WO2023221594A1 - 一种微带阵列天线 - Google Patents

一种微带阵列天线 Download PDF

Info

Publication number
WO2023221594A1
WO2023221594A1 PCT/CN2023/078334 CN2023078334W WO2023221594A1 WO 2023221594 A1 WO2023221594 A1 WO 2023221594A1 CN 2023078334 W CN2023078334 W CN 2023078334W WO 2023221594 A1 WO2023221594 A1 WO 2023221594A1
Authority
WO
WIPO (PCT)
Prior art keywords
power divider
array antenna
microstrip
array
antenna according
Prior art date
Application number
PCT/CN2023/078334
Other languages
English (en)
French (fr)
Inventor
尹柳中
骆家辉
Original Assignee
深圳Tcl数字技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl数字技术有限公司 filed Critical 深圳Tcl数字技术有限公司
Publication of WO2023221594A1 publication Critical patent/WO2023221594A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the present application relates to the field of antenna technology, and in particular to a microstrip array antenna.
  • the purpose of this application is to provide a microstrip array antenna that can achieve low side lobes of the antenna, thereby improving the performance of the microstrip array antenna.
  • An embodiment of the present application provides a microstrip array antenna, including:
  • the unequal power splitter and fed network includes a first-level power splitter and a second-level power splitter.
  • the input end of the first-level power splitter is connected to the feed end, and the second-level power splitter
  • the input end of the power splitter is connected to the output end of the first-level power splitter, and the output end of the second-level power splitter is connected to each series feeder array.
  • the first-level power divider includes a first power divider, the input end of the first power divider is connected to the feed end, and the output end of the first power divider is connected to the second-level power divider. device connection.
  • the first power divider is an equal power divider divided into two.
  • the secondary power divider includes a second power divider and a third power divider.
  • the input end of the second power divider is connected to an output end of the first power divider.
  • the input end of the three power divider is connected to the other output end of the first power divider, the output end of the second power divider is connected to the corresponding series feeder line array, and the output end of the third power divider is connected to the corresponding series feeder line array. connect.
  • the second power splitter is an unequal power splitter divided into two.
  • the third power divider is an unequal power divider that divides into two.
  • the combined end of the unequal power-divided parallel-fed network formed by the first power divider, the second power divider, and the third power divider adopts a third-order Wilkinson broadband power divider. Web design.
  • multiple series feed line arrays have the same structure and are arranged in parallel.
  • each series-fed line array includes a microstrip transmission line and multiple array elements connected by the microstrip transmission line at the same spacing.
  • the size of the array elements along the direction perpendicular to the arrangement direction gradually decreases from the center to both sides, and the entire array element has a symmetrical structure perpendicular to the arrangement direction.
  • the spacing is half a dielectric wavelength.
  • the excitation amplitude of each array element in the same series of feeder arrays satisfies the Taylor distribution.
  • the dimensions of each array element along parallel to the arrangement direction are equal.
  • the dimension of each array element along the array direction is half a dielectric wavelength.
  • each array element is provided with a groove for connecting the microstrip transmission line.
  • a groove is provided in the first element of each series feed line array close to the unequal power division parallel fed network, and in each series feed line array it is further away from the unequal power division parallel fed network.
  • One groove is provided in the last array element of the feed network, and two grooves are provided in other array elements between the first array element and the last array element.
  • the groove is a rectangular groove.
  • the microstrip array antenna includes a dielectric substrate, a first metal plate and a second metal plate.
  • the dielectric substrate includes an opposite first surface and a second surface; wherein the first metal layer is grounded
  • the second metal layer is arranged on the first surface of the dielectric substrate; the second metal layer is arranged on the second surface; the second metal layer includes a plurality of series-fed line arrays and an unequal power dividing and parallel-fed network.
  • the array elements and the ground layer form a radiation gap.
  • this application provides a microstrip array antenna.
  • the excitation amplitude of the feed end of each series-fed line array is distributed from the center to the two ends. In order to achieve low side lobes and improve the performance of microstrip array antennas.
  • Figure 1 is a structural block diagram of a microstrip array antenna provided by this application.
  • Figure 2 is a three-dimensional structural diagram of the microstrip array antenna provided by this application.
  • Figure 3 is a structural diagram of the unequal power split and fed network of the microstrip array antenna provided by this application.
  • Figure 4 is a schematic diagram of multiple series feed line arrays in the microstrip array antenna provided by this application.
  • Figure 5 is a schematic diagram of a single series feed line array in the microstrip array antenna provided by this application.
  • Figure 6 is a radiation pattern corresponding to the microstrip array antenna in Figure 4 provided by this application.
  • the purpose of this application is to provide a microstrip array antenna that can achieve low side lobes of the antenna, thereby improving the performance of the microstrip array antenna.
  • This application provides a microstrip array antenna, which includes a dielectric substrate 10, a first metal plate and a second metal plate.
  • the dielectric substrate 10 includes an opposite first surface and a second surface, wherein the first metal layer is a ground layer and is disposed on the first surface of the dielectric substrate 10; the second metal layer is disposed on the second surface, and the second metal layer includes a plurality of strips.
  • the multiple series-fed line arrays 122 have the same structure and are arranged in parallel.
  • the unequal power-splitting parallel-fed network 121 is connected to the multiple series-fed line arrays 122 to form an area array.
  • the input end of the unequal power division parallel-fed network 121 is connected to the feed end, and the output end of the unequal power division parallel-fed network 121 is connected to the input end of each series-fed line array 122 .
  • an unequal power dividing parallel-fed network 121 is provided to provide excitation signals for each series-fed line array 122, so that the radio frequency input power value input to each series-fed line array 122 exhibits Taylor distribution, and the feed power of each series-fed line array 122 is The input excitation amplitude is distributed from the center to both ends of the cone pin to achieve low side lobes and improve the performance of the microstrip array antenna.
  • the unequal power splitter and fed network 121 includes a first-level power splitter 1211 and a second-level power splitter 1212.
  • the input end of the first-level power splitter 1211 is connected to the feed end, and the input end of the second-level power splitter 1212 is connected to the feed end.
  • the terminal is connected to the output terminal of the first-level power splitter 1211, and the output terminal of the second-level power splitter 1212 is connected to each series feeder array 122.
  • the first-level power divider 1211 is used to distribute the radio frequency input signal at the feeder end to the second-level power dividing network according to equal power
  • the second-level power dividing network is used to divide the radio frequency input signal output from the first-level power dividing network according to different power.
  • Equal power is distributed to each series feeder array 122, so that the radio frequency input power value input to each series feeder array 122 has a Taylor distribution. While realizing parallel feeding of each series feeder array 122, each series feeder array 122 can be The feed-end excitation amplitude realizes the cone pin distribution from the center to both ends, thereby reducing the side lobe level of the microstrip array antenna.
  • the first-level power divider 1211 includes a first power divider 21.
  • the input end of the first power divider 21 is connected to the feed end.
  • the output end of the first power divider 21 is connected to the second-level power divider 21.
  • the first power divider 21 in this embodiment is an equal power divider.
  • the first power divider 21 is a power splitter that divides one input into two outputs.
  • the secondary power divider 1212 in this embodiment can be provided with two power dividers.
  • the secondary power divider 1212 includes the second power divider 22 and the third power divider 23.
  • the input of the second power divider 22 The terminal is connected to an output terminal of the first power divider 21, the input terminal of the third power divider 23 is connected to the other output terminal of the first power divider 21, and the output terminal of the second power divider 22 is connected to the corresponding string.
  • the feeder array 122 is connected, and the output end of the third power divider 23 is connected to the corresponding series feeder array 122 .
  • the second power divider 22 and the third power divider 23 are both unequal power dividers that divide one into two.
  • the two output terminals of the second power divider 22 divided into two can be connected to the two series feeder arrays 122, and the two output terminals of the third power divider 23 divided into two can also be connected to the two series feeder arrays. 122.
  • the four series feed line arrays 122 have the same structure and are arranged in parallel. The distance between two adjacent series feed line arrays 122 can be selected between half a wavelength and one wavelength.
  • the combined end of the unequal power divider parallel-fed network 121 formed by the first power divider 21, the second power divider 22 and the third power divider 23 adopts a third-order Wilkinson broadband power divider network design. Achieve widening of the frequency band characteristics of the input impedance. Moreover, the setting of the Wilkinson parallel-fed network can improve the isolation between the series feeder arrays 122, making it easy to control the phase and excitation amplitude between the series feeder arrays 122, which is beneficial to reducing side lobes.
  • each series feed line array 122 includes a microstrip transmission line 1221 and a plurality of array elements 1222 connected through the microstrip transmission line 1221 at the same spacing.
  • the side perpendicular to the microstrip transmission antenna in the array element 1222 is the radiation side
  • the side parallel to the microstrip transmission line 1221 is the resonant side. That is to say, the spacing between adjacent array elements 1222 in each series feeder array 122 is equal.
  • the spacing in this embodiment can be set to half the dielectric wavelength, so that the phase difference of each array element 1222 is 2 ⁇ , that is, in-phase excitation.
  • the number of array elements 1222 in this embodiment can be set to four, forming a 4*4 area array when four arrays are set.
  • each array element 1222 is provided with a groove 31 for connecting the microstrip transmission line 1221 , wherein the first element of each series feed line array 122 close to the unequal power split and parallel fed network 121
  • a groove 31 is provided in each array element 1222.
  • a groove 31 is also provided in the last array element 1222 of each series-fed line array 122 that is far away from the unequal power split and parallel-fed network 121, and is located in the first array.
  • the other array elements 1222 between the array element 1222 and the last array element 1222 are provided with two grooves 31 .
  • the groove 31 may be a rectangular groove.
  • each string feed line array 122 the size of the array element 1222 along the direction perpendicular to the arrangement direction gradually decreases from the center to both sides, and the array element 1222 as a whole has a symmetrical structure perpendicular to the arrangement direction.
  • the dimensions of the array elements 1222 parallel to the arrangement direction are equal, and can be set to half the dielectric wavelength.
  • the effective radiation area of each array element 1222 in the same series of feeder arrays 122 gradually decreases symmetrically from the middle to both ends of the series of feeder arrays 122, so as to facilitate control of the excitation amplitude of each array element 1222 in the same series of feeder arrays 122. Satisfying the Taylor distribution, effective control of the excitation amplitude in the series feeder array 122 is achieved, and the difficulty of sidelobe suppression is reduced.
  • the dielectric substrate 10 in this embodiment is an FR4 dielectric board, which can reduce costs compared to using ordinary high-frequency PCB boards.
  • the thickness of the dielectric substrate 10 in this embodiment is 1.6 mm, and the length and width are both 120 mm.
  • the array element 1222 in this embodiment forms a radiation gap with the ground layer on the first surface of the dielectric substrate 10.
  • the ground layer acts as a reflecting surface, so that the microstrip array antenna can achieve directional radiation.
  • directional radiation radiates energy in useful directions and reduces radiation in unfavorable directions, so as to improve the performance of the microstrip array antenna as a beacon antenna.
  • the microstrip array antenna in this application realizes series-fed Taylor distribution and unequal power division control parallel-fed Taylor distribution by controlling the radiation edge width of the array elements, which can achieve high isolation between series feed arrays, phase and excitation amplitude It is easy to control and achieves the effects of low side lobes, high front-to-back ratio, steep main lobe edges and reduced main lobe shear in the pattern, thereby improving the performance of the microstrip array antenna.
  • this application provides a microstrip array antenna, which includes a plurality of series-fed line arrays and an unequal power-dividing parallel-fed network.
  • the input end of the unequal power-dividing parallel-fed network is connected to the feed end.
  • the output end of the feed network is connected to the input end of each series-fed line array.
  • the excitation amplitude of the feed end of each series-fed line array is distributed from the center to the two ends, so as to achieve low side lobes and improve the performance of the microstrip array antenna.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种微带阵列天线,包括多条串馈线阵和不等功分并馈网络,不等功分并馈网络的输入端与馈电端连接,不等功分并馈网络的输出端与各条串馈线阵输入端连接。

Description

一种微带阵列天线
本申请要求于2022年05月18日提交中国专利局、申请号为202210544440.8、申请名称为“一种微带阵列天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别涉及一种微带阵列天线。
背景技术
目前的信标天线多采用喇叭天线,喇叭天线的副瓣电平高,副瓣抑制困难。
技术问题
由于喇叭天线的副瓣电平高,副瓣抑制困难,进而影响天线的性能。
技术解决方案
本申请的目的在于提供一种微带阵列天线,能够实现天线的低副瓣,进而提高微带阵列天线的使用性能。
为了达到上述目的,本申请采取了以下技术方案:
本申请实施例提供一种微带阵列天线,包括:
多条串馈线阵和不等功分并馈网络,不等功分并馈网络的输入端与馈电端连接,不等功分并馈网络的输出端与各条串馈线阵输入端连接。
在一些实施例中的微带阵列天线,不等功分并馈网络包括一级功分器和二级功分器,一级功分器的输入端与馈电端连接,二级功分器的输入端与一级功分器的输出端连接,二级功分器的输出端与各条串馈线阵连接。
在一些实施例中的微带阵列天线,一级功分器包括第一功分器,第一功分器的输入端与馈电端连接,第一功分器的输出端与二级功分器连接。
在一些实施例中的微带阵列天线,第一功分器为一分二的等功率分配器。
在一些实施例中的微带阵列天线,二级功分器包括第二功分器和第三功分器,第二功分器的输入端与第一功分器的一输出端连接,第三功分器的输入端与第一功分器的另一输出端连接,第二功分器的输出端与对应的串馈线阵连接,第三功分器的输出端与对应的串馈线阵连接。
在一些实施例中的微带阵列天线,第二功分器为一分二的不等功率分配器。
在一些实施例中的微带阵列天线,第三功分器为一分二的不等功率分配器。
在一些实施例中的微带阵列天线,第一功分器、第二功分器和第三功分器形成的不等功分并馈网络的合路端采用三阶威尔金森宽带功分网络设计。
在一些实施例中的微带阵列天线,多条串馈线阵的结构相同且平行设置。
在一些实施例中的微带阵列天线,每条串馈线阵包括微带传输线以及按照相同间距通过微带传输线连接的多个阵元。
在一些实施例中的微带阵列天线,各条串馈线阵中,阵元中沿着垂直于排列方向的尺寸从中间往两边逐渐减小,且阵元整体以垂直于排列方向为对称结构。
在一些实施例中的微带阵列天线,间距为半介质波长。
在一些实施例中的微带阵列天线,同一串馈线阵中各阵元的激励幅度满足泰勒分布。
在一些实施例中的微带阵列天线,每个阵元沿着平行于排列方向的尺寸相等。
在一些实施例中的微带阵列天线,每个阵元沿着平行于排列方向的尺寸为半介质波长。
在一些实施例中的微带阵列天线,每个阵元中设置有用于连接微带传输线的凹槽。
在一些实施例中的微带阵列天线,每条串馈线阵中靠近不等功分并馈网络的第一个阵元中设置有一个凹槽,每条串馈线阵中远离不等功分并馈网络的最后一个阵元中设置有一个凹槽,位于第一个阵元和最后一个阵元之间的其他阵元均设置有两个凹槽。
在一些实施例中的微带阵列天线,凹槽为矩形槽。
在一些实施例中的微带阵列天线,微带阵列天线包括介质基板、第一金属板和第二金属板,介质基板包括相对的第一表面和第二表面;其中,第一金属层为接地层设置于介质基板的第一表面;第二金属层设置于第二表面,第二金属层包括多条串馈线阵和不等功分并馈网络。
在一些实施例中的微带阵列天线,阵元与接地层构成辐射缝。
有益效果
相较于现有技术,本申请提供了一种微带阵列天线,通过设置不等功分并馈网络,使得各条串馈线阵的馈入端激励幅度实现从中心向两端的锥销分布,以便于实现低副瓣,提高微带阵列天线的性能。
附图说明
图1为本申请提供的微带阵列天线的结构框图。
图2为本申请提供的微带阵列天线的立体结构图。
图3为本申请提供的微带阵列天线的不等功分并馈网络的结构图。
图4为本申请提供的微带阵列天线中多条串馈线阵的示意图。
图5为本申请提供的微带阵列天线中单条串馈线阵的示意图。
图6为本申请提供的图4中的微带阵列天线对应的辐射方向图。
本发明的实施方式
本申请的目的在于提供一种微带阵列天线,能够实现天线的低副瓣,进而提高微带阵列天线的使用性能。
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
请一并参阅图1和图2,本申请提供一种微带阵列天线,包括介质基板10、第一金属板和第二金属板。介质基板10包括相对的第一表面和第二表面,其中,第一金属层为接地层设置于介质基板10的第一表面;第二金属层设置于第二表面,第二金属层包括多条串馈线阵122和不等功分并馈网络121,多条串馈线阵122的结构相同且平行设置,不等功分并馈网络121与多条串馈线阵122连接形成面阵。
其中,不等功分并馈网络121的输入端与馈电端连接,不等功分并馈网络121的输出端与各条串馈线阵122输入端连接。本实施例中通过设置不等功分并馈网络121为各条串馈线阵122提供激励信号,使得输入至各个串馈线阵122的射频输入功率值呈泰勒分布,各条串馈线阵122的馈入端激励幅度实现从中心向两端的锥销分布,以便于实现低副瓣,提高微带阵列天线的性能。
具体实施时,不等功分并馈网络121包括一级功分器1211和二级功分器1212,一级功分器1211的输入端与馈电端连接,二级功分器1212的输入端与一级功分器1211的输出端连接,二级功分器1212的输出端与各条串馈线阵122连接。具体地,其中一级功分器1211用于将馈电端的射频输入信号依据等功率分配至二级功分网络,二级功分网络用于将一级功分网络输出的射频输入信号依据不等功率分配至各个串馈线阵122,使得输入至各个串馈线阵122的射频输入功率值呈泰勒分布,在实现对各串馈线阵122进行并联馈电的同时,能够使得各条串馈线阵122的馈入端激励幅度实现从中心向两端的锥销分布,进而压低微带阵列天线的副瓣电平。
进一步地,请参阅图3,一级功分器1211包括第一功分器21,第一功分器21的输入端与馈电端连接,第一功分器21的输出端与二级功分器1212连接。本实施例中的第一功分器21为等功率分配器。
在一些实施例中,第一功分器21为一分二的功率分配器,将一路输入分为两路输出。那么本实施例中的二级功分器1212则可以设置两个功分器,二级功分器1212包括第二功分器22和第三功分器23,第二功分器22的输入端与第一功分器21的一输出端连接,第三功分器23的输入端与第一功分器21的另一输出端连接,第二功分器22的输出端与对应的串馈线阵122连接,第三功分器23的输出端与对应的串馈线阵122连接。
在一些实施例中,第二功分器22和第三功分器23均为一分二的不等功率分配器。本实施例中一分二的第二功分器22的两个输出端可连接两路串馈线阵122,一分二的第三功分器23的两个输出端也连接两路串馈线阵122。四条串馈线阵122的结构相同且平行设置,相邻两条串馈线阵122之间的距离可以在半波长和一个波长之间选取。其中,由第一功分器21、第二功分器22和第三功分器23形成的不等功分并馈网络121的合路端采用三阶威尔金森宽带功分网络设计,以实现拓宽输入端阻抗的频带特性。并且,威尔金森并馈网络的设置能够提高各串馈线阵122之间的隔离度,使得各串馈线阵122之间的相位和激励幅度易于控制,有利于降低副瓣。
进一步地,请参阅图4,每条串馈线阵122包括微带传输线1221以及按照相同间距通过微带传输线1221连接的多个阵元1222。其中,阵元1222中与微带传输天线垂直的边为辐射边,而与微带传输线1221平行的边为谐振边。也即每条串馈线阵122中的相邻阵元1222的间距是相等的,本实施例中的间距可以设置为半介质波长,实现每个阵元1222的相位差为2π,也即同相激励。其中,本实施例中的阵元1222可以设置为4个,在设置4条阵列的情况下形成4*4的面阵。
进一步地,请一并参阅图5,每个阵元1222中设置有用于连接微带传输线1221的凹槽31,其中,每条串馈线阵122中靠近不等功分并馈网络121的第一个阵元1222中设置有一个凹槽31,每条串馈线阵122中远离不等功分并馈网络121的最后一个阵元1222中同样也设置有一个凹槽31,而位于第一个阵元1222和最后一个阵元1222之间的其他阵元1222均设置有两个凹槽31。其中,该凹槽31可以是矩形槽。
进一步地,各条串馈线阵122中,阵元1222中沿着垂直于排列方向的尺寸从中间往两边逐渐减小,且阵元1222整体以垂直于排列方向为对称结构。而阵元1222中沿着平行于排列方向的尺寸相等,具体可以设置为半介质波长。本实施例中同一串馈线阵122中的各阵元1222的有效辐射面积自串馈线阵122的中部对称地向两端逐渐递减,以便于控制同一串馈线阵122中各阵元1222的激励幅度满足泰勒分布,实现对串馈线阵122中激励幅度地有效控制,降低副瓣抑制的难度。
具体对于4*4的微带阵列天线对应的辐射方向图如图6所示,其中,副瓣电平为-19dB,前后比为26.9dB。
进一步地,本实施例中的介质基板10为FR4介质板,相对于采用普通高频PCB板而言,能够降低成本。本实施例中的介质基板10的厚度为1.6mm,长度和宽度均为120mm。
其中,本实施例中的阵元1222与介质基板10上第一表面的接地层构成辐射缝,此时的接地层相当于充当一反射面,使得微带阵列天线能够实现定向辐射。相对于喇叭天线的全向辐射而言,定向辐射使能量朝有用的方向辐射,不利的方向减少辐射,以便于提高微带阵列天线作为信标天线的使用性能。
本申请中的微带阵列天线通过控制阵元的辐射边宽度实现串馈泰勒分布和不等功分控制并联馈电泰勒分布,能够使得各串馈线阵之间的隔离度高,相位和激励幅度易于控制,实现方向图低副瓣、高前后比、主瓣边缘陡峭和主瓣剪切下降的效果,进而提高微带阵列天线的使用性能。
综上,本申请提供的一种微带阵列天线,包括多条串馈线阵和不等功分并馈网络,不等功分并馈网络的输入端与馈电端连接,不等功分并馈网络的输出端与各条串馈线阵输入端连接。本申请通过设置不等功分并馈网络,使得各条串馈线阵的馈入端激励幅度实现从中心向两端的锥销分布,以便于实现低副瓣,提高微带阵列天线的性能。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其申请构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种微带阵列天线,其中,包括:
    多条串馈线阵和不等功分并馈网络,所述不等功分并馈网络的输入端与馈电端连接,所述不等功分并馈网络的输出端与各条所述串馈线阵输入端连接。
  2. 根据权利要求1所述的微带阵列天线,其中,所述不等功分并馈网络包括一级功分器和二级功分器,所述一级功分器的输入端与所述馈电端连接,所述二级功分器的输入端与所述一级功分器的输出端连接,所述二级功分器的输出端与各条所述串馈线阵连接。
  3. 根据权利要求2所述的微带阵列天线,其中,所述一级功分器包括第一功分器,所述第一功分器的输入端与所述馈电端连接,所述第一功分器的输出端与所述二级功分器连接。
  4. 根据权利要求3所述的微带阵列天线,其中,所述第一功分器为一分二的等功率分配器。
  5. 根据权利要求4所述的微带阵列天线,其中,所述二级功分器包括第二功分器和第三功分器,所述第二功分器的输入端与第一功分器的一输出端连接,所述第三功分器的输入端与所述第一功分器的另一输出端连接,所述第二功分器的输出端与对应的所述串馈线阵连接,所述第三功分器的输出端与对应的所述串馈线阵连接。
  6. 根据权利要求5所述的微带阵列天线,其中,所述第二功分器为一分二的不等功率分配器。
  7. 根据权利要求5所述的微带阵列天线,其中,所述第三功分器为一分二的不等功率分配器。
  8. 根据权利要求5所述的微带阵列天线,其中,所述第一功分器、所述第二功分器和所述第三功分器形成的所述不等功分并馈网络的合路端采用三阶威尔金森宽带功分网络设计。
  9. 根据权利要求1-8任一项所述的微带阵列天线,其中,多条所述串馈线阵的结构相同且平行设置。
  10. 根据权利要求9所述的微带阵列天线,其中,每条所述串馈线阵包括微带传输线以及按照相同间距通过所述微带传输线连接的多个阵元。
  11. 根据权利要求10所述的微带阵列天线,其中,各条所述串馈线阵中,所述阵元中沿着垂直于排列方向的尺寸从中间往两边逐渐减小,且所述阵元整体以垂直于排列方向为对称结构。
  12. 根据权利要求10所述的微带阵列天线,其中,所述间距为半介质波长。
  13. 根据权利要求11所述的微带阵列天线,其中,同一所述串馈线阵中各阵元的激励幅度满足泰勒分布。
  14. 根据权利要求11所述的微带阵列天线,其中,每个所述阵元沿着平行于排列方向的尺寸相等。
  15. 根据权利要求14所述的微带阵列天线,其中,每个所述阵元沿着平行于排列方向的尺寸为半介质波长。
  16. 根据权利要求11所述的微带阵列天线,其中,每个所述阵元中设置有用于连接所述微带传输线的凹槽。
  17. 根据权利要求16所述的微带阵列天线,其中,每条所述串馈线阵中靠近所述不等功分并馈网络的第一个阵元中设置有一个所述凹槽,每条所述串馈线阵中远离所述不等功分并馈网络的最后一个阵元中设置有一个所述凹槽,位于第一个阵元和最后一个阵元之间的其他阵元均设置有两个所述凹槽。
  18. 根据权利要求17所述的微带阵列天线,其中,所述凹槽为矩形槽。
  19. 根据权利要求18所述的微带阵列天线,其中,所述微带阵列天线包括介质基板、第一金属板和第二金属板,所述介质基板包括相对的第一表面和第二表面;其中,所述第一金属层为接地层设置于所述介质基板的所述第一表面;所述第二金属层设置于所述第二表面,所述第二金属层包括所述多条串馈线阵和所述不等功分并馈网络。
  20. 根据权利要求19所述的微带阵列天线,其中,所述阵元与所述接地层构成辐射缝。
PCT/CN2023/078334 2022-05-18 2023-02-27 一种微带阵列天线 WO2023221594A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210544440.8 2022-05-18
CN202210544440.8A CN114883816A (zh) 2022-05-18 2022-05-18 一种微带阵列天线

Publications (1)

Publication Number Publication Date
WO2023221594A1 true WO2023221594A1 (zh) 2023-11-23

Family

ID=82675496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078334 WO2023221594A1 (zh) 2022-05-18 2023-02-27 一种微带阵列天线

Country Status (2)

Country Link
CN (1) CN114883816A (zh)
WO (1) WO2023221594A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883816A (zh) * 2022-05-18 2022-08-09 深圳Tcl数字技术有限公司 一种微带阵列天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394359A (zh) * 2011-06-21 2012-03-28 中国兵器工业第二○六研究所 一种波束对称的多层微带平板阵列天线
US20130249752A1 (en) * 2010-04-11 2013-09-26 Broadcom Corporation Three-Dimensional Multiple Spiral Antenna and Applications Thereof
US20130252561A1 (en) * 2010-04-11 2013-09-26 Broadcom Corporation 3D Antenna Assembly with Projected AMC and Applications Thereof
CN107623192A (zh) * 2017-08-23 2018-01-23 湖南纳雷科技有限公司 一种结合并馈功分网络的微带串馈阵列天线
CN114024129A (zh) * 2021-10-12 2022-02-08 中国电子科技集团公司第二十九研究所 一种平衡式微带串馈阵列天线
CN114883816A (zh) * 2022-05-18 2022-08-09 深圳Tcl数字技术有限公司 一种微带阵列天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130249752A1 (en) * 2010-04-11 2013-09-26 Broadcom Corporation Three-Dimensional Multiple Spiral Antenna and Applications Thereof
US20130252561A1 (en) * 2010-04-11 2013-09-26 Broadcom Corporation 3D Antenna Assembly with Projected AMC and Applications Thereof
CN102394359A (zh) * 2011-06-21 2012-03-28 中国兵器工业第二○六研究所 一种波束对称的多层微带平板阵列天线
CN107623192A (zh) * 2017-08-23 2018-01-23 湖南纳雷科技有限公司 一种结合并馈功分网络的微带串馈阵列天线
CN114024129A (zh) * 2021-10-12 2022-02-08 中国电子科技集团公司第二十九研究所 一种平衡式微带串馈阵列天线
CN114883816A (zh) * 2022-05-18 2022-08-09 深圳Tcl数字技术有限公司 一种微带阵列天线

Also Published As

Publication number Publication date
CN114883816A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN113922101B (zh) 一种基于雷达吸波和散射相消技术的宽角度rcs减缩超表面
CN109888480B (zh) 基于非周期方环结构的宽带多谐振超表面天线
WO2020134463A1 (zh) 毫米波阵列天线和移动终端
CN108550987B (zh) 一种基于siw的双频缝隙阵列天线
CN106505312A (zh) 一种毫米波微带阵列天线
KR20160056262A (ko) 도파관 슬롯 어레이 안테나
WO2015135153A1 (zh) 阵列天线
CN106887716A (zh) 一种cts平板阵列天线
US20130181880A1 (en) Low profile wideband multibeam integrated dual polarization antenna array with compensated mutual coupling
CN107579344A (zh) 毫米波基片集成波导双圆极化低副瓣共口径阵列天线
CN109768372A (zh) 一种应用于毫米波雷达的串并结合馈电微带阵列天线
US20140104135A1 (en) Radiating element for an active array antenna consisting of elementary tiles
WO2023221594A1 (zh) 一种微带阵列天线
CN110718757A (zh) 一种用于安防领域的新型宽角高增益覆盖安防雷达天线
CN108879087A (zh) 一种具有谐波抑制的单层宽带微带阵列天线
US10530032B2 (en) 90-degree hybrid circuit
CN207082636U (zh) 一种结合并馈功分网络的微带串馈阵列天线
CN114039211A (zh) 一种基于液晶的Ka频段基片集成波导全息漏波天线
CN206976565U (zh) 双馈双频圆极化天线
Kola et al. A Novel two-element linear array for DSRC band
CN114464990B (zh) 一种低剖面高隔离度的双极化天线辐射单元
CN212462022U (zh) 微带阵列天线及其微带功分器
US20210359423A1 (en) Antenna module
CN114665283A (zh) W波段大规模圆口径高效率siw缝隙阵列天线
CN211556129U (zh) 一种漏波天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806554

Country of ref document: EP

Kind code of ref document: A1