WO2022224412A1 - エッチング方法 - Google Patents

エッチング方法 Download PDF

Info

Publication number
WO2022224412A1
WO2022224412A1 PCT/JP2021/016333 JP2021016333W WO2022224412A1 WO 2022224412 A1 WO2022224412 A1 WO 2022224412A1 JP 2021016333 W JP2021016333 W JP 2021016333W WO 2022224412 A1 WO2022224412 A1 WO 2022224412A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
wafer
tantalum nitride
film
plasma
Prior art date
Application number
PCT/JP2021/016333
Other languages
English (en)
French (fr)
Inventor
和典 篠田
浩孝 濱村
賢治 前田
賢悦 横川
健治 石川
勝 堀
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to US17/642,356 priority Critical patent/US20240047222A1/en
Priority to CN202180005025.9A priority patent/CN115516609A/zh
Priority to PCT/JP2021/016333 priority patent/WO2022224412A1/ja
Priority to JP2022508797A priority patent/JPWO2022224412A1/ja
Priority to KR1020227005694A priority patent/KR20220146408A/ko
Priority to TW111109154A priority patent/TWI812063B/zh
Publication of WO2022224412A1 publication Critical patent/WO2022224412A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • H01L21/31122Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a method for etching a film layer to be processed containing a transition metal nitride, for example, a tantalum nitride film, using plasma.
  • a transition metal nitride for example, a tantalum nitride film
  • etching that combines isotropy and high controllability of processing dimensions at the atomic layer level.
  • isotropic etching techniques include etching of silicon dioxide using a mixed aqueous solution of hydrofluoric acid and ammonium fluoride, etching of silicon nitride using hot phosphoric acid, and etching of silicon nitride using hydrofluoric acid.
  • Wet etching techniques have been widely used, such as etching tantalum nitride.
  • wet etching techniques using such chemicals there is a problem that the pattern collapse due to the surface tension of the rinsing liquid becomes apparent as the pattern becomes finer.
  • the pattern spacing limit at which surface tension when the rinse solution dries causes the pattern to collapse is equal to the square of the aspect ratio. reported to increase proportionately. Therefore, development of a process technique for isotropically etching various films without using chemicals has been strongly desired.
  • tantalum nitride is widely used as a work function metal and barrier metal in the above semiconductor devices. Therefore, as a process for manufacturing next-generation semiconductor devices, there is a demand for a tantalum nitride etching technique that combines isotropy, high controllability of processing dimensions at the atomic layer level, and high selectivity.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-119977
  • Patent Document 1 describes a method for selectively etching away tantalum nitride in a structure composed of a tantalum nitride layer as a barrier metal and copper as a wiring material.
  • a technique is disclosed in which tantalum nitride is etched selectively to copper with a plasma of tetrafluoroethylene (C 2 F 4 ) and oxygen (O 2 ) after passivating the surface of the copper at.
  • the etching of the tantalum nitride film progresses continuously as the etching time increases.
  • the amount of etching is adjusted by detecting and adjusting the time after the start of the etching process.
  • extremely minute amount of etching for example, etching depth (width) required in the manufacturing process of fine semiconductor devices after the next generation, is at the atomic layer level. Since it is difficult to control the etching with high accuracy, there is a risk that the accuracy and yield of the etching process will be compromised.
  • the etching amount becomes non-uniform reflecting the distribution of radicals, and the uniformity of the etching amount in the wafer in-plane direction and the pattern depth direction is low. It must be controlled by the plasma processing time. For this reason, the application of the conventional continuous plasma etching technique is considered to be limited in the next-generation device manufacturing process, which requires high dimensional controllability at the atomic layer level.
  • An object of the present invention is to provide an etching technique with high etching amount uniformity and improved etching processing yield.
  • An etching technique is an etching method for etching a film layer to be processed containing a transition metal nitride disposed on a surface of a wafer, wherein the surface of the film layer contains fluorine, hydrogen and oxygen. and forming a reaction layer on the surface of the film layer by supplying reactive particles that do not contain , and heating the film layer to detach the reaction layer.
  • the etching technique of the present invention it is possible to improve the uniformity of the etching amount and improve the yield of the etching process. For example, when etching a tantalum nitride film as a film layer to be processed containing nitrides of transition metals, high uniformity of the etching amount in the wafer in-plane direction and pattern depth direction, and high processing dimension control at the atomic layer level. It is possible to provide an isotropic atomic layer etching technique in which etching is performed at a high temperature.
  • FIG. 1 is a vertical cross-sectional view schematically showing the outline of the configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing an outline of the etching process of a film containing tantalum nitride formed in advance on a wafer, which is performed by the plasma processing apparatus according to the embodiment.
  • FIG. 3 is a time chart showing changes over time of a plurality of parameters included in processing conditions during wafer processing according to an embodiment.
  • FIG. 4 is a cross-sectional view schematically showing an overview of changes in film structure including a film containing tantalum nitride during processing of a wafer according to an example.
  • FIG. 5 is a diagram showing analysis results of the wafer surface according to the example.
  • FIG. 1 is a vertical cross-sectional view schematically showing the outline of the configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing an outline of the etching process of a
  • FIG. 6 is a diagram showing the reaction time dependence of the surface reaction layer formation amount according to the example.
  • FIG. 7 is a diagram showing the dependence of the surface reaction layer remaining amount on the heating time according to the example.
  • FIG. 8 is a graph showing the relationship between the number of cycles and the amount of etching in the etching process performed by the plasma processing apparatus according to the example.
  • FIG. 9 is a longitudinal section schematically showing a change in the film structure when plasma etching is performed on a fine, high-aspect-ratio film structure formed on a sample on a substrate such as a semiconductor wafer to be processed according to the embodiment. It is a diagram.
  • FIG. 9 is a longitudinal section schematically showing a change in the film structure when plasma etching is performed on a fine, high-aspect-ratio film structure formed on a sample on a substrate such as a semiconductor wafer to be processed according to the embodiment. It is a diagram.
  • FIG. 9 is a diagram showing the reaction time dependence of the surface reaction layer
  • FIG. 10 is a longitudinal section schematically showing a change in the film structure when plasma etching is performed on a fine, high-aspect-ratio film structure formed on a sample on a substrate such as a semiconductor wafer to be processed by a conventional technique. It is a plan view.
  • a tantalum nitride film formed on a fine fin structure with a high aspect ratio is isotropically and at a high atomic layer level. It is thought that a technique for etching with precision is required. As an example, the inventors have studied the case where the structure shown in FIG. 10 is subjected to etching using plasma according to the conventional technique.
  • FIG. 10 shows the film structure when a predetermined structure in which a plurality of fin structures are formed adjacent to each other on the left and right and formed on a sample on a substrate such as a semiconductor wafer to be processed is subjected to plasma etching by a conventional technique. It is a vertical cross-sectional view schematically showing a change in . (a) to (c) of FIG. 10 show three stages of the shape of the film structure that is changed by the etching process.
  • FIG. 10A shows a carbon film 904 as a mask for protecting the tantalum nitride film 903 to be processed and the tantalum nitride film 903 not to be processed on the surface of a fin structure 902 formed on an underlying structure 901 . is formed, and shows the film structure in a state where the etching process using plasma is not started.
  • FIG. 10A shows a carbon film 904 as a mask for protecting the tantalum nitride film 903 to be processed and the tantalum nitride film 903 not to be processed on the surface of a fin structure 902 formed on an underlying structure 901 . is formed, and shows the film structure in a state where the etching process using plasma is not started.
  • FIG. 10 is a diagram showing a state in which the reaction product 906 is removed upward and etching of the tantalum nitride film 903 has progressed.
  • FIG. 10(c) is a diagram showing a state in which etching of the tantalum nitride film 903 using the above plasma is stopped.
  • the fin structure 902 is made of silicon and formed in advance on the underlying structure 901, and its surface is coated with hafnium oxide or titanium nitride (not shown).
  • the tantalum nitride film 903 covers the surface of the fin structure 902 inside the high aspect ratio trench 911 forming the side walls of the tantalum nitride film 903.
  • a non-volatile surface reaction layer was not formed on the surface of the tantalum nitride film 903 because the reaction product 906 was not made non-volatile by gas chemistry. It was confirmed that the etching progressed continuously due to the continuous detachment of the reaction product 906 having volatility.
  • the reactive species 905 supplied from the plasma formed above the sample enters the groove 911 from above and is consumed by the tantalum nitride film 903 formed near the opening at the upper end of the groove 911 . be. Therefore, the amount of reactive species 905 reaching the tantalum nitride film 903 in the region below the trench 911 (bottom of the trench 911) is reduced. As a result, the distribution of the etching amount of the tantalum nitride film 903 becomes non-uniform in the vertical direction of the groove 911 . , becomes smaller at the bottom of the groove 911 .
  • the etching amount of the tantalum nitride film 903 is unevenly distributed, and there is a possibility that the yield of sample processing or semiconductor device manufacturing is lowered. .
  • the plasma contains a large amount of oxygen radicals.
  • Etching of the carbon film 904 used to protect the non-etching target portion of the tantalum nitride film 903 also progresses continuously. Therefore, as the etching of the tantalum nitride film 903 progresses, the film thickness of the carbon film 904 is greatly reduced, and it becomes substantially difficult to protect the tantalum nitride film 903 .
  • the etching amount of the tantalum nitride film 903 becomes non-uniform reflecting the distribution of radicals, and the etching amount of the tantalum nitride film 903 in the wafer in-plane direction and the pattern depth direction becomes uneven.
  • the etching amount of the tantalum nitride film 903 must be controlled by the plasma processing time. For this reason, the application of the conventional continuous plasma etching technique is considered to be limited in the next-generation device manufacturing process, which requires high dimensional controllability at the atomic layer level.
  • the inventors tried etching a tantalum nitride film using plasma of various gases. as a result, (1) By supplying plasma of a gas containing fluorine, hydrogen, and nitrogen to a tantalum nitride film, a tantalum-fluorine (Ta-F) bond or a nitrogen-hydrogen (N-H) bond is formed on the surface of the tantalum nitride film as a main component. forming a surface reaction layer; (2) the amount of the surface reaction layer produced is self-saturating (self-limiting); (3) We have found that the surface reaction layer can be removed by heating.
  • the method of etching a tantalum nitride film which is a nitride of a transition metal, contains tetrafluoromethane (CF 4 ), hydrogen (H 2 ), and nitrogen (N 2 ).
  • a gas plasma is formed to supply reactive particles containing fluorine and hydrogen and not containing oxygen from the plasma to the surface of the tantalum nitride film to be etched, thereby forming a surface reaction layer on the surface of the tantalum nitride film.
  • a step of forming and then a step of removing the surface reaction layer by heating are performed.
  • the step of forming the surface reaction layer and the step of removing the surface reaction layer have self-saturation. non-uniformity is suppressed.
  • the thickness of the tantalum nitride film removed in one cycle can be controlled with atomic layer precision, and the amount of etching obtained by repeating the cycle can be controlled by the number of repeated cycles. The dimensional accuracy of a semiconductor device formed by etching a tantalum film can be improved.
  • FIG. 9 schematically shows a change in the film structure when plasma etching is performed on a fine, high-aspect-ratio film structure formed on a sample on a substrate such as a semiconductor wafer to be processed, according to the technique of the present invention. It is a longitudinal cross-sectional view.
  • FIGS. 9(a) to 9(c) show three stages of the shape of the film structure that is changed by the etching process.
  • FIG. 9A shows a mask containing carbon as a mask for protecting the tantalum nitride film 903 to be processed and the tantalum nitride film 903 not to be processed on the surface of the fin structure 902 formed on the underlying structure 901 .
  • 9 is a diagram showing a film structure in which a carbon film 904 as a layer is formed, and the film structure in a state where an etching process using plasma is not started.
  • FIG. FIG. 9(b) shows a mixture containing tetrafluoromethane (CF 4 ), hydrogen (H 2 ) and nitrogen (N 2 ) for etching the tantalum nitride film 903 of the film structure of FIG. 9( a).
  • Gas plasma is formed, and the surface of the tantalum nitride film 903 to be etched, which is not covered with the carbon film 904, is supplied with reactive particles containing fluorine and hydrogen and not containing oxygen from the plasma for etching.
  • a surface reaction layer is formed on the surface of the tantalum nitride film 903 to be processed.
  • this surface reaction layer is removed (desorbed) by heating. That is, a step of forming a surface reaction layer and a step of desorbing the surface reaction layer by heating are performed. These two steps are regarded as one cycle, and this cycle is repeated a plurality of times to achieve a desired amount of etching of the tantalum nitride film. Thereby, as shown in FIG.
  • the tantalum nitride film 903 to be etched which is not covered with the carbon film 904, can be selectively removed by etching.
  • FIGS. 9(a)-(c) reference can be made to the description of FIGS. 4(a)-(c) described later.
  • atomic layer etching is not limited to atomic layer etching in the narrow sense that the amount of etching per cycle is equivalent to the thickness of a layer composed of a single atom of the substance constituting the target film. . Even if the amount of etching per cycle is on the order of nanometers or more, each process tends to be self-saturating, that is, self-limiting, with respect to processing time. It is called atomic layer etching. Terms such as “digital etching”, “self-limiting cyclic etching", “atomic level etching”, and “layer-by-layer etching” can also be used for equivalent processes.
  • the surface of a tantalum nitride film to be treated is irradiated with plasma formed using a mixed gas of methane tetrafluoride or carbon tetrafluoride (CF 4 ), hydrogen (H 2 ), and nitrogen (N 2 ).
  • CF 4 methane tetrafluoride or carbon tetrafluoride
  • H 2 hydrogen
  • N 2 nitrogen
  • a step of removing the surface reaction layer by heating the wafer using an infrared lamp is carried out, thereby removing the tantalum nitride film to be processed which has been previously formed on a semiconductor wafer such as silicon. is isotropically atomic layer etched.
  • FIG. 1 is a vertical cross-sectional view schematically showing the outline of the configuration of the plasma processing apparatus according to the embodiment of the present invention.
  • a processing chamber 1 comprises a base chamber 11, in which a wafer stage 4 (hereinafter referred to as stage 4) for mounting a wafer 2 (hereinafter referred to as wafer 2) as a sample to be processed is installed.
  • stage 4 wafer stage 4
  • wafer 2 wafer 2
  • An ICP (Inductively Coupled Plasma) discharge method is used for the plasma source, and above the processing chamber 1, a plasma source comprising a quartz chamber 12, an ICP coil 34, and a high frequency power supply 20 is installed.
  • the ICP coil 34 is installed outside the quartz chamber 12 .
  • a high frequency power supply 20 for plasma generation is connected to the ICP coil 34 via a matching box 22 .
  • a frequency band of several tens of MHz, such as 13.56 MHz, is used as the frequency of the high-frequency power.
  • a top plate 6 is installed above the quartz chamber 12 .
  • a shower plate 5 is installed on the top plate 6, and a gas dispersion plate 17 is installed below it.
  • a processing gas is introduced into the processing chamber 1 from the outer periphery of the gas distribution plate 17 .
  • the processing gas is arranged in a mass flow controller control unit 51 and the flow rate of the supplied gas is adjusted by a mass flow controller 50 installed for each gas type.
  • a mass flow controller 50 installed for each gas type.
  • at least methane tetrafluoride or carbon tetrafluoride (CF 4 ), hydrogen (H 2 ), and nitrogen (N 2 ) are supplied to the processing chamber 1 as processing gases, and mass flows corresponding to each of these gases are provided.
  • Controllers 50-1, 50-2, 50-3, 50-4, 50-5 and 50-6 are provided.
  • the gas to be supplied is not limited to these.
  • the mass flow controller control unit 51 also includes a mass flow controller 50-7 for adjusting the flow rate of He gas supplied between the back surface of the wafer 2 and the top surface of the dielectric film of the stage 4 on which the wafer 2 is placed, as will be described later. are placed in
  • the lower part of the processing chamber 1 is connected to an exhaust means 15 by a vacuum exhaust pipe 16 in order to reduce the pressure inside the processing chamber 1 .
  • the evacuation means 15 is assumed to be composed of, for example, a turbo-molecular pump, a mechanical booster pump, or a dry pump.
  • the pressure regulating means 14 is installed upstream of the exhaust means 15 .
  • the pressure regulating means 14 adjusts the flow rate of the particles of the internal gas and plasma 10 discharged from the processing chamber 1 by the operation of the exhaust means 15 to the flow path, which is the cross-sectional area of the plane perpendicular to the axial direction of the evacuation pipe 16.
  • a plurality of plate-shaped flaps arranged with an axis extending in a transverse direction in the flow channel and rotating around the axis in order to adjust the pressure in the processing chamber 1 and the discharge area 3 by increasing or decreasing the cross-sectional area. and a plate member that moves across the axial direction inside the channel.
  • the infrared lamp unit for heating the wafer 2 is installed between the stage 4 and the quartz chamber 12 that constitutes the ICP plasma source.
  • the infrared lamp unit mainly includes an infrared lamp 62 , a reflector 63 that reflects infrared light, and a light transmission window 74 .
  • a circular (ring-shaped) lamp is used as the infrared lamp 62 . It is assumed that the light emitted from the infrared lamp 62 mainly emits light in the range of visible light to infrared light. Here, such light is called infrared light. In the configuration shown in FIG.
  • infrared lamps 62-1, 62-2, and 62-3 are installed as the infrared lamp 62, but two, four, or the like may be provided.
  • a reflector 63 is installed above the infrared lamp 62 to reflect the infrared light downward.
  • An infrared lamp power source 64 is connected to the infrared lamp 62 , and a high frequency power source 64 is connected to the infrared lamp power source 62 to prevent the high frequency power noise generated in the high frequency power source 20 from flowing into the infrared lamp power source 64 .
  • a cut filter 25 is installed.
  • the infrared lamp power source 64 has a function to independently control the power supplied to the infrared lamps 62-1, 62-2, and 62-3. distribution can be adjusted.
  • a gas flow path 75 is formed in the center of the infrared lamp unit for flowing the gas supplied from the mass flow controller 50 to the inside of the quartz chamber 12 to the processing chamber 1 side.
  • ions and electrons generated in the plasma generated inside the quartz chamber 12 are shielded, and only neutral gas and neutral radicals are allowed to pass through to the wafer 2.
  • a slit plate (ion shielding plate) 78 with a plurality of holes is provided for irradiation.
  • a coolant channel 39 for cooling the stage 4 is formed inside the stage 4 , and the coolant is circulated and supplied by the chiller 38 .
  • thermocouple 70 for measuring the temperature of the stage 4 is installed inside the stage 4 , and this thermocouple 70 is connected to a thermocouple thermometer 71 .
  • optical fibers 92-1 and 92-2 for measuring the temperature of the wafer 2 are arranged near the center of the wafer 2 placed on the stage 4 (also referred to as the wafer center) and near the radial middle of the wafer 2 (wafer middle). ) and near the outer periphery of the wafer 2 (also referred to as the wafer outer periphery).
  • the optical fiber 92-1 guides the infrared light from the external infrared light source 93 to the rear surface of the wafer 2 and irradiates the rear surface of the wafer 2 with the infrared light.
  • the optical fiber 92 - 2 collects the IR light that has been transmitted and reflected by the wafer 2 among the infrared light irradiated by the optical fiber 92 - 1 and transmits it to the spectroscope 96 .
  • the external infrared light generated by the external infrared light source 93 is transmitted to the optical path switch 94 for turning on/off the optical path. After that, the light is branched into a plurality of light beams (three in the case of FIG. 1) by the light distributor 95, and irradiated to respective positions on the back side of the wafer 2 via three optical fibers 92-1.
  • the infrared light absorbed/reflected by the wafer 2 is transmitted to the spectroscope 96 via the optical fiber 92-2, and the detector 97 obtains data on the wavelength dependence of spectral intensity.
  • the obtained data on the wavelength dependence of the spectral intensity is sent to the calculation section 41 of the control section 40 to calculate the absorption wavelength, and the temperature of the wafer 2 can be obtained based on this.
  • an optical multiplexer 98 is installed in the middle of the optical fiber 92-2, and it is possible to switch the light to be spectroscopically measured at which measurement point of the wafer center, the wafer middle, or the wafer outer periphery. ing. As a result, the calculation unit 41 can obtain the respective temperatures of the wafer center, wafer middle, and wafer outer periphery.
  • 60 is a container that covers the quartz chamber 12, and 81 is an O-ring for vacuum sealing between the stage 4 and the bottom surface of the base chamber 11.
  • the control unit 40 controls on/off of high-frequency power supply from the high-frequency power supply 20 to the ICP coil 34 . Also, the integrated mass flow controller control unit 51 is controlled to adjust the type and flow rate of the gas supplied from each mass flow controller 50 to the inside of the quartz chamber 12 . In this state, the controller 40 further activates the exhaust means 15 and controls the pressure regulating means 14 to adjust the inside of the processing chamber 1 to a desired pressure.
  • the controller 40 activates the DC power supply 31 for electrostatic attraction to electrostatically attract the wafer 2 to the stage 4, and the mass flow controller 50-7 that supplies He gas between the wafer 2 and the stage 4.
  • the infrared lamp power source 64 and the chiller 38 are controlled so that the temperature of the wafer 2 is within a predetermined temperature range.
  • FIG. 2 is a flow chart showing an outline of the flow of etching a film containing tantalum nitride previously formed on a wafer, which is performed by the plasma processing apparatus according to the embodiment of the present invention.
  • the wafer 2 having a film structure including a film layer to be processed including a tantalum nitride film on the surface is placed in advance on the stage 4 in the processing chamber 1. As shown in FIG. It is held on the stage 4 by the electrostatic force generated by supplying the DC power from the DC power supply 31 to the electrostatic attraction electrode 30 .
  • a gas containing fluorine, hydrogen, and nitrogen is introduced into the processing chamber 1 in step S201.
  • Gases containing fluorine, hydrogen and nitrogen include carbon tetrafluoride (CF 4 )/hydrogen (H 2 )/nitrogen (N 2 ), trifluoromethane (CHF 3 )/ammonia (NH 3 ), Nitrogen fluoride (NF 3 )/ammonia (NH 3 ) and the like can be used.
  • a mixed gas obtained by diluting these gases with argon (Ar), nitrogen (N 2 ), or the like may also be used.
  • the wafer temperature in this step S201 is kept constant by the temperature control function of the stage 4 on which the wafer 2 is placed.
  • step S202 the plasma 10 is generated using the above gas inside the discharge region 3, and the atoms or molecules of the gas containing fluorine, hydrogen, and nitrogen in the plasma 10 are activated to generate fluorocarbon radicals ( CF x ) and other radicals (active species) having reactivity (also referred to as reactive particles) are generated.
  • step S203 reactive particles are supplied to the surface of the wafer 2 through the gas passages 75 and the through holes of the slit plate 78, and adhere to the surface of the film layer including the tantalum nitride film.
  • the reactive particles react with the material on the surface of the adhered film layer to form a surface reaction layer with a thickness determined by the processing conditions such as the conditions for generating the plasma 10 and the temperature of the stage 4 .
  • the surface reaction layer generated on the surface of the film layer including the tantalum nitride film contains tantalum-fluorine (Ta--F) bonds and nitrogen-hydrogen (N--H) bonds.
  • step S204 after it is confirmed by the film thickness detector (not shown) that a surface reaction layer having a predetermined thickness has been formed, or by the control unit 40 by confirming the elapse of a predetermined time, etc. , the pressure regulating means 14 increases the cross-sectional area of the evacuation pipe 16 to increase the amount of evacuation, and greatly decompresses the inside of the processing chamber 1 . Then, the gas containing fluorine, hydrogen, and nitrogen supplied into the processing chamber 1 is quickly exhausted. This completes the surface reaction layer forming process.
  • an inert gas such as Ar is supplied into the processing chamber 1 so as to replace the gas containing fluorine, hydrogen, and nitrogen in the processing chamber 1, thereby promoting the discharge of the gas containing fluorine, hydrogen, and nitrogen. You can let me.
  • step S205 the infrared lamp 62 is turned on, and the surface of the wafer 2 is heated in a vacuum state by light emitted from the infrared lamp 62 (infrared light).
  • the irradiation time of the infrared light at this time is, for example, 20 seconds, and the maximum reaching temperature of the surface of the wafer 2 at that time is, for example, 200.degree.
  • the pressure in the processing chamber 1 during heating was set to 1 ⁇ 10 ⁇ 3 Pa, for example.
  • the temperature of the wafer 2 increases at a rate of, for example, about 10° C./sec as the irradiation time of the infrared lamp increases. removed (desorbed).
  • the infrared lamp 62 is turned on. is extinguished.
  • reaction product particles detached from the wafer 2 are removed by the operation of exhausting the inside of the processing chamber 1 by the operation of the pressure regulating means 14 or the exhausting means 15 or the movement of particles inside the processing chamber 1 caused by this operation. is discharged from the inside of the processing chamber 1 to the outside of the processing chamber 1 by . Subsequently, in step S206, the gas containing the reaction product is exhausted from the inside of the processing chamber 1 to the outside of the processing chamber 1.
  • TaF 4 tantalum fluoride
  • NH 3 ammonia
  • HF hydrogen fluoride
  • One cycle of the above steps S201 to S206 is completed. Since the surface reaction layer generated on the surface of the tantalum nitride film due to the reaction with the plasma is removed (desorbed) by the cycle, the tantalum nitride film is removed by the thickness of the surface reaction layer, and nitridation is performed. The film thickness of the tantalum film is reduced. The amount of change in film thickness is the amount of etching per one cycle.
  • the controller 40 receives the output from the film thickness detector (not shown) and determines whether or not the desired etching amount is reached based on the results obtained from this, or obtains the desired etching amount from a preliminary test or the like. It is determined whether a termination condition including the number of executions of the cycle from which is derived is satisfied (step S207). If it is determined that the condition is satisfied (S207: Yes), the etching process of the film layer including the tantalum nitride film is terminated, and if it is determined that the condition is not satisfied (S207: No), the process returns to step S201. , the cycle (S201-S206) is performed again. Thus, in this embodiment, the above cycle (S201-S206) is repeated until the desired etching amount is obtained.
  • FIG. 3 is a time chart showing changes over time of a plurality of parameters included in process conditions during wafer processing according to the embodiment shown in FIG.
  • the parameters are gas supply flow rate, high-frequency power supply power, infrared lamp power, electrostatic adsorption, and wafer surface temperature in order from the top.
  • FIG. 4 is a cross-sectional view schematically showing an outline of changes in a film structure including a film layer containing a tantalum nitride film during processing of the wafer according to the example shown in FIG.
  • FIG. 4 schematically shows the structure near the surface of the tantalum nitride film 402 having a film structure in which the tantalum nitride film 402 is laminated on the base film 401 of the wafer 2 with the boundary therebetween, and changes in the structure. ing.
  • a wafer 2 having a film structure including a base film 401 and a tantalum nitride film 402 to be etched is carried into the processing chamber 1 and placed on the stage 4 .
  • power is supplied from the DC power source 31 to the electrostatic attraction electrode 30, and the wafer 2 is electrostatically attracted and held on the dielectric film on the stage 4.
  • He gas for wafer cooling is supplied to the gap between the back surface of the wafer 2 and the stage 4 by the mass flow controller 50-7 of the mass flow controller control unit 51 corresponding to He gas according to the command signal from the control unit 40.
  • the flow rate of is adjusted and supplied, and the pressure of the He gas in the gap is adjusted to a value within a predetermined range.
  • the temperature T1 of the wafer 2 is set to -20.degree.
  • the flow rate supplied by each of the mass flow controllers 50-1 or 50-5 for N 2 is adjusted, and a mixed gas in which these plural types of substance gases are mixed is supplied as a processing gas to the processing chamber. 1 at a flow rate within a predetermined range.
  • the opening degree of the pressure regulating means 14 is adjusted so that the pressures in the discharge region 3 inside the processing chamber 1 and inside the quartz chamber 12 are set to values within the desired range.
  • high-frequency power of a predetermined value W is supplied from the high-frequency power supply 20 to the ICP coil 34 in response to a command signal from the control unit 40, and the discharge area inside the quartz chamber 12 is discharged.
  • a plasma discharge is initiated within 3 and a plasma 10 is generated within the quartz chamber 12 .
  • power is not supplied to the infrared lamp 62 in order to keep the temperature of the wafer 2 during the generation of the plasma 10 at the same level as before the generation of the plasma 10 .
  • CF 4 /H 2 /N 2 gas particles are excited, dissociated or ionized in the plasma 10 to form charged particles such as ions or reactive particles such as active species.
  • Reactive particles such as active species and neutral gas formed in the discharge region 3 are introduced into the processing chamber 1 through slits or through holes formed in the slit plate 78 and supplied to the surface of the wafer 2 .
  • active species 403 including fluorocarbon radicals (CF x ) are adsorbed on the surface of the tantalum nitride film 402 of the wafer 2 and interact with the material of the tantalum nitride film 402, resulting in a surface reaction.
  • a layer 404 is formed.
  • reactive particles 403 containing fluorine and hydrogen and not containing oxygen are supplied to the surface of the tantalum nitride film 402 to form a surface reaction layer 404 on the surface of the tantalum nitride film 402 .
  • This surface reaction layer 404 is a reaction product containing Ta—F bonds and N—H bonds as main components. has a peak in the vicinity of 402 ⁇ 2 eV.
  • FIG. 5 is a photoelectron spectrum when the surface of the tantalum nitride film 402 on which the surface reaction layer 404 is formed is analyzed by X-ray photoelectron spectroscopy using K ⁇ rays of aluminum.
  • the peak observed near the bond energy of 398 ⁇ 2 eV indicated as N—Ta
  • the peak of the N—H bond was observed near the bond energy of 402 ⁇ 2 eV.
  • a peak attributed to the surface reaction layer 404 is observed, indicating its presence. Also, a peak due to the surface reaction layer 404 is observed near the bond energy of 407 ⁇ 2 eV, indicating the presence of Ta—F bonds.
  • the composition of this surface reaction layer depends on the composition of the gas used and the reaction time, and various bonding states of hydrogen, nitrogen, fluorine, and tantalum such as elemental hydrogen, elemental fluorine, NH 3 , tantalum fluoride, etc. In some cases, they may be in a mixed state, or may contain a small amount of oxygen resulting from the surface oxide of the tantalum nitride film. Note that the binding energy values shown here are values calibrated assuming that the position of the carbon 1s peak caused by surface-contaminated carbon observed on the surface of the initial sample is 284.5 eV.
  • FIG. 6 is a graph showing the dependence of the peak intensity of 402 ⁇ 2 eV caused by the surface reaction layer 404 on plasma processing time.
  • the plasma processing time indicates the elapsed time from the start of supply of high-frequency power.
  • the peak intensity of 402 ⁇ 2 eV caused by the surface reaction layer 404 increased with the passage of the plasma processing time and showed a saturation tendency, and became almost constant at the plasma processing time of 20 seconds or longer. In this way, the self-saturation property of the amount of reaction product produced is very similar to the natural oxidation phenomenon of metal surfaces and silicon surfaces.
  • the amount of the surface reaction layer 404 generated per cycle can be made constant by performing the plasma treatment longer than the time required for saturation. . In the present embodiment, it took 20 seconds for the amount of surface reaction layer 404 to be saturated. The time required for saturation varies.
  • the infrared lamp 62 is turned on in response to a command signal from the controller 40, and the surface of the wafer 2 is illuminated by light (infrared light) 405 emitted from the infrared lamp 62, as shown in FIG. 4(c). is vacuum-heated.
  • the pressure in the processing chamber 1 was set to 1 ⁇ 10 ⁇ 3 Pa, for example, and the irradiation time of the infrared lamp was set to 15 seconds, for example.
  • the maximum temperature reached on the wafer surface is 150° C., for example.
  • This step is a reaction in which the surface reaction layer 404 is decomposed into reaction products 406 such as tantalum fluoride, ammonia, and hydrogen fluoride to volatilize or desorb.
  • reaction products 406 such as tantalum fluoride, ammonia, and hydrogen fluoride to volatilize or desorb.
  • This desorption reaction is more advantageous at higher temperatures and lower pressures.
  • the inventors have newly discovered that the temperature of the surface of the wafer 2 must be 100° C. or higher and the pressure in the processing chamber 1 must be 100 Pa or lower in order to cause this desorption reaction.
  • the maximum temperature reached on the wafer surface was set to 150° C.
  • the degree of vacuum in the processing chamber 1 was set to 1 ⁇ 10 ⁇ 3 Pa.
  • a typical temperature range is 100 to 300° C.
  • a typical pressure range of the processing chamber 1 during heating is 1 ⁇ 10 ⁇ 5 to 100 Pa.
  • FIG. 7 is a graph showing changes in the peak intensity of 402 ⁇ 2 eV caused by the surface reaction layer 404 with heating time when the surface reaction layer 404 is removed by heating with the infrared lamp 62 reaching a temperature of 150°C.
  • the peak intensity of 402 ⁇ 2 eV indicating the remaining amount of the surface reaction layer 404 is reduced, and the surface reaction layer 404 is removed after 10 seconds of heating. is found to have disappeared.
  • the wafer 2 is placed on the wafer stage 4, but the supply of helium gas used to enhance the heat conduction of the back surface of the wafer 2 is stopped, and the front surface of the wafer 2 is heated. The temperature of was allowed to rise rapidly.
  • the wafer 2 is processed while it is placed on the wafer stage 4.
  • the wafer 2 is not in thermal contact with the wafer stage 4 by using a lift pin (not shown) or the like. Infrared light may be irradiated at .
  • the infrared lamp 62 is turned off and the residual gas in the processing chamber 1 is exhausted to the outside of the processing chamber 1 using the exhaust means 15 .
  • the supply of helium gas was resumed to increase the heat conduction between the wafer 2 and the wafer stage 4, the wafer temperature was cooled to -20°C by the chiller 38, and the first cycle processing was completed.
  • the infrared lamp 62 is turned off according to the command signal from the control unit 40. Further, the gas containing particles of the reaction product in the processing chamber 1 is exhausted to the outside of the processing chamber 1 through the vacuum exhaust pipe 16 and the exhausting means 15 whose opening is adjusted by the pressure adjusting means 14 . Further, after time t5, as explained in FIG. 2, it is determined whether the etching amount or remaining film thickness of the tantalum nitride film 402 on the wafer 2 has reached a desired value (corresponding to step S207). Depending on the result, the process of starting the next cycle (S201-S206) or ending the processing of wafer 2 is performed.
  • the discharge region of the CF 4 /H 2 /N 2 gas is discharged according to the command signal from the control unit 40 in the same manner as the operation from time t1. 3 is started. That is, as the next cycle, the step of forming the surface reaction layer 404 described with reference to FIG. 4B and the step of removing the surface reaction layer by heating described with reference to FIG. 4C are performed again.
  • the He gas supplied to the gap between the back surface of the wafer 2 and the top surface of the stage 4 at time t6 is stopped, and the valve 52 is opened to allow the He gas to flow through the gap.
  • the etching process for the tantalum nitride film 402 is completed.
  • FIG. 8 is a graph showing the relationship between the number of cycles and the amount of etching in the etching process performed by the plasma processing apparatus according to the present embodiment shown in FIG.
  • the horizontal axis represents the number of cycles
  • the vertical axis represents detection using in-situ ellipsometry (ellipsometry) after the end of each cycle performed and before the start of the next cycle. It shows the etching amount (etching depth).
  • the etching amount per cycle of the tantalum nitride film in this example is, for example, 0.3 nm/cycle.
  • both the first step of forming the surface reaction layer 404 and the second step of removing the surface reaction layer 404 of this embodiment have the property of being self-saturated. From this fact, in this embodiment, when the wafer 2 on which a film structure having a circuit pattern is formed in advance is etched, the etching amount of the surface of the tantalum nitride film 402 when one cycle is completed is Variation is reduced in the inward direction and depth direction, and uniformity can be approached.
  • etching can be performed. An excessively large or insufficient amount of etching is suppressed, and variations in the amount of etching are reduced.
  • the total etching amount can be adjusted by increasing or decreasing the number of repetitions of one cycle including the first and second steps. It is the sum of the number of times. As a result, in this embodiment, it is possible to improve the controllability of dimensions after processing by etching treatment and the yield of processing, as compared with etching by conventional continuous plasma treatment.
  • the isotropic atomic layer etching technique for etching a tantalum nitride film with high uniformity in the wafer in-plane direction and pattern depth direction and with high processing dimension controllability at the atomic layer level is employed. can provide.
  • the infrared lamp 62 is arranged outside the vacuum vessel above the processing chamber 1 on the outer periphery of the quartz chamber 12 surrounding the discharge region 3. You can place it. Also, the above examples are detailed descriptions for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • Reflector 64 power supply for infrared lamp, 70 Thermocouple, 71 Thermocouple thermometer, 74... Light transmission window, 75 ... Gas flow path, 78 Slit plate, 81 O-ring, 92 Optical fiber, 93 External infrared light source, 94... optical path switch, 95... optical distributor, 96... Spectroscope, 97 ... detector, 98... optical multiplexer, 100... Plasma processing apparatus, 401... Base film, 402... tantalum nitride film, 403 ... active species, 404 ... surface reaction layer, 406 ... reaction product, 901... Underlying structure, 902... Fin structure, 903... tantalum nitride film, 904... Carbon film, 905 Reactive species, 906 Reaction product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Magnetic Heads (AREA)

Abstract

エッチング量の均一性が高く、かつ、エッチング処理の歩留まりが向上したエッチング技術を提供する。ウエハの表面に配置された遷移金属の窒化物を含む処理対象の膜層をエッチングするエッチング方法であって、膜層の表面にフッ素、水素を含み酸素を含まない反応性の粒子を供給して当該膜層の表面に反応層を形成する工程と、膜層を加熱して反応層を脱離させる工程と、を備える。

Description

エッチング方法
 本発明は、プラズマを用いた遷移金属の窒化物を含む処理対象の膜層、例えば、窒化タンタル膜のエッチング方法に関する。
 スマートフォンに代表されるモバイル機器の普及に牽引されて、半導体デバイスの高集積化が進んでいる。記録用半導体デバイスの分野では、メモリセルを三次元方向に多段積層する三次元(3D)NANDフラッシュメモリが量産されている。また、ロジック用半導体デバイスの分野では、トランジスタの構造として、微細な三次元構造をもつフィン型FET(Field Effect Transistor)が主流となっている。更なる集積度の向上に向けて現在、積層ナノワイヤ型FETが検討されている。
 このように、素子構造の三次元化と加工寸法の微細化が進むに従って、デバイス製造プロセス(半導体装置の製造方法)では、等方性と、原子層レベルの高い加工寸法制御性を兼ね備えたエッチング技術の必要性が増している。このような等方的なエッチング技術としては、従来からフッ化水素酸とフッ化アンモニウムの混合水溶液を用いた二酸化シリコンのエッチングや、熱リン酸を用いた窒化シリコンのエッチング、フッ化水素酸による窒化タンタルのエッチング等の、ウェットエッチング技術が広く用いられてきた。しかしながら、このような薬液を用いたこれら従来のウェットエッチング技術では、パターンの微細化に伴って、リンス液の表面張力に起因するパターン倒壊が顕在化するという問題があった。
 例えば、シリコンの高アスペクト比パターンを用いた場合には、パターン間隔を狭くしていった際に、リンス液乾燥時の表面張力で倒壊が始まるパターン間隔の限界値が、アスペクト比の2乗に比例して大きくなると報告されている。このため、薬液を用いずに各種膜を等方的にエッチングするプロセス手法の開発が強く望まれていた。
 一方で、上記半導体デバイスではワークファンクションメタルやバリアメタルとして窒化タンタルが広く用いられている。このため、次世代の半導体デバイスを製造するプロセスとしては、等方性と原子層レベルの高い加工寸法制御性、高い選択性を兼ね備えた窒化タンタルのエッチング技術が求められている。
 薬液を用いずプラズマを用いて等方的に窒化タンタル膜をエッチングする従来の技術としては、たとえば、特開2004-119977号公報(特許文献1)が提案されている。
 特許文献1には、バリアメタルである窒化タンタル層と配線材料である銅からなる構造において、窒化タンタルを選択的にエッチング除去する方法として、まずアンモニア(NH)及び窒素(N)のプラズマにて銅の表面を不動態化した後に、テトラフルオロエチレン(C)及び酸素(O)のプラズマにより窒化タンタルを銅に対して選択的にエッチングする技術が開示されている。
特開2004-119977号公報
 上記の従来技術では、次の点について考慮が不十分であったため問題が生じていた。
 すなわち、上記従来の技術では、窒化タンタルを銅に対して選択的にエッチングする技術を開示しているものの、ワークファンクションメタルの作製プロセスなどのように、マスク材料としてカーボンハードマスク等の炭素を含む膜に対して選択的にエッチングする処理の条件については、考慮されていなかった。特に、フィン型FETや積層ナノワイヤ型FETなどにおける、ワークファンクションメタルの作製プロセス等のように、微細な三次元構造において原子層レベルでコンフォーマルなエッチングが要求される場合に、パターンの上部や底部でエッチング速度が異なってしまい、エッチング処理の結果として加工後の処理対象の膜厚の寸法に上下方向のバラツキが生じてしまうことについては考慮されていなかった。このため、従来の技術では、膜構造に形成されるパターンの上下(深さ)方向について、処理対象の膜層のエッチング量に大きな分布が生じてしまい半導体デバイスのエッチング処理(エッチング工程)の歩留まりが損なわれてしまうという問題があった。
 また、従来の技術は、窒化タンタル膜のエッチングが、エッチング時間の増加に対応して連続的に進むものである。このような連続的なエッチング処理においては、エッチングの量の調節は、エッチング処理の開始後の時間を検知しこれを調節することで行われる。このようなエッチング処理の時間によるエッチング量の調節では、次世代以降の微細な半導体デバイスの製造工程で求められる、非常に微細な量のエッチング、例えばエッチングする深さ(幅)が原子層レベルのエッチングを、高い精度で調節することが困難であるため、エッチング処理の精度と歩留まりとが損なわれてしまう虞があった。
 このように、従来の連続的なプラズマエッチング技術では、エッチング量はラジカルの分布を反映して不均一となり、ウエハ面内方向やパターン深さ方向におけるエッチング量の均一性が低く、またエッチング量をプラズマ処理時間で制御しなくてはならない。このため従来の連続的なプラズマエッチング技術は、原子層レベルの高い寸法制御性が求められる次世代以降のデバイス製造工程においては、その適用が制限されると思われる。
 本発明の目的は、エッチング量の均一性が高く、かつ、エッチング処理の歩留まりが向上したエッチング技術を提供することにある。
 本発明のその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
 本発明の一形態に係るエッチング技術は、ウエハの表面に配置された遷移金属の窒化物を含む処理対象の膜層をエッチングするエッチング方法であって、膜層の表面にフッ素、水素を含み酸素を含まない反応性の粒子を供給して膜層の表面に反応層を形成する工程と、膜層を加熱して反応層を脱離させる工程と、を備える。
 本発明のうち代表的のものによって得られる効果を簡単に説明すれば以下の通りである。
 本発明のエッチング技術によれば、エッチング量の均一性を高くでき、かつ、エッチング処理の歩留まりを向上することができる。たとえば、遷移金属の窒化物を含む処理対象の膜層としての窒化タンタル膜をエッチングする場合、ウエハ面内方向やパターン深さ方向におけるエッチング量の高い均一性、ならびに原子層レベルの高い加工寸法制御性でエッチング加工する、等方性原子層エッチング技術を提供することができる。
図1は、本発明の実施例に係るプラズマ処理装置の構成の概略を模式的に示す縦断面図である。 図2は、実施例に係るプラズマ処理装置の実施するウエハ上に予め形成された窒化タンタルを含む膜のエッチング処理の流れの概略を示すフローチャートである。 図3は、実施例に係るウエハの処理中の処理の条件に含まれる複数のパラメータの時間の経過に伴う変化を示すタイムチャートである。 図4は、実施例に係るウエハの処理中における窒化タンタルを含む膜を含む膜構造の変化の概略を模式的に示す断面図である。 図5は、実施例に係るウエハ表面の分析結果を示す図である。 図6は、実施例に係る表面反応層生成量の反応時間依存性を示す図である。 図7は、実施例に係る表面反応層残存量の加熱時間依存性を示す図である。 図8は、実施例に係るプラズマ処理装置が実施したエッチング処理においてサイクル数とエッチングの量との関係を示すグラフである。 図9は、処理対象の半導体ウエハ等の基板上の試料上に形成され微細で高アスペクト比の膜構造に実施例によるプラズマエッチングを施した場合の当該膜構造の変化を模式的に示す縦断面図である。 図10は、処理対象の半導体ウエハ等の基板上の試料上に形成され微細で高アスペクト比の膜構造に従来の技術によるプラズマエッチングを施した場合の当該膜構造の変化を模式的に示す縦断面図である。
 以下に、本発明の実施の形態について、図面を参照しつつ説明する。なお、以下の説明において、同一構成要素には同一符号を付し繰り返しの説明を省略することがある。なお、図面は説明をより明確にするため、実際の態様に比べ、模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
 半導体デバイス、例えば、フィン型FETを製造する工程においてワークファンクションメタルを形成する処理では、高アスペクト比の微細なフィン構造に成膜された窒化タンタル膜を、等方的に且つ原子層レベルの高い精度でエッチングする技術が求められると考えられる。そこで発明者等は、一例として、図10に示すような構造体を対象に従来の技術によるプラズマを用いたエッチングを行う場合について検討した。
 図10は、処理対象の半導体ウエハ等の基板上の試料上に形成され複数のフィン構造が左右に隣接して形成された所定の構造に従来の技術によるプラズマエッチングを施した場合の当該膜構造の変化を模式的に示す縦断面図である。本図10の(a)ないし(c)はエッチング処理が施されて変化する膜構造の形状の3段階の状態を示している。
 図10(a)は、下地構造901の上に形成されたフィン構造902の表面に、処理対象の窒化タンタル膜903と処理対象でない部分の窒化タンタル膜903を保護するマスクとしてのカーボン膜904とが形成された膜構造であって、プラズマを用いたエッチング処理が開始されていない状態の膜構造を示す図である。図10(b)は、図10(a)の膜構造の窒化タンタル膜903をエッチングするために、テトラフルオロエチレン(C)及び酸素(O)ガス(以下、C/Oガスという)を用いてプラズマを形成し当該プラズマ中のフッ素を含む反応種905を膜構造の溝911内に供給して窒化タンタル膜903表面と反応させ、生成されたフッ化タンタルを含む反応生成物906が上方に除去されて窒化タンタル膜903のエッチングが進行した状態を示す図である。図10(c)は、窒化タンタル膜903の上記プラズマを用いたエッチングが停止された状態を示す図である。なお、本例ではフィン構造902はシリコンから構成され下地構造901の上に予め形成されており、その表面は図示していないハフニウム酸化物や窒化チタンにより被覆されている。
 発明者らの検討では、図10(b)に示すように、フィン構造902の表面が窒化タンタル膜903で覆われた構造が両側の側壁を構成する高いアスペクト比の溝911内側において、窒化タンタル膜903のみを均一にエッチングしようとしたところ、反応生成物906が不揮発性となるガスケミストリを用いていないために、窒化タンタル膜903の表面に不揮発性の表面反応層が生成することはなく、揮発性を有した反応生成物906の連続的な脱離により、エッチングが連続的に進行したことが確認された。一方で、試料上方に形成されたプラズマから供給された反応種905は、溝911の上方からその内側に進入し、溝911上端の開口部付近に成膜されている窒化タンタル膜903に消費される。そのため、溝911下部の領域(溝911の底部)の窒化タンタル膜903まで届く反応種905の量は少なくなる。このため、窒化タンタル膜903のエッチング量の分布が溝911の上下方向について不均一となってしまい、曳いては、窒化タンタル膜903のエッチング量が溝911の上部の開口部付近で大きく、かつ、溝911の下部では小さくなってしまう。この結果、従来の技術による窒化タンタル膜903のエッチングでは、窒化タンタル膜903のエッチング量の不均一な分布が生じてしまい試料の処理または半導体デバイスの製造の歩留まりが低下してしまう虞があった。
 また、図10(b)、(c)に示す様に、従来のC/Oガスのプラズマを用いた窒化タンタルの等方性エッチングでは、プラズマ中に酸素ラジカルを多く含むために、窒化タンタル膜903の非エッチング対象の部分を保護するために用いるカーボン膜904のエッチングも連続的に進む。このため、窒化タンタル膜903のエッチングが進むにつれてカーボン膜904の膜厚が大きく減少し、窒化タンタル膜903を保護することが実質的に困難になってしまう。
 このように、従来のプラズマを用いたエッチング技術では、窒化タンタル膜903のエッチング量はラジカルの分布を反映して不均一となり、ウエハ面内方向やパターン深さ方向における窒化タンタル膜903のエッチング量の均一性が低く、また窒化タンタル膜903のエッチング量をプラズマ処理時間で制御しなくてはならない。このため従来の連続的なプラズマエッチング技術は、原子層レベルの高い寸法制御性が求められる次世代以降のデバイス製造工程においては、その適用が制限されると思われる。
 発明者等は、各種ガスのプラズマを用いて窒化タンタル膜のエッチングを試みた。その結果、
  (1)窒化タンタル膜へフッ素と水素と窒素を含有するガスのプラズマを供給することによってその表面にタンタル-フッ素(Ta-F)結合や窒素-水素(N-H)結合を主成分とする表面反応層が形成されること、
  (2)当該表面反応層の生成量が自己飽和性(セルフリミティング性)を有すること、
  (3)当該表面反応層は加熱により除去されること、を見出した。
 本発明はこの新たな知見((1)-(3))に基づいて生まれたものである。遷移金属の窒化物である窒化タンタル膜(処理対象の膜層)のエッチング方法は、具体的には、四フッ化メタン(CF)と水素(H)と窒素(N)を含有するガスのプラズマを形成してエッチング処理対象の窒化タンタル膜の表面にプラズマからのフッ素、水素を含み酸素を含まない反応性を有した粒子を供給して当該窒化タンタル膜の表面に表面反応層を形成する工程と、次に当該表面反応層を加熱によって除去する工程(または、当該表面反応層を加熱によって脱離させる工程)と、を実施する。そして、これら2つの工程を一纏まりのサイクルとして、このサイクルを複数回繰り返すことにより所望の量の窒化タンタル膜のエッチングを実現する。また、当該ガスはカーボン膜のエッチング速度が遅いため、カーボンハードマスクなどのカーボンを含有するマスク材料を用いることに制限がない。
 上記の構成によって、表面反応層の形成工程および表面反応層の除去工程が自己飽和性を持つことから、ウエハの面内方向および溝あるいは穴等の膜構造のパターンの深さ方向についてのエッチング量の不均一が抑制される。また、一回のサイクルで除去される窒化タンタル膜の厚さは原子層レベルの高い精度で調節でき、サイクルを繰り返して得られるエッチングの量は繰り返すサイクルの回数によって調節できるため、積層された窒化タンタル膜をエッチングして形成する半導体デバイスの寸法精度を向上させることができる。
 図9は、処理対象の半導体ウエハ等の基板上の試料上に形成され微細で高アスペクト比の膜構造に本発明の技術によるプラズマエッチングを施した場合の当該膜構造の変化を模式的に示す縦断面図である。図9の(a)ないし(c)はエッチング処理が施されて変化する膜構造の形状の3段階の状態を示している。
 図9(a)は、下地構造901の上に形成されたフィン構造902の表面に、処理対象の窒化タンタル膜903と処理対象でない部分の窒化タンタル膜903を保護するマスクとしての炭素を含むマスク層であるカーボン膜904とが形成された膜構造であって、プラズマを用いたエッチング処理が開始されていない状態の膜構造を示す図である。図9(b)は、図9(a)の膜構造の窒化タンタル膜903をエッチングするために、四フッ化メタン(CF)と水素(H)と窒素(N)を含有する混合ガスのプラズマを形成して、カーボン膜904に覆われていないエッチング処理対象の窒化タンタル膜903の表面にプラズマからのフッ素、水素を含み酸素を含まない反応性を有した粒子を供給してエッチング処理対象の窒化タンタル膜903の表面に表面反応層を形成する。次に、この表面反応層を加熱によって除去する(脱離させる)。つまり、表面反応層を形成する工程と、表面反応層を加熱によって脱離させる工程と、を実施する。そして、これら2つの工程を一纏まりのサイクルとして、このサイクルを複数回繰り返すことにより所望の量の窒化タンタル膜のエッチングを実現する。これにより、図9(c)に示すように、カーボン膜904に覆われていないエッチング処理対象の窒化タンタル膜903を選択的にエッチングにより除去することができる。図9(a)-(c)のより詳しい説明は、後述される図4(a)-(c)の説明を参照できる。
 なお、以下の実施例では、各工程が自己飽和性を持つ表面反応層の形成工程と表面反応層の除去工程とを含む一纏まりの工程を繰り返して行うエッチング処理を原子層エッチングと呼称する。本実施例において、「原子層」エッチングは1サイクル当たりのエッチング量が対象の膜を構成する物質の単一の原子から構成される層の厚さと同等であるという狭義の原子層エッチングに限定されない。例え1サイクル当たりのエッチングの量がナノメートルまたはこれ以上のオーダーであっても、各工程が処理の時間などに対して自己飽和的、すなわちセルフリミティングな傾向を有するものに対して当該処理を原子層エッチングとして呼称される。なお、「デジタルエッチング」、「セルフリミティング性サイクルエッチング」、「原子レベルエッチング」、「レイヤーバイレイヤーエッチング」等の呼称も同等の処理に対して用いることができる。
 以下、本発明について、図面を用いて実施例を説明する。
 本発明の実施例について、図1乃至8を用いて以下に説明する。本実施例は、四フッ化メタンまたは四フッ化炭素(CF)と水素(H)と窒素(N)からなる混合ガスを用いて形成したプラズマにより処理対象の窒化タンタル膜の表面に表面反応層を形成する工程を実施した後、赤外線ランプを用いたウエハ加熱により表面反応層を除去する工程を実施することで、シリコン等の半導体ウエハ上に予め形成された処理対象の窒化タンタル膜を等方的に原子層エッチングするものを説明する。
 図1は、本発明の実施例に係るプラズマ処理装置の構成の概略を模式的に示す縦断面図である。
 処理室1はベースチャンバー11により構成され、その中には被処理試料であるウエハ2(以下ウエハ2と記す)を戴置するためのウエハステージ4(以下、ステージ4と記す)が設置されている。プラズマ源にはICP(Inductively Coupled Plasma:誘導結合プラズマ)放電方式を用いており、処理室1の上方には、石英チャンバー12とICPコイル34及び高周波電源20を備えたプラズマ源が設置されている。ここで、ICPコイル34は、石英チャンバー12の外側に設置されている。
 ICPコイル34にはプラズマ生成のための高周波電源20が整合器22を介して接続されている。高周波電力の周波数は13.56MHzなどの、数十MHzの周波数帯を用いるものとする。石英チャンバー12の上部には天板6が設置されている。天板6にはシャワープレート5が設置されており、その下部にはガス分散板17が設置されている。処理ガスはガス分散板17の外周から処理室1内に導入される。
 処理ガスは、マスフローコントローラ制御部51内に配置されガス種毎に設置されたマスフローコントローラ50によって供給する流量が調整される。図1では、すくなくとも四フッ化メタンまたは四フッ化炭素(CF)、水素(H)、窒素(N)が処理ガスとして処理室1に供給され、これらガスの各々に対応してマスフローコントローラ50-1、50-2、50-3、50-4、50-5、50-6が備えられている。また、供給されるガスはこれらに限られない。なお、マスフローコントローラ制御部51には、後述の通りウエハ2裏面とこれが載置されるステージ4の誘電体膜上面との間に供給されるHeガスの流量を調節するマスフローコントローラ50-7も含んで配置されている。
 処理室1の下部は、処理室1内を減圧するため、真空排気配管16によって、排気手段15に接続されている。排気手段15は、例えば、ターボ分子ポンプやメカニカルブースターポンプやドライポンプで構成されるものとする。また、調圧手段14が排気手段15の上流側に設置されている。調圧手段14は、排気手段15の動作により処理室1内から排出される内部のガスやプラズマ10の粒子の流量を真空排気配管16の軸方向に垂直な面での断面積である流路断面積を増減させて調節して処理室1や放電領域3の圧力を調整するために、流路内に横切る方向に軸を有して配置され軸周りに回転する複数枚の板状のフラップや流路内部をその軸方向を横切って移動する板部材から構成されている。
 ステージ4とICPプラズマ源を構成する石英チャンバー12との間には、ウエハ2を加熱するための赤外線ランプユニットが設置されている。赤外線ランプユニットは、主に赤外線ランプ62、赤外光を反射する反射板63、光透過窓74を備えている。赤外線ランプ62には円形状(リング状)のランプを用いる。なお、赤外線ランプ62から放射される光は、可視光から赤外光領域の光を主とする光を放出するものとする。ここではこのような光を赤外光と呼ぶ。図1に示した構成では、赤外線ランプ62として3周分の赤外線ランプ62-1、62-2、62-3が設置されているものとしたが、2周、4周などとしてもよい。赤外線ランプ62の上方には赤外光を下方に向けて反射するための反射板63が設置されている。
 赤外線ランプ62には赤外線ランプ用電源64が接続されており、その途中には、高周波電源20で発生するプラズマ生成用の高周波電力のノイズが赤外線ランプ用電源64に流入しないようにするための高周波カットフィルタ25が設置されている。また、赤外線ランプ62-1、62-2、62-3に供給する電力を、互いに独立に制御できるような機能が赤外線ランプ用電源64には付けられており、ウエハ2の加熱量の径方向分布を調節できるようになっている。
 赤外線ランプユニットの中央には、マスフローコントローラ50から石英チャンバー12の内部に供給されたガスを処理室1の側に流すための、ガスの流路75が形成されている。そして、このガスの流路75には、石英チャンバー12の内部で発生させたプラズマ中で生成されたイオンや電子を遮蔽し、中性のガスや中性のラジカルのみを透過させてウエハ2に照射するための、複数の穴の開いたスリット板(イオン遮蔽板)78が設置されている。
 ステージ4には、ステージ4を冷却するための冷媒の流路39がその内部に形成されており、チラー38によって冷媒が循環供給されるようになっている。また、ウエハ2を静電吸着によってステージ4に固定するため、板状の電極板である静電吸着用電極30がステージ4に埋め込まれており、それぞれに静電吸着用のDC(Direct Current:直流)電源31が接続されている。
 また、ウエハ2を効率よく冷却するため、ステージ4に載置されたウエハ2の裏面とステージ4との間にHeガスを供給できるようになっている。また、静電吸着用電極30を作動させてウエハ2を静電吸着したまま加熱や冷却を行っても、ウエハ2の裏面に傷がつかないようにするため、ステージ4のウエハ戴置面はポリイミド等の樹脂でコーティングされている。またステージ4の内部には、ステージ4の温度を測定するための熱電対70が設置されており、この熱電対70は熱電対温度計71に接続されている。
 また、ウエハ2の温度を測定するための光ファイバー92-1、92-2が、ステージ4に載置されたウエハ2の中心部付近(ウエハ中心とも称す)、ウエハ2の径方向ミドル付近(ウエハミドルとも称す)、ウエハ2の外周付近(ウエハ外周とも称す)、の3箇所に設置されている。光ファイバー92-1は、外部赤外光源93からの赤外光をウエハ2の裏面にまで導いてウエハ2の裏面に照射する。一方、光ファイバー92-2は、光ファイバー92-1により照射された赤外光のうちウエハ2を透過・反射したIR光を集めて分光器96へ伝送する。
 外部赤外光源93で生成された外部赤外光は、光路をオン/オフさせるための光路スイッチ94へ伝送される。その後、光分配器95で複数に分岐し(図1の場合は3つに分岐)、3系統の光ファイバー92-1を介してウエハ2の裏面側のそれぞれの位置に照射される。
 ウエハ2で吸収・反射された赤外光は光ファイバー92-2によって分光器96へ伝送され、検出器97でスペクトル強度の波長依存性のデータを得る。そして得られたスペクトル強度の波長依存性のデータは制御部40の演算部41に送られて、吸収波長が算出され、これを基準にウエハ2の温度を求めることができる。また、光ファイバー92-2の途中には光マルチプレクサー98が設置されており、分光計測する光について、ウエハ中心、ウエハミドル、ウエハ外周のどの計測点における光を分光計測するかを切り替えられるようになっている。これにより演算部41では、ウエハ中心、ウエハミドル、ウエハ外周ごとのそれぞれの温度を求めることができる。
 図1において、60は石英チャンバー12を覆う容器であり、81はステージ4とベースチャンバー11の底面との間で真空封止するためのOリングである。
 制御部40は、高周波電源20からICPコイル34への高周波電力供給のオン/オフを制御する。また、集積マスフローコントローラ制御部51を制御して、それぞれのマスフローコントローラ50から石英チャンバー12の内部へ供給するガスの種類及び流量を調整する。この状態で制御部40は更に排気手段15を作動させると共に調圧手段14を制御して、処理室1の内部が所望の圧力となるように調整する。
 更に、制御部40は、静電吸着用のDC電源31を作動させてウエハ2をステージ4に静電吸着させ、Heガスをウエハ2とステージ4との間に供給するマスフローコントローラ50-7を作動させた状態で、熱電対温度計71で測定したステージ4の内部の温度、及び検出器97で計測したウエハ2の中心部付近、半径方向ミドル部付近、外周付近のスペクトル強度情報に基づいて演算部41で求めたウエハ2の温度分布情報に基づいて、ウエハ2の温度が所定の温度範囲になるように赤外線ランプ用電源64、チラー38を制御する。
 図2を用いて、本実施例のプラズマ処理装置100で実施されるウエハ2の処理の流れについて説明する。図2は、本発明の実施例に係るプラズマ処理装置の実施するウエハ上に予め形成された窒化タンタルを含む膜のエッチング処理の流れの概略を示すフローチャートである。
 本図2において、ウエハ2の処理を開始する前に、表面に窒化タンタル膜を含む処理対象の膜層を含む膜構造が予め配置されたウエハ2が、処理室1内のステージ4上に載置され、DC電源31からの直流電力が静電吸着電極30に供給されて形成された静電気力によってステージ4上に保持される。
 処理の開始後、ステップS201では、処理室1内にフッ素と水素と窒素を含有するガスが導入される。ここでフッ素と水素と窒素を含有するガスとしては、四フッ化炭素(CF)/水素(H)/窒素(N)や、トリフルオロメタン(CHF)/アンモニア(NH)、三フッ化窒素(NF)/アンモニア(NH)などを利用できる。また、これらのガスをアルゴン(Ar)や窒素(N)などで希釈した混合ガスを利用しても良い。また、本ステップS201におけるウエハ温度は、ウエハ2が載置されているステージ4の温度調節機能によって一定に保たれている。
 次に、ステップS202では、放電領域3内部に上記ガスを用いてプラズマ10が生成され、プラズマ10中のフッ素と水素と窒素を含むガスの原子または分子が活性化されて生成されたフルオロカーボンラジカル(CF)等のラジカル(活性種)等の反応性を有した粒子(反応性粒子とも言う)が生成される。また、ステップS203では、反応性粒子が、ガス流路75およびスリット板78の貫通孔を通してウエハ2の表面に供給され、窒化タンタル膜を含む膜層の表面に付着する。反応性を有した粒子は付着した膜層の表面の材料と反応してプラズマ10の生成の条件やステージ4の温度等の処理の条件によって定まる厚さの表面反応層が形成される。このとき窒化タンタル膜を含む膜層の表面に生成する表面反応層には、タンタル-フッ素(Ta-F)結合や、窒素-水素(N-H)結合が含まれている。
 その後、ステップS204では、所定の厚さの表面反応層が形成されたことが膜厚の検出器(不図示)により或いは予め定められた時間の経過の確認等により制御部40によって確認された後、調圧手段14が真空排気配管16の流路断面積を大きくして排気量を増大させ、処理室1内部を大きく減圧させる。そして、処理室1内に供給されたフッ素と水素と窒素を含むガスが速やかに排気される。このことにより表面反応層の形成処理が終了する。この際、処理室1内のフッ素と水素と窒素を含むガスを置換するように、Ar等の不活性ガスを処理室1内部に供給して、フッ素と水素と窒素を含むガスの排出を促進させても良い。
 次に、ステップS205では、赤外線ランプ62を点灯し、赤外線ランプ62から放射される光(赤外光)によりウエハ2の表面を真空状態で加熱する。このときの赤外光の照射時間は例えば20秒であり、そのときのウエハ2の表面の最大到達温度は例えば200℃である。加熱時の処理室1の圧力は例えば1×10-3Paとした。このときウエハ2の温度は、赤外線ランプの照射時間の増大に伴って例えば約10℃/秒の速度で上昇し、この温度上昇により、表面反応層が表面から揮発して、膜層の表面から除去される(脱離される)。ウエハ2の温度が所定の温度に上昇したことが温度の検出機構(92-97、41)により確認されるかあるいは制御部40によって予め定められた時間の経過が確認された後、赤外線ランプ62は消灯される。
 揮発する反応生成物の例としては、例えばフッ化タンタル(TaF)やアンモニア(NH)、フッ化水素(HF)などが挙げられる。ウエハ2から脱離したこれらの反応生成物の粒子は、調圧手段14あるいは排気手段15の動作による処理室1内部の排気の動作またはこれによって生じている処理室1内部の粒子の移動の流れによって処理室1内部から処理室1外部へ排出される。続いて、ステップS206において処理室1内部から反応生成物を含むガスが処理室1外部へ排気される。
 上記のステップS201乃至S206を一纏まりとした1サイクルが終了する。当該サイクルによってプラズマとの反応で窒化タンタル膜の表面に生じた表面反応層が除去(脱離)されるために、窒化タンタル膜が表面反応層の膜層の厚さの分だけ除去され、窒化タンタル膜の膜厚が小さくされる。この膜厚の変化量が、上記の1サイクル当たりのエッチング量である。
 この後、制御器40において、図示しない膜厚検出器からの出力を受信してこれから得られた結果から所望のエッチング量の到達の有無、或いは予めのテスト等から所望のエッチング量が得られることが導出された上記サイクルの実施の回数を含む終了の条件が満たされたかが判定される(ステップS207)。条件を満たすと判定された場合(S207:はい)には、窒化タンタル膜を含む膜層のエッチング処理を終了し、満たしていないと判定された場合(S207:いいえ)には、ステップS201に戻り、再度サイクル(S201-S206)を実施する。このように本実施例では、所望のエッチング量が得られるまで上記サイクル(S201-S206)が繰り返して実施される。
 以下、本実施例のプラズマ処理装置100を用いたウエハ2上の窒化タンタル膜を含む膜層のエッチングを、反応層形成用のガスとしてCF/H/Nを用いて実施する場合について、動作の順序を、図3、4を用いて説明する。図3は、図1に示す実施例に係るウエハの処理中の処理の条件に含まれる複数のパラメータの時間の経過に伴う変化を示すタイムチャートである。図3において、パラメータは、上から順にガス供給流量、高周波電源電力、赤外線ランプ電力、静電吸着、ウエハ表面温度が示されている。
 図4は、図3に示す実施例に係るウエハの処理中における窒化タンタル膜を含む膜層を含む膜構造の変化の概略を模式的に示す断面図である。特に、図4では、ウエハ2の下地膜401上に窒化タンタル膜402が境を接して積層されて配置された膜構造の窒化タンタル膜402の表面付近の構造とその変化が模式的に示されている。
 まず、図3に示す処理中の時刻t0において、制御部40からの指令信号に応じて、処理室1に設けられた搬送口(図示省略)を介して、図4(a)に示される下地膜401とエッチングの処理対象の膜層とされる窒化タンタル膜402とを備えた膜構造が予め形成されたウエハ2が処理室1内部へ搬入されてステージ4に載置される。その後にDC電源31からの電力が静電吸着電極30に供給されウエハ2がステージ4上の誘電体膜上に静電吸着され保持される。さらに、制御部40からの指令信号に応じてマスフローコントローラ制御部51のHeガス対応のマスフローコントローラ50-7によりウエハ2の裏面とステージ4との間の隙間に供給されるウエハ冷却用のHeガスの流量が調節されて供給され、当該隙間のHeガスの圧力が所定の範囲内の値に調節される。この結果、ステージ4とウエハ2との間の熱伝達が促進され、ウエハ2の温度が予めチラー38により所定の温度にされた冷媒が冷媒の流路39に供給されて循環するステージ4の温度に近い値T1にされる。本実施例では、ウエハ2の温度T1は例えば-20℃にされる。
 次に、図3に示す時刻t1において、制御部40からの指令信号に応じて、マスフローコントローラ50のCF用のマスフローコントローラ50-3または50-6、H用のマスフローコントローラ50-2または50-4、N用のマスフローコントローラ50-1または50-5の各々で供給される流量が調節されてこれら複数の種類の物質のガスが混合された混合ガスが処理用のガスとして処理室1内に予め定められた範囲内の流量で供給される。これと共に、調圧手段14の開度が調節されて処理室1の内部および石英チャンバー12の内部の放電領域3内の圧力が所期の範囲内の値にされる。
 この状態で、図3に示す時刻t2において、制御部40からの指令信号に応じて高周波電源20からの所定の値Wの高周波電力がICPコイル34に供給され、石英チャンバー12の内部の放電領域3内にプラズマ放電が開始され、石英チャンバー12の内部にプラズマ10が生起される。この際、プラズマ10の生成されている間のウエハ2の温度をプラズマ10の生成前と同等に保つため赤外線ランプ62へ電力は供給されていない。
 この状態で、CF/H/Nガスの粒子の少なくとも一部がプラズマ10にて励起、解離あるいは電離化され、イオン等荷電粒子または活性種等の反応性粒子が形成される。放電領域3において形成された活性種等の反応性粒子および中性のガスはスリット板78に形成されたスリットまたは貫通孔を通過して処理室1に導入されてウエハ2表面に供給される。図4(b)に示されるように、フルオロカーボンラジカル(CF)などを含む活性種403はウエハ2の窒化タンタル膜402の表面に吸着し窒化タンタル膜402の材料と相互作用を起こし、表面反応層404が形成される。つまり、窒化タンタル膜402の膜層の表面にフッ素、水素を含み酸素を含まない反応性の粒子403を供給して窒化タンタル膜402の膜層の表面に表面反応層404を形成する。
 この表面反応層404は、Ta-F結合や、N-H結合を主たる成分として含有する反応生成物であり、アルミニウムのKα線を用いてX線光電子分光法で測定した場合に、窒素1sスペクトルの結合エネルギーが、402±2eV付近にピークを持つことが大きな特徴である。図5は、表面反応層404を形成した窒化タンタル膜402の表面を、アルミニウムのKα線を用いたX線光電子分光法で分析した場合の、光電子スペクトルである。下地として存在する未反応の窒化タンタル膜402に起因する、結合エネルギー398±2eV付近に観測されるピーク(N-Taとして示す)に加えて、結合エネルギー402±2eV付近に、N-H結合の存在を示す、表面反応層404に起因するピークが観測されている。また、結合エネルギー407±2eV付近に、Ta-F結合の存在を示す、表面反応層404に起因するピークが観測されている。この表面反応層の組成は、用いるガスの組成や反応時間に依存して、単体の水素、単体のフッ素、あるいはNH、フッ化タンタルなど、水素、窒素、フッ素、タンタルの各種の結合状態が混じりあった状態となる場合や、窒化タンタル膜の表面酸化物などに起因する、若干の酸素が含まれる場合もある。なお、ここに示した結合エネルギーの値は、初期サンプルの表面に観測される表面汚染炭素に起因する炭素1sピークの位置が284.5eVであるとして校正した値である。
 図6は、表面反応層404に起因する402±2eVのピーク強度の、プラズマ処理時間に対する依存性を示すグラフである。プラズマ処理時間とは、高周波電力を供給し始めてからの経過時間を示す。図6に示す通り、表面反応層404に起因する402±2eVのピーク強度は、プラズマ処理時間の経過に伴い増大して飽和傾向を示し、プラズマ処理時間が20秒以上でほぼ一定となった。このように、反応生成物の生成量が自己飽和性を持つ性質は、金属表面やシリコン表面の自然酸化現象とよく似ている。このように、表面反応層の形成に自己飽和性があるために、飽和に要する時間以上のプラズマ処理をすることで、一サイクル当たりに生成する表面反応層404の量を一定にすることができる。なお、本実施の形態では、表面反応層404の生成量が飽和するまでに20秒を要したが、プラズマ源(12,34)とウエハ2の距離や基板温度などの装置パラメータに応じて、飽和までに要する時間は変化する。
 表面反応層の生成が飽和するために必要なプラズマ処理時間が経過した後は、図3に示す時刻t3において、制御部40からの指令信号に応じて、高周波電源20からの高周波電力の出力が停止されると共に放電領域3への処理ガスの供給が停止される。このことにより、放電領域3内でのプラズマ10が消失される。また、時刻t3から時刻t4の間に、処理室1内の処理ガスや反応性粒子等の粒子は調圧手段14で開度が調節された真空排気配管16および排気手段15を介して処理室1の外部に排気される。
 時刻t4において、制御部40からの指令信号に応じて赤外線ランプ62を点灯し、図4(c)に示すように、赤外線ランプ62から放射される光(赤外光)405によりウエハ2の表面を真空加熱する。このときの処理室1の圧力は例えば1×10-3Paとして、赤外線ランプの照射時間は例えば15秒とした。ウエハ表面の最大到達温度は例えば150℃である。この工程は、表面反応層404を、フッ化タンタルやアンモニア、フッ化水素などの反応生成物406に分解して揮発または脱離させる反応である。この脱離反応は、高温で低圧なほど有利である。発明者らは、この脱離反応を起こすためには、ウエハ2の表面の温度は100℃以上が必要であり、かつ処理室1の圧力は100Pa以下が必要であることを新規に見出した。
 なお、本実施例では、ウエハ表面の最大到達温度を150℃、処理室1の真空度を1×10-3Paとしたが、最大到達温度は100℃以上の温度領域において、適宜適切な値に設定すれば良い。典型的な温度範囲は、100~300℃であり、加熱時の処理室1の典型的な圧力範囲は、1×10-5~100Paである。
 図7は、到達温度150℃の赤外線ランプ62の加熱により表面反応層404を除去した場合の、表面反応層404に起因する402±2eVのピーク強度の、加熱時間に対する変化を示すグラフである。赤外線ランプ62から赤外光405を照射してウエハ2の表面を加熱することにより、表面反応層404の残存量を示す402±2eVのピーク強度が減少し、加熱時間10秒で表面反応層404が消滅していることが分かる。この加熱工程では、ウエハ2の表面に生成した表面反応層404のみが分解して揮発し、表面反応層404の下部に存在する未反応の窒化タンタル膜402は全く変化しないので、表面反応層404部分のみを除去することができる。従って、表面反応層404を形成する工程に加えて、表面反応層404を除去する工程も、自己飽和的である。
 なお、この加熱工程に際しては、ウエハ2はウエハステージ4上に戴置された状態であるが、ウエハ2の裏面の熱伝導を高めるために用いられるヘリウムガスの供給は停止し、ウエハ2の表面の温度が速やかに上昇するようにした。なお、本実施の形態ではウエハ2をウエハステージ4上に戴置したままの状態で処理したが、リフトピン(不図示)などを用いてウエハ2がウエハステージ4と熱的に接触していない状態で赤外光を照射しても良い。表面反応層404を除去するために必要な加熱時間が経過した後は、赤外線ランプ62が消灯されて、処理室1の残留ガスが排気手段15を用いて処理室1外部へ排気される。その後、ヘリウムガスの供給が再開されてウエハ2とウエハステージ4の熱伝導が高められ、ウエハ温度は、チラー38によって-20℃まで冷却され、1サイクル目の処理が終了した。
 制御部40からの指令信号に応じて、図3に示す時刻t5において、赤外線ランプ62を消灯する。また、処理室1内の反応生成物の粒子などを含むガスは、調圧手段14で開度が調節された真空排気配管16および排気手段15を介して処理室1外部に排気される。さらに、時刻t5以降の時間で、図2において説明の通り、ウエハ2上の窒化タンタル膜402のエッチング量あるいは残り膜厚さが所望の値に到達したか判定され(ステップS207に対応)、判定結果に応じて次のサイクルの開始(S201-S206)またはウエハ2の処理の終了の工程が行われる。
 次のサイクルを開始する場合は、時刻t5以降の任意の時刻t6において、制御部40からの指令信号に応じて、時刻t1からの動作と同様にCF/H/Nガスの放電領域3への導入が開始される。つまり、次のサイクルとして、再度、図4(b)で説明した表面反応層404の形成工程と、図4(c)で説明した表面反応層を加熱によって脱離させる工程と、を実施する。ウエハ2の処理を終了する場合は、時刻t6においてウエハ2の裏面とステージ4上面との間の隙間に供給されていたHeガスの供給を停止するとともに、バルブ52を開いて当該隙間からHeガスを排出して隙間内の圧力を処理室1内の圧力と同程度にするとともに、静電気の除去を含むウエハ2の静電吸着の解除の工程を実施する。以上で窒化タンタル膜402のエッチング処理の工程を終了する。
 本実施例において、3nmのエッチング量が必要な場合には、上記のサイクルを10回繰り返してエッチングを終了した。図8は、図1に示す本実施例に係るプラズマ処理装置が実施したエッチング処理においてサイクル数とエッチングの量との関係を示すグラフである。本図8は、横軸にサイクルの回数を採り、縦軸に実施された各サイクル終了後で次のサイクルの開始前にIn-situエリプロメトリ(In-situ ellipsometry: 偏光解析法)を用いて検出したエッチング量(エッチングの深さ)を示したものである。
 本図8に示す通り、本例ではサイクルの回数の増加に伴ってほぼ線形にエッチング量が変化している。この図から、本実施例における窒化タンタル膜の1サイクル当たりのエッチング量は、例えば、0.3nm/サイクルであることが判った。
 以上の通り、本実施例の表面反応層404を形成する第1の工程と表面反応層404を除去する第2の工程は、共に自己飽和的に終了する性質を持つ。このことから、本実施例において、回路パターンを有する膜構造が予め形成されたウエハ2をエッチングした場合の、一回のサイクルを終えた際の窒化タンタル膜402表面のエッチング量はウエハ2の面内方向および深さ方向についてバラつきが低減されより均一に近づけることができる。
 上記の自己飽和性を利用していることから、ウエハ2上面の水平方向や深さ方向の位置によってウエハ2に供給されるラジカル等の反応性粒子の密度が異なる分布を有した場合でも、エッチング量が必要以上に大きくなったり不足したりすることが抑制され、エッチング量のバラつきが低減される。また、全体のエッチング量は上記第1および第2の工程を含む1つのサイクルの繰り返す回数の増減で調節することができ、本実施例の当該エッチング量は1サイクル当たりのエッチング量を回数倍または回数分の和となる。結果として、本実施例では、従来の連続的なプラズマ処理によるエッチングと比較して、エッチング処理による加工後の寸法の制御性さらには処理の歩留まりを向上させることができる。
 以上本実施例によれば、窒化タンタル膜を、ウエハ面内方向やパターン深さ方向における高い均一性、ならびに原子層レベルの高い加工寸法制御性でエッチング加工する、等方性原子層エッチング技術を提供することができる。
 なお、上記図1のプラズマ処理装置100においては、赤外線ランプ62を放電領域3を囲む石英チャンバー12の外周の処理室1上方の真空容器外部に配置したが、石英チャンバー12または真空容器の内部に配置しても良い。また、上記した例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
1・・・処理室、
2・・・ウエハ、
3・・・放電領域、
4・・・ステージ、
5・・・シャワープレート、
6・・・天板、
10・・・プラズマ、
11・・・ベースチャンバー、
12・・・石英チャンバー、
14・・・調圧手段、
15・・・排気手段、
16・・・真空排気配管、
17・・・ガス分散板、
20・・・高周波電源、
22・・・整合器、
25・・・高周波カットフィルタ、
30・・・静電吸着用電極、
31・・・DC電源、
34・・・ICPコイル、
38・・・チラー、
39・・・冷媒の流路、
40・・・制御部、
41・・・演算部、
50・・・マスフローコントローラ、
51・・・マスフローコントローラ制御部、
52・・バルブ、
60・・・容器、
62・・・赤外線ランプ、
63・・・反射板、
64・・・赤外線ランプ用電源、
70・・・熱電対、
71・・・熱電対温度計、
74・・・光透過窓、
75・・・ガスの流路、
78・・・スリット板、
81・・・Oリング、
92・・・光ファイバー、
93・・・外部赤外光源、
94・・・光路スイッチ、
95・・・光分配器、
96・・・分光器、
97・・・検出器、
98・・・光マルチプレクサー、
100・・・プラズマ処理装置、
401・・・下地膜、
402・・・窒化タンタル膜、
403・・・活性種、
404・・・表面反応層、
406・・・反応生成物、
901・・・下地構造、
902・・・フィン構造、
903・・・窒化タンタル膜、
904・・・カーボン膜、
905・・・反応種、
906・・・反応生成物。

Claims (7)

  1.  ウエハの表面に配置された遷移金属の窒化物を含む処理対象の膜層をエッチングするエッチング方法であって、
     前記膜層の表面にフッ素、水素を含み酸素を含まない反応性の粒子を供給して当該膜層の表面に反応層を形成する工程と、
     前記膜層を加熱して前記反応層を脱離させる工程と、
    を備えたエッチング方法。
  2.  請求項1に記載のエッチング方法であって、
     前記遷移金属の窒化物が窒化タンタルである、エッチング方法。
  3.  請求項1または2に記載のエッチング方法であって、
     前記フッ素、水素を含み酸素を含まない反応性の粒子がフッ化炭素、水素、窒素から構成されたガスから形成された、エッチング方法。
  4.  請求項1乃至3の何れか一項に記載のエッチング方法であって、
     前記反応性の粒子がフッ素、水素を含み酸素を含まないガスを用いたプラズマにより形成された、エッチング方法。
  5.  請求項1乃至4の何れか一項に記載のエッチング方法であって、
     前記反応層は自己飽和性を有した、エッチング方法。
  6.  請求項1乃至5の何れか一項に記載のエッチング方法であって、
     前記反応層を形成する工程と前記反応層を脱離させる工程とを含んだ複数の工程を一纏まりのサイクルとして当該サイクルを複数回繰り返す、エッチング方法。
  7.  請求項1乃至6の何れか一項に記載のエッチング方法であって、
     前記処理対象の前記膜層の上方に炭素を含むマスク層が配置された、エッチング方法。
PCT/JP2021/016333 2021-04-22 2021-04-22 エッチング方法 WO2022224412A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/642,356 US20240047222A1 (en) 2021-04-22 2021-04-22 Etching method
CN202180005025.9A CN115516609A (zh) 2021-04-22 2021-04-22 蚀刻方法
PCT/JP2021/016333 WO2022224412A1 (ja) 2021-04-22 2021-04-22 エッチング方法
JP2022508797A JPWO2022224412A1 (ja) 2021-04-22 2021-04-22
KR1020227005694A KR20220146408A (ko) 2021-04-22 2021-04-22 에칭 방법
TW111109154A TWI812063B (zh) 2021-04-22 2022-03-14 蝕刻方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016333 WO2022224412A1 (ja) 2021-04-22 2021-04-22 エッチング方法

Publications (1)

Publication Number Publication Date
WO2022224412A1 true WO2022224412A1 (ja) 2022-10-27

Family

ID=83722156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016333 WO2022224412A1 (ja) 2021-04-22 2021-04-22 エッチング方法

Country Status (6)

Country Link
US (1) US20240047222A1 (ja)
JP (1) JPWO2022224412A1 (ja)
KR (1) KR20220146408A (ja)
CN (1) CN115516609A (ja)
TW (1) TWI812063B (ja)
WO (1) WO2022224412A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063186A (ja) * 2015-08-19 2017-03-30 ラム リサーチ コーポレーションLam Research Corporation タングステンおよび他の金属の原子層エッチング
JP2018041886A (ja) * 2016-09-09 2018-03-15 株式会社日立ハイテクノロジーズ エッチング方法およびエッチング装置
JP2020502811A (ja) * 2016-12-19 2020-01-23 ラム リサーチ コーポレーションLam Research Corporation デザイナー原子層エッチング

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939795B2 (en) 2002-09-23 2005-09-06 Texas Instruments Incorporated Selective dry etching of tantalum and tantalum nitride
US20190198301A1 (en) * 2017-12-27 2019-06-27 Mattson Technology, Inc. Plasma Processing Apparatus and Methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063186A (ja) * 2015-08-19 2017-03-30 ラム リサーチ コーポレーションLam Research Corporation タングステンおよび他の金属の原子層エッチング
JP2018041886A (ja) * 2016-09-09 2018-03-15 株式会社日立ハイテクノロジーズ エッチング方法およびエッチング装置
JP2020502811A (ja) * 2016-12-19 2020-01-23 ラム リサーチ コーポレーションLam Research Corporation デザイナー原子層エッチング

Also Published As

Publication number Publication date
TWI812063B (zh) 2023-08-11
JPWO2022224412A1 (ja) 2022-10-27
KR20220146408A (ko) 2022-11-01
CN115516609A (zh) 2022-12-23
TW202243001A (zh) 2022-11-01
US20240047222A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
US10325781B2 (en) Etching method and etching apparatus
KR102386601B1 (ko) 플라스마 처리 방법 및 플라스마 처리 장치
KR102102264B1 (ko) 에칭 방법 및 에칭 장치
JP2016058590A (ja) プラズマ処理方法
JP7311652B2 (ja) エッチング方法
US20070232076A1 (en) Method of repairing damaged film having low dielectric constant, semiconductor device fabricating system and storage medium
WO2022224412A1 (ja) エッチング方法
US11276579B2 (en) Substrate processing method and plasma processing apparatus
KR20210049173A (ko) 에칭 방법
JP7535175B2 (ja) エッチング方法
WO2023209982A1 (en) Etching method
TWI857522B (zh) 蝕刻法
JP7523553B2 (ja) エッチング方法およびエッチング装置
KR101066972B1 (ko) 플라즈마처리장치 및 플라즈마처리방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022508797

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17642356

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937905

Country of ref document: EP

Kind code of ref document: A1