WO2020134463A1 - 毫米波阵列天线和移动终端 - Google Patents

毫米波阵列天线和移动终端 Download PDF

Info

Publication number
WO2020134463A1
WO2020134463A1 PCT/CN2019/113326 CN2019113326W WO2020134463A1 WO 2020134463 A1 WO2020134463 A1 WO 2020134463A1 CN 2019113326 W CN2019113326 W CN 2019113326W WO 2020134463 A1 WO2020134463 A1 WO 2020134463A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation patch
array antenna
wave array
millimeter wave
feeding
Prior art date
Application number
PCT/CN2019/113326
Other languages
English (en)
French (fr)
Inventor
陈勇利
许心影
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020134463A1 publication Critical patent/WO2020134463A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points

Definitions

  • the invention relates to the technical field of antenna structures of mobile terminals, and in particular to a millimeter wave array antenna and a mobile terminal.
  • the millimeter wave band has little research on arrays that simultaneously achieve dual-frequency and dual-polarization.
  • the simultaneous coverage of 28GHz and 39GHz is relatively narrow.
  • the cross-polarization generated by dual-polarization is relatively poor, and there is a certain disadvantage in volume.
  • the present invention aims to solve one of the technical problems in the prior art, and provides a new type of millimeter wave array antenna and mobile terminal.
  • a millimeter wave array antenna includes a plurality of antenna elements arranged in an array, and each of the antenna elements includes top to bottom A first radiation patch, a second radiation patch, a first ground plate, a power divider layer, and a second ground plate stacked in this order, the first radiation patch and the second radiation patch are spaced and coupled,
  • the second radiation patch is provided with two feeding terminals, each of the feeding terminals is provided with two feeding gaps,
  • the power divider layer includes two transmission lines, and each of the transmission lines includes One input port and two inverting output ports electrically connected to the input terminal, the two inverting output ports are respectively coupled and fed with the two feeding gaps of one feeding terminal, each Under the excitation of the two input ports, the antenna unit generates orthogonal polarization and dual-frequency resonance.
  • the antenna unit further includes a first dielectric plate sandwiched between the first radiation patch and the second radiation patch, a second radiation patch and the first A second dielectric plate between a ground plate, a third dielectric plate interposed between the first ground plate and the second ground plate, and the power divider layer is disposed in the third dielectric plate And spaced apart from the first ground plate and the second ground plate.
  • the antenna unit further includes four probes extending from the inverted output port of the power splitter layer toward the second radiation patch, each of the probes facing away from the power One end of the splitter layer is accommodated in one of the feeding gaps and is coupled to the second radiation patch for feeding.
  • the millimeter wave array antenna includes four antenna units, and the four antenna units are arranged in a 1*4 array.
  • the first radiation patch and the second radiation patch both have a square structure.
  • two of the feeding gaps of one feeding end are located on a diagonal line of the second radiation patch, and two of the feeding gaps of the other feeding end are located on the first The other diagonal of the second radiation patch.
  • the size of the first radiation patch is smaller than the size of the second radiation patch, and the orthographic projection of the first radiation patch to the plane where the second radiation patch is located falls on the first Two radiation patch.
  • the second ground plate of each antenna unit is integrally formed.
  • a mobile terminal includes the millimeter wave array antenna described above.
  • the millimeter-wave array antenna and the mobile terminal of the present invention includes several antenna units arranged in an array, and each of the antenna units includes a stacking arrangement in order from top to bottom The first radiation patch, the second radiation patch, the first ground plate, the power divider layer and the second ground plate, the first radiation patch is spaced and coupled with the second radiation patch, the first The two radiation patches are provided with two feeding terminals, each of the feeding terminals is provided with two feeding gaps, the power divider layer includes two transmission lines, and each of the transmission lines includes an input port And two inverting output ports electrically connected to the input terminal, the two inverting output ports are respectively coupled and fed with two of the feeding gaps of one feeding terminal, and each of the antenna units is Under the excitation of the two input ports, orthogonal polarization and dual-frequency resonance are generated.
  • the power splitter layer can be used to make the main lobe generate a zero point and improve the cross-polarization ratio.
  • FIG. 1 is an exploded perspective view of an antenna unit of the millimeter wave array antenna of the present invention
  • FIG. 2 is a schematic diagram of the structure of the millimeter wave array antenna of the present invention.
  • FIG. 3 is a cross-sectional view of the millimeter wave array antenna shown in FIG. 2 along AA;
  • FIG. 4 is a schematic structural diagram of an inverting power splitter in a millimeter wave array antenna of the present invention.
  • FIG. 7 is a directional diagram of one of the antenna elements in the millimeter wave array antenna of the present invention at 28 GHz;
  • FIG. 8 is a direction diagram of one of the antenna elements in the millimeter wave array antenna of the present invention at 39 GHz.
  • the first aspect of the present invention relates to a millimeter wave array antenna for a mobile terminal.
  • the mobile terminal may be, for example, a mobile phone, a computer or a tablet.
  • the millimeter wave array antenna 100 includes a plurality of antenna elements 110 arranged in an array, and each of the antenna elements 110 includes a first radiation patch sequentially stacked from top to bottom. 111.
  • the first radiation patch 111 is spaced from and coupled to the second radiation patch 112.
  • the second radiation patch 112 is provided with two feed terminals (112a, 112b), the feed terminal 112a is provided with two feed gaps (112a1, 112a2), and the feed terminal 112b is provided with two feed gaps (112b1 , 112b2).
  • the power divider layer 114 includes two transmission lines (114a, 114b).
  • the transmission line 114a includes an input port IN1 and two inverted output ports (OUT1, OUT2) electrically connected to the input port IN1
  • the transmission line 114b includes One input port IN2 and two inverted output ports (OUT3, OUT4) electrically connected to the input port IN2.
  • the inverting output ports (OUT1, OUT2) are respectively coupled with the two feeding gaps (112b1, 112b2) of the feeding terminal 112b, and the inverting output ports (OUT3, OUT4) are respectively connected with the two of the feeding terminal 112a
  • the feed gap (112a1, 112a2) couples the feed.
  • Each antenna unit 110 generates orthogonal polarization and dual-frequency resonance under the excitation of the two input ports IN1 and IN2.
  • the antenna unit 110 of the structure of this embodiment has two layers of radiation patches, namely a first radiation patch 111 and a second radiation patch 112, and the first radiation patch 111 is spaced from the second radiation patch 112 and Coupling, in this way, can achieve dual-frequency coverage of the millimeter wave band without increasing the structure of the millimeter wave array antenna 100, so that the dual-frequency bandwidth can be improved.
  • the two power supply gaps (112a1, 112a2) of the power feeding terminal 112a can be coupled to feed power through the provided power divider layer 114, respectively.
  • Each antenna unit 110 generates orthogonal polarization and dual-frequency resonance under the excitation of the two input ports IN1 and IN2.
  • first radiation patch 111 and the second radiation patch 112 are spaced and coupled, for example, between the first radiation patch 111 and the second radiation patch 112 Set up a medium board or a structure similar to the medium board, etc.
  • the antenna unit 110 further includes a first dielectric plate 116 interposed between the first radiation patch 111 and the second radiation patch 112, and interposed The second dielectric plate 117 between the second radiation patch 112 and the first ground plate 113, and the third medium interposed between the first ground plate 113 and the second ground plate 115 Plate 118, the power divider layer 114 is disposed in the third dielectric plate 118 and is spaced apart from the first ground plate 113 and the second ground plate 115.
  • the dielectric constant of the first dielectric plate 116, the second dielectric plate 117, and the third dielectric plate 118 ranges from 2 to 4.
  • those skilled in the art can also select dielectric constants of other values according to actual needs.
  • the loss tangent of the first dielectric plate 116, the second dielectric plate 117, and the third dielectric plate 118 ranges from 0.0005 to 0.0015.
  • those skilled in the art can also select loss tangent values of other values according to actual needs.
  • the antenna unit 110 further includes 4 formed from the inverted output ports (OUT1, OUT2, OUT3, OUT4) of the power splitter layer 114 toward the second radiation patch 112 Probes 119, one end of each probe 119 facing away from the power splitter layer 114 is accommodated in one of the feeding gaps (112a1, 112a2, 112b1, 112b2) and connected to the second radiation patch 112 Coupling feed.
  • the millimeter wave array antenna 100 includes four antenna units 110, and the four antenna units 110 are arranged in a 1*4 array.
  • the four antenna units 110 are arranged in a 1*4 array.
  • those skilled in the art can also design a greater number of antenna units 110, and the arrangement of each antenna unit 110 can also be determined according to actual needs.
  • both the first radiation patch 111 and the second radiation patch 112 may have a square structure.
  • the two feeding gaps (112a1, 112a2) of the feeding terminal 112a are located on a diagonal line of the second radiation patch 112, and the two feeding gaps of the feeding terminal 112b (112b1, 112b2) are on another diagonal.
  • the size of the first radiation patch 111 is smaller than the size of the second radiation patch 112, and the first radiation patch 111 faces the surface where the second radiation patch 112 is located.
  • the projection falls within the second radiation patch 112.
  • the second ground plate 115 of each antenna unit 110 may be integrally formed.
  • the millimeter wave array antenna 100 in the present invention can realize dual frequency coverage of the millimeter wave band without increasing the structure of the millimeter wave array antenna 100, thereby improving the dual frequency bandwidth.
  • the power splitter layer 114 may be used to generate a zero point of the main lobe and improve the cross-polarization ratio. Specifically, refer to FIGS. 5 to 8.
  • a mobile terminal includes the millimeter wave array antenna 100 described above.
  • the mobile terminal structured in this embodiment has the millimeter wave array antenna 100 described above, which has two layers of radiation patches, namely a first radiation patch 111 and a second radiation patch 112, and the first radiation patch 111 It is spaced and coupled with the second radiation patch 112, so that the dual-frequency coverage of the millimeter wave band can be achieved without increasing the structure of the millimeter wave array antenna 100, so that the dual-frequency bandwidth can be improved.
  • the power divider layer 114 may be provided.
  • the power divider layer 114 includes two transmission lines (114a, 114b).
  • the transmission line 114a includes an input port IN1 and two inverters electrically connected to the input port IN1.
  • Phase output ports (OUT1, OUT2), the transmission line 114b includes an input port IN2 and two inverted output ports (OUT3, OUT4) electrically connected to the input port IN2.
  • the inverting output ports (OUT1, OUT2) are respectively coupled to the two feeding gaps (112b1, 112b2) of the feeding terminal 112b, and the inverting output ports (OUT3, OUT4) are respectively connected to the two feeding terminals 112a
  • the feed gap (112a1, 112a2) couples the feed.
  • Each antenna unit 110 generates orthogonal polarization and dual-frequency resonance under the excitation of the two input ports IN1 and IN2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种毫米波阵列天线和移动终端。毫米波阵列天线包括呈阵列排布的若干个天线单元,每个天线单元均包括自上而下依次层叠设置的第一辐射贴片、第二辐射贴片、第一接地板、功分器层和第二接地板,第一辐射贴片与第二辐射贴片间隔且耦合,第二辐射贴片上设有两个馈电端,每个馈电端开设有两个馈电缺口,功分器层包括两条传输线路,每条传输线路包括一个输入端口和与输入端电连接的两个反相输出端口,两个反相输出端口分别与一个馈电端的两个馈电缺口耦合馈电,每个天线单元在两个输入端口的激励下,产生正交极化和双频谐振。这样,可以实现毫米波波段双频覆盖,使主瓣产生零点,提高交叉极化比。

Description

毫米波阵列天线和移动终端 技术领域
本发明涉及移动终端的天线结构技术领域,具体涉及一种毫米波阵列天线和一种移动终端。
背景技术
为了适应未来通信行业的发展,对于手持设备上的5G毫米波阵列天线已经有了一定的研究。为了得到更好的性能,实现高增益,低旁瓣,宽频带,小型化的阵列天线是我们追求的目标。其中,终端双频双极化阵列的设计有一定的难度。
目前毫米波段对于同时实现双频和双极化的阵列研究较少,28GHz和39GHz同时覆盖的带宽较窄,双极化所产生的交叉极化比较差,且在体积上有一定的劣势。
技术问题
本发明旨在解决现有技术中存在的技术问题之一,而提供一种新型的毫米波阵列天线和移动终端。
技术解决方案
为实现上述目的,本发明的第一方面,提供了一种毫米波阵列天线,所述毫米波阵列天线包括呈阵列排布的若干个天线单元,每个所述天线单元均包括自上而下依次层叠设置的第一辐射贴片、第二辐射贴片、第一接地板、功分器层和第二接地板,所述第一辐射贴片与所述第二辐射贴片间隔且耦合,所述第二辐射贴片上设有两个馈电端,每个所述馈电端开设有两个馈电缺口,所述功分器层包括两条传输线路,每条所述传输线路包括一个输入端口和与所述输入端电连接的两个反相输出端口,两个所述反相输出端口分别与一个所述馈电端的两个所述馈电缺口耦合馈电,每个所述天线单元在两个所述输入端口的激励下,产生正交极化和双频谐振。
可选地,所述天线单元还包括夹设于所述第一辐射贴片和所述第二辐射贴片之间的第一介质板、夹设于所述第二辐射贴片和所述第一接地板之间的第二介质板、夹设于所述第一接地板和所述第二接地板之间的第三介质板,所述功分器层设置于所述第三介质板内且与所述第一接地板和所述第二接地板间隔。
可选地,所述天线单元还包括自所述功分器层的所述反相输出端口朝向所述第二辐射贴片延伸形成的4个探针,每个所述探针背离所述功分器层的一端收容于一个所述馈电缺口内并与所述第二辐射贴片耦合馈电。
可选地,所述毫米波阵列天线包括四个所述天线单元,四个所述天线单元呈1*4阵列排布。
可选地,所述第一辐射贴片和所述第二辐射贴片均呈方形结构。
可选地,一个所述馈电端的两个所述馈电缺口位于所述第二辐射贴片的一条对角线上,另一个所述馈电端的两个所述馈电缺口位于所述第二辐射贴片的另一条对角线上。
可选地,所述第一辐射贴片的尺寸小于所述第二辐射贴片的尺寸,且所述第一辐射贴片向所述第二辐射贴片所在面的正投影落于所述第二辐射贴片内。
可选地,各个所述天线单元的所述第二接地板一体成型。
本发明的第二方面,提供了一种移动终端,所述移动终端包括前文记载的所述的毫米波阵列天线。
有益效果
本发明的有益效果是:本发明的毫米波阵列天线和移动终端,所述毫米波阵列天线包括呈阵列排布的若干个天线单元,每个所述天线单元均包括自上而下依次层叠设置的第一辐射贴片、第二辐射贴片、第一接地板、功分器层和第二接地板,所述第一辐射贴片与所述第二辐射贴片间隔且耦合,所述第二辐射贴片上设有两个馈电端,每个所述馈电端开设有两个馈电缺口,所述功分器层包括两条传输线路,每条所述传输线路包括一个输入端口和与所述输入端电连接的两个反相输出端口,两个所述反相输出端口分别与一个所述馈电端的两个所述馈电缺口耦合馈电,每个所述天线单元在两个所述输入端口的激励下,产生正交极化和双频谐振。这样,可以在不增大毫米波阵列天线的结构的前提下,实现毫米波波段双频覆盖,从而可以提高双频带宽。并且,还可以借助所设置的功分器层,使主瓣产生零点,提高交叉极化比。
附图说明
图1是本发明中毫米波阵列天线中一个天线单元的立体分解图;
图2是本发明中毫米波阵列天线的结构示意图;
图3是图2中所示的毫米波阵列天线沿AA处的剖视图;
图4是本发明中毫米波阵列天线中反相功分器的结构示意图;
图5是本发明中毫米波阵列天线中各个天线单元的第一极化输入端口的反射系数曲线;
图6是本发明中毫米波阵列天线中其中一个天线单元的第一极化的效率曲线;
图7是本发明中毫米波阵列天线中其中一个天线单元在28GHz的方向图;
图8是本发明中毫米波阵列天线中其中一个天线单元在39GHz的方向图。
本发明的实施方式
下面结合图1至图8对本发明作详细描述。
本发明的第一方面,涉及一种移动终端用毫米波阵列天线,该移动终端,例如,可以是手机、电脑或者平板等。如图1和图2所示,所述毫米波阵列天线100包括呈阵列排布的若干个天线单元110,每个所述天线单元110均包括自上而下依次层叠设置的第一辐射贴片111、第二辐射贴片112、第一接地板113、功分器层114和第二接地板115,所述第一辐射贴片111与所述第二辐射贴片112间隔且耦合,所述第二辐射贴片112上设有两个馈电端(112a、112b),馈电端112a开设有两个馈电缺口(112a1、112a2),馈电端112b开设有两个馈电缺口(112b1、112b2)。所述功分器层114包括两条传输线路(114a、114b),传输线路114a包括一个输入端口IN1和与输入端口IN1电连接的两个反相输出端口(OUT1、OUT2),传输线路114b包括一个输入端口IN2和与输入端口IN2电连接的两个反相输出端口(OUT3、OUT4)。其中,反相输出端口(OUT1、OUT2)分别与馈电端112b的两个馈电缺口(112b1、112b2)耦合馈电,反相输出端口(OUT3、OUT4)分别与馈电端112a的两个馈电缺口(112a1、112a2)耦合馈电。每个所述天线单元110在两个所述输入端口IN1、IN2的激励下,产生正交极化和双频谐振。
本实施例结构的天线单元110,其具有双层辐射贴片,分别为第一辐射贴片111和第二辐射贴片112,并且,第一辐射贴片111与第二辐射贴片112间隔且耦合,这样,可以在不增大毫米波阵列天线100的结构的前提下,实现毫米波波段双频覆盖,从而可以提高双频带宽。并且,还可以借助所设置的功分器层114,分别与馈电端112a的两个馈电缺口(112a1、112a2)耦合馈电。每个所述天线单元110在两个所述输入端口IN1、IN2的激励下,产生正交极化和双频谐振。
需要说明的是,对于如何实现第一辐射贴片111和第二辐射贴片112间隔且耦合的结构并没有作出限定,例如,可以在第一辐射贴片111和第二辐射贴片112之间设置一个介质板或类似介质板的结构等等。
具体地,如图1和图4所示,所述天线单元110还包括夹设于所述第一辐射贴片111和所述第二辐射贴片112之间的第一介质板116、夹设于所述第二辐射贴片112和所述第一接地板113之间的第二介质板117、夹设于所述第一接地板113和所述第二接地板115之间的第三介质板118,所述功分器层114设置于所述第三介质板118内且与所述第一接地板113和所述第二接地板115间隔。
为了提高毫米波阵列天线100的通讯性能,所述第一介质板116、所述第二介质板117和所述第三介质板118的介电常数的取值范围为2~4。当然,在实际应用时,本领域技术人员还可以根据实际需要,选择其他数值的介电常数。
为了提高毫米波阵列天线100的通讯性能,所述第一介质板116、所述第二介质板117和所述第三介质板118的损耗角正切值的取值范围为0.0005~0.0015。当然,在实际应用时,本领域技术人员还可以根据实际需要,选择其他数值的损耗角正切值。
如图1所示,所述天线单元110还包括自所述功分器层114的所述反相输出端口(OUT1、OUT2、OUT3、OUT4)朝向所述第二辐射贴片112延伸形成的4个探针119,每个所述探针119背离所述功分器层114的一端收容于一个所述馈电缺口(112a1、112a2、112b1、112b2)内并与所述第二辐射贴片112耦合馈电。
如图1和图2所示,所述毫米波阵列天线100包括四个所述天线单元110,四个所述天线单元110呈1*4阵列排布。当然,在实际应用时,本领域技术人员还可以设计更多数量的天线单元110,并且,各天线单元110的排布方式也可以根据实际需要确定。
如图1所示,所述第一辐射贴片111和所述第二辐射贴片112均可以呈方形结构。此时,如图1所示,馈电端112a的两个馈电缺口(112a1、112a2)位于所述第二辐射贴片112的一条对角线上,馈电端112b的两个馈电缺口(112b1、112b2)位于另一条对角线上。
如图1所示,所述第一辐射贴片111的尺寸小于所述第二辐射贴片112的尺寸,且所述第一辐射贴片111向所述第二辐射贴片112所在面的正投影落于所述第二辐射贴片112内。
为了使得毫米波阵列天线100的结构更加紧凑,降低毫米波阵列天线100的制作成本,各个所述天线单元110的所述第二接地板115可以一体成型。
本发明中的毫米波阵列天线100,可以在不增大毫米波阵列天线100的结构的前提下,实现毫米波波段双频覆盖,从而可以提高双频带宽。并且,还可以借助所设置的功分器层114,使主瓣产生零点,提高交叉极化比。具体地可以参见图5至图8所示。
本发明的第二方面,提供了一种移动终端,所述移动终端包括前文记载的所述的毫米波阵列天线100。
本实施例结构的移动终端,具有前文记载的毫米波阵列天线100,其具有双层辐射贴片,分别为第一辐射贴片111和第二辐射贴片112,并且,第一辐射贴片111与第二辐射贴片112间隔且耦合,这样,可以在不增大毫米波阵列天线100的结构的前提下,实现毫米波波段双频覆盖,从而可以提高双频带宽。并且,还可以借助所设置的功分器层114,该功分器层114包括两条传输线路(114a、114b),传输线路114a包括一个输入端口IN1和与输入端口IN1电连接的两个反相输出端口(OUT1、OUT2),传输线路114b包括一个输入端口IN2和与输入端口IN2电连接的两个反相输出端口(OUT3、OUT4)。其中,反相输出端口(OUT1、OUT2)分别与馈电端112b的两个馈电缺口(112b1、112b2)耦合馈电,反相输出端口(OUT3、OUT4)分别与馈电端112a的两个馈电缺口(112a1、112a2)耦合馈电。每个所述天线单元110在两个所述输入端口IN1、IN2的激励下,产生正交极化和双频谐振。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (9)

  1. 一种毫米波阵列天线,所述毫米波阵列天线包括呈阵列排布的若干个天线单元,其特征在于,每个所述天线单元均包括自上而下依次层叠设置的第一辐射贴片、第二辐射贴片、第一接地板、功分器层和第二接地板,所述第一辐射贴片与所述第二辐射贴片间隔且耦合,所述第二辐射贴片上设有两个馈电端,每个所述馈电端开设有两个馈电缺口,所述功分器层包括两条传输线路,每条所述传输线路包括一个输入端口和与所述输入端口电连接的两个反相输出端口,两个所述反相输出端口分别与一个所述馈电端的两个所述馈电缺口耦合馈电,每个所述天线单元在两个所述输入端口的激励下,产生正交极化和双频谐振。
  2. 根据权利要求1所述的毫米波阵列天线,其特征在于,所述天线单元还包括夹设于所述第一辐射贴片和所述第二辐射贴片之间的第一介质板、夹设于所述第二辐射贴片和所述第一接地板之间的第二介质板、夹设于所述第一接地板和所述第二接地板之间的第三介质板,所述功分器层设置于所述第三介质板内且与所述第一接地板和所述第二接地板间隔。
  3. 根据权利要求1所述的毫米波阵列天线,其特征在于,所述天线单元还包括自所述功分器层的所述反相输出端口朝向所述第二辐射贴片延伸形成的4个探针,每个所述探针背离所述功分器层的一端收容于一个所述馈电缺口内并与所述第二辐射贴片耦合馈电。
  4. 根据权利要求1所述的毫米波阵列天线,其特征在于,所述毫米波阵列天线包括四个所述天线单元,四个所述天线单元呈1*4阵列排布。
  5. 根据权利要求3所述的毫米波阵列天线,其特征在于,所述第一辐射贴片和所述第二辐射贴片均呈方形结构。
  6. 根据权利要求5所述的毫米波阵列天线,其特征在于,一个所述馈电端的两个所述馈电缺口位于所述第二辐射贴片的一条对角线上,另一个所述馈电端的两个所述馈电缺口位于所述第二辐射贴片的另一条对角线上。
  7. 根据权利要求1至6中任意一项所述的毫米波阵列天线,其特征在于,所述第一辐射贴片的尺寸小于所述第二辐射贴片的尺寸,且所述第一辐射贴片向所述第二辐射贴片所在面的正投影落于所述第二辐射贴片内。
  8. 根据权利要求1至6中任意一项所述的毫米波阵列天线,其特征在于,各个所述天线单元的所述第二接地板一体成型。
  9. 一种移动终端,其特征在于,所述移动终端包括权利要求1至8中任意一项所述的毫米波阵列天线。
PCT/CN2019/113326 2018-12-28 2019-10-25 毫米波阵列天线和移动终端 WO2020134463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811628344.1A CN109950691A (zh) 2018-12-28 2018-12-28 毫米波阵列天线和移动终端
CN201811628344.1 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020134463A1 true WO2020134463A1 (zh) 2020-07-02

Family

ID=67007232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113326 WO2020134463A1 (zh) 2018-12-28 2019-10-25 毫米波阵列天线和移动终端

Country Status (3)

Country Link
US (1) US11245202B2 (zh)
CN (1) CN109950691A (zh)
WO (1) WO2020134463A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328248A (zh) * 2021-08-02 2021-08-31 浙江高速信息工程技术有限公司 一种毫米波雷达斜极化辐射mimo天线单元
CN114927863A (zh) * 2022-05-07 2022-08-19 西安电子科技大学 一种具有高隔离度的多端口微带贴片天线单元及相控阵

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233337B2 (en) * 2018-03-02 2022-01-25 Samsung Electro-Mechanics Co., Ltd. Antenna apparatus
CN109950691A (zh) * 2018-12-28 2019-06-28 瑞声科技(新加坡)有限公司 毫米波阵列天线和移动终端
WO2021000140A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 天线振子及天线振子的制作方法
CN112448174B (zh) * 2019-09-04 2024-05-03 中国移动通信集团终端有限公司 天线系统和终端设备
CN111313153A (zh) * 2020-02-28 2020-06-19 维沃移动通信有限公司 一种天线单元、天线和电子设备
CN111710970B (zh) * 2020-06-08 2022-07-08 Oppo广东移动通信有限公司 毫米波天线模组和电子设备
CN111987444B (zh) * 2020-08-21 2023-12-05 福耀玻璃工业集团股份有限公司 天线玻璃及交通工具
CN111987445B (zh) * 2020-08-21 2023-12-05 福耀玻璃工业集团股份有限公司 天线玻璃及交通工具
CN112332097A (zh) * 2020-11-13 2021-02-05 上海安费诺永亿通讯电子有限公司 一种新型叠层的双频双极化毫米波天线
EP4016735A1 (en) * 2020-12-17 2022-06-22 INTEL Corporation A multiband patch antenna
CN113764892A (zh) * 2021-09-02 2021-12-07 上海安费诺永亿通讯电子有限公司 一种毫米波天线、天线阵列、天线模组及电子设备
CN113725629B (zh) * 2021-11-02 2022-01-25 成都雷电微力科技股份有限公司 一种高功率双频双极化瓦式有源相控阵天线
CN116897471A (zh) * 2021-12-31 2023-10-17 京东方科技集团股份有限公司 透明振子单元、透明天线及天线系统
CN114566794B (zh) * 2022-03-11 2023-05-12 厦门大学 一种5g毫米波双极化磁电偶极子滤波天线
CN114784485A (zh) * 2022-04-19 2022-07-22 南京濠暻通讯科技有限公司 一种应用于5g宽带毫米波双极化封装天线及阵列天线
CN115882207B (zh) * 2023-02-21 2023-05-23 南京捷希科技有限公司 一种宽频毫米波天线阵列

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393416A (zh) * 2014-11-21 2015-03-04 北京邮电大学 一种用于双频毫米波系统的平面天线
CN108649325A (zh) * 2018-03-20 2018-10-12 北京邮电大学 一种宽带高增益毫米波介质谐振天线阵列
US20180301817A1 (en) * 2017-04-14 2018-10-18 Nidec Corporation Slot antenna array
CN108879094A (zh) * 2018-07-04 2018-11-23 深圳市国人射频通信有限公司 一种天线阵列及其天线单元
CN208173791U (zh) * 2018-03-29 2018-11-30 广东通宇通讯股份有限公司 毫米波Massive MIMO天线单元及阵列天线
CN109950691A (zh) * 2018-12-28 2019-06-28 瑞声科技(新加坡)有限公司 毫米波阵列天线和移动终端

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683952A1 (fr) * 1991-11-14 1993-05-21 Dassault Electronique Dispositif d'antenne microruban perfectionne, notamment pour transmissions telephoniques par satellite.
FR2810456B1 (fr) * 2000-06-20 2005-02-11 Mitsubishi Electric Inf Tech Dispositif d'antenne reconfigurable pour station de telecommunication
US20090058731A1 (en) * 2007-08-30 2009-03-05 Gm Global Technology Operations, Inc. Dual Band Stacked Patch Antenna
CN101141023B (zh) * 2007-09-07 2011-12-07 中国电子科技集团公司第五十五研究所 微机电层叠式毫米波天线
WO2010028491A1 (en) * 2008-09-15 2010-03-18 Tenxc Wireless Inc. Patch antenna, element thereof and feeding method therefor
CN101394016A (zh) * 2008-10-31 2009-03-25 北京航空航天大学 一种一分四带状线功分器及其制备方法
US8072384B2 (en) * 2009-01-14 2011-12-06 Laird Technologies, Inc. Dual-polarized antenna modules
US8482475B2 (en) * 2009-07-31 2013-07-09 Viasat, Inc. Method and apparatus for a compact modular phased array element
CN201611688U (zh) * 2010-04-08 2010-10-20 湖南华诺星空电子技术有限公司 用于自适应抗干扰天线阵的双频叠层微带天线
JP5427226B2 (ja) * 2011-12-08 2014-02-26 電気興業株式会社 送受信分離偏波共用アンテナ
US9755306B1 (en) * 2013-01-07 2017-09-05 Lockheed Martin Corporation Wideband antenna design for wide-scan low-profile phased arrays
TWI540791B (zh) * 2014-11-05 2016-07-01 啟碁科技股份有限公司 平板雙極化天線及複合天線
CN104681971A (zh) * 2015-02-16 2015-06-03 零八一电子集团有限公司 宽带微带天线阵列耦合结构
CN106684548A (zh) * 2017-01-06 2017-05-17 华南理工大学 一种低剖面宽带高增益滤波天线
CN105720364B (zh) * 2016-04-06 2019-03-05 华南理工大学 一种具有高选择性和低交叉极化的双极化滤波天线
CN108899644B (zh) * 2018-06-20 2020-12-18 深圳市深大唯同科技有限公司 一种低剖面、小型化、高隔离度的双极化贴片天线单元
CN109037923B (zh) * 2018-06-28 2023-06-16 华南理工大学 一种毫米波宽带滤波天线及其构成的mimo天线阵列

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393416A (zh) * 2014-11-21 2015-03-04 北京邮电大学 一种用于双频毫米波系统的平面天线
US20180301817A1 (en) * 2017-04-14 2018-10-18 Nidec Corporation Slot antenna array
CN108649325A (zh) * 2018-03-20 2018-10-12 北京邮电大学 一种宽带高增益毫米波介质谐振天线阵列
CN208173791U (zh) * 2018-03-29 2018-11-30 广东通宇通讯股份有限公司 毫米波Massive MIMO天线单元及阵列天线
CN108879094A (zh) * 2018-07-04 2018-11-23 深圳市国人射频通信有限公司 一种天线阵列及其天线单元
CN109950691A (zh) * 2018-12-28 2019-06-28 瑞声科技(新加坡)有限公司 毫米波阵列天线和移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, BINQI: "Compact Tapered Slot Antenna Array for 5G Millimeter-Wave Massive MIMO Systems", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 65,, no. 12, 31 December 2017 (2017-12-31), XP011673547, DOI: 20200108105631A *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328248A (zh) * 2021-08-02 2021-08-31 浙江高速信息工程技术有限公司 一种毫米波雷达斜极化辐射mimo天线单元
CN113328248B (zh) * 2021-08-02 2021-12-24 浙江高速信息工程技术有限公司 一种毫米波雷达斜极化辐射mimo天线单元
CN114927863A (zh) * 2022-05-07 2022-08-19 西安电子科技大学 一种具有高隔离度的多端口微带贴片天线单元及相控阵
CN114927863B (zh) * 2022-05-07 2023-04-28 西安电子科技大学 一种具有高隔离度的多端口微带贴片天线单元及相控阵

Also Published As

Publication number Publication date
US11245202B2 (en) 2022-02-08
CN109950691A (zh) 2019-06-28
US20200212596A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2020134463A1 (zh) 毫米波阵列天线和移动终端
US11670865B2 (en) Butler-based quasi-omni MIMO antenna
WO2019213878A1 (zh) 毫米波天线阵元、阵列天线及通信产品
JP4192212B2 (ja) マイクロストリップライン型の平面アレーアンテナ
JP4891698B2 (ja) パッチアンテナ
JPH02230804A (ja) 二重偏波プリント回路アンテナ
CN109980366B (zh) 一种基于间隙波导的宽频带双圆极化端射阵列天线
JP4875163B2 (ja) 直接給電型パッチアンテナ
US20160197406A1 (en) Dual-polarized antenna
WO2020140580A1 (zh) 一种滤波天线
CN112290227B (zh) 一种双频双圆极化天线阵列
CN107579344A (zh) 毫米波基片集成波导双圆极化低副瓣共口径阵列天线
US20190044234A1 (en) Tripole current loop radiating element with integrated circularly polarized feed
CN114374085B (zh) 一种面向5g毫米波双频段应用的双极化混合天线
CN110957565B (zh) 一种用于5g基站的宽带极化可重构高增益天线
WO2023221594A1 (zh) 一种微带阵列天线
CN110676567A (zh) 基于宽带巴伦馈电的双圆极化贴片阵列天线
JP4081228B2 (ja) 偏波共用平面アンテナ
KR100618653B1 (ko) 송/수신용 원형 편파 마이크로스트립 패치 안테나 및 이를순차 회전 급전 배열한 배열 안테나
TW202013809A (zh) 天線系統
CN114389018B (zh) 贴片天线单元以及封装天线阵列
Huang et al. Waveguide-fed cavity backed slot antenna array with high efficiency in the Ku-band
CN114156652A (zh) 一种低副瓣宽带低交叉极化平面偶极子天线阵列
WO2020134455A1 (zh) 相扫阵列天线和移动终端
WO2023202193A1 (zh) 单点激励的天线阵列、天线平面阵列及aau设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904301

Country of ref document: EP

Kind code of ref document: A1