WO2022222462A1 - 一种扇叶结构的控制方法、空调器电子设备和存储介质 - Google Patents

一种扇叶结构的控制方法、空调器电子设备和存储介质 Download PDF

Info

Publication number
WO2022222462A1
WO2022222462A1 PCT/CN2021/132740 CN2021132740W WO2022222462A1 WO 2022222462 A1 WO2022222462 A1 WO 2022222462A1 CN 2021132740 W CN2021132740 W CN 2021132740W WO 2022222462 A1 WO2022222462 A1 WO 2022222462A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan blade
drive shaft
locking mechanism
control
motor
Prior art date
Application number
PCT/CN2021/132740
Other languages
English (en)
French (fr)
Inventor
宋龙
吕福俊
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022222462A1 publication Critical patent/WO2022222462A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioners, and in particular, to a control method of a fan blade structure, an air conditioner electronic device and a storage medium.
  • An air conditioner is an artificial indoor climate adjustment device.
  • the main components include a refrigeration cycle system including a compressor, a condenser, a throttling device and an evaporator, and an air cycle system including a blower, air ducts, and air inlets and outlets.
  • the air conditioner realizes the functions of cooling or heating and dehumidification by drawing indoor air, changing its temperature by the evaporator and condenser of the heat exchange device, and then discharging it back into the room, so as to provide people with a fresh and comfortable indoor air environment.
  • the fan blade structure is used as the air supply device.
  • the motor In order to maintain the cooling or heating effect of the air conditioner, it is generally required to be controlled by the motor throughout the whole process. higher energy consumption.
  • Embodiments of the present application provide a control method for a fan blade structure, an air conditioner electronic device and a storage medium, which solve the problem that the fan blade structure is fully loaded on the motor in the existing control process and consumes relatively high energy during operation.
  • An embodiment of the present application provides a control method for a fan blade structure, wherein the fan blade structure includes: a fan blade, a drive shaft, a locking mechanism, and a motor; a rotating end of the motor is connected to the drive shaft, and the drive shaft The shaft is locked or released from the fan blade through the locking mechanism;
  • the control method of the fan blade structure includes the following steps:
  • the step of controlling the locking mechanism to release the fan blade and the drive shaft if the fan blade reaches a set maximum speed further include:
  • the locking mechanism locks the fan blade and the drive shaft and continues to run for a first preset time Afterwards, the locking mechanism is controlled to release the fan blade and the drive shaft.
  • the locking mechanism releases the fan blade and the drive shaft and continues to run for a second preset time Afterwards, the locking mechanism is controlled to lock the fan blade and the drive shaft.
  • Embodiments of the present application further provide an air conditioner, including: the air conditioner includes: a fan blade structure and a control structure;
  • the fan blade structure includes: a fan blade, a drive shaft, a locking mechanism and a motor; the rotating end of the motor is connected to the drive shaft, and the drive shaft is locked with the fan blade through the locking mechanism or loosen;
  • the control structure includes:
  • a processing module which is used to control the motor to drive the drive shaft to rotate, and control the locking mechanism to lock the fan blade and the drive shaft;
  • the obtaining module is used to obtain the rotational speed of the fan blade
  • the first judging module is used for judging whether the fan blade reaches the set maximum speed during the continuous operation in the locked state; if the fan blade does not reach the set maximum speed, the The processing module continues to control the locking mechanism to lock the fan blade and the drive shaft; if the fan blade reaches the set maximum speed, the processing module controls the locking mechanism to loosen the fan blade and the drive shaft.
  • control structure further includes:
  • the second judgment module is used for judging whether the fan blade reaches the set minimum speed during the continuous operation in the released state; if the fan blade reaches the set minimum speed, the The processing module controls the locking mechanism to lock the fan blade and the drive shaft; if the fan blade does not reach the set minimum speed, the processing module continues to control the locking mechanism to loosen the fan blades and the drive shaft.
  • control structure further includes:
  • a third judgment module is used for continuous operation in the locked state, after the locking mechanism locks the fan blade and the drive shaft and continues to operate for a first preset time,
  • the processing module controls the locking mechanism to release the fan blade and the drive shaft.
  • control structure further includes:
  • the fourth judgment module is used for continuous operation in the loosened state, after the locking mechanism loosens the fan blade and the drive shaft and continues to run for a second preset time,
  • the processing module controls the locking mechanism to lock the fan blade and the drive shaft.
  • An embodiment of the present application further provides an electronic device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the processor implements the fan blade when executing the program Structure control method.
  • Embodiments of the present application further provide a non-transitory computer-readable storage medium, where a computer program is stored in the non-transitory computer-readable storage medium, and when the computer program is read and executed by a processor, the fan blade described above is implemented Structure control method.
  • the control method of the fan blade structure uses a locking mechanism to lock or loosen the fan blade and the drive shaft.
  • the locking mechanism locks the fan blade and the drive shaft
  • the motor drives the fan blade to rotate through the drive shaft.
  • the locking mechanism releases the fan blade and the drive shaft, the motor runs without load, and the fan blade continues to rotate through inertia, so that the fan blade can reduce the load of the motor during one operation cycle, thereby reducing the power of the motor and achieving structural energy saving.
  • FIG. 1 is an external schematic diagram of a fan blade structure provided by an embodiment of the present application.
  • FIG. 2 is an internal schematic diagram of a fan blade structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a control method for a fan blade structure provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a control method for a fan blade structure provided by another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a control method for a fan blade structure provided by another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a control structure provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by the present application.
  • Reference numerals 1, fan blade; 2, drive shaft; 3, motor; 601, acquisition module; 602, processing module; 603, first judgment module; 604, second judgment module; 605, third judgment module; 606 710, a processor; 720, a communication interface; 730, a memory; 740, a communication bus.
  • the fan blade structure includes: a fan blade 1 , a drive shaft 2 , a locking mechanism and a motor 3 .
  • the rotating end of the motor 3 is connected with the drive shaft 2, and the drive shaft 2 is locked or loosened with the fan blade 1 through the locking mechanism.
  • the drive shaft 2 When the locking mechanism locks the fan blade 1 and the drive shaft 2, the drive shaft 2 is axially connected with the fan blade 1, and the drive shaft 2 can drive the fan blade 1 to rotate.
  • the locking mechanism releases the fan blade 1 and the drive shaft 2, the fan blade 1 is sleeved on the drive shaft 2, the motor 3 runs without load (only drives the drive shaft 2 to rotate), and the fan blade 1 can continue to rotate by inertia.
  • control method of the fan blade structure includes the following steps:
  • Step S1 control the motor 3 to drive the drive shaft 2 to rotate, and control the locking mechanism to lock the fan blade 1 and the drive shaft 2 .
  • Step S2 During the continuous operation in the locked state, determine whether the fan blade 1 reaches the set maximum speed.
  • Step S3 If the fan blade 1 does not reach the set maximum speed, continue to control the locking mechanism to lock the fan blade 1 and the drive shaft 2. If the fan blade 1 reaches the set maximum speed, then control the locking mechanism to release the fan blade 1 and the drive shaft 2. drive shaft 2.
  • the control motor 3 drives the drive shaft 2 to rotate, the locking mechanism is energized, and the two ends of the fan blade 1 and the drive shaft 2 are electromagnetically locked and matched by the locking mechanism. At this time, the drive shaft 2 and the fan blade 1 are matched. In the state, the drive shaft 2 drives the fan blade 1 to rotate, and the load of the motor 3 is the fan blade 1 .
  • the power is turned off by controlling the locking mechanism. At this time, the drive shaft 2 and the fan blade 1 are in a suspended state, the motor 3 and the drive shaft 2 rotate without load, and the fan blade 1 passes through. Inertia enables continued rotation.
  • the load when the motor 3 is running can be reduced, thereby reducing the power of the motor 3 and realizing the energy saving of the air conditioner.
  • control object in the embodiment of the present application is the cross-flow fan blade installed in the indoor unit of the air conditioner, but it is not difficult to find from the above that this control method can also control other fan blade structures, and only needs to ensure that the drive shaft and the fan blade are The leaf can be locked or released through the locking mechanism.
  • a locking mechanism is used to lock or loosen the fan blade and the drive shaft, and when the locking mechanism locks the fan blade and the drive shaft, the motor drives the fan blade to rotate through the drive shaft, When the locking mechanism loosens the fan blade and the drive shaft, the motor runs without load, and the fan blade continues to rotate through inertia, so that the fan blade can reduce the load of the motor during one operation cycle, thereby reducing the power of the motor and realizing structural stability. Energy saving.
  • control method of the fan blade structure comprises the following steps:
  • Step S1 control the motor 3 to drive the drive shaft 2 to rotate, and control the locking mechanism to lock the fan blade 1 and the drive shaft 2 .
  • Step S2 During the continuous operation in the locked state, determine whether the fan blade 1 reaches the set maximum speed.
  • Step S3 If the fan blade 1 does not reach the set maximum speed, continue to control the locking mechanism to lock the fan blade 1 and the drive shaft 2; if the fan blade 1 reaches the set maximum speed, control the locking mechanism to loosen the fan blade 1 and drive shaft 2.
  • Step S4 During the continuous operation in the released state, determine whether the fan blade 1 reaches the set minimum rotational speed.
  • Step S5 if the fan blade 1 does not reach the set minimum speed, continue to control the locking mechanism to loosen the fan blade 1 and the drive shaft 2; if the fan blade 1 reaches the set minimum speed, control the locking mechanism to lock the fan blade 1 and drive shaft 2.
  • the motor 3 is controlled to drive the drive shaft 2 to rotate, the locking mechanism is energized, and the two ends of the fan blade 1 and the drive shaft 2 are electromagnetically locked and matched by the locking mechanism.
  • the drive shaft 2 The fan blade 1 is matched with the fan blade 1 , the drive shaft 2 drives the fan blade 1 to rotate, and the load of the motor 3 is the fan blade 1 .
  • the rotation speed of the fan blade 1 increases under the control of the drive shaft 2. At this time, the rotation speed of the fan blade 1 is obtained, and it is determined whether the rotation speed of the fan blade 1 reaches the set maximum rotation speed.
  • the power is turned off by controlling the locking mechanism. At this time, the drive shaft 2 and the fan blade 1 are in a suspended state, the motor 3 and the drive shaft 2 rotate without load, and the fan blade 1 passes through. Inertia enables continued rotation.
  • the rotation speed of the fan blade 1 continues to decrease. At this time, the rotation speed of the fan blade 1 is obtained, and it is determined whether the rotation speed of the fan blade 1 reaches the set minimum rotation speed.
  • the locking mechanism is kept powered off, and the locking mechanism is controlled to continue to release the fan blade 1 and the drive shaft 2.
  • control the locking mechanism If the obtained speed of fan blade 1 reaches the set minimum speed, control the locking mechanism to energize, control the locking mechanism to lock fan blade 1 and drive shaft 2, drive fan blade 1 to rotate through drive shaft 2, and lift fan blade 1 Rotating speed.
  • the load when the motor 3 is running is reduced, thereby reducing the power of the motor 3 and realizing the energy saving of the air conditioner.
  • the reciprocating locking and loosening of the fan blade 1 and the drive shaft 2 can keep the rotation speed of the fan blade 1 between the set minimum rotation speed and the set maximum rotation speed, so that the fan blade structure can run stably for a long time.
  • the rotation speed of the fan blade 1 can also be controlled by the time of continuous operation in the locked or loosened state, and the rotation speed of the fan blade 1 is determined by the time that the drive shaft 2 drives the fan blade 1 to rotate, which simplifies the acquisition of the fan blade. 1 RPM process.
  • the simplified control method includes the following steps:
  • Step S1 control the motor 3 to drive the drive shaft 2 to rotate, and control the locking mechanism to lock the fan blade 1 and the drive shaft 2 .
  • Step S6 During the continuous operation in the locked state, after the locking mechanism locks the fan blade 1 and the drive shaft 2 and continues to operate for a first preset time, the locking mechanism is controlled to release the fan blade 1 and the drive shaft 2 .
  • Step S7 During the continuous operation in the released state, after the locking mechanism releases the fan blade 1 and the drive shaft 2 and continues to operate for a second preset time, the locking mechanism is controlled to lock the fan blade 1 and the drive shaft 2.
  • the motor 3 is controlled to drive the drive shaft 2 to rotate, the locking mechanism is energized, and the two ends of the fan blade 1 and the drive shaft 2 are electromagnetically locked and matched by the locking mechanism.
  • the drive shaft 2 The fan blade 1 is matched with the fan blade 1 , the drive shaft 2 drives the fan blade 1 to rotate, and the load of the motor 3 is the fan blade 1 .
  • the locking mechanism locks the blade 1 and the drive shaft 2 and continues to run for the first preset time, for example, after accumulating 1 second in the locked state, the locking mechanism is powered off and the control The locking mechanism releases the fan blade 1 and the drive shaft 2, and the rotation speed of the fan blade 1 continues to decrease.
  • the locking mechanism During the continuous operation in the released state, after the locking mechanism releases the fan blade 1 and the drive shaft 2 and continues to run for a second preset time, for example, after accumulating 0.5 seconds in the released state, the locking mechanism is powered on to control the lock The tightening mechanism re-locks the fan blade 1 and the drive shaft 2, and the rotation speed of the fan blade 1 continues to increase.
  • the drive shaft 2 drives the fan blade 1 to rotate, increasing the speed of the fan blade, and in the loosened state, the drive shaft 2 and the fan blade 1 are suspended in the air, reducing the load when the motor 3 is running. Therefore, the power of the motor 3 can be reduced in one operation cycle, thereby realizing the energy saving of the air conditioner.
  • the fan blade 1 and the drive shaft 2 are locked and loosened reciprocally.
  • the speed of the motor 3 can be kept stable, so that when the locked state continues to run for the first preset time, the speed of the fan will increase. basically the same.
  • the rotational speed of the blower is also the same.
  • the rotation speed of the fan blade 1 is maintained within a certain tolerance tolerance range, so that the fan blade structure can run stably for a long time.
  • the application provides an air conditioner, the air conditioner includes: a fan blade structure and a control structure; the fan blade structure, as shown in FIGS. 1 and 2 , includes: a fan blade 1 , a drive shaft 2 , a locking mechanism and a motor 3 .
  • the rotating end of the motor 3 is connected with the drive shaft 2, and the drive shaft 2 is locked or loosened with the fan blade 1 through the locking mechanism.
  • the drive shaft 2 When the locking mechanism locks the fan blade 1 and the drive shaft 2, the drive shaft 2 is axially connected with the fan blade 1, and the drive shaft 2 can drive the fan blade 1 to rotate.
  • the locking mechanism releases the fan blade 1 and the drive shaft 2, the fan blade 1 is sleeved on the drive shaft 2, the motor 3 runs without load (only drives the drive shaft 2 to rotate), and the fan blade 1 can continue to rotate by inertia.
  • the control structure is used to control the fan blade structure, and includes: an acquisition module 601 , a processing module 602 and a first judgment module 603 .
  • the processing module 602 is used to control the motor 3 to drive the drive shaft 2 to rotate, and to control the locking mechanism to lock the fan blade 1 and the drive shaft 2 .
  • the obtaining module 601 is used to obtain the rotational speed of the fan blade 1 .
  • the first judgment module 603 is used to judge whether the fan blade 1 reaches the set maximum speed during the continuous operation in the locked state; if the fan blade 1 reaches the set maximum speed, the processing module 602 controls the locking mechanism to release Fan blade 1 and drive shaft 2. If the fan blade does not reach the set maximum speed, the processing module 602 continues to control the locking mechanism to lock the fan blade 1 and the drive shaft 2 .
  • the fan blade structure further includes: a second judgment module 604, the second judgment module 604 is used for judging whether the fan blade 1 reaches the set minimum speed during the continuous operation in the released state; if the fan blade 1 reaches the set minimum speed At the lowest speed, the processing module controls the locking mechanism to lock the fan blade 1 and the drive shaft 2; if the fan blade 1 does not reach the set minimum speed, the processing module continues to control the locking mechanism to loosen the fan blade 1 and the drive shaft 2 .
  • a second judgment module 604 is used for judging whether the fan blade 1 reaches the set minimum speed during the continuous operation in the released state; if the fan blade 1 reaches the set minimum speed At the lowest speed, the processing module controls the locking mechanism to lock the fan blade 1 and the drive shaft 2; if the fan blade 1 does not reach the set minimum speed, the processing module continues to control the locking mechanism to loosen the fan blade 1 and the drive shaft 2 .
  • the processing module 602 controls the motor 3 to drive the drive shaft 2 to rotate, the locking mechanism is energized, and the two ends of the fan blade 1 and the drive shaft 2 are electromagnetically locked by the locking mechanism At this time, the drive shaft 2 and the fan blade 1 are in a matching state, the drive shaft 2 drives the fan blade 1 to rotate, and the load of the motor 3 is the fan blade 1 .
  • the obtaining module 601 obtains the rotation speed of the fan blade 1, and the first determination module 603 determines whether the rotation speed of the fan blade 1 reaches the set maximum rotation speed.
  • the locking mechanism is kept powered on, and the first judgment module 603 controls the locking mechanism through the processing module 602 to continue to lock the blade 1 and the drive shaft 2 .
  • the first judgment module 603 controls the locking mechanism to be powered off through the processing module 602. At this time, the drive shaft 2 and the fan blade 1 are in a suspended state, and the motor 3 and The drive shaft 2 rotates without load, and the fan blade 1 can continue to rotate through inertia.
  • the rotation speed of the fan blade 1 continues to decrease.
  • the rotation speed of the fan blade 1 is obtained through the acquisition module 601, and the second judgment module 604 is used to determine whether the rotation speed of the fan blade 1 reaches the set minimum. Rotating speed.
  • the locking mechanism is kept powered off, and the second judgment module 604 controls the locking mechanism through the processing module 602 to continue loosening the fan blade 1 and the drive shaft 2 .
  • the second judging module 604 controls the locking mechanism to energize through the processing module 602, controls the locking mechanism to lock the blade 1 and the drive shaft 2, and passes the drive shaft 2. Drive the fan blade 1 to rotate, and increase the speed of the fan blade 1.
  • the load when the motor 3 is running is reduced, thereby reducing the power of the motor 3 and realizing the energy saving of the air conditioner.
  • the first judging module 603 and the second judging module 604 lock and release the fan blade 1 and the drive shaft 2 reciprocally through the processing module 602, so that the speed of the fan blade 1 can be maintained at the set minimum speed and the set maximum speed Between the rotation speeds, the fan blade structure can run stably for a long time.
  • the rotation speed of the fan blade 1 can also be controlled by the time of continuous operation in the locked or loosened state, and the rotation speed of the fan blade 1 is determined by the time that the drive shaft 2 drives the fan blade 1 to rotate, which simplifies the acquisition of the fan blade. 1 RPM process.
  • the control structure further includes: a third judgment module 605 .
  • the third judging module 605 is used for the processing module to control the locking mechanism to release the fan after the locking mechanism locks the fan blade 1 and the drive shaft 2 and continues to operate for a first preset time during the continuous operation in the locked state.
  • control structure further includes: a fourth judging module 606 , the fourth judging module 606 is used for the locking mechanism to release the fan blade 1 and the drive shaft 2 and continue to run the second preset during the continuous operation in the released state After time, the processing module controls the locking mechanism to lock the fan blade 1 and the drive shaft 2.
  • the processing module 602 controls the motor 3 to drive the drive shaft 2 to rotate, the locking mechanism is energized, and the two ends of the fan blade 1 and the drive shaft 2 are electromagnetically locked and matched by the locking mechanism.
  • the drive shaft 2 and the fan blade 1 are in a cooperative state, the drive shaft 2 drives the fan blade 1 to rotate, and the load of the motor 3 is the fan blade 1 .
  • the locking mechanism locks the fan blade 1 and the drive shaft 2 and continues to operate for a first preset time, for example, after accumulating 1 second, the locking mechanism is powered off.
  • the third judging module 605 controls the locking mechanism to loosen the fan blade 1 and the drive shaft 2 through the processing module 602, and the rotation speed of the fan blade 1 continues to decrease.
  • the locking mechanism releases the fan blade 1 and the drive shaft 2 and continues to operate for a second preset time, for example, after accumulating 0.5 seconds, the locking mechanism is energized, and the first The fourth judging module 606 controls the locking mechanism to re-lock the fan blade 1 and the drive shaft 2 through the processing module 602, and the rotation speed of the fan blade 1 continues to increase.
  • the drive shaft 2 drives the fan blade 1 to rotate, increasing the speed of the fan blade, and in the loosened state, the drive shaft 2 and the fan blade 1 are suspended in the air, reducing the load when the motor 3 is running. Therefore, the power of the motor 3 can be reduced in one operation cycle, thereby realizing the energy saving of the air conditioner.
  • the third judging module 605 and the fourth judging module 606 reciprocately lock and release the fan blade 1 and the drive shaft 2 through the processing module 602.
  • the rotation speed of the motor 3 can be kept stable, so that every lock
  • the rotational speed of the fan is basically the same.
  • the rotational speed of the blower is also the same.
  • the rotation speed of the fan blade 1 can be maintained within a certain range within a certain allowable error range, so that the fan blade structure can run stably for a long time.
  • the third judging module 605 and the fourth judging module 606 can be directly replaced by the first judging module 603 and the second judging module 604. 2 and the time when the fan blade 1 is in the locked and loosened state to adjust the speed of the fan blade 1.
  • the present application further provides an electronic device, as shown in FIG. 7 , the electronic device may include: a processor (processor) 710, a communication interface (Communications Interface) 720, a memory (memory) 730 and a communication bus 740, wherein the processor (processor) 710 710 , the communication interface 720 , and the memory 730 communicate with each other through the communication bus 740 .
  • the processor 710 may invoke logic instructions in the memory 730 to execute the control method of the fan blade structure.
  • the control method of the fan blade structure includes the following steps:
  • Step S1 control the motor to drive the drive shaft to rotate, and control the locking mechanism to lock the fan blade and the drive shaft.
  • Step S2 During the continuous operation in the locked state, determine whether the fan blade reaches the set maximum speed.
  • Step S3 If the fan blade does not reach the set maximum speed, continue to control the locking mechanism to lock the fan blade and the drive shaft; if the fan blade reaches the set maximum speed, control the locking mechanism to loosen the fan blade and the drive shaft.
  • the above-mentioned logic instructions in the memory 730 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .
  • the present application also provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer-readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer When executed, the computer can execute the control method of the fan blade structure provided by the above methods.
  • the present application also provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores a computer program, and the computer program is read and executed by a processor to realize the above-mentioned fan blade structure. Control Method.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
  • the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in non-transitory computer-readable storage media, such as ROM/ RAM, disk, optical disk, etc., including several instructions to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments or parts of embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

本申请提供一种扇叶结构的控制方法、空调器电子设备和存储介质,包括:扇叶、驱动轴、锁紧机构和电机;电机的转动端与驱动轴轴连接,驱动轴通过锁紧机构与扇叶锁紧或松开;控制方法包括:控制电机驱动驱动轴转动,控制锁紧机构锁紧扇叶和驱动轴;在锁紧状态下的持续运行过程中,判断扇叶是否达到设定最高转速;若达到则控制锁紧机构松开扇叶和驱动轴。本申请提供的扇叶结构的控制方法,利用锁紧机构锁紧或松开,在锁紧机构锁紧扇叶和驱动轴时,电机通过驱动轴带动扇叶旋转,而在锁紧机构松开扇叶和驱动轴时,电机空载运行,扇叶通过惯性继续旋转,使得扇叶一个运转周期内可以降低电机运转时的负载,从而降低电机的功率,实现结构的节能。

Description

一种扇叶结构的控制方法、空调器电子设备和存储介质
相关申请的交叉引用
本申请要求于2021年04月19日提交的申请号为202110421125.1,名称为“一种扇叶结构的控制方法、空调器电子设备和存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空调技术领域,尤其涉及一种扇叶结构的控制方法、空调器电子设备和存储介质。
背景技术
空调器是一种人为的室内气候调节装置,主要构成部分包括压缩机、冷凝器、节流器件和蒸发器在内的制冷循环系统以及包括吹风机、风道和进出风口的空气循环系统。空调器通过吸取室内空气由热交换装置的蒸发器和冷凝器改变其温度后再排回室内来实现制冷或制热以及除湿等功能,以便为人们提供清新而舒适的室内空气环境。
随着空调器环保及节能的发展,在提高空调器能效比的基础上,还需要进一步提高空调器的节能。在空调室内机中,扇叶结构作为送风设备,为保持空调的制冷或制热效果,一般需要全程通过电机来控制,但现有控制过程中扇叶结构全程负载在电机上,工作过程中的耗能较高。
发明内容
本申请实施例提供一种扇叶结构的控制方法、空调器电子设备和存储介质,解决现有控制过程中扇叶结构全程负载在电机上,工作过程中耗能较高的问题。
本申请实施例提供一种扇叶结构的控制方法,所述扇叶结构包括:扇叶、驱动轴、锁紧机构和电机;所述电机的转动端与所述驱动轴轴连接,所述驱动轴通过所述锁紧机构与所述扇叶锁紧或松开;
所述扇叶结构的控制方法包括如下步骤:
控制所述电机驱动所述驱动轴转动,并控制所述锁紧机构锁紧所述扇叶和所述驱动轴;
在锁紧状态下的持续运行过程中,判断所述扇叶是否达到设定最高转速;
若所述扇叶未达到设定最高转速,则继续控制所述锁紧机构锁紧所述扇叶和所述驱动轴;若所述扇叶达到设定最高转速,则控制所述锁紧机构松开所述扇叶和所述驱动轴。
根据本申请一个实施例提供的扇叶结构的控制方法,所述若所述扇叶达到设定最高转速,则控制所述锁紧机构松开所述扇叶和所述驱动轴的步骤之后还包括:
在松开状态下的持续运行过程中,判断所述扇叶是否达到设定最低转速;
若所述扇叶未达到设定最低转速,则继续控制所述锁紧机构松开所述扇叶和所述驱动轴;若所述扇叶达到设定最低转速,则控制所述锁紧机构锁紧所述扇叶和所述驱动轴。
根据本申请一个实施例提供的扇叶结构的控制方法,在锁紧状态下的持续运行过程中,所述锁紧机构锁紧所述扇叶和所述驱动轴并持续运行第一预设时间后,控制所述锁紧机构松开所述扇叶和所述驱动轴。
根据本申请一个实施例提供的扇叶结构的控制方法,在松开状态下的持续运行过程中,所述锁紧机构松开所述扇叶和所述驱动轴并持续运行第二预设时间后,控制所述锁紧机构锁紧所述扇叶和所述驱动轴。
本申请实施例还提供一种空调器,包括:所述空调器包括:扇叶结构和控制结构;
所述扇叶结构包括:扇叶、驱动轴、锁紧机构和电机;所述电机的转动端与所述驱动轴轴连接,所述驱动轴通过所述锁紧机构与所述扇叶锁紧或松开;
所述控制结构包括:
处理模块,所述处理模块用于控制所述电机驱动所述驱动轴转动,并控制所述锁紧机构锁紧所述扇叶和所述驱动轴;
获取模块,所述获取模块用于获取扇叶转速;
第一判断模块,所述判断模块用于在锁紧状态下的持续运行过程中,判断所述扇叶是否达到设定最高转速;若所述扇叶未达到设定最高转速,则通过所述处理模块继续控制所述锁紧机构锁紧所述扇叶和所述驱动轴;若所述扇叶达到设定最高转速,则通过所述处理模块控制所述锁紧机构松开所述扇叶和所述驱动轴。
根据本申请一个实施例提供的空调器,所述控制结构还包括:
第二判断模块,所述第二判断模块用于在松开状态下的持续运行过程中,判断所述扇叶是否达到设定最低转速;若所述扇叶达到设定最低转速,则通过所述处理模块控制所述锁紧机构锁紧所述扇叶和所述驱动轴;若所述扇叶未达到设定最低转速,则通过所述处理模块继续控制所述锁紧机构松开所述扇叶和所述驱动轴。
根据本申请一个实施例提供的空调器,所述控制结构还包括:
第三判断模块,所述第三判断模块用于在锁紧状态下的持续运行过程中,所述锁紧机构锁紧所述扇叶和所述驱动轴并持续运行第一预设时间后,使所述处理模块控制所述锁紧机构松开所述扇叶和所述驱动轴。
根据本申请一个实施例提供的空调器,所述控制结构还包括:
第四判断模块,所述第四判断模块用于在松开状态下的持续运行过程中,所述锁紧机构松开所述扇叶和所述驱动轴并持续运行第二预设时间后,使所述处理模块控制所述锁紧机构锁紧所述扇叶和所述驱动轴。
本申请实施例还提供一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现上述扇叶结构的控制方法。
本申请实施例还提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机程序,所述计算机程序被处理器读取并运行时,实现上述的扇叶结构的控制方法。
本申请提供的扇叶结构的控制方法,利用锁紧机构锁紧或松开扇叶和驱动轴,在锁紧机构锁紧扇叶和驱动轴时,电机通过驱动轴带动扇叶旋转,而在锁紧机构松开扇叶和驱动轴时,电机空载运行,扇叶通过惯性继续旋转,使得扇叶一个运转周期内可以降低电机运转时的负载,从而降低电机的功率,实现结构的节能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的扇叶结构的外部示意图;
图2是本申请一实施例提供的扇叶结构的内部示意图;
图3是本申请一实施例提供的扇叶结构的控制方法的流程示意图;
图4是本申请另一实施例提供的扇叶结构的控制方法的流程示意图;
图5是本申请又一实施例提供的扇叶结构的控制方法的流程示意图;
图6是本申请一实施例提供的控制结构的结构示意图;
图7是本申请提供的电子设备的结构示意图;
附图标记:1、扇叶;2、驱动轴;3、电机;601、获取模块;602、处理模块;603、第一判断模块;604、第二判断模块;605、第三判断模块;606、第四判断模块;710、处理器;720、通信接口;730、存储器;740、通信总线。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供一种扇叶结构的控制方法,如图1和图2所示,该扇叶结构包括:扇叶1、驱动轴2、锁紧机构和电机3。电机3的转动端与驱动轴2轴连接,驱动轴2通过锁紧机构与扇叶1锁紧或松开,锁紧机构可选用电磁锁紧机构,通过通电断电来控制驱动轴2与扇叶1的连接状态。
在锁紧机构锁紧扇叶1和驱动轴2时,驱动轴2与扇叶1轴连接,驱动轴2可带动扇叶1旋转。而在锁紧机构松开扇叶1和驱动轴2时,扇叶1套设在驱动轴2上,电机3空载运行(仅驱动驱动轴2转动),扇叶1 能够通过惯性继续旋转。
如图3所示,该扇叶结构的控制方法包括如下步骤:
步骤S1:控制电机3驱动驱动轴2转动,并控制锁紧机构锁紧扇叶1和驱动轴2。
步骤S2:在锁紧状态下的持续运行过程中,判断扇叶1是否达到设定最高转速。
步骤S3:若扇叶1未达到设定最高转速,则继续控制锁紧机构锁紧扇叶1和驱动轴2若扇叶1达到设定最高转速,则控制锁紧机构松开扇叶1和驱动轴2。
空调器运行的过程中,控制电机3驱动驱动轴2转动,锁紧机构通电,扇叶1两端与驱动轴2通过锁紧机构电磁锁紧配合,此时驱动轴2和扇叶1是配合状态,驱动轴2带动扇叶1旋转,电机3的负载为扇叶1。
在扇叶1和驱动轴2锁紧状态下,获取扇叶1的转速,判断扇叶1的转速是否达到设定最高转速。
如果获取到的扇叶1转速未达到设定最高转速,保持锁紧机构通电状态,控制锁紧机构继续锁紧扇叶1和驱动轴2。
如果获取到的扇叶1转速达到了设定最高转速,通过控制锁紧机构断电,此时驱动轴2和扇叶1是悬空状态,电机3和驱动轴2空载旋转,扇叶1通过惯性可以实现继续旋转。
在扇叶1的一个运转周期内可以降低电机3运转时的负载,从而降低电机3的功率,实现空调器的节能。
需要说明的是,本申请实施例中的控制对象为空调室内机中安装的贯流扇叶,但根据上述不难发现,该控制方法也可以控制其它扇叶结构,仅需保证驱动轴与扇叶通过锁紧机构锁紧或松开即可。
本申请实施例提供的扇叶结构的控制方法,利用锁紧机构锁紧或松开扇叶和驱动轴,在锁紧机构锁紧扇叶和驱动轴时,电机通过驱动轴带动扇叶旋转,而在锁紧机构松开扇叶和驱动轴时,电机空载运行,扇叶通过惯性继续旋转,使得扇叶一个运转周期内可以降低电机运转时的负载,从而降低电机的功率,实现结构的节能。
为使扇叶结构能够长期稳定运行,如图4所示,该扇叶结构的控制方 法包括如下步骤:
步骤S1:控制电机3驱动驱动轴2转动,并控制锁紧机构锁紧扇叶1和驱动轴2。
步骤S2:在锁紧状态下的持续运行过程中,判断扇叶1是否达到设定最高转速。
步骤S3:若扇叶1未达到设定最高转速,则继续控制锁紧机构锁紧扇叶1和驱动轴2;若扇叶1达到设定最高转速,则控制锁紧机构松开扇叶1和驱动轴2。
步骤S4:在松开状态下的持续运行过程中,判断扇叶1是否达到设定最低转速。
步骤S5:若扇叶1未达到设定最低转速,则继续控制锁紧机构松开扇叶1和驱动轴2;若扇叶1达到设定最低转速,则控制锁紧机构锁紧扇叶1和驱动轴2。
本实施例提供的空调器在运行的过程中,控制电机3驱动驱动轴2转动,锁紧机构通电,扇叶1两端与驱动轴2通过锁紧机构电磁锁紧配合,此时驱动轴2和扇叶1是配合状态,驱动轴2带动扇叶1旋转,电机3的负载为扇叶1。
在扇叶1和驱动轴2锁紧状态下,扇叶1的转速在驱动轴2的控制下升高,此时获取扇叶1的转速,判断扇叶1的转速是否达到设定最高转速。
如果获取到的扇叶1转速未达到设定最高转速,保持锁紧机构通电状态,控制锁紧机构继续锁紧扇叶1和驱动轴2。
如果获取到的扇叶1转速达到了设定最高转速,通过控制锁紧机构断电,此时驱动轴2和扇叶1是悬空状态,电机3和驱动轴2空载旋转,扇叶1通过惯性可以实现继续旋转。
在扇叶1和驱动轴2松开状态下,扇叶1转速持续降低,此时获取扇叶1的转速,判断扇叶1的转速是否达到设定最低转速。
如果获取到的扇叶1转速未达到设定最低转速,保持锁紧机构断电状态,控制锁紧机构继续松开扇叶1和驱动轴2。
如果获取到的扇叶1转速达到了设定最低转速,通过控制锁紧机构通电,控制锁紧机构锁紧扇叶1和驱动轴2,通过驱动轴2带动扇叶1旋转, 提升扇叶1转速。
在扇叶1的一个运转周期内,降低电机3运转时的负载,从而降低电机3的功率,实现空调器的节能。按照此规律,往复锁紧和松开扇叶1和驱动轴2,可以使扇叶1的转速维持在设定最低转速与设定最高转速之间,使得该扇叶结构能够长期稳定运行。
为简化扇叶结构的控制过程,还可在锁紧或松开状态下持续运行的时间来把控扇叶1转速,通过驱动轴2带动扇叶1旋转的时间来确定转速,简化获取扇叶1转速的过程。
如图5所示,简化后的控制方法包括如下步骤:
步骤S1:控制电机3驱动驱动轴2转动,并控制锁紧机构锁紧扇叶1和驱动轴2。
步骤S6:在锁紧状态下的持续运行过程中,锁紧机构锁紧扇叶1和驱动轴2并持续运行第一预设时间后,控制锁紧机构松开扇叶1和驱动轴2。
步骤S7:在松开状态下的持续运行过程中,锁紧机构松开扇叶1和驱动轴2并持续运行第二预设时间后,控制锁紧机构锁紧扇叶1和驱动轴2。
本实施例提供的空调器在运行的过程中,控制电机3驱动驱动轴2转动,锁紧机构通电,扇叶1两端与驱动轴2通过锁紧机构电磁锁紧配合,此时驱动轴2和扇叶1是配合状态,驱动轴2带动扇叶1旋转,电机3的负载为扇叶1。
在锁紧状态下的持续运行过程中,锁紧机构锁紧扇叶1和驱动轴2并持续运行第一预设时间后,例如锁紧状态下累计1秒后,锁紧机构断电,控制锁紧机构松开扇叶1和驱动轴2,扇叶1转速持续降低。
在松开状态下的持续运行过程中,锁紧机构松开扇叶1和驱动轴2并持续运行第二预设时间后,例如松开状态下累计0.5秒后,锁紧机构通电,控制锁紧机构重新锁紧扇叶1和驱动轴2,扇叶1转速持续上升。
在扇叶1的一个运转周期内,锁紧状态下驱动轴2带动扇叶1旋转,提升扇叶转速,松开状态下驱动轴2和扇叶1悬空,降低了电机3运转时的负载,使得在一个运转周期内能够降低电机3的功率,实现空调器的节能。
按照此规律,往复锁紧和松开扇叶1和驱动轴2,在额定功率下,电 机3转速能够保持稳定,从而在每次锁紧状态持续运行第一预设时间时,风机提升的转速基本相同。同样,在每次松开状态持续运行第二预设时间时,风机降低的转速也相同。使得扇叶1的转速维持在一定误差允许范围内,从而该扇叶结构能够长期稳定运行。
本申请提供一种空调器,空调器包括:扇叶结构和控制结构;该扇叶结构如图1和图2所示,包括:扇叶1、驱动轴2、锁紧机构和电机3。电机3的转动端与驱动轴2轴连接,驱动轴2通过锁紧机构与扇叶1锁紧或松开,锁紧机构可选用电磁锁紧机构,通过通电断电来控制驱动轴2与扇叶1的连接状态。
在锁紧机构锁紧扇叶1和驱动轴2时,驱动轴2与扇叶1轴连接,驱动轴2可带动扇叶1旋转。而在锁紧机构松开扇叶1和驱动轴2时,扇叶1套设在驱动轴2上,电机3空载运行(仅驱动驱动轴2转动),扇叶1能够通过惯性继续旋转。
如图6所示,该控制结构用于控制扇叶结构,包括:获取模块601、处理模块602和第一判断模块603。处理模块602用于控制电机3驱动驱动轴2转动,并控制锁紧机构锁紧扇叶1和驱动轴2。获取模块601用于获取扇叶1转速。第一判断模块603用于在锁紧状态下的持续运行过程中,判断扇叶1是否达到设定最高转速;若扇叶1达到设定最高转速,则通过处理模块602控制锁紧机构松开扇叶1和驱动轴2。若扇叶未达到设定最高转速,则通过处理模块602继续控制锁紧机构锁紧扇叶1和驱动轴2。
其中,扇叶结构还包括:第二判断模块604,第二判断模块604用于在松开状态下的持续运行过程中,判断扇叶1是否达到设定最低转速;若扇叶1达到设定最低转速,则通过处理模块控制锁紧机构锁紧扇叶1和驱动轴2;若扇叶1未达到设定最低转速,则通过处理模块继续控制锁紧机构松开扇叶1和驱动轴2。
本实施例提供的空调器在运行的过程中,处理模块602收到命令后控制电机3驱动驱动轴2转动,锁紧机构通电,扇叶1两端与驱动轴2通过锁紧机构电磁锁紧配合,此时驱动轴2和扇叶1是配合状态,驱动轴2带动扇叶1旋转,电机3的负载为扇叶1。
在扇叶1和驱动轴2锁紧状态下,获取模块601获取扇叶1的转速, 第一判断模块603判断扇叶1的转速是否达到设定最高转速。
如果获取模块601获取到的扇叶1转速未达到设定最高转速,保持锁紧机构通电状态,第一判断模块603通过处理模块602控制锁紧机构继续锁紧扇叶1和驱动轴2。
如果获取模块601获取到的扇叶1转速达到了设定最高转速,第一判断模块603通过处理模块602控制锁紧机构断电,此时驱动轴2和扇叶1是悬空状态,电机3和驱动轴2空载旋转,扇叶1通过惯性可以实现继续旋转。
在扇叶1和驱动轴2松开状态下,扇叶1转速持续降低,此时通过获取模块601获取扇叶1的转速,通过第二判断模块604判断扇叶1的转速是否达到设定最低转速。
如果获取模块601获取到的扇叶1转速未达到设定最低转速,保持锁紧机构断电状态,第二判断模块604通过处理模块602控制锁紧机构继续松开扇叶1和驱动轴2。
如果获取模块601获取到的扇叶1转速达到了设定最低转速,第二判断模块604通过处理模块602控制锁紧机构通电,控制锁紧机构锁紧扇叶1和驱动轴2,通过驱动轴2带动扇叶1旋转,提升扇叶1转速。
在扇叶1一个运转周期内,降低电机3运转时的负载,从而降低电机3的功率,实现空调器的节能。按照此规律,第一判断模块603和第二判断模块604通过处理模块602往复锁紧和松开扇叶1和驱动轴2,可以使扇叶1的转速维持在设定最低转速与设定最高转速之间,使得该扇叶结构能够长期稳定运行。
为简化扇叶结构的控制过程,还可在锁紧或松开状态下持续运行的时间来把控扇叶1转速,通过驱动轴2带动扇叶1旋转的时间来确定转速,简化获取扇叶1转速的过程。基于此,控制结构还包括:第三判断模块605。第三判断模块605用于在锁紧状态下的持续运行过程中,锁紧机构锁紧扇叶1和驱动轴2并持续运行第一预设时间后,使处理模块控制锁紧机构松开扇叶1和驱动轴2。此外,控制结构还包括:第四判断模块606,第四判断模块606用于在松开状态下的持续运行过程中,锁紧机构松开扇叶1和驱动轴2并持续运行第二预设时间后,使处理模块控制锁紧机构锁紧扇 叶1和驱动轴2。
本实施例,空调器运行的过程中,处理模块602收到命令后控制电机3驱动驱动轴2转动,锁紧机构通电,扇叶1两端与驱动轴2通过锁紧机构电磁锁紧配合,此时驱动轴2和扇叶1是配合状态,驱动轴2带动扇叶1旋转,电机3的负载为扇叶1。
第三判断模块605在锁紧状态下的持续运行过程中,锁紧机构锁紧扇叶1和驱动轴2并持续运行第一预设时间后,例如累计1秒后,锁紧机构断电,第三判断模块605通过处理模块602控制锁紧机构松开扇叶1和驱动轴2,扇叶1转速持续降低。
第四判断模块606在松开状态下的持续运行过程中,锁紧机构松开扇叶1和驱动轴2并持续运行第二预设时间后,例如累计0.5秒后,锁紧机构通电,第四判断模块606通过处理模块602控制锁紧机构重新锁紧扇叶1和驱动轴2,扇叶1转速持续上升。
在扇叶1的一个运转周期内,锁紧状态下驱动轴2带动扇叶1旋转,提升扇叶转速,松开状态下驱动轴2和扇叶1悬空,降低了电机3运转时的负载,使得在一个运转周期内能够降低电机3的功率,实现空调器的节能。
按照此规律,第三判断模块605和第四判断模块606通过处理模块602往复锁紧和松开扇叶1和驱动轴2,在额定功率下,电机3转速能够保持稳定,从而在每次锁紧状态持续运行第一预设时间时,风机提升的转速基本相同。同样,在每次松开状态持续运行第二预设时间时,风机降低的转速也相同。能够在一定误差允许范围内,使得扇叶1的转速维持在一定范围内,使得该扇叶结构能够长期稳定运行。
需要说明的是,在实际使用过程中,如果无需精确控制扇叶1转速,可直接将第三判断模块605和第四判断模块606替换第一判断模块603和第二判断模块604,通过驱动轴2和扇叶1在锁紧和松开状态下的时间来调整扇叶1转速。
本申请还提供一种电子设备,如图7所示,该电子设备可以包括:处理器(processor)710、通信接口(Communications Interface)720、存储器(memory)730和通信总线740,其中,处理器710,通信接口720,存储器 730通过通信总线740完成相互间的通信。处理器710可以调用存储器730中的逻辑指令,以执行扇叶结构的控制方法。
该扇叶结构的控制方法包括如下步骤:
步骤S1:控制电机驱动驱动轴转动,并控制锁紧机构锁紧扇叶和驱动轴。
步骤S2:在锁紧状态下的持续运行过程中,判断扇叶是否达到设定最高转速。
步骤S3:若扇叶未达到设定最高转速,则继续控制锁紧机构锁紧扇叶和驱动轴;若扇叶达到设定最高转速,则控制锁紧机构松开扇叶和驱动轴。
此外,上述的存储器730中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的扇叶结构的控制方法。
又一方面,本申请还提供一种非暂态计算机可读存储介质,该非暂态计算机可读存储介质存储有计算机程序,该计算机程序被处理器读取并运行时实现上述扇叶结构的控制方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况 下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在非暂态计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种扇叶结构的控制方法,其特征在于,所述扇叶结构包括:扇叶、驱动轴、锁紧机构和电机;所述电机的转动端与所述驱动轴轴连接,所述驱动轴通过所述锁紧机构与所述扇叶锁紧或松开;
    所述扇叶结构的控制方法包括如下步骤:
    控制所述电机驱动所述驱动轴转动,并控制所述锁紧机构锁紧所述扇叶和所述驱动轴;
    在锁紧状态下的持续运行过程中,判断所述扇叶是否达到设定最高转速;
    若所述扇叶未达到设定最高转速,则继续控制所述锁紧机构锁紧所述扇叶和所述驱动轴;若所述扇叶达到设定最高转速,则控制所述锁紧机构松开所述扇叶和所述驱动轴。
  2. 根据权利要求1所述的扇叶结构的控制方法,其特征在于,所述若所述扇叶达到设定最高转速,则控制所述锁紧机构松开所述扇叶和所述驱动轴的步骤之后还包括:
    在松开状态下的持续运行过程中,判断所述扇叶是否达到设定最低转速;
    若所述扇叶未达到设定最低转速,则继续控制所述锁紧机构松开所述扇叶和所述驱动轴;若所述扇叶达到设定最低转速,则控制所述锁紧机构锁紧所述扇叶和所述驱动轴。
  3. 根据权利要求1所述的扇叶结构的控制方法,其特征在于,在锁紧状态下的持续运行过程中,所述锁紧机构锁紧所述扇叶和所述驱动轴并持续运行第一预设时间后,控制所述锁紧机构松开所述扇叶和所述驱动轴。
  4. 根据权利要求3所述的扇叶结构的控制方法,其特征在于,在松开状态下的持续运行过程中,所述锁紧机构松开所述扇叶和所述驱动轴并持续运行第二预设时间后,控制所述锁紧机构锁紧所述扇叶和所述驱动轴。
  5. 一种空调器,其特征在于,所述空调器包括:扇叶结构和控制结构;
    所述扇叶结构包括:扇叶、驱动轴、锁紧机构和电机;所述电机的转动端与所述驱动轴轴连接,所述驱动轴通过所述锁紧机构与所述扇叶锁紧 或松开;
    所述控制结构包括:
    处理模块,所述处理模块用于控制所述电机驱动所述驱动轴转动,并控制所述锁紧机构锁紧所述扇叶和所述驱动轴;
    获取模块,所述获取模块用于获取扇叶转速;
    第一判断模块,所述判断模块用于在锁紧状态下的持续运行过程中,判断所述扇叶是否达到设定最高转速;若所述扇叶未达到设定最高转速,则通过所述处理模块继续控制所述锁紧机构锁紧所述扇叶和所述驱动轴;若所述扇叶达到设定最高转速,则通过所述处理模块控制所述锁紧机构松开所述扇叶和所述驱动轴。
  6. 根据权利要求5所述的空调器,其特征在于,所述控制结构还包括:
    第二判断模块,所述第二判断模块用于在松开状态下的持续运行过程中,判断所述扇叶是否达到设定最低转速;若所述扇叶达到设定最低转速,则通过所述处理模块控制所述锁紧机构锁紧所述扇叶和所述驱动轴;若所述扇叶未达到设定最低转速,则通过所述处理模块继续控制所述锁紧机构松开所述扇叶和所述驱动轴。
  7. 根据权利要求6所述的空调器,其特征在于,所述控制结构还包括:
    第三判断模块,所述第三判断模块用于在锁紧状态下的持续运行过程中,所述锁紧机构锁紧所述扇叶和所述驱动轴并持续运行第一预设时间后,使所述处理模块控制所述锁紧机构松开所述扇叶和所述驱动轴。
  8. 根据权利要求7所述的空调器,其特征在于,所述控制结构还包括:
    第四判断模块,所述第四判断模块用于在松开状态下的持续运行过程中,所述锁紧机构松开所述扇叶和所述驱动轴并持续运行第二预设时间后,使所述处理模块控制所述锁紧机构锁紧所述扇叶和所述驱动轴。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至4中任一项所述扇叶结构的控制方法。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至4中任一项所述扇叶结构的控制方法。
PCT/CN2021/132740 2021-04-19 2021-11-24 一种扇叶结构的控制方法、空调器电子设备和存储介质 WO2022222462A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110421125.1A CN113251597A (zh) 2021-04-19 2021-04-19 一种扇叶结构的控制方法、空调器电子设备和存储介质
CN202110421125.1 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022222462A1 true WO2022222462A1 (zh) 2022-10-27

Family

ID=77221101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132740 WO2022222462A1 (zh) 2021-04-19 2021-11-24 一种扇叶结构的控制方法、空调器电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN113251597A (zh)
WO (1) WO2022222462A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251597A (zh) * 2021-04-19 2021-08-13 青岛海尔空调器有限总公司 一种扇叶结构的控制方法、空调器电子设备和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107859644A (zh) * 2017-12-26 2018-03-30 宁波菲仕运动控制技术有限公司 风冷伺服电机的风扇叶安装结构
JP2019180179A (ja) * 2018-03-30 2019-10-17 ミネベアミツミ株式会社 モータ駆動制御装置、ファン、及びモータの制御方法
CN210118270U (zh) * 2019-06-24 2020-02-28 珠海格力电器股份有限公司 一种空调内机的驱动结构及空调
CN111121174A (zh) * 2020-01-16 2020-05-08 珠海格力电器股份有限公司 风机组件、窗机空调及其控制方法
CN112378044A (zh) * 2020-11-17 2021-02-19 珠海格力电器股份有限公司 空调器控制方法、装置、设备及计算机可读介质
CN112506739A (zh) * 2020-12-04 2021-03-16 苏州浪潮智能科技有限公司 一种解决风扇逆转问题的方法、系统、设备及介质
CN112503642A (zh) * 2020-11-20 2021-03-16 珠海格力电器股份有限公司 一种单电机齿轮传动的窗式空调器
CN112594902A (zh) * 2020-12-03 2021-04-02 重庆海尔空调器有限公司 一种空调器的控制方法和系统
CN113251597A (zh) * 2021-04-19 2021-08-13 青岛海尔空调器有限总公司 一种扇叶结构的控制方法、空调器电子设备和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877431A (ja) * 1981-10-30 1983-05-10 Koyo Kikai Kogyo Kk 工作機械等における駆動電力節減方法
TW201043811A (en) * 2009-06-12 2010-12-16 shi-zhen Liu Power generating system and apparatus
CN102538502B (zh) * 2011-12-30 2014-05-14 上虞市东杰冷却塔有限公司 混合动力喷雾推进冷却塔
CN104676748B (zh) * 2013-11-29 2017-12-15 海尔集团公司 空调室内机
CN109980853A (zh) * 2019-03-05 2019-07-05 广州市耐诺电器有限公司 一种新能源汽车用的风冷电机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107859644A (zh) * 2017-12-26 2018-03-30 宁波菲仕运动控制技术有限公司 风冷伺服电机的风扇叶安装结构
JP2019180179A (ja) * 2018-03-30 2019-10-17 ミネベアミツミ株式会社 モータ駆動制御装置、ファン、及びモータの制御方法
CN210118270U (zh) * 2019-06-24 2020-02-28 珠海格力电器股份有限公司 一种空调内机的驱动结构及空调
CN111121174A (zh) * 2020-01-16 2020-05-08 珠海格力电器股份有限公司 风机组件、窗机空调及其控制方法
CN112378044A (zh) * 2020-11-17 2021-02-19 珠海格力电器股份有限公司 空调器控制方法、装置、设备及计算机可读介质
CN112503642A (zh) * 2020-11-20 2021-03-16 珠海格力电器股份有限公司 一种单电机齿轮传动的窗式空调器
CN112594902A (zh) * 2020-12-03 2021-04-02 重庆海尔空调器有限公司 一种空调器的控制方法和系统
CN112506739A (zh) * 2020-12-04 2021-03-16 苏州浪潮智能科技有限公司 一种解决风扇逆转问题的方法、系统、设备及介质
CN113251597A (zh) * 2021-04-19 2021-08-13 青岛海尔空调器有限总公司 一种扇叶结构的控制方法、空调器电子设备和存储介质

Also Published As

Publication number Publication date
CN113251597A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN109210708A (zh) 空调器压缩机控制方法、控制装置和空调器
CN103292418B (zh) 一种直流变频空调压缩机的双模启动控制方法及系统
CN107062518A (zh) 一种空调器控制方法及控制装置
US20110276182A1 (en) Control of cooling towers for chilled fluid systems
CN107166642A (zh) 一种变频空调室外直流风机控制方法
US9568209B2 (en) System and method for controlling output flow of parallel connected blowers
WO2022222462A1 (zh) 一种扇叶结构的控制方法、空调器电子设备和存储介质
CN108571460A (zh) 风扇转速控制方法和装置
JP2004027991A (ja) 車両用制御装置
CN106556099A (zh) 多联机空调系统的室内机的电子膨胀阀的控制方法
CN110822676B (zh) 控制方法、控制装置、空调器和计算机可读存储介质
CN110715475B (zh) 运行控制方法、压缩空气换热系统以及存储介质
CN108151250A (zh) 变频空调控制方法和装置
CN108050671A (zh) 空调器的控制方法及空调器
WO2022222466A1 (zh) 一种多扇叶结构的控制方法、电子设备和存储介质
CN104236020A (zh) 一种空调系统的控制方法及装置
CN114459133A (zh) 一种中央空调系统节能控制方法及节能控制系统
CN114440409A (zh) 一种中央空调系统自适应节能控制方法
CN111895624B (zh) 一种空调温湿度控制方法、装置、存储介质及空调
CN112710065B (zh) 一拖多空调器的控制方法、一拖多空调器及存储介质
CN117249562A (zh) 一种空调的控制方法、装置、存储介质及空调
JP6849345B2 (ja) 空調システムの制御装置、制御方法および制御プログラム
CN211364994U (zh) 一种使用多个螺杆压缩机的电力驱动飞机地面空调机组
CN206944338U (zh) 风管及具有其的空调器
CN116592690A (zh) 干湿换热器控制方法、干湿换热器、控制模块及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937684

Country of ref document: EP

Kind code of ref document: A1