WO2022224308A1 - 受光素子および光受信回路 - Google Patents

受光素子および光受信回路 Download PDF

Info

Publication number
WO2022224308A1
WO2022224308A1 PCT/JP2021/015875 JP2021015875W WO2022224308A1 WO 2022224308 A1 WO2022224308 A1 WO 2022224308A1 JP 2021015875 W JP2021015875 W JP 2021015875W WO 2022224308 A1 WO2022224308 A1 WO 2022224308A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
optical
receiving element
electrode pad
Prior art date
Application number
PCT/JP2021/015875
Other languages
English (en)
French (fr)
Inventor
淳 神田
泰彦 中西
俊英 吉松
允洋 名田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023515893A priority Critical patent/JPWO2022224308A1/ja
Priority to US18/550,857 priority patent/US20240222532A1/en
Priority to PCT/JP2021/015875 priority patent/WO2022224308A1/ja
Publication of WO2022224308A1 publication Critical patent/WO2022224308A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06134Square or rectangular array covering only portions of the surface to be connected
    • H01L2224/06135Covering only the peripheral area of the surface to be connected, i.e. peripheral arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48195Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12043Photo diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Definitions

  • the present invention relates to optical communication, and more specifically to a light receiving element and an optical receiving circuit.
  • the transmission speed required for optical communication systems is increasing year by year.
  • broadband light-receiving elements for converting optical signals into electrical signals and light-receiving circuits using such light-receiving elements.
  • techniques for processing electrical signals of a plurality of channels in parallel and multiplexing the corresponding optical signals by means of wavelength division, etc. have been advanced to increase the transmission rate.
  • the light-receiving elements there is a demand for a technique for receiving multi-channel optical signals with one light-receiving element and collectively converting them into electrical signals with one light-receiving circuit.
  • the above-described optical receiving circuit includes a transimpedance amplifier (TIA) that converts a current signal obtained by the light receiving element into a voltage signal and amplifies and outputs the voltage signal, in addition to the light receiving element.
  • TIA transimpedance amplifier
  • a photodiode (PD) is exclusively used as a light receiving element for high-speed optical communication.
  • An integration technology is also progressing in which a plurality of PDs are arrayed and mounted on one PD array chip to convert multi-channel optical signals into multi-channel electrical signals.
  • a multi-channel optical receiver circuit using a PD array chip uses a multi-channel TIA having a plurality of input/output signal terminals.
  • a single TIA chip can convert multi-channel current signals into voltage signals and amplify and output them.
  • FIG. 11 is a diagram showing the configuration of a conventional back-thinned PD for high-speed optical transmission.
  • FIG. 11(a) is a top view of the device configuration surface (xy plane) of the back illuminated PD viewed from above, (b) is a view of the back side of the device configuration surface, and (c) is a ) taken perpendicularly to the substrate surface along line XIc-XIc.
  • a photodetector 15 for receiving an optical signal, an anode electrode pad 11 connected to the anode, and a cathode electrode pad 12 connected to the cathode are provided on the upper surface of the PD1. formed.
  • an optical signal 2 incident from the lower surface side of the PD 1 is transmitted through the PD, converted from an optical signal to an electric signal by the light receiving section 15 formed on the upper surface, and the electric signal is converted to an anode. Output from the electrode and cathode electrode.
  • the PD chip is mounted on a PD submount provided with a through hole, and an optical signal is incident through the through hole. morphology is used. Therefore, the lower surface (rear surface) side of the PD 1 on which the light is incident shown in FIG. 11(b) serves as a mounting surface for the submount, and electrodes and the like are not formed thereon.
  • FIG. 12 is a diagram showing a mounting example of an optical receiving circuit for high-speed transmission in the prior art.
  • FIG. 12(a) is a top view of the side on which the PD chip and others are mounted
  • FIG. 12(b) is a cross-sectional view of the optical receiving circuit taken along line XIIb-XIIb in the top view of (a). be. Since the optical receiving circuit in FIG. 12 is configured on a substrate surface or the like in various forms such as a receiving device and an optical module, FIG. 12 does not show a substrate serving as a base. The same applies to other optical receiver circuits to be described later.
  • FIG. 12 is a diagram showing a mounting example of an optical receiving circuit for high-speed transmission in the prior art.
  • FIG. 12(a) is a top view of the side on which the PD chip and others are mounted
  • FIG. 12(b) is a cross-sectional view of the optical receiving circuit taken along line XIIb-XIIb in the top view of (
  • the optical receiving circuit is roughly composed of a PD submount 40 and a TIA carrier 42 .
  • a back-thinned PD 1 and a chip capacitor 30 are mounted on a surface-metallized PD submount 40 .
  • a TIA 20 is mounted on a surface metallized TIA carrier 42 .
  • the PD submount 40 is provided with a through hole 41 through which the optical signal 2 is incident from the lower surface of the PD1. Normally, in order to avoid the influence of reflected return light, the optical signal 2 is incident on the PD light receiving section 15 at an angle shifted from the normal direction.
  • the optimum angle varies depending on design conditions such as the optical system configuration and material of the PD, the wavelength of light, and the transmission speed handled by the PD.
  • a certain degree of freedom (margin) is required for the mounting position of the PD 1 with respect to the submount 40 according to mounting conditions and manufacturing conditions. Therefore, the dimension of the through hole 41 must be sufficiently large with respect to the light receiving diameter of the PD light receiving section 15 .
  • the TIA 20 includes a signal pad 21 for inputting electrical signals from the PD 1, signal pads 22a and 22b for outputting differential electrical signals to the outside, ground pads 23a to 23e, power supply, TIA operation control, and monitoring.
  • a power/control/monitor pad 24 is provided for this purpose.
  • a chip capacitor 30 connected to the cathode electrode pad 12 is also mounted on the PD submount 40 .
  • the chip capacitor 30 is a relay terminal for applying a DC voltage from the outside to the cathode electrode 12 of the PD 1, and operates to separate the AC component from the DC component and block the leakage of the AC signal to the outside.
  • a bonding wire 51 electrically connects between the anode electrode pad 11 of the PD 1 and the input signal pad 21 of the TIA 20 .
  • a bonding wire 52 electrically connects the cathode electrode pad 12 of the PD 1 and the chip capacitor 30 .
  • Bonding wire 57 provides an electrical connection between ground pad 23 of TIA 20 and the ground potential of PD submount 40 .
  • FIG. 13 is a diagram showing another configuration of a conventional back-thinned PD for high-speed optical transmission. Similar to FIG. 11, FIG. 13(a) is a top view of the device configuration surface (xy plane) of the back-illuminated PD viewed from above, and (b) is a view of the back side of the device configuration surface. (c) is a cross-sectional view cut perpendicularly to the substrate surface along line XIIIc--XIIIc of (a).
  • a difference from the configuration of the PD shown in FIG. 11 is that a lens 17 is provided at a position corresponding to the light receiving section 15 on the lower surface side of the element.
  • the lens 17 has a curvature such that the optical signal 2 incident from the lower surface side of the element is condensed at the light receiving portion.
  • FIG. 14 is a diagram showing still another configuration of a conventional back-thinned PD for high-speed optical transmission. Similar to FIG. 11, FIG. 14(a) is a top view of the device configuration surface (xy plane) of the back illuminated PD viewed from above, and (b) is a view of the back side of the device configuration surface. (c) is a cross-sectional view cut perpendicularly to the substrate surface along line XIVc-XIVc of (a).
  • the PD shown in FIG. 14 is a PD array chip 101, in which four back illuminated PDs 1 shown in FIG. 11 are arranged and integrated into one chip.
  • One PD array chip 101 can convert 4-channel optical signals into 4-channel electrical signals. By integrating four PDs into one chip, the mounting cost of the optical receiver circuit can be reduced compared to the case of separately mounting four PD chips.
  • FIG. 15 is a diagram showing a mounting example of an optical receiver circuit for high-speed transmission using a PD array chip.
  • FIG. 15(a) is a top view of the side on which the PD chip array and others are mounted
  • FIG. 15(b) is a cross-sectional view of the optical receiving circuit cut along line XVb-XVb in FIG. 15(a).
  • is. 15 shows an optical receiver circuit that uses a PD array chip 101 to input multi-channel optical signals and output multi-channel electrical signals, in contrast to the optical receiver circuit using a 1-channel PD shown in FIG. there is PD array 101 and chip capacitor 300 are mounted on a surface-metallized PD submount 400 .
  • TIA 200 is mounted on a surface metallized TIA carrier 420 .
  • the PD submount 400 is provided with a large single through-hole 410 that integrates through-holes for four channels to allow four channels of optical signals 2 to enter from the rear surface of the PD array 101 .
  • the optical signal 2 is incident on the PD light-receiving part at an angle shifted from the normal direction, and a certain degree of freedom is required for the mounting position of the PD array 101 on the submount 400 .
  • the dimensions of the end and short sides of the through-hole 410 are sufficiently large relative to the light-receiving diameter of the PD light-receiving part due to the problems of processing accuracy of the ceramic, which is the material of the PD submount 400, and the size of the through-hole that can be processed. There must be.
  • the TIA chip 200 is a multi-channel TIA having four amplifier circuits, and includes input signal pads 210 for four channels, output signal pads 220a and 220b, ground pads 230a to 230e, and power/control/monitor pads 240. I have it.
  • Bonding wires 510 electrically connect between the four anode electrode pads 110 of the PD array 101 and the four input signal pads 210 of the TIA 200 .
  • the bonding wires 520 electrically connect between the four cathode electrode pads 120 of the PD array 101 and the four chip capacitors 300, respectively.
  • the bonding wires 570 electrically connect the ground pads 230 a and 230 b of each of the four amplifier circuits of the TIA 200 and the ground potential plane of the PD submount 400 .
  • the present invention has been made in view of the above problems, and its object is to provide a light receiving element and an optical receiving circuit having good high frequency transmission characteristics.
  • One embodiment of the present invention is a light-receiving element, comprising: a light-receiving portion for an optical signal formed on one surface of a substrate; an anode electrode pad connected to an anode of the light-receiving portion; a cathode electrode pad connected to the cathode of the substrate; and a ground pattern formed outside the opening region at a position corresponding to the light receiving portion on the surface opposite to the element forming surface of the substrate. It is a light receiving element characterized by
  • a light-receiving element and an optical receiver circuit that have good high-frequency transmission characteristics, suppress unnecessary resonance and radiation noise, and reduce crosstalk between channels.
  • FIG. 2 is a diagram showing the configuration of a light receiving element of Embodiment 1;
  • FIG. 3 is a diagram showing a mounting example of an optical receiving circuit using the light receiving element of Embodiment 1.
  • FIG. FIG. 2 is a diagram illustrating paths of return currents in the optical receiver circuit of the first embodiment;
  • 4 is a diagram showing another configuration of the light receiving element of Embodiment 1;
  • FIG. 10 is a diagram showing the configuration of a light receiving element according to Embodiment 2;
  • FIG. 10 is a diagram showing a mounting example of an optical receiving circuit using the light receiving element of Embodiment 2;
  • FIG. 10 is a diagram showing the configuration of a light receiving element of Embodiment 3;
  • FIG. 10 is a diagram showing an example of mounting an optical receiving circuit using the light receiving element of Embodiment 3;
  • FIG. 10 is a diagram for explaining the return current path in the optical receiver circuit of the third embodiment;
  • FIG. 10 is a diagram showing another configuration of the light receiving element of Embodiment 3;
  • 1 is a diagram showing the configuration of a conventional back-thinned PD for high-speed optical transmission;
  • FIG. 10 is a diagram showing an example of mounting an optical receiver circuit using a conventional back-thinned PD;
  • FIG. 10 is a diagram showing another configuration of a prior art back-thinned PD;
  • FIG. 10 is a diagram showing yet another configuration of a conventional back-thinned PD;
  • FIG. 4 is a diagram showing an example of mounting an optical receiver circuit using a PD array chip
  • FIG. 2 is a diagram of a return current path of an optical receiver circuit according to a prior art PD
  • FIG. 4 is a diagram of a return current path of an optical receiver circuit by a PD array chip
  • the light-receiving element of the present disclosure achieves excellent high-frequency transmission characteristics by adopting a configuration that minimizes the return current path.
  • the inventors paid attention to the reciprocating path of the high-frequency signal transmitted from the light receiving element to the TIA.
  • the path of the return current returning to the ground side is straightened.
  • a return current that flows in the opposite direction to the high-frequency signal from the PD flows through the ground pattern formed on the lower surface of the PD, which is in contact with the ground potential of the PD submount.
  • This ground pattern on the lower surface of the PD realizes good high-frequency transmission characteristics, and especially in a multi-channel PD array, suppresses unnecessary resonance and radiation noise, and effectively reduces crosstalk between channels.
  • FIG. 16 is a diagram for explaining the return current path in an optical receiving circuit using a conventional back-thinned PD.
  • the photocurrent generated in the conventional PD 1 shown in FIG. 12 and the return current corresponding to this photocurrent are indicated by arrows without drawing bonding wires.
  • a photocurrent generated from the signal light 2 in the PD light receiving section 15 flows as a high frequency signal current 61 from the PD anode electrode pad 11 to the TIA input signal pad 21 via the bonding wire 51 .
  • Return currents 67 and 69 flow from the TIA 20 in the opposite direction to the transmission of the signal current 61 toward the TIA 20 .
  • Return currents 67 , 69 flow from ground pads 23 a , 23 b to the ground potential plane of PD submount 40 via respective bonding wires 57 .
  • the surface of the PD submount 40 is covered with metal (metallized) by depositing a metal film, and at least the portion where the PD 1 is mounted and its periphery, preferably the entire surface, are metallized.
  • This metallized metal surface electrically has a reference ground potential in the optical receiving circuit, and in this specification the metallized metal surface is also referred to as a ground potential surface.
  • Return currents 67 and 69 indicated by dashed arrows on the PD submount 40 shown in FIG. 16 flow through the ground potential plane described above.
  • the PD submount 40 Since the PD submount 40 has a through hole 41 through which the signal light 2 is incident from directly below the PD 1, the return currents 67 and 69 flow through the ground potential surface around the through hole 41. That is, the return current is prevented from traveling straight and flows around the through-hole 41 . This detour of the return current path degrades high-frequency transmission characteristics and can cause unwanted resonance and radiation noise. This problem becomes more serious in optical receiver circuits using multi-channel PD arrays.
  • FIG. 17 is a diagram for explaining the return current path in an optical receiving circuit using a conventional back-thinned PD array.
  • the photocurrent generated in the four channels 601 to 604 and the return current corresponding to this photocurrent are indicated by arrows without drawing bonding wires.
  • a photocurrent generated from the signal light 2 in each of the four PD light receiving portions 150 flows as a signal current 610 from the PD anode electrode pad 110 to the TIA input signal pad 210 via the bonding wire 510 .
  • Return currents 691 to 694 flow from the TIA 200 in opposite directions to the transmission of the four high-frequency signal currents 610 toward the TIA 200 .
  • the return current 691 flows from the ground pads 230a and 230b to the ground potential surface of the PD submount 400 via the bonding wire 570.
  • a return current 691 detours around the left end of the through hole 410 of the PD submount 400 and flows through the ground potential surface.
  • the return current 694 also flows around the right end of the through-hole 410, symmetrically with the return current 691, on the ground potential surface.
  • the return current 692 flows from the ground pads 230a and 230b to the ground potential surface of the PD submount 400 via the bonding wire 570.
  • FIG. A return current 692 flows through the ground potential surface of the PD submount 400 along the longitudinal direction of the through-hole from the bonding wire connection point, and further around the left end of the through-hole.
  • the degree of detour of the return current in the channel 602 inside the chip is significant.
  • the distance between adjacent channels approaches the same level as the bonding wire length (for example, about 0.5 mm).
  • the bond wires act as transmit and receive antennas. If unnecessary resonance or radiation noise occurs in a channel, the electromagnetic waves radiated from the bonding wire of that channel are likely to be picked up by bonding wires of adjacent channels. A signal leaked from an adjacent channel is superimposed on a signal of its own channel, and is easily affected by so-called crosstalk. For example, for a signal having a transmission rate of about 10 Gbaud or higher, a quarter wavelength in free space is as long as or shorter than the bonding wire length. In this way, the bonding wire functions as an antenna, and there is a problem that the transmission quality deteriorates due to crosstalk from adjacent channels. Return current will be explained.
  • FIG. 1 is a diagram showing the configuration of a light receiving element according to Embodiment 1.
  • FIG. (c) is a cross-sectional view taken perpendicularly to the substrate surface along line Ic-Ic of (a).
  • a light-receiving portion 15 for receiving optical signals, an anode electrode pad 11 connected to the anode, and a cathode electrode pad 12 connected to the cathode are formed on the upper surface of the PD 10, which is a light-receiving element for high-speed optical communication.
  • the optical signal 2 incident from the bottom side of the PD 10 is transmitted through the PD and converted from the optical signal to the electrical signal by the light receiving section 15 formed on the top side.
  • An electrical signal is output from the anode electrode and the cathode electrode.
  • the cathode electrode is grounded via a chip capacitor, so that the high-frequency signal current is taken out from the anode side to the outside.
  • an optical receiving circuit when configured with a back-thinned PD 10, there is a mounting mode in which a PD chip is mounted on a PD submount provided with a through hole, and an optical signal is incident through the through hole.
  • a ground pattern 18 is formed on the entire lower surface of the PD except for the opening region 16 for incident optical signals.
  • the inventors came up with the idea of constructing a ground pattern on the lower surface of the PD, which has not been used until now, to use it as a return current path.
  • the substrate material of the PD is usually a semiconductor, and it is a simple process to vapor-deposit a metal film or the like on the surface of the semiconductor and metallize the surface. A thin metal film is sufficient to create a ground potential for high-frequency currents. Also, the ground pattern on the bottom surface of the PD does not affect the process of mounting the PD on the PD submount.
  • the light-receiving element 10 of the present disclosure includes a light-receiving portion 15 for optical signals, an anode electrode pad 11 connected to an anode of the light-receiving portion, and a cathode of the light-receiving portion, which are formed on one surface of a substrate. and a ground pattern 18 formed outside the opening region 16 at a position corresponding to the light-receiving portion on the surface opposite to the element forming surface of the substrate. can be implemented.
  • the ground pattern 18 may be formed on the entire surface of the opposite surface except for the opening area.
  • FIG. 2 is a diagram showing a mounting example of an optical receiving circuit using the light receiving element of Embodiment 1.
  • FIG. FIG. 2(a) is a top view of the side on which the PD chip and others are mounted, and FIG. be. Since the optical receiving circuit in FIG. 2 is mounted and configured on a substrate surface or the like in various forms such as an optical receiving device and an optical receiving module, FIG. 2 does not show a base substrate.
  • a mounting form of a PD 10 that inputs an optical signal 2 of one channel and outputs an electrical signal of one channel is shown.
  • the optical receiver circuit is roughly divided into two parts, a PD submount 40 and a TIA carrier 42 .
  • a back-thinned PD 10 and a chip capacitor 30 are mounted on a surface-metallized PD submount 40 .
  • a TIA 20 is mounted on a surface metallized TIA carrier 42 .
  • the PD submount 40 is provided with a through-hole 41 through which the optical signal 2 is incident from the bottom surface of the PD 10 .
  • the optical signal 2 is incident on the PD light receiving section 15 at an angle shifted from the normal direction.
  • the optimum incident angle varies depending on design conditions such as the optical system configuration and materials of the PD, the wavelength of light, and the transmission speed handled by the PD, and a certain degree of freedom is required for the mounting position of the PD 10. . Therefore, the dimension of the through hole 41 must be sufficiently large with respect to the light receiving diameter of the PD light receiving section 15 .
  • the respective arrangement and connection configuration on the TIA 20 and PD submount 40 are the same as the conventional optical receiving circuit described in FIG. 12, and detailed description thereof will be omitted.
  • the difference between the configuration of the conventional optical receiver circuit in FIG. 12 and the optical receiver circuit in FIG. A ground pattern 18 is formed except for the region 16 .
  • FIG. 3 is a diagram for explaining the path of return current in an optical receiving circuit using the light receiving element of Embodiment 1.
  • FIG. 3 the photocurrent generated in the light-receiving element of Embodiment 1 shown in FIG. 2 and the return current corresponding to this photocurrent are indicated by arrows without drawing bonding wires.
  • a photocurrent generated from the signal light 2 in the PD light receiving section 15 flows as a high frequency signal current 61 from the PD anode electrode pad 11 to the TIA input signal pad 21 via the bonding wire 51 .
  • the cathode electrode pad 12 is grounded to the ground potential surface of the PD submount 40 via the chip capacitor 30 in high frequency.
  • a return current flows from the TIA 20 in the opposite direction to the transmission of the signal current 61 toward the TIA 20 .
  • Return currents 67 a and 67 b flow from ground pads 23 a and 23 b to the ground potential plane of PD submount 40 via respective bonding wires 57 .
  • the return currents 67a and 67b flowing from the bonding wires 57 further flow through the ground pattern 18 formed on the lower surface of the PD 10, which is in contact with the ground potential surface of the PD submount 40, as return currents 68a and 68b.
  • the difference is clear when compared with the return currents 69a and 69b of the path bypassing the through-hole 41 shown in FIG. 17 in the conventional optical receiver circuit.
  • the return currents 68a and 68b flowing through the ground pattern 18 on the lower surface of the PD reach the ground potential surface of the chip capacitor 30 in the shortest distance without detouring.
  • the signal current and the return current each flow in such a way as to form a current loop with the shortest distance and the smallest opening.
  • the present invention provides an optical receiving circuit, which includes a subcarrier 40 whose surface is metallized, a light receiving element 10 on the subcarrier, and a light receiving portion 15 for an optical signal formed on one surface of a substrate. , an anode electrode pad 11 connected to the anode of the light-receiving portion, a cathode electrode pad 12 connected to the cathode of the light-receiving portion, and a surface opposite to the element forming surface of the substrate corresponding to the light-receiving portion. and a signal input pad 21 electrically connected to the anode electrode pad, and the metallization of the subcarrier.
  • a transimpedance amplifier 20 having ground pads 23a, 23b electrically connected to a ground plane connected to the ground plane, wherein for signal currents 61, 62 flowing from the cathode electrode pads to the signal input pads, the return currents are: It can also be implemented as flowing from the ground pad through paths 68a, 68b including the ground pattern.
  • an opening region 16 is opened concentrically at a position corresponding to the light-receiving part 15 on the lower surface of the PD 10, and the entire surface excluding the opening region 16 is a ground pattern.
  • Disturbance of the electromagnetic field of the high frequency transmission line can be eliminated by eliminating the detour of the return current due to the through holes and securing the shortest paths for the return currents 68a and 68b as shown in FIG. Therefore, the configuration of the ground pattern on the bottom surface of the PD 10 is not limited to that shown in FIG.
  • FIG. 4 is a diagram showing a configuration of the light-receiving element of Embodiment 1 with another ground pattern.
  • FIG. 4(a) is a top view of the configuration surface (xy plane) of the light receiving element viewed from above, (b) is a rear view of the back side of the configuration surface, and (c) is IVc of (a).
  • -IVc is a cross-sectional view cut perpendicular to the substrate surface.
  • the only difference from the configuration of the PD in FIG. 1 is the shape of the ground pattern 19 on the bottom surface of the PD. As shown in FIG.
  • strip-shaped partial ground patterns 19a and 19b connecting the ends of the PD chips in a bridge-like manner are provided approximately parallel to the line connecting the anode electrode 11 and the cathode electrode 12. This also eliminates the detour of the return current path.
  • the direction of flow of the signal currents 62 and 61 is along the straight line connecting the anode electrode pad 11, the light receiving section 15 and the cathode electrode pad 12.
  • FIG. If there is a ground pattern on the bottom surface of the PD so that the return current is also parallel or opposite to the flow of this signal current, the current loop can be minimized and shortened.
  • the anode electrode pad 11, the light receiving section 15 and the cathode electrode pad 12 are arranged in a straight line as much as possible.
  • the anode electrode pad 11, the light-receiving portion 15 and the cathode electrode pad 12 are arranged along a straight line, and the ground patterns are arranged on both sides of the opening area parallel to the straight line. It can be implemented as having a band-like shape 19a, 19b.
  • the arrangement of the anode electrode pad 11, the light receiving section 15, and the cathode electrode pad 12 should be generally linear, and the signal current and the return current linearly form a minimum current loop as shown in FIG. good.
  • a conductive adhesive, solder, or the like is normally used to fix a back-thinned PD on a surface-metallized PD submount. As shown in FIG. 4B, by providing a space between the ground patterns 19a, 19b and the opening area 16, it is possible to prevent the conductive adhesive, solder, etc. from flowing into the opening area 16. can also
  • FIG. 5 is a diagram showing the configuration of a light receiving element according to Embodiment 2.
  • FIG. FIG. 5(a) is a top view of the configuration surface (xy plane) of the light receiving element viewed from above, (b) is a rear view of the back side of the configuration surface, and (c) is Vc of (a).
  • - It is a cross-sectional view cut perpendicularly to the substrate surface along line Vc.
  • the configuration and operation for outputting an electrical signal from the optical signal 2 are the same as those of the light receiving element 10 of Embodiment 1 shown in FIG. 1, and only differences from the configuration of FIG. 1 will be described.
  • a ground pattern 18 is formed on the entire lower surface of the PD 10 except for the lens 17 .
  • a lens 17 is formed on the lower surface of the PD substrate at the position of the opening region 16 in FIG.
  • FIG. 6 is a diagram showing a mounting example of an optical receiving circuit using the light receiving element of Embodiment 2.
  • FIG. FIG. 6(a) is a top view of the side on which the PD chip and others are mounted
  • FIG. 6(b) is a cross-sectional view of the optical receiving circuit cut along line VIb-VIb in the top view of (a). be.
  • the respective arrangement on the TIA 20 and the PD submount 40 and the mutual connection configuration are the same as those of the conventional optical receiving circuit described with reference to FIG. 12, and detailed description thereof will be omitted.
  • 12 and the optical receiver circuit using the photodetector of Embodiment 2 is that a lens 17
  • the ground pattern 18 is formed except for the region where is formed. Except for the point that the lens 17 is the same area in the present embodiment as opposed to the simple opening area 16 in the first embodiment, the second embodiment shown in FIG. 6 and the first embodiment shown in FIG. , the optical receiving circuit is configured in the same manner.
  • the light-receiving element of this embodiment can also obtain a minimized return current path exactly the same as the return current in Embodiment 1 shown in FIG. That is, the high-frequency signal current 61 generated in the light receiving portion 15 of the PD 10 flows from the PD anode electrode pad 11 to the TIA input signal pad 21 via the bonding wire 51 . A return current flows from the TIA 20 in the opposite direction to the transmission of the signal current 61 toward the TIA 20 . Return currents 67 a and 67 b flow from ground pads 23 a and 23 b to the ground potential plane of PD submount 40 via respective bonding wires 57 .
  • the return currents 67a, 67b flowing from the bonding wires 57 further flow through the ground pattern 18 formed on the lower surface of the PD 10, which is in contact with the ground potential surface of the PD submount 40, as return currents 68a, 68b.
  • the return current flowing through the ground pattern 18 around the lens 17 on the lower surface of the PD in FIG. 5 reaches the ground potential surface of the chip capacitor 30 in the shortest distance without detouring as shown in FIG.
  • the signal current and the return current each flow in such a way as to form a current loop with the shortest distance and the smallest opening.
  • an opening area 16 having the same shape as the lens 17 and concentrically with the light receiving section 15 is formed by removing the metal of the ground pattern. That is, the ground pattern 18 is entirely metallized except for the opening region 16 on the lower surface of the PD 10 .
  • the configuration of the ground pattern on the bottom surface of the PD is not limited to that shown in FIG. It is possible to modify the ground pattern as shown in FIG. 4 described above, and partial ground patterns 19a and 19b connected in a bridge shape may be used.
  • Each of the above-described embodiments has shown the case of a one-channel light-receiving element that inputs a one-channel optical signal and outputs a one-channel electrical signal.
  • FIG. 7 is a diagram showing the configuration of a light receiving element according to Embodiment 3.
  • FIG. FIG. 7(a) is a top view of the configuration surface (xy plane) of the light receiving element viewed from above, (b) is a rear view of the back side of the configuration surface, and (c) is VIIc of (a).
  • - VIIc is a cross-sectional view cut perpendicular to the substrate surface.
  • the light-receiving element of this embodiment is a PD array 100, which is obtained by arranging four back illuminated PDs 10 shown in FIG. 1 and integrating them into one chip.
  • Each PD has a light receiving section 150, an anode electrode pad 110, and a cathode electrode pad 120, and four PDs with the same configuration are arrayed.
  • An optical signal 2 incident from the bottom side of the PD array 100 passes through the inside of the PD and is converted from an optical signal to an electric signal by the light receiving section 150 formed on the top side, and the electric signal is output from the anode electrode and the cathode electrode.
  • the difference from the PD array 101 of the prior art shown in FIG. 15 is that an integrated ground pattern 180 is formed on the entire bottom surface of the PD array 100 except for the four aperture regions 160 through which optical signals are incident. is that
  • FIG. 8 is a diagram showing a mounting example of an optical receiving circuit using the PD array chip of Embodiment 3.
  • FIG. FIG. 8(a) is a top view of the side on which the PD chip array and others are mounted
  • FIG. 8(b) is a cross-sectional view of the optical receiving circuit taken along the line VIIIb-VIIIb in the top view of (a). is.
  • This optical receiving circuit receives optical signals 2 of four channels and outputs electrical signals of four channels.
  • the PD array 100 and chip capacitor 300 are mounted on a surface metallized PD submount 400 .
  • TIA 200 is mounted on a surface metallized TIA carrier 420 .
  • the PD submount 400 is provided with a single large through-hole 410 for allowing four channels of optical signals to enter from the rear surface of the PD array 100 .
  • the optical signal 2 is transmitted at an angle shifted from the normal direction to the PD photodetector 150 in order to avoid the influence of the reflected return light. make it incident.
  • the optimum incident angle varies depending on design conditions such as the optical system configuration and material of the PD, the wavelength of light, and the transmission speed handled by the PD, and the mounting position of the PD array 100 is required to have a certain degree of freedom.
  • the dimensions of the end and short sides of the through hole 410 are sufficient for the light receiving diameter of the PD light receiving portion. must be as large as
  • the TIA chip 200 is a multi-channel TIA equipped with four amplifier circuits, has the same configuration as the prior art TIA explained in FIG. 15, and is electrically connected to the PD array 100 as in the prior art. .
  • the difference between the prior art optical receiver circuit of FIG. A ground pattern 180 is formed on the entire surface except for the opening region 160 .
  • FIG. 9 is a diagram explaining the path of the return current in the optical receiving circuit using the PD array of Embodiment 3.
  • FIG. 9 in the PD array 100 of Embodiment 3 shown in FIG. 8, the photocurrents generated in the four channels 601 to 604 and the return currents corresponding to these photocurrents are indicated by arrows without drawing bonding wires. ing.
  • a photocurrent generated from the signal light 2 in each PD light receiving section 150 of the four PDs flows as a signal current 610 from the PD anode electrode pad 110 to the TIA input signal pad 210 via the bonding wire 510 .
  • the cathode electrode pad 120 is grounded to the ground potential surface of the PD submount 40 via a chip capacitor 300 at high frequencies.
  • return currents flow from the TIA 200 towards the PD in opposite directions.
  • Return current flows in the shortest distance. For example, looking at channel 604 on the far right of FIG. Return currents 670 a and 670 b flowing from bonding wires 570 first flow into the ground potential plane of PD submount 400 . Furthermore, the return currents 680a and 680b flow straight through the ground pattern 180 formed on the bottom surface of the PD 100, which is in contact with the ground potential surface.
  • the signal current and the return current each flow in the shortest distance to form a current loop with the smallest opening.
  • the return current flows in other channels 602 and 603 on the inner side of the PD array chip so as to form a current loop with the shortest distance and the smallest opening, just like the channel 604 . This is in sharp contrast to the channels 602 and 603 on the inner side of the PD array chip of FIG.
  • the detour amount of the return current path was large in the case of the conventional technology without the ground pattern 180 as shown in FIG.
  • the detour of the return current is eliminated, thereby greatly improving the high-frequency transmission characteristics.
  • crosstalk from both channels is superimposed compared to the channels outside the edge of the chip. For this reason, the amount of deterioration in transmission quality due to crosstalk increases in the channels inside the chip.
  • return currents flow equally in all channels, so that the transmission quality can be remarkably improved in the inner channels of the multi-channel optical receiver circuit.
  • the ratio (cross Talk) was about 25 dB at 10 GHz.
  • the crosstalk was about 50 dB at 10 GHz.
  • the crosstalk in the channel inside the chip was greatly improved by 25 dB as compared with the optical receiver circuit having the configuration of the prior art.
  • a concentric opening region 160 is left at a position corresponding to the light-receiving portion, and the entire surface is a metal ground pattern. If the detour of the return current due to the through-hole can be eliminated and the path of the return current can be secured so as to be the shortest path, the disturbance of the electromagnetic field of the high-frequency transmission line can be eliminated. Therefore, the configuration of the ground pattern on the bottom surface of the PD array is not limited to that shown in FIG. For example, the shape of the opening area of the ground pattern does not necessarily have to be concentric, and any shape is acceptable as long as the opening required for incident light is obtained. Also, the ground pattern does not need to cover the entire surface except for the opening area.
  • FIG. 10 is a diagram showing another configuration of the light receiving element of Embodiment 3.
  • FIG. FIG. 10(a) is a top view of the configuration surface (xy plane) of the light receiving element viewed from above, (b) is a rear view of the back side of the configuration surface, and (c) is Xc of (a).
  • - It is a cross-sectional view cut perpendicularly to the substrate surface along line Xc.
  • 10 is a PD array 100, which has substantially the same configuration as the PD array shown in FIG. The difference from the PD array of FIG.
  • the ground pattern on the bottom surface of the PD array is formed in stripes 190a and 190b parallel to straight lines connecting the anode electrode pad, the light receiving element, and the cathode electrode pad on both sides of the opening region 160. It is being done.
  • Strip-shaped ground patterns 190a and 190b connecting both sides of the PD array chip which are parallel to the straight line connecting the element elements described above, provide a linear return from the TIA chip to the chip capacitor via the PD submount and PD array.
  • a current path can be configured.
  • partial ground patterns 190a and 190b connecting both sides of the PD array chip in a bridge shape on the bottom surface of the PD array detouring of the return current path is eliminated.
  • a conductive adhesive, solder, or the like is used to fix the back-thinned PD on the surface-metallized PD submount.
  • the light-receiving element of the third embodiment four light-receiving elements (four channels) for converting four-channel optical signals into four-channel electrical signals have been described as an example. , without any limitation.
  • Return current diversion is a common problem in PD arrays regardless of the number of channels, as long as the configuration provides one large through-hole for multiple channels in the PD array. If the number of light-receiving elements is two or more, the detour problem of the return current can be solved by providing a ground pattern on the bottom surface of the PD array.
  • the light-receiving element and the optical receiving circuit of the present disclosure realize excellent high-frequency transmission characteristics.
  • a multi-channel PD array suppresses unnecessary resonance and radiation noise, and effectively reduces crosstalk between channels.
  • the present invention can be used for optical communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)

Abstract

本開示の受光素子は、リターン電流の経路を最短化する構成を採用し、良好な高周波伝送特性を実現する。本開示の受光素子では、光受信回路が処理する高周波電気信号の信号経路だけでなく、アース側を戻るリターン電流の経路がストレート化される。PDからの高周波信号に対して逆向きに流れるリターン電流は、PDサブマウントのグランド電位に接触する、PD下面に形成された接地パターンを流れる。このPD下面の接地パターンはフラットな高周波伝送特性を実現し、多チャネル化されたPDアレイでは、不要な共振や放射ノイズを抑え、チャネル間クロストークを効果的に低減する。

Description

受光素子および光受信回路
 本発明は光通信に関し、より具体的には受光素子および光受信回路に関する。
 光通信システムに求められる伝送速度は、年々増加している。伝送速度の高速化とともに、光信号を電気信号に変換する受光素子およびこれを用いた光受信回路に対しても、広帯域化に対する要求が高まっている。この要求に対し、1チャネル当たりの伝送速度を増大する技術に加え、複数のチャネルの電気信号を並列処理し、対応する光信号を波長分割等で多重化して伝送速度を増大させる技術が進んでいる。受光素子に目を向ければ、多チャネルの光信号を1つの受光素子で受光して、1つの光受信回路で一括して電気信号に変換する技術が求められている。
 上述の光受信回路は、受光素子に加え、受光素子で得られた電流信号を電圧信号に変換して増幅出力するトランスインピーダンス・アンプ(TIA)などから構成される。高速光通信用の受光素子としては、専らフォトダイオード(PD)が用いられている。複数のPDをアレイ化して1つのPDアレイチップ上に搭載し、多チャネルの光信号を多チャネルの電気信号に変換する集積化技術も進んでいる。PDアレイチップを用いた多チャネル光受信回路は、複数の入出力信号端子を備えた多チャネルTIAを用い、1つのTIAチップで多チャネルの電流信号を電圧信号に変換して、増幅出力できる。(特許文献1)
 図11は、従来技術の高速光伝送用の裏面入射型PDの構成を示す図である。図11の(a)は、裏面入射型PDの素子構成面(x-y面)を上方から見た上面図、(b)は素子構成面の裏側を見た図、(c)は(a)のXIc―XIc線で基板面に垂直に切断した断面図である。図11の(a)を参照すれば、PD1の上面には、光信号を受光する受光部15と、アノードと接続されているアノード電極パッド11と、カソードと接続されているカソード電極パッド12が形成されている。(c)に示したように、PD1の下面側から入射された光信号2は、PD内を透過し、上面に形成された受光部15で光信号から電気信号に変換され、電気信号がアノード電極およびカソード電極から出力される。図11の裏面入射型PDで光受信回路を構成する場合、後述するように、貫通孔が設けられたPDサブマウント上にPDチップを搭載し、貫通孔を通過して光信号を入射する実装形態が用いられる。したがって、図11の(b)に示した光が入射されるPD1の下面(裏面)側は、サブマウントへの搭載面となり、電極等は形成されない。
 図12は、従来技術における高速伝送用の光受信回路の実装例を示す図である。図12の(a)は、PDチップ他が搭載される側の上面図を、図12の(b)は、(a)の上面図で線XIIb―XIIbで光受信回路を切断した断面図である。図12の光受信回路は、受信装置や光モジュールなどの様々な形態で、基板面などの上に構成されるため、図12ではベースとなる基板は示していない。後述する他の光受信回路の図においても同様である。図12では、1チャネルの光信号2を入力して1チャネルの電気信号を出力するPD1を用いる光受信回路の実装形態が示されている。光受信回路は、大別して、PDサブマウント40およびTIAキャリア42の各部分で構成されている。裏面入射型PD1およびチップコンデンサ30が、表面メタライズされたPDサブマウント40の上に搭載されている。TIA20が、表面メタライズされたTIAキャリア42の上に搭載されている。
 PDサブマウント40には、PD1の下面から光信号2を入射するための貫通孔41が設けられている。通常、反射戻り光の影響を避けるために、光信号2はPD受光部15に対して法線方向から角度をずらして入射させる。最適な角度は、PDの光学系構成や材料、光の波長、PDの扱う伝送速度など設計条件によって変わる。PD1のサブマウント40に対する実装位置には、実装条件や製造条件に応じてある程度の自由度(マージン)も求められる。したがって貫通孔41の寸法は、PD受光部15の受光径に対して十分に大きくなければならない。
 TIA20は、電気信号をPD1から入力するためのシグナルパッド21、差動電気信号を外部に出力するためのシグナルパッド22a、22b、グランドパッド23a~23eおよび電源供給、TIAの動作制御、モニタを行うための電源・制御・モニタパッド24を備えている。
 PDサブマウント40上には、カソード電極パッド12と接続されたチップコンデンサ30も搭載している。チップコンデンサ30は、直流電圧を外部からPD1のカソード電極12に印加する中継端子であり、交流成分と直流成分を分離し、交流信号が外部に漏洩するのを遮断するよう動作する。
 ボンディングワイヤ51は、PD1のアノード電極パッド11とTIA20の入力シグナルパッド21との間を電気接続する。ボンディングワイヤ52は、PD1のカソード電極パッド12とチップコンデンサ30との間を電気接続する。ボンディングワイヤ57は、TIA20のグランドパッド23とPDサブマウント40のグランド電位との間を電気接続する。
 図13は、従来技術の高速光伝送用の裏面入射型PDの別の構成を示す図である。図11と同様に、図13の(a)は、裏面入射型PDの素子構成面(x-y面)を上方から見た上面図、(b)は素子構成面の裏側を見た図、(c)は(a)のXIIIc―XIIIc線で基板面に垂直に切断した断面図である。
 図11に示したPDの構成との相違点は、素子下面側において、受光部15と対応する位置にレンズ17を備えることである。レンズ17は、素子下面側から入射された光信号2が受光部で集光される曲率を有している。PD1にレンズ17を集積することによって、光結合効率を向上し、実装トレランスの低下を防ぐことができる。レンズとPDとの間のアライメントが不要となるため、光受信回路の実装コストを減らすことができる。
 図14は、従来技術の高速光伝送用の裏面入射型PDのさらに別の構成を示す図である。図11と同様に、図14の(a)は、裏面入射型PDの素子構成面(x-y面)を上方から見た上面図、(b)は素子構成面の裏側を見た図、(c)は(a)のXIVc―XIVc線で基板面に垂直に切断した断面図である。図14に示したPDは、PDアレイチップ101であって、図11で示した裏面入射型PD1を4つ配列して1つのチップに集積化したものである。1つのPDアレイチップ101によって、4チャネルの光信号を4チャネルの電気信号に変換することができる。4つのPDを1つのチップに集積化することによって、4個のPDチップを別々に実装する場合に比べて、光受信回路の実装コストを減らすことができる。
 図15は、PDアレイチップによる高速伝送用の光受信回路の実装例を示す図である。図15の(a)は、PDチップアレイ他が搭載される側の上面図を、図15の(b)は、(a)の上面図でXVb―XVb線で光受信回路を切断した断面図である。図12に示した1チャネルのPDを用いた光受信回路に対し、図15ではPDアレイチップ101を用い多チャネルの光信号を入力して多チャネルの電気信号を出力する光受信回路を示している。PDアレイ101およびチップコンデンサ300は、表面メタライズされたPDサブマウント400の上に搭載されている。TIA200は、表面メタライズされたTIAキャリア420の上に搭載されている。
 PDサブマウント400には、PDアレイ101の裏面から4チャネルの光信号2を入射するために4チャネル分の貫通孔をまとめた大きな単一の貫通孔410が設けられている。既に図12についても述べたように、光信号2がPD受光部に対して法線方向から角度をずらして入射させ、PDアレイ101のサブマウント400に対する実装位置にある程度の自由度が求められる。加えて、PDサブマウント400の材料であるセラミック加工精度や、加工可能な貫通孔サイズの問題から、貫通孔410の端部および短辺の寸法はPD受光部の受光径に対して十分に大きくなければならない。
 TIAチップ200は、4系統の増幅回路を備えた多チャネルTIAであり、4チャネル分の入力シグナルパッド210、出力シグナルパッド220a、220b、グランドパッド230a~230e、および電源・制御・モニタパッド240を備えている。ボンディングワイヤ510は、PDアレイ101の4つのアノード電極パッド110とTIA200の4つの入力シグナルパッド210との間を電気接続する。ボンディングワイヤ520は、PDアレイ101の4つのカソード電極パッド120と4つのチップコンデンサ300との間をそれぞれ電気接続する。ボンディングワイヤ570は、TIA200の4系統の各増幅回路のグランドパッド230a、230bと、PDサブマウント400のグランド電位面との間を電気接続する。
特許第5296838号公報
 しかしながら、光通信システムの伝送速度が上がるにしたがって、PDの実装上の制限が光受信回路における高周波特性に悪影響を与える問題が顕在化していた。従来技術のPDを用いた上述のいずれの光受信回路においても、高周波信号の経路で電磁界の乱れが生じる。高周波信号の電磁界の乱れは、PDからTIAへの高周波伝送特性を劣化させ、不要な共振や放射ノイズが発生しやすくなるなどの問題を生じていた。これらの問題は、多チャネル化されたPDアレイを用いた光受信回路において特に影響が著しかった。光受信回路におけるボンディングワイヤはアンテナとして機能し、隣接チャネルのボンディングワイヤから輻射されたクロストーク信号により伝送品質が劣化する問題もあった。
 本発明は上述の課題を鑑みてなされたもので、その目的とするところは、良好な高周波伝送特性を持つ受光素子および光受信回路を提供するところにある。
 本発明の1つの実施態様は、受光素子であって、基板の一方の面上に構成された、光信号の受光部と、前記受光部のアノードに接続されたアノード電極パッドと、前記受光部のカソードに接続されたカソード電極パッドと、前記基板の素子構成面とは反対の面であって、前記受光部に対応する位置にある開口領域の外に形成された接地パターンとを備えたことを特徴とする受光素子である。
 高周波伝送特性が良好で、不要な共振や放射ノイズを抑え、チャネル間クロストークを低減した受光素子および光受信回路を実現する。
実施形態1の受光素子の構成を示す図である。 実施形態1の受光素子を用いた光受信回路の実装例を示す図である。 実施形態1の光受信回路におけるリターン電流の経路を説明する図である。 実施形態1の受光素子の別の構成を示す図である。 実施形態2の受光素子の構成を示す図である。 実施形態2の受光素子を用いた光受信回路の実装例を示す図である。 実施形態3の受光素子の構成を示す図である。 実施形態3の受光素子を用いた光受信回路の実装例を示す図である。 実施形態3の光受信回路におけるリターン電流の経路を説明する図である。 実施形態3の受光素子の別の構成を示す図である。 従来技術の高速光伝送用の裏面入射型PDの構成を示す図である。 従来技術の裏面入射型PDによる光受信回路の実装例を示す図である。 従来技術の裏面入射型PDの別の構成を示す図である。 従来技術の裏面入射型PDのさらに別の構成を示す図である。 PDアレイチップによる光受信回路の実装例を示す図である。 従来技術のPDによる光受信回路のリターン電流経路の図である。 PDアレイチップによる光受信回路のリターン電流経路の図である。
 本開示の受光素子は、リターン電流の経路を最短化する構成を採用することで、良好な高周波伝送特性を実現する。発明者らは、受光素子からTIAへと伝送される高周波信号の往復の経路に着目した。本開示の受光素子では、光受信回路が処理する高周波電気信号の信号経路だけではなく、アース側を戻るリターン電流の経路がストレート化される。PDからの高周波信号に対して逆向きに流れるリターン電流が、PDサブマウントのグランド電位に接触している、PD下面に形成された接地パターンを流れる。このPD下面の接地パターンは良好な高周波伝送特性を実現し、特に多チャネル化されたPDアレイでは、不要な共振や放射ノイズを抑え、チャネル間クロストークを効果的に低減する。
 以下、まず従来技術の受光素子における問題点についてさらに詳細に説明を行い、引き続いて、従来技術の構成と対比をしながら、本開示の受光素子の構成について説明する。
 図16は、従来技術の裏面入射型PDを用いた光受信回路におけるリターン電流の経路を説明する図である。図16では、図12に示した従来技術のPD1で発生する光電流と、この光電流に対応するリターン電流を、ボンディングワイヤを描かずに矢印で示している。PD受光部15において信号光2から発生した光電流は、高周波信号電流61として、PDアノード電極パッド11からボンディングワイヤ51を経由しTIA入力シグナルパッド21に流れ込む。TIA20に向かう信号電流61の伝送に対して、逆向きに、TIA20からリターン電流67、69が流れる。リターン電流67、69は、グランドパッド23a、23bからそれぞれのボンディングワイヤ57を経て、PDサブマウント40のグランド電位面に流れ込む。
 PDサブマウント40の表面は、金属膜を蒸着して金属で覆われて(メタライズされて)おり、少なくともPD1が搭載される部分とその周辺、好ましくは全面がメタライズされている。このメタライズされた金属表面は、電気的には光受信回路における基準のグランド電位を持ち、本明細書では、メタライズされた金属表面をグランド電位面とも呼ぶこととする。図16に示したPDサブマウント40上の点線矢印で示したリターン電流67、69は、上述のグランド電位面を流れている。
 PDサブマウント40がPD1の直下から信号光2を入射する貫通孔41を持っているため、リターン電流67、69は貫通孔41の周りのグランド電位面を流れることになる。すなわち、リターン電流は直進することを妨げられて、貫通孔41の周囲を迂回するように流れる。このリターン電流経路の迂回は、高周波伝送特性を劣化させ、不要な共振や放射ノイズの発生の原因となり得る。この問題は、多チャネル化されたPDアレイを用いた光受信回路においてさらに影響が大きくなる。
 図17は、従来技術の裏面入射型PDアレイを用いた光受信回路におけるリターン電流の経路を説明する図である。図17では、図15に示した従来技術のPDアレイ101で、4つのチャネル601~604で発生する光電流と、この光電流に対応するリターン電流を、ボンディングワイヤを描かず矢印で示している。4つのPDの各受光部150において信号光2から発生した光電流は、信号電流610として、PDアノード電極パッド110からボンディングワイヤ510を経由しTIA入力シグナルパッド210に流れ込む。TIA200に向かう4つの高周波信号電流610の伝送に対して、それぞれ逆向きに、TIA200からリターン電流691~694が流れる。
 図17のTIAチップ左側のチャネル601に着目すると、リターン電流691は、グランドパッド230a、230bからボンディングワイヤ570を経て、PDサブマウント400のグランド電位面に流れ込む。リターン電流691は、PDサブマウント400の貫通孔410の左端をまわりこむ様に迂回して、グランド電位面を流れる。図17の右側のチャネル604についても、リターン電流694は、リターン電流691とは左右対称に、貫通孔410の右端をまわりこむ様に迂回して、グランド電位面を流れる。
 図17の内部側のチャネル602に着目すると、リターン電流692は、グランドパッド230a、230bからボンディングワイヤ570を経て、PDサブマウント400のグランド電位面に流れ込む。リターン電流692は、PDサブマウント400のグランド電位面を、ボンディングワイヤ接続点から貫通孔の長手方向に沿い、さらに貫通孔の左端をまわりこむ様に迂回して流れる。PDアレイチップの周辺近くにあるチャネル601に比べれば、チップ内部側にあるチャネル602のリターン電流の迂回の程度は著しい。PDアレイチップのPDの数が増えれば、高周波信号のグランド基準点となるチップコンデンサ300のからシグナルパッド210に至る信号電流経路と、リターン電流経路によって、大きな開口の電流ループを形成することになる。リターン電流の迂回の問題は、とりわけPDアレイチップにおいて重大な問題となる。
 セラミック加工精度上の理由から、PDサブマウント400の単一の貫通孔410の代わりに、各チャネルに対し別々の小さな貫通孔を4つ配列する構造として形成するのは困難である。図17に示したように4チャネル分の貫通孔を1つの大きな孔にまとめた構造を採らざるを得ない。上述のように、多チャネル光受信回路のチップ内側(中心側)のチャネルでは、リターン電流の迂回距離が大きくなる。このため、従来技術のPDアレイチップを用いた光受信回路では、特に内側のチャネルにおいて、高周波伝送特性の劣化が著しく、不要な共振や放射ノイズが発生しやすかった。
 PDおよびTIA間の信号伝送経路において共振が起きることによって、PDからの検波出力において、特定の周波数のエネルギーの反射や吸収が起こり得る。すなわち特定の周波数の伝達特性が急激に劣化(減衰)したり、逆に特定の周波数が励起されてスパイク状にピークを持ったりする。また自チャネルにおけるピーク信号が、他チャネルにノイズとして作用したりする。リターン電流の迂回は、このような高周波伝送特性の劣化をもたらす。
 また図15に示したような多チャネル化されたPDアレイを用いた光受信回路では、隣接するチャネル間の距離は、ボンディングワイヤ長と同程度(例えば0.5mm程度)にまで接近する。ボンディングワイヤは、送信アンテナおよび受信アンテナとして機能する。不要な共振や放射ノイズがあるチャネルで発生すれば、そのチャネルのボンディングワイヤから輻射された電磁波を、隣接するチャネルのボンディングワイヤで拾いやすくなる。隣接チャネルから漏洩した信号は自チャネルの信号に重畳し、いわゆるクロストークの影響を受けやすくなる。例えば10Gbaud程度以上の伝送速度を有する信号では、自由空間における1/4波長は、ボンディングワイヤ長と同程度またはそれ以下の長さになる。このように、ボンディングワイヤがアンテナとして機能し、隣接チャネルからのクロストークによって伝送品質が劣化する問題点があった
 以下では、本開示の受光素子および光受信回路の構成と、高周波信号および対応するリターン電流について説明する。
[実施形態1]
 図1は、実施形態1の受光素子の構成を示す図である。図11と同様に裏面入射型PD10を示しており、(a)は、受光素子の構成面(x-y面)を上方から見た上面図、(b)は構成面の裏側を見た背面図、(c)は(a)のIc―Ic線で基板面に垂直に切断した断面図である。
 高速光通信用受光素子であるPD10の上面には、光信号を受光する受光部15と、アノードと接続されているアノード電極パッド11と、カソードと接続されているカソード電極パッド12が形成されている。(c)に示したように、PD10の下面側から入射された光信号2は、PD内を透過し、上面に形成された受光部15で光信号から電気信号に変換される。電気信号は、アノード電極およびカソード電極から出力される。後述するように、カソード電極はチップコンデンサを介して接地されることで、高周波信号電流がアノード側から外部へ取り出される。図11と同様に、裏面入射型PD10で光受信回路を構成する場合、貫通孔が設けられたPDサブマウント上にPDチップを搭載し、貫通孔を通過して光信号を入射する実装形態が用いられる。本実施形態の受光素子10で従来技術の構成と異なるのは、光信号を入射する開口領域16を除いたPDの下面全体に、接地パターン18が形成されていることである。
 図1に示した裏面入射型PD10では、光信号をPDチップで受光部や電極パッドが形成される素子構成面の反対側(PDの下面)から信号光を入射する。したがって、PDの下面において他の信号を入出力する必要性がなく、PDサブマウント上にPDを実装するための障害になる。また敢えて信号パッドなどを形成しても、チップ構造が複雑になり、チップ作製コストが増えるだけである。したがって、PDの下面側には素子要素や電極は形成されず、PDチップの基板材料がそのままむき出しになっていた。発明者らは、これまで利用されることのなかったPD下面に、あえて接地パターンを構成することでリターン電流の経路として利用する着想を得た。PDの基板材料は、通常は半導体であり、半導体の表面に金属膜などを蒸着して表面をメタライズするのは、簡単な工程で済む。高周波電流に対するアース電位の形成には、薄い金属膜で十分である。また、PD下面の接地パターンは、PDをPDサブマウントに搭載する工程にも影響を及ぼさない。
 したがって本開示の受光素子10は、基板の一方の面上に構成された、光信号の受光部15と、前記受光部のアノードに接続されたアノード電極パッド11と、前記受光部のカソードに接続されたカソード電極パッド12と、前記基板の素子構成面とは反対の面であって、前記受光部に対応する位置にある開口領域16の外に形成された接地パターン18とを備えたものとして実施できる。この接地パターン18は、前記開口領域を除いて、前記反対の面の全面に形成されることができる。
 図2は、実施形態1の受光素子を用いた光受信回路の実装例を示す図である。図2の(a)は、PDチップ他が搭載される側の上面図を、図2の(b)は、(a)の上面図でIIb―IIb線で光受信回路を切断した断面図である。図2の光受信回路は、光受信装置や光受信モジュールなどの様々な形態で、基板面などの上に実装・構成されるため、図2ではベースとなる基板は示していない。図2の光受信回路では、1チャネルの光信号2を入力して1チャネルの電気信号を出力するPD10の実装形態が示されている。光受信回路は、大別して、PDサブマウント40およびTIAキャリア42の2つの部分で構成されている。裏面入射型PD10およびチップコンデンサ30が、表面メタライズされたPDサブマウント40の上に搭載されている。TIA20が、表面メタライズされたTIAキャリア42の上に搭載されている。
 PDサブマウント40には、PD10の下面から光信号2を入射するための貫通孔41が設けられている。通常、反射戻り光の影響を避けるために、光信号2はPD受光部15に対して法線方向から角度をずらして入射させる。従来技術においても述べたように、最適な入射角度はPDの光学系構成や材料、光の波長、PDの扱う伝送速度など設計条件によって変わり、PD10の実装位置にはある程度の自由度も求められる。したがって貫通孔41の寸法は、PD受光部15の受光径に対して十分に大きくなければならない。
 TIA20およびはPDサブマウント40上のそれぞれの配置、接続構成は、図12で説明した従来技術の光受信回路と同じであり、詳細な説明は省略する。従来技術の図12の光受信回路と、実施形態1の受光素子を用いた図2の光受信回路の構成の違いは、PD10の下面、すなわちPDサブマウント40と接触する側の面に、開口領域16を除いて接地パターン18が形成されていることである。
 図3は、実施形態1の受光素子を用いた光受信回路におけるリターン電流の経路を説明する図である。図3では、図2に示した実施形態1の受光素子で発生する光電流と、この光電流に対応するリターン電流を、ボンディングワイヤを描かずに矢印で示している。PD受光部15において信号光2から発生した光電流は、高周波信号電流61として、PDアノード電極パッド11からボンディングワイヤ51を経由しTIA入力シグナルパッド21に流れ込む。カソード電極パッド12は、チップコンデンサ30を介して高周波的にPDサブマウント40のグランド電位面に接地されている。TIA20に向かう信号電流61の伝送に対して、逆向きに、TIA20からリターン電流が流れる。リターン電流67a、67bは、グランドパッド23a、23bからそれぞれのボンディングワイヤ57を経て、PDサブマウント40のグランド電位面に流れ込む。
 ボンディングワイヤ57から流れ込んだリターン電流67a、67bは、PDサブマウント40のグランド電位面に接触する、PD10の下面に形成された接地パターン18を、さらにリターン電流68a、68bとして流れる。従来技術の光受信回路で図17に示した貫通孔41を迂回する経路のリターン電流69a、69bと比較すれば、違いは明らかである。図3において、PD下面の接地パターン18を流れるリターン電流68a、68bは、迂回することなく最短距離でチップコンデンサ30のグランド電位面まで到達する。信号電流およびリターン電流は、それぞれ最短距離で、最小の開口の電流ループを形成するように流れる。貫通孔41で生じていたリターン電流の迂回を、PD下面の接地パターン18で解消することにより、高周波伝送線路の電磁界の乱れによる不要な共振や放射ノイズを抑えて、フラットな高周波伝送特性が得られる。
 したがって本発明は、光受信回路であって、表面がメタライズされたサブキャリア40、前記サブキャリア上の受光素子10であって、基板の一方の面上に構成された、光信号の受光部15と、前記受光部のアノードに接続されたアノード電極パッド11と、前記受光部のカソードに接続されたカソード電極パッド12と、前記基板の素子構成面とは反対の面で、前記受光部に対応する位置にある開口領域16の外に形成された接地パターン18とを備えた、受光素子、並びに、前記アノード電極パッドと電気的に接続される信号入力パッド21、および、前記サブキャリアの前記メタライズされた接地面に電気的に接続されるグランドパッド23a、23bを有するトランスインピーダンス・アンプ20を備え、前記カソード電極パッドから前記信号入力パッドへ流れる信号電流61、62に対して、リターン電流が、前記グランドパッドから前記接地パターンを含む経路68a、68bを流れるものとしても実施できる。
 本開示の実施形態1の受光素子では、PD10の下面で、受光部15に対応する位置に同心円状に開口領域16を開けて、開口領域16を除いた全面を接地パターンとする構成を示した。図3に示したように貫通孔によるリターン電流の迂回を解消し、最短経路となるようにリターン電流68a、68bの経路を確保すれば、高周波伝送線路の電磁界の乱れが解消される。したがって、PD10の下面における接地パターンの構成は図1に示したものには限られない。
 図4は、実施形態1の受光素子の別の接地パターンによる構成を示す図である。図4の(a)は、受光素子の構成面(x-y面)を上方から見た上面図、(b)は構成面の裏側を見た背面図、(c)は(a)のIVc―IVc線で基板面に垂直に切断した断面図である。図1のPDの構成との相違点は、PDの下面の接地パターン19の形状だけである。図4の(b)で示したように、アノード電極11とカソード電極12を結ぶ線に概ね平行に、ブリッジ状にPDチップ端の間を接続した帯状の部分的な接地パターン19a、19bを設けることによっても、リターン電流経路の迂回を解消できる。図3の光受信回路の構成を参照すれば、信号電流62、61が流れる向きは、アノード電極パッド11、受光部15およびカソード電極パッド12を結ぶ直線に沿ったものである。リターン電流もこの信号電流の流れと平行・逆向きとなるように、PDの下面で接地パターンがあれば、電流ループの最小化、最短化が実現される。この点で、アノード電極パッド11、受光部15およびカソード電極パッド12ができるだけ一直線に配置されるのが好ましい。
 したがって本開示の受光素子は、アノード電極パッド11、受光部15およびカソード電極パッド12は、直線に沿って配置されており、前記接地パターンは、前記開口領域の両脇に、前記直線に平行な帯状の形状19a、19bを有するものとして実施できる。アノード電極パッド11、受光部15およびカソード電極パッド12の配置は、概ね直線上にあれば良く、図3に示したように信号電流とリターン電流が直線的に、最小の電流ループを形成すれば良い。
 通常、表面メタライズされたPDサブマウントの上に、裏面入射型PDを固定するには、導電性接着剤やはんだ等が用いられる。図4の(b)に示したように、接地パターン19a、19bと、開口領域16との間に間隔を設けることによって、導電性接着剤やはんだ等が開口領域16内へ流れ込むのを避けることもできる。
[実施形態2]
 図5は、実施形態2の受光素子の構成を示す図である。図5の(a)は、受光素子の構成面(x-y面)を上方から見た上面図、(b)は構成面の裏側を見た背面図、(c)は(a)のVc―Vc線で基板面に垂直に切断した断面図である。光信号2から電気信号を出力する構成・動作は、図1に示した実施形態1の受光素子10と同じであり、図1の構成との相違点のみを説明する。
 図1で示した実施形態1の受光素子との相違点は、PD10の下面の開口領域に対応する領域に、入射された光信号2が受光部15において集光される曲率を有するレンズ17が形成されていることである。またPD10の下面には、レンズ17を除いた領域の全体に接地パターン18が形成されている。端的には、図1の開口領域16の位置のPD基板の下面上にレンズ17が形成されている。
 図6は、実施形態2の受光素子を用いた光受信回路の実装例を示す図である。図6の(a)は、PDチップ他が搭載される側の上面図を、図6の(b)は、(a)の上面図でVIb―VIb線で光受信回路を切断した断面図である。TIA20およびPDサブマウント40上のそれぞれの配置、相互の接続構成は、図12で説明した従来技術の光受信回路と同じであり、詳細な説明は省略する。図12の従来技術の光受信回路と、実施形態2の受光素子を用いた光受信回路との構成の相違点は、PD10の下面、すなわちPDサブマウント40と接触する側の面に、レンズ17が形成される領域を除いて接地パターン18が形成されていることである。実施形態1では単なる開口領域16であったのに対し、本実施形態では同じ領域がレンズ17となっている点を除けば、図6で示した実施形態2と図2で示した実施形態1は同じ形態で光受信回路が構成されている。
 本実施形態の受光素子でも、図3に示した実施形態1におけるリターン電流と全く同じ最短化されたリターン電流経路が得られる。すなわち、PD10の受光部15で発生する高周波信号電流61は、PDアノード電極パッド11からボンディングワイヤ51を経由しTIA入力シグナルパッド21に流れ込む。TIA20に向かう信号電流61の伝送に対して、逆向きに、TIA20からリターン電流が流れる。リターン電流67a、67bは、グランドパッド23a、23bからそれぞれのボンディングワイヤ57を経て、PDサブマウント40のグランド電位面に流れ込む。
 ボンディングワイヤ57から流れ込んだリターン電流67a、67bは、さらに、PDサブマウント40のグランド電位面に接触する、PD10の下面に形成された接地パターン18を、リターン電流68a、68bとして流れる。図5のPD下面でレンズ17の周りの接地パターン18を流れるリターン電流は、図3に示したように迂回することなく最短距離でチップコンデンサ30のグランド電位面まで到達する。信号電流およびリターン電流は、それぞれ最短距離で、最小の開口の電流ループを形成するように流れる。貫通孔41で生じていたリターン電流の迂回を、PD下面のレンズ17の周りの接地パターン18で解消することにより、高周波伝送線路の電磁界の乱れによる不要な共振や放射ノイズを抑えて、フラットな高周波伝送特性が得られる。
 さらに本実施形態では、PD10にレンズ17を集積することによって、信号光と受光部との光結合効率を向上させ、実装トレランス(実装位置の許容差)の低下を防ぐことができる。さらに図2の光受信回路では示していなかったレンズを、予め受光素子と一体に集積しておくことで、レンズとPD10と間でアライメント作業が不要となり、実施形態1の光受信回路に比べて実装コストを減らすことができる。
 本実施形態では、PD10の下面において、レンズ17と同じ形状で、受光部15と同心円状に接地パターンのメタルを取り除いた開口領域16とした。すなわち、PD10の下面の開口領域16を除いて、全面がメタライズされた接地パターン18である。図3に示したように貫通孔によるリターン電流の迂回を解消し、最短経路となるリターン電流の経路が確保されれば、高周波伝送線路の電磁界の乱れが解消される。したがって、PDの下面における接地パターンの構成は図5のものに限られない。上述の図4に示したような接地パターンの変形が可能であり、ブリッジ状に接続した部分的な接地パターン19a、19bであっても良い。
 上述の各実施形態は、1チャネルの光信号を入力して1チャネルの電気信号を出力する1チャネル受光素子の場合を示した。本開示の受光素子の構成は、複数のチャネルの光信号を入力して対応する電気信号を出力するPDアレイチップに適用することで、さらに優れた高周波伝送特性を実現する効果を発揮する。
[実施形態3]
 図7は、実施形態3の受光素子の構成を示す図である。図7の(a)は、受光素子の構成面(x-y面)を上方から見た上面図、(b)は構成面の裏側を見た背面図、(c)は(a)のVIIc―VIIc線で基板面に垂直に切断した断面図である。本実施形態の受光素子は、PDアレイ100であって、図1に示した裏面入射型PD10を4つ配列して1つのチップに集積化したものである。
 それぞれのPDは、受光部150と、アノード電極パッド110と、カソード電極パッド120を備えており、同じ構成の4つのPDがアレイ化されている。PDアレイ100の下面側から入射された光信号2は、PD内を透過して上面に形成された受光部150で光信号から電気信号に変換され、電気信号がアノード電極およびカソード電極から出力される。図15に示した従来技術のPDアレイ101との相違点は、PDアレイ100の下面において、光信号を入射する4つの開口領域160を除いた下面の全体に、一体の接地パターン180が形成されていることである。
 図8は、実施形態3のPDアレイチップを用いた光受信回路の実装例を示す図である。図8の(a)は、PDチップアレイ他が搭載される側の上面図を、図8の(b)は、(a)の上面図でVIIIb―VIIIb線で光受信回路を切断した断面図である。この光受信回路は、4チャネルの光信号2を入力して4チャネルの電気信号を出力する。PDアレイ100およびチップコンデンサ300は、表面メタライズされたPDサブマウント400の上に搭載されている。TIA200は、表面メタライズされたTIAキャリア420の上に搭載されている。
 PDサブマウント400には、PDアレイ100の裏面から4チャネル分の光信号を入射するために、1つにまとめた大きな貫通孔410が設けられている。図2で実施形態1の単一受光素子の光受信回路についても述べたように、反射戻り光の影響を避けるため、光信号2はPD受光部150に対して法線方向から角度をずらして入射させる。最適な入射角度はPDの光学系構成や材料、光の波長、PDの扱う伝送速度など設計条件によって変わり、PDアレイ100の実装位置にはある程度の自由度も求められる。加えて、PDサブマウント400の材料であるセラミックの加工精度や、加工可能な孔のサイズの問題から、貫通孔410の端部および短辺側の寸法はPD受光部の受光径に対して十分に大きくなければならない。
 TIAチップ200は4系統の増幅回路を備えた多チャネルTIAであり、図15で説明をした従来技術のTIAと同じ構成を持ち、従来技術と同様にPDアレイ100と電気的に接続されている。図15の従来技術の光受信回路と、本実施形態の光受信回路との相違点は、PDアレイ100下面、すなわちPDサブマウント400と接触する側の面に、光信号2を入射する4つの開口領域160を除いて、全面に接地パターン180が形成されていることである。
 図9は、実施形態3のPDアレイを用いた光受信回路におけるリターン電流の経路を説明する図である。図9では、図8に示した実施形態3のPDアレイ100で、4つのチャネル601~604で発生する光電流と、これらの光電流に対応するリターン電流を、ボンディングワイヤを描かず矢印で示している。4つのPDの各PD受光部150で信号光2から発生した光電流は、信号電流610として、PDアノード電極パッド110からボンディングワイヤ510を経由しTIA入力シグナルパッド210に流れ込む。カソード電極パッド120は、チップコンデンサ300を介して高周波的にPDサブマウント40のグランド電位面に接地されている。TIA200に向かう4つの高周波信号電流610の伝送に対して、それぞれ逆向きに、リターン電流がTIA200からPDに向かって流れる。
 実施形態3のPDアレイ100による光受信回路では、図17で示した従来技術の光受信回路の場合とは大きく異なり、TIAチップ200の4つのチャネル601~604のいずれのチャネルでも同様に、直線的に最短距離でリターン電流が流れる。例えば、図9の右端のチャネル604に着目すれば、リターン電流670a、670bは、グランドパッド230a、230bからそれぞれのボンディングワイヤ570を経て、PDサブマウント400のグランド電位面に流れ込む。ボンディングワイヤ570から流れ込んだリターン電流670a、670bは、まずPDサブマウント400のグランド電位面に流れ込む。さらに、グランド電位面に接触する、PD100の下面に形成された接地パターン180を、直進してリターン電流680a、680bとして流れる。
 図17に示した従来技術の光受信回路で貫通孔410を迂回するリターン電流694と比較すれば、図9でPD下面の接地パターン180を流れるリターン電流680a、680bは、迂回することなく最短距離で直進し、チップコンデンサ300の直下のグランド電位面まで到達する。信号電流およびリターン電流は、それぞれ最短距離で流れ、最小の開口の電流ループを形成するように流れる。リターン電流は、PDアレイチップの内部側にある他のチャネル602、603においても、チャネル604とまったく同様に、最短距離で、最小の開口の電流ループを形成するように流れる。これは、図17のPDアレイチップの内部側のチャネル602、603で、リターン電流693が貫通孔を大きく迂回していたのと非常に対照的である。貫通孔410のために生じていたリターン電流の極端な迂回を、PD下面の接地パターン180で解消することにより、高周波伝送線路の電磁界の乱れによる不要な共振や放射ノイズを抑えて、フラットで良好な高周波伝送特性が得られる。
 多チャネルを含む光受信回路の内側(中心側)のチャネルにおいては、図17で示したように接地パターン180が無い従来技術の場合のリターン電流経路の迂回量が大きかった。本実施形態の光受信回路では、光受信回路の内側(中心側)のチャネルにおいて、リターン電流の迂回が解消されることによる高周波伝送特性の改善効果が大きい。また多チャネル光受信回路の内側にあるチャネルでは、チップの端の外側のチャネルに比べて、両チャネルからのクロストークが重畳する。このためチップの内側にあるチャネルで、クロストークによる伝送品質の劣化量が多くなる。本実施形態の多チャネルの光受信回路では、いずれのチャネルでも同等にリターン電流が流れるため、多チャネル光受信回路の内側のチャネルにおいて著しい伝送品質の改善ができる。
 具体的には、図15に示した従来技術のPDアレイを用いた4チャネル光受信回路の伝送特性で、内側のチャネル602~603における自チャネル信号と隣接チャネルからの漏洩信号との比(クロストーク)は、10GHzにおいて約25dBであった。これに対し、図8に示したPDアレイの下面に接地パターンを有する受光素子による実施形態3の光受信回路では、クロストークは10GHzにおいて約50dBとなった。従来技術の構成の光受信回路と比較して、実施形態3の光受信回路では、チップ内側のチャネルにおけるクロストークで、25dBもの大幅な改善を確認することができた。
 図7の実施形態3の受光素子では、4つの受光部150のそれぞれについて、受光部に対応する位置に、同心円状の開口領域160を残して、全面をメタルの接地パターンとした。貫通孔によるリターン電流の迂回を解消し、最短経路となるようにリターン電流の経路を確保できれば、高周波伝送線路の電磁界の乱れが解消される。したがって、PDアレイの下面における接地パターンの構成は、図7のものに限られない。例えば、接地パターンの開口領域の形状は必ずしも同心円状である必要はなく、入射光に必要な開口が得られれば形状は問わない。また接地パターンも、開口領域を除いた全面である必要はない。
 図10は、実施形態3の受光素子の別の構成を示す図である。図10の(a)は、受光素子の構成面(x-y面)を上方から見た上面図、(b)は構成面の裏側を見た背面図、(c)は(a)のXc―Xc線で基板面に垂直に切断した断面図である。図10の変形例の受光素子は、PDアレイ100であって、図7に示したPDアレイと概ね同じ構成を持つ。図7のPDアレイとの相違点は、PDアレイの下面の接地パターンが、開口領域160の両脇に、アノード電極パッド、受光素子、カソード電極パッドを結ぶ直線に平行な帯状190a、190bに形成されていることである。
 上述の素子要素を結ぶ直線に平行な、PDアレイチップの両辺を結ぶ帯状の接地パターン190a、190bにより、TIAチップから、PDサブマウントおよびPDアレイを経て、チップコンデンサに至るまでの直線的なリターン電流経路を構成できる。PDアレイの下面で、PDアレイチップの両辺をブリッジ状に接続した部分的な接地パターン190a、190bを設けることによって、リターン電流経路の迂回が解消される。通常、裏面入射型PDを表面メタライズされたPDサブマウントの上に固定するには、導電性接着剤やはんだ等が用いられる。図10のように接地パターン190a、190bと開口領域160との間に間隔を設けることによって、導電性接着剤やはんだ等の開口領域160への流れ込みを避けることできる。
 実施形態3の受光素子では、4チャネルの光信号を4チャネルの電気信号に変換する4素子(4チャネル)の受光素子を例にして説明したが、PDアレイ内に備える受光素子の数には、何ら限定は無い。PDアレイの複数のチャネルに対して1つの大きな貫通孔を設ける構成である限り、リターン電流の迂回はチャネル数に関係なくPDアレイの共通問題である。受光素子の数が2以上であれば、PDアレイの下面の接地パターンを備えることによって、リターン電流の迂回問題を解消する。
 以上詳細に説明をしたように、本開示の受光素子および光受信回路によって、良好な高周波伝送特性を実現する。多チャネル化されたPDアレイでは、不要な共振や放射ノイズを抑え、チャネル間クロストークを効果的に低減する。
 本発明は、光通信に利用できる。

Claims (7)

  1.  受光素子であって、
     基板の一方の面上に構成された、
      光信号の受光部と、
      前記受光部のアノードに接続されたアノード電極パッドと、
      前記受光部のカソードに接続されたカソード電極パッドと、
     前記基板の素子構成面とは反対の面であって、前記受光部に対応する位置にある開口領域の外に形成された接地パターンと
     を備えたことを特徴とする受光素子。
  2.  前記開口領域内に入射した前記光信号が、前記基板の内部を透過して前記受光部で受光されることを特徴とする請求項1に記載の受光素子。
  3.  前記接地パターンは、前記開口領域を除いて、前記反対の面の全面に形成されたことを特徴とする請求項1または2に記載の受光素子。
  4.  前記アノード電極パッド、前記受光部および前記カソード電極パッドは、直線に沿って配置され、
     前記接地パターンは、前記開口領域の両脇に、前記直線に平行な帯状の形状を有することを特徴とする請求項1または2に記載の受光素子。
  5.  前記開口領域にレンズが形成されたことを特徴とする請求項1乃至4いずれかに記載の受光素子。
  6.  前記受光部、前記アノード電極パッドおよび前記カソード電極パッドが単位素子を構成し、複数個の前記単位素子が配列されたことを特徴とする請求項1乃至4いずれかに記載の受光素子。
  7.  光受信回路であって、
     表面がメタライズされたサブキャリア、
     前記サブキャリア上の受光素子であって、
      基板の一方の面上に構成された、
      光信号の受光部と、
      前記受光部のアノードに接続されたアノード電極パッドと、
      前記受光部のカソードに接続されたカソード電極パッドと、
      前記基板の素子構成面とは反対の面で、前記受光部に対応する位置にある開口領域の外に形成された接地パターンとを備えた、受光素子、並びに、
      前記アノード電極パッドと電気的に接続される信号入力パッド、および、
      前記サブキャリアの前記メタライズされた接地面に電気的に接続されるグランドパッドを有する
     トランスインピーダンス・アンプ
     を備え、
     前記カソード電極パッドから前記信号入力パッドへ流れる信号電流に対して、リターン電流が、前記グランドパッドから前記接地パターンを含む経路を流れることを特徴とする光受信回路。
PCT/JP2021/015875 2021-04-19 2021-04-19 受光素子および光受信回路 WO2022224308A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023515893A JPWO2022224308A1 (ja) 2021-04-19 2021-04-19
US18/550,857 US20240222532A1 (en) 2021-04-19 2021-04-19 Light-Receiving Element and Light Receiving Circuit
PCT/JP2021/015875 WO2022224308A1 (ja) 2021-04-19 2021-04-19 受光素子および光受信回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015875 WO2022224308A1 (ja) 2021-04-19 2021-04-19 受光素子および光受信回路

Publications (1)

Publication Number Publication Date
WO2022224308A1 true WO2022224308A1 (ja) 2022-10-27

Family

ID=83722069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015875 WO2022224308A1 (ja) 2021-04-19 2021-04-19 受光素子および光受信回路

Country Status (3)

Country Link
US (1) US20240222532A1 (ja)
JP (1) JPWO2022224308A1 (ja)
WO (1) WO2022224308A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117079975A (zh) * 2023-07-28 2023-11-17 厦门亿芯源半导体科技有限公司 高速tia抗5g wifi电磁干扰方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036615A (ja) * 1998-07-21 2000-02-02 Sumitomo Electric Ind Ltd 受光素子及び受光素子モジュール
JP2001267620A (ja) * 2000-03-22 2001-09-28 Sumitomo Electric Ind Ltd 半導体受光素子
JP2003232967A (ja) * 2002-02-13 2003-08-22 Sumitomo Electric Ind Ltd パラレル送受信モジュール
JP2012256853A (ja) * 2011-05-18 2012-12-27 Japan Oclaro Inc アレイ型受光装置、光受信モジュール、及び光トランシーバ
JP2013005014A (ja) * 2011-06-13 2013-01-07 Nippon Telegr & Teleph Corp <Ntt> 光受信回路
JP2016018799A (ja) * 2014-07-04 2016-02-01 日本電信電話株式会社 光受信回路および光受信器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036615A (ja) * 1998-07-21 2000-02-02 Sumitomo Electric Ind Ltd 受光素子及び受光素子モジュール
JP2001267620A (ja) * 2000-03-22 2001-09-28 Sumitomo Electric Ind Ltd 半導体受光素子
JP2003232967A (ja) * 2002-02-13 2003-08-22 Sumitomo Electric Ind Ltd パラレル送受信モジュール
JP2012256853A (ja) * 2011-05-18 2012-12-27 Japan Oclaro Inc アレイ型受光装置、光受信モジュール、及び光トランシーバ
JP2013005014A (ja) * 2011-06-13 2013-01-07 Nippon Telegr & Teleph Corp <Ntt> 光受信回路
JP2016018799A (ja) * 2014-07-04 2016-02-01 日本電信電話株式会社 光受信回路および光受信器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117079975A (zh) * 2023-07-28 2023-11-17 厦门亿芯源半导体科技有限公司 高速tia抗5g wifi电磁干扰方法
CN117079975B (zh) * 2023-07-28 2024-04-30 厦门亿芯源半导体科技有限公司 高速tia抗5g wifi电磁干扰方法

Also Published As

Publication number Publication date
JPWO2022224308A1 (ja) 2022-10-27
US20240222532A1 (en) 2024-07-04

Similar Documents

Publication Publication Date Title
US7171128B2 (en) Optical signal receiving module, optical signal receiver and optical fiber communication equipment
US7894726B2 (en) Optical receiver module
CN107015318B (zh) 光接收器组件
US20130071129A1 (en) Multi-channel optical waveguide receiver
KR102180382B1 (ko) 수신용 광 모듈
WO2022224308A1 (ja) 受光素子および光受信回路
CN107887400B (zh) 光组件和光模块
KR20040110829A (ko) 티오 캔 구조의 광수신 모듈
US8936405B2 (en) Multi-channel optical receiver module
JP5125235B2 (ja) 光送受信装置および光送受信モジュール
US6614964B2 (en) Optical communication apparatus
KR100400081B1 (ko) 광전 모듈용 서브마운트 및 이를 이용한 실장 방법
CN109314582B (zh) 光接收器
JP2001230428A (ja) 受光増幅装置
JP4828103B2 (ja) 光送受信モジュール
CN108574018B (zh) 光接收模块及光模块
US6806547B2 (en) Light-receiving module
JP7372557B2 (ja) 光受信回路
US20030218229A1 (en) Photosensitive semiconductor diode device with passive matching circuit
WO2023112165A1 (ja) 受光素子
KR100440431B1 (ko) 고속 광전 모듈의 광전소자 서브마운트
WO2024009388A1 (ja) 光受信器
JP2000058881A (ja) 受光回路
JP2002134761A (ja) 受光装置
WO2023040620A1 (zh) 供电匹配电路、接收光组件及光电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937807

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023515893

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18550857

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937807

Country of ref document: EP

Kind code of ref document: A1