにおける当該ガスの体積Vη(t)を使って
Figure JPOXMLDOC01-appb-M000007
が成り立つ。ここで、既に述べたように100%循環フィードバック系がテント101内に構築されているので、FFU12により発生する空気流により、テント101の内部空間の空気は十分早くかき回されるため、空気を構成するガス分子はテント101の内部で十分早く均一化するので、テント101の内部空間では空間座標依存性を良い近似で無視することができることを用いた。(5)式の右辺第3項は、上記ガス交換膜の両側(即ちテント101の内部と外界)での当該ガスの濃度差(濃度勾配)のために流入してくる当該ガスの分子の数である(空気流としてではなく、分子の拡散として当該ガスがテント101の内部に入ってくるのであり、上述の(5)式で記述される現象とは全く性質を異にする)。(5)式において、jは
Figure JPOXMLDOC01-appb-M000008
で与えられる。ただし、φはテント101の内部の単位体積当たりの当該ガス分子数、ガス交換膜に垂直な方向をx軸としたとき、∇はこのx軸方向の微分演算子である。Lは、テント101の内部空間の厚みに比べ3桁以上程度小さく、極めて薄いと見なせるので、(5)式は、
Figure JPOXMLDOC01-appb-M000009
と良い精度で近似することができる。ηはη(0)であり、(4)式、(5)式におけるのと同様に、外界の当該ガスの濃度であり、当該ガスが酸素である場合は通常20.9%程度である。(7)式より、微分方程式
Figure JPOXMLDOC01-appb-M000010
が導かれる。(8)式の厳密解は、
Figure JPOXMLDOC01-appb-M000011
と求まる。ここでは十分時間がたった後の定常状態に対応する解に興味があるので、右辺のexp(-[AD/L]t/V)=0とおくと、時刻tにおける当該ガスの濃度(例えば酸素濃度)は
Figure JPOXMLDOC01-appb-M000012
と求まる((9)式でt→∞とした場合に一致する)。
 清浄度に加えて空気質を決めるもう一つのパラメーターは、空気中のガス分子濃度である。分子拡散を通じて、CUSP内部のガス分子濃度を制御することができる。図3に示す、孤立した閉空間を構成するテント式CUSPでは、テント101の壁の一部がガス交換膜から成ることで分子の拡散を通じて、テント101の内部のガス分子濃度を制御することができる。即ち、図3に示すテント式CUSPでは、内外の界面に面積A、厚みL、分子拡散定数Dを有するガス交換膜を用いることで、(9)式より導かれる換気風量F=AD/Lなる対応原理(スケーリング則)に従って機械換気風量Fと同等の換気が実現できる。また、(3)に従ってテント式CUSP中の酸素濃度、二酸化炭素濃度をモニタリングできるので、非接触、非侵襲にて患者の容体について時々刻々のデータ解析(効率的な見守り)を行うことができる。実際、図3に示すコンパクトなテント式CUSP内で、蝋燭を燃焼させた際の酸素濃度と二酸化炭素濃度の時間変化を高精度で測定できている。本発明の二の矢(パーソナル清浄空間内の患者の状態モニタリング)として、COVID-19患者(陽性者)の呼吸状態測定を非接触、非侵襲にて行うことができる。また、(3)式、(4)式は、Bを負の適切な値に取ると、二酸化炭素や病態の指標となる有機分子濃度も記述でき、体外放出分子が解析できる。
 図3に示すテント式CUSPにおいて、呼吸によりレートBで酸素が消費される場合はBは正の値であるが、(9)式、(10)式自体は、Bを負の適切な値にとると二酸化炭素の発生も記述できる汎用的な式である。
 図2に示す消毒機能付き高清浄環境システムの基本的な性能の検証を行った結果について説明する。消毒機能付き高清浄環境システムの部屋または閉空間11として密閉性の高いビルの部屋を使用し、CUSPを構成した。この実施例1による消毒機能付き高清浄環境システムの部屋201を図4に示す。この部屋201は幅約7m、奥行き約4m、高さ約3mの直方体の形状を有する。図4に示すように、この部屋201のドア202の前方の床に細長いテーブル203を部屋201の長手方向に平行に設置した。床からテーブル203の上面までの高さは約40cmである。このテーブル203のドア202側の一端部の上に殺菌ミスト発生器14として加湿器204を設置し、このテーブル203の他端部の上に粒子数計測器15を設置した。加湿器204としては市販の加湿器(SRD-BK801)を用いた。加湿器204と粒子数計測器15との間の距離は約60cmである。加湿器204からは図4に示すようにミスト204aが発生するようになっている。テーブル201の加湿器204が設置されている側と入口のドア202との間の床の上に、ドア202が設けられている壁とほぼ平行に3台のFFU12-1、12-2、12-3を設置した。部屋201のドア203が設けられている壁と対向する壁には窓(図示せず)が設けられ、この窓が設けられている壁の前に机205を設置した。この机205のほぼ中央部の上には温湿度計206を、両端部の上にそれぞれ粒子数計測器15-1、15-2を設置した。加湿器204と机205の上の2台の粒子数計測器15-1、15-2との間の距離は約4mである。机205の左側の粒子数計測器15-1としては市販のDylos DC-170を、右側の粒子数計測器15-2としては市販のMetOne HHPC3+を用いた。
 図5Aは、図4に示す殺菌機能付高清浄環境において、加湿器204から純水ミストを発生させたときの、机205上に設置した粒子数計測機15-2による粒子数密度の測定結果を示す。図5Bは、図5Aでは縦軸の粒子数密度をログスケールで示したのに対し、リニアスケールで示したものである。図5Aおよび図5Bに示すように、FFU12-1、12-2、12-3の運転および粒子数計測機15-2による粒子数密度の測定を開始してから約60分後に純水を入れた加湿器204をオンして純水ミストを発生させ、約110分後に加湿器204をオフにして純水ミストの発生を停止し、約130分後に加湿器204を再度オンして純水ミストを発生させ、約170分後に加湿器204をオフにして純水ミストの発生を停止した。図5Aおよび図5Bから分かるように、純水ミストの発生および停止に伴い粒子数密度(塵埃、微生物等の粒子の粒子数密度とミスト数密度との和)の増減が観測されている。孤立閉鎖系を構成する部屋201におけるFFU12-1、12-2、12-3の運転により100%循環フィードバック系が構成されることにより部屋201の高清浄化が行われている(引き算の戦略が成功している)ので、このような意図的な純水ミストの発生(足し算の戦略)の定量評価が初めて可能となっていることに注意されたい。
 図6Aおよび図6Bは、図5Aに示すデータの測定を行った日と異なる日に、図4に示す殺菌機能付高清浄環境において、加湿器204から純水ミストを発生させたときの、机205上に設置した粒子数計測機15-2による粒子数密度、湿度、温度および含水量の測定結果を示す。図6Aに示すように、FFU12-1、12-2、12-3の運転および粒子数計測機15-2による粒子数密度の測定を開始してから約120分後に純水を入れた加湿器204をオンして純水ミストを発生させ、約160分後に加湿器204をオフにして純水ミストの発生を停止し、約180分後に加湿器204を再度オンして純水ミストを発生させ、約230分後に加湿器204をオフして純水ミストの発生を停止し、約260分後に加湿器204を再びオンして純水ミストを発生させ、約305分後に加湿器204をオフにして純水ミストの発生を停止した。図6Aから分かるように、純水ミストの発生および停止に伴い粒子数密度(塵埃、微生物等の粒子の粒子数密度とミスト数密度との和)の増減が観測されている。図6Bは、図6Aに対応した湿度、温度および含水量の変化を示すが、温度がほぼ一定の中、湿度は純水ミストの発生に明瞭に追随しており、また、含水量も、微小変化であるが、追随が見て取れる。
 図7は、図5A、図6Aおよび図6Bに示すデータの測定を行った日と異なる日に、図4に示す殺菌機能付高清浄環境において、純水を入れた加湿器204に加えてその直ぐ隣に設置した次亜塩素酸水(50ppm)を入れたもう一台の加湿器204からそれぞれ純水ミストおよび次亜塩素酸(50ppm)含有ミストを発生させたときの、テーブル203上に設置した粒子数計測機15による粒子数密度の測定結果を示す。粒子数計測機15としては市販のMetOne HHPC3+を用いた。図8は、SARS(重症急性呼吸器症候群)、MERS(中東呼吸器症候群)及び新型コロナウイルスに対し効力を持つとされるMA-T (非特許文献5) のミストを発生させた時の同様の結果である。MA-Tは純水に比して粒径分布が異なり、遠隔地点まで届くミスト量も多い。MA-Tミストにより、部屋の内面および部屋に設置された各種物品等の表面を消毒する(燻蒸する)ことで、当該清浄空間や設置物品の安心および安全な繰り返し使用にも目途をつけることができた。以って、感染症対策上の医療ニーズに大いに応えることができる。また、図9は、図7に示すデータの測定を行った日と同日に、図4に示す殺菌機能付高清浄環境において、純水を入れた加湿器204に加えてその直ぐ隣に設置した市水を入れたもう一台の加湿器204からそれぞれ純水ミストおよびカルキ(0.4ppm)含有ミストを発生させたときの粒子数密度の測定結果を示す。図7~図9に示す結果より、まず重要なことは、部屋201が100%循環フィードバック系を構成していることにより、浮遊塵埃粒子数密度を通常の1000分の1程度に容易に減少させることができるので、いわば浮遊塵埃によるノイズレベルを下げることができており、その結果、微量のミスト(シグナルに相当) が検出できていることである。これは、非特許文献1に記載された状況と全く対極の位置にある。即ち、非特許文献1では、空気中の塵埃を、フィルターによりろ過するのではなく、ミストを発生させ、このミストと浮遊塵埃とを衝突させ、いわば、叩き落とすことで清浄空間を得ようとするものである。逆に言えば、空気中に浮遊塵埃が多く漂っていると、折角発生させたミストを遠方へ届かせることができない、言い換えればミストの平均自由行程が短くなっていることを示している。100%循環フィードバック系により、予め浮遊塵埃数密度を極小化しておくことで、ミストを定量性よく遠方まで届かせることが可能な、S/N比の高いシステムが可能となっている。100%循環フィードバック系のみのシステムは、例えば図2に示すような系を構築することで、浮遊塵埃を極めて効率的に減らす処方ということで、いわば、引き算の戦略である。他方、図7~図9に示す処方は、100%循環フィードバック系で得られた高清浄空間に、所望の性質を持つミストを定量的にかつ制御性良く、積極的に加えるということで、足し算の戦略と言うことができる。
 図7~図9より、加湿器204近傍でのミスト量の測定の結果、純水ミスト、次亜塩素酸含有ミスト、MA-Tミストおよび市水ミストの3種類の液体のミスト数密度に有意な差は求められなかった。ミスト中の水以外の分子含有量が、それぞれ、~0(純水)、50ppm(次亜塩素酸水)および0.4ppm(市水)のレベルであるので、ミスト形成過程に影響を与えることはないと考えられるので、これは妥当な結果であると判断される(同じく、粒子数計測の方に関しても、レーザー光の散乱により、粒子数を計測しているが、上記の小さい分子濃度では、屈折率に変化は生じず、従って検出感度も4種類のミストに対し、全く同等であると考えられる)。
 以上のことより、ほぼ同じ量のミストが発生しているにも関わらず、4m遠方でのミスト数は、図7~図9から分かるように、純水ミストは、次亜塩素酸含有ミストおよびカルキ含有市水ミストに対し、数十分の一の数しか届いていない。純水は、水分子のみからなり、核となる分子が無いため、蒸発に伴う粒径減少で、最終的に雲散霧消してしまうのに対し、次亜塩素酸やカルキを含むミストは、これらの分子が最後まで残り、結果として粒子数計測器により計測されていると判断される。以上の知見は、COVID-19の発生原因の解明に適用することができる。即ち、距離の関数として粒子数ならびに感染発生率を測定することで、新型コロナウィルスによる感染が、飛沫感染によるものか、空気感染によるものかに関して確定できる。
 上記の引き算の戦略と足し算の戦略とを併せ持ったシステムに、マルチ階層相関解析を適用することで、人体(特に病態にある人)に有効な物質をミストを通じて、定量的に与えた時の人体の反応を、物理学的な線形応答、非線型応答の観点で、定量的に解析することが可能となる。また、これをマンマシンインタフェースの動作機構に組み込むことも可能となる。
 図10は、実際の建築物のより大規模な部屋301(床の一辺が約10mの正方形の平面形状を有し、天井高さは、実験に用いた部屋では1~2階吹き抜け構造の為、通常の約2倍の5m程)にこの消毒機能付き高清浄環境システムを適用した実施例2を示す。部屋301では、天井に設置されたFFUを用いてCUSPが構成されている。図10に示すように、部屋301の一つの隅(A地点)に設置した高さ約1mのストッカー302上に純水を入れた加湿器204および粒子数計測器15-1を設置し、部屋301の中心Bに置いた椅子303の高さ約50cmの座面上に粒子数計測器15-2を設置し、部屋301の対角線上のA地点と反対側のC地点に置いた椅子304の高さ約50cmの座面上に粒子数計測器15-3を設置し、部屋301の一辺のA地点と反対側の隅に設置した高さ約1mのストッカー305上に粒子数計測器15-4を設置した。そして、加湿器204から純水ミストを発生させ、ストッカー302上の粒子数計測器15-1、椅子303の座面上の粒子数計測器15-2、椅子304の座面上の粒子数計測器15-3およびストッカー305上の粒子数計測器15-4によりそれぞれ粒子数密度を測定した。地点Eは加湿器204の近傍における測定に対応している。ストッカー302上の粒子数計測器15-1、椅子303の座面上の粒子数計測器15-2および椅子304の座面上の粒子数計測器15-3としては市販のMetOne HHPC3+を、ストッカー305上の粒子数計測器15-4としては市販のDylos DC-170を用いた。図11~図14に実験結果を示す。図13、図12および図14は、図10に示す殺菌機能付高清浄環境システムにおいて、加湿器204から純水ミストを発生させたときの、それぞれ、粒子数計測器15-2(B地点)、粒子数計測器15-3(C地点)および粒子数計測器15-4(D地点)による各々、粒径0.3μm以上の、0.5μm以上の、及び1.0μm以上の総粒子数の体積密度(0.1立方フィート[cf]当たりの左記総粒子数)の測定結果を示す。図11は、粒径0.5μm以上の総粒子数について、B、C、D地点における各測定結果を、比較の為、一緒にプロットしたものである。なお、図11および図12においてE地点または単にEと記載があるのは、t=約200~220分の間、B地点の粒子数計測器15-2をE地点に移動させて加湿器204における粒子数密度を測定したものである(この状況を便宜上、粒子数計測器15-1と表現した)。図11中にCUSPオン、加湿器204によるミストの発生のオン/オフのタイミングを示す。図11~図14に示すように、CUSP動作により部屋301の清浄化が行われた後に、ミスト発生をオンにすることにより、加湿器204由来の粒子(ミスト)数増加が明瞭に確認された。特に図11より明らかなように、CUSPオンとなる前の粒子数密度が、B、C、D地点、各場所によらず等しく10個/0.1cf(=10個/cf即ち、US FED 209Dクラス1000000に相当)の状況から、ミストをオンする直前のt=約140分には、ミストをオンする前の清浄度の約1/100(即ち、US FED 209Dクラス10000のクリーンルーム状態)に到達していることがわかる。こうしてバックグラウンドの塵埃数密度を抑制したことにより、加湿器204をオンした後の粒子数(ミスト数)増加が、図11に示すように、加湿器204から約10mと、非常に離れた地点においても、精度良く測定できている(もしCUSPをオンしていなければ、このミスト数の増加は、バックグラウンドの上記US FED 209Dクラス1000000の塵埃に埋もれてしまい、特に加湿器204から離れた地点での、定量的評価は不可能である)ことに留意されたい。即ち、このように10m級の長距離へのミストの到達が確認されたことは、本発明による引き算(即ちCUSPによる残留浮遊塵埃数の抑制)と足し算(意図的かつ定量的に制御可能な有用物質即ちミストの供給)との相乗効果(バックグラウンド浮遊塵埃によって有用物質の遠方到達が妨げられないこと)による消毒等の効果が遠距離にも及び、且つ、そのミスト量が粒子数計測器により定量的に粒子数として評価できることが実験により証明された。また上記実験における部屋体積を勘案すると、天井高さが約2.5~3mである通常の部屋に対しては、一辺約14m(床面積が図10の2倍に相当)のより大ぶりの部屋においても同等の効果がもたらされる(或いは、図10と同じ底面積を有する通常の部屋では、その天井高さは約2.5~3mであるので、上記ミスト発生条件下では、その効果をより協力に発揮させ得る)と見積もられる。
 この消毒機能付き高清浄環境システムは、各種の栽培生物体、例えば、きのこ類や有用食物(食用植物、食用昆虫等)の栽培または育成に適用することも可能である。図15は、(2)式におけるF/Vや(9)式におけるAD/LVの項が示すスケーリング則にしたがって、20cm×10cmの大きさを有するガス交換膜13aを背面に備えた小形の直方体状のCUSP構成のボックス401(部屋または閉空間11に対応する)にこの消毒機能付き高清浄環境システムを適用した実施例3を示す。図15はボックス401を背面から見た図である。ボックス401は床が約30cm×40cmの矩形形状を有し、高さが約30cmである。ボックス401では、床に設置された小型のFFU12を用いてCUSPが構成されている。ボックス401内に殺菌ミスト発生器14、粒子計測器15、CO、O、CO、VOC(揮発性有機化合物)等の各種ガスの濃度を測定するガス濃度測定器402(LUTRON GC-2028)、温度および湿度の計測が可能な温湿度計403(ORION Dew Point Monitor MG40)を設置した。栽培を行う栽培生物体404はボックス401の床に置かれるようになっている。温度および湿度のペデスタル値を制御するために、図15では図示していないが、ボックス401の内部および外部(ボックス401の設置環境)の各々に、ヒータ、加湿器、温度計および湿度計が設けられている。ここでは、外部の温度計および湿度計として温湿度計(CEM社、DT3321)を用いた。そして、FFU12を動作させて浮遊塵埃粒子数を減少させた後、殺菌ミスト発生器14よりMA-T等の殺菌ミストを発生させてボックス401内の全2次元表面を消毒した後、ボックス401の床に置かれた紙製の入れ物に栽培生物体404の例として重さ約500gのしめじを格納し、ボックス401内の各種環境数値をモニターした。図16Aおよび図16Bに、しめじを格納したボックス401を正面から撮影した写真および斜め後ろから撮影した写真を示す。図17に実験結果を示す。本実験では、開始後600分後に、ボックス401が置かれた部屋の空調をストップし、暫時外界の温度を下げつつボックス401内のCO濃度、温度および塵埃粒子数を測定した。塵埃粒子数の測定には、MetOne HHPC3+を用いた。実験開始時t=0においては、ボックス401の設置環境温度は約21℃であったが、ボックス401内は、しめじの生体活動により温度が約22.5℃と外界より約2度上昇している。図17下に示すように、ボックス401内部の浮遊塵埃粒子数が、数分で外界の約千分の一まで減少し、清浄度が急速に高まる(ほぼ無菌状態となっている)ことが分かる。その後、一旦塵埃粒子数が増加した後、10時間くらいかけて、ゆっくりと清浄度が上昇し、実験開始後800分で、US FED 209Dクラス20の高清浄度が達成できることが分かった。CO濃度は、実験開始後、しめじの生体活動を反映して上昇するが、飽和傾向にあることが分かる。これは、CO濃度差に応じてガス交換膜13aが機能していることを示している。特に、ボックス401を設置した部屋の空調が切れて室内温度が減少に転じる(最終的には16℃まで低下する)と、しめじの代謝も減少し、CO濃度が図17下に示すように約1800ppmまで減少することが分かる。(9)式、(10)式から、この状況におけるCO発生量(およびO濃度[O減少量])からしめじの代謝量を計算でき、しめじの代謝をモニターしつつ栽培することができることが示された。このように、清浄環境下でしめじ等のきのこ類の栽培が可能であることが実証された。特に、図17の1000分以降に示されているように、約t=800分で、最低塵埃粒子数に達した後、各粒径で塵埃粒子数が増加し、その数が最終的に粒径に依らないというしめじの活動状況が確認された。また、設置環境の湿度が25~27%であった場合に、クローズドエアフローシステムながら、ガス交換膜13aを介して分子的に外界と導通するボックス401内は、典型的には70~78%と外部より数十%高い値となることも分かった。この結果より(9)式、(10)式(ここでBは、二酸化炭素の場合と同様、酸素の場合とは逆符合を取る)を基に、内部での水分子の発生量を定量的に把握することができる。1400分後に一旦ボックス401を室内大気解放すると、図17下に示すように、粒径0.3μmおよび0.5μmの粒子数は、室内の塵埃粒子数に等しい値まで上昇し、粒径2μmの粒子数は減少する。この状態をしばらく続けた後、再び、ボックス401を閉めて、本システムを動作させると、CUSP機構により、粒径0.3μmおよび0.5μmの粒子はt=0の実験開始直後の減少レートで、直ちに減少するが、この間、逆に、粒径2μmの粒子は増加し、再び、粒径に依らない塵埃粒子数が観測された。このように、当該状況におけるしめじの特異な活動状況を、高精度にモニタリングできていることが示された。これまでは、空気を入れ替えることにより内部環境の整備(特にCO濃度の制御)がなされて、温湿度のロスや、外界からの雑菌の流入のリスクにさらされていたのと大きく異なり、実施例3では、(9)式、(10)式に基づき(基本的には分子毎に異なる拡散係数Dに留意しつつ、ガス交換膜13aの面積Aを適切に設定することで)、内部での浮遊塵埃粒子数および菌数を減少させることがもたらす無菌状態という好ましい生育環境において、CO濃度等の環境パラメータをきちんと所定の値に制御した、きのこ類等菌類の他、有用植物や有用生物の栽培および育成が可能となることが示された。
 以上のように、この一実施の形態によれば、CUSP動作により部屋または閉空間11の内部の粒子数密度を減少させた状態で殺菌ミスト発生器14により殺菌ミスト14aを発生させるため、殺菌ミスト14aと部屋または閉空間11の内部の浮遊塵埃等との間の相互作用確率が減少することにより殺菌ミスト14aの損失を大幅に減少させることができ、部屋または閉空間11の内部の壁や内部に存在する物体の表面に殺菌ミスト14aを効率的に届けることができ、それによってそれらの壁や物体表面の殺菌を効果的に行うことができる。また、部屋または閉空間11の内部の清浄空間を利用する人が入れ替わる際に、効果的に内部を消毒することができることにより、当該清浄空間を繰り返し、安心および安全に利用することができる。これまで、プラズマクラスター(登録商標)、ナノイー(登録商標)やジアイーノ等の製品群が、除塵や除菌に効果があるとされているが、その究極の問題として「これらの装置の効果検証実験が有限体積の閉鎖系で行われており(非特許文献2~4)、実際の家庭等の住環境が解放系およびオープンエアフローシステムである際の効能および効果が定性的にしか判断できない」のに対し、CUSPは孤立および閉鎖系であることから、上記諸製品の閉鎖系での実験結果が、体積を勘案することで定量的に厳密に移植できる。即ち、本発明の技術思想を組み込んだ部屋においては、その実使用環境において、初めて上記諸装置群の効能および効果の定量的な予測が可能となる。また、解放系( オープンエアフローシステム) である在来系では、(フィルタ越しではあるが)室内滞在者の肺と外界が直接繋がっているため、空気流に乗ってくる新型コロナウイルス等を完全にゼロとすることは原理的に不可能である。他方、CUSPシステムは、孤立閉鎖系(クローズドエアフローシステム)で常に内外等圧のため、空気流に乗って移動する菌および塵埃の出入りが原理的にゼロであり、室内滞在者は究極の安全性を得ることができる。また、この機構により、高清浄度を維持し、農薬等が不要の有用食物の栽培または育成が可能となる。
 さらに、この一実施の形態によれば、次のような種々の利点を得ることができる。1)ボトムラインとして、COVID-19用の緊急対策(体育館等への多数ベッド収容)や、透析や献血の際に人々を感染から守ることができ、パーソナル高清浄環境として、量産や大量導入が可能である。2)空間内分子濃度測定による内部滞在者の状態モニタリングを行い、更に3)上記ミスト導入実施例に従い、次亜塩素酸等の殺菌効果を持つ微粒子の噴霧により、部屋内の効率的な除菌をすることで、当該清浄空間の消毒を行うことができる。その後、有効物質の経口および経肺導入による治療も可能となる。更に、光触媒と結合して、匂い取りもできる。加えて、上記の1)と2)は、もともとある塵や匂い分子を除去すること(いわば守りによる空気質向上で、3)は、元々は無い、良好な効力を発揮する微粒子を積極的に発生させて室内空気に付加すること(いわば攻め)を以って、清浄空間を浮遊塵埃および菌の減少ならびに同空間への消毒および殺菌等、有用物質の供給という2重の効果で得ることができる。
 以上、この発明の実施の形態および実施例について具体的に説明したが、この発明は、上述の実施の形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施の形態および実施例において挙げた数値、構造、構成、形状、配置等はあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、構成、形状、配置等を用いてもよい。
 11 部屋または閉空間
 12 FFU
 13 ガス交換ユニット
 13a ガス交換膜
 14 殺菌ミスト発生器
 14a 殺菌ミスト
 15 粒子数計測器
 204 加湿器

Claims (7)

  1.  外界と内部との間で気体のマスフローとしての交換のない孤立閉鎖系を構成し、かつ外界と内部との界面の少なくとも一部に粒子を通さず、気体分子は通す膜を有する部屋または閉空間と、
     上記部屋または閉空間に設置された、上記部屋または閉空間の内部の気体を吸引する開口と、当該吸引気体を粒子数密度および分子濃度の双方に関して清浄化処理後、その全量を、再び、上記部屋または閉空間の内部に戻す吹き出し口とが対となって設けられている清浄化装置と、
     上記部屋または閉空間の内部に設置された殺菌ミストおよび/または殺菌ガスを発生させる殺菌装置と、
     上記部屋または閉空間の内部に設置された粒子数計測器とを有し、
     上記部屋または閉空間の内部を上記清浄化装置により清浄化したときに上記粒子数計測器により測定される粒子数密度が予め決められた粒子数密度を下回ってから上記殺菌装置により殺菌ミストおよび/または殺菌ガスを発生させるように構成されている殺菌機能付き高清浄環境システム。
  2.  上記予め決められた粒子数密度は外界の粒子数密度の1/100以下である請求項1記載の殺菌機能付き高清浄環境システム。
  3.  上記予め決められた粒子数密度はUS FED 209Dクラス100の粒子数密度である請求項1記載の殺菌機能付き高清浄環境システム。
  4.  上記殺菌装置は殺菌ミスト発生器または殺菌ガス発生器である請求項1記載の殺菌機能付き高清浄環境システム。
  5.  少なくとも二つの気体吸入口と少なくとも二つの気体吐出口とを有する、閉空間を構成する箱状構造体を有し、
     上記少なくとも二つの気体吸入口の一つが、上記少なくとも二つの気体吐出口の一つと連通するとともに、上記少なくとも二つの気体吸入口の他の一つが、上記少なくとも二つの気体吐出口の他の一つと連通し、
     上記二つの連通路は、おのおの独立流路を形成しつつも、上記膜を以てお互いから隔てられるように構成され、
     上記部屋または閉空間の外界から導入される空気が上記気体吸入口の一つから上記箱状構造体に導入され、この気体吸入口と連通する上記気体吐出口から外界へと送出される一方、上記部屋または閉空間の内気が上記気体吸入口の他の一つから上記箱状構造体に導入され、この気体吸入口と連通する上記気体吐出口から上記部屋または閉空間へ還流され、
     上記部屋または閉空間の体積をV、上記膜中の酸素の拡散定数をD、上記膜の厚みをLとした時、上記体積Vと上記膜の面積Aとを、{(V/A)/(D/L)}でスケーリングさせて設計が行われ、
     上記部屋または閉空間の内部の酸素消費レートをB、外部と平衡状態にあり上記部屋または閉空間の内部で酸素消費の無い時の酸素体積をVO2、上記部屋または閉空間内における目標酸素濃度をη(η>0.18)とした時、上記膜の面積Aが、少なくとも、
    Figure JPOXMLDOC01-appb-M000001
    を満たすように設定されているガス交換ユニットが上記部屋または閉空間に設置されている請求項1記載の殺菌機能付き高清浄環境システム。
  6.  外界と内部との間で気体のマスフローとしての交換のない孤立閉鎖系を構成し、かつ外界と内部との界面の少なくとも一部に粒子を通さず、気体分子は通す膜を有する部屋または閉空間と、
     上記部屋または閉空間に設置された、上記部屋または閉空間の内部の気体を吸引する開口と、当該吸引気体を粒子数密度および分子濃度の双方に関して清浄化処理後、その全量を、再び、上記部屋または閉空間の内部に戻す吹き出し口とが対となって設けられている清浄化装置と、
     上記部屋または閉空間の内部に設置された殺菌ミストおよび/または殺菌ガスを発生させる殺菌装置と、
     上記部屋または閉空間の内部に設置された粒子数計測器とを有する殺菌機能付き高清浄環境システムの使用方法であって、
     上記部屋または閉空間の内部を上記清浄化装置により清浄化したときに上記粒子数計測器により測定される粒子数密度が予め決められた粒子数密度を下回ってから上記殺菌装置により殺菌ミストおよび/または殺菌ガスを発生させる
    ことを特徴とする殺菌機能付き高清浄環境システムの使用方法。
  7.  上記予め決められた粒子数密度は外界の粒子数密度の1/100以下である請求項6記載の殺菌機能付き高清浄環境システムの使用方法。
PCT/JP2022/013963 2021-04-21 2022-03-24 消毒機能付き高清浄環境システムおよびその使用方法 WO2022224694A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-071518 2021-04-21
JP2021071518A JP6980243B1 (ja) 2021-04-21 2021-04-21 消毒機能付き高清浄環境システムおよびその使用方法

Publications (1)

Publication Number Publication Date
WO2022224694A1 true WO2022224694A1 (ja) 2022-10-27

Family

ID=78870755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013963 WO2022224694A1 (ja) 2021-04-21 2022-03-24 消毒機能付き高清浄環境システムおよびその使用方法

Country Status (2)

Country Link
JP (2) JP6980243B1 (ja)
WO (1) WO2022224694A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950024A (zh) * 2023-02-24 2023-04-11 上海应用技术大学 一种应对病毒疫情的节能通风系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7291355B1 (ja) 2022-04-15 2023-06-15 晃 石橋 清浄環境システムおよびエネルギー環境システム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313878A (ja) * 1998-05-06 1999-11-16 Comfort:Kk 殺菌機能付き空気清浄機
JP2009219531A (ja) * 2008-03-13 2009-10-01 Sanyo Electric Co Ltd 空気清浄機
JP3156408U (ja) * 2007-04-26 2009-12-24 シーズテック株式会社 クリーンユニット
JP2010246618A (ja) * 2009-04-13 2010-11-04 Sanyo Electric Co Ltd ミスト発生ユニット付き空気清浄機
JP2010264074A (ja) * 2009-05-14 2010-11-25 Ihi Shibaura Machinery Corp 隔離室形成装置及び隔離室形成燻蒸方法
JP2012044957A (ja) * 2010-08-30 2012-03-08 Mitsubishi Electric Corp 浮遊ウイルス不活化評価方法およびその装置
JP2014095694A (ja) * 2012-10-09 2014-05-22 Akira Ishibashi 放射性物質および放射線対応ファンフィルターユニット、放射性物質および放射線対応高清浄環境システム、放射性物質含有廃棄物の減容処理システム、放射性物質および放射線対応フィルタならびに水洗除染装置
JP3192618U (ja) * 2012-11-30 2014-08-21 石橋 晃 テントおよびテントシステム
JP2016064305A (ja) * 2013-10-29 2016-04-28 石橋 晃 睡眠時無意識体動情報活用システム及び方法並びに就寝状況検知システム及び方法
JP6292563B1 (ja) * 2016-10-24 2018-03-14 石橋 晃 建築物およびその製造方法
JP2018050483A (ja) * 2016-09-26 2018-04-05 株式会社東芝 ドライプロセス処理方法
WO2018193789A1 (ja) * 2017-04-17 2018-10-25 シーズテック株式会社 建築物ならびに建築物の生活および/または活動空間内ガス分子濃度制御方法
JP2019063054A (ja) * 2017-09-29 2019-04-25 パナソニックIpマネジメント株式会社 空間殺菌装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129998A (ja) * 2012-11-30 2014-07-10 Akira Ishibashi 壁ならびに高清浄部屋システムおよびその製造方法ならびに建築物
JP6634644B2 (ja) * 2013-10-29 2020-01-22 石橋 晃 高清浄部屋システム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313878A (ja) * 1998-05-06 1999-11-16 Comfort:Kk 殺菌機能付き空気清浄機
JP3156408U (ja) * 2007-04-26 2009-12-24 シーズテック株式会社 クリーンユニット
JP2009219531A (ja) * 2008-03-13 2009-10-01 Sanyo Electric Co Ltd 空気清浄機
JP2010246618A (ja) * 2009-04-13 2010-11-04 Sanyo Electric Co Ltd ミスト発生ユニット付き空気清浄機
JP2010264074A (ja) * 2009-05-14 2010-11-25 Ihi Shibaura Machinery Corp 隔離室形成装置及び隔離室形成燻蒸方法
JP2012044957A (ja) * 2010-08-30 2012-03-08 Mitsubishi Electric Corp 浮遊ウイルス不活化評価方法およびその装置
JP2014095694A (ja) * 2012-10-09 2014-05-22 Akira Ishibashi 放射性物質および放射線対応ファンフィルターユニット、放射性物質および放射線対応高清浄環境システム、放射性物質含有廃棄物の減容処理システム、放射性物質および放射線対応フィルタならびに水洗除染装置
JP3192618U (ja) * 2012-11-30 2014-08-21 石橋 晃 テントおよびテントシステム
JP2016064305A (ja) * 2013-10-29 2016-04-28 石橋 晃 睡眠時無意識体動情報活用システム及び方法並びに就寝状況検知システム及び方法
JP2018050483A (ja) * 2016-09-26 2018-04-05 株式会社東芝 ドライプロセス処理方法
JP6292563B1 (ja) * 2016-10-24 2018-03-14 石橋 晃 建築物およびその製造方法
WO2018193789A1 (ja) * 2017-04-17 2018-10-25 シーズテック株式会社 建築物ならびに建築物の生活および/または活動空間内ガス分子濃度制御方法
JP2019063054A (ja) * 2017-09-29 2019-04-25 パナソニックIpマネジメント株式会社 空間殺菌装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950024A (zh) * 2023-02-24 2023-04-11 上海应用技术大学 一种应对病毒疫情的节能通风系统

Also Published As

Publication number Publication date
JP2022166802A (ja) 2022-11-02
JP2022166362A (ja) 2022-11-02
JP6980243B1 (ja) 2021-12-15

Similar Documents

Publication Publication Date Title
CA2694244C (en) Apparatus and method for using ozone as a disinfectant
US20210364171A1 (en) Air treatment systems
US8354057B2 (en) Apparatus and method for using ozone as a disinfectant
WO2022224694A1 (ja) 消毒機能付き高清浄環境システムおよびその使用方法
US8747737B2 (en) Air decontamination unit
US20080031770A1 (en) Apparatus and method for using ozone as a disinfectant
US20120020830A1 (en) Apparatus And Method For Using Ozone As A Disinfectant
US20060177521A1 (en) Humidifer sanitization
JP2009517175A (ja) 空気及び室内の衛生化装置及び方法
US20210372637A1 (en) Methods and Systems for Air Management to Reduce or Block Exposure to Airborne Pathogens
Matys et al. Disinfectants and devices for surface and air disinfection in dental offices
Tu et al. Study of ozone disinfection in the hospital environment
JP6990963B2 (ja) オゾンガス消毒器
Mosca et al. Sanitizing of confined spaces using gaseous ozone produced by 4.0 machines
US11098910B1 (en) HVAC decontamination system with regulated ozone output based on monitored ozone level in ambient air
WO2022272112A1 (en) Apparatus and system for indoor airborne pathogen control
US20120275952A1 (en) Method for Reducing the Concentration of Disinfectant, Decontamination Apparatuses and Systems and Related Methods of Employing the Same
JP2008022764A (ja) 環境評価方法
US20240066175A1 (en) Hydroxyl ion generator apparatuses for ceiling mount or walk through
US20230347001A1 (en) Sanitization systems with safety features
US20230372569A1 (en) Environmental decontamination
US20230350356A1 (en) Reporting and alerting for ozone based sanitization
US20230350357A1 (en) Sanitization central computing device
Saravanan Novel Multipurpose Air Purification and Distribution Robot with AI-Based Anomaly Detection
Prempraneerach et al. Effectiveness Evaluation for Bacteria and Fungi Disinfections of Developed Ozone Machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/02/2024)