WO2022222763A1 - 相位平衡器及基站天线 - Google Patents
相位平衡器及基站天线 Download PDFInfo
- Publication number
- WO2022222763A1 WO2022222763A1 PCT/CN2022/085596 CN2022085596W WO2022222763A1 WO 2022222763 A1 WO2022222763 A1 WO 2022222763A1 CN 2022085596 W CN2022085596 W CN 2022085596W WO 2022222763 A1 WO2022222763 A1 WO 2022222763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- branch line
- line
- branch
- phase
- phase balancer
- Prior art date
Links
- 230000008859 change Effects 0.000 abstract description 5
- 230000005855 radiation Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 14
- 238000007796 conventional method Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
Definitions
- the present invention relates to the technical field of mobile communication base station antennas, and in particular, to a phase balancer and a base station antenna.
- mobile communication network plays an increasingly important role in human life, and it needs to be used almost anytime, anywhere. Therefore, as an indispensable part of mobile communication network, the use scenarios of antennas are becoming more and more abundant, and its size and performance The requirements are becoming more and more stringent. For example, in the 1710-2690MHz frequency band, the side lobe is required to be greater than 16dB or even 18dB, and the downtilt angle variation range is required to be 0.8° or even 0.5°.
- a set of preset phases is usually designed first, and then the phase of each radiating element of the antenna array is adjusted to the same phase, and then the phase of the center frequency of the frequency band is adjusted to the preset phase.
- the phases of each radiating element of the antenna array are in phase, that is, the electrical length from the antenna array port to each radiating element is the same, the corresponding phase curves overlap, and the preset phase changes ideally linearly with frequency. In this way, as long as the pattern meets the design requirements when the center frequency is adjusted to the preset phase, the patterns of all frequency points in the frequency band will meet the design requirements. However, it is difficult for the radiating elements and the feeding network of the antenna array to meet the theoretical phase linearity in practice.
- each radiating element there is mutual coupling between adjacent radiating elements, and the boundaries of each radiating element may be different. Therefore, different radiating elements may have different boundaries.
- the reflection coefficient of the antenna array will also be different, so that when the phase of each radiating element in the antenna array is adjusted to the same phase based on the center frequency point, other frequency points cannot be in phase, and the corresponding phase curves cannot overlap, that is, the phase of each radiating element is in phase.
- the slopes are different.
- the preset phase fluctuates too much with the frequency, the radiation performance of the antenna will deteriorate, such as high side lobes, large variation range of downtilt angle, wave width divergence and gain reduction.
- the purpose of the present invention is to provide a phase balancer and a base station antenna, which can change the phase slope to achieve phase balance, thereby improving the radiation performance of the base station antenna.
- the present invention provides a phase balancer, comprising a main line and a plurality of branch lines, the plurality of branch lines are respectively connected in parallel with the main line, and the ends of the plurality of branch lines are short-circuited and/or open circuit, the two ends of the main line are respectively set as the input port and the output port of the phase balancer; when the signal enters from the input port, it reaches the end of the branch line one by one through the main line.
- the end of each branch line forms a reflected signal that returns to the main line along the branch line and continues to travel along the main line, and the signal finally reaches the output port after multi-path superposition.
- the end of at least one of the branch lines is a short circuit, and the end of at least one of the branch lines is an open circuit.
- At least one branch line combination is connected in parallel with the main line, and the branch line combination includes at least one first branch line and at least one second branch line; the first branch line and all The second branch lines are respectively arranged on both sides of the main line, and the first branch line and the second branch line have a common line intersection on the main line.
- the end of the first branch line is short-circuited, and the end of the second branch line is open-circuited;
- the ends of the first branch line and the second branch line are short-circuited;
- the ends of the first branch line and the second branch line are open.
- the length of the branch line is close to a quarter wavelength of the high-end frequency of the working frequency band.
- the length of the branch line is one-fifth wavelength to one-third wavelength of the high-end frequency of the working frequency band.
- the branch line combination includes a first branch line and a second branch line, the end of the first branch line is short-circuited, and the end of the second branch line is open circuit;
- the signal on the first branch line has the largest current at the short-circuit, and is four-pointed away from the short-circuit The current at one wavelength is the smallest;
- the signal on the second branch line has the smallest current at the open circuit, and the current is the largest at a quarter wavelength away from the open circuit;
- the current of the first branch line at the line intersection is between the minimum and the maximum; so The current of the second branch line at the line intersection is between the maximum and the minimum; the current amplitude of the first branch line at the line intersection is smaller than the current amplitude of the second branch line at the line intersection;
- the current of the first branch line at the line intersection is between the maximum and the minimum; so The current of the second branch line at the line intersection is between the minimum and the maximum; the current amplitude of the first branch line at the line intersection is greater than the current amplitude of the second branch line at the line intersection.
- the shape of the branch line is a straight line, a broken line or an arc shape.
- the line width of the branch line is 0.1-0.5 mm.
- the phase balancer is arranged on a double-sided circuit board.
- the phase balancer is applied to a one-to-two power splitter board, a Butler board or a phase shifter of a double-sided printed circuit board structure.
- the present invention also provides a base station antenna including the phase balancer described in any one of the above.
- the phase balancer of the present invention includes a main line and a plurality of branch lines intersecting with the main line, the ends of the plurality of branch lines are short-circuited and/or open, and the two ends of the main line are respectively the input port and the output port of the phase balancer ;
- the signal enters from the input port of the phase balancer, it reaches the end of the branch line one by one through the main line, and forms a reflected signal at the end of each branch line to return to the main line along the branch line and continue along the main line.
- the signal finally reaches the output port of the phase balancer after multipath superposition. Since the electrical lengths of the same path are different for different frequencies, the signals returning from the branch line to the main line at different frequencies are different.
- the phase slope is changed to achieve phase balance.
- the phase balancer of the invention can be flexibly applied to various components of the base station antenna, can improve the radiation performance of the base station antenna, and solve the problem that the base station antenna has high side lobes due to different phase slopes, a large variation range of the downtilt angle, the wave width is divergent and the gain is reduced. And other issues.
- phase balancer 1 is a schematic structural diagram of a phase balancer provided by an embodiment of the present invention.
- Fig. 2 is the initial phase schematic diagram of two-way signal
- Fig. 3 is the phase schematic diagram after the two-way signals are adjusted to the same phase according to the conventional method
- Fig. 4 is the phase schematic diagram after the two-way signals are adjusted to the same phase according to the conventional method after the balanced phase of the phase balancer of the present invention
- FIG. 5 is a schematic structural diagram of a phase balancer provided in an embodiment of the present invention applied to a one-to-two power splitter;
- Fig. 6 is the phase schematic diagram of the one-to-two power splitting board shown in Fig. 5;
- FIG. 7 is a schematic structural diagram of a phase balancer provided in an embodiment of the present invention applied to a Butler plate;
- FIG. 8 is a schematic structural diagram of a phase balancer provided in an embodiment of the present invention applied to a phase shifter.
- references in this specification to "one embodiment”, “an embodiment”, “example embodiment”, etc. mean that the described embodiment may include specific features, structures or characteristics, but not every Embodiments must contain these specific features, structures or characteristics. Furthermore, such expressions are not referring to the same embodiment. Further, when a particular feature, structure or characteristic is described in conjunction with an embodiment, whether or not explicitly described, it has been shown that it is within the knowledge of those skilled in the art to incorporate such feature, structure or characteristic into other embodiments .
- FIG. 1 shows a structure of a phase balancer provided by an embodiment of the present invention.
- the phase balancer 100 includes a main line 10 and a plurality of branch lines 20.
- the plurality of branch lines 20 are connected in parallel to the main line 10, respectively.
- the ends of line 20 are shorted and/or open.
- at least one end of the branch line 20 is a short circuit, and at least one end of the branch line 20 is an open circuit.
- the length of the branch line 20 is close to one-quarter wavelength of the high-end frequency of the working frequency band, and more preferably, the length of the branch line 20 is one-fifth wavelength to one-third wavelength of the high-end frequency of the working frequency band.
- Two ends of the main line 10 are respectively set as the input port 31 and the output port 32 of the phase balancer 100 .
- the signal enters from the input port 31 of the phase balancer 100, it reaches the ends of the branch lines 20 one by one through the main line 10, and a reflected signal is formed at the end of each branch line 20 to return to the main line 10 along the branch line 20 and along the branch line 20.
- the main line 10 continues to move forward, and the signal finally reaches the output port 32 of the phase balancer 100 after multipath superposition.
- the electrical length corresponding to the same path is different for different frequencies, the signals returning from the branch line 20 to the main line 10 at different frequencies are different, and the phase of the signal that finally reaches the output port 32 of the phase balancer 100 after multi-path superposition changes The amount is different, that is, the phase slope has changed.
- first branch lines 21 and four second branch lines 22 are connected in parallel on the main line 10 .
- the signal After the signal enters from the input port 31 , it reaches the main line 10 and the branch line 20 through the main line 10 .
- the first line intersection 40 ie, the leftmost line intersection
- part of the signal enters the first first branch line 21 (ie, the leftmost first branch line) and the first second branch line 22 (ie, the first branch line The second branch line on the far left) and return to the first line intersection 40, after which the superimposed signal continues along the main line 10 to the second line intersection 40 of the main line 10 and the branch line 20, entering the second line The first branch line 21 and the second second branch line 22 . . . and so on, finally reach the output port 32 .
- the phase balancer 100 of the present invention can change the phase slope of the signal, so that the phase slope of the signal changes after the multipath superposition of the phase balancer 100, so as to achieve phase balance, and the phase balancer 100 can be flexibly applied to the base station antenna component to solve the problem of Due to the different signal phase slopes of the radiating elements, the base station antenna has high side lobes, a large variation range of the downtilt angle, a divergent wave width, and a decrease in gain.
- the phase balancer 100 is arranged on the double-sided circuit board 200 .
- the phase balancer 100 can also be arranged on a single-sided circuit board.
- the line width of the branch line 20 is preferably 0.1-0.5 mm. More preferably, the line width of the branch line 20 is close to 0.3mm.
- the shape of the branch line 20 is any shape such as a straight line, a broken line or an arc.
- the branch line 20 is in the shape of a zigzag line.
- At least one branch line combination is connected in parallel with the main line 10 of the phase balancer 100.
- the branch line combination includes at least one first branch line 21 and at least one second branch line 22, namely The number of branch lines in each branch line combination is greater than or equal to 2.
- the first branch line 21 and the second branch line 22 are respectively provided on both sides of the main line 10, and the first branch line 21 and the second branch line 22 have a common line intersection 40 on the main line 10.
- the end of the first branch line 21 is short-circuited, and the end of the second branch line 22 is open-circuited.
- first branch line 21 and the second branch line 22 may both be short-circuited; alternatively, the ends of the first branch line 21 and the second branch line 22 are both open circuits.
- a branch line with a short circuit at the end can also be called a short circuit branch line, and a branch line with an open end at the end can also be called an open circuit branch line.
- the branch line combination includes a first branch line 21 and a second branch line 22 , the end of the first branch line 21 is short-circuited, and the end of the second branch line 22 is open-circuited.
- the first branch line 21 and the second branch line 22 are respectively provided on both sides of the main line 10 , and the first branch line 21 and the second branch line 22 have a common line intersection 40 on the main line 10 .
- the phase balancer 100 is printed on the double-sided circuit board 200, and the two ends of the main line 10 of the phase balancer 100 are respectively set as the input port 31 and the output port 32. The signal enters from the input port 31 and passes through the input port 31.
- the main line 10 reaches the first line intersection 40 (ie, the leftmost line intersection) of the main line 10 and the branch line 20, and part of the signal enters the first branch line combination (ie, the leftmost branch line combination).
- the first branch line 21 and the second branch line 22 return to the first line intersection 40, and then the superimposed signal continues along the main line 10 to reach the second line intersection 40 of the main line 10 and the branch line 20, and enters the first line.
- the first branch line 21 and the second branch line 22 in the combination of the two branch lines, and so on, finally reach the output port 32 .
- the lengths of the first branch line 21 and the second branch line 22 are close to a quarter wavelength of the high-end frequency of the working frequency band, more preferably, the lengths of the first branch line 21 and the second branch line 22 are the working frequency band One-fifth to one-third wavelength of the high-end frequencies.
- the microwave signal on the transmission line is related to the electrical length of the corresponding path.
- the signal reduction factor on the first branch line 21 is a cosine function related to the electrical length of the corresponding path
- the signal on the second branch line 22 is related to the cosine function.
- the simplification factor is then -j times the sine function related to the electrical length of the corresponding path.
- the signal on the first branch line 21 has the largest current (-j) at the short-circuit, the impedance is zero, and the reflection coefficient is -1; the current is the smallest (0) at a quarter wavelength away from the short-circuit, and the impedance is infinite , the reflection coefficient is 1.
- the signal on the second branch line 22 has the smallest current at the open circuit, the impedance is infinite, and the reflection coefficient is 1; at a quarter wavelength away from the open circuit, the current is the largest, the impedance is zero, and the reflection coefficient is -1.
- the current of the first branch line 21 at the line intersection 40 is between the minimum between the maximum.
- the current of the second branch line 22 at the line intersection 40 is between a maximum and a minimum.
- the current amplitude of the first branch line 21 at the line intersection 40 is smaller than the current amplitude of the second branch line 22 at the line intersection 40 .
- the current of the first branch line 21 at the line intersection 40 is between the maximum between the minimum.
- the current of the second branch line 22 at the line intersection 40 is between a minimum and a maximum.
- the current amplitude of the first branch line 21 at the line intersection 40 is greater than the current amplitude of the second branch line 22 at the line intersection 40 .
- the current characteristics and impedance characteristics of the signals of the first branch line 21 and the second branch line 22 at the line intersection 40 are different. Therefore, when the branch line combination consists of two short-circuit branch lines, two open-circuit branch lines, and When a short-circuit branch line and an open-circuit branch line are formed, the current characteristics and impedance characteristics of the superimposed signals generated at the line intersection 40 in the three cases are different, and their effects on the power distribution and impedance transformation of the line intersection 40 are different, and a short circuit
- the parallel connection of a branch line and an open branch line can compromise the different characteristics of the short-circuit branch line and the open-circuit branch line, balance the power distribution and impedance transformation of the parallel point, and make the overall performance more in line with the design requirements.
- Figures 2 to 4 show the phase diagrams of the two-way signals in three cases.
- Figure 2 is a schematic diagram of the initial phases of the two-channel signals.
- the initial phases of the two-channel signals 1 and 2 are at the frequency point f1, and the phase difference between f2 and f3 increases with the increase of the frequency.
- Figure 3 is a schematic diagram of the phase of the two signals after they are adjusted to the same phase according to the conventional method.
- the signals 1-1 and 2-1 are in phase at the frequency point f2, that is, the phase difference is Zero, the phase difference between frequency point f1 and frequency point f3 is the same, and the sum of this phase difference is the same as before adjusting to the same phase.
- Fig. 4 is the phase schematic diagram of the two-way signals after the balanced phase of the phase balancer of the present invention is adjusted to the same phase according to the conventional method, and the two-way signals 1 and 2 after the phase balance are adjusted to the same-phase signal 1- 2 and 2-2 are in phase at the frequency point f2, that is, the phase difference is zero, and the phase difference at the frequency points f1 and f3 is the same, but due to the phase balance, the sum of the phase differences is smaller than that shown in Figure 3. .
- the phase balancer 100 of the present invention can be applied to the one-to-two power splitting board 300, the Butler board 400 or the phase shifter 500 of the double-sided printed circuit board structure.
- FIG. 5 is a schematic structural diagram of a phase balancer provided in an embodiment of the present invention applied to a one-to-two power splitter board.
- the one-to-two power splitter board 300 includes a power splitter main circuit 40 , a first power splitter branch 50 and a second power splitter Power divider branch 60 .
- the phase balancer 100 is applied to the first power splitter branch 50 of the one-to-two power splitter board 300 of the double-sided printed circuit board structure.
- the phase balancer 100 includes a combination of two branch lines, each branch line.
- the combination includes a first branch line 21 and a second branch line 22, the end of the first branch line 21 is short-circuited, and the end of the second branch line 22 is open.
- the lengths of each of the first branch line 21 and the second branch line 22 are close to two-quarter wavelengths of the high-end frequency of the working frequency band.
- the HFSS (High-Frequency Structure Simulator) simulation phase diagram of the first power splitter branch 50 and the second power splitter branch 60 corresponding to the one-to-two power splitter board 300 is shown in FIG. 6 . It can be seen that under the action of the phase balancer 100, the phase slopes of the first power splitter branch 50 and the second power splitter branch 60 corresponding to the one-to-two power splitter board 300 are significantly reduced, specifically about 175° at 1710MHz. , 2200MHz is about 180°, and 2690MHz is about 180°.
- FIG. 7 is a schematic diagram of the structure of the phase balancer provided in the embodiment of the present invention applied to the Butler board.
- the phase balancer 100 shown in FIG. 1 is applied to the Butler board 400 of the double-sided printed circuit board structure.
- the Butler board There are two phase balancers 100 on the 400, and the phase slope between ports 1 and 3, 2 and 4 on the Butler plate 400 is reduced by the action of the two phase balancers 100, so as to realize the optimization of pattern shaping .
- FIG. 8 is a schematic structural diagram of the phase balancer provided in an embodiment of the present invention applied to a phase shifter.
- the phase balancer 100 shown in FIG. 1 is applied to a phase shifter 500 with a double-sided printed circuit board structure.
- the present invention also provides a base station antenna, which includes the phase balancer 100 shown in FIGS. 1 to 8 .
- the phase balancer of the present invention includes a main line and a plurality of branch lines intersecting with the main line, the ends of the plurality of branch lines are short-circuited and/or open, and the two ends of the main line are respectively Input port and output port; when the signal enters from the input port of the phase balancer, it reaches the end of the branch line one by one through the main line, and a reflected signal is formed at the end of each branch line to return to the main line along the branch line and along the main line.
- the line continues to move forward, and the signal finally reaches the output port of the phase balancer after multipath superposition. Since the electrical lengths of the same path are different for different frequencies, the signals returning from the branch line to the main line at different frequencies are different.
- the phase slope is changed to achieve phase balance.
- the phase balancer of the invention can be flexibly applied to various components of the base station antenna, can improve the radiation performance of the base station antenna, and solve the problem that the base station antenna has high side lobes due to different phase slopes, a large variation range of the downtilt angle, the wave width is divergent and the gain is reduced. And other issues.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
Claims (12)
- 一种相位平衡器,其特征在于,包括主线路和多个支线路,所述多个支线路分别并联在所述主线路上,所述多个支线路的末端为短路和/或开路,所述主线路的两端分别设置为所述相位平衡器的输入端口和输出端口;当信号从所述输入端口进入后,经所述主线路依次逐个到达所述支线路的末端,在每个所述支线路的末端形成反射信号沿着所述支线路返回到所述主线路并沿所述主线路继续前行,所述信号经过多径叠加后最终到达所述输出端口。
- 根据权利要求1所述的相位平衡器,其特征在于,所述多个支线路中至少有一个所述支线路的末端为短路,至少有一个所述支线路的末端为开路。
- 根据权利要求1所述的相位平衡器,其特征在于,所述主线路上并联有至少一个支线路组合,所述支线路组合包括至少一个第一支线路和至少一个第二支线路;所述第一支线路和所述第二支线路分别设于所述主线路的两侧,所述第一支线路和所述第二支线路在所述主线路上具有共同的线路交点。
- 根据权利要求3所述的相位平衡器,其特征在于,所述第一支线路的末端短路,所述第二支线路的末端开路;或者所述第一支线路和所述第二支线路的末端短路;或者所述第一支线路和所述第二支线路的末端开路。
- 根据权利要求4所述的相位平衡器,其特征在于,所述支线路的长度接近工作频段高端频率的四分之一波长。
- 根据权利要求5所述的相位平衡器,其特征在于,所述支线路的长度为工作频段高端频率的五分之一波长到三分之一波长。
- 根据权利要求4所述的相位平衡器,其特征在于,所述支线路组合包括一个第一支线路和一个第二支线路,所述第一支线路的末端短路,所述第二支线路的末端开路;当所述第一支线路和所述第二支线路的长度均等于工作频段高端频率的四分之一波长时;所述第一支线路上的信号在短路处电流最大,在距离短路处四分之一波长处电流最小;所述第二支线路上的信号则在开路处电流最小,在距离开路处四分之一波长处电流最大;当所述第一支线路和所述第二支线路的长度均小于工作频段高端频率的四分之一波长时,所述第一支线路在线路交点的电流介于最小和最大之间;所述 第二支线路在线路交点的电流介于最大和最小之间;所述第一支线路在线路交点的电流幅度小于所述第二支线路在线路交点的电流幅度;当所述第一支线路和所述第二支线路的长度均大于工作频段高端频率的四分之一波长时,所述第一支线路在线路交点的电流介于最大和最小之间;所述第二支线路在线路交点的电流介于最小和最大之间;所述第一支线路在线路交点的电流幅度大于所述第二支线路在线路交点的电流幅度。
- 根据权利要求1所述的相位平衡器,其特征在于,所述支线路的形状为直线形、折线形或者弧线形。
- 根据权利要求1所述的相位平衡器,其特征在于,所述支线路的线宽为0.1~0.5mm。
- 根据权利要求1所述的相位平衡器,其特征在于,所述相位平衡器设置在双面线路板上。
- 根据权利要求10所述的相位平衡器,其特征在于,所述相位平衡器应用在双面印制线路板结构的一分二功分板、巴特勒板或者移相器上。
- 一种基站天线,其特征在于,包括有如权利要求1~12任一项所述的相位平衡器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110436664.2 | 2021-04-22 | ||
CN202110436664.2A CN113161745A (zh) | 2021-04-22 | 2021-04-22 | 相位平衡器及基站天线 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022222763A1 true WO2022222763A1 (zh) | 2022-10-27 |
Family
ID=76869437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/085596 WO2022222763A1 (zh) | 2021-04-22 | 2022-04-07 | 相位平衡器及基站天线 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113161745A (zh) |
WO (1) | WO2022222763A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113161745A (zh) * | 2021-04-22 | 2021-07-23 | 摩比天线技术(深圳)有限公司 | 相位平衡器及基站天线 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001018959A1 (fr) * | 1999-09-02 | 2001-03-15 | Fujitsu Limited | Egaliseur a amplitude variable |
CN106384891A (zh) * | 2016-11-25 | 2017-02-08 | 京信通信技术(广州)有限公司 | 相位平衡单元及功分器电路相位平衡装置 |
CN113161745A (zh) * | 2021-04-22 | 2021-07-23 | 摩比天线技术(深圳)有限公司 | 相位平衡器及基站天线 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10322146A (ja) * | 1997-05-21 | 1998-12-04 | Mitsubishi Electric Corp | 増幅器モジュール |
US10855332B2 (en) * | 2017-12-06 | 2020-12-01 | Mitsubishi Electric Corporation | Signal transmission system |
CN214849055U (zh) * | 2021-04-22 | 2021-11-23 | 摩比天线技术(深圳)有限公司 | 相位平衡器及基站天线 |
-
2021
- 2021-04-22 CN CN202110436664.2A patent/CN113161745A/zh active Pending
-
2022
- 2022-04-07 WO PCT/CN2022/085596 patent/WO2022222763A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001018959A1 (fr) * | 1999-09-02 | 2001-03-15 | Fujitsu Limited | Egaliseur a amplitude variable |
CN106384891A (zh) * | 2016-11-25 | 2017-02-08 | 京信通信技术(广州)有限公司 | 相位平衡单元及功分器电路相位平衡装置 |
CN113161745A (zh) * | 2021-04-22 | 2021-07-23 | 摩比天线技术(深圳)有限公司 | 相位平衡器及基站天线 |
Non-Patent Citations (2)
Title |
---|
EOM SOON-YOUNG, PARK HAN-KYU: "New switched-network phase shifter with broadband characteristics", MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, vol. 38, no. 4, 20 August 2003 (2003-08-20), US , pages 255 - 257, XP055978187, ISSN: 0895-2477, DOI: 10.1002/mop.11030 * |
ZHEN-YU ZHANG; YONG-XIN GUO; LING CHUEN ONG; CHIA M Y W: "A New Wide-band Planar Balun on a Single-Layer PCB", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, vol. 15, no. 6, 1 June 2005 (2005-06-01), pages 416 - 418, XP001232146, ISSN: 1531-1309, DOI: 10.1109/LMWC.2005.850486 * |
Also Published As
Publication number | Publication date |
---|---|
CN113161745A (zh) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107623192B (zh) | 一种结合并馈功分网络的微带串馈阵列天线 | |
TWI547015B (zh) | 二維天線陣列、一維天線陣列及其單差動饋入天線 | |
US10910688B2 (en) | Dielectric phase shifting unit, dielectric phase shifter and base station antenna | |
JPH0711022U (ja) | 平坦で薄いサーキュラー・アレイ・アンテナ | |
CN103956586B (zh) | 平板阵列天线 | |
US11705614B2 (en) | Coupling device and antenna | |
US9941587B2 (en) | 3×3 Butler matrix and 5×6 Butler matrix | |
CN203690467U (zh) | 一种集成化设计的微带功率分配器 | |
WO2022222763A1 (zh) | 相位平衡器及基站天线 | |
CN206441875U (zh) | 一种天线结构 | |
CN112688057B (zh) | 一种基于交叉偶极子的宽带圆极化微带天线 | |
CN214849055U (zh) | 相位平衡器及基站天线 | |
CN209767534U (zh) | T型偏置电路以及用于基站天线的校准板 | |
CN108963406A (zh) | 基于多层电路工艺的基片集成波导的Gysel型功分器 | |
CN212648491U (zh) | 微带天线及微带天线组 | |
WO2023221594A1 (zh) | 一种微带阵列天线 | |
Al Shamaileh et al. | Design of N-way power divider similar to the Bagley polygon divider with an even number of output ports | |
CN210379359U (zh) | 新型90°宽带差分移相器 | |
CN107492719A (zh) | 工作于x波段双圆极化差波束形成网络及其设计方法 | |
CN201215831Y (zh) | 低损耗基片集成波导多波束天线 | |
CN112086721A (zh) | 基于多层微带缝隙耦合结构的宽带二维和差相位比较网络 | |
US12009603B2 (en) | Bias tee circuit and calibration board for base station antenna | |
Ray et al. | Broadband modified Wilkinson power divider fed antipodal Vivaldi antenna array | |
Wu et al. | Modified Binomial Power Distribution Beamformer for Switched-Beam Circular Array | |
Luo et al. | Design of tri-beam antenna systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22790872 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22790872 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.03.2024) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22790872 Country of ref document: EP Kind code of ref document: A1 |