WO2022222466A1 - 一种多扇叶结构的控制方法、电子设备和存储介质 - Google Patents

一种多扇叶结构的控制方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2022222466A1
WO2022222466A1 PCT/CN2021/132754 CN2021132754W WO2022222466A1 WO 2022222466 A1 WO2022222466 A1 WO 2022222466A1 CN 2021132754 W CN2021132754 W CN 2021132754W WO 2022222466 A1 WO2022222466 A1 WO 2022222466A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan blade
drive shaft
locking mechanism
blade
fan
Prior art date
Application number
PCT/CN2021/132754
Other languages
English (en)
French (fr)
Inventor
宋龙
吕福俊
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022222466A1 publication Critical patent/WO2022222466A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioners, and in particular, to a control method of a multi-blade structure, an electronic device and a storage medium.
  • An air conditioner is an artificial indoor climate adjustment device.
  • the main components include a refrigeration cycle system including a compressor, a condenser, a throttling device and an evaporator, and an air cycle system including a blower, air ducts, and air inlets and outlets.
  • the air conditioner realizes the functions of cooling or heating and dehumidification by drawing indoor air, changing its temperature by the evaporator and condenser of the heat exchange device, and then discharging it back into the room, so as to provide people with a fresh and comfortable indoor air environment.
  • the existing air conditioner indoor unit generally adopts a single-motor-driven single-fan structure. This structure requires multiple motors to drive multiple fan structures when multiple outlets are installed in the room, which not only has a complex structure, high cost and energy consumption, but also It is difficult to control it uniformly, and it is difficult to meet the different blowing requirements of multiple regions.
  • the embodiment of the present application provides a control method of a multi-blade structure, which solves the problems of high energy consumption in the existing control process and difficulty in meeting the air blowing requirements of different regions in the existing method.
  • An embodiment of the present application provides a control method for a multi-blade structure, wherein the multi-layer multi-blade structure includes: a drive shaft, a motor, a plurality of locking mechanisms, and a plurality of blades corresponding to different air outlet areas; the motor The rotating end of the fan is connected with the drive shaft, and each of the fan blades is locked or loosened with the drive shaft through the corresponding locking mechanism;
  • the control method of the multi-blade structure includes the following steps:
  • control instructions for each fan blade in the multi-blade structure corresponding to different air outlet areas
  • the drive shaft in the multi-fan blade structure and the locking mechanism corresponding to each fan blade are controlled.
  • each fan blade includes a left fan blade corresponding to the left area and a right fan blade corresponding to the right side;
  • the steps of controlling the locking mechanism corresponding to each fan blade specifically include:
  • the right locking mechanism corresponding to the left fan blade is controlled to lock or loosen the drive shaft and the right fan blade.
  • the step of controlling the drive shaft in the multi-blade structure specifically includes:
  • control the drive shaft to rotate
  • the drive shaft is controlled to stop.
  • the steps of controlling the locking mechanism corresponding to each fan blade specifically include:
  • the locking mechanism corresponding to any fan blade is controlled to lock the corresponding drive shaft and the fan blade;
  • the locking mechanism corresponding to any fan blade is controlled to release the corresponding drive shaft and the fan blade.
  • the locking mechanism corresponding to any fan blade is controlled to lock the corresponding drive
  • the steps of the shaft and the fan blade specifically include:
  • the fan blade does not reach the set maximum speed, continue to control the locking mechanism to lock the drive shaft and the fan blade until any fan blade reaches the set maximum speed; if the When the fan blade reaches the set maximum speed, the locking mechanism is controlled to release the corresponding drive shaft and the fan blade.
  • a method for controlling a multi-blade structure provided by an embodiment of the present application, after the step of controlling the locking mechanism to release the drive shaft and the fan blade if the fan blade reaches a set maximum speed Also includes:
  • the fan blade does not reach the set minimum speed, continue to control the locking mechanism to release the drive shaft and the fan blade until any fan blade reaches the set minimum speed; if the When the fan blade reaches the set minimum rotation speed, the locking mechanism is controlled to lock the corresponding drive shaft and the fan blade.
  • the locking mechanism locks the drive shaft and the fan blades and continuously operates a first preset After time, the locking mechanism is controlled to release the drive shaft and the fan blade.
  • the locking mechanism releases the drive shaft and the fan blades and continuously operates a second preset After time, the locking mechanism is controlled to lock the drive shaft and the fan blade.
  • An embodiment of the present application further provides an electronic device, including: a memory, a processor, and a computer program stored on the memory and running on the processor, where the processor implements the above-mentioned multi-fan when executing the program Control method of leaf structure.
  • Embodiments of the present application further provide a non-transitory computer-readable storage medium, where a computer program is stored in the non-transitory computer-readable storage medium, and when the computer program is read and executed by a processor, the above-mentioned multi-sector implementation is realized. Control method of leaf structure.
  • the control method of the multi-blade structure provided by the present application, by setting a plurality of fan blades corresponding to different air outlet areas, and controlling each fan blade through a corresponding locking mechanism, when the locking mechanism locks the fan blade and the drive shaft , drive the corresponding fan blades to rotate, and when the locking mechanism loosens the fan blades and the drive shaft, it stops the corresponding fan blades from rotating, so that a single motor can control the multi-blade structure to rotate at the same time or rotate independently, which can not only reduce the cost of air conditioning , reducing the power of the air conditioner and improving the energy efficiency, it can also meet the different air blowing requirements in multiple areas, and effectively improve the comfort of the air conditioner.
  • FIG. 1 is an external schematic diagram of a multi-blade structure provided by an embodiment of the present application.
  • FIG. 2 is an internal schematic diagram of a multi-blade structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a control method for a multi-blade structure provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a control flow of a fan blade in a multi-fan blade structure provided by an embodiment of the present application;
  • FIG. 5 is a schematic flowchart of fan blade rotational speed control in a multi-blade structure provided by an embodiment of the present application
  • FIG. 6 is a schematic flow chart of fan blade rotational speed control in a multi-blade structure provided by another embodiment of the present application.
  • FIG. 7 is a schematic flow chart of fan blade rotational speed control in a multi-blade structure provided by another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by the present application.
  • Reference numerals 1, fan blade; 11, left fan blade; 12, right fan blade; 2, drive shaft; 3, motor; 810, processor; 820, communication interface; 830, memory; 840, communication bus .
  • the present application provides a control method for a multi-blade structure, as shown in FIG. 1 and FIG. 2 , the multi-blade structure includes: a drive shaft 2 , a motor 3 , a plurality of locking mechanisms and a plurality of fan blade 1.
  • the rotating end of the motor 3 is connected with the drive shaft 2, and each fan blade 1 is locked or loosened with the drive shaft 2 through its corresponding locking mechanism.
  • the connection state of the corresponding drive shaft 2 and the fan blade 1 is described in FIG. 1 and FIG. 2 , the multi-blade structure includes: a drive shaft 2 , a motor 3 , a plurality of locking mechanisms and a plurality of fan blade 1.
  • the drive shaft 2 When the locking mechanism locks the fan blade 1 and the drive shaft 2, the drive shaft 2 is axially connected with the fan blade 1, and the drive shaft 2 can drive the fan blade 1 to rotate.
  • the locking mechanism releases the fan blade 1 and the drive shaft 2, the fan blade 1 is sleeved on the drive shaft 2, the motor 3 runs without load (only drives the drive shaft 2 to rotate), and the drive shaft 2 no longer drives the fan blade 1 turn together.
  • control method of the multi-blade structure includes the following steps:
  • Step S1 According to the obtained general control instructions, generate control instructions for each fan blade in the multi-blade structure corresponding to different air outlet areas.
  • Step S2 Control the drive shaft in the multi-blade structure and the locking mechanism corresponding to each fan blade according to the control instruction of each fan blade.
  • a plurality of control commands corresponding to each fan blade 1 in different air outlet areas are generated according to the obtained general control command, and the control command of each fan blade 1 is used to control the operation of one fan blade.
  • the air conditioner controls the operation of the drive shaft 2 according to the control command of each blade 1 . If it is determined that the control command of each fan blade 1 is to open at least one of the fan blades 1, the drive shaft 2 is controlled to rotate. If it is determined that the control command for each fan blade 1 is to close all the fan blades 1, the drive shaft 2 is controlled to stop. According to the control instructions of each fan blade 1 , the corresponding locking mechanisms are controlled to lock or loosen the drive shaft 2 and the fan blade 1 .
  • the fan blade 1 is divided into a left fan blade 11 corresponding to the left area and a right fan blade 12 corresponding to the right side.
  • the left fan blade 11 and the right fan blade 12 share a drive shaft 2 and a motor 3 .
  • the locking mechanism is divided into a left locking mechanism corresponding to the left fan blade and a right locking mechanism corresponding to the right fan blade.
  • the left locking mechanism corresponding to the left fan blade 11 is controlled to lock or loosen the drive shaft 2 and the left fan blade.
  • the right locking mechanism corresponding to the right fan blade 12 is controlled to lock or loosen the drive shaft 2 and the right fan blade.
  • the motor 3 drives the drive shaft 2 to rotate.
  • the left locking mechanism locks the drive shaft 2 and the left fan blade 11
  • the right locking mechanism locks the drive shaft 2 and the right fan blade 12
  • the drive shaft 2 drives the left fan blade 11 and the right fan blade 12 to synchronize Rotate, the air outlet area is the largest.
  • the motor 3 drives the drive shaft 2 to rotate.
  • the left locking mechanism locks the drive shaft 2 and the left fan blade 11, the right locking mechanism releases the drive shaft 2 and the right fan blade 12, and the drive shaft 2 and the right fan blade 12 are in a suspended state that is not locked. .
  • the drive shaft 2 only drives the left fan blade 11 to rotate, and the power consumption is low.
  • the motor 3 drives the drive shaft 2 to rotate.
  • the right locking mechanism locks the drive shaft 2 and the right fan blade 12
  • the left locking mechanism releases the drive shaft 2 and the left fan blade 11, and the drive shaft 2 and the left fan blade 11 are in a suspended state that is not locked.
  • the drive shaft 2 only drives the right fan blade 12 to rotate, so as to realize the independent air outlet from the right side. At this time, the motor load only has the right fan blade, and the power consumption is low.
  • the motor 3 can be directly turned off to close the air outlet on both sides.
  • the left locking mechanism can also loosen the drive shaft 2 and the left fan blade 11, the right locking mechanism can loosen the drive shaft 2 and the right fan blade 12, and the drive shaft 2 and the fan blades on both sides are unlocked. Tightly suspended state, so that the drive shaft 2 is idling.
  • a plurality of fan blades corresponding to different air outlet areas are arranged, and each fan blade is controlled by a corresponding locking mechanism, and the fan blades are locked and driven by the locking mechanism.
  • the corresponding fan blades are driven to rotate, and when the locking mechanism loosens the fan blades and the drive shaft, the corresponding fan blades are stopped from rotating, so as to realize simultaneous rotation or independent rotation of a single motor controlled multi-fan blade structure, which can not only reduce the air conditioning It can also reduce the cost of air conditioners, reduce the power of air conditioners and improve energy efficiency, and can also meet different air blowing requirements in multiple areas, effectively improving the comfort of air conditioners.
  • step S2 specifically include:
  • Step S31 if it is determined that the control command of any fan blade is to open, the locking mechanism corresponding to any fan blade is controlled to lock the corresponding drive shaft and fan blade.
  • Step S32 If it is determined that the control command of any fan blade is closed, control the locking mechanism corresponding to any fan blade to loosen the corresponding drive shaft and fan blade.
  • control instruction when one of the blades is commanded to be turned on, the control instruction generally also includes information such as the speed of the fan blade 1.
  • control instruction In order to control the rotation of each fan blade 1 correspondingly, as shown in Figure 5, in The steps of controlling the locking mechanism corresponding to any fan blade to lock the corresponding drive shaft and fan blade specifically include:
  • Step S311 During the continuous operation in the locked state, determine whether the fan blade reaches the set maximum speed.
  • Step S312 If the fan blade does not reach the set maximum speed, continue to control the locking mechanism to lock the drive shaft and the fan blade until any fan blade reaches the set maximum speed; if the fan blade reaches the set maximum speed, control the lock The tightening mechanism releases the corresponding drive shaft and fan blade.
  • the locking mechanism corresponding to the fan blade a is energized, and the two ends of the fan blade a and the drive shaft 2 are electromagnetically through the locking mechanism. Lock and fit, at this time, the drive shaft 2 and the fan blade a are in a matching state, and the drive shaft 2 drives the fan blade a to rotate.
  • the power is turned off by controlling the locking mechanism. At this time, the drive shaft 2 and the fan blade a are in a suspended state, and the motor 3 and the drive shaft 2 will no longer drive the fan blade. a rotates, but the fan blade a can continue to rotate through inertia.
  • the maximum rotational speed of the fan blade a can be ensured.
  • the fan blade a can reduce the load when the motor 3 is running in one operation cycle, thereby reducing the power of the motor 3 and realizing the energy saving of the air conditioner.
  • control method of the multi-blade structure includes the following steps:
  • Step S311 During the continuous operation in the locked state, determine whether the fan blade reaches the set maximum speed.
  • Step S312 If the fan blade does not reach the set maximum speed, continue to control the locking mechanism to lock the drive shaft and the fan blade until any fan blade reaches the set maximum speed; if the fan blade reaches the set maximum speed, control the lock The tightening mechanism releases the corresponding drive shaft and fan blade.
  • Step S313 During the continuous operation in the released state, determine whether the fan blade reaches the set minimum rotational speed.
  • Step S314 If the fan blade does not reach the set minimum speed, continue to control the locking mechanism to loosen the drive shaft and fan blade until any fan blade reaches the set minimum speed; if the fan blade reaches the set minimum speed, control the lock The locking mechanism locks the corresponding drive shaft and fan blade.
  • the locking mechanism corresponding to the fan blade b is energized, and the two ends of the fan blade b and the drive shaft 2 are electromagnetically connected through the locking mechanism. Lock and fit, at this time, the drive shaft 2 and the fan blade b are in a matching state, and the drive shaft 2 drives the fan blade b to rotate.
  • the locking mechanism is kept energized, and the locking mechanism is controlled to continue to lock the fan blade a and the drive shaft 2 .
  • the power is turned off by controlling the locking mechanism. At this time, the drive shaft 2 and the fan blade b are in a suspended state, and the motor 3 and the drive shaft 2 will no longer drive the fan blade. b rotates, but the fan blade b can continue to rotate through inertia.
  • the locking mechanism is kept powered off, and the locking mechanism is controlled to continue to loosen the fan blade b and the drive shaft 2 .
  • the fan blade b reduces the load when the motor 3 is running in one operation cycle, thereby reducing the power of the motor 3 and realizing the energy saving of the air conditioner. According to this rule, the reciprocating locking and loosening of the fan blade b and the drive shaft 2 can keep the speed of the fan blade b between the set minimum speed and the set maximum speed, so that the multi-fan blade structure can run stably for a long time.
  • the rotating speed of the fan blade 1 can also be controlled by the time of continuous operation in the locked or loosened state, and the rotating speed of the fan blade 1 is determined by the time the drive shaft 2 drives the fan blade 1 to rotate, which simplifies the acquisition of the fan blade 1.
  • the process of leaf 1 rotation speed can also be controlled by the time of continuous operation in the locked or loosened state, and the rotating speed of the fan blade 1 is determined by the time the drive shaft 2 drives the fan blade 1 to rotate, which simplifies the acquisition of the fan blade 1. The process of leaf 1 rotation speed.
  • the simplified control method includes the following steps:
  • Step S315 During the continuous operation in the locked state, after the locking mechanism locks the drive shaft and the fan blade and continues to operate for a first preset time, the locking mechanism is controlled to release the drive shaft and the fan blade.
  • Step S316 During the continuous operation in the release state, after the locking mechanism releases the drive shaft and the fan blade and continues to run for a second preset time, the locking mechanism is controlled to lock the drive shaft and the fan blade.
  • the locking mechanism corresponding to the fan blade c is energized, and the two ends of the fan blade c and the drive shaft 2 are electromagnetically connected through the locking mechanism. Lock and fit, at this time, the drive shaft 2 and the fan blade c are in a matching state, and the drive shaft 2 drives the fan blade c to rotate.
  • the locking mechanism locks the fan blade c and the drive shaft 2 and continues to run for the first preset time, for example, after accumulating 1 second in the locked state, the locking mechanism is powered off and the control The locking mechanism releases the fan blade c and the drive shaft 2, and the rotation speed of the fan blade c continues to decrease.
  • the locking mechanism During the continuous operation in the released state, after the locking mechanism releases the fan blade c and the drive shaft 2 and continues to run for a second preset time, for example, after accumulating 0.5 seconds in the released state, the locking mechanism is powered on to control the lock The tightening mechanism re-locks the fan blade c and the drive shaft 2, and the rotation speed of the fan blade c continues to increase.
  • the drive shaft 2 drives the fan blade c to rotate, increasing the speed of the fan blade, and in the loosened state, the drive shaft 2 and the fan blade c are suspended in the air, which reduces the load when the motor 3 is running, so that the The power of the motor 3 can be reduced in one operation cycle, thereby realizing the energy saving of the air conditioner.
  • the fan blade c and the drive shaft 2 are locked and loosened reciprocally.
  • the speed of the motor 3 can be kept stable, so that when the locked state continues to run for the first preset time, the speed of the fan will increase. basically the same.
  • the rotational speed of the blower is also the same.
  • the rotation speed of the fan blade c is maintained within a certain tolerance tolerance range, so that the multi-fan blade structure can run stably for a long time.
  • the present application further provides an electronic device, as shown in FIG. 8 , the electronic device may include: a processor (processor) 810, a communication interface (Communications Interface) 820, a memory (memory) 830 and a communication bus 840, wherein the processor 810 , the communication interface 820 , and the memory 830 communicate with each other through the communication bus 840 .
  • the processor 810 may invoke logic instructions in the memory 830 to execute the control method of the multi-leaf structure.
  • the control method of the multi-blade structure includes the following steps:
  • Step S1 According to the obtained general control instructions, generate control instructions for each fan blade in the multi-blade structure corresponding to different air outlet areas.
  • Step S2 Control the drive shaft in the multi-blade structure and the locking mechanism corresponding to each fan blade according to the control instruction of each fan blade.
  • the above-mentioned logic instructions in the memory 830 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .
  • the present application also provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer-readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer When executed, the computer can execute the control method of the multi-blade structure provided by the above methods.
  • the present application also provides a non-transitory computer-readable storage medium, where the non-transitory computer-readable storage medium stores a computer program, and the computer program is read and executed by a processor to implement the above-mentioned multi-leaf structure control method.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
  • the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in non-transitory computer-readable storage media, such as ROM/ RAM, disk, optical disk, etc., including several instructions to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments or parts of embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本申请提供一种多扇叶结构的控制方法、电子设备和存储介质,控制方法包括:根据获取的总控制指令,生成多个对应不同出风区域各扇叶的控制指令;根据各扇叶的控制指令,控制驱动轴;根据各扇叶的控制指令,控制对应的各锁紧机构锁紧或松开驱动轴和扇叶。本申请提供的多扇叶结构的控制方法,通过设置多个对应不同出风区域的扇叶,并将各扇叶通过对应的锁紧机构控制,在锁紧机构锁紧扇叶和驱动轴时,带动对应的扇叶转动,而在锁紧机构松开扇叶和驱动轴时,停止对应的扇叶转动,实现单电机控制多扇叶结构的同时旋转或者单独旋转,不仅能够降低空调的成本,降低空调的功率并提高能效,还能够满足多区域不同的吹风要求,有效提高空调的舒适性。

Description

一种多扇叶结构的控制方法、电子设备和存储介质
相关申请的交叉引用
本申请要求于2021年04月21日提交的申请号为202110432380.6,名称为“一种多扇叶结构的控制方法、电子设备和存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空调技术领域,尤其涉及一种多扇叶结构的控制方法、电子设备和存储介质。
背景技术
空调器是一种人为的室内气候调节装置,主要构成部分包括压缩机、冷凝器、节流器件和蒸发器在内的制冷循环系统以及包括吹风机、风道和进出风口的空气循环系统。空调器通过吸取室内空气由热交换装置的蒸发器和冷凝器改变其温度后再排回室内来实现制冷或制热以及除湿等功能,以便为人们提供清新而舒适的室内空气环境。
随着空调器环保及节能的发展,空调器的设计向着更加节能更加高效的方向发展。现有的空调室内机一般采用单电机驱动单风扇结构,这种构造在室内设置多出口的情况下,需要设置多个电机驱动多个风扇结构,不仅结构复杂,成本和能耗较高,而且难以对其进行统一的控制,难以满足多区域不同的吹风要求。
发明内容
本申请实施例提供一种多扇叶结构的控制方法,解决现有控制过程中能耗高,现有方法难以满足多区域不同的吹风要求的问题。
本申请实施例提供一种多扇叶结构的控制方法,所述多层多扇叶结构包括:驱动轴、电机、多个锁紧机构和多个对应不同出风区域的扇叶;所述电机的转动端与所述驱动轴轴连接,每个所述扇叶通过与其对应的所述锁紧机构与所述驱动轴锁紧或松开;
所述多扇叶结构的控制方法包括如下步骤:
根据获取的总控制指令,生成多扇叶结构中对应于不同出风区域的各扇叶的控制指令;
根据各扇叶的控制指令,控制所述多扇叶结构中的驱动轴以及各扇叶对应的锁紧机构。
根据本申请一个实施例提供的多扇叶结构的控制方法,所述各扇叶包括对应左侧区域的左侧扇叶和对应右侧的右侧扇叶;
相应地,根据各扇叶的控制指令,控制各扇叶对应的锁紧机构的步骤具体包括:
根据所述左侧扇叶的控制指令,控制所述左侧扇叶对应的左侧锁紧机构,以锁紧或松开所述驱动轴和所述左侧扇叶;
根据所述右侧扇叶的控制指令,控制所述左侧扇叶对应的右侧锁紧机构,以锁紧或松开所述驱动轴和所述右侧扇叶。
根据本申请一个实施例提供的多扇叶结构的控制方法,根据各扇叶的控制指令,控制所述多扇叶结构中的驱动轴的步骤具体包括:
若判断获知所述各扇叶的控制指令是开启其中至少一个扇叶,则控制所述驱动轴转动;
若判断获知所述各扇叶的控制指令是关闭全部扇叶,则控制所述驱动轴停止。
根据本申请一个实施例提供的多扇叶结构的控制方法,根据各扇叶的控制指令,控制各扇叶对应的锁紧机构的步骤具体包括:
若判断获知任一扇叶的控制指令是开启,则控制与任一扇叶对应的锁紧机构锁紧相应的所述驱动轴和所述扇叶;
若判断获知任一扇叶的控制指令是关闭,则控制与任一扇叶对应的锁紧机构松开相应的所述驱动轴和所述扇叶。
根据本申请一个实施例提供的多扇叶结构的控制方法,所述若判断获知任一扇叶的控制指令是开启,则控制与任一扇叶对应的锁紧机构锁紧相应的所述驱动轴和所述扇叶的步骤具体包括:
在锁紧状态下的持续运行过程中,判断所述扇叶是否达到设定最高转速;
若所述扇叶未达到设定最高转速,则继续控制所述锁紧机构锁紧所述驱动轴和所述扇叶,直至所述任一扇叶达到所述设定最高转速;若所述扇叶达到所述设定最高转速,则控制所述锁紧机构松开相应的所述驱动轴和所述扇叶。
根据本申请一个实施例提供的多扇叶结构的控制方法,所述若所述扇叶达到设定最高转速,则控制所述锁紧机构松开所述驱动轴和所述扇叶的步骤之后还包括:
在松开状态下的持续运行过程中,判断所述扇叶是否达到设定最低转速;
若所述扇叶未达到设定最低转速,则继续控制所述锁紧机构松开所述驱动轴和所述扇叶,直至所述任一扇叶达到所述设定最低转速;若所述扇叶达到所述设定最低转速,则控制所述锁紧机构锁紧相应的所述驱动轴和所述扇叶。
根据本申请一个实施例提供的多扇叶结构的控制方法,在锁紧状态下的持续运行过程中,所述锁紧机构锁紧所述驱动轴和所述扇叶并持续运行第一预设时间后,控制所述锁紧机构松开所述驱动轴和所述扇叶。
根据本申请一个实施例提供的多扇叶结构的控制方法,在松开状态下的持续运行过程中,所述锁紧机构松开所述驱动轴和所述扇叶并持续运行第二预设时间后,控制所述锁紧机构锁紧所述驱动轴和所述扇叶。
本申请实施例还提供一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现上述多扇叶结构的控制方法。
本申请实施例还提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机程序,所述计算机程序被处理器读取并运行时,实现上述的多扇叶结构的控制方法。
本申请提供的多扇叶结构的控制方法,通过设置多个对应不同出风区域的扇叶,并将各扇叶通过对应的锁紧机构控制,在锁紧机构锁紧扇叶和驱动轴时,带动对应的扇叶转动,而在锁紧机构松开扇叶和驱动轴时,停止对应的扇叶转动,实现单电机控制多扇叶结构的同时旋转或者单独旋转,不仅能够降低空调的成本,降低空调的功率并提高能效,还能够满足多区 域不同的吹风要求,有效提高空调的舒适性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的多扇叶结构的外部示意图;
图2是本申请一实施例提供的多扇叶结构的内部示意图;
图3是本申请一实施例提供的多扇叶结构的控制方法的流程示意图;
图4是本申请一实施例提供的多扇叶结构中扇叶的控制流程示意图;
图5是本申请一实施例提供的多扇叶结构中扇叶转速控制的流程示意图;
图6是本申请另一实施例提供的多扇叶结构中扇叶转速控制的流程示意图;
图7是本申请又一实施例提供的多扇叶结构中扇叶转速控制的流程示意图;
图8是本申请提供的电子设备的结构示意图;
附图标记:1、扇叶;11、左侧扇叶;12、右侧扇叶;2、驱动轴;3、电机;810、处理器;820、通信接口;830、存储器;840、通信总线。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供一种多扇叶结构的控制方法,如图1和图2所示,该多扇叶结构包括:驱动轴2、电机3、多个锁紧机构和多个对应不同出风区域的扇叶1。电机3的转动端与驱动轴2轴连接,每个扇叶1通过与其对应的锁紧机构与驱动轴2锁紧或松开,锁紧机构可选用电磁锁紧机构,通过 通电断电来控制相互对应的驱动轴2与扇叶1的连接状态。
在锁紧机构锁紧扇叶1和驱动轴2时,驱动轴2与扇叶1轴连接,驱动轴2可带动扇叶1旋转。而在锁紧机构松开扇叶1和驱动轴2时,扇叶1套设在驱动轴2上,电机3空载运行(仅驱动驱动轴2转动),驱动轴2不再驱动扇叶1一起转动。
如图3所示,该多扇叶结构的控制方法包括如下步骤:
步骤S1:根据获取的总控制指令,生成多扇叶结构中对应于不同出风区域的各扇叶的控制指令。
步骤S2:根据各扇叶的控制指令,控制所述多扇叶结构中的驱动轴以及各扇叶对应的锁紧机构。
空调器运行的过程中,根据获取的总控制指令,生成多个对应不同出风区域各扇叶1的控制指令,每个扇叶1的控制指令用于控制一个扇叶的工作。
空调器根据各扇叶1的控制指令,控制驱动轴2的工作。若判断获知各扇叶1的控制指令是开启其中至少一个扇叶1,则控制驱动轴2转动。若判断获知各扇叶1的控制指令是关闭全部扇叶1,则控制驱动轴2停止。根据各扇叶1的控制指令,控制对应的各锁紧机构锁紧或松开驱动轴2和扇叶1。
在一个具体的实施例中,如图1和图2所示,扇叶1分为对应左侧区域的左侧扇叶11和对应右侧的右侧扇叶12。左侧扇叶11和右侧扇叶12共用一个驱动轴2和电机3。锁紧机构分为对应左侧扇叶的左侧锁紧机构和对应右侧扇叶的右侧锁紧机构。
各扇叶1的控制指令后,根据左侧扇叶的控制指令,控制左侧扇叶11对应的左侧锁紧机构,以锁紧或松开驱动轴2和左侧扇叶。根据右侧扇叶的控制指令,控制右侧扇叶12对应的右侧锁紧机构,以锁紧或松开驱动轴2和右侧扇叶。
具体地,当用户要求出风区域较大的时候,电机3带动驱动轴2转动。左侧锁紧机构锁紧驱动轴2和左侧扇叶11,右侧锁紧机构锁紧驱动轴2和右侧扇叶12,驱动轴2带动左侧扇叶11和右侧扇叶12同步旋转,出风面积最大。
当用户需要左出风右边不出风情况的时候,电机3带动驱动轴2转动。左侧锁紧机构锁紧驱动轴2和左侧扇叶11,右侧锁紧机构松开驱动轴2和右侧扇叶12,驱动轴2和右侧扇叶12处于不锁紧的悬空状态。驱动轴2仅带动左侧扇叶11转动,耗电较低。
同理,当用户需要右出风左边不出风情况的时候,电机3带动驱动轴2转动。右侧锁紧机构锁紧驱动轴2和右侧扇叶12,左侧锁紧机构松开驱动轴2和左侧扇叶11,驱动轴2和左侧扇叶11处于不锁紧的悬空状态。驱动轴2仅带动右侧扇叶12转动,从而实现右边单独出风,此时电机负载只有右扇叶,耗电较低。
当用户不需要出风的时候,可直接关闭电机3即可关闭两侧出风。也可以将左侧锁紧机构松开驱动轴2和左侧扇叶11,右侧锁紧机构松开驱动轴2和右侧扇叶12,将驱动轴2与两侧扇叶均处于不锁紧的悬空状态,使驱动轴2空转。
本申请实施例提供的多扇叶结构的控制方法,通过设置多个对应不同出风区域的扇叶,并将各扇叶通过对应的锁紧机构控制,在锁紧机构锁紧扇叶和驱动轴时,带动对应的扇叶转动,而在锁紧机构松开扇叶和驱动轴时,停止对应的扇叶转动,实现单电机控制多扇叶结构的同时旋转或者单独旋转,不仅能够降低空调的成本,降低空调的功率并提高能效,还能够满足多区域不同的吹风要求,有效提高空调的舒适性。
其中,多扇叶结构中扇叶控制过程,如图4所示,步骤S2的步骤具体包括:
步骤S31:若判断获知任一扇叶的控制指令是开启,则控制与任一扇叶对应的锁紧机构锁紧相应的驱动轴和扇叶。
步骤S32:若判断获知任一扇叶的控制指令是关闭,则控制与任一扇叶对应的锁紧机构松开相应的驱动轴和扇叶。
而在一般情况下,在其中一扇叶得到开启的命令时,控制指令中一般还设有扇叶1的转速等信息,为了能够对应控制各扇叶1旋转情况,如图5所示,在控制与任一扇叶对应的锁紧机构锁紧相应的驱动轴和扇叶的步骤具体包括:
步骤S311:在锁紧状态下的持续运行过程中,判断扇叶是否达到设定 最高转速。
步骤S312:若扇叶未达到设定最高转速,则继续控制锁紧机构锁紧驱动轴和扇叶,直至任一扇叶达到设定最高转速;若扇叶达到设定最高转速,则控制锁紧机构松开相应的驱动轴和扇叶。
具体地,假设设有N个扇叶,其中一扇叶a得到的控制指令是开启,则该扇叶a对应的锁紧机构通电,该扇叶a两端与驱动轴2通过锁紧机构电磁锁紧配合,此时驱动轴2和该扇叶a是配合状态,驱动轴2带动该扇叶a旋转。
在该扇叶a和驱动轴2锁紧状态下,获取该扇叶a的转速,判断该扇叶a的转速是否达到设定最高转速。
如果获取到的该扇叶a转速未达到设定最高转速,保持锁紧机构通电状态,控制锁紧机构继续锁紧该扇叶a和驱动轴2。
如果获取到的该扇叶a转速达到了设定最高转速,通过控制锁紧机构断电,此时驱动轴2和该扇叶a是悬空状态,电机3和驱动轴2不再驱动该扇叶a转动,但扇叶a通过惯性可以实现继续旋转。
从而能够确保该扇叶a的最大转速。而且扇叶a一个运转周期内可以降低电机3运转时的负载,从而降低电机3的功率,实现空调器的节能。
为使多扇叶结构能够长期稳定运行,在上述实施例的基础上,如图6所示,该多扇叶结构的控制方法包括如下步骤:
步骤S311:在锁紧状态下的持续运行过程中,判断扇叶是否达到设定最高转速。
步骤S312:若扇叶未达到设定最高转速,则继续控制锁紧机构锁紧驱动轴和扇叶,直至任一扇叶达到设定最高转速;若扇叶达到设定最高转速,则控制锁紧机构松开相应的驱动轴和扇叶。
步骤S313:在松开状态下的持续运行过程中,判断扇叶是否达到设定最低转速。
步骤S314:若扇叶未达到设定最低转速,则继续控制锁紧机构松开驱动轴和扇叶,直至任一扇叶达到设定最低转速;若扇叶达到设定最低转速,则控制锁紧机构锁紧相应的驱动轴和扇叶。
具体地,假设设有N个扇叶,其中一扇叶b得到的控制指令是开启, 则该扇叶b对应的锁紧机构通电,该扇叶b两端与驱动轴2通过锁紧机构电磁锁紧配合,此时驱动轴2和该扇叶b是配合状态,驱动轴2带动该扇叶b旋转。
在该扇叶b和驱动轴2锁紧状态下,获取该扇叶b的转速,判断该扇叶b的转速是否达到设定最高转速。
如果获取到的该扇叶b转速未达到设定最高转速,保持锁紧机构通电状态,控制锁紧机构继续锁紧该扇叶a和驱动轴2。
如果获取到的该扇叶b转速达到了设定最高转速,通过控制锁紧机构断电,此时驱动轴2和该扇叶b是悬空状态,电机3和驱动轴2不再驱动该扇叶b转动,但扇叶b通过惯性可以实现继续旋转。
在扇叶b和驱动轴2松开状态下,扇叶b转速持续降低,此时获取扇叶b的转速,判断扇叶b的转速是否达到设定最低转速。
如果获取到的扇叶b转速未达到设定最低转速,保持锁紧机构断电状态,控制锁紧机构继续松开扇叶b和驱动轴2。
如果获取到的扇叶b转速达到了设定最低转速,通过控制对应的锁紧机构通电,控制锁紧机构锁紧扇叶b和驱动轴2,通过驱动轴2带动扇叶b旋转,提升扇叶b转速。
扇叶b在一个运转周期内,降低电机3运转时的负载,从而降低电机3的功率,实现空调器的节能。按照此规律,往复锁紧和松开扇叶b和驱动轴2,可以使扇叶b的转速维持在设定最低转速与设定最高转速之间,使得该多扇叶结构能够长期稳定运行。
为简化多扇叶结构的控制过程,还可在锁紧或松开状态下持续运行的时间来把控扇叶1转速,通过驱动轴2带动扇叶1旋转的时间来确定转速,简化获取扇叶1转速的过程。
如图7所示,简化后的控制方法包括如下步骤:
步骤S315:在锁紧状态下的持续运行过程中,锁紧机构锁紧驱动轴和扇叶并持续运行第一预设时间后,控制锁紧机构松开驱动轴和扇叶。
步骤S316:在松开状态下的持续运行过程中,锁紧机构松开驱动轴和扇叶并持续运行第二预设时间后,控制锁紧机构锁紧驱动轴和扇叶。
具体地,假设设有N个扇叶,其中一扇叶c得到的控制指令是开启, 则该扇叶c对应的锁紧机构通电,该扇叶c两端与驱动轴2通过锁紧机构电磁锁紧配合,此时驱动轴2和该扇叶c是配合状态,驱动轴2带动该扇叶c旋转。
在锁紧状态下的持续运行过程中,锁紧机构锁紧扇叶c和驱动轴2并持续运行第一预设时间后,例如锁紧状态下累计1秒后,锁紧机构断电,控制锁紧机构松开扇叶c和驱动轴2,扇叶c转速持续降低。
在松开状态下的持续运行过程中,锁紧机构松开扇叶c和驱动轴2并持续运行第二预设时间后,例如松开状态下累计0.5秒后,锁紧机构通电,控制锁紧机构重新锁紧扇叶c和驱动轴2,扇叶c转速持续上升。
扇叶c在一个运转周期内,锁紧状态下驱动轴2带动扇叶c旋转,提升扇叶转速,松开状态下驱动轴2和扇叶c悬空,降低了电机3运转时的负载,使得在一个运转周期内能够降低电机3的功率,实现空调器的节能。
按照此规律,往复锁紧和松开扇叶c和驱动轴2,在额定功率下,电机3转速能够保持稳定,从而在每次锁紧状态持续运行第一预设时间时,风机提升的转速基本相同。同样,在每次松开状态持续运行第二预设时间时,风机降低的转速也相同。使得扇叶c的转速维持在一定误差允许范围内,从而该多扇叶结构能够长期稳定运行。
本申请还提供一种电子设备,如图8所示,该电子设备可以包括:处理器(processor)810、通信接口(Communications Interface)820、存储器(memory)830和通信总线840,其中,处理器810,通信接口820,存储器830通过通信总线840完成相互间的通信。处理器810可以调用存储器830中的逻辑指令,以执行多扇叶结构的控制方法。
该多扇叶结构的控制方法包括如下步骤:
步骤S1:根据获取的总控制指令,生成多扇叶结构中对应于不同出风区域的各扇叶的控制指令。
步骤S2:根据各扇叶的控制指令,控制所述多扇叶结构中的驱动轴以及各扇叶对应的锁紧机构。
此外,上述的存储器830中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做 出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的多扇叶结构的控制方法。
又一方面,本申请还提供一种非暂态计算机可读存储介质,该非暂态计算机可读存储介质存储有计算机程序,该计算机程序被处理器读取并运行时实现上述多扇叶结构的控制方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在非暂态计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种多扇叶结构的控制方法,其特征在于,所述多层多扇叶结构包括:驱动轴、电机、多个锁紧机构和多个对应不同出风区域的扇叶;所述电机的转动端与所述驱动轴轴连接,每个所述扇叶通过与其对应的所述锁紧机构与所述驱动轴锁紧或松开;
    所述多扇叶结构的控制方法包括如下步骤:
    根据获取的总控制指令,生成所述多扇叶结构中对应于不同出风区域的各扇叶的控制指令;
    根据各扇叶的控制指令,控制所述多扇叶结构中的驱动轴以及各扇叶对应的锁紧机构。
  2. 根据权利要求1所述的多扇叶结构的控制方法,其特征在于,所述各扇叶包括对应左侧区域的左侧扇叶和对应右侧的右侧扇叶;
    相应地,根据各扇叶的控制指令,控制各扇叶对应的锁紧机构的步骤具体包括:
    根据所述左侧扇叶的控制指令,控制所述左侧扇叶对应的左侧锁紧机构,以锁紧或松开所述驱动轴和所述左侧扇叶;
    根据所述右侧扇叶的控制指令,控制所述左侧扇叶对应的右侧锁紧机构,以锁紧或松开所述驱动轴和所述右侧扇叶。
  3. 根据权利要求1所述的多扇叶结构的控制方法,其特征在于,根据各扇叶的控制指令,控制所述多扇叶结构中的驱动轴的步骤具体包括:
    若判断获知所述各扇叶的控制指令是开启其中至少一个扇叶,则控制所述驱动轴转动;
    若判断获知所述各扇叶的控制指令是关闭全部扇叶,则控制所述驱动轴停止。
  4. 根据权利要求1所述的多扇叶结构的控制方法,其特征在于,根据各扇叶的控制指令,控制各扇叶对应的锁紧机构的步骤具体包括:
    若判断获知任一扇叶的控制指令是开启,则控制与任一扇叶对应的锁紧机构锁紧相应的所述驱动轴和所述扇叶;
    若判断获知任一扇叶的控制指令是关闭,则控制与任一扇叶对应的锁紧机构松开相应的所述驱动轴和所述扇叶。
  5. 根据权利要求4所述的多扇叶结构的控制方法,其特征在于,所述若判断获知任一扇叶的控制指令是开启,则控制与任一扇叶对应的锁紧机构锁紧相应的所述驱动轴和所述扇叶的步骤具体包括:
    在锁紧状态下的持续运行过程中,判断所述扇叶是否达到设定最高转速;
    若所述扇叶未达到所述设定最高转速,则继续控制所述锁紧机构锁紧所述驱动轴和所述扇叶,直至所述任一扇叶达到所述设定最高转速;若所述扇叶达到所述设定最高转速,则控制所述锁紧机构松开相应的所述驱动轴和所述扇叶。
  6. 根据权利要求5所述的多扇叶结构的控制方法,其特征在于,所述若所述扇叶达到设定最高转速,则控制所述锁紧机构松开所述驱动轴和所述扇叶的步骤之后还包括:
    在松开状态下的持续运行过程中,判断所述扇叶是否达到设定最低转速;
    若所述扇叶未达到所述设定最低转速,则继续控制所述锁紧机构松开所述驱动轴和所述扇叶,直至所述任一扇叶达到所述设定最低转速;若所述扇叶达到所述设定最低转速,则控制所述锁紧机构锁紧相应的所述驱动轴和所述扇叶。
  7. 根据权利要求4所述的多扇叶结构的控制方法,其特征在于,在锁紧状态下的持续运行过程中,所述锁紧机构锁紧所述驱动轴和所述扇叶并持续运行第一预设时间后,控制所述锁紧机构松开所述驱动轴和所述扇叶。
  8. 根据权利要求5所述的多扇叶结构的控制方法,其特征在于,在松开状态下的持续运行过程中,所述锁紧机构松开所述驱动轴和所述扇叶并持续运行第二预设时间后,控制所述锁紧机构锁紧所述驱动轴和所述扇叶。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至8中任一项所述多扇叶结构的控制方法。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特 征在于,所述计算机程序被处理器执行时实现如权利要求1至8中任一项所述多扇叶结构的控制方法。
PCT/CN2021/132754 2021-04-21 2021-11-24 一种多扇叶结构的控制方法、电子设备和存储介质 WO2022222466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110432380.6A CN113465151A (zh) 2021-04-21 2021-04-21 一种多扇叶结构的控制方法、电子设备和存储介质
CN202110432380.6 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022222466A1 true WO2022222466A1 (zh) 2022-10-27

Family

ID=77870581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132754 WO2022222466A1 (zh) 2021-04-21 2021-11-24 一种多扇叶结构的控制方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN113465151A (zh)
WO (1) WO2022222466A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465151A (zh) * 2021-04-21 2021-10-01 青岛海尔空调器有限总公司 一种多扇叶结构的控制方法、电子设备和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201635692A (zh) * 2015-03-27 2016-10-01 Asia Vital Components Co Ltd 防止風扇啟動運轉燒毀之方法
JP2017101875A (ja) * 2015-12-01 2017-06-08 新晃工業株式会社 複数給気ファンを備えた空気調和装置の運転方法
CN107514686A (zh) * 2017-08-01 2017-12-26 青岛海尔空调器有限总公司 壁挂式空调室内机及其控制方法
CN208186560U (zh) * 2018-03-23 2018-12-04 青岛海尔空调器有限总公司 空调室内机
CN110594862A (zh) * 2019-09-20 2019-12-20 珠海格力电器股份有限公司 室内机、空调器及空调器控制的方法
CN111237991A (zh) * 2019-12-06 2020-06-05 青岛海尔空调器有限总公司 送风控制方法、装置、空调及存储介质
CN112412832A (zh) * 2020-10-28 2021-02-26 青岛海尔空调器有限总公司 贯流风扇及空调器
CN112576523A (zh) * 2020-12-04 2021-03-30 重庆海尔空调器有限公司 贯流风扇及具有其的空调
CN113465151A (zh) * 2021-04-21 2021-10-01 青岛海尔空调器有限总公司 一种多扇叶结构的控制方法、电子设备和存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877431A (ja) * 1981-10-30 1983-05-10 Koyo Kikai Kogyo Kk 工作機械等における駆動電力節減方法
CN104676748B (zh) * 2013-11-29 2017-12-15 海尔集团公司 空调室内机
CN211903085U (zh) * 2020-03-17 2020-11-10 海信(山东)空调有限公司 一种空调室内机
CN111854115A (zh) * 2020-07-22 2020-10-30 海信(山东)空调有限公司 空调器分区控风控温的控制方法、装置、介质及空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201635692A (zh) * 2015-03-27 2016-10-01 Asia Vital Components Co Ltd 防止風扇啟動運轉燒毀之方法
JP2017101875A (ja) * 2015-12-01 2017-06-08 新晃工業株式会社 複数給気ファンを備えた空気調和装置の運転方法
CN107514686A (zh) * 2017-08-01 2017-12-26 青岛海尔空调器有限总公司 壁挂式空调室内机及其控制方法
CN208186560U (zh) * 2018-03-23 2018-12-04 青岛海尔空调器有限总公司 空调室内机
CN110594862A (zh) * 2019-09-20 2019-12-20 珠海格力电器股份有限公司 室内机、空调器及空调器控制的方法
CN111237991A (zh) * 2019-12-06 2020-06-05 青岛海尔空调器有限总公司 送风控制方法、装置、空调及存储介质
CN112412832A (zh) * 2020-10-28 2021-02-26 青岛海尔空调器有限总公司 贯流风扇及空调器
CN112576523A (zh) * 2020-12-04 2021-03-30 重庆海尔空调器有限公司 贯流风扇及具有其的空调
CN113465151A (zh) * 2021-04-21 2021-10-01 青岛海尔空调器有限总公司 一种多扇叶结构的控制方法、电子设备和存储介质

Also Published As

Publication number Publication date
CN113465151A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN106225183B (zh) 一种适于空调器的达温停机控制方法及空调器
CN107062518A (zh) 一种空调器控制方法及控制装置
CN104729193B (zh) 一种控制风冷冰箱中风机稳速工作的方法及装置
WO2022222466A1 (zh) 一种多扇叶结构的控制方法、电子设备和存储介质
CN106679104A (zh) 空调器风速控制方法、控制器及空调器
CN113251615A (zh) 空调器的送风控制方法、装置及空调器
WO2022222462A1 (zh) 一种扇叶结构的控制方法、空调器电子设备和存储介质
JP2668637B2 (ja) 遊技場における空気調和機の省エネルギー制御方法
CN113028501B (zh) 出风组件及其控制方法、空调室内机及空调器
WO2019058517A1 (ja) 熱交換型換気システム
CN114234289A (zh) 一种多工况用末端空调系统、控制方法及控制装置
CN107120783A (zh) 带有多风机空调系统的风机控制方法
CN111623493A (zh) 空调室外机及出风控制方法
CN109237704B (zh) 用于多联机空调系统的控制方法
CN114995543B (zh) 一种通过人工智能ai控制环境调节设备的方法及装置
CN113357802B (zh) 空调下出风控制方法、空调器及存储介质
CN112229165B (zh) 水平式热泵干燥系统及其工作方法
JP2017101875A (ja) 複数給気ファンを備えた空気調和装置の運転方法
CN210112519U (zh) 多级调控智能精密送风系统
CN209901656U (zh) 一种家具涂装智能环境营造系统
CN111457538A (zh) 一种供热建筑内的暖气通风装置及其使用方法
KR102386313B1 (ko) 신재생 에너지를 이용하는 환기시스템
CN218210044U (zh) 一种暖通空调用散热装置
CN220366478U (zh) 一种具有调温除湿功能且稳定回收回风能量的新风机组
CN220017525U (zh) 空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937688

Country of ref document: EP

Kind code of ref document: A1