WO2022224581A1 - 過電流検出回路、駆動制御装置および電力変換装置 - Google Patents

過電流検出回路、駆動制御装置および電力変換装置 Download PDF

Info

Publication number
WO2022224581A1
WO2022224581A1 PCT/JP2022/007208 JP2022007208W WO2022224581A1 WO 2022224581 A1 WO2022224581 A1 WO 2022224581A1 JP 2022007208 W JP2022007208 W JP 2022007208W WO 2022224581 A1 WO2022224581 A1 WO 2022224581A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
overcurrent
main switching
main
drive control
Prior art date
Application number
PCT/JP2022/007208
Other languages
English (en)
French (fr)
Inventor
健史 寺島
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN202280006756.XA priority Critical patent/CN116264856A/zh
Priority to JP2023516313A priority patent/JP7513201B2/ja
Publication of WO2022224581A1 publication Critical patent/WO2022224581A1/ja
Priority to US18/187,670 priority patent/US20230231549A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present invention relates to overcurrent detection circuits, drive control devices, and power conversion devices.
  • Patent Document 1 JP-A-2000-14161
  • Patent Document 2 JP-A-2018-186691
  • the level of overcurrent to be detected may differ depending on the phase of the main switching element.
  • the overcurrent detection circuit may include a detection unit that detects whether or not the current flowing between the main terminals of the main switching element used in the power converter is an overcurrent.
  • the overcurrent detection circuit may include a switching unit that switches the threshold used for overcurrent determination in the detection unit according to which phase of the power conversion device the main switching element is used for.
  • the detection unit may have a plurality of comparison units that compare a parameter corresponding to the current flowing between the main terminals with different threshold values.
  • the switching unit may switch the comparing unit to be used for overcurrent detection among the plurality of comparing units.
  • Each comparator may compare the voltage detected according to the current flowing between the main terminals with a different reference voltage.
  • the detection unit may have a comparison unit that compares the voltage detected according to the current flowing between the main terminals with a reference voltage.
  • the switching section may switch the reference voltage supplied to the comparing section.
  • the switching unit may switch the threshold value based on the signal supplied according to the phase in which the main switching element is used.
  • a drive control device is provided in a second aspect of the present invention.
  • the drive control device may comprise a gate drive circuit for driving the gate of the main switching element.
  • the drive control device may include the overcurrent detection circuit of the first aspect that detects whether or not the current flowing between the main terminals of the main switching element is overcurrent.
  • the gate drive circuit may turn off the main switching element in response to detection of overcurrent by the overcurrent detection circuit.
  • a power converter is provided in a third aspect of the present invention.
  • the power conversion device may comprise multiple pairs of main switching elements connected in series between a positive power supply line and a negative power supply line.
  • the power conversion device may include the drive control device of the second aspect provided for each phase of the main switching element on the side of the negative power supply line among the plurality of pairs of main switching elements.
  • the overcurrent detection circuit in each drive controller may be set with different thresholds depending on which phase the corresponding main switching element is used.
  • FIG. 1 shows a power conversion device 1 according to an embodiment.
  • the drive control device 2 is shown together with the main switching element Q.
  • FIG. 4A shows an overcurrent detection circuit 4A according to a modification.
  • FIG. 1 shows a power converter 1 according to this embodiment.
  • the power conversion device 1 is a device used for driving a motor or supplying power. It may be an inverter device that converts to AC power and outputs it.
  • the power conversion device 1 includes multiple main switching elements Q and multiple drive control devices 2 .
  • the power conversion device 1 supplies power to a positive terminal 103 and a negative terminal 104 connected to a positive power supply line 101 and a negative power supply line 102, an output terminal 105 that outputs AC power, and a drive control device 2.
  • a ground terminal 107 for setting the ground potential of the drive control device 2;
  • a Vin terminal 108 for inputting the drive signal Vin of the main switching element Q; and an alarm terminal 109 for outputting a signal.
  • a DC voltage of 600 to 800 V may be applied between the positive terminal 103 and the negative terminal 104, and the negative terminal 104 may be connected to the ground potential.
  • the plurality of main switching elements Q may be semiconductor switching elements each having a sense terminal, and in this embodiment are IGBTs as an example.
  • a plurality of main switching elements Q are paired with other main switching elements Q and connected in series between the positive power supply line 101 and the negative power supply line 102 .
  • the power conversion device 1 may be provided with a plurality of pairs of main switching elements Q, Q.
  • the power conversion device 1 is provided with three pairs of main switching elements Q, that is, a total of six main switching elements Q. As shown in FIG. Of these, the upper arm main switching element Q U (where the suffix U indicates the U phase) and the lower arm main switching element Q x (where the suffix X indicates the X phase) form a pair. U-phase AC power may be output from the output terminal 105 connected to the series connection point.
  • main switching element Q V of the upper arm (where the suffix V indicates the V phase) and the main switching element Q Y of the lower arm (where the suffix Y indicates the Y phase) form a pair. They are connected in series, and V-phase AC power may be output from the output terminal 105 connected to the series connection point.
  • the upper arm main switching element Q W (where the subscript W indicates the W phase) and the lower arm main switching element Q Z (where the subscript Z indicates the Z phase) form a pair. They are connected in series, and W-phase AC power may be output from the output terminal 105 connected to the series connection point.
  • a freewheeling diode D may be connected in anti-parallel to each of the plurality of main switching elements Q.
  • Each drive control device 2 controls a main switching element Q.
  • FIG. Each drive control device 2 may be an IC (Integrated Circuit) and may be integrated into one chip.
  • Each drive control device 2 is connected to a power supply terminal 106, a ground terminal 107, a Vin terminal 108, and an alarm terminal 109, and drives the gate of the main switching element Q according to the drive signal Vin input from the Vin terminal 108. . Further, the drive control device 2 is capable of detecting whether or not the current flowing between the main terminals of the main switching element Q is overcurrent. is turned off, and an alarm signal is output from the alarm terminal 109 .
  • each drive control device 2 is a so-called 1ch output drive control device, provided for each main switching element Q, and controls a corresponding single main switching element Q.
  • the drive control devices 2 U , 2 V , and 2 W corresponding to the main switching element Q of the upper arm are connected to individual power supply terminals 106 , alarm terminals 109 and ground terminals 107 .
  • the ground terminal 107 is connected to the emitter terminal of the main switching element Q, and uses the potential of the emitter terminal as the ground potential.
  • the drive control devices 2X , 2Y , 2Z corresponding to the main switching element Q of the lower arm are connected to a common power supply terminal 106, an alarm terminal 109 and a ground terminal 107, and the ground terminal 107 is connected to the negative side power supply line. 102. Therefore, if the drive control devices 2 X , 2 Y and 2 Z of the respective phases are asymmetrically connected to the negative power supply line 102, the current flowing through the main switching elements Q X , Q Y and Q Z of the lower arm is wraps around toward the drive control devices 2 X , 2 Y , and 2 Z of other phases, the ground potentials of the drive control devices 2 X , 2 Y , and 2 Z may differ.
  • each drive control device 2 of the lower arm has separate overcurrent detection circuits 4, which will be described later, depending on which phase the corresponding main switching element Q is used. threshold is set.
  • the main switching element Q is turned off in response to detection that the current flowing through the main switching element Q is overcurrent, thereby preventing element breakdown due to overcurrent. be able to.
  • the overcurrent detection circuit 4 in each drive control device 2 is set with a different threshold depending on which phase the corresponding main switching element Q is used, the overcurrent detection circuit 4 detects according to the phase used. Even if the magnitude of the overcurrent to be applied is different, the overcurrent can be appropriately detected in each phase.
  • the drive control device 2 with 1ch output is provided for each main switching element Q of the lower arm and controls a single main switching device Q
  • the drive control device 2 with 3ch output is provided and the three Unlike the case where the main switching elements Q X , Q Y , and Q Z are respectively controlled, elements for turning on and off the three main switching elements Q (as an example, switching elements 301 to 304 and 310 shown in FIG. 2 described later) , 322, etc.) in one IC, the arrangement of the elements and the manufacture of the drive control device 2 can be facilitated, and the drive control device 2 can be miniaturized.
  • the drive circuit for each main switching element Q generates heat, and the drive control device 2 as a whole becomes overheated. can be prevented.
  • FIG. 2 shows the drive control device 2 together with the main switching element Q. As shown in FIG.
  • the drive control device 2 has an overcurrent detection circuit 4 and a gate drive circuit 3 .
  • the drive control device 2 that controls the main switching element Q of the lower arm is shown in this figure, the drive control device 2 that controls the main switching element Q of the upper arm may have the same configuration.
  • the overcurrent detection circuit 4 detects whether the current flowing between the main terminals of the main switching element Q (between the collector terminal and the emitter terminal as an example in this embodiment) is an overcurrent.
  • the overcurrent detection circuit 4 detects whether the current flowing between the main terminals of the main switching element Q corresponding to the drive control device 2 among the plurality of main switching elements Q included in the power converter 1 is an overcurrent. may be detected.
  • the overcurrent may be a current exceeding the rated current of the power conversion device 1, and may be a current at which a surge voltage generated with the turn-off of the main switching element Q becomes an overvoltage.
  • the overcurrent detection circuit 4 has a detection section 40 and a switching section 41 .
  • the detection unit 40 detects whether or not the current flowing between the main terminals of the main switching element Q corresponding to the drive control device 2 is overcurrent.
  • the detection unit 40 may have a parameter detection unit 400 and a plurality of comparison units 401 (three comparison units 401a to 401c as an example in this embodiment).
  • the parameter detection unit 400 detects a parameter corresponding to the current flowing between the main terminals of the main switching element Q.
  • the parameter detection unit 400 has a sense current detection resistor R1 connected to the sense emitter terminal of the main switching element Q, and the sense emitter current flows through the sense current detection resistor R1.
  • the voltage detected by the voltage may be detected as a parameter.
  • the parameter detection unit 400 may detect other values as parameters, such as emitter current and sense emitter current measured by a current sensor (not shown).
  • the parameter detection section 400 may supply each comparison section 401 with a voltage indicating the magnitude of the detected parameter.
  • Each comparison unit 401 compares the parameters supplied from the parameter detection unit 400 with different threshold values.
  • Each comparison unit 401 may be a comparator, and may compare a voltage detected according to the current flowing between the main terminals of the main switching element Q with different reference voltages.
  • each comparator 401 may compare the voltage input to the non-inverting input terminal from the parameter detection unit 400 with the reference voltage input to the inverting input terminal. A signal that becomes high when the voltage of is higher than the reference voltage may be supplied to the switching unit 41 .
  • the reference voltage of each comparison unit 401 may be set at the manufacturing stage of the power converter 1.
  • the main switching element Q is operated as X-phase, Y-phase and Z-phase, and It may be set based on the voltage detected by the sense current detection resistor R1 when the minimum overcurrent is applied.
  • the reference voltage of the comparison unit 401a is the voltage detected by the sense current detection resistor R1 when the main switching element Q is operated as the X phase and the minimum overcurrent flows through the main switching element Q.
  • the reference voltage of the comparator 401b may be the voltage detected by the sense current detection resistor R1 when the main switching element Q is operated as the Y-phase and the minimum overcurrent flows through the main switching element Q.
  • the reference voltage of the comparator 401c may be the voltage detected by the sense current detection resistor R1 when the main switching element Q is operated as the Z-phase and the minimum overcurrent flows through the main switching element Q.
  • the switching unit 41 switches the threshold used for overcurrent determination in the detection unit 40 according to which phase of the power conversion device 1 the main switching element Q corresponding to the drive control device 2 is used.
  • the switching unit 41 may switch the threshold used for overcurrent determination by switching the comparing unit 401 used for overcurrent detection among the plurality of comparing units 401 that use different thresholds.
  • the switching unit 41 may perform switching based on an input switching signal.
  • the switching unit 41 includes a plurality of Not circuits 410 (two Not circuits 410a and 410b as an example in this embodiment) and a plurality of AND circuits 411 (three AND circuits as an example in this embodiment). 411a-411c).
  • the Not circuit 410 inverts the switching signal to generate an inverted signal.
  • the Not circuit 410a supplies the inverted signal of the switching signal S0 to the AND circuit 411b, and the Not circuit 410b supplies the inverted signal of the switching signal S1 to the AND circuit. 411a.
  • the AND circuit 411 takes the logical product of the input signals, and the AND circuit 411a takes the logical product of the switching signal S0, the inverted signal of the switching signal S1, and the comparison result signal from the comparator 401a. Similarly, the AND circuit 411b takes a logical AND of the inverted signal of the switching signal S0, the switching signal S1, and the comparison result signal from the comparing section 401b. A logical AND with the signal of the comparison result by the unit 401c is taken. According to the switching section 41 described above, any one of the three AND circuits 411a to 411c is selected according to the two switching signals S0 and S1, and the comparison result of the comparing section 401 corresponding to the selected AND circuit 411 is is output.
  • the switching signals S0 and S1 may be supplied to the overcurrent detection circuit 4 according to the phase in which the main switching element Q is used.
  • the signal values of the switching signals S ⁇ b>0 and S ⁇ b>1 may be set when the drive control device 2 is manufactured, or may be set by electronic components built into the drive control device 2 .
  • the signal values of the switching signals S0 and S1 may be supplied from outside the drive control device 2 after the drive control device 2 is manufactured.
  • the switching signal S0 when the main switching element Q corresponding to the drive control device 2 is used for the X phase, the switching signal S0 may be high and the switching signal S1 may be low. As a result, the AND circuit 411 a is selected and the comparison result of the comparison section 401 a is output from the switching section 41 . Further, when the main switching element Q corresponding to the drive control device 2 is used for the Y phase, the switching signal S0 may be low and the switching signal S1 may be high. As a result, the AND circuit 411 b is selected and the comparison result of the comparison section 401 b is output from the switching section 41 .
  • the switching signal S0 may be high and the switching signal S1 may be high.
  • the AND circuit 411 c is selected and the comparison result of the comparison section 401 c is output from the switching section 41 .
  • the output signal of the switching unit 41 may be an overcurrent detection signal that indicates whether or not the current flowing through the main switching element Q is overcurrent. It's okay to be
  • the switching unit 41 may supply the overcurrent detection signal to the gate drive circuit 3 . Also, the switching unit 41 may output the overcurrent detection signal to the alarm terminal 109 .
  • a gate drive circuit 3 drives the gate of the main switching element Q. As shown in FIG. The gate drive circuit 3 may drive the gate of the main switching element Q corresponding to the drive control device 2 among the plurality of main switching elements Q included in the power converter 1 .
  • the gate drive circuit 3 includes a turn-on circuit 30 that turns on the main switching element Q in response to the drive signal Vin in normal times, a turn-off circuit 31 that turns off the main switching element Q in response to the drive signal Vin in normal times, and an overcurrent. and a cutoff circuit 32 for turning off the main switching element Q at times.
  • the turn-on circuit 30 has switching elements 301 to 304, a resistor R2, a power supply 306, and an operational amplifier 307.
  • the switching elements 301 to 304 are MOSFETs, but they may be other types of switching elements.
  • the main terminal of the switching element 301 is connected between the gate of the switching element 302 and the ground.
  • the switching element 301 is of P-channel type, and the gate of the switching element 301 is connected to the Vin terminal 108 .
  • the switching element 302 is of an N-channel type and is connected to the ground through a resistor R2. When in the ON state, a current flows through the resistor R2, thereby grounding the potential of the connection point N1 between the switching element 302 and the resistor R2. higher than the electric potential.
  • the operational amplifier 307 has a non-inverting input terminal connected to the power supply 306 and an inverting input terminal connected to the connection point N1. do.
  • a gate of the switching element 302 is connected to an output terminal of the operational amplifier 307 .
  • the switching element 302, the operational amplifier 307, the power supply 306 and the resistor R2 may form a constant current circuit. may be maintained.
  • the switching elements 303 and 304 form a current mirror circuit. Each drain terminal is connected to the input voltage VCC, and the gates are connected to each other. and the source terminal of the switching element 302 are connected.
  • the switching elements 303 and 304 are of N-channel type, and when the current flows through the switching element 302 and the resistor R2 and the potential of the connection point N1 becomes higher than the ground potential (that is, when the drive signal Vin is low), the switching element A current equal to the current flowing through 302 is assumed to be the gate current of the main switching element Q. FIG. As a result, the gate of the main switching element Q is charged and the main switching element Q is turned on.
  • the turn-off circuit 31 has a switching element 310 whose main terminal is connected between the gate of the main switching element Q and the ground.
  • the switching element 310 is of P-channel type, and the Vin terminal 108 and the gate are connected. As a result, when the drive signal Vin is low, the switching element 310 is turned on, the gate charge of the main switching element Q is extracted, and the main switching element Q is turned off.
  • the switching element 310 is a MOSFET, but it may be another type of switching element.
  • the blocking circuit 32 has a delay circuit 321 and a switching element 322 .
  • the delay circuit 321 delays the turn-off operation of the main switching element Q by the cutoff circuit 32 more than the overcurrent detection operation by the overcurrent detection circuit 4, thereby avoiding conflict between these operations and stabilizing the operation.
  • the delay circuit 321 may function as a low-pass filter circuit.
  • the delay circuit 321 may be an RC series circuit.
  • the delay circuit 321 may supply a drive stop signal to the switching element 322 to cut off the main switching element Q.
  • the drive stop signal may be low during normal operation, and a high overcurrent detection signal indicating that the current flowing through the main switching element Q is overcurrent is supplied to the delay circuit 321 and used as a reference signal. May go high as time elapses.
  • the main terminal of the switching element 322 is connected between the gate of the main switching element Q and the ground.
  • the switching element 322 is of N-channel type, and the delay circuit 321 and the gate are connected. As a result, when the drive stop signal is high, the switching element 322 is turned on, the gate charge of the main switching element Q is extracted, and the main switching element Q is turned off.
  • the switching element 322 may softly cut off the main switching element Q, and may turn off the main switching element Q more slowly than the switching element 310 of the turn-off circuit 31 .
  • the switching element 322 is a MOSFET, but it may be another type of switching element.
  • the threshold for overcurrent determination is switched according to which phase the main switching element Q is used. Even if they are different, the overcurrent can be detected appropriately.
  • the comparison unit 401 used for overcurrent detection can be switched, so that the threshold value can be reliably switched.
  • each comparison unit 401 the voltage detected according to the current flowing between the main terminals of the main switching element Q is compared with different reference voltages, so comparison can be performed using analog quantities. .
  • the threshold is switched based on the signal supplied according to the phase in which the main switching element Q is used, the threshold can be switched by supplying the signal. Therefore, even after the overcurrent detection circuit is incorporated in the drive control device 2, the threshold can be switched.
  • FIG. 3 shows an overcurrent detection circuit 4A according to a modification.
  • the same reference numerals are assigned to substantially the same components as those of the drive control device 2 shown in FIG. 2, and the description thereof will be omitted.
  • the overcurrent detection circuit 4A has a detection section 42 and a switching section 43 .
  • the detection unit 42 has a comparison unit 421 that compares the voltage detected according to the current flowing between the main terminals of the main switching element Q with a reference voltage. Only one comparison unit 421 may be provided in the detection unit 42 .
  • the comparison unit 421 may compare the voltage input to the non-inverting input terminal from the parameter detection unit 400 with the reference voltage input to the inversion input terminal from the switching unit 43, and the voltage from the parameter detection unit 400 is used as the reference.
  • An overcurrent detection signal which is high when greater than the voltage, may be provided to the delay circuit 321 .
  • the switching unit 43 switches the threshold used for overcurrent determination in the detecting unit 42 according to which phase of the power conversion device 1 the main switching element Q corresponding to the drive control device 2 is used.
  • the switching section 43 may switch the reference voltage supplied to the comparing section 421 .
  • the switching unit 43 includes a plurality of Not circuits 430 (two Not circuits 430a and 430b as an example in this embodiment) and a plurality of AND circuits 431 (three AND circuits as an example in this embodiment). 431a to 431c), a plurality of resistors 432 (in this embodiment, as an example four resistors 432a to 432d), and a plurality of switching elements 433 (in this embodiment, as an example, three switching elements 433a to 433c).
  • the Not circuit 430 inverts the switching signal to generate an inverted signal.
  • the Not circuit 430a supplies the inverted signal of the switching signal S0 to the AND circuit 431b, and the Not circuit 430b supplies the inverted signal of the switching signal S1 to the AND circuit. 431a.
  • the AND circuit 431 takes the AND of the input signals, and the AND circuit 431a takes the AND of the switching signal S0 and the inverted signal of the switching signal S1 and supplies the operation result to the gate of the switching element 433a. . Similarly, the AND circuit 431b takes the AND of the inverted signal of the switching signal S0 and the switching signal S1, and supplies the operation result to the gate of the switching element 433b. The AND circuit 431c takes a logical product of the switching signal S0 and the switching signal S1, and supplies the operation result to the gate of the switching element 433c. Accordingly, one of the three AND circuits 431a to 431c is selected according to the two switching signals S1 and S0 to output a high output signal, and one of the three switching elements 433a to 433c It turns on.
  • the four resistors 432a-432d divide the input voltage VDD to generate separate voltages and are connected in series with the ground.
  • the magnitudes of resistors 432a-432d may be the same or different.
  • the voltage generated at each connection point between the resistors 432a-432d can be alternatively selected by the switching elements 433a-433c and supplied to the inverting input terminal of the comparator 421 as a reference voltage.
  • the voltage generated at each connection point corresponds to the voltage detected by the sense current detection resistor R1 when the main switching element Q is operated as the X-phase, Y-phase, and Z-phase and the minimum overcurrent flows through the main switching element Q. can be set based on
  • the switching element 433a is connected between the connection point between the resistors 432a and 432b and the inverting input terminal of the comparing section 421, and the switching element 433b is connected between the connecting point between the resistors 432b and 432c and the inverting input terminal of the comparing section 421. Furthermore, the switching element 433c is connected between the connection point between the resistors 432c and 432d and the inverting input terminal of the comparator 421.
  • FIG. As a result, the switching elements 433a to 433c that are turned on are switched by the two switching signals S1 and S0, thereby switching the reference voltage supplied to the comparator 421.
  • the reference voltage supplied to the comparison unit 401 can be switched, so that the threshold for overcurrent determination can be reliably switched.
  • one of the voltages obtained by dividing the input voltage by the resistor 432 is supplied to the comparator 421 as the reference voltage. Either one may be supplied to the comparison unit 421 .
  • the drive control device 2 is provided for each of the main switching elements Q of the upper and lower arms.
  • a drive control device having another configuration may be provided for the main switching element Q of the upper arm.
  • the drive control device for the upper arm may be provided for each main switching element Q of the upper arm to control the main switching elements QU , QV , QW separately, or the three main switching elements QU, QV, and QW of the upper arm may be provided.
  • the main switching elements QU, QV, and QW may be provided in common to the switching elements Q to control each of the main switching elements QU , QV , and QW .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

主スイッチング素子の相に応じて検出するべき過電流のレベルが異なる場合であっても、適切に過電流を検出することができる過電流検出回路を提供する。 過電流検出回路(4)は、電力変換装置に用いられる主スイッチング素子(Q)の主端子間に流れる電流が過電流であるか否かを検出する検出部(40)と、主スイッチング素子(Q)が電力変換装置のいずれの相に用いられるかに応じて、検出部(40)における過電流の判定に用いる閾値を切り替える切替部(41)とを備える。

Description

過電流検出回路、駆動制御装置および電力変換装置
 本発明は、過電流検出回路、駆動制御装置および電力変換装置に関する。
 従来、電力変換装置では、主スイッチング素子に流れる過電流を検出して素子を保護する(例えば、特許文献1,2参照)。
 特許文献1 特開2000-14161号公報
 特許文献2 特開2018-186691号公報
解決しようとする課題
 しかしながら、主スイッチング素子の相に応じて、検出するべき過電流のレベルが異なる場合がある。
一般的開示
 上記課題を解決するために、本発明の第1の態様においては、過電流検出回路が提供される。過電流検出回路は、電力変換装置に用いられる主スイッチング素子の主端子間に流れる電流が過電流であるか否かを検出する検出部を備えてよい。過電流検出回路は、主スイッチング素子が電力変換装置のいずれの相に用いられるかに応じて、検出部における過電流の判定に用いる閾値を切り替える切替部を備えてよい。
 検出部は、主端子間に流れる電流に応じたパラメータと、互いに異なる閾値とを比較する複数の比較部を有してよい。切替部は、複数の比較部のうち過電流の検出に使用する比較部を切り替えてよい。
 各比較部は、主端子間に流れる電流に応じて検出される電圧と、互いに異なる基準電圧とを比較してよい。
 検出部は、主端子間に流れる電流に応じて検出される電圧と、基準電圧とを比較する比較部を有してよい。切替部は、比較部に供給される基準電圧を切り替えてよい。
 切替部は、主スイッチング素子が用いられる相に応じて供給される信号に基づいて閾値を切り替えてよい。
 本発明の第2の態様においては、駆動制御装置が提供される。駆動制御装置は、主スイッチング素子のゲートを駆動するゲート駆動回路を備えてよい。駆動制御装置は、主スイッチング素子の主端子間に流れる電流が過電流であるか否かを検出する、第1の態様の過電流検出回路を備えてよい。ゲート駆動回路は、過電流検出回路により過電流が検出されることに応じて、主スイッチング素子をオフ状態としてよい。
 本発明の第3の態様においては、電力変換装置が提供される。電力変換装置は、正側電源線および負側電源線の間に直列に接続された複数対の主スイッチング素子を備えてよい。電力変換装置は、複数対の主スイッチング素子のうち、負側電源線の側の主スイッチング素子の相ごとに設けられた、第2の態様の駆動制御装置を備えてよい。各駆動制御装置における過電流検出回路は、対応する主スイッチング素子が何れの相に用いられるかに応じて、別々の閾値を設定されてよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
実施形態に係る電力変換装置1を示す。 駆動制御装置2を主スイッチング素子Qと共に示す。 変形例に係る過電流検出回路4Aを示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 [1.電力変換装置1]
 図1は、本実施形態に係る電力変換装置1を示す。電力変換装置1は、モータ駆動用または電力供給用に用いられる装置であり、本実施形態においては一例として、正側電源線101および負側電源線102から供給される直流電力をUVWの3相交流電力に変換して出力するインバータ装置であってよい。
 電力変換装置1は、複数の主スイッチング素子Qと、複数の駆動制御装置2とを備える。電力変換装置1は、正側電源線101および負側電源線102に接続された正側端子103および負側端子104と、交流電力を出力する出力端子105と、駆動制御装置2に電力を供給するための電源端子106と、駆動制御装置2のグランド電位を設定するためのグランド端子107と、主スイッチング素子Qの駆動信号Vinを入力するためのVin端子108と、駆動制御装置2からのアラーム信号を出力するためのアラーム端子109とをさらに備えてよい。なお、正側端子103および負側端子104の間には一例として600~800Vの直流電圧が印加されてよく、負側端子104はグランド電位に接続されてよい。
 [1.1.主スイッチング素子Q]
 複数の主スイッチング素子Qは、それぞれセンス端子を有する半導体スイッチング素子であってよく、本実施形態では一例としてIGBTである。複数の主スイッチング素子Qは、それぞれ他の主スイッチング素子Qと対をなして正側電源線101および負側電源線102の間に直列に接続されている。これにより、電力変換装置1には複数対の主スイッチング素子Q,Qが設けられてよい。
 本実施形態では一例として、電力変換装置1には3対、計6つの主スイッチング素子Qが設けられている。このうち、上アームの主スイッチング素子Q(但し添え字のUはU相を示す)と、下アームの主スイッチング素子Q(但し添え字のXはX相を示す)とは対をなして直列に接続されており、直列接続点に接続された出力端子105からU相の交流電力を出力してよい。
 また、上アームの主スイッチング素子Q(但し添え字のVはV相を示す)と、下アームの主スイッチング素子Q(但し添え字のYはY相を示す)とは対をなして直列に接続されており、直列接続点に接続された出力端子105からV相の交流電力を出力してよい。
 また、上アームの主スイッチング素子Q(但し添え字のWはW相を示す)と、下アームの主スイッチング素子Q(但し添え字のZはZ相を示す)とは対をなして直列に接続されており、直列接続点に接続された出力端子105からW相の交流電力を出力してよい。
 なお、複数の主スイッチング素子Qのそれぞれには、還流ダイオードDが逆並列に接続されてよい。
 [1.2.駆動制御装置2]
 各駆動制御装置2は、主スイッチング素子Qを制御する。各駆動制御装置2は、IC(Integrated Circuit)であってよく、1チップ化されていてよい。
 各駆動制御装置2は、電源端子106、グランド端子107、Vin端子108およびアラーム端子109と接続されており、Vin端子108から入力される駆動信号Vinに応じて主スイッチング素子Qのゲートを駆動する。また、駆動制御装置2は、主スイッチング素子Qの主端子間に流れる電流が過電流であるか否かを検出可能となっており、過電流が検出されることに応じて当該主スイッチング素子Qをオフ状態とし、アラーム端子109からアラーム信号を出力する。
 ここで、本実施形態では一例として、各駆動制御装置2は、いわゆる1ch出力の駆動制御装置であり、主スイッチング素子Qごとに設けられ、対応する単一の主スイッチング素子Qを制御する。
 このうち、上アームの主スイッチング素子Qに対応する駆動制御装置2,2,2では、個別の電源端子106、アラーム端子109およびグランド端子107と接続されている。グランド端子107は、主スイッチング素子Qのエミッタ端子と接続されており、エミッタ端子の電位をグランド電位としている。
 下アームの主スイッチング素子Qに対応する駆動制御装置2,2,2では、共通の電源端子106、アラーム端子109およびグランド端子107と接続されており、グランド端子107は負側電源線102と接続されている。従って、負側電源線102に対して各相の駆動制御装置2,2,2が非対称に接続されていると、下アームの主スイッチング素子Q,Q,Qを流れる電流が他の相の駆動制御装置2,2,2に向かって周り込むことにより、駆動制御装置2,2,2の間でグランド電位が相違する場合がある。この場合、主スイッチング素子Qに流れる電流が過電流であるか否かについての駆動制御装置2,2,2による検出精度が低下してしまう。そのため、本実施形態に係る電力変換装置1では、下アームの各駆動制御装置2は、対応する主スイッチング素子Qが何れの相に用いられるかに応じて、後述の過電流検出回路4が別々の閾値を設定されている。
 以上の電力変換装置1によれば、主スイッチング素子Qに流れる電流が過電流であると検出されることに応じて主スイッチング素子Qがオフ状態とされるので、過電流による素子破壊を防止することができる。
 また、対応する主スイッチング素子Qが何れの相に用いられるかに応じて、各駆動制御装置2における過電流検出回路4が別々の閾値を設定されるので、使用される相に応じて検出するべき過電流の大きさが異なる場合であっても、適切に各相で過電流を検出することができる。
 また、1ch出力の駆動制御装置2が下アームの主スイッチング素子Qごとに設けられて単一の主スイッチング素子Qを制御するので、3ch出力の駆動制御装置2が設けられて下アームの3つの主スイッチング素子Q,Q,Qをそれぞれ制御する場合と異なり、3つの主スイッチング素子Qそれぞれをターンオン,ターンオフするための素子(一例として後述の図2に示すスイッチング素子301~304,310,322など)を1つのIC内に配置する必要がない分、素子の配置や駆動制御装置2の製造を容易化するとともに、駆動制御装置2を小型化することができる。また、下アームの3つの主スイッチング素子Q,Q,Qをそれぞれ制御する場合と異なり、主スイッチング素子Qごとの駆動回路がそれぞれ発熱して駆動制御装置2が全体として高熱化してしまうのを防止することができる。
 [2.駆動制御装置2]
 図2は、駆動制御装置2を主スイッチング素子Qと共に示す。駆動制御装置2は、過電流検出回路4と、ゲート駆動回路3とを有する。なお、本図では下アームの主スイッチング素子Qを制御する駆動制御装置2を図示しているが、上アームの主スイッチング素子Qを制御する駆動制御装置2も同様の構成であってよい。
 [2.1.過電流検出回路4]
 過電流検出回路4は、主スイッチング素子Qの主端子間(本実施形態では一例としてコレクタ端子とエミッタ端子との間)に流れる電流が過電流であるか否かを検出する。過電流検出回路4は、電力変換装置1に含まれる複数の主スイッチング素子Qのうち、駆動制御装置2に対応する主スイッチング素子Qの主端子間に流れる電流が過電流であるか否かを検出してよい。ここで、過電流とは、電力変換装置1の定格電流を超えた電流であってよく、主スイッチング素子Qのターンオフに伴って発生するサージ電圧が過電圧となる電流であってよい。過電流検出回路4は、検出部40と、切替部41とを有する。
 [2.1.1.検出部40]
 検出部40は、駆動制御装置2に対応する主スイッチング素子Qの主端子間に流れる電流が過電流であるか否かを検出する。検出部40は、パラメータ検出部400と、複数の比較部401(本実施形態では一例として3つの比較部401a~401c)とを有してよい。
 パラメータ検出部400は、主スイッチング素子Qの主端子間に流れる電流に応じたパラメータを検出する。本実施形態では一例として、パラメータ検出部400は、主スイッチング素子Qのセンスエミッタ端子に接続されたセンス電流検出抵抗R1を有しており、センスエミッタ電流がセンス電流検出抵抗R1を流れることに応じて検出される電圧をパラメータとして検出してよい。なお、パラメータ検出部400は、図示しない電流センサで測定されるエミッタ電流やセンスエミッタ電流など、他の値をパラメータとして検出してもよい。パラメータ検出部400は、検出したパラメータの大きさを示す電圧を各比較部401に供給してよい。
 各比較部401は、パラメータ検出部400から供給されるパラメータと、互いに異なる閾値とを比較する。各比較部401は、コンパレータであってよく、主スイッチング素子Qの主端子間に流れる電流に応じて検出される電圧と、互いに異なる基準電圧とを比較してよい。本実施形態では一例として、各比較部401は、パラメータ検出部400から非反転入力端子に入力される電圧と、反転入力端子に入力される基準電圧とを比較してよく、パラメータ検出部400からの電圧が基準電圧よりも大きい場合にハイとなる信号を切替部41に供給してよい。
 ここで、各比較部401の基準電圧は、電力変換装置1の製造段階で設定されてよく、例えば、主スイッチング素子QをX相、Y相およびZ相としてそれぞれ動作させて主スイッチング素子Qに最小の過電流を流した場合にセンス電流検出抵抗R1で検出される電圧に基づいて設定されてよい。
 本実施形態では一例として、比較部401aの基準電圧は、主スイッチング素子QをX相として動作させて主スイッチング素子Qに最小の過電流を流した場合にセンス電流検出抵抗R1で検出される電圧であってよい。比較部401bの基準電圧は、主スイッチング素子QをY相として動作させて主スイッチング素子Qに最小の過電流を流した場合にセンス電流検出抵抗R1で検出される電圧であってよい。比較部401cの基準電圧は、主スイッチング素子QをZ相として動作させて主スイッチング素子Qに最小の過電流を流した場合にセンス電流検出抵抗R1で検出される電圧であってよい。
 [2.1.2.切替部41]
 切替部41は、駆動制御装置2に対応する主スイッチング素子Qが電力変換装置1のいずれの相に用いられるかに応じて、検出部40における過電流の判定に用いる閾値を切り替える。切替部41は、互いに異なる閾値を用いる複数の比較部401のうち過電流の検出に使用する比較部401を切り替えることで、過電流の判定に用いる閾値を切り替えてよい。また、切替部41は、入力される切替信号に基づいて切り替えを行ってよい。
 本実施形態では一例として、切替部41は、複数のNot回路410(本実施形態では一例として2つのNot回路410a,410b)と、複数のAND回路411(本実施形態では一例として3つのAND回路411a~411c)とを有している。Not回路410は切替信号を反転して反転信号を生成するものであり、Not回路410aは切替信号S0の反転信号をAND回路411bに供給し、Not回路410bは切替信号S1の反転信号をAND回路411aに供給する。AND回路411は入力される信号の論理積をとるものであり、AND回路411aは切替信号S0と、切替信号S1の反転信号と、比較部401aによる比較結果の信号との論理積をとる。同様に、AND回路411bは切替信号S0の反転信号と、切替信号S1と、比較部401bによる比較結果の信号との論理積をとり、AND回路411cは切替信号S0と、切替信号S1と、比較部401cによる比較結果の信号との論理積をとる。以上の切替部41によれば、2つの切替信号S0,S1に応じて3つのAND回路411a~411cのうち何れか1つが選択され、選択されたAND回路411に対応する比較部401の比較結果が出力される。
 ここで、切替信号S0,S1は、主スイッチング素子Qが用いられる相に応じて過電流検出回路4に供給されてよい。例えば、切替信号S0,S1の信号値は駆動制御装置2の製造時に設定されてよく、駆動制御装置2に内蔵される電子部品によって設定されてよい。これに代えて、切替信号S0,S1の信号値は、駆動制御装置2の製造後に駆動制御装置2の外部から供給されてもよい。
 本実施形態では一例として、駆動制御装置2に対応する主スイッチング素子QがX相に用いられる場合には、切替信号S0はハイ、切替信号S1はローであってよい。これにより、AND回路411aが選択されて比較部401aの比較結果が切替部41から出力される。また、駆動制御装置2に対応する主スイッチング素子QがY相に用いられる場合には、切替信号S0はロー、切替信号S1はハイであってよい。これにより、AND回路411bが選択されて比較部401bの比較結果が切替部41から出力される。また、駆動制御装置2に対応する主スイッチング素子QがZ相に用いられる場合には、切替信号S0はハイ、切替信号S1はハイであってよい。これにより、AND回路411cが選択されて比較部401cの比較結果が切替部41から出力される。
 切替部41の出力信号は、主スイッチング素子Qに流れる電流が過電流であるか否かを示す過電流検出信号であってよく、過電流の場合にハイとなり、過電流ではない場合にローとなってよい。切替部41は、過電流検出信号をゲート駆動回路3に供給してよい。また、切替部41は、過電流検出信号をアラーム端子109に出力してもよい。
 [2.2.ゲート駆動回路3]
 ゲート駆動回路3は、主スイッチング素子Qのゲートを駆動する。ゲート駆動回路3は、電力変換装置1に含まれる複数の主スイッチング素子Qのうち、駆動制御装置2に対応する主スイッチング素子Qのゲートを駆動してよい。
 ゲート駆動回路3は、正常時に駆動信号Vinに応じて主スイッチング素子Qをターンオンするターンオン回路30と、正常時に駆動信号Vinに応じて主スイッチング素子Qをターンオフするターンオフ回路31と、過電流の発生時に主スイッチング素子Qをターンオフする遮断回路32とを有する。
 [2.2.1.ターンオン回路30]
 ターンオン回路30は、スイッチング素子301~304と、抵抗R2と、電源306と、オペアンプ307とを有する。なお、本実施形態では一例として、スイッチング素子301~304はMOSFETであるが、他の種類のスイッチング素子であってもよい。
 スイッチング素子301は、スイッチング素子302のゲートとグランドとの間に主端子が接続されている。スイッチング素子301はPチャネル型であり、スイッチング素子301のゲートはVin端子108と接続されている。これにより、駆動信号Vinがローの場合にはスイッチング素子301がオンとなってスイッチング素子302のゲート電荷が引き抜かれ、駆動信号Vinがハイの場合にはスイッチング素子301がオフとなって、スイッチング素子302のゲート電荷の引き抜きが行われない。
 スイッチング素子302は、Nチャネル型であり、抵抗R2を介してグランドと接続され、オン状態の場合には抵抗R2に電流を流すことによりスイッチング素子302と抵抗R2との接続点N1の電位をグランド電位よりも高くする。オペアンプ307は、非反転入力端子に電源306が接続され、反転入力端子に接続点N1が接続されており、反転入力端子の入力電圧が非反転入力端子の入力電圧に近づくほど、出力電圧を小さくする。オペアンプ307の出力端子にはスイッチング素子302のゲートが接続される。スイッチング素子302、オペアンプ307、電源306および抵抗R2は定電流回路を形成してよく、スイッチング素子301がオフの場合(つまり駆動信号Vinがハイの場合)に、接続点N1に流れる電流の大きさを維持してよい。
 スイッチング素子303,304は、カレントミラー回路を形成しており、それぞれドレイン端子が入力電圧VCCに接続され、ゲート同士が接続されるとともに、ゲート同士の接続点と、一方のスイッチング素子303のドレイン端子と、スイッチング素子302のソース端子とが接続される。スイッチング素子303,304はNチャネル型であり、スイッチング素子302および抵抗R2に電流が流れて接続点N1の電位がグランド電位よりも高くなる場合(つまり駆動信号Vinがローの場合)に、スイッチング素子302に流れる電流と等しい電流を主スイッチング素子Qのゲート電流とする。これにより、主スイッチング素子Qのゲートへ電荷が充電されて主スイッチング素子Qがターンオンされる。
 [2.2.2.ターンオフ回路31]
 ターンオフ回路31は、主スイッチング素子Qのゲートとグランドとの間に主端子が接続されたスイッチング素子310を有する。スイッチング素子310は、Pチャネル型であり、Vin端子108とゲートとが接続されている。これにより、駆動信号Vinがローの場合にスイッチング素子310がオンとなり、主スイッチング素子Qのゲート電荷が引き抜かれ、主スイッチング素子Qがターンオフされる。なお、本実施形態では一例として、スイッチング素子310はMOSFETであるが、他の種類のスイッチング素子であってもよい。
 [2.2.3.遮断回路32]
 遮断回路32は、遅延回路321と、スイッチング素子322とを有する。
 遅延回路321は、過電流検出回路4による過電流の検出動作よりも遮断回路32による主スイッチング素子Qのターンオフ動作を遅くすることで、これらの動作のコンフリクトを回避し動作を安定化する。遅延回路321は、ローパスフィルタ回路として機能してもよい。本実施形態では一例として、遅延回路321は、RC直列回路であってよい。遅延回路321は、主スイッチング素子Qを遮断するための駆動停止信号をスイッチング素子322に供給してよい。本実施形態では一例として、駆動停止信号は、正常時にはローであってよく、主スイッチング素子Qに流れる電流が過電流であることを示すハイの過電流検出信号が遅延回路321に供給されて基準時間が経過することに応じてハイとなってよい。
 スイッチング素子322は、主スイッチング素子Qのゲートとグランドとの間に主端子が接続されている。スイッチング素子322は、Nチャネル型であり、遅延回路321とゲートとが接続されている。これにより、駆動停止信号がハイの場合にスイッチング素子322がオンとなり、主スイッチング素子Qのゲート電荷が引き抜かれ、主スイッチング素子Qがターンオフされる。なお、スイッチング素子322は主スイッチング素子Qのソフト遮断を行ってよく、ターンオフ回路31のスイッチング素子310と比較して緩やかに主スイッチング素子Qをターンオフしてよい。なお、本実施形態では一例として、スイッチング素子322はMOSFETであるが、他の種類のスイッチング素子であってもよい。
 以上の駆動制御装置2によれば、主スイッチング素子Qがいずれの相に用いられるかに応じて過電流判定の閾値が切り替えられるので、使用される相に応じて検出するべき過電流のレベルが異なる場合であっても、適切に過電流を検出することができる。
 また、互いに異なる閾値を用いる複数の比較部401のうちで、過電流の検出に使用する比較部401が切り替えられるので、閾値を確実に切り替えることができる。
 また、各比較部401では、主スイッチング素子Qの主端子間に流れる電流に応じて検出される電圧と、互いに異なる基準電圧とが比較されるので、アナログ量を用いて比較を行うことができる。
 また、主スイッチング素子Qが用いられる相に応じて供給される信号に基づいて閾値が切り替えられるので、信号の供給によって閾値を切り替えることができる。従って、過電流検出回路を駆動制御装置2に組み込んだ後であっても、閾値を切り替えることができる。
 [3.変形例]
 図3は、変形例に係る過電流検出回路4Aを示す。なお、本変形例において、図2に示された駆動制御装置2と略同一のものには同一の符号を付け、説明を省略する。
 過電流検出回路4Aは、検出部42と、切替部43とを有する。
 検出部42は、主スイッチング素子Qの主端子間に流れる電流に応じて検出される電圧と、基準電圧とを比較する比較部421を有する。比較部421は1つのみ検出部42に具備されてよい。比較部421は、パラメータ検出部400から非反転入力端子に入力される電圧と、切替部43から反転入力端子に入力される基準電圧とを比較してよく、パラメータ検出部400からの電圧が基準電圧よりも大きい場合にハイとなる過電流検出信号を遅延回路321に供給してよい。
 切替部43は、駆動制御装置2に対応する主スイッチング素子Qが電力変換装置1のいずれの相に用いられるかに応じて、検出部42における過電流の判定に用いる閾値を切り替える。切替部43は、比較部421に供給される基準電圧を切り替えてよい。
 本実施形態では一例として、切替部43は、複数のNot回路430(本実施形態では一例として2つのNot回路430a,430b)と、複数のAND回路431(本実施形態では一例として3つのAND回路431a~431c)と、複数の抵抗432(本実施形態では一例として4つの抵抗432a~432d)と、複数のスイッチング素子433(本実施形態では一例として3つのスイッチング素子433a~433c)とを有する。
 Not回路430は切替信号を反転して反転信号を生成するものであり、Not回路430aは切替信号S0の反転信号をAND回路431bに供給し、Not回路430bは切替信号S1の反転信号をAND回路431aに供給する。
 AND回路431は入力される信号の論理積をとるものであり、AND回路431aは切替信号S0と、切替信号S1の反転信号との論理積をとって演算結果をスイッチング素子433aのゲートに供給する。同様に、AND回路431bは切替信号S0の反転信号と、切替信号S1との論理積をとって演算結果をスイッチング素子433bのゲートに供給する。AND回路431cは切替信号S0と、切替信号S1との論理積をとって演算結果をスイッチング素子433cのゲートに供給する。これにより、2つの切替信号S1,S0に応じて3つのAND回路431a~431cのうち何れか1つが選択されてハイの出力信号を出力し、3つのスイッチング素子433a~433cのうち何れか1つがオン状態となる。
 4つの抵抗432a~432dは入力電圧VDDを分圧して別々の電圧を生じさせるものであり、グランドとの間に直列に接続される。抵抗432a~432dの大きさは同じであってもよいし、異なってもよい。ここで、抵抗432a~432dの間の各接続点で生じる電圧は、スイッチング素子433a~433cにより択一的に選択されて比較部421の反転入力端子に基準電圧として供給されうる。各接続点で生じる電圧は、主スイッチング素子QをX相,Y相,Z相として動作させて主スイッチング素子Qに最小の過電流を流した場合にセンス電流検出抵抗R1で検出される電圧に基づいて設定されてよい。
 スイッチング素子433aは抵抗432a,432bの間の接続点と比較部421の反転入力端子との間に、スイッチング素子433bは抵抗432b,432cの間の接続点と比較部421の反転入力端子との間に、スイッチング素子433cは抵抗432c,432dの間の接続点と比較部421の反転入力端子との間に接続されている。これにより、2つの切替信号S1,S0によってオン状態となるスイッチング素子433a~433cが切り替えられることにより、比較部421に供給される基準電圧が切り替えられる。
 以上の過電流検出回路4Aによれば、比較部401に供給される基準電圧が切り替えられるので、過電流判定の閾値を確実に切り替えることができる。
 なお、上記の変形例においては、入力電圧を抵抗432で分圧した電圧の何れかを基準電圧として比較部421に供給することとして説明したが、複数の電圧源から出力される別々の電圧の何れかを比較部421に供給することとしてもよい。
 [4.その他の変形例]
 なお、上記の実施形態および変形例においては、駆動制御装置2が上下アームの主スイッチング素子Qのそれぞれに対して設けられることとして説明したが、駆動制御装置2が下アームの主スイッチング素子Qごとに設けられる限りにおいて、上アームの主スイッチング素子Qに対しては他の構成の駆動制御装置が設けられることとしてもよい。この場合、上アームの駆動制御装置は、上アームの主スイッチング素子Qごとに設けられて主スイッチング素子Q,Q,Qを別々に制御してもよいし、上アームの3つの主スイッチング素子Qに対して共通に設けられて主スイッチング素子Q,Q,Qのそれぞれを制御してもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 1電力変換装置
 2 駆動制御装置
 3 ゲート駆動回路
 4 過電流検出回路
 30 ターンオン回路
 31 ターンオフ回路
 32 遮断回路
 40 検出部
 41 切替部
 42 検出部
 43 切替部
 101 正側電源線
 102 負側電源線
 103 正側端子
 104 負側端子
 105 出力端子
 106 電源端子
 107 グランド端子
 108 Vin端子
 109 アラーム端子
 301 スイッチング素子
 302 スイッチング素子
 303 スイッチング素子
 304 スイッチング素子
 306 電源
 307 オペアンプ
 310 スイッチング素子
 321 遅延回路
 322 スイッチング素子
 400 パラメータ検出部
 401 比較部
 410 Not回路
 411 AND回路
 421 比較部
 430 Not回路
 431 AND回路
 432 抵抗
 433 スイッチング素子
 D 還流ダイオード
 Q 主スイッチング素子
 R1 抵抗
 R2 抵抗

Claims (7)

  1.  電力変換装置に用いられる主スイッチング素子の主端子間に流れる電流が過電流であるか否かを検出する検出部と、
     前記主スイッチング素子が前記電力変換装置のいずれの相に用いられるかに応じて、前記検出部における前記過電流の判定に用いる閾値を切り替える切替部と、
     を備える過電流検出回路。
  2.  前記検出部は、前記主端子間に流れる電流に応じたパラメータと、互いに異なる閾値とを比較する複数の比較部を有し、
     前記切替部は、前記複数の比較部のうち前記過電流の検出に使用する比較部を切り替える、請求項1に記載の過電流検出回路。
  3.  各比較部は、前記主端子間に流れる電流に応じて検出される電圧と、互いに異なる基準電圧とを比較する、請求項2に記載の過電流検出回路。
  4.  前記検出部は、前記主端子間に流れる電流に応じて検出される電圧と、基準電圧とを比較する比較部を有し、
     前記切替部は、前記比較部に供給される基準電圧を切り替える、請求項1に記載の過電流検出回路。
  5.  前記切替部は、前記主スイッチング素子が用いられる相に応じて供給される信号に基づいて前記閾値を切り替える、請求項1から4の何れか一項に記載の過電流検出回路。
  6.  主スイッチング素子のゲートを駆動するゲート駆動回路と、
     前記主スイッチング素子の主端子間に流れる電流が過電流であるか否かを検出する、請求項1から5の何れか一項に記載の過電流検出回路と、
     を備え、
     前記ゲート駆動回路は、前記過電流検出回路により過電流が検出されることに応じて、前記主スイッチング素子をオフ状態とする、駆動制御装置。
  7.  正側電源線および負側電源線の間に直列に接続された複数対の主スイッチング素子と、
     前記複数対の主スイッチング素子のうち、前記負側電源線の側の主スイッチング素子の相ごとに設けられた、請求項6に記載の駆動制御装置と、
     を備え、
     各駆動制御装置における前記過電流検出回路は、対応する前記主スイッチング素子が何れの相に用いられるかに応じて、別々の前記閾値を設定される、電力変換装置。
PCT/JP2022/007208 2021-04-23 2022-02-22 過電流検出回路、駆動制御装置および電力変換装置 WO2022224581A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280006756.XA CN116264856A (zh) 2021-04-23 2022-02-22 过电流检测电路、驱动控制装置以及电力转换装置
JP2023516313A JP7513201B2 (ja) 2021-04-23 2022-02-22 過電流検出回路、駆動制御装置および電力変換装置
US18/187,670 US20230231549A1 (en) 2021-04-23 2023-03-22 Overcurrent detection circuit, drive control device, and power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021073347 2021-04-23
JP2021-073347 2021-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/187,670 Continuation US20230231549A1 (en) 2021-04-23 2023-03-22 Overcurrent detection circuit, drive control device, and power conversion device

Publications (1)

Publication Number Publication Date
WO2022224581A1 true WO2022224581A1 (ja) 2022-10-27

Family

ID=83722790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007208 WO2022224581A1 (ja) 2021-04-23 2022-02-22 過電流検出回路、駆動制御装置および電力変換装置

Country Status (4)

Country Link
US (1) US20230231549A1 (ja)
JP (1) JP7513201B2 (ja)
CN (1) CN116264856A (ja)
WO (1) WO2022224581A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151631A (ja) * 2003-11-12 2005-06-09 Mitsubishi Electric Corp 半導体装置および過電流の基準レベルのデータ設定方法
JP2009229133A (ja) * 2008-03-19 2009-10-08 Sanyo Electric Co Ltd 集積回路、半導体装置、電気機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151631A (ja) * 2003-11-12 2005-06-09 Mitsubishi Electric Corp 半導体装置および過電流の基準レベルのデータ設定方法
JP2009229133A (ja) * 2008-03-19 2009-10-08 Sanyo Electric Co Ltd 集積回路、半導体装置、電気機器

Also Published As

Publication number Publication date
CN116264856A (zh) 2023-06-16
JP7513201B2 (ja) 2024-07-09
US20230231549A1 (en) 2023-07-20
JPWO2022224581A1 (ja) 2022-10-27

Similar Documents

Publication Publication Date Title
KR101198566B1 (ko) 다상 인버터 및 그 제어 방법, 및 송풍기 및 다상 전류출력 시스템
JP6780790B2 (ja) 過電流検出装置、制御装置および過電流検出方法
CN110401335B (zh) 驱动电路、功率模块以及电力变换系统
KR20210010377A (ko) 게이트 드라이버 회로용 단락 검출 및 보호와 로직 분석을 사용하여 이를 검출하는 방법
KR20170041852A (ko) 자기 소호형 반도체 소자의 단락 보호 회로
US9712044B2 (en) Power converter
US10742204B2 (en) Semiconductor device and power module
EP2560283A1 (en) Short-circuit protection method
JPWO2012153458A1 (ja) 制御装置
CN110785933A (zh) 半导体开关元件的短路保护电路
CN114124053A (zh) 半导体装置
US10141834B2 (en) Multi-phase power conversion device control circuit
JP6664311B2 (ja) 駆動システムおよび電力変換装置
KR20060047719A (ko) 반도체 장치
CN109274072B (zh) 开关电路
CN108684213B (zh) 半导体模块、在半导体模块中使用的开关元件的选定方法以及开关元件的芯片设计方法
WO2022224581A1 (ja) 過電流検出回路、駆動制御装置および電力変換装置
JP2019176696A (ja) パワートランジスタの駆動回路、パワーモジュール
JP7540249B2 (ja) 半導体モジュール
KR101143577B1 (ko) 인버터의 과전류 보호장치
US11929666B2 (en) Gate drive circuit and power conversion device
US12113518B2 (en) Circuit arrangement for controlling a plurality of semiconductor switches connected in parallel
US11455023B2 (en) Power module
KR102470390B1 (ko) Ipm 소손 감지 장치
JP7058764B1 (ja) 電力変換装置、半導体スイッチ駆動装置及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023516313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791363

Country of ref document: EP

Kind code of ref document: A1